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ABSTRACT

Modern hydrophone calibration techniques typically require sensors to be placed in a

free field or within a hydrostatically varying chamber. Between 1 kHz and 10 kHz, the

wavelength in water is too long for free-field conditions to be used in common tank sizes. A

novel technique to calibrate hydrophones is investigated to address the measurement gap

between very low-frequency and high-frequency techniques. Calibrations are performed

in a 12-meter copper tube coiled into a 1-meter diameter helix. This elastic waveguide

decreases the speed of sound within the apparatus, providing a longer reverb-free time

for calibrations using a small volume. The propagation within the waveguide is studied

with the deviations from the predicted theory discussed. Calibrations performed on Ocean

Sonics icListen hydrophones are shown to be within 1 dB of independently calibrated

reference measurements. This research demonstrates that using elastic waveguides is an

effective and simple low-frequency hydrophone calibration method.
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CHAPTER 1

INTRODUCTION: A BRIEF HISTORY OF
HYDROPHONE CALIBRATION

Hydrophones are crucial to the study of the ocean environment. Oceanographers and

marine biologists use hydrophones to study all aspects of the ocean from monitoring

marine wildlife to measuring and predicting seismic activity for earthquake monitoring.

To ensure that measurements are reliable and accurate, hydrophones need to be calibrated.

Hydrophone calibration at different frequencies has been a topic of research for the last

100 years. Sounds in the ocean are highly varied in frequency and each frequency band

requires different techniques for proper calibration.

Historically, calibration was done by comparing the uncalibrated sensor’s response to

a known pressure source. While simple, this method had challenges in finding pressure

sources of known amplitude across the multiple frequencies of interest to scientists and

engineers. The requirement for previously calibrated pressure sources was removed with

the introduction of reciprocity calibration by MacLean (1940). MacLean applied the

principle of electroacoustic reciprocity to transducers in order to calibrate hydrophones

without the need of a primary source. A reciprocal transducer is defined as one whose

pressure generated from a fixed current is related to the voltage measured from receiving the

same pressure. The key development was the introduction of the reciprocity parameter J

which is defined as the ratio of received voltage sensitivity to transmitted current response.

If the transducer is reciprocal (which is the case for most hydrophones) the reciprocity

parameter is a function solely of the geometry of the system and not of the individual
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transducer properties (MacLean, 1940). With multiple reciprocal transducers, using the

reciprocity parameter for the system the calibration of all the test transducers can be

determined without a primary source. MacLean derived the reciprocity parameter for free

field geometry and in the following years Bobber and Sabin (1961) extended the analysis

to cylindrical waves and finally for generalized geometries (Bobber, 1966).

With the advent of reciprocity the many limitations associated with hydrophone cal-

ibration were no longer present. As long as the devices were reciprocal, researchers

could calibrate their hydrophones to sufficient accuracy without needing to trace those

measurements. However, due to the complexity of deriving the reciprocity parameter

in non-standard geometries as well as the difficulty in the setup, it was not universally

used. Additionally, reciprocity calibration cannot be performed on digital hydrophones

due to the need to measure both the transmitted current and received voltage. The most

common method of calibration is still the reference method which involves comparison of

unknown units to calibrated references. In this case the reference device is traced back to a

reciprocal calibration from a previous measurement. The current hydrophone calibration

standard IEC 60565-1:2020 includes both the reference method as well as reciprocity as

valid calibration techniques (IEC 60565-1:2020).

Free field reference calibration, as described in part one of IEC 60565-1, is the most

common technique for calibration, however it has many practical issues for general use.

Free-field calibration requires a minimum of 1 wavelength of separation distance and the

sensors must be sufficiently far away from any surface such that there is no interference

due to reflections (IEC 60565-1:2020). This last requirement is typically the limiting factor

on test environments. For a given test environment there is a lower frequency bound below

which calibration cannot be accurate. Given the high speed of sound in water compared to

air, performing reliable calibration below 10 kHz would require a tank with the smallest

dimension of at least 2 m. Tanks of these sizes are expensive to build and maintain and

are rare for most researchers and hydrophone manufacturers. Additionally, many current

areas of ocean acoustic research involve frequencies less than 10 kHz such as seismic

monitoring and ship noise which would require an even larger tanks.

For calibration below 2 kHz there have been many different systems constructed all

based on hydrostatic pressure. First proposed by Schloss and Strasberg (1962) this system
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sets the hydrophone in a vibrating chamber with a pressure sensor. The system allows

for low frequency calibration by assuming that, for sufficiently large wavelength, the

local variation in pressure throughout the tank is small. If this is the case the pressure in

the entire chamber can be approximated to vary hydrostatically. This system is ideal for

seismic hydrophone calibration as those signals are typically less than 10 Hz (Dakin et al.,

2014).

Variations of this system have been investigated to include the calibration while under

a hydrostatic load. Traditional calibrations are performed in shallow water less than 10

m deep. However, hydrophone deployments typically are done in deeper water. Due to

the nature of the piezoceramic inside the hydrophone, hydrostatic pressure has an effect

on the calibration. This effect is more significant at low frequencies as was recognized by

Golenkov and Rachkov (1980) was well as Dakin et al. (2014). Another technique based

on Schloss’ method was proposed by Joubert et al. (2015) where instead of a vibrating

column of liquid the hydrophone is placed in a chamber with a step function pressure

change. As the spectrum of a step function is broadband this change in pressure should

allow for calibration for the entire system response.

The above methods rely on the local variation of pressure within the test environment

to be negligible. This is the case for frequencies below 2 kHz but becomes impractical

above 2 kHz. Techniques for mid-frequency calibration (1 kHz - 10 kHz) are still relatively

unexplored. To perform calibration between 1 and 10 kHz, large tanks are needed to

create the free field environment. A method described by Johnson and Garrett (1985) in

a Naval Post Graduate School thesis confined the sound to a cylindrical waveguide. A

compliant cylindrical waveguide has a reduced group speed, which effectively decreases the

wavelength of the standing wave trapped in the guide for the same frequency in a free field.

This allows for a smaller test setup. The thesis research attempted to perform a reciprocity

calibration and calculated the reciprocity parameter for the tube by measurement of its

quality factor (Q) and its resonance frequency. The experiment was done using a PVC tube,

but this proved to be an issue as PVC has a negligible elastic range. The tube deformed

and dissipated too much energy through expansion of the tube wall. Despite the plastic

deformation, the results from the thesis were reproducible to +/- 0.8 dB. However, the

hydrophone sensitivity had a systemic bias of 1.5 dB.
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When calibrating hydrophones, special techniques are needed in order to calibrate across

the whole spectrum of frequencies. For frequencies between 1 kHz and 10 kHz, Johnson

proposed a system that was accessible to researchers without large costs. There is potential

for improving the methods from Johnson by using copper piping rather than PVC to

minimize the effect of energy loss from plastic deformation. Since copper has a defined

elastic range it will not dissipate as much sound and minimize the issues with PVC.

To confirm that the copper piping is sufficiently rigid, the speed of sound of the pipe will

be measured to characterize the sound field within the pipe If the system has low energy

loss this will allow for a consistent calibration at low frequencies. Rather than focusing on

reciprocity this research focuses on reference calibration which is simpler to perform and

will be useful to the ocean technology industry.
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CHAPTER 2

INTRODUCTION: THEORY OF SOUND
IN PIPES

2.1 History of sound in pipes

In order to use the methods described by Johnson, an understanding on how sound travels

in a pipe is critical. Sound transmission in a cylindrical waveguide has been a topic of

study for over 150 years. The simplest case considers sound transmission with idealized

pipe structure. Rossing and Fletcher (2004) solve this idealized case by starting with the

acoustic wave equation in cylindrical coordinates

∇2p− 1

c

∂2p

∂t2
= 0, (2.1)

where c is the speed of sound of the fluid and p is the acoustic pressure. The solution of

the above partial differential equation (PDE) is given by the expression

pmn(r, θ, z, t) = p0P
cos
sin (nθ)Jn

(
r
√
k2 − q2nm

)
ei(qnmz−ωt), (2.2)

where b is the pipe radius, ω is the angular frequency, p0 is the initial pressure and P

refers to the nth Legendre polynomial. The propagation wavenumber qnm is defined so

that the boundary condition for the idealized case (∂p
∂r

= 0) is satisfied for a given n and

m. From this formulation n and m are integers corresponding to modes that can exist in

the pressure field. A key takeaway from this idealized case is the existence of the modes
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and in particular the mode dependent wavenumber qnm. These modes all have different

wavelength for a single transmitting frequency. It can be shown that this wavelength is

both a function of frequency and phase speed but depends also on the mode number. The

wavenumber qnm is calculated as

q2nm =

(
ω

c

)2

−
(
Xnm

b

)2

, (2.3)

where for rigid boundaries Xnm is the mth zero of J ′
n(x) and b is the inner pipe radius.

Equation 2.3 implies a cutoff frequency ωc the wavenumber will be purely imaginary. For

a given mode (m,n) this cutoff only occurs when ω > ωc, where

ωc =
Xnmc

b
. (2.4)

Referring to equation 2.2, an imaginary wavenumber will cause that mode to decay

exponentially in z rather than propagate in space. All the modes (including non-propagating

ones) must exist to at z = 0 to satisfy the initial conditions. The plane wave (0, 0)

will always propagate but for higher modes there is a minimum frequency needed for

propagation. This is not always the case for general boundary conditions.

For most applications involving in-air acoustics, the idealized boundary conditions are

sufficient. The first attempts to add non-ideal effects to the wave propagation were done

by Stokes (1845) and von Helmholtz (1863). These first treatments considered the effect

of viscosity from the interaction between the fluid and the pipe wall. Later Kirchhoff

(1868) added thermal effects to consider how heat transfer from the pipe wall into the fluid

affected the propagation. There have been numerous studies since Kirchhoff’s research

investigating the sound transmission and energy loss with thermal and viscous effects.

Examples include Morse (1939), Daniels (1950), Benade (1968) and Keefe (1984). As

the main application in the previous studies was for air-filled pipes, losses due to an

elastic boundary were not considered. When considering propagation in fluids with large

bulk moduli, this assumption is no longer valid. (Lin and Morgan, 1956; Gazis, 1959;

Del Grosso, 1964; Del Grosso and McGill, 1968; Del Grosso, 1968; Del Grosso and

McGill, 1970; Del Grosso, 1971; Zemanek Jr, 1972; Peterson, 1974; Fuller and Fahy,

1982; Sinha et al., 1992; Plona et al., 1992; Lafleur and Shields, 1995; Elvira-Segura,
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2000; Wilson et al., 2003).

The first attempts to extend the analysis past air acoustics were done by Lin and

Morgan (1956) and Gazis (1959). Both of these treatments did not solve the system

with elastic boundaries analytically but used approximations to create expressions for

the low-frequency dispersion of the system. The first true full analytically solution was

given by Del Grosso (1968) in part 4 of his work on ultrasonic propagation. Del Grosso

derives, using the elastic properties of material, the characteristic function as well as the

mode shapes for a general pipe at all frequencies. Del Grosso later expanded on this work

in 1968, 1970, and 1971 numerically calculating the dispersion for specific pipes and

determining the pressure fields with input sources (Del Grosso and McGill, 1968, 1970;

Del Grosso, 1971). Significantly Del Grosso limited his analysis to the axisymmetric

waves (i.e. m = 0). A detailed discussion of this analysis is given in section 2.4. Other

researchers extended and tested Del Grosso’s work such as Fuller and Fahy (1982), Sinha

et al. (1992); Plona et al. (1992) and Lafleur and Shields (1995). A treatment of the

non-axisymmtric modes is given by Zemanek Jr (1972).

Modern work on this topic has focused on the non-linearities of the problem such as

considering viscous fluids and viscoelastic pipe materials. The first to consider these

scenarios were Morgan and Kiely (1954) for viscous fluids and Klip et al. (1967) for

viscoelastic pipes. More work on the viscous fluids was done by Chow and Apter (1968),

Rubinow and Keller (1971) and Bansevičius and Kargaudas (2005). Studying the effects

of viscoelastic boundary conditions, work has been done by several researchers including

Rubinow and Keller (1971), Greenspon and Singer (1995) and Prek (2007). Additionally

Rama Rao and Vandiver (1999) looked into problems of this type with application to

boreholes and Kwun et al. (1999) investigated the effects of welds on the dispersion.

2.2 Pressure field solution with rigid boundaries

Consider a straight fluid-filled pipe of radius b with rigid boundary conditions shown in

figure 2.1. The pressure field inside the pipe is given by the wave equation for velocity

potential Φ

7



b

θ̂
r̂

ẑ

∂ϕ
∂r

∣∣∣
r=b

= 0

Figure 2.1: Diagram of a tube with rigid boundary conditions

∇2Φ− 1

c2
∂2Φ

∂t2
(2.5)

where c is the phase speed of sound of the fluid. The particle velocity u⃗ and pressure p can

be found from the potential as

u⃗ = ∇Φ (2.6)

p = −ρL
∂

∂t
Φ, (2.7)

where ρL is the density of the fluid. In cylindrical coordinates the potential is a function of

r, θ, z and t. Equation 2.5 is separable into two expressions ϕ(r, θ, z) and T (t) such that

Φ = ϕT . Using −k2 as the separation constant the equations become

∇2ϕ+ k2ϕ = 0 (2.8)

d2T

dt2
= −k2c2T. (2.9)

Equation 2.8 is the Helmholtz equation and equation 2.9 is the equation of simple harmonic

motion with frequency ω = kc. The latter equation has solutions

T (t) = e±iωt. (2.10)
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Looking at the Helmholtz equation, the Laplacian can be written in cylindrical polar

coordinates which gives the expanded equation

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
+
∂2ϕ

∂z2
+ k2ϕ = 0. (2.11)

Equation 2.11 can be further separated into three ordinary differential equations (ODE)

ϕ(r, θ, z) = R(r)Θ(θ)Z(z) by introducing the separation constants −n2 and −q2. The

three equations become

d2R

dr2
+

1

r

dR

dr
+R

[(
k2 − q2

)
− n2

r2

]
= 0 (2.12)

d2Θ

dθ2
= −n2Θ (2.13)

d2Z

dz2
= −q2Z. (2.14)

The solutions to equations 2.13 and 2.14 are as given simple harmonic motion in θ and z

respectively

Θ =A cos(nθ) + B sin(nθ) (2.15)

Z =Ceiqz +De−iqz, (2.16)

where A, B, C and D are arbitrary constants determined from conditions on the original

PDE. Equation 2.12 can also be solved by inspection as this is Bessel’s equation which has

two linearly independent solutions Jν (x) and Yν (x). This gives the expression for R as

R = EJn

(
r
√
k2 − q2

)
+ FYn

(
r
√
k2 − q2

)
, (2.17)

where again E and F are arbitrary constants. As the domain of the R equation is r = [0, b]

this requires that F = 0 as Yn (x) is singular at x = 0. Additionally, applying the radiation

condition requires D = 0. This gives the full expression of the time-independent potential

for a mode of order (n,m)

ϕnm = Θ(θ)Jn

(
r
√
k2 − q2nm

)
eiqnmz, (2.18)
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where m is determined by the boundary conditions. Now limiting the discussion to modes

with axial symmetry per Del Grosso (1964, 1968) the θ dependent part of the equation is

removed by setting n = 0. This gives the full time-dependent potential as

Φ0m = Φ0mJ0

(
rX0m

b

)
ei(q0mz−ωt), (2.19)

where X0m is a characteristic value

X0m = b
√
k2 − q20m, (2.20)

such that the r dependent portion of the potential becomes J0
(
rX0m

b

)
.

The value q0m can be thought of as the wavenumber for the mth mode propagating

in the z direction. This wave propagates with a phase speed of c0m = ω/q0m. Another

interpretation is that the modes all propagate at the phase speed of the liquid but at different

starting angles. The interference pattern is then what governs the apparent change in

propagation speed. Recall that in the argument for the Bessel function in equation 2.18 the

expression looks similar to a Pythagorean triple. Defining kr =
√
k2 − q20m, this value is

now the radial “wavenumber” such that k2 = k2r + q20m. The angle that the k vector forms

with z-axis γ = arccos
(
q0m/k

)
is the angle of propagation of the plane wave for each

mode m. Unlike in the z direction with q0m, the r dependence is not sinusoidal however

the assymtopic expansion of Bessel function

J0(x) ∼
√

2

πx
cos
(
x− π/4

)
, (2.21)

does converge to a sinusoid for large radii.

The full pressure field expression can be found using the relation given in equation 2.7.

p = −ρL
∂

∂t
Φ = iρLωE0mJ0

(
r
X0m

b

)
ei(q0mz−ωt). (2.22)

Note that the pressure expression is multiplied by the imaginary constant i (i2 = −1) and

is a complex value. This is just to ease calculations, the true pressure is the real component

of expression 2.22.
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The question then becomes, what are the values of q0m to determine the dispersion of

the modes. This is determined from the boundary conditions. Up until this point, the fact

that the pipe walls are rigid has not been used. For rigid boundaries

∂

∂r
ϕ0m

∣∣∣∣
r=b

= 0. (2.23)

Taking the r partial derivative of the potential yields

∂

∂r
ϕ = E0m

X0m

a
J ′
0

(
r
X0m

b

)
eiq0mz, (2.24)

using the relation that J ′
0(x) = −J1(x) and applying the condition

∂

∂r
ϕ0m

∣∣∣∣
r=b

= E0m
−X0m

b
J1 (X0m) e

iq0mz = 0, (2.25)

which is only non-trivially zero if J1 (X0m) = 0. This gives a meaning to the value m as

X0m is defined as the mth zero of J1 (x).

2.3 Phase and group speed

When propagating in free space, waves travel at a constant speed which is intrinsic to the

material regardless of frequency. This is not the case when the sound is confined within a

waveguide. While in a waveguide there are two quantities that are needed to describe the

propagation speed: phase speed and group speed. The phase speed

cp =
ω

k
, (2.26)

where ω is the angular frequency in rad/s and k is the wavenumber in the propagation

direction. This represents the speed at which the phase of the wave propagates. The

quantity does not describe the speed at which the wave’s energy (and thus the wave packet)

travels through space. This is known as the group speed defined as

cg =
∂ω

∂k
. (2.27)
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Note that in the free field both cp an cg are the same and referred to as c or the intrinsic

sound speed.

In the cylindrical waveguide, the wavenumber in the propagation direction is q0m and

thus the phase speed is found with equation 2.26 and by substituting in equation 2.20

cp0m =
ω√

k2 −
(

X0m

b

)2 . (2.28)

Recalling that the intrinsic speed c is given as ω/k the phase speed in the cylindrical

waveguide is further simplified into

cp0m =
c√

1−
(

X0m

kb

)2 . (2.29)

Expression 2.29 implies the existence of imaginary phase speeds when X0m > kb and no

propagation occurs. The group velocity is derived by rearranging equation 2.20 to find the

frequency as a function of wavenumber

ω(q0m) =

√
q20mc

2 +

(
X0m

b

)2

c2. (2.30)

Applying the definition of the group velocity from equation 2.27 gives

cg0m =
∂ω

∂q0m
=

q0mc
2√

q20mc
2 +

(
X0m

b

)2
c2
. (2.31)

Recalling that the denominator is simply the frequency ω and substituting in equation 2.30

and the phase speed expression equation 2.31 is simplified to

cg0m = c

√
1−

(
X0m

kb

)2

, (2.32)

where both cp0m and cg0m are related through

c2 = cp0mcg0m . (2.33)
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The group speeds also exhibit the same frequency cutoff for imaginary wavenumber as

the phase speeds. While performing calibrations, to determine the first arrival of the wave

packet, the quantity of interest is the group speed and needs to be determined for the elastic

waveguide to perform the measurements.

2.4 Effect of the elastic boundary conditions

d

b

θ̂
r̂

ẑ

σrr
∣∣
r=d

= 0

σrz
∣∣
r=d

= 0

σrr/S
W
r

∣∣
r=b

= p/SL
r

∣∣
r=b

σrr
∣∣
r=d

= 0

σrz
∣∣
r=b

= 0

Figure 2.2: Diagram of a tube with elastic boundary conditions

From the results in section 2.2, the velocity potential inside the liquid cylinder is given

by equation 2.19. When considering elastic boundaries, the corresponding potential fields

within the pipe wall also need to be determined. A diagram of the elastic pipe is shown in

figure 2.2. Using the method provided by Del Grosso (1968), a displacement vector S⃗ is

defined in terms of a scalar displacement potential Ξ and a vector displacement potential

Ψ⃗ as

S⃗ = ∇Ξ +∇× Ψ⃗, (2.34)
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where both Ξ and Ψ⃗ are solutions to the wave equations

∇2Ξ =
1

c

∂2Ξ

∂t2
(2.35)

∇2Ψ⃗ =
1

c

∂2Ψ⃗

∂t2
. (2.36)

As the material in the wall is elastic the equations of motion necessarily obey Hooke’s law

such that

ρW
∂2S⃗

∂t2
= (L+ 2µ)∇

(
∇ · S⃗

)
− 2µ∇×

(
1

2
∇× S⃗

)
(2.37)

where L and µ are Lamé’s constants and ρW is the density of the wall material.

In cylindrical coordinates the components of equation 2.34 are

∇Ξ =
∂Ξ

∂r
r̂ +

1

r

∂Ξ

∂θ
θ̂ +

∂Ξ

∂z
ẑ (2.38)

and

∇× Ψ⃗ =

[
1

r

∂

∂θ
Ψz −

∂

∂z
Ξθ

]
r̂

+

[
∂

∂z
Ψr −

∂

∂r
Ξz

]
θ̂

+
1

r

[
∂

∂r
(Ψθ)−

∂

∂θ
Ξr

]
ẑ.

(2.39)

Combing equations 2.38 and 2.39 the vector displacement S⃗ = Srr̂ + Sθθ̂ + Szẑ can be

represented as

Sr =
∂Ξ

∂r
+

1

r

∂Ψz

∂θ
− ∂Ψθ

∂z
(2.40)

Sθ =
1

r

∂Ξ

∂θ
+
∂Ψr

∂z
− ∂Ψz

∂r
(2.41)

Sz =
∂Ξ

∂z
+

1

r

[
∂(rΨθ)

∂r
− ∂Ψr

∂θ

]
. (2.42)

Assuming axial symmetry, (Sθ = 0 and ∂
∂θ

= 0) the components of displacement are

reduced to
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Sr =
∂Ξ

∂r
− ∂Ψθ

∂z
(2.43)

Sz =
∂Ξ

∂z
+

1

r

∂(rΨθ)

∂r
. (2.44)

As there is only one component of Ψ⃗ remaining, for the remainder of the analysis Ψθ = Ψ.

The two wave equations 2.35 and 2.36 now can be written as the “wave” equations

∇2Ξ− 1

c2c

∂2Ξ

∂t2
= 0 (2.45)

∇2Ψ− Ψ

r2
− 1

c2s

∂2Ψ

∂t2
= 0, (2.46)

where “wave” refers to the extra term of Ψ
r2

and cc and cs are the compression and shear

speed in the wall material respectively. The extra term in the ψ equation comes from the

definition of the vector Laplacian in cylindrical coordinates

∇2Ψ⃗ =

(
∇2Ψr −

Ψr

r2
− 2

r2
∂Ψr

∂θ

)
r̂

+

(
∇2Ψθ −

Ψθ

r2
+
∂Ψθ

∂θ

)
θ̂

+∇2Ψzẑ.

(2.47)

As with the rigid boundary discussion in section 2.2 these equations are solved through

separation of variables by first removing the time dependence eiωt and the axial dependence

eiq0mz leaving the two r equations

d2Ξ

dr2
+

1

r

dΞ

dr
+

[
(k2c − q20m)−

02

r2

]
Ξ = 0 (2.48)

d2Ψ

dr2
+

1

r

dΨ

dr
+

[
(k2s − q20m)−

12

r2

]
Ψ = 0. (2.49)
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These two equations have Bessel function solutions Jn (x) and Yn (x) of the form

Ξ =
[
AJ0 (Pmr) + BY0 (Pmr)

]
ei(q0mz−ωt) b < r < d (2.50)

Ψ =
[
CJ1 (Tmr) +DY1 (Tmr)

]
ei(q0mz−ωt), (2.51)

where Pm =
√
k2c − q20m and Tm =

√
k2s − q20m. Once again A, B, C, D are arbitrary

constants that are determined from the boundary conditions. In the above expressions

kc = ω/cc and ks = ω/cs Note that unlike the the expression for the field in the liquid the

Bessel function of the second kind remains in equations 2.50 and 2.51. This is because

neither function is singular on the boundary r = b and r = d. From section 2.2, the velocity

potential for the guided waves inside the liquid (r < b) is given by equation 2.19. For

the case of the elastic the analysis is done with displacement potential, the displacement

potential in the liquid is given by

Ξ = Ξ0J0

(
rX0m

b

)
ei(q0mz−ωt) r < b, (2.52)

where Ξ is a displacement potential in the liquid. Note that the displacement in the liquid

is given by SL
z = ∂

∂z
Ξ and SL

r = ∂
∂r
Ξ. The pressure and particle velocity in the radial

direction is given as

p = −ρLΞ̈ (2.53)

UL
r =

∂

∂r
Ξ̇. (2.54)

Using the relation between the potential and the displacement, the displacement in the

liquid is

SL
z (r, z, t) = iΞ0q0mJ0

(
r
X0m

b

)
ei(q0m−ωt) (2.55)

SL
r (r, z, t) =

−Ξ0X0m

b
J1

(
r
X0m

b

)
ei(q0m−ωt), (2.56)
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and in the pipes

SW
z =

[
iq0m

(
AJ0 (rPm) + BY0 (rPm)

)
+ Tm

(
CJ0 (rTm) +DY0 (rTm)

)]
ei(q0m−ωt)

(2.57)

SW
r =

[
−Pm

(
AJ1 (rPm) + BY1 (rPm)

)
− iq0m

(
CJ1 (rTm) +DY1 (rTm)

)]
ei(q0m−ωt).

(2.58)

In the case of the rigid boundary, there was only one boundary condition that needed to

be applied to the system ∂
∂r
Φ
∣∣∣
r=b

= 0. With elastic boundaries with finite wall thickness

there are four conditions that must be satisfied

σrr

∣∣∣∣
r=d

= 0 (2.59)

σrz

∣∣∣∣
r=d

= 0 (2.60)

σrz

∣∣∣∣
r=b

= 0 (2.61)

−σrr
SW
r

∣∣∣∣
r=b

=
p

SL
r

∣∣∣∣
r=b

, (2.62)

where σrr and σrz are components of the full stress tensor. The expressions for the stress

components are

σrr = 2µ
∂SW

r

∂r
+ L

(
∂SW

r

∂r
+
SW
r

r
+
∂SW

z

∂z

)
(2.63)

σrz = µ

(
∂SW

r

∂z
+
∂SW

z

∂r

)
, (2.64)

where the shear modulus µ = ρwc
2
s and L is the other Lamé constant L = 2ρW c

2
s

(
ν

1−2ν

)
with ν being Poisson’s ratio.

The expressions for the four boundary conditions in terms of the displacements in

equations 2.55- 2.58 is given by Del Grosso (1968) and Lafleur and Shields (1995). The

first condition requires that the tangential stress on the liquid-solid boundary is zero

σrr

∣∣∣∣
r=d

= 0. (2.65)
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Applying this condition by evaluating equation 2.63 in terms of the displacements gives

A

(
EmJ0 (dPm) +

Pm

d
J1 (dPm)

)
+B

(
EmY0 (dPm) +

Pm

d
Y1 (dPm)

)
+

C

(
−iq0mTmJ0 (dTm) + i

q0m
d
J1 (dTm)

)
+D

(
−iq0mTmY0 (dTm) + i

q0m
d
Y1 (dTm)

)
= 0.

(2.66)

Similarly for the two conditions on the shear stress

σrr

∣∣∣∣
r=d

= 0, σrr

∣∣∣∣
r=b

= 0, (2.67)

gives the two following expressions

A
[
iq0mPmJ1 (dPm)

]
+B

[
iq0mPmY1 (dPm)

]
+

C
[
−EmJ1 (dTm)

]
+D

[
−EmY1 (dTm)

]
= 0,

(2.68)

and

A
[
iq0mPmJ1 (bPm)

]
+B

[
iq0mPmY1 (bPm)

]
+

C
[
−EmJ1 (bTm)

]
+D

[
−EmY1 (bTm)

]
= 0.

(2.69)

Finally the last condition requires that the tangential stress and the displacement must be

continuous at the boundary r = b

−σrr
Sr

∣∣∣∣
r=b

=
p

SL
r

∣∣∣∣
r=b

, (2.70)

which gives the final expression

A

(
EmJ0 (bPm) +

1 +Qmb

b
PmJ1 (bPm)

)
+

B

(
EmY0 (bPm) +

1 +Qmb

b
Y1 (bPm)

)
+

C

(
−iq0mTmJ0 (bTm) +

iq0m
b

(1 +Qmb)J1 (bTm)

)
+

D

(
−iq0mTmY0 (bTm) +

iq0m
b

(1 +Qmb)Y1 (bTm)

)
= 0,

(2.71)
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where in equations 2.66 to 2.71

Em − q20m − k2s/2 (2.72)

Qm =
ρLω

2bJ0 (X0m)

2ρW c2sX0mJ1 (X0m)
(2.73)

Non-zero values of the constants A, B, C, and D are found when the determinant of their

coefficients in equations 2.66 to 2.71 vanish. This occurs at specific pairs of (ωc, q0m).

From the boundary conditions a characteristic equation relating q0m to ω is found as

1+
[
L11(Pm)L00(Tm)

](π2q20mbdP
2
mT

2
m

8E2
m

)
+
[
L11(Tm)L00(Pm)

](π2bdE2
m

8q20m

)
+

[
L10(Pm)L01(Tm) + L01(Pm)L10(Tm)

](π2bdPmTm
8

)
+

[
bL11(Pm)L10(Tm) + d(1 +Qmb)L11(Pm)L01(Tm)

](π2P 2
mTm

8Em

− π2P 2
mq

2
0mTm

8E2
m

)
+

[
bL11(Tm)L10(Pm) + d(1 +Qmb)L11(Tm)L01(Pm)

](π2PmEm

8q20m
− π2Pm

8

)
+

[
(1 +Qmb)L11(Tm)L11(Pm)

](π2P 2
m

8q20m
+
π2P 2

mq0m2

8E2
m

− π2P 2
m

4Em

)
= 0,

(2.74)

where Lmn(y) = Jm (dy)Yn (by)− Jn (by)Ym (dy). In general for any given ω there are

multiple solutions of q0m. This suggests there are distinct modes that propagate in the z

axis with speed found by via the expression c0m = ω/q0m.

Equation 2.74 cannot be solved analytically but can be solved numerically for a given

liquid, wall material and wall geometry. Lafleur and Shields (1995) gives a method to find

the q0m zeros by dividing the domain and range of interest into bins. First chose a frequency

point and then search for zeros of the characteristic equation within the designated bin in

q-space. The zeros are found by taking the real value of the characteristic then performing

the secant method to search for zeros. As the q-bins are sufficiently small there will only

be one zero in the range to converge to.

The parameters for the pipe used in these calibration experiments were put into a script
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Figure 2.3: Modal group speed dispersion for a tube with rigid boundaries (M) and elastic
boundaries (ET). Tube radius inner radius is 2.6 cm with wall thickness 1 mm

to find the dispersion of the modes. These parameters are from Haynes (2014) and are

summarized in table 2.1. The plot of the modes is show in figure 2.3.

Table 2.1: Experimental parameters of the pipe used in the calibration

d (mm) b (mm) cL (m/s) cc (m/s) cs (m/s) ρL (kg/m3) ρW (kg/m3)
169 168 1482 5010 2270 1000 8960

Figure 2.3 shows that the two lowest modes (ET0 and ET1 in Del Grosso’s notation

(Del Grosso, 1968)) are always propagating regardless of frequency and have no cutoff.

The higher modes all have a cutoff frequency where their phase speed asymptotes to

infinity. As well, unlike the case with the rigid pipe in section 2.2 one of the propagating

modes (ET1) is both below the group speed of the liquid (in this case fresh water at 1482

m/s) and varies with frequency.

This result forms the basis for calibration as first proposed by Johnson and Garrett

(1985). Since the group speed has decreased, calibration can be done at lower frequencies

using the same tank dimensions.
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2.5 Modal Amplitudes

It is also useful to consider the amplitude of the modes that are propagating. Once again

using the methods from Del Grosso (1965), consider the velocity potential expansion for

the symmetric modes given as

ϕ(r, z) =
∑
m=0

ϕ0mJ0

(
r
X0m

b

)
eiq0mz, (2.75)

where ϕ0m is the amplitude of the mth mode. To determine the values of ϕ0m the condition

that the initial field at z = 0 is some function of r determined by source geometry.

Assuming the source can be approximated as a piston source of radius a the initial

condition is

ϕ0m(r, z = 0) =

φ0, r ≤ a

0, r > a
, (2.76)

where φ0 is the initial field magnitude. Equations 2.75 and 2.76 are multiplied by

rJ0

(
rX0l

b

)
where l is an integer. Integrating across the inner radius gives

∫ b

0

φ0J0

(
r
X0l

b

)
r dr =

∫ b

0

∑
m=0

ϕ0mJ0

(
r
X0m

b

)
J0

(
r
X0l

b

)
r dr , (2.77)

where the left side of equation 2.77 can be evaluated as

∫ b

0

φ0J0

(
r
X0l

b

)
r dr = ϕ0

ab

X0l

J1

(
X0l

a

b

)
. (2.78)

For the right side, at m = l a closed-form expression exists for all values of X0m∫ b

0

ϕ0mJ
2
0

(
r
X0m

b

)
r dr = ϕ0m

b2

2

[
J2
0 (X0m) + J2

1 (rX0m)
]
. (2.79)

This shows that a closed-form expressed for all modal amplitudes exists provided that the

orthogonality relation

∫ b

0

J0

(
r
X0m

b

)
J0

(
r
X0l

b

)
r dr = 0, m ̸= l, (2.80)
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holds for all possible values of X0m and X0l. Expression 2.80 is true for the characteristic

values for a rigid pipe but is not true generally for the elastic waveguide. To calculate

values of ϕ0m a system of integrals can be constructed for all modes in the expansion.

Defining Rnm = Jn

(
rX0m

b

)
the system of integrals is

l = 0 :
ab

X00

J1

(
X00

a

b

)
=

∫ b

0

ϕ00R
2
00r dr +

∫ b

0

ϕ01R00R01r dr

+

∫ b

0

ϕ02R00R02r dr +

∫ b

0

ϕ03R00R03r dr . . .

(2.81)

l = 1 :
ab

X01

J1

(
X01

a

b

)
=

∫ b

0

ϕ00R01R00r dr +

∫ b

0

ϕ01R
2
01r dr

+

∫ b

0

ϕ02R01R02r dr +

∫ b

0

ϕ03R01R03r dr . . .

(2.82)

l = 2 :
ab

X02

J1

(
X02

a

b

)
=

∫ b

0

ϕ00R02R00r dr +

∫ b

0

ϕ01R02R01r dr

+

∫ b

0

ϕ02R
2
02r dr +

∫ b

0

ϕ03R02R03r dr . . .+ etc . . .

(2.83)

Provided the the characteristic values are known for the given boundary conditions the

system can be solved for the individual model amplitudes.

2.6 Effect due to the pipe curvature

The derivations in sections 2.2 and 2.4 assume that the pipe is straight. While simple

to analyze, the investigated calibration system uses curved pipes to optimize space. To

understand how the curvature affects the propagation, the rigid boundary analysis is done

similar to section 2.2 for a curved section. This scenario is shown in figure 2.4. To simplify

computation the analysis is done in 2-dimensions.

The natural coordinate system for this problem is cylindrical polar with the propagation

direction being in θ̂. The Helmholtz equations is then

∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2
+ k2ϕ = 0 (2.84)

where as before ϕ is a time-independent potential. Separating the equation by requiring
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r̂

2b

r = R

θ̂

∂ϕ
∂r

∣∣∣
r=b̃

= 0

∂ϕ
∂r

∣∣∣
r=d̃

= 0

Figure 2.4: Diagram of a curved pipe with rigid boundary conditions

ϕ = R(r)Θ(θ) with the constant q̃2 gives the equations

d2R

dr2
+

1

r

dR

dr
+R

[
k2 − q̃2

r2

]
= 0 (2.85)

d2Θ

dθ2
= −q̃2Θ. (2.86)

The solutions are found by inspection as

R = AJq̃ (kr) + BYq̃ (kr) (2.87)

Θ = e±iq̃θ. (2.88)

The separated solutions in equation 2.87 and 2.88 are different than the solutions from the

rigid pipe. Unlike the previous development, this separation constant has units of 1/rad.

Like before, the constant q̃ is the wavenumber in the propagation direction but it is an

angular quantity. The previous relations for phase and group speed still hold but become
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angular velocities with units of rad/s

c̃p =
ω

q̃
(2.89)

c̃g =
dω

dq̃
. (2.90)

Another consideration is that both the Bessel functions of the first and second kind remain

in equation 2.87 as r = 0 is not part of the domain. Additionally, the Bessel function order

is not confined to be an integer but can be any positive real number.

Applying the boundary condition R′(b̃) = 0 to the R equation gives the expression

R(r) = A

[
Jq̃(kr) −

J ′
q̃(kb̃)

Y ′
q̃ (kb̃)

Yq̃(kr)

]
. (2.91)

Applying the second condition R′(d̃) = 0 gives the characteristic equation

J ′
q̃(kb̃)Y

′
q̃ (kd̃)− Y ′

q̃ (kb̃)J
′
q̃(kd̃) = 0. (2.92)

Equation 2.92 is known as the Bessel cross product. The valid values of q̃ (and thus the

modes) for a given frequency is governed by the zeros of this equation. Using the series

approximations for the Bessel functions, Cochran (1964) gives a power series solution for

the mth zero of the equation as

x = α +
p

α
. . . , (2.93)

where

x = kb̃ (2.94)

λ = d̃/b̃ (2.95)

α =
(m− 1)π

λ− 1
(2.96)

p =
4q̃2m + 3

8λ
, (2.97)

and m ϵ Z+. Similar to the rigid pipe solution there additionally exists a zeroth mode with

no cutoff frequency that is not found by equation 2.93. Cochrane gives this expression as a
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series approximation as well from the power series of equation 2.92

q̃

x
=

√
λ

[
1 +

(λ− 1)2

12λ
+

(8q̃2 − 3)(λ− 1)4

480λ2
+ . . .

]
. (2.98)

The above two approximations for the modes can be solved for q̃ as a function of k for

the higher order modes

q̃ =

√
λ(8π(n− 1)(bk(λ− 1)− πn+ π)− 3λ+ 6)− 3

2(λ− 1)
, (2.99)

and for the zeroth mode

q̃ =

30λ3/2

((
b2k2(3λ4−52λ3−382λ2−52λ+1)(λ−1)4+7200λ3

7200λ3

)1/2

+ 1

)
b̃k (λ− 1)4

, (2.100)

both times taking the positive root as the solution. These both can be plotted as a function

of ω to get the q̃ values that satisfy the characteristic equation 2.92. The solutions are

plotted in figure 2.5.

Figure 2.5: Modal angular wavenumber (q̃) solutions of a curved rigid pipe. Radius of
curvature 1 m and pipe radius 2.6 m

Looking at figure 2.5, similar to the rigid pipe, there is one mode that always propagates
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while the higher order modes all having a cutoff frequency. Using these q̃ solutions to

the characteristic equation the phase and group speeds for the modes can be easily found

using the relations in equations 2.89 and 2.90. This group speed is computed from these q̃

solutions and plotted in figure 2.6.

Figure 2.6: Modal group speed solutions of a curved pipe. The radius of curvature is 1 m
with a pipe radius of 2.6 cm. Area in the green rectangle is plotted in figure 2.7

Looking at the group speed of the zeroth mode in figure 2.6 it is not clear if this first

mode differs from the plain wave solution. Figure 2.7 zooms in on the the low-frequency

sections to see the structure. While the speed of sound variation is minimal, this indicates

that the curved pipe does cause of shift from the standard modal solutions. If the curve

were to be exaggerated this effect would cause a higher deviation from the straight pipe

solution.
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Figure 2.7: Group speed of zeroth order mode for a curved pipe. The radius of curvature is
1 m with a pipe radius of 2.6 cm.
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CHAPTER 3

METHODS

3.1 Experimental setup

3.1.1 Hardware

The calibration setup consists of a copper pipe of outer diameter 169 mm and a thickness

of 1 mm. The pipe is coiled into 4 coils of approximately 95 cm diameter. There are three

200mm openings along the top of the coil not including the pipe ends. The coil is suspended

in an aluminum frame made of 1 inch extrusion on caster wheels for mobility. The pipe

is attached to the frame through rubber spacers to minimize vibrations. The mechanical

setup is shown in figures 3.1. The calibrations measurement use two icListen hydrophones

manufactured by Ocean Sonics. The icListens are known as “smart hydrophones” as they

have their amplification and digitization built into the system and do not require any extra

hardware to function. The hydrophones used for calibration are RB9-ETHs which use the

TC4059 element manufactured by Teledyne Reson.

The hydrophones are connected to the pipe using acetyl collars. These are sealed to the

middle three openings using o-rings. Additionally there are o-rings that seal around the

hydrophone elements. The whole system is filled with water until it begins to overflow

on the pipe ends to ensure there are no air pockets. The water is filtered and deionized

which minimizes impurities that could affect propagation. The hydrophones are connected

using an Ethernet extension cable by Ocean Sonics to an icLink which acts as an Ethernet

switch and allows the hydrophones to be configured through the network. The extension

cables additionally carry a pulse-per-second (PPS) signal generated by the icLink which
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Figure 3.1: 3D rendering of the hydrophone calibration system. The projector is located in
the middle with the two hydrophones on either side.

synchronizes the hydrophone’s sample clocks to within 100 ns.

The sound source is a Geospectrum M24-203-TI hydrophone element driven by a signal

from a Tektronix AFG 3022B arbitrary function generator. To amplify the AFG’s output,

the output signal is connected through a TPA3220A Texas Instruments audio amplifier and

a 12.5:1 toroid transformer. This applies approximately 52 dB of gain to the AFG’s output.

The function generator is connected to the same PPS source as the hydrophones and is

configured to output the signal every 1 second pulse. To capture the transmitted signal, a

Tektronix oscilloscope TBS 1052B is connected to the input signal. This oscilloscope is

set to trigger using the same PPS signal so that the whole system is time-synchronized.

3.1.2 Path length measurement

While the path length can be estimated from the manufacturing specifications, knowing the

exact path length for the propagation is needed for accurate speed of sound measurements.

The geometry of this setup is shown in figure 3.2. The inside circumference between two

sections is measured by running a thread through the tube and pulling it taut. The thread

length is measured as ℓ. In addition to this, the height h above the system is measured

in-situ.
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2a

R− a

R

R− a+ h
α

= ℓ

= C

Figure 3.2: Diagram of the geometry for path length measurement.

The tube’s outer diameter a is easily found by measuring the tube circumference Cpipe

a =
Cpipe
2π

(3.1)

The propagation path length C is found by first calculating the non circular components of

ℓ through

δ2 = (R− a+ h)2 − (R− a)2 = h2 − 2ah+ 2hR, (3.2)

where 2δ is the total amount of excess on ℓ. Since both R and δ are unknown, more

equations are needed to solve the system. These are

ℓ = (2π − 2α)(R− a) + 2δ (3.3)

cos(α) =
R− a

R− a+ h
, (3.4)

where α is the angle defined in figure 3.2 and has units of radians. Equations 3.2 to 3.4

do not have an analytic solution but can be solved numerically for the radius R given the

measurements of d, h and ℓ. The path length is given as

C = 2πR. (3.5)
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3.1.3 Calibration measurements

To perform calibrations, two hydrophones are placed as in figure 3.3. The projector is

placed in the middle and connected to the amplifier. Using Tektronix’s ARBexpress

software the transmitted sweeps are created and loaded into the function generator. The

sample rate for the generated sweeps is limited to 250 MS/s with a maximum length of

120 kS, where S refers to samples. This requires the template sweeps to be configured

such that they are replayed at the correct settings. This is demonstrated in table 3.1. The

template signal is transmitted by the function generator using pulse modulation, the pulse

frequency fpulse is chosen to ensure the correct sweep lengths.

Table 3.1: Sweep parameters used for calibration measurements

Desired Sweep ARBexpress input (250 MS/s) AWG
B (kHz) fc (kHz) T (ms) fstart (kHz) fend (kHz) Samples (kS) fpulse (Hz)

1 1.5 4 10 20 100 250
1 1.5 8 20 40 100 125
...

...
...

...
...

...
...

1 14.5 4 140 150 100 250
1 14.5 8 280 300 100 125

The sweeps are all chosen to have a bandwidth B of 1000 Hz with a center frequency

fc varying from 1500 Hz to 14.5 kHz. The range is chosen to address the frequency gap

between the current hydrophone calibration facilities at Ocean Sonics (10 kHz - 200 kHz)

and the range of the Ocean Networks Canada’s VLF calibration (0.01 Hz - 1000 Hz). The

sweeps are performed at 4 ms and 8 ms. The hydrophones are configured to record at 64

kS/s packaging the data into 1-minute wave files. These files contain 60 sweeps which

one signal occurring each second. The transmitted signal is captured concurrently by an

oscilloscope triggered by the same PPS signal as the function generator. A capture of the

signal is taken once per minute and used in the data processing.

3.2 Data Processing

To produce the calibration data, the wav files from the hydrophone are processed with

the CSV file from the oscilloscope to get an estimate of the energy received by both

hydrophones.
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Figure 3.3: Top-down view of the hydrophone calibration system. The pipe is water filled
with the end being open to air.

3.2.1 Pre-processing

The wav file is comprised of 60 individual sweeps each one corresponding to the start

of the one second pulse. These 60 sweeps are averaged to produce one 1-s sweep signal

for processing. This averaged signal is then filtered to remove unwanted spectral content.

The signal is first low-pass filtered using a 6th order Butterworth filter and then high-pass

filtered using a 2nd order Butterworth filter. Both filters are applied forward and backwards

in time to double the amplitude gain while cancelling any phase change due to filtering.

This method of filtering is non-causal and requires the data be previously collected and

cannot be done in real-time.

After filtering, the wav data is resampled to match the sample rate of the oscilloscope.

To perform the matched filter the two signals need to have the sampling rate. As the CSV

sample rate is higher than that of the wav file, the wave file is interpolated at the new

frequency. This increases the number of data points considerably making data manipulation

difficult. The final step before match filtering is to truncate the wav data to only the first

200 ms of the entire 1 second record. After this point the received signal is dominated

by reverb noise and does not contain any signals of interest. The cleaned hydrophone

wav data is processed to extract the timing and energy information from the signals by
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match-filtering.

3.2.2 Matched filtering

To determine the time offset between the transmitted signal and the received signal the two

signals are cross-correlated.

3.2.2.1 Cross-Correlation

The cross-correlation of two sequences xn and ym is given by

Rxy(m) = E{xn+myn
∗} = E{xmyn−m

∗}, (3.6)

where n = (−∞,∞), y∗ is the complex conjugate of y and, E is the expectation value.

The cross-correlation is implemented in MATLAB as the xcorr function. This function

estimates the cross-correlation of two signals using the following expression

R̂xy =


N−m−1∑

n=0

xn+my
∗
n m ≥ 0

R̂∗(−m) m < 0,

(3.7)

where N is the length of the x or y, whichever is larger. The output of xcorr is given as

C(m) = R̂xy(m−N), m = 1, 2, ..., 2N − 1. (3.8)

Functionally, this time shifts the two signals and then determines the correlation between

each shifted signal. The cross-correlation is of length 2N − 1 and is maximum when

the two input signals are shifted such that they are maximally correlated. This is used

to determine the time lag between source and received signals as the correlation will be

highest when the source signal is shifted by the travel time.

When using the cross-correlation for timing, it is ideal that transmitted signal be non-

repeating and distinct to time to have a narrow cross correlation peak and minimal side

lobes. For hydrophone calibration, typically single frequency tones are transmitted since

this allows for easy comparison of the energy received at a given frequency. However, since

a tone is a periodic signal the cross-correlation output will not have a distinct peak and
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(a) Single frequency tone (5 Hz)

(b) Linear frequency sweep (4-6 Hz)

Figure 3.4: Comparison of the cross-correlation for two 4 s signals. The cross-correlation
template is identical to the received signal starting at t = 0 s.

instead have large sidelobes. To ensure uniqueness, sinusoidal sweeps of small bandwidth

(1000 Hz) are transmitted. Figure 3.4 compares the output of the cross-correlation of

two signals of similar length and time delay. In figure 3.4, both the cross-correlation

is maximum at the correct delay (in this 3 s) but the low bandwidth sweep has a much

narrower peak due to the frequency modulation.

3.2.2.2 Normalization

While the standard cross-correlation determines the time-offset it does not convey any

information about the energy of the received signal. This is due to the nature of how

it is calculated by equations 3.6-3.8. To use the cross-correlation as a matched filter

for calibration the output is normalized to relate the received energy of the hydrophone.

To perform this normalization, first the energy of the known transmitted signal must be

calculated. For an arbitrary finite-length signal s(t) the energy Es(t) is given by

Es(t) =

∫ T

0

|s(t)|2 dt, (3.9)

where T is the length of s in time and Es(t) has units of u2t (u being the units of s(t)).

For a generic single-frequency sinusoidal signal with the form s(t) = A sin(ωt+ ϕ) from
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0 to T , the energy can be found as

Es(t) =

∫ T

0

(A sin(ωt+ ϕ))2 dt =
A2

2

(
sin(2ϕ)− sin

(
2(ωT + ϕ)

)
+ 2Tω

)
2ω

. (3.10)

If the tone is composed of a whole number n of cycles, the tone length can be represented

as T = n/f = 2nπ/ω. Assuming the length is an integer number of cycles, equation 3.10

reduces to

Es(t) =
A2

2
T, (3.11)

where A is the amplitude of the tone and T is the signal length. In equation 3.11 the energy

of the signal does not depend on the frequency or the phase simply the amplitude and

length. Due to this, it is possible to define the energy of the linear sweep to be the same as

a single frequency tone of same amplitude and length.

Using equation 3.11, the transmitted signal str is energy normalized by dividing by the

square root of its energy

ŝtr =
str√
E

=
str

A
√
T

√
2, (3.12)

where ŝtr now has units of [1/
√
s]. Assuming the received signal has units of volts the

cross-correlation C between this energy transmitted signal and the received signal src now

has units of [V/
√
s]). The cross-correlation is scaled such that the output units match the

received signal. These scale factors are determined through unit analysis and empirical

testing. There are three units of interest that can be extracted from the cross-correlation:

the received signal energy Erc, the received signal voltage Vrc, and the power spectral

density (PSD) of the received signal. Each one requires their own scale. Since the cross-

correlation in equation 3.7 is the sum of the product of the two signals, the cross correlation

is additionally scaled by the number of samples Ntr of the transmitted signal as an increase

the number of data points will add to the total value. This gives the scaled correlation

Ĉ =
C

Ntr

. (3.13)

Since the sample rate fs = Ntr/T , this scaling also takes into account changes in the

sample rate between measurements.

To scale for energy, the cross-correlation is squared so that it has units [V 2/s]. Recall
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that the units of signal energy are defined in equation 3.9 are V 2 × s this requires that Ĉ is

scaled by the transmitted signal length T 2 giving

Erc = Ĉ2T 2. (3.14)

From the expression for received energy, the received voltage can be found using the

expression for signal energy in equation 3.11. To scale to volts, Ĉ is multiplied by the

square root of the signal length. Additionally since the energy of the signal has a factor of

2, the voltage scaling includes
√
2 such that

Vrc = Ĉ
√
2T . (3.15)

By calculating the expressions 3.14 and 3.15, the exact energy or amplitude of the

received signal can be found even when there is a large amount of noise present. This

process is known as matched filtering. This is shown in figure 3.5 where two linear sweeps

of the same characteristics with different amplitudes and delays are added together to

simulate two signals interference. The matched filter both represents the individual signals

as distinct peaks in time but also reproduces their input voltages despite the presence of

noise.

The effect of the matched filter on noise is best seen when comparing the power spectral

density (PSD) of the received signal to the PSD of the filtered signal. To scale the matched

filter for the PSD a factor of the time-bandwidth product is added to account for the

spectrum processing. The scaling is

PSDrc = Vrc
√
2BT, (3.16)

where Vrc is the scaled voltage correlation from equation 3.15 and B is the bandwidth

of the sweep. The PSD of the scaled matched filter is calculated and compared to the

PSD of the raw received signal in figure 3.6. In addition a bandpass filter is applied to the

received signal with a pass band equal to the sweep’s bandwidth. In figure 3.6 the spectral

is preserved within the sweep’s bandwidth with both filters. The matched filter however

has much lower noise rejection compared to the generic filtering. This effectively adds
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(a) Raw received signal

(b) Matched filtered signal

Figure 3.5: Effect of the normalized matched filter on interfering signals. Raw signal (a) is
comprised of two identical (with different amplitude) that are interfering. This is compared
to the matched filter output (b).
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Figure 3.6: Power spectral density of a linear sweep (3-6 kHz) with an applied matched
filter and bandpass filter. Bandpass filter’s pass band is the same as the sweep’s bandwidth.

processing gain to the system increasing the signal to noise ratio.

3.2.3 Post-processing and calibration

The voltage and energy of the two hydrophones calculated through matched filtering are

then processed to extract produce the calibration curve. First, to ease future processing,

the matched-filtered data is packaged into MATLAB data structures and saved. This is to

prevent the need to re-filter individual measurements during data analysis. This filtered data

is used to produce two outputs for the system: the time of first arrival td and hydrophone

sensitivity ST .

3.2.3.1 Time Delay and Dispersion

The theory in chapter 2 suggests that the speed of sound in the calibration system will not

only be slower than the speed of sound of the liquid (even the plain wave mode) but will

vary with frequency according to a dispersion relation as in figure 2.3. The matched filtered

data is used to determine the speed of sound for each test frequency. As each measurement

is done of a sweep of non-zero bandwidth and represents a range of frequencies, the centre

frequency is chosen as the representative point. The peak of the matched filter represents

the point of highest correlation and represent the time of first arrival td. Taking this time

delay and the measured path length C from section 3.1.1 gives an estimate for the sound
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speed

c(f) = C/td, (3.17)

where c(f) is the measured frequency dependent sound speed.

3.2.3.2 Calibration

From the results in section 3.2.2 the amplitude of the matched filter corresponds to the

energy (or voltage) received at the time delay. This maximum value from the filer which

corresponded to the first arrival is the energy of the received signal. This is used to find the

sensitivity of the hydrophones at various frequencies. The process uses the same principle

for the method references in free-field from IEC 60565-1:2020. By comparing the received

energies from the test unit and the reference unit, the sensitivity is calculated. The method

requires that the reference unit be externally calibrated with a known sensitivity at the

test frequencies. For the experiment this reference is found from the element calibration

from Teledyne Reson, the manufacturer of the hydrophone. The pressure measured by the

reference hydrophone Pr

Pr(f) = 10 log

(
Er(f)

T

)
− Sr(f), (3.18)

where Er is the energy found through matched filtering and Sr is the externally calibrated

sensitivity of the reference hydrophone in units of dB re V/µPa. Note that the energy and

sensitivity are frequency dependant. The voltage referred to in the units of sensitivity refer

to the root-mean-squared (RMS) voltage of the signal. Comparing this known pressure to

the measured energy of the test hydrophone Et the sensitivity of the test hydrophone is

found by

St(f) = 20 log
(
Et(f)T

)
− Pr(f). (3.19)

This gives specific sensitivity values at various input frequencies. The sensitivities at

each frequency are compiled into one calibration curve and compared with previous

measurements to qualify if the waveguide method produces equivalent results.
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CHAPTER 4

RESULTS

Multiple data collection runs were performed using icListen units to estimate the unit

sensitivity as well as the dispersion curve of the system. The details for the runs to

characterize the RB9-ETH type hydrophone with the Reson TC4059 element are given

in table 4.1. The data is broken into runs corresponding to the hydrophones position and

sweep length T .

Table 4.1: Data series used for RB9-ETH calibration measurement

Run Date Unit S/N Unit position B (kHz) T (ms) fstart (kHz) fend (kHz)
1 2022-12-11 6465 P1 1 4 1.5 14.5
2 2022-12-11 6466 P1 1 4 1.5 14.5
3 2022-12-11 6465 P2 1 4 1.5 14.5
4 2022-12-11 6466 P2 1 4 1.5 14.5
5 2022-12-11 6465 P1 1 8 1.5 14.5
6 2022-12-11 6466 P1 1 8 1.5 14.5
7 2022-12-11 6465 P2 1 8 1.5 14.5
8 2022-12-11 6466 P2 1 8 1.5 14.5

4.1 Path length

In section 3.1.2 a method for determining the path length between the hydrophones is

proposed. The lengths were measured with the results and corresponding path lengths

tabulated in table 4.2.

The results in table 4.2 show that the distance between the two paths differs by 2 cm.
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Table 4.2: Measured and calculated data for the path lengths. The difference between the
two paths is 2 cm

Measured length ℓ (mm) Height h (mm) Radius R (m) Path Length C (m)
Centre-P1 290.0 50 0.484 3.05
Centre-P2 289.3 50 0.483 3.03

Figure 4.1: Position 1 group speed dispersion of RB9 type hydrophones

Assuming that the speed of sound is in the order of 1000 m/s this corresponds to a time

difference in the order of tens of microseconds. This is large enough to be detected by the

hydrophone sampling at 64 kS/s as the sampling period is 15.625 µs.

4.2 Dispersion

As the path lengths between P1 and P2 are different the dispersion is calculated separately

for both positions and plotted in figures 4.1 and 4.2. Both plots show a decrease in group

speed from around 1000 m/s to 500 m/s across the bandwidth. The plots show that despite

the path lengths being similar the shapes of the dispersions are distinct. The most striking

differences are the large nulls in sound speed at 6 kHz in position 1 and at 3.5 kHz, 6 kHz

and 9 kHz in position 2. These are areas where the sound speed drops to a much lower

value than the surrounding points. These nulls are the same regardless of hydrophone

serial number indicating that the characteristics observed are related to the propagation

paths only.

Investigating these sound speed drops, the normalized cross-correlation envelops for the
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Figure 4.2: Position 2 group speed dispersion of RB9 type hydrophones

6 kHz null as well as the surrounding frequencies (5.5 and 6.5 kHz) are plotted in figure

4.3 to compare their shapes. The maximum correlation for 6 kHz occurs at 4 ms, while the

peaks for the other sweeps fall between 3 and 3.5 ms. In figure 4.3, the 6 kHz sweep has

has two peaks. One at 2.7 ms and the higher one at 4 ms. Between these two peaks there

is a clear dip in the matched filtered data at 3.1 ms. This decrease in energy corresponds

to where the expected peak for 6 kHz would occur. Figure 4.3 suggests that at the null

Figure 4.3: Envelope of the normalized matched filtered energy for three frequency sweeps
in position 2. T = 4 ms

frequencies there is a process that causes the sweep to be dissipated. This is also shown in
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(a) Sweep 3 kHz to 4 kHz (b) Sweep 8.5 kHz to 9.5 kHz

Figure 4.4: Envelope of normalized matched filtered energies at the two dispersion null
locations unique to position 2 (3.5 kHz and 9 kHz). T = 4 ms.

figure 4.4 where at both 3.5 kHz and 9 kHz there is a visible drop in energy between two

larger peaks. The two positions share nulls at 6 kHz while the additional drops occur only

in position two. This suggests that there is some other process that is unique to position 2

causing the drop at 3.5 and 9 kHz. Even though there are large changes in sound speed,

The overall pattern is consistent between multiple hydrophones and sweep lengths. This

implies that calibration measurements should still be possible since the reference and test

hydrophones will measure the same pressure field. Considering the overall shape of the

dispersion, both curves differ substantially from the predicted dispersion from figure 2.3.

The predicting dispersion is flat across the bandwidth 2.3 kHz - 13.5 kHz at 500 m/s. The

measured dispersion has an overall decrease in sound speed over the bandwidth. The

difference between the theoretical dispersion and the measured data will be discussed in

chapter 5.

4.3 Calibration

Calibration measurements are done on the icListen hydrophones in position 1 and position

2 at both 4 ms and 8 ms for the sweep length. The longer sweep length is expected to have

high sensitivity accuracy as there is more energy dispersed into the pipe which should

give better energy estimates. The calibrations with a 4 ms sweep are shown in figure 4.5.

The reference was chosen as unit 6466 and the test unit as 6465. A known sensitivity of

unit 6465 provided by the element manufacturer Reson is additionally plotted along with

their reported uncertainties (±1 dB). As the external calibration data does not contain
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Figure 4.5: Measured sensitivity of unit 6465 with T = 4 ms. Data is compared to an
external calibration of unit 6465 done by Teledyne Reson

measurements for below 5 kHz the calibrations are reported between 5 kHz and 13.5 kHz.

Looking at the calibrations in figure 4.5 both curves are generally within the uncertainty

given by Reson. The calibration done in position 2 agrees more with the external results

while the position 1 measurement is outside the limits between 6.5 and 7.5 kHz. The

calibrations done using the longer 8 ms sweeps are plotted in figure 4.6. Similarly, the

findings using longer sweep lengths in position 1 and position 2 are both generally within

the limits provided by Reson. The position 2 measurement once again produces a better

match while the position 1 measurement is outside the limits between 6.5 and 7.5 kHz.
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Figure 4.6: Measured sensitivity of unit 6465 with T = 8 ms. Data is compared to an
external calibration of unit 6465 done by Teledyne Reson
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CHAPTER 5

DISCUSSION

The results in chapter 4 give an example of calibration measurements using the developed

calibration system. The analysis is focused on characterizing and validating the system

with the theory presented in chapter 2 as well as processing the data to achieve a low-

frequency sensitivity curve. The following chapter will first discuss the dispersion curve

and how it deviates from the theory, then discuss the sensitivity measurement. Finally,

future improvements to the system are proposed.

5.1 Group speed dispersion

The group speed dispersion measured for the calibration system differs from the dispersion

predicted by the theory in section 2.4. This is evident in figure 5.1 where the theoretical

dispersion modes are plotted along an average of the measured dispersion. There are

three considerations that must be discussed to understand how the theory differs from the

experimental data: the points of lower group speeds denoted as “nulls”, the decrease in

group speed with frequency, and the differences in group speed magnitudes. All three will

be addressed individually in the following sections.

5.1.1 The sound speed nulls

The most noticeable differences between the theoretical group speed of a 5.5 cm copper

pipe and the measured group speed are the regions of decreased sound speed at 6 kHz

for both positions 1 and 2, and 3.5 and 9 kHz in only position 2. Both the position 1 and
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Figure 5.1: Measured group speed in positions 1 and 2 compared against the theoretical
sound speed

position 2 dispersion are plotted in figure 5.1. These nulls are investigated to determine

the cause of discrepancy.

One possibility is that there is a process that is suppressing a wavefront (either ET0

or ET1 to determined later) and what is being measured is either reverberation or a slow

moving mode. If the measured signal is reverb and not a separate mode then the points

where the measured speed drops must be an underestimate. This is because the assumed

path length (∼3 m) is no longer correct. To investigate this, first an average interpolated

group speed is found for 2.5-13.5 kHz by removing the frequencies at which the nulls

occur. This new group speed is plotted in figure 5.2. Using this idealized group speed

the travel distance of individual matched-filter peaks can be investigated. This is done

on two frequencies 6 kHz and 6.5 kHz. As shown in the diagram in figure 3.3, the first

reflection should occur at the water-air interface at the pipe ends. As this is a pressure

release boundary most of the sound energy should be reflected back into the system causing

reverberation. This boundary is 3 m beyond the hydrophone locations so a measured reverb

signal will occur 6 m after the direct path (9 m of total travel distance). To determine

if the reverb location is correct the matched filtered voltage envelope is plotted in figure

5.3 as a function of propagation distance for two frequencies (one with the null and the

other without). Looking at the 6.5 kHz sweep the highest correlation occurs at the direct
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Figure 5.2: Idealized group speed of calibration pipe. Group speed measurement from
figure 5.1 is average without the null frequencies and then interpolated.

Figure 5.3: Calibration signal propagation against travel length in position 1. The sweep
5.5 kHz - 6.5 kHz is a null frequency compared against 6 kHz - 7 kHz which is not.
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(a) Position 1 (b) Position 2

Figure 5.4: Measured received voltage level (dBV) from the normalized matched filter. 8
ms sweep length comparison between hydrophones 6565 and 6466

path with a number of smaller peaks extending out to 20 m of propagation distance. Of

particular interest is the peak at 9 m which would be the location of the first reflection.

This indicates that the speed of sound is correctly predicted for this frequency. However,

when looking at the 6 kHz sweep the source of the individual peaks is less clear. The

highest correlation peak occurs at 4.1 m which does not correspond to any geometric paths.

There are additionally no obvious correlation peaks at 9 m for the first reflection. This

shows that if the speed of sound was an underestimate the received signal is not entirely

reverberation. The received voltage of both peaks in figure 5.3 have similar levels so the

signal that is being measured is a real wave-packet. If the 6 kHz signal were simply being

suppressed and no other signal was propagating it would be expected that there would be

no strongly correlated peaks in the data. Figure 5.4 shows the range of peak voltage levels

measured for different frequencies. The figure shows that at the null frequencies there

are visible decreases in measured voltage compared to the surrounding frequencies. This

decrease is not large enough however to argue that any measured signal is random noise

fluctuations and not a propagating wave-packet. This shows that more likely a separate

mode is being excited when the main mode is suppressed. A detailed discussion of the

possibility of other propagating modes is found in section 5.1.3.

Now to consider why the 6 kHz sweep is damped and not propagating. To do this,

the wavefield inside the tube is simulated for each frequency. Using the idealized group

speed from figure 5.2, the mode characteristic X0m is found using equation 2.32. With this
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:

Figure 5.5: Simulated waveform at 6 kHz using idealized sound speed. Projector is placed
at r = 0 and with the two hydrophone positions indicated by the red lines.

characteristic value the entire pressure field can be plotted at steady state using equation

2.22

p(r, z, t = ∞) =
m∑
p0mJ0

(
r
X0m

b

)
ei(q0mz). (5.1)

Since there is only one mode measured in the dispersion, the wave field can be found

without the need to compute the constant p0m and instead have the pressure field be a

relative value. The wave-field is plotted in figure 5.5. Looking at the simulated field,

the hydrophone positions correspond to areas of large negative pressure. At this location

there is an expansion of volume due to the coupling between the hydrophone and pipe.

This would cause the 6 kHz signal to be damped due to the expansion chamber effect.

If this were to be the case, then at other frequencies the hydrophone position would not

correspond to areas of large pressure magnitude. To test this, the wave-forms are plotted

for all measurement frequencies. As the pressure field is nearly constant in the radial

direction, the field can be plotted at r = 0 for all frequencies as is done in figure 5.6.

Looking at the wave propagation in figure 5.6 there are multiple frequencies that

correspond to large pressure levels. These include 3, 7.5, 10, and 12.5 kHz. For the

expansion chamber theory to be correct, the damping would have to be quite sensitive for

the hydrophone position to only occur at the minimum voltage. As the measurement of the
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(a) Full pipe length

(b) Cross-sectional slice at position 1 and position 2

Figure 5.6: Propagation of elastic modes using the idealized sound speed. Frequency of
individual mode is given by the y-axis value.
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propagation distance has some associated error it could be the case that the proper path

length is shifted slightly based on measurement. Additionally since the initial sound speed

estimates are based on this propagation distance through equation 3.17, any errors in time

and distance measurement would be compounded.

To address this, consider a frequency dependent group speed cg measured by the methods

from section 3.2.3. Using the relation between group speed and characteristic value in

equation 2.32, the expression for the characteristic value is

X0m = kb

√
1−

(
cg
c

)2

, (5.2)

where k is the plain wavenumber, b is the pipe’s inner diameter and c is the intrinsic sound

speed of the liquid. Recalling the Pythagorean expression in equation 2.20 the modal wave

number (q0m) can be calculated as

q0m =

√√√√k2 − k2

(
1−

(
cg
c

)2
)

= k
cg
c
. (5.3)

For the expansion chamber effect to be considered, an odd integer number of half wave-

lengths need to propagate between the projector and the hydrophone. Mathematically if

the propagation path between the projector and the hydrophone is C then the requirement

is
cg
c
kC =

(2n+ 1)π

2
, n ∈ Z+. (5.4)

Since cg is also a function of C the expression reduces to

C2ω

tdc2
=

(2n+ 1)π

2
, (5.5)

where td is the delay time found by cross-correlation. The relation in equation 5.5 gives an

expression for C as a function of frequency given fixed td and n. This relation is plotted

with increasing n in figure 5.7 for the calibration frequencies. Figure 5.7 demonstrates

that there is only one frequency within the test range that corresponds exactly to a given

projector distance.

While this analysis does not prove that the null at 6 kHz is due to an expansion chamber
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Figure 5.7: Locations for 1/2 wavelength distances from projector at varying frequencies
and increasing n values. The predicted distance from the projector is given by the black
line.

effect, the above demonstrates that for a given projector distance there is, in general, only

one frequency that is precisely n half wavelengths away. Due to the uncertainty in the

measurement of both C and td, the correct values could be ones that require 6 kHz to be

damped.

Now, turning attention to the nulls unique to position 2 (3.5 and 9 kHz). Since they do not

appear in position 1, whatever process is causing these nulls must be related to the physical

system between the projector and position 2. One possibility is the mounting brackets that

attach the tube to the outer frame. To keep the system upright, four mounting brackets are

placed along the pipe, these are modified pipe clamps. To attempt to minimize the coupling

of the pipe into the frame, absorptive material in placed between the clamp and the pipe.

These clamps are placed throughout the outer edge of the frame however there is only

one that is in the direct path between the projector and the hydrophones. The other three

lie outside the direct propagation path beyond the hydrophone positions. The simulated

propagation for 3.5, 6 and 9 kHz are plotted in figure 5.8. The propagation waveforms

show, much like the 6 khz case, that there is a pressure maximum for 3.5 and 9 kHz but

not at 6 kHz around the location of the bracket. As this bracket is mechanically connected

to the pipe this produces a local area of high stiffness where the pipe cannot bulge as is
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Figure 5.8: Simulated frequencies for the position 2 nulls. Estimated location of the
mounting bracket is plotted in black.

predicted by the model. This stiffness will cause the mode to no longer propagate since

the system cannot support the compliant wave. If the above is correct, it is expected that

moving the bracket locations will cause these two nulls to disappear. It is suggested for

future calibration work on this system to have the mounting points all near the end of the

pipe to not effect the direct propagation path.

5.1.2 Decrease in group speed over frequency

The measured dispersion in figure 5.1 shows a continuous decrease in group speed over

the measured bandwidth. The decrease is not observed in the theoretical elastic dispersion.

Recalling analysis developed in section 2.6, it was found that the addition of pipe curvature

along the propagation path would cause a decrease in group speed with increasing fre-

quency. Taking this calculated data for the rigid mode and performing a curve-fit indicates

that within the region of 2.5-13.5 kHz there is a a quadratic decrease in group speed with

increasing frequency. Performing the regression on the idealized dispersion from section

5.1.1 yields a quadratic relation as well. The two fits are shown in figure 5.9. While both

regressions indicate a quadratic relation with group speed, the respective magnitude of the

decreases is different.

First, consider how the analysis in section 2.6 differs from the elastic theory. The

dispersion from section 2.6 assumes rigid boundary conditions with square pipe walls.
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(a) Theoretical

(b) Measured

Figure 5.9: Quadratic curve fit of group speed dispersion for measured sound speed and
theoretical rigid pipe.
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Square pipe walls are a consequence of the geometric setup presented in figure 2.4. This

geometry does not allow for a circular cross-section as the boundary condition on r is

restricted to b̃ and d̃. This was done in order to solve the Helmholtz equation in spherical

polar coordinates having θ̂ be the propagating direction. While this greatly simplifies the

calculation it does not reflect the calibration system. However, since the propagation speed

in a straight square pipe and a straight circular pipe in the zeroth mode is the same, the

simplification still gives insight on how propagation is affected by curvature.

Using the curved pipe results, it can be argued qualitatively that the group speed decrease

observed in the calibration system can also be explained by the curvature of the calibration

pipes. The difference in magnitude seen in figure 5.9 is likely due to the differences in the

boundary conditions as the theory assumed rigid walls. From the results in section 2.4 it

is known that the inclusion of elastic boundary conditions causes a large change in the

dispersion characteristics of the system.

To confirm this, another treatment of the simplified geometry with elastic walls will

demonstrate if the addition of realistic boundaries causes a larger decrease. Additionally

it could be possible to restate the geometry of the curved pipe in toroidal coordinates to

express curved propagation with a circular cross-section. Unfortunately the Helmholtz

equation is not separable in those coordinates so the same differential equation techniques

cannot be used (Moon and Spencer, 1952). A numeric study would be needed to express

the full elastic solution in the curved regime.

5.1.3 Magnitude of the group speed
The results from the measured group speed do not line up well in magnitude with the

predicted speed for either ET0 or ET1. The measured group speed is between 1100 m/s

at 2.5 kHz and 550 m/s at 13.5 kHz. From the discussion in section 5.1.2 it is assumed

that this decrease is entirely due to the pipe curvature and the true low-frequency group

speed is 1130 m/s as the maximal value of the fit parabola in figure 5.9b. This value is

between the predicted group speed results of 2071 m/s for ET0 and 564 m/s for ET1. It

is also clear from the plot of the matched-filter output in figure 5.3 that there is only one

mode that propagates with appreciable amplitude. If both ET0 and ET1 were propagating,

there would be two detectable peaks in the match filter which is not the case.

As only one mode propagates the question is what is being detected. Even though the
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Table 5.1: Modal amplitudes of different test frequencies. The amplitude of the piston
source ϕ0 is given as 1 µPa

Frequency (kHz) 3 6 9 12
ET0 (µPa) 0.41 0.40 0.39 0.34
ET1 (µPa) 0.49 0.49 0.48 0.45

system supports two axisymmetric modes, depending on the source geometry, the two

modes might not be excited equally. To determine the theoretical modal amplitudes, the

method provided in section 2.5 is used. To simplify calculations, only the two propagating

modes are used in the expansion. This may not be a good approximation as the piston

source requires many more modes to properly recreate the initial condition at z = 0.

However this approximation should still give a sense of the relative amplitudes of the

two modes. Implementing the two mode expansion for a source radius of a = 2.5 cm

and ϕ0 = 1 gives the modal amplitudes shown in table 5.1. Looking at the calculated

amplitudes it clear that for this size of source both modes get excited at similar levels so it

is unlikely that either ET0 or ET1 is being measured without the other.

As the theory suggests there should be two visible propagating modes, there must be

various aspects of the physical system that do not allow for ideal sound propagation. Any

deviations from an unbroken tube will affect propagation as was demonstrated by Wilson

et al. (2003) and Lenhart et al. (2016). The pipe is assembled in discrete pieces to allow

for the hydrophone input fittings. These solder joints could cause changes in the ideal

propagation. Additionally, while the theory uses a circular piston as its source, the real

source used is not as simple. It consists of a hydrophone element with a 2.5 cm tall cylinder

as the piezoelectric component. This element will not behave as a plane source as is

assumed but will have an associated beam pattern. Additionally since this element is taller

than it is wide it is not projecting in an axisymmetric regime. All the previous theory has

been done with the axisymmetric assumption as it can be solved analytically. However

there exists a whole other class of modes that additionally can be supported. Due to the

element geometry it is not unreasonable to assume these other modes are being excited

and that is what is being detected in the group speed measurement. There has been little

work done on the non-symmetrical modes as the associated equations become difficult

to solve. Numerical studies exist such the work done by Zemanek Jr (1972) who uses

numeric methods to characterize the system for the first 4 antisymmetric modes. Future
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(a) ET0 (b) ET1

Figure 5.10: Modal speeds for the elastic waveguide at multiple (cs,cc) pairs

work should ensure that only symmetrical modes are propagating or a new model needs to

be created to take into account the added complexity.

The source model is also inaccurate due to its assumption of single frequency tones for

the propagation. The analysis assumes that the source is infinitely narrow which allows for

only one propagation frequency. This is only correct in a steady state scenario where there

is no time-dependence. If the source signal is time-limited a finite bandwidth signal packet

will propagate and potentially undergo dispersion. This will decrease the effectiveness

of the matched filter as the correlation between the received signal and the transmitted

signal will be worse. In addition, the transmitted signals used for these calibrations are

not single frequency tones but are small bandwidth linear sweeps which will also have

associated dispersion. To account for this, the modal expansion needs to be performed for

all frequencies in the sweep.

There is another aspect of the system that must be acknowledged. This work uses

Haynes (2014) for physical constants of wall material. While an accepted source for

material properties, in general there are unknowns associated with it. The precise type of

copper used is unknown as the system was assembled many years before the start of the

investigation. In particular, the compressional speed and shear speed can vary depending

on the type of copper. To investigate how a variance in the wall material speed changes

the predicted modes, the model was run multiple time for a range of compressional-shear

speed pairs. This is shown in figure 5.10. For both modes while a change in material speeds

causes changes in modal speeds, for any reasonable value for compressional or shear speed
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Figure 5.11: Deviation between measured sensitivity and external calibration

the modal speeds do not vary significantly. For this to be the cause of the magnitude

deviation observed, nonphysical values of cs and cc would be required. Regardless, due to

the inherent sensitivity of non-ideal tube geometry, a future system should be created with

careful choice of material as well as minimizing any possible geometric deviations.

5.2 Sensitivity measurement

The measured sensitivity generally agrees with the external reference measurements

performed by Teledyne Reson. Comparing the results from the two positions for both sweep

lengths, the results from position 2 are consistently closer to the external measurement.

This is the case despite the dispersion measurement in position 2 having more null points

as shown in figure 5.1. Figure 5.11 shows that the deviation from the measured sensitivity

is as high as -2.5 dB at 7 kHz. The deviation also suggests that the external calibration

is higher than reality since the measurements are generally below the Reson data. As

the calculated sensitivity is based on the external value through the reference sensitivity

with equations 3.18 and 3.19, an overestimate of the sensitivity values would double their

effect on the calibration result so that even a small deviation would be noticeable. It is

not unreasonable for the Reson values to be an underestimate as the external calibrations

were performed in October 2020. Long-term loss of hydrophone sensitivity is still a poorly

studied topic for research, however it has been observed than an aging ceramic causes

decrease in sensitivity on the order of dB/year (Andrew et al., 2011). Anecdotal evidence
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from Ocean Sonic’s customers has confirmed that the RB9 sensors experience a small

decrease in their sensitivity over time which could explain the consistent underestimation

of the measured calibration compared to the external data. In addition, the Reson data is

only the sensitivity of the element alone and does not consider the other analog and digital

components in the hydrophones that may affect the sensitivity. The icListen hydrophones

also contain a pre-amplifier and analog to digital converter (ADC) which have their own

sensitivity effects. These have not been studied in great detail but generally they do not

affect the sensitivity by more than 1 dB. By performing a more recent calibration on these

units that takes into account the entire analog data flow a more accurate value for sensitivity

can be used to qualify the measurements.

As previously mentioned, though the measurements generally agree with the external

measurement, there is a large difference between the measurements done in position 1

and position 2. As the system electronics and processing did not change between the two

measurements it stands to reason that the difference is due to the positions themselves and

not measurement errors. Assuming the Reson sensitivities are correct, both hydrophones

should measure the same received pressure (calculated using the provided sensitivities) in

their respected positions. These received pressures for all four measurements are shown in

figure 5.12. Comparing the received pressure in both positions, it is clear that the most

variation in sensitivity per figure 5.11 are in regions that have high spread in the received

pressure. This is shown further in figure 5.13 where the greatest differences in pressure are

at 6.5 - 7.5 kHz and 8.5 - 9.5 kHz.

The question becomes what is causing a large difference in pressure in position 1 that is

not present in the position 2 measurements. As there is no significant decrease in pressure

in the regions of interest, this decrease is likely not a measurement error due to low signal

to noise ratio. Additionally, as the received pressure is generally lower in position 2 it is

unlikely that the variation seen in position 1 is caused by high noise in the system. Due to

the inherent variability of making acoustic measurements it is possible that this is due to

small changes in the coupling. The hydrophones are not suspended in free-space and have

to be coupled into the system through acetyl collars. This coupling introduces potential

variance as vibrations in the hydrophone can induce a change in measured pressure. The

degree in which the collar can couple to the position 1 opening versus the position 2
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(a) Position 1

(b) Position 2

Figure 5.12: Measured received pressure level (dBµPa) from the normalized matched filter

Figure 5.13: Difference in measured pressure between the unit under test and the reference
hydrophone for all for measurements

61



opening could possibly explain the variance in the pressure measurements. Coupling

variance could also be introduced due to the nature of how the system is shaped. The

openings for the projector and position 1 are mechanically connected and isolated by a

foam separator. This is not the case between the projector and position 2. Additionally, the

two openings are not at the same height, this causes the water levels to be unequal. While

the water level should be enough for the entire sensing element to be submerged there is a

possibility that this variance could also cause pressure variability.

Due to all the intrinsic variability in the measurement system, it is generally not possible

to give a single reason for why the pressure measurements have deviations. However,

as shown by the corresponding calibration measurements, even with two year old sen-

sitivity references, these deviations are not large except at particular frequency ranges

therefore sensitivity measurements can be performed to acceptable accuracy for much of

the measurement band.

5.3 Recommendations for future work

Future work on this topic is recommended to better understand the unknowns presented

in the previous sections. The measured data shows that the results do not agree with the

predicted modes from Del Grosso (1968)’s analysis.

How the curvature affects the dispersion is not well studied and warrants further in-

vestigation. Without comparing to a straight pipe of similar diameter and material is not

possible to experimentally show the effect. It is recommended that a second system be built

using a length of straight pipe to independently verify the model. Multiple authors have

shown that the elastic waveguide model presented by Del Grosso (1968) is experimentally

verifiable (Lafleur and Shields, 1995; Wilson et al., 2003). Performing the same work

on a straight pipe would decouple the curved pipe effect from the waveguide and allow

the model to be tested. A full numeric treatment of the elastic curved pipe would also be

needed to fully characterize the system.

As discussed in section 5.1.3 the shear modulus of the pipe material is generally not

well known. By simplifying the system to a straight segment that is controllable in length

and diameter, the phase speed can be measured through standing wave patterns and used
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to experimentally calculate the shear modulus and shear speed in the pipe material. With a

better estimate of the material properties as well as better measurements of the geometry of

the system the exact model prediction from Del Grosso (1968) can by found and compared

to what is being measured in a curved system. Additionally the straight pipe should be

measured by laser-Doppler vibrometry to detect the exact location of the highs and lows in

pressure to aid in identification of modes.

A limitation the current work is the variation that has been introduced in the physical

system itself such as the mounting points, uneven joins, and variable coupling. A new

version of the curved system should be created with attention to the manufacturing detail

to minimize the variability. This new system should also have a wider pipe diameter to

accommodate larger sensors for calibration. Ideally, the ports for the hydrophones should

be placed at distances from the projector calculated to have the fewest null effects based on

the Doppler vibrometry results. The ports should be included only after the unobstructed

pipe has been characterized through the standing waves.

It is also suggested that work be done to better qualify the source characteristics. As

discussed in section 5.1.3, the projector used cannot be considered an axisymmetric

source and the possibilities of non-symmetric propagating modes should be investigated.

Additionally, it is recommended to attempt calibration using short clicks rather than sweeps

to minimize potential dispersion of the wave packet due to the sweep bandwidth. Any

finite-time signal will have dispersion so how time-limited signals integrate into the model

should also be analyzed.
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CHAPTER 6

CONCLUSION

In order to address the gaps in calibration measurement faced by many users, a novel

system has been developed and tested to calibrate hydrophones below 10 kHz. This was

done by utilizing the decreased sound speed that occurs when sound is propagating in a

water-filled metal pipe known as the elastic waveguide effect. Continuing the work done by

Johnson and Garrett (1985), this research presents a historical and theoretical background

for the elastic waveguide as well as performs calibrated measurements on units of known

sensitivity to qualify the system’s effectiveness.

The calibration measurements show that there are still several unknowns in the physical

system which cause deviations both in the measured group speed and the measured

sensitivity. Many of these deviations are shown to be due the non-ideal nature of the

system, such as the pipe’s intrinsic curvature and the positions of the hydrophone collars

and pipe clamps. Discussion of how these traits affect the measurements as well as

suggested techniques for minimizing this in future work are provided.

Despite the deviations from the theorical wave propagation, this research shows that

calibration within the 5 - 13.5 kHz band is both accurate to within 1 dB and repeatable

across multiple measurements with the exception of 6.5 - 7.5 kHz measurements done

in hydrophone position 1. The original work done by Johnson and Garrett (1985) using

reciprocity had a systemic bias of 1.5 dB in their measurment of hydrophone sensitivity.

This research improves upon these methods and demonstrates that using elastic waveguides

is both an effective and simple method for low-frequency calibration.
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