
AN ASYMPTOTICALLY OPTIMAL PATH PLANNING METHOD
WITH CUBIC BÉZIER SPLINE

by

Zifan Fei

Submitted in partial fulfillment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

June 2023

� Copyright by Zifan Fei, 2023

This thesis is dedicated to my fiancée, Yi.

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . ix

List of Abbreviations and Symbols Used x

Acknowledgements . xii

Chapter 1 Introduction . 1

1.1 Research Motivation . 2

1.2 Literature Review of Motion Planning for Mobile Robots 3
1.2.1 Optimal Paths for Holonomic Robots 3
1.2.2 Smooth Paths for Non-holonomic Robots 6
1.2.3 Model of Differential Driving Mobile Robot 11

1.3 Contributions . 12

1.4 Thesis Structure . 13

Chapter 2 Review of RRT-Based Path Planning 14

2.1 RRT . 14

2.2 RRT* . 19

2.3 RRT# and LPA* . 26

2.4 Informed RRT* . 34

2.5 Spline RRT and Node Pruning . 39

Chapter 3 Proposed Optimal Sampling Methods for SRRT 45

3.1 Problem Formulation . 45

3.2 Informed SRRT# . 47

Chapter 4 Simulation . 57

4.1 Python Simulation . 57

iii

4.2 Simulation in Robotics Operation System 65

Chapter 5 Experimental Results . 68

5.1 The TurtleBot3 Platform . 68

5.2 Integration of the Proposed Algorithm with ROS Navigation Stack . 69

5.3 Experimental Setup and Results with TurtleBot3 Burger 70

Chapter 6 Conclusion and Future Work 81

6.1 Conclusions . 81

6.2 Future Work . 82

Bibliography . 84

Appendix Appendix A Author’s Publication List 89

iv

List of Tables

4.1 Comparison of Three Algorithms’ Path Length and Computa-
tional Time. 64

4.2 Comparison of Two Algorithms’ Path Lengths Within 20 Seconds. 67

v

List of Figures

1.1 Overview of Path Planning Algorithms 4

1.2 Overview of Sampling Based Planning Algorithms 5

1.3 Two Types of Dubins Curves 7

1.4 Reeds–Shepp Curves . 7

1.5 Differential Mobile Robot Model 12

2.1 Sample a Random Point. 15

2.2 Find the Nearest Random Point in RRT. 16

2.3 The Distance Compared to the Step Size (Case 1). 16

2.4 The Distance Compared to the Step Size (Case 2). 17

2.5 Collision Checking for New Edge and Vertex 17

2.6 RRT Final Path . 18

2.7 RRT Extension with Edge Length = 5, 10, 20cm 18

2.8 All Neighbours within the Radius Φ 20

2.9 RRT∗ Explores More Neighbors than RRT. 21

2.10 RRT∗ Chooses Superior Neighbor Nodes over RRT. 21

2.11 Compare the Total Cost Between xnew and the Preivous xparent. 22

2.12 Remove the Previous Connection. 22

2.13 RRT∗ Final Path . 23

2.14 Over-exploitation of RRT∗ . 23

2.15 Under-exploitation of RRT∗ 24

2.16 RRT∗: Iteration 250 . 24

2.17 RRT∗: Iteration 500 . 24

2.18 RRT∗: Iteration 750 . 25

2.19 RRT∗: Iteration 1000 . 25

vi

2.20 The 5 ∗ 4 Grid Map for LPA∗ 28

2.21 Initial Search of LPA∗ . 29

2.22 The Iterative Process of LPA∗ 29

2.23 The Relationship Between Four Types of Nodes in RRT# . . . 31

2.24 The Direct Sampling Method of Informed RRT∗ 35

2.25 Generation of an Initial Path and Form an Ellipse 37

2.26 Final Path Length Reduced and a Smaller Ellipse 38

2.27 Tree Edges Optimization and a Smaller Ellipse 38

2.28 The Optimal Path After 2000 Iterations 38

2.29 Definition of Curvature . 39

2.30 Sampled Points Feasibility within Allowable Angle 40

2.31 Cubic Bézier Curve Defined by Eight Control Points 42

2.32 The Simulation of SRRT Under Varying Conditions 43

3.1 Link a New Node with a Existing Tree Nodes. 48

3.2 Feasibility Check Among xnbr, xnew, xnew p 53

3.3 Feasibility Check Among xnbr, xnew, xnbr cld 53

3.4 Deletion of xnbr child1 . 54

3.5 New Rewired Connection . 54

3.6 Collision Checking for the Initial Connection of xnew 55

4.1 The Python Simulation 1 of Informed SRRT# 59

4.2 The Python Simulation 2 of Informed SRRT# 60

4.3 Final Path of Informed SRRT# After 1000 Iterations 60

4.4 Final Path of Informed RRT# After 1000 Iterations 61

4.5 Final Path of SRRT After 1000 Iterations 61

4.6 Compare Three Algorithms’ Path Length over Iterations. . . . 62

4.7 Compare Three Algorithms’ Path Length over Time. 64

vii

4.8 ROS Simulation 1 of Informed RRT# 65

4.9 ROS Simulation 1 of Informed SRRT# 65

4.10 ROS Simulation 2 of Informed RRT# 66

4.11 ROS Simulation 2 of Informed SRRT# 66

5.1 The Real Indoor Testing Environment for Path Planners . . . 71

5.2 The Virtual Map using the SLAM Technology 71

5.3 Test 1: TurtleBot3 at the Origin of Map 72

5.4 Test 1: the First Obstacle is Passed. 72

5.5 Test 1: the Narrow Passage is Passed and the Goal is Reached. 73

5.6 Test 2: TurtleBot3 at the Origin of Map 73

5.7 Test 2: TurtleBot3 with Re-Planning 74

5.8 Test 2: the First Obstacle is Passed. 75

5.9 Test 2: the Narrow Passage is Passed. 76

5.10 Test 2: TurtleBot3 Reached the Designated Goal Region. . . . 77

5.11 Test 3 with SRRT: Initial State 77

5.12 Test 3 with SRRT: Initial State 2 78

5.14 Test 3: Replanning 1 After Deviation from Planned Path . . . 78

5.15 Test 3: Replan Twice and Bypass the Third Obstacle. 79

5.16 Test 3: Get Closer to the Goal. 79

viii

Abstract

This dissertation introduces a novel path planning algorithm for robotics, known as

Informed SRRT#. Departing from traditional RRT algorithms that utilize Euclidean

metrics, our algorithm integrates a local planner from SRRT, accommodating both

external and internal constraints. The path to the target area is calculated using

parameterized cubic spline adapted from SRRT, an approach that avoids reliance

on intensive numerical methods. We introduce two extra lines at the Bézier spline’s

endpoints, which facilitates the rewiring process. A minimum of three state connec-

tions need adjustment during rewiring to meet kinematic constraints. The algorithm

guarantees a G2 continuity of curvature for the path within upper-bound constraints.

The effectiveness of the proposed method is demonstrated through various channels:

Python-based simulations, Gazebo/Rviz — a robot simulator and visualization tool

in Robot Operating System, and real-world scenarios. In real-world experiments, the

algorithm successfully maneuvered TurtleBot3 past obstacles in the physical map,

leading to a smooth, streamlined and optimal navigation approach. Throughout its

operation, the search area progressively decreased and the path maintains smooth-

ness, showcasing the algorithm’s ability to enhance and concentrate its path planning

with precision. Our results reveal that the new algorithm identifies shorter paths

than SRRT while achieving the same number of node sampling iterations. However,

these enhancements come with a trade-off, as the computational time of the proposed

method is slightly higher compared to traditional methods.

ix

List of Abbreviations and Symbols Used

C(ν) Coriolis and centripetal matrix

D(ν) damping matrix

J(ν) cross-covariance matrix

J(ν) rotational inertia

M inertia matrix

β maximum turning angle

η position and orientation in world coordinate

∞ infinity

κ curvature

N set of non negative integer numbers

Rn set of n× 1 real vectors

In n× n identity matrix

X configuration state space

μ center point of hyperellipsoid in Rn

ν linear and angular velocities

det(·) determinant of a matrix

diag diagonal matrix

ψ angular orientation

σ a continuous path with a sequence of states

τ control forces and torques

θ angular orientation

g(η) combined forces of gravity

lms local minimum cost-to-come value

rhs right-hand side value

AI artificial intelligence

ARA∗ Anytime Repairing A∗

AUV autonomous underwater vehicle

BFS breadth-first search

x

FMT Fast Marching Tree

ICC Instantaneous Center for Curvature

IMU Inertial Measurement Unit

Lidar Light Detection and Ranging

LPA∗ Lifelong path planning A∗

ML machine learning

PRM Probabilistic Roadmap

RMSD root mean squared deviation

ROS Robotics Operating System

RRT Rapidly-exploring Random Tree

SLAM Simultaneous Localization and Mapping

SMC sliding mode control

SRRT Spline RRT

SVD singular value decomposition

tf A transform library package which records

multiple coordinate frames in a tree structure

USV unmanned surface vehicle

xi

Acknowledgements

I am deeply humbled and greatly privileged to express my sincere gratitude to those

who have contributed to the successful completion of this thesis.

First, I extend my heartfelt appreciation to my supervisor, Professor Ya-Jun

Pan, whose meticulous guidance, insightful critiques, and unwavering patience have

been fundamental in navigating through this journey. Her mentorship is not merely

academic; it has been instrumental in shaping my growth as a junior research student

and as a person with a sense of mission.

I am also indebted to the members of the Supervisory Committee, Professor

Clifton Johnston and Professor Yuan Ma, whose invaluable feedback and thought-

ful suggestions have significantly enriched my work. Their insightful critiques and

challenging questions have spurred me to delve deeper and refine my arguments, fos-

tering academic rigor and intellectual growth. Their dedication and time are highly

appreciated.

I would like to express my sincere appreciation to Professor Dominic Groulx, Pro-

fessor Farid Taheri and Professor Robert J. Bauer for their exceptional coordination

and support as the graduate student coordinators. The successful completion of my

master’s thesis would not have been possible without their efficient management of

the department’s Graduate Studies Committee and their dedication to ensuring a

smooth academic journey for all of our graduate students in these two years.

To my beloved parents and my fiancée, I owe an immeasurable debt of gratitude.

Her unyielding support, encouragement, and faith in my capabilities have been my

pillars of strength during this journey. The courage to strive and the resilience to

persevere are lessons I have gleaned from her.

My time at the Advanced Controls and Mechatronics (ACM) Lab has been

uniquely enriching. Our bi-weekly presentations in each semester have been a plat-

form for knowledge sharing, fostering a deeper understanding of our respective areas

of research. The discussions that followed these presentations were enlightening,

sometimes leading to fruitful collaborations. The collective intellect and support of

xii

the ACM lab members have been a great source of inspiration, driving me to explore

and reach beyond the confines of my comfort zone. For all these and more, I express

my heartfelt gratitude.

The experiences and learning I have had as part of the Unmanned Surface Vehi-

cle (USV) team in Marine Thinking Incorporated, which have been integral to my

academic journey. The industry environment coupled with a strong team spirit has

provided me with invaluable insights and practical experience. I am grateful to my

colleagues for their collaboration and willingness to share knowledge and expertise.

Lastly, but by no means least, I acknowledge the tremendous efforts of Ms. An-

drea Andriopoulos, Ms. Donna Laffin, Ms. Kate Hide and Ms. Vicki Sullivan from

administrative office, whose support and assistance during my time at Dalhousie

University have been indispensable. The smooth operation of the department and

my academic journey owes much to their organizational skills, attention to detail,

and unfailing commitment. Their tireless dedication and professionalism have been

greatly enhanced our academic environment. For this, I express my profound grati-

tude.

In conclusion, I am profoundly grateful for the collective wisdom, guidance, and

support of these exceptional individuals. The completion of this thesis is not a soli-

tary accomplishment, but a testament to the power of collaboration and community.

I stand on the shoulders of giants and it is their strength and wisdom that have

allowed me to reach such heights.

Funding for this work was partially supported by the MITACS Accelerate pro-

gram.

xiii

Chapter 1

Introduction

Motion planning algorithms have become increasingly prevalent in a wide range of

robotic industries over the past three decades. There has been significant research

on path planning in both mobile and industrial robotics. The problem is typically

split into global and local planning by most authors. Numerous navigation methods

from traditional robotics have been adapted to address the unique challenges faced

by various emerging types of robotics. Numerous motion planning algorithms are

now widely used in transportation and logistics industries, information technology

industries, marine industries, manufacturing and robotics industries and many others

[1].

In the transportation and logistics industries, motion planning algorithms play

a critical role in enabling autonomous vehicles to navigate their surroundings safely

and efficiently. For instance, self-driving cars rely on motion planning algorithms

to chart optimal routes through complex urban environments, avoid obstacles, and

adhere to traffic regulations. Motion planning is also considered as decision making

modules of the entire autonomous system in self-driving cars [2, 3]. It is further hier-

archically divided into four subsystems: route planning, behavioral decision making,

local motion planning and feedback control [3]. The route planning was classified in

four groups, according to their implementation in automated driving: graph search,

sampling, interpolating and numerical optimization. These algorithms have the po-

tential to transform transportation and logistics, making them more efficient and

environmentally friendly.

In the information technology industries, motion planning algorithms are used

in computer graphics, virtual prototyping, game and animation to generate realistic

motion for virtual characters and objects. For example, motion planning algorithms

can be used to generate a path inside a virtual scene for video game characters [4].

In manufacturing and industrial robots, motion planning algorithms are used to

1

2

plan optimal trajectories for robot arms and end-effectors. For example, motion

planning algorithms can be used to optimize the movements of a robot arm as it

assembles a product on a manufacturing line [5, 6].

For marine robotics industries, motion planning algorithms are used in autonomous

underwater vehicles (AUVs) and unmanned surface vehicles (USVs) to plan safe and

efficient trajectories while minimizing the risks of collision or damage. For example,

motion planning algorithms can be used to help AUVs and USVs navigate complex

underwater or surface environments, where they may face various disturbances such

as strong winds or currents. This technology has broad applications, including ocean

exploration, military operations, and environmental monitoring [7, 8].

1.1 Research Motivation

The main goal of this project is to develop a global planner that can minimize the

distance progressively between the initial and final states, maintain smoothness that

satisfies curvature continuity, and is particularly suitable for non-holonomic robots

with complex dynamic systems. It is quite challenging to strike a balance between a

shorter path and a smoother path for the global planner.

The increasing use of non-holonomic robots in various environments emphasizes

the significance of path planning to ensure their autonomous functionality. Past lit-

erature suggests a variety of techniques for robot optimal path planning, considering

various criteria, such as time delays, traveling distances, and planned arrival time.

In most applications, time and energy are critical factors. Generating the shortest

path can help robots to minimize the time and save more fuel or energy taken to

reach the goal point, which can extend the robot’s operational time. Furthermore, it

can also improve the safety level for robots. The shorter the path, the less time the

robot spends navigating in the environment, which reduces the chance of unexpected

accidents or collisions with dynamic obstacles.

However, when many existing solutions for optimal global path planning are di-

rectly applied to robots, they often result in piece-wise linear or sharp paths. This

leads to the robot having to frequently stop, rotate, and restart, resulting in a dis-

continuous and time-consuming motion. Such movements can excessively drain the

robot’s power and unnecessarily extend its operational time. A more efficient and

3

continuous path planning technique is needed to avoid such issues. To be more

specific, several reasons are listed below:

1. A smooth path can help the robots or conveyances avoid jerky movements.

Jerky motion can make it unstable or even cause damage (high-level noise or vi-

bration) to the sensors, electronics and other dynamic systems. This is especially

important for systems that operate at high speeds or have high inertial loads.

2. While quantifying the exact energy savings can be challenging, a smooth path

is generally believed to reduce the system’s energy consumption by minimizing un-

necessary accelerations and decelerations. This concept is rooted in the fundamental

principles of motion physics, where sudden changes in velocity require more power

compared to maintaining a steady speed.

3. A smooth path can lead to enhanced control precision for controllers such as

sliding mode control (SMC), thus yielding improved performance as demonstrated

in previous research [9].

1.2 Literature Review of Motion Planning for Mobile Robots

1.2.1 Optimal Paths for Holonomic Robots

To quickly and effectively generate a path, there are a multitude of algorithms pro-

posed in the past 50 years as shown in Fig. 1.1.

1. Search Based Algorithms

When planning a route, one can establish a route using graph search based algo-

rithms that explore the various states in a grid map. Dijkstra’s algorithm [10] and

A∗ [11] are the two most fundamental algorithms developed in the mid 20th century.

Both methods search the state spaces which are represented as occupancy grid. Di-

jkstra’s algorithm is designed to efficiently find the shortest path between two nodes

in a graph. The algorithm achieves this by exploring the neighboring nodes of known

nodes with the smallest weight, gradually building up a picture of the entire graph.

The weight of a node is determined by the sum of all the weights of the edges lead-

ing to that node. Once the node with the smallest weight is found, it is added to

the set of visited nodes, and the algorithm continues to explore its neighbors. By

systematically searching for the node with the smallest weight, Dijkstra’s algorithm

4

path finding/planning

Sampling Based Search/Grid-Based Geometric or
Others

RRT (1998)

RRT* (2010)

RRT-Connect
(2000)

Others

A* (1968)

Dijkstra's (1956)

Others

Visibility Graph

Voronoi Diagram

Cell
Decomposition

PRM (1996)

PRM* (2010)

Lazy-PRM
(2000)

Others

Potential Field

Vector Field

Figure 1.1: Overview of Path Planning Algorithms

is guaranteed to find the shortest path between the source and destination nodes,

assuming that there are no negative weight edges in the graph. Based on the Di-

jkstra’s algorithm, A∗ uses heuristics to prioritize the search in a specific promising

direction, which can make it faster and more efficient in some cases.

After that, many of the improved methods based on A∗ was proposed, some

of the popular ones are D∗ [12], D∗-lite [13], ARA∗[14], Weighted A∗ [15], Jump

Point Search [16] etc. All these algorithms similar to A∗ that use various optimistic

heuristic functions to guide grid cell expansion.

2. Sampling Based Algorithms

Sampling-based planners such as the Rapidly-exploring Random Tree (RRT) [17]

and the Probabilistic Roadmap (PRM) [18] have revolutionized pathfinding in com-

plex environments. These methods overcome the challenges that traditional grid

mapping techniques face when dealing with higher dimensional spaces or densely

clustered obstacles. Notably, they operate without the necessity for a grid map,

thereby providing more efficient alternatives. Some popular sampling based algo-

rithms are listed in Fig. 1.2.

5

Figure 1.2: Overview of Sampling Based Planning Algorithms

RRT, introduced by LaValle in 1998, and PRM, developed by Kavraki and col-

leagues in 1996, have distinct differences in their methodologies. The primary vari-

ation between them lies in the exploration approach. PRM invests time to explore

the entire space, sampling nodes in the process. This approach facilitates a broad

overview of the space, mapping out multiple potential paths. Conversely, RRT is a

single query method with its primary focus on identifying one viable path from start

to end as quickly as possible.

Two significant variants have been developed based on these methods, each bring-

ing unique contributions to the field. Lazy-PRM [19] improves the efficiency of the

PRM algorithm by delaying the collision checking until a path is actually needed.

This greatly reduces the number of collision checks and prunes the roadmap of useless

6

configurations. RRT-connect [20] enhances the performance of RRT by incremen-

tally building two RRTs, one from the start configuration and one from the goal

configuration. The trees are grown until they connect and collision checking is per-

formed to ensure a safe path. This method can be implemented synchronously or

asynchronously, and is effective in environments with obstacles and narrow passages.

In 2010, Karaman and Frazzoli proposed famous PRM∗ and RRT∗ algorithms [21]

to enhance path quality for sampling based planners, which immediately garnered the

attention of numerous researchers when they come out. PRM∗ and RRT∗ maintain a

cost-to-come value for each node in the graph, which represents the cost of the best

path found so far that passes through that node. In the meanwhile, they include

a rewiring step for every new node found and all its neighbour nodes. Therefore,

these two algorithms guarantees almost surely asymptotically optimal. After RRT∗

and PRM∗ algorithms, many variants proposed based on one or both of them, such

as RRT# [22], Fast Marching Tree (FMT) [23], Informed-RRT∗ [24]. Some of these

sampling based algorithms are discussed in detail in Chapter 2.

1.2.2 Smooth Paths for Non-holonomic Robots

The objective of studying path planning for a non-holonomic robot is to find the best

possible route from its starting point to its destination. The ideal smooth trajectory

should have minimal tracking error, require the shortest possible time and distance

to travel. Deviations from the planned path can result in tracking errors, which can

lead to collisions with obstacles or even mission failure. Moreover, tracking errors can

increase travel time and distance because the robot needs to make additional adjust-

ments to stay on course. This happens when the robot transits from a straight path

to a curved one or at a point of inflection, where the robot can easily stray from its

intended course due to abrupt changes in direction. Therefore, careful path planning

is essential to reduce tracking error and several techniques had been intensely investi-

gated to achieve smoother paths. Merely generating collision-free routes that consist

of waypoints connected by straight lines, as done in the subsection 1.2.1, is seldom

beneficial in addressing motion planning challenges. Specifically, certain techniques

are introduced to incorporate a vehicle’s kinematics and differential constraints to

effectively determine a smooth and even optimal path.

7

Line and Circle

1) Dubins Curve:

Based on the theorem proven from Mathematician L.E. Dubins, all shortest paths

between two configurations (positions and orientations) are either of the form C, S,

C, or C, C (angle > pi), C, while C represents an arc that the robot could turn at

its minimum turning radius and S represents a straight line. Further, any of the C

or S segments could be of length zero [25]. Two general types are shown in Fig. 1.3.

S

C

C

CC

C

Figure 1.3: Two Types of Dubins Curves

2) Reeds-Shepp Curve:

In 1990, Reeds and Shepp extended Dubins Curve into nine different types of

paths, which can be classified as an arc, a straight line segment and a cusp [26]. The

ability for a robot to move both forward and backward is showcased in three classical

examples depicted in Fig. 1.4:

CLCC’C’C’ C’CC’

Figure 1.4: Reeds–Shepp Curves

� C’C’C’: This refers to a sequence of maneuvers using a triple reverse-curve

path. The vehicle (denoted as triangle) makes all its maneuvers in the reverse

8

gear. It starts by turning in one direction in reverse, then makes another turn

in the opposite direction while still in reverse, and finally makes another turn

in the same direction as the first, still in reverse.

� CLC: This refers to a sequence of maneuvers using a curve-line-curve path.

This typically begins with a turn (either left or right), followed by a straight-

line segment, and ends with another turn (left or right). In our example, the

path could start with a left turn, then proceed in a straight line, and finally

end with a right turn.

� C’CC’ or CC’C: This refers to a sequence of double reverse-curve (curve) at-

tached to the both ends of the curve (reverse-curve) path. In our example,

the vehicle starts by turning in one reverse direction, then makes a turn in the

opposite direction, and finally makes another turn while moving in reverse as

the first.

Note that “C” refers to a curve (turning maneuver), “L” refers to a straight line

segment, and the apostrophe (’) indicates the reverse direction.

These methods exist discontinuities at the junction of the line which can cause

non-smooth motions and tracking errors.

Spline Curves

Designing a trajectory with a single polynomial curve that is constrained to pass

through all control points presents considerable challenges. Such a trajectory can be

highly sensitive to the positions of the control points and may fail to consistently

produce a smooth shape. For example, even in a relatively simple map with few

selected path points - such as 10 - the resulting high-degree polynomial might dis-

play undesirable oscillations. These oscillations can be particularly displayed near

the curve’s ends (Runge’s Phenomenon [27]), resulting in a trajectory that is not

acceptable. Additionally, in a scenario with 201 points, the polynomial would need

to be of degree 200 to fit these points. Such a high-degree polynomial would not only

oscillate excessively, but its computation would also be unfeasibly resource-intensive

with currently available computing power. Given these challenges, employing spline

curves becomes a sensible approach for trajectory planning.

9

Spline curves, defined by a set of control points, are a series of piece-wise polyno-

mials used to represent complex shapes. These control points, which can either lie on

or closely follow the curve, shape its form [28]. The biggest advantage of piece-wise

polynomial curve is that a multitude of points can be fit with low-degree polynomi-

als. The point that connect two curves are called knot. Typically, spline curves can

be pieced by two or more cubic curves together, as cubic polynomials are the lowest

degree polynomials that can support inflection points. The most basic type of spline

curve is the natural cubic spline. However, it is not ideal for path planning because

the entire curve is defined by a single system of linear equations. If any modification

is made to the path, the shape of the entire curve must be reconstructed, which leads

to a significant computational burden.

Hence, alternative types of spline curves that provide local control — such as

B-splines, Bézier splines and Catmull-Rom splines [29] — are often preferable for

trajectory planning. These splines allow for modifications in a localized section of

the path without necessitating a recalculation of the entire curve.

Spline curves offer the dual advantages of low computational cost and the ability

to maintain some degree of continuity ??. There are six different types of spline

curves will be introduced and discussed.

1) Linear Splines

Linear splines, as the name suggests, are essentially just composed of multiple

line segments. It is a simplest interpolating curve, which means it passes through all

the control points. The lack of excessive oscillations can be attributed to a trade-off

made for curve smoothness. These splines are rudimentary in their nature and only

offer C0 continuity, which signifies a basic degree of position continuity.

2) Clothoid Curves

The Fresnel integrals are used to define a particular kind of curve known as a

clothoid [30]. With clothoid curves, it is feasible to create trajectories that have

a uniform rate of change in curvature because the curve curvature is proportional

to its arc length. This allows for seamless transitions between straight sections

and curved sections. However, while clothoid pairs offer smooth transitions without

discontinuity, there is no analytical formula for determining the position along the

path of the clothoid curve. This means that approximations and look-up tables are

10

necessary.

3) Bézier Splines

The fundamental component of Bézier curves consists of the Bernstein polyno-

mials [31]. These curves offer the advantage of being computationally inexpensive

since their behavior is determined by control points. Placing these points correctly

enables meeting the tangent and curvature constraints from start to end. Third and

fourth-degree Bézier curves are widely utilized in autonomous vehicles to identify

the most suitable curve for various situations, including turns, lane changes, obsta-

cle avoidance etc. [32]. In Chapter 2, one method called SRRT incorporates cubic

Bézier splines is introduced.

4) Hermite Splines

The defining parameters of a Hermite spline include the positions and their cor-

responding derivatives at two endpoints, typically realized as cubic Hermite splines.

These splines ensure maximum C1 continuity, implying a consistent changing slope

along the curve, thereby guaranteeing G1 tangent continuity. Nevertheless, a poten-

tial downside is the abrupt change in acceleration at each junction point. Hermite

splines are a popular choice in the animation industry due to their unique properties

[33].

5) Catmul-Rom Splines

Catmull-Rom splines are also C1 continuous curves. Their principal advantage is

that the control points for the spline curve are intrinsically defined by the original

set of points. Therefore, only a sequence of control points needs to be specified, with

corresponding tangents automatically derived from these points. To compute the

value of the spline between two points (denoted as p1 and p2), the preceding and

succeeding points (denoted as p0 and p3) must also be known.

6) Cardinal Splines

Cardinal spline represents a generalized form of Catmull-Rom spline, incorporat-

ing an additional shape parameter k in the calculation of tangents. When k = 0, the

Cardinal spline simplifies to a Catmull-Rom spline.

7) B-splines

Unlike other types, B-spline curves and joints do not necessarily intersect with

control points. Instead, they prioritize geometric G2 continuity and C2 acceleration

11

continuity. One distinct advantage is the retention of local control points, allowing

for adjustments while still preserving the overall continuity. This is achieved by

sacrificing the interpolating property in favor of maintaining acceleration continuity.

1.2.3 Model of Differential Driving Mobile Robot

To create a path for a mobile robot that uses differential driving, it is necessary to

understand the kinematics model. This analysis helps model the behavior of the

robot’s movement, which serves as the foundation for planning its trajectory.

A mobile robot that utilizes differential driving is equipped with two wheels on

a single axis, and each wheel is controlled separately by its own motor. To describe

the robot’s movement, we can use the variables vL and vR to represent the velocities

of the left and right wheels, respectively, and l to represent the distance between

the wheels. By using vL and vR, Equation (1.2.1) determines the robot’s linear and

angular velocities, represented by v and w.{
v = vR+vL

2
,

w = 2(vR−vL)
l

.
(1.2.1)

In Fig. 1.5, the kinematics model of a mobile robot that utilizes a differential

driving mechanism is depicted.

The mobile robot’s location in two-dimensional X-Y Cartesian coordinates can

be described as x(t) and y(t), while its direction is indicated by θ(t). The linear

velocities are represented by ẋ(t) and ẏ(t), while the angular velocity is indicated by

θ̇(t). The kinematics model of the mobile robot is defined as:⎡
⎢⎢⎣

ẋ(t)

ẏ(t)

θ̇(t)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

cos(θ) 0

sin(θ) 0

0 1

⎤
⎥⎥⎦ =

[
v

w

]
. (1.2.2)

The motion states of a differential driving mobile robot are affected by the speeds

of its two wheels. If a robot with more than two wheels rotates at one point, that

point is called the Instantaneous Center for Curvature (ICC). The turning radius of

the robot R in Fig. 1.5 is determined by the velocities of its left and right wheels,

which is defined as:

R =
v

ω
=

lw
2

∣∣∣∣ωr − ωl

ωr + ωl

∣∣∣∣ . (1.2.3)

12

Y

x

θ

vL

vR

l

w

x

y

Figure 1.5: Differential Mobile Robot Model

The distance from the wheel to the ICC is proportional to its velocity, which

means that changing the rotation radius will also change the velocity and acceleration

of the robot.

1.3 Contributions

The main contribution of this thesis is the development of a novel path planning

algorithm for non-holonomic robot system called Informed SRRT#. It consistently

minimizes path length as well as its curvature can always be G2 continuous at all

points.

1. The algorithm ensures that the curvature’s G2 continuity is within predeter-

mined constraints.

2. If the length, which has a maximum curvature constraint, is shorter than

the extended edges between the intermediate points of three consecutive states, the

algorithm can be divided into piece-wise segments of Bézier spline. To maintain cur-

vature continuity, the second rewiring process must consider three or four consecutive

states.

13

3. During the initial rewiring process for path optimization, sub-trees may be

partially deleted, or these nodes can be reused as “new” sampled nodes if the previous

vertices and edges conflict with kinematic constraints.

4. Simulations were carried out using both Python 3 and Robotics Operating

System (ROS) with C++ programming, and a detailed analysis was presented to

evaluate the feasibility and effectiveness of the proposed path planning algorithms

under ground robot conditions. Additionally, a field test was conducted using a

TurtleBot3 to further validate the performance of the algorithm in real-world sce-

narios.

1.4 Thesis Structure

The rest of this work is organized as follows. Chapter 2 describes the background

theories used in this work. Chapter 3 gives a detailed description and algorithm im-

plementation for informed SRRT#. Chapter 4 presents a comprehensive analysis of

the simulation results, conducted both in Python and the Robotics Operating System

(ROS) using C++. This chapter also includes a comparative analysis with conven-

tional methods. The final chapter showcases real-world experiments conducted on

the TurtleBot3 platform.

Chapter 2

Review of RRT-Based Path Planning

2.1 RRT

Rapidly-exploring Random Trees (RRT), a single-query planner initially proposed

by LaValle [17], has emerged as a powerful tool in computational motion planning

due to its distinctive properties. With a balanced trade-off between exploration and

exploitation, RRT algorithms have shown remarkable efficiency in navigating com-

plex, high-dimensional search spaces, particularly when the complete specification of

the environment is not known in advance.

The RRT methodology revolves around the iterative construction of a search tree

by incorporating randomly selected points from the search space. This stochastic, yet

guided approach aids in extending the tree towards unexplored regions, thus ensuring

a rapid, widespread coverage of the search space. Over time, this tree progressively

approximates the connectivity of the underlying space, increasing the likelihood of

finding a feasible solution even in cluttered and higher dimensional space. There are

several other properties should be mentioned here as well.

� RRT is probabilistically complete.

� The Voronoi diagram property leads to the strong inclination of RRT expansion

towards unexplored areas of the state space.

� Despite being well-suited for holonomic systems, this randomized planning

technique can also be adapted to fit non-holonomic constraints.

� Integrating a specific state transition equation to link the nearest neighbor-

ing state and the new state, while the equation is adhering to specific non-

holonomic constraints. This allows to incorporate control inputs that consider

kinematics and dynamics seamlessly.

There are several versions of pseudo-code for the RRT algorithm, and Algorithm

1 represents one of them:

14

15

Algorithm 1 RRT

Require: V ← {xInit} ;E ← ∅;
Ensure: T = (V,E), Xsol

for i = 1, . . . , N do

xrand ← SampleFreeSpace;

xnearest ← NearestNeighbour (T , xrand) ;

xnew ← Steer (xnearest, xrand) ;

if NoCollision(xnearest, xnew) then

V ← V ∪ xnew; E ← E ∪ (xnearest, xnew) ;

if xnew ∈ Xgoal then

XSol ← XSol ∪ xnew;

XSol ← backtracking all x’s parent nodes from xnew until start node.

(optional) break the loop;

we illustrate the entire process of employing the RRT algorithm, specifically us-

ing a holonomic robot as an example. To initiate the process, select a random point

within the map (Refer to Fig.,2.1). It’s crucial to note that every iteration involves

sampling a random point. This point is then connected to its nearest counterpart

within the tree. This consistent and judicious selection facilitates the effective oper-

ation of the algorithm.

Figure 2.1: Sample a Random Point.

Next step, you need to find the one in the tree with the shortest distance to

16

xrandom as shown in Fig. 2.2.

Figure 2.2: Find the Nearest Random Point in RRT.

If the distance is longer than the step size, then a new node grows in the same

direction and use step size, see Fig. 2.3.

Figure 2.3: The Distance Compared to the Step Size (Case 1).

If the distance is shorter than the step size, a new node grows in the same direction

with fixed stepsize or take over the position of xrandom, as shown in Fig. 2.4. In the

second case, the RRT has length variations for different extended edges.

17

Figure 2.4: The Distance Compared to the Step Size (Case 2).

Collision checking should include both new vertex xnew and the edge between

(xnearest, xnew), see Fig. 2.5. If collision-free, then following the procedure:

� Add the vertex into the tree.

� Record the parent node of new node, which is the nearest node.

� Record the edge (optional).

Figure 2.5: Collision Checking for New Edge and Vertex

If xnew is within the Range of Xgoal, add one last edge to the xgoal, then you

could start backtracking process from the goal node until the start node to generate

a path, as shown in Fig. 2.6.

Assume the step size of all edges in RRT is always a fixed value and the robot

is holonomic system, the simulation results for the RRT algorithm in Matlab are

18

Figure 2.6: RRT Final Path

displayed in Fig. 2.7. Additionally, we conducted a comparison of the results using

edges with different lengths. The choice of the metric p like edge length has a

significant impact on the performance of RRT, which is also considered as a main

problem in this method. If the length is too long, the final path may contain zigzag

shapes, making it difficult for controllers to optimize the trajectory. On the other

hand, if the edge length is too short, the algorithm may require more iterations and

running time, leading to longer path lengths. For non-holonomic systems, using

the Euclidean distance metric alone may not be sufficient to connect the new state

with the nearest state. Therefore, combining other local planners or using different

steering methods, such as applying arc or spline, can lead to better results.

Figure 2.7: RRT Extension with Edge Length = 5, 10, 20cm

19

2.2 RRT*

Another significant drawback of the RRT method is its inability to generate a path

that achieves an asymptotically optimal result. In the context of this thesis, op-

timality is defined as finding a feasible path with the minimal possible cost. Two

researchers Karaman and Frazzoli proved RRT almost surely produce a suboptimal

path and proposed RRT∗ to address such issue.

The pseudo-code for RRT∗ is shown in Algorithm 2.

Algorithm 2 RRT∗

Require: V ← {xinital} ;E ← ∅;
Ensure: T = (V,E);

for i = 1, . . . , N do

xrand ← SampleFreeSpace;

xnearest ← NearestNeighbour (T , xrand) ;

xnew ← Steer (xnearest, xrand) ;

if NoCollision(xnearest, xnew) then

Xnear ← Neighbours (T , xnew, rmin) ;

V ← V ∪ xnew;

xmin ← xnearest;

cmin ← Cost (xnearest)+Dist (xnearest, xnew) ;

for xnear ∈ Xnear do

if NoCollision(xnew, xnear)∧Cost(xnear)+Dist (xnew, xnear)<cmin then

xmin ← xnear;

cmin ← Cost (xnear)+Dist (xnear, xnew) ;

E ← E ∪ (xmin, xnew) ;

for xnear ∈ Xnear do

if NoCollision(xnew, xnear)∧Cost(xnew)+Dist (xnew, xnear)<Cost(xnear)

then

xnew ← Parent(xnear) ;

E ← (E\ (xparent, xnear)) ∪ (xnew, xnear) ;

The formula of rmin is describe as Equation (2.2.1) [34], where Φ is a steering

parameter such as the predetermined size of search range. Dist Function is the

20

measured distance with specific metric p between two states. Cost function is the

total sum of the distance from the input state towards the initial state.

rmin = min
{
γ(log(card(V))/ card(V))1/(d+1),Φ

}
; (2.2.1)

In a two-dimensional context, we can conveniently establish the minimum radius,

rmin, to be equivalent to Φ. This value of Φ can range from 1.2 to 2.0 of the

extended edges. Prior to initiating the first rewiring process, the procedure aligns

with the conventional approach used in Rapidly-Exploring Random Trees (RRT) for

identifying the nearest node and a new node. Subsequently, this new node probes

all neighboring nodes within the radius denoted by Φ in the tree. This process is

graphically illustrated in Fig. 2.8.

Figure 2.8: All Neighbours within the Radius Φ

The differences between RRT∗ and RRT is shown in Fig. 2.9. RRT∗ will choose

the best parent node for xnew which has the total sum of the lowest cost towards

the initial point, while RRT will only select xnearest which has a shortest distance

between the xnearest and xnew.

21

(a) The Selection Process of RRT∗ (b) The Selection Process of RRT

Figure 2.9: RRT∗ Explores More Neighbors than RRT.

In this example, the RRT∗ chooses Near2 instead of Near1 as shown in Fig. 2.10.

(a) The Selection Process of RRT∗ (b) The Selection Process of RRT

Figure 2.10: RRT∗ Chooses Superior Neighbor Nodes over RRT.

The subsequent step in the RRT algorithm involves a rewiring process that op-

erates in reverse. Rather than searching for the best parent node for the new node,

this process evaluates whether the new node is a potential better parent node for

each of its neighboring nodes. If one of the neighboring nodes chooses the new node

as its parent and the total cost to the starting point decreases, that neighboring node

also gets optimized in the end. From Fig. 2.11, the previous total cost of Near3 is

22

(5 + 5 + 2) + 2 + 2 = 16. However, in the second rewiring step from RRT∗, Near3

chooses xnew as its new parent node and the total cost reduces to (4+3+3)+2+2 = 14.

Then it will remove the edge between Near3 and its previous parent node in Fig. 2.12

and connect to xnew as shown in Fig. 2.13.

Figure 2.11: Compare the Total Cost Between xnew and the Preivous xparent.

Figure 2.12: Remove the Previous Connection.

The primary limitation of the RRT∗ method lies in its asymptotic convergence

towards the optimal path across all states within the problem domain, as pointed out

23

Figure 2.13: RRT∗ Final Path

in [24]. This characteristic proves inefficient for many real-world applications where

the end goal or target area is typically known in advance. Two main areas of concern

can be identified. Firstly, as demonstrated in Fig. 2.14, The RRT∗ method exhibits

inefficiency as it unnecessarily rewires certain nodes that offer no promise of improved

efficiency. Some of these nodes are even located further from the destination than

the initial starting point. Secondly, it neglects to rewire all potentially beneficial

nodes capable of shortening the path length. An example of this oversight can be

seen with node x in Fig. 2.15.

Figure 2.14: Over-exploitation of RRT∗

24

Figure 2.15: Under-exploitation of RRT∗

The simulation of RRT∗ for holonomic robot is shown in Figs. 2.16 to 2.19.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

Figure 2.16: RRT∗: Iteration 250

Figure 2.17: RRT∗: Iteration 500

25

Figure 2.18: RRT∗: Iteration 750

Figure 2.19: RRT∗: Iteration 1000

26

2.3 RRT# and LPA*

RRT# is an improved version of RRT∗ proposed by Arslan and Tsiotras [22]. There

are three different variants for RRT#. The main idea of RRT# is to use a priority

queue to maintain a consistent spanning tree at every iteration, where the accumu-

lated cost-to-come of each vertex always contains optimal value. It classifies the

nodes of the tree into four different types. This method is inherited from Lifelong

path planning A∗ (LPA∗), which is an improved method of A∗ for path plan reuse

method.

Before we get into the details of RRT#, we need to explain the underlining con-

cepts of LPA∗. LPA∗ is a type of continual planning that reuses information from pre-

vious searches, combining the strengths of both A∗ [11] and modified DynamicSWSF-

FP [35]. Since modified DynamicSWSF-FP becomes an incremental search version

of breadth-first search (BFS), it adopts A∗ to find an optimal path at the initial

stage. Later, if the environment changes or the graph is nondeterministic, LPA∗

can efficiently find another shortest path with the help of DynamicSWSF-FP. This

approach makes LPA∗ a valuable tool for tasks that require frequent updates to

the environment or graph. By quickly examining previously searched paths that

remain unchanged, LPA∗ can efficiently find new shortest paths without starting

from scratch. This reduces the computational overhead of continually replanning

and further enhances the efficiency of LPA∗.

The algorithm of LPA∗ are shown in Algorithms 3 to 5. Each grid maintains two

estimates from the start distance (g-value and rhs-value). It is worth noting that the

pseudocode I modified from [36] is just a basic outline of the LPA∗ algorithm, and the

actual implementation can vary depending on the specific problem and requirements.

In practice, the details of the algorithm may need to be adapted or optimized based

on the particular use case.

In the original paper, the blocked grid D1 in the simple example and the blocked

grid C4 in the complex example have actual effect on the initial LPA∗ search. How

about a few but multiple grids change simultaneously and strongly affect the previous

search path? If that happens, in Algorithm 3, every vertex that get affected and its all

successors (may includes its successors of successors) should potentially update their

g-values and rhs-values as well. In common cases, LPA∗ only considers the immediate

27

Algorithm 3 LPA∗ Main Function

Require: for all t ∈ T \ tinit, rhs(t) = g(t) = ∞; rhs(tinit) = 0;PQ ← rhs(tinit).

while 1 do

CalcShortestPath();

if Graph changes appear then

for Every explored vertex t and edge are affected do

Update the cost of that edge.

VertexUpdate(t);

Algorithm 4 LPA∗ CalcShortestPath()

while PQ.PeekTop() < Key(tgoal) ∨ rhs(tgoal)
= g(tgoal) do

t = PQ.pop();

if g(t) > rhs(t) then

g(t) = rhs(t);

for Every immediate successor of t do

VertexUpdate(t);

else

g(t) = ∞;

for t and every immediate successor of t do

VertexUpdate(t);

Algorithm 5 LPA∗ Auxiliary Functions

VertexUpdate(t)

if t
= tstart then

rhs(t) = mint′∈Predecessor(t)(g(t′) + c(t′, t));

if t ∈ PQ then

PQ.delete(t);

if g(t)
= rhs(t) then

PQ.insert(t, Key(t));

Key(t)

return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))];

28

successors of a node, not including successors of successors. This is because LPA∗

is designed to work efficiently with incremental changes to the graph, and updating

the successors of successors can be computationally expensive.

If a vertex’s immediate predecessors are all unreachable, which means the edge

costs become infinity due to the environments change, this vertex should be reini-

tialized and removed from PQ. Furthermore, its successors may be affected if they

have no other predecessors. One special case is shown in 2.20.

(a) The Original Environment (b) The Changed Environment

Figure 2.20: The 5 ∗ 4 Grid Map for LPA∗

Here is another simple example to demonstrate the process of LPA∗. The initial

search of LPA∗ is almost the same as A∗ as shown in Fig. 2.21. The starting node

E0 has g = 0, the key value is [f = 4, g = 0]. It checks the D1 and E2 and choose

D1 as the next node and set g = 1 and key value [f = 4, g = 1], E2 is only updated

with the key value [f = 5, g = 1] and g-value remains ∞. The following process is

followed by this: C2 ⇒ E2 ⇒ C1 ⇒ C3 ⇒ B4 ⇒ A4 while grids E3, B1, C4 and

D4 are updated with keys only.

Now the environments changed when the grid D3 becomes vacant and grids C3

and A3 are blocked. In this case, B4, C4 and D4 are previously the successors of

C3 but now they become underconsistent and have no predecessors so they should

be removed from the priority queue and set as ∞. The same situation occurs for the

grid A4, as the successors of the grid B4. The grid D3 builds its own g-value and

key based on a predecessor which has the smallest costs. In the initial graph, the

g-value of the grid D3 is ∞ but now its rhs-value (aka one-step look-ahead value)

29

Figure 2.21: Initial Search of LPA∗

becomes overconsistent. The whole process is demonstrated in 2.22.

(a) (b)

(c) (d)

Figure 2.22: The Iterative Process of LPA∗

We can easily conclude that this method does not need to perform another com-

plete search and it only requires the checking of a few inconsistent nodes, either it

is locally underconsistent (iff g(t) ≤ rhs(t)) or overconsistent (iff g(t) > rhs(t)).

30

It continuously expands nodes until tgoal is locally consistent and the key of every

expanded vertex is bigger than or equal to the key of tgoal.

The RRT# algorithm incorporates the concept of overconsistent vertices from

LPA∗ to maintain a tree of consistent vertices. When a new node is added, the algo-

rithm considers only the neighboring nodes in the tree whose g-values are no bigger

than their locally minimum cost-to-come (lmc) values (aka rhs-values in LPA∗), en-

suring that the constructed spanning tree of the geometric graph remains consistent

after each iteration. The first part is very similar as RRT∗:

� The new node is added into the tree and selects the best neighbour node as its

parent node with the minimum cost-to-start.

� The authors assumed that its neighbours rewiring process is done implicitly

and some neighbours may select the new node as their new parent node.

Algorithm 6 is the main body of RRT#.

Then the second part is the core function ReduceInconsistency and modified

QueueUpdate from LPA∗ shown in Algorithm 7. Notice that the condition of the for

loop in ReduceInconsistency function actually assumed that the neighbour rewiring

process is completed. The Key function is exactly the same as LPA∗.

RRT# separate the nodes into four different groups and marked them as Green,

Blue, Red and Black. The relationship between these four nodes are shown in

Fig. 2.23. The dash arrow lines demonstrated the affiliation between two types of

nodes, such as the the black node is the successor of the red node. The solid arrow

lines demonstrate the transition of two types of nodes, such as the green node could

become the blue node and vice versa.

� Green node is consistent and its key is a finite value.

� Blue node is inconsistent (g
= lmc) and its key is a finite value.

� Red node is inconsistent because g = ∞ and lmc is finite.

� Black node is consistent but g = lmc = ∞.

In a specific iteration, only green nodes have potentials to contribute promising

nodes. A subset of green nodes forms the relevant area for generating an optimal

31

Algorithm 6 RRT#

Require: V ← {xinital} ;E ← ∅;
Ensure: T = (V,E);

for i = 1, . . . , N do

xrand ← SampleFreeSpace;

xnearest ← NearestNeighbour (T , xrand) ;

xnew ← Steer (xnearest, xrand) ;

if NoCollision(xnearest, xnew) then

Xnear ← Neighbours (T , xnew, rmin) ;

V ← V ∪ xnew;

xmin ← xnearest;

cmin ← Cost (xnearest)+Dist (xnearest, xnew) ;

for xnear ∈ Xnear do

if NoCollision(xnew, xnear)∧Cost(xnear)+Dist (xnew, xnear)<cmin then

xmin ← xnear;

cmin ← Cost (xnear)+Dist (xnear, xnew) ;

E ← E ∪ (xmin, xnew) ;

V ← V ∪ xnew;

QueueUpdate(xnew);

ReduceInconsistency(T , Xgoal);

Rebuild connections among the nodes that are affected.

Figure 2.23: The Relationship Between Four Types of Nodes in RRT#

32

Algorithm 7 Core Functions of RRT#

ReduceInconsistency

while PQ.PeekTop() < Key(tgoal) do

t = PQ.pop();

g(t) = lmc(t);

for every immediate successor s of t do

if lmc(s) > g(t) + c(t, s) then

sparent ← t;

lmc(s) = g(t) + c(t, s);

VertexUpdate(s);

QueueUpdate

if t ∈ PQ and g(t)
= lmc(t) then

PQ.update(t, Key(t));

if g(t)
= rhs(t) and g(t)
= lmc(t) then

PQ.insert(t, Key(t));

33

path. The other three are all non-promising. In the simulation of RRT#, there

are some green nodes’ parent nodes are blue nodes. These green nodes can also be

outside of the optimal region. The reason that these blue nodes exist due to the

sampled new nodes reduced the key value of tgoal. Hence, these blue nodes will never

satisfy the condition of the while loop and be placed in the priority queue forever.

Similar situations apply for the red node as well.

The black node’s parent node must be a red or black node. It is useless for

finding an optimal path, so it won’t be placed in the priority queue and rejected in

the second condition of the QueueUpdate function.

Every time when RRT# extends a new node, if its parent node has finite value

(green or blue node), it will be temporarily marked as a red node. A red node

may become green node immediately in the current iteration and removed from the

priority queue. Its successors must be a black node or none.

A red and blue node may become green node if they found themselves have

smaller key compared to current best estimate towards the goal. Green node will be

removed from queue in the current iteration and it will never become red or black

node. Same applys for the blue node.

Finally a green node may become a blue node if the new node added in the

tree and produced a shorter path towards the goal. These green nodes must be

the successors of the new node and they are affected due to the propagation of

ReduceInconsistency function.

RRT# can be further modified into three other variants. The first variant directly

ignore the black nodes and they will not be added into the tree. The second variant

only allows those nodes to be added into the tree iff their parent nodes are promising

nodes. This variant greatly accelerates the speed due to the large reductions of

inconsistent red node. The last one is the most selective variant and these nodes

itself must be promising otherwise it will not be included in the tree. Hence the red

node is completely removed and only blue and green nodes exist, which means every

node has a finite g-value. The comparisons among RRT# and its variants can be

seen in the paper [37].

34

2.4 Informed RRT*

With the exception of sampling from the hyperellipsoid, the informed RRT∗ algo-

rithm is essentially identical to the basic RRT∗ algorithm [24]. Thus, apart from this

variation, the overall procedure remains the same for both algorithms. The main

process of informed RRT∗ is shown in Algorithm 8. In general, this method samples

a new node within a unit circle or a unit ball and transform the shape of the circle

or the ball into an ellipse or ellipsoid using Kabsch algorithm [38] and switched to

another position, as illustrated in Fig. 2.24.

Algorithm 8 Informed RRT∗

Require: V ← {xinital} ;E ← ∅;
Ensure: T = (V,E);Xsol;

while iteration i ≤ N do

if Xsol
= ∅ then

amin ← minCost (x | x ∈ Xsol) ;

xnew ← InformedSample (xstart,xgoal, amin) ;

T ← Rewire (T,xnew) ;

else

xnew ← RandomSample();

T ← Rewire (T,xnew) ;

if xnew reaches goal then

xsol ← xsol ∪ {xnew}

The method is adapted from [39]. Assume μ ∈ Rn be the center point. For a fixed

constant d = 1, points that are within the distance d from μ form a hyperellipsoid

in Rn. Equivalently, we can define this hyperellipsoid as

{
x ∈ Rn | (x− μ)TS−1(x− μ) < d2

}
,

where S is a n× n positive definite matrix. Recall that the following formula is

called the Mahalanobis distance:

d(x, y) =
√
(x− y)TS−1(x− y).

Now we can apply Cholesky decomposition for S−1:

35

Figure 2.24: The Direct Sampling Method of Informed RRT∗

(x− μ)TS−1(x− μ) < d2 ⇐⇒ (x− μ)T
(
LLT

)
(x− μ) < d2

⇐⇒
(
LT (x− μ)

)T (
LT (x− μ)

)
< d2.

Then the uniformly sampled points within the hyperellipsoid centered around μ

can be generated from uniformly generated points within a unit n-dimensional ball

based on the equation:

xellipse = Lxball + xcentre.

The next step is to transform the points within the hyperellipsoid body coor-

dinates to the global coordinates. The optimal rotation for these series of points

between two different frames can be described as a general Wahba problem [40]

formulated as:

Given two sets of k points {p1,p2, · · · ,pk} and {p′
1,p

′
2, · · · ,p′

k}, where k ≥ 2,

find the rotation matrix M that yields the optimal least squares coincidence between

the first and second sets. The goal is to minimize the following formula:

k∑
i=1

‖p′
i −Mpi‖

2
.

Several solutions have been proposed in the past five decades [41]. One of the

solutions such as Kabsch algorithm [42]. The core part of this algorithm uses singular

36

value decomposition (SVD) to minimize the root mean squared deviation (RMSD)

between two paired sets of points. The step-by-step procedure is as follows:

� Assume the matrix P and matrix Q represent two sets of points, respectively.

� Subtract each element using the average of the whole column for both Matrices.

� Multiply the transpose of Q by P and get a new matrix H.

� The weighted cross-covariance matrix H = UΛV T .

� The rotational matrix R is calculated by the multiplication of V and UT .

� Finally, the new points are simply multiplied by the original points with the

matrix R.

Note that if determinant(V, U) < 0, scale the UT by an In whose last column’s

entry 1 is swapped to -1, Λ = diag(1, . . . , 1, det(U) det(V), det(·) is the determinant

and both U and V are unitary matrices.

In [43], the body coordinate system is undetermined in the conjugate directions

before sampling, so the matrix H can be simplified as h111
T , where h1 is the major

axis in the global coordinate, which is Distance(xstart, xgoal) bounded by L2 norm

and 11 is simply the first column of the identity matrix.

Hence, a state xsample which is uniformly sampled in the informed subset can be

computed as:

xsample = HLxball + xcentre.

Algorithm 9 presents a step-by-step procedure for carrying out this process, the

parameter a is the current minimum cost of the optimal path.

Fig. 2.25 to Fig. 2.28 below demonstrate a Python simulation of the informed

RRT∗ algorithm. The entire process runs for a maximum of 2000 iterations, starting

from the point (0m, 0m) and aiming to reach the goal point (200m, 220m). The

sampling area spans (−270m, 270m), with an extended edge of 7m and a rewiring

radius of 40m. Additionally, 10% bias towards the goal point is used in the sampling

process [44].

37

Algorithm 9 InformedSample

Require: xstart;xgoal; a

Ensure: xsample

c ← Distance(xstart,xgoal), xcentre ← 1
2
(xstart + xgoal);

h1 ← (xgoal − xstart)/c;

U,V ← SVD(h11
T
1);

Λ ← diag(1, . . . , 1, det(U) det(V));

H ← UΛV;

r1 ← 1
2
a;

{rj}j=2,...,n ← 1
2

(√
a2 − c2

)
;

L ← diag (r1, r2, . . . , rn);

xball ← SampleUnitBall(n);

xsample ← HLxball + xcentre;

−300 −200 −100 0 100 200 300

−300

−200

−100

0

100

200

300

Figure 2.25: Generation of an Initial Path and Form an Ellipse

38

−300 −200 −100 0 100 200 300

−300

−200

−100

0

100

200

300

Figure 2.26: Final Path Length Reduced and a Smaller Ellipse

−300 −200 −100 0 100 200 300

−300

−200

−100

0

100

200

300

Figure 2.27: Tree Edges Optimization and a Smaller Ellipse

−150 −100 −50 0 50 100 150 200

−200

−100

0

100

200

Figure 2.28: The Optimal Path After 2000 Iterations

39

2.5 Spline RRT and Node Pruning

Former approaches produce geometric routes that are composed solely of straight

lines. However, because of the breach of non-holonomic constraints, many mobile

robots cannot follow this course with precision. Recent research has proposed several

new methods that consider the non-holonomic constraints of the robots and generate

paths that are feasible for them to follow accurately. Spline RRT (SRRT) is one of

the successful methods [45]. Spline curves are considered superior to Dubins and

Reeds-Shepp arcs due to the discontinuities present at the line junctions in the latter.

These discontinuities can lead to significant tracking errors and may even cause wheel

slippage, which can deteriorate the robot’s dead reckoning capability [31].

The SRRT algorithm uses cubic Bézier splines as a local planner to generate

smooth and feasible paths that satisfy both external and internal constraints. There

are three important kinematic constraints that are considered. First, the feasibility

constraint defines an allowable region bordered by the maximum turning angles amax

and amin. Second and last, it guarantees G2 continuity of curvature along the path

satisfying a specific upper-bounded curvature constraints (κdir ≤ κmax). The term

“curvature” finds application across various disciplines, and in the context of motion

planning, it assumes a mathematical role in quantifying the ratio of angle change of

a tangent as it traverses a specific arc. Essentially, curvature serves as a measure of

the sharpness of a turn. The formula and the image of the curvature are shown in

2.29, where T is a point in any position of the curve, O is the center of the circle and

R is the radius:

κmax(t) =
1

Rmin

, κ(t) =
|ġ(t)× g̈(t)|

|ġ(t)|3 . (2.5.1)

Figure 2.29: Definition of Curvature

40

Among the three candidate points in Fig. 2.30, only points P2 and P3 falling

within this region can be accepted as feasible points in the SRRT. After checking

this precondition, we can then choose P3 as it is the nearest neighbour of the Pstart.

Figure 2.30: Sampled Points Feasibility within Allowable Angle

The paper [46] proposes an analytical algorithm that utilizes parametric cubic

Bézier curves to create a smooth path with G2 continuous curvature, requiring only

the specification of a maximum curvature constraint. The cubic Bézier curve is

defined as:

P (s) =
3∑

i=0

PiB3,i(t), B3,i(t) =

(
3

i

)
ti(1− t)3−i. (2.5.2)

where t is a variable such that 0 ≤ t ≤ 1, Pi are control points, and B3,i(t) are

Bernstein polynomials.

A rigorous proof and definition among G0, G1 and G2 can refer to [47]. Geometric

continuity, often denoted by Gk, is a measure of the smoothness between two adjacent

curves. G0 continuity, also known as positional continuity, only requires that two

curves share a common point. G1 continuity, or tangency continuity, goes a step

further by requiring that the tangent vectors of the two curves at their common point

lie along the same direction. G2 continuity, or curvature continuity, requires that in

addition to the tangent continuity, the two curves also have the same curvature at

their common point.

The definition of G0, G1 and G2 are illustrated as follows:

pi (si) = pi+1 (si+1) ∀i ∈ [1, n− 1],

χi (si) = χi+1 (si+1) ∀i ∈ [1, n− 1],

κi (si) = κi+1 (si+1) ∀i ∈ [1, n− 1].

(2.5.3)

41

where p is the function of position, χ is the tangent angle and κ is the curvature. i

denotes the transition points between two connected curves.

In a two-dimensional space, Dubins curve has been proven to be G1 continuous

[48]. This means that the tangent vectors of adjacent curves are aligned, ensuring a

continuous change in direction. On the other hand, splines are capable of maintaining

G2 continuity [46], which means that the adjacent curves not only have aligned

tangent vectors but also the same curvature at their common point, resulting in a

smooth and continuous change in curvature as well.

The maximum curvature κ can be defined based on the kinematic constraints

of the vehicle, so the maximum turning angles β = γ
2
is the only variable to be

determined. When both variables are known, we can specify the extended edge of

the SRRT. The extended edge d and eight control points B0−3 and E0−3 among P1−3

as well as the coefficients c1−4 are defined as:

c1 = 7.2364, c2 =
2

5
(
√
6− 1), c3 =

c2 + 4

c1 + 6
, c4 =

(c2 + 4)2

54c3
. (2.5.4)

hb = he = c3d, gb = ge = c2c3d, kb = ke =
6c3 cos β

c2 + 4
d. (2.5.5)

d =
c4 · sin β

κmax · cos2 β
. (2.5.6)

B0 = P2 + d · u1, B1 = B0 − gb · u1,

B2 = B1 − hb · u1, B3 = B2 + kb · ud,

E0 = P2 + d · u2, E1 = E0 − ge · u2,

E2 = E1 − he · u2, E3 = E2 − ke · ud.

(2.5.7)

where h, g, k can also be determined by some of the coefficients of c1−4 and β.

Fig. 2.31 presents an intuitive description of a closed-form algorithm that effi-

ciently computes eight control points and generates a curve based on the equations

mentioned earlier.

The research paper [45] provides the pseudo-code for SRRT and a description of

their node pruning strategies. Here we demonstrated our implementation for node

pruning method in Algorithm 10.

42

Figure 2.31: Cubic Bézier Curve Defined by Eight Control Points

Algorithm 10 Node Pruning of SRRT

Require: pathold;Xobst;

Ensure: pathnew

ptfrwd = ptcurr = pathold(goal − 6);

while ptcurr ≥ 0 do

angle1 ← CalcAngle(pathold([frwd+ 3], [frwd+ 1], [frwd]);

angle2 ← CalcAngle(pathold([frwd+ 4], [frwd+ 3], [frwd+ 1]);

if angle1,2 < anglesteerMax then

CollisionCheckingSpline(pathold([frwd], [frwd + 1], [frwd + 3]);

CollisionCheckingSpline(pathold([frwd + 1], [frwd + 3], [frwd + 4]);

CollisionCheckingLine(pathold([frwd + 1], [frwd + 3]);

if NoCollision then

Remove old edges and ptfrwd+2 and create new edges in pathnew.

ptfrwd − 1;

if ptfrwd < 0 then

ptcurr − 1; ptfrwd = ptcurr;

43

Our implementation of SRRT with path smoothing in Python was visualized

in Figs. 2.32a to 2.32d, excluding the use of concentration-based sampling strate-

gies suggested from [45]. To evaluate the algorithm’s performance, we tested it in

four distinct environments with varying obstacle densities, ranging from sparsely to

densely cluttered. The maximum number of iterations was established differently for

each test. For tests (a) and (b), it is set to 200. However, for test (c), it is increased

to 300, and for test (d), the limit is further raised to 500. The robot’s original point

is at (0m, 0m), and the destination is located at (220m, 240m) with radius equals to

10m. The sampling area was defined as x = [0m, 280m], y = [0m, 280m], and we

assume the robot is circular shaped and its radius is 5m.

0 50 100 150 200 250

0

50

100

150

200

250

(a) SRRT: No Obstacles

0 50 100 150 200 250

0

50

100

150

200

250

(b) SRRT: Few Obstacles

0 50 100 150 200 250

0

50

100

150

200

250

(c) SRRT: Moderate Obstacles

0 50 100 150 200 250

0

50

100

150

00

50

(d) SRRT: Clustered Obstacles

Figure 2.32: The Simulation of SRRT Under Varying Conditions

44

The above four images are the visual representation of the SRRT algorithm’s

performance under varying conditions: from environments free of obstacles, through

those with few and moderate obstacles, to densely clustered obstacle scenarios. These

illustrations demonstrate the limitation of this method in consistently providing op-

timal paths, especially in dense obstacle scenarios.

Chapter 3

Proposed Optimal Sampling Methods for SRRT

Sampling-based non-holonomic motion planners generally exhibit faster convergence

rates compared to alternative techniques. However, many non-holonomic motion

planning algorithms commonly face the issue of slow convergence and cannot di-

rectly apply optimal method using Euclidean distance metric. In this chapter, we

present a novel algorithm called Informed SRRT# that effectively addresses both

external constraints arising from obstacles and internal kinematic constraints of

robots. Moreover, it maintains a reasonable convergence rate, allowing it to dis-

cover shorter and smoother paths. In contrast to traditional RRT∗ algorithms that

employ Euclidean metrics, our approach enhances the methodology by integrating a

local planner derived from SRRT. To determine the path towards the goal region, we

employ parameterized cubic curves instead of computationally intensive numerical

techniques.

3.1 Problem Formulation

The motion planning problem is described in a similar manner as documented in

the works of [22] and [24]. Let X ⊆ Rn denote the configuration state space, where

n ⊆ N with n ≥ 2. The set Xobs belongs to X , it consists of states that collide with

obstacles, while Xfree represents the non-collision permissible state space, obtained

by taking the closure (denoted by cl(·)) of the set in X and excludes Xobs. xstart

and Xgoal are the known initial point and goal region, respectively, both belonging

to Xfree.

Assume T = (V,E), where V and E are finite sets of vertices and edges, respec-

tively. A continuous path for the nonholonomic robot is represented by the sequence

of states σ : [0, 1] → Xfree, with σ(0) = xstart and σ(1) ∈ Xgoal. For a vertex x in the

graph T , pred(T , x) or xparent refers to the parent vertex in V that can reach Node

x, while succ(T , x) or xsucc denotes a child vertex that can be reached from Node x.

45

46

Within the SRRT algorithm proposed by [45], the generation of a new extended

segment towards a feasible point involves an analytical algorithm that always adheres

to the upper bound curvature constraints. Fig. 2.30 depicts an additional constraint

that represents a region bounded by the maximum turning angles of the robot. The

middle portion of each extended segment is defined using a Bézier spline. As outlined

in [45] and Section 2.5, eight control points (B0−3 and E0−3) are employed to generate

a continuous curvature among three points (W1−3), as illustrated in Fig. 2.31.

The two key variables, the turning angle β and the length d0 are set as

β =
α

2
, (3.1.1)

d0 =
c4 · sinβ

κmax · cos2 β
, (3.1.2)

where κmax is the maximum curvature, c4 will be calculated by c1−3, γ is the angle

between the vector
−−→
P1P2 and

−−→
P2P3, the formula and values for c1−3 is in Eqns 2.5.4

in Section 2.5.

In our proposed algorithm for 2D cases, apart from the starting point and goal

point, the extension length ε for each segment will be set to at least twice the length

d0. This ensures that the robot’s allowable maximum angle β and the upper bound

curvature constraints κmax are satisfied. Similar to RRT∗, a circle is utilized to

encompass neighboring nodes and establish potential new connections. This circle-

based approach aims to reduce the overall cost by effectively including nearby nodes

and facilitating the creation of connections. The radius of the circle can be easily

determined by setting it to a slightly longer length than the minimum extended edge

of the tree (Lmin or 2d0). This circle will encompass potential neighbors (xnbr) within

its range, excluding the current parent node of the new node (xnew p).

The objective of the proposed path planning algorithm is to efficiently discover

a shorter path, denoted as Xsol, within a reasonable time frame. This algorithm

consistently ensures the feasibility of the differential constraints, including maximum

angles (α), curvatures (κ), and their G2 continuity, for each segment of the path. All

sets comprising this path are constrained, continuously connected, and exclusively

belong to Xfree.

47

3.2 Informed SRRT#

In our proposed algorithm, the first step is to perform a feasibility check on the

kinematic constraints for a new node or a rewired neighbor node. To guarantee G2

continuous curvature, it is essential to ensure that B0X2 is equal to E0X2. The

constraint of the maximum turning angles should be also satisfied. Additionally, we

enforce the constraint that the extended edge Lmust be greater than or equal to Lmin,

which guarantees κdir ≤ κmax. Finally, this method ensures that the edges avoid

obstacles, even though the sampled nodes may be located within the obstacles. The

last three constraints can be checked within the function FeasiblePath(x1, x2, x3).

Our algorithm incorporates several enhancements to improve its effectiveness.

Firstly, we introduce additional kinematic constraints to the optimization functions

used in RRT∗, ensuring proper connection of points using Bézier curves. Further-

more, we integrate the sampling method employed by Informed RRT∗ in 2D envi-

ronment, which directly samples nodes within a circle. During the rewiring process,

our algorithm discards or reconnects sub-trees when their nodes fail the kinematic

feasibility check. We may keep track of and utilize the previous path with the current

lowest cost as the semi-major axis of the ellipse, even some of the paths are deleted.

This axis defines an elliptical region where we can directly sample new potentially

promising points. The recorded lowest cost is of utmost importance as it continues

to accelerate the search speed and enables the discovery of shorter paths. Lastly, we

have incorporated the concept from RRT# of applying heuristic functions to rewire

only promising nodes. The function LowerCost has two conditions. Firstly, the total

distance of c2 + Dist(x1, x2) + Est(x1, xgoal) must be smaller than cbest. Secondly,

the sum of cnew +Dist(x1, x2) should not be larger than the cost cnbr.

To achieve G2 continuity in a piece-wise Bézier curve using Yang’s method [46],

we divide the connections between nodes A1, A2, and A3 into three segments, as

depicted in Fig. 3.1. While this local spline planner differs slightly from [45] in

solving the two-point boundary problem, it shares a similar concept with the half

distance algorithm described in [31].

The first segment (B0C2) and the third segment (C1E0) are straight lines, or one

or both of them may not exist. To create the Bézier curve for the second segment

(B0E0), it is crucial to ensure that the lengths of A2B0 and A2E0, which determine

48

the positions of eight control points, are always equal. This condition guarantees

G2 continuity as well mentioned above. Also, it should be maintained regardless of

whether the curve is generated using the steering function or modified using any two

of the rewire functions.

Furthermore, the lengths of A2B0 and A2E0 can be equal to or greater than the

minimum length d0. When they are equal, the curve may have a higher curvature,

similar to Case 1 shown in Fig. 3.1. Note that both B0C2 and E0C1 could be zero in

this scenario. Alternatively, if the extended edges slightly exceed d0, we can utilize

the remaining straight line segments, either B0C2 or C1E0, to create a Bézier curve

with lower curvature, as illustrated in Case 2 of Fig. 3.1. In this case, only one of

B0C2 or C1E0 is set to zero.

Figure 3.1: Link a New Node with a Existing Tree Nodes.

Theorem 1 If A2B0 = A2E0 ≥ d0, then there exists a G2 continuous curvature

curve that between A2C1 and A2C2. The piece-wise connections of all edges of a tree

are G2 continuous.

Proof: The proof for generating a continuous curvature of the Bézier curve refers

to [46]. Both B0C2 and C1E0 are straight lines (κ = 0) or shrink to one point and

they have the same directions with either side from A2 to the boundary points of the

curve. �

Our algorithm is based on the original Informed-RRT∗ and incorporates three

fundamental functions, as described in Algorithm 11. The initial function, Algorithm

12 (Extend), establishes a connection between the nearest node, xnearest, and the

new point, xnew. The second function, Algorithm 13 (SelectforNew), selects a new

49

parent node from the tree for the recently added node. Finally, the third function

(SelectforNeighbours) determines whether a new node can act as the parent node

for its neighboring nodes. We propose three different approaches for this function.

Method 1 involves trimming the leaf nodes, which is exclusively employed prior to

finding a feasible path towards to goal region. Method 2 cuts the previous subtrees

if the new connections break the kinematic constraints to connect these nodes in the

subtrees. Method 3 draws inspiration from [49], the nodes in these subtrees may be

reused as “new” sampled nodes.

Algorithm 11 Cubic Bézier Spline Informed RRT#

Require: V ← {xstart}, E ← ∅, Xsol ← ∅
Ensure: T = (V,E), Xsol

for Iteration= 1, 2, . . . , N do

cbest ← minxsol∈Xsol
{csol}

if q is not empty then

xrand ← q.pop()

else

xrand ← Informed Sample(xstart, xgoal, cbest)

xnearest ← (T , xrand);

xnew ← Extend(T , xnearest, xrand)

Xnbr ← Neighbours(T , xnew, r)

SelectforNew(T , Xnbr, xnew)

if xnew � V then

SelectforNeighbours(T , Xnbr, xnew, pq)

ReduceInconsistency(pq)

if xnew ∈ Xgoal then

XSol ← XSol ∪ xnew

Later, we incorporated the optimal strategies from the third variations of RRT#.

However, our algorithm structure does not strictly adhere to the same approach as the

original paper. Instead, we directly integrated the heuristic distance Est(xnew, xgoal)

into either the SelectforNew or the SelectforNeighbours optimization function to

identify promising new nodes and connect them with the tree. Additionally, in the

50

SelectforNeighbours function, we included neighbor nodes that select the new node

as their parent node into a priority queue. Finally, the ReduceInconsistency function

simply requires removing all the promising nodes, establishing new connections, and

maintaining a consistent spanning tree.

The initial operation called “Extend” aims to expand the edges of the tree during

each iteration. The nodes directly extended from the starting node, denoted as xnew,

are treated as a special case. In this function, the first step is to extend the edge

from the original point xstart to the midpoint M0. This midpoint lies between the

starting point xstart and the new point xnew, and the edge connecting them is a

straight line. Alternatively, if we are extending a different node, we use a Bézier

curve to connect the parent node of the nearest neighbor, referred to as xnbrp , the

nearest neighbor node xnbr, and a randomly sampled point xrand. We ensure that the

angle of change β(xnbrp , xnbr, xnew) does not exceed a predetermined maximum value

β. To achieve this, we calculate the direction from xnbr to xrand and from xnbrp to

xnbr using the function Dir(x1, x2). If the resulting Bézier curve does not intersect

with any obstacles present in the environment, it is included in the tree. The specific

details of the Extend function are outlined in Algorithm 12.

Algorithm 12 Extend(T , xnbr, xrand)

xnew ← xnbr +Dir(xnbr, xrand) ∗ Lmin

if xnew p ← xstart then

if CollisionFreeLine(xstart, xnew) then

E ← E ∪ {xstart,M0} with line

V ← V ∪ {xnew}

else

if β(xnew, xnbr, xnbr p) < β then

if NoCollisionBézier(xnbr p, xnbr, xnew) then

E ← E ∪ {M1M2} with Bézier curve

V ← V ∪ {xnew}

The first step of the rewiring process, known as the “SelectforNew” function,

as presented in Algorithm 13, involves multiple constraints that must be satisfied

before a new node can be incorporated into the tree. Firstly, the new node, the

51

neighboring node, and its parent node must adhere to the maximum turning angle

restriction, denoted as β(xnew, xnbr, xnbrp). Secondly, the length of the new edge

must surpass the minimum required length of 2d0 to avoid violating the maximum

curvature limitations, κmax. Once these constraints are fulfilled, the sum of the

cost to reach the new node, cnew, and the cost of the edge, Dist(xnew, xnbr), must

be smaller than the cost-to-come of the neighboring node, cnbr. Furthermore, the

combined cost-to-come and estimate-to-go, Est(xnew, xgoal), must be less than the

current minimum cost, cbest. If all these conditions are satisfied, the new node, xnew,

can be added to the tree and connected with either a Bézier curve or a straight line,

depending on whether the path is collision-free. Thus, this function follows a similar

optimization process as RRT∗ but includes an additional feasibility check.

Algorithm 13 SelectForNew(T , Xnbr, xnew)

if xnew p is xstart then return NULL

for ∀xnbr ∈ Xnbr do

if xnbr is xstart then

if CollisionFreeLine(xstart, xnew) then

E ← E ∪ {xstart,M0} with line

V ← V ∪ {xnew}
Update cnew and cbest, break the loop

else if LowerCost(xnew, xnbr) and

FeasibleBézier(xnew, xnbr, xnbr p) then

E ← E ∪ {M1M2} with Bézier curve

V ← V ∪ {xnew}

Update cnew and cbest

The third function, called “SelectForNeighbours”, encompasses three distinct

methods aimed at optimizing the RRT tree. The first method involves rejecting

a neighbor node, xnbr, if it possesses one or more child nodes, xnbrcld, along with

all its successors, xsucc. This method provides a rapid way to guide the RRT tree

towards achieving a sub-optimal path to the final goal region by partially optimizing

the leaf nodes.

The second method partially prunes branches that are not feasible with the new

52

constraints, which effectively helps reduce the overall path length. This approach

selectively removes portions of the tree that do not conform to the updated criteria.

The third method treats these infeasible nodes as “new” sampled nodes and adds

them to a queue, denoted as q, for the subsequent iteration.

If a node is not rejected, the function proceeds to rewire two pairs of edges among

three states. The first edge connects the middle points, M1 and M2, of the neighbor

node xnbr, the new node xnew, and its parent node xnewp . The second edge links

the middle points, M1 and M2, of the new node xnew, the neighbor node xnbr, and

all of its child nodes xnbrcld. A visual representation of this is depicted in Figs. 3.2

to 3.5. The details of the SelectForNeighbours function are presented in Algorithm

14.1 (Method 1) and Algorithm 14.2 (Methods 2 and 3). Algorithm 15 describes the

process to maintain a consistent spanning tree using RRT#.

Algorithm 14.1 SelectForNeighbours(T , Xnbr, xnew, pq)

for ∀xnbr ∈ Xnbr do

if xnbr cld exists then

Skip this iteration

if LowerCost(xnbr, xnew) and

FeasibleBézier(xnbr, xnew, xnew p) then

E ← E ∪ {M1M2} with Bézier curve

Add xnbr into pq, update cnbr and cbest

Algorithm 15 ReduceInconsistency(pq)

while pq is not empty do

x = pq.pop()

Xnbr ← Neighbours(T , x, r, pq)

SelectforNeighbours(T , Xnbr, x, pq)

The collision checking strategy implemented in the algorithm takes into account

the piece-wise segments of the Bézier curve, as depicted in Fig. 3.6. When a new

node, xnew, is collision-free, the algorithm tries to establish a connection with the

nearest node. If the initial connection attempt fails, the algorithm proceeds to at-

tempt connections with other neighboring nodes. However, if both the Extend and

53

Figure 3.2: Feasibility Check Among xnbr, xnew, xnew p

Figure 3.3: Feasibility Check Among xnbr, xnew, xnbr cld

54

Figure 3.4: Deletion of xnbr child1

Figure 3.5: New Rewired Connection

55

Algorithm 14.2 SelectForNeighbours(T , Xnbr, xnew, pq)

for ∀xnbr ∈ Xnbr do

if LowerCost(xnbr, xnew) and

FeasibleBézier(xnbr, xnew, xnew p) then

E ← E ∪ {M1M2} with Bézier curve

Add xnbr into pq

if xnbr cld exists then

if FeasibleBézier(xnew, xnbr, xnbr cld) then

E ← E ∪ {M1M2} with Bézier curve

else

Remove xnbr cld and all xsucc (Method 2)

Put xnbr cld and all xsucc into q (Method 3)

Update cnbr, all its cnbr cld and cbest.

SelectForNew functions are unable to establish a connection for xnew, the sampled

node xrand is rejected, and the algorithm starts a new iteration.

Figure 3.6: Collision Checking for the Initial Connection of xnew

There are various collision checking strategies that can be employed in RRT family

algorithms. One straightforward approach is to examine the distances between each

56

point that forms an edge and all the obstacles. If none of these points collide with

any obstacles, then it is possible to generate a new edge.

However, it is important to note that this collision checking strategy may be com-

putationally expensive since it involves calculating the distances between every point

and all the obstacles. The computational complexity escalates with an increase in

the number of points and obstacles. To optimize the collision checking process, more

efficient algorithms such as spatial partitioning techniques (e.g., bounding volume

hierarchies, spatial hashing) or proximity queries (e.g., collision detection algorithms

based on bounding boxes or spheres) can be utilized. These techniques help reduce

the number of distance calculations required, resulting in improved performance for

collision checking in RRT algorithms.

Another crucial aspect of the algorithm is the calculation of the edge length when

a new node is added to the tree. One straightforward approach is to utilize straight

lines connecting all sampled points that form a Bézier curve as the length for the

cost. However, to ensure that the ellipse ranges cover sufficient sampling space, this

approach needs to add additional cost. For a more precise calculation of the length

of each Bézier curve segment, advanced numerical methods can be employed since

there is no closed-form solution for determining the length of cubic or higher-order

Bézier curves.

Chapter 4

Simulation

In this chapter, we will demonstrate the simulations for the algorithm proposed in

Chapter 3 in both python simulation and Gazebo/Rviz simulation in ROS with USV

model.

4.1 Python Simulation

We developed an optimal cubic Bézier spline Informed RRT# algorithm in Python

3 that considers kinematic constraints. To demonstrate the optimization process of

this algorithm, we ran two simulations up to 500 iterations, with an early stop if the

result was close to the desired smallest path (283m and 225m). Both simulations

stopped around 400 iterations and final path lengths are 297m and 250m. After

applying the path smoothing technique, the path can reduce to 287m and 244m,

respectively.

The map measures 280m by 280m and is limited to the first quadrant (x, y >

0). The goal region in simulations is a circle with a radius of 30m centered at

(220m, 240m). The starting point was set at (30m, 30m). The maximum curvature

κmax, angle 2β and the minimum extended length 2d0 is set as 0.1, 0.4π and 20.18m,

respectively, as suggested in [45]. For simplicity, the extended length Lmin is fixed

as 30m and the radius r in 2D environment is fixed as 45m. In the diagrams, nodes

that have successfully connected to the tree are denoted by blue cross signs, while

blue circles signify obstacles. The tree’s edges are represented by green curves, and

connection points among these edges are indicated by black dots. It’s important to

note that sampled nodes may or may not intersect with obstacles, as long as the

green paths themselves remain free from any collision. Due to the 0.5-unit resolution

of the map, some minute gaps between two black dots might appear, and this is

acceptable. This is because in the Python simulation, points can only be drawn at

intervals of 0.5 units along both the x and y axes. This means points can be placed

57

58

at locations such as x = 0.5, 1, 1.5, 2.0, and any other multiple of 0.5, with the same

rule applying for the y-axis.

The red path shown in our figures represents the final path, with a cost close

to the optimal region [Est(xstart, xgoal) ± Dgoal]. We applied the path smoothing

technique from Algorithm 10 to generate the black path, as shown in Fig. 4.1f and

Fig. 4.2d.

As shown in Figs. 4.1a to 4.1f, Simulation 1 incorporates minor obstacles within a

narrow passage. Our method retains the advantages of RRT*— rewiring neighboring

nodes in the tree to consistently select a new node as the parent node — albeit with

fewer opportunities due to more restricted conditions. In comparison to SRRT, our

algorithm leverages numerous pre-existing connections to construct paths with lower

costs, thereby significantly reducing the expense of creating feasible paths that adhere

to kinematic constraints. Additionally, it introduces several deletion operations. In

Fig. 4.1c and Fig. 4.1e, the red curve deviates slightly from the green curve of the tree,

indicating the utilization of the previous feasible path and its optimal cost as the

long-axis of an ellipse for focused sampling. Lastly, our algorithm can eliminate many

unnecessary nodes located outside the designated sampling region, as illustrated from

Fig 4.1e to Fig 4.1f.

In Simulation 2, the goal region is situated at coordinates (220m, 150m). All other

conditions remain unchanged. As depicted in Figs. 4.2a to 4.2d, clustered obstacles

are present. The initial path found in Fig. 4.2a took a huge detour, bypassing the

majority of obstacles in the central area at a great cost, instead choosing to head

towards the destination through peripheral areas with fewer obstacles. However, it

later has ability to get across several obstacles and find a shorter path with proper

rewiring and deletion process. Although this method can encounter challenges when

navigating through narrow spaces in environments populated by clustered obstacles,

occasionally causing the extension process to get stuck and consequently prolonging

convergence time to decrease the path’s cost, it nonetheless offers an improvement

in final path length compared to the traditional SRRT algorithm, especially when

leveraging the benefits of informed RRT∗. This variant of RRT∗ sustains the value

of the optimal path length, equating it to twice the length of the ellipse’s major axis.

Preserving this value facilitates the continuous refinement of the search space.

59

0 50 100 150 200 250

50

100

150

200

250

(a) The Initial Smooth Path

0 50 100 150 200 250

50

100

150

200

250

(b) Few Deleted Nodes and Narrower
Search Space

0 50 100 150 200 250

50

100

150

200

250

(c) Keep Previous Path to Limit the
Search Space.

0 50 100 150 200 250

50

100

150

200

250

(d) The Reduced Path Length

0 50 100 150 200 250

50

100

150

200

250

(e) The Shorter Path Across Narrow
Passage

0 50 100 150 200 250

0

50

100

150

200

250

(f) The Final Path After 300 Iterations

Figure 4.1: The Python Simulation 1 of Informed SRRT#

60

−50 0 50 100 150 200 250

0

50

100

150

200

(a) The Initial Smooth Path

−50 0 50 100 150 200 250

0

50

100

150

200

(b) Further Optimized Path Length

−50 0 50 100 150 200 250

0

50

100

150

200

(c) The Path Length Close to Optimal

−50 0 50 100 150 200 250

0

50

100

150

200

(d) The Final Path After 450 Iterations

Figure 4.2: The Python Simulation 2 of Informed SRRT#

In Simulation 3, we conducted an extensive run of 1000 iterations and compared

three results of informed SRRT#, informed RRT# and SRRT.

250

200

150

100

50

50 100 150 200 2500

(a) Case 1

0 50 100 150 200 250

50

100

150

200

250

(b) Case 2

0 50 100 150 200 250

50

100

150

200

250

(c) Case 3

Figure 4.3: Final Path of Informed SRRT# After 1000 Iterations

61

0 50 100 150 200 250

0

50

100

150

200

250

(a) Case 1

0 50 100 150 200 250

0

50

100

150

200

250

(b) Case 2

0 50 100 150 200 250

0

50

100

150

200

250

(c) Case 3

Figure 4.4: Final Path of Informed RRT# After 1000 Iterations

0 50 100 150 200 250 300

0

50

100

150

200

250

(a) Case 1

0 50 100 150 200 250 300

0

50

100

150

200

250

(b) Case 2

0 50 100 150 200 250 300

0

50

100

150

200

250

(c) Case 3

Figure 4.5: Final Path of SRRT After 1000 Iterations

(a) Case 1

62

(b) Case 2

(c) Case 3

Figure 4.6: Compare Three Algorithms’ Path Length over Iterations.

63

(a) Case 1

(b) Case 2

64

(c) Case 3

Figure 4.7: Compare Three Algorithms’ Path Length over Time.

Finally, we compare these three algorithms in final path lengths, iterations and

program running time are presented in Table 4.1.

SRRT Informed SRRT# Informed RRT#
Time(s) Length(m) Time(s) Length(m) Time(s) Length(m)

1 321.384 348.535 950.147 290.702 181.499 293.612
2 309.13 371.258 861.515 293.547 171.354 288.726
3 271.479 306.771 840.171 293.99 176.379 291.47

Table 4.1: Comparison of Three Algorithms’ Path Length and Computational Time.

The analytical results demonstrate that our approach can shorten the path length

compared to SRRT. However, it does come with a trade-off: the computational time

is increased. To run the same 1000 iterations, our method requires triple the time

that SRRT does. And when compared to conventional methods like Informed RRT*

or RRT*, the time factor increases by approximately four or five times.

Nevertheless, as shown in Fig. 4.6 and Fig. 4.7, even if we allow the same number

of iterations (assume maximum iterations: 500) or time (assume maximum time:

350 sec) for path planning, the path length reduced compared to SRRT while it

maintains the same level smoothness of G2 continuity.

65

4.2 Simulation in Robotics Operation System

We evaluated the performance of both Informed SRRT# and Informed RRT# in

ROS1, utilizing Gazebo and Rviz. The environment presented a map size of (280m, 450m)

populated with clustered obstacles, yet we can assume ideal conditions for all other

environmental settings. Recognizing the impracticality of allowing path calculation

to exceed one minute in real-world applications, we set time constraints for the plan-

ner to generate a final path. The efficiency of the C++ programming language

enabled us to complete the calculation significantly quicker than would have been

done with Python.

Simulation 1 sets the initial point of the USV as (0m, 0m) and the goal point as

(92m, 187m). The iterative process of Informed RRT# is shown in Figs. 4.8a to 4.8c.

(a) Initial Path (b) Improved Path (c) Final Path

Figure 4.8: ROS Simulation 1 of Informed RRT#

The simulation of Informed SRRT# is shown in Figs. 4.9a and 4.9b.

(a) Initial Path (b) Final Path

Figure 4.9: ROS Simulation 1 of Informed SRRT#

66

Within a time frame of 20 seconds, the final path length of Informed RRT# is

238.5m, while Informed SRRT# has a slightly longer final path length of 264.8m.

Despite its longer length, the path generated by Informed SRRT# exhibits smoother

steering and navigation around these three obstacles.

Simulation 2 sets the initial point of the USV as (0m, 0m) and the goal point as

(256m, 167m). The simulation results of Informed RRT# is shown in Fig. 4.10.

(a) Simulation Result 1 (b) Simulation Result 2 (c) Simulation Result 3

Figure 4.10: ROS Simulation 2 of Informed RRT#

The simulation results of Informed SRRT# is shown in Fig. 4.11.

(a) Simulation Result 1 (b) Simulation Result 2 (c) Simulation Result 3

Figure 4.11: ROS Simulation 2 of Informed SRRT#

Using the same 20-second time frame from Simulation 1 as a baseline, Simulation

2 showed some similarity in results of the final path lengths for Informed RRT# and

Informed SRRT#. The numerical results are listed in Table 4.2. In the same amount

of time required to search for a path, Informed SRRT# has a slightly longer path

length compared to Informed RRT#, but it always guarantees G2 continuity, which

Informed RRT# does not.

67

Informed SRRT# Informed RRT#

1 376.7m 405.1m
2 403.8m 342.6m
3 410.6m 385.9m

Table 4.2: Comparison of Two Algorithms’ Path Lengths Within 20 Seconds.

Through the analysis of our Python and ROS simulation outcomes, we have

demonstrated that the optimization methods modified from Informed RRT# are not

only accurate but also efficient. Our method consistently produces shorter paths,

outperforming SRRT in this aspect. The application of the Bézier spline results in

a smoother path compared to the use of a straight line, although there is a slightly

lower rate of convergence due to the additional kinematic constraints. These trade-

offs can be considered in future optimization.

Chapter 5

Experimental Results

5.1 The TurtleBot3 Platform

We conducted our field test using TurtleBot3 to simulate real-world conditions. The

TurtleBot3 is a compact, customizable, and programmable mobile robot that has

become an industry standard for educational and research applications. This versa-

tile platform is built around ROS, enabling users to take full advantage of the broad

range of software libraries and tools available in ROS ecosystem.

TurtleBot3 is available in multiple configurations, including Burger and Waffle

models, each offering different capabilities and characteristics. TurtleBot3 Burger, for

instance, is a two-wheeled differential drive robot with encoders, while TurtleBot3

Waffle is a four-wheeled robot with a more robust structure and higher payload

capacity.

TurtleBot3 platform is equipped with a variety of sensors, including a 360-degree

LIDAR sensor, an Inertial Measurement Unit (IMU), and encoders on each wheel.

These sensors allow the robot to perceive its environment and track its motion,

enabling complex tasks such as navigation, mapping, and object tracking.

Overall, TurtleBot3 is a powerful and versatile platform that is well-equipped for

such tasks. The choice of TurtleBot3 for testing our motion planning algorithm is

motivated by several factors. First, the compatibility with ROS allows us to imple-

ment and test our algorithm in a well-supported software environment. Moreover,

one of its core technologies is the SLAM (Simultaneous Localization and Mapping)

algorithm, which allows the robot to create a map of its environment while simulta-

neously keeping track of its location within the map. The robot also boasts robust

hardware and an extensive sensor suite. Finally, the compact size and mobility of

the TurtleBot3 make it suitable for testing in a variety of indoor environments.

The subsequent sections of this chapter will detail the integration of our algorithm

into the TurtleBot3 platform, the experimental setup, and the results obtained.

68

69

5.2 Integration of the Proposed Algorithm with ROS Navigation Stack

The implementation of the proposed motion planning algorithm involves the inte-

gration with ROS Navigation Stack and the TurtleBot3 platform. ROS Navigation

Stack is a 2D navigation software that takes information from odometry, Lidar sensor

streams, and a goal pose to generate safe velocity commands that are transmitted

to the mobile base [50].

The Navigation Stack presumes that the robot is configured in a specific manner,

as detailed in ROS Navigation tutorials [51]. To ensure compatibility with it, several

ROS packages are set up to meet the following requirements:

ROS Installation: The Navigation Stack presupposes that the robot is using ROS.

Consequently, Core ROS packages must be installed on TurtleBot3.

Transform Configuration: The Navigation Stack requires the robot to publish

information about the relationships between coordinate frames using tf, a package

to record multiple coordinate frames. Accordingly, this configuration has to be set

up on TurtleBot3.

Sensor Information: The Navigation Stack employs sensor data to avoid obstacles.

It presumes that these sensors publish either LaserScan or PointCloud messages over

ROS.

Odometry Information: The Navigation Stack necessitates odometry information

to be published using tf and the nav msgsOdometry message. This is ensured on

TurtleBot3.

Mapping: In the context of ROS, the creation of a map for the environment is an

essential step for the implementation of the Navigation Stack. For this purpose, there

are many tools such as gmapping and cartographer, which facilitate the generation

of accurate and detailed maps.

AMCL: Adaptive Monte Carlo Localization, is a ROS probabilistic localization

system for a robot moving in two dimensional space. It implements an adaptive

Monte Carlo localization approach, also known as KLD-sampling. This approach

utilizes a particle filter to track the position and orientation of a robot. In essence,

AMCL enables the robot to understand its position within the environment repre-

sented by the known map.

Base Controller: The Navigation Stack assumes that it can dispatch velocity

70

commands using a geometry msgsTwist message to the “cmd vel” topic. This means

there must be a ROS node subscribing to the “cmd vel” topic capable of transforming

velocities into motor commands to send to the mobile base. This was integrated on

TurtleBot3 using both a Raspberry Pi 4b (Linux server system and ROS) and an

OpenCR (a 32-bit microcontroller board).

Once all the necessary software packages and hardware configurations are in place,

we can proceed to implement the move base package, which interfaces directly with

the ROS Navigation Stack. The move base package in ROS is designed to facilitate

the navigation for a mobile robot. It attempts to reach a specified goal in the world

map. This is accomplished through the move base node, which links together a

global planner and a local planner to complete its global navigation task.

The move base package is designed to work with any global planner that adheres

to the nav core::BaseGlobalPlanner interface and any local planner that adheres to

the nav core::BaseLocalPlanner interface, both specified in the nav core package.

This allows for flexibility with a wide range of planning algorithms.

Furthermore, the move base node maintains two costmaps, one for the global

planner and one for the local planner. These costmaps are used to facilitate navi-

gation tasks, such as avoiding obstacles and planning optimal paths. The costmaps

are created and updated using the data provided by the costmap 2d package, which

is another crucial component of the ROS navigation stack.

In the integration of our motion planning algorithm with ROS Navigation Stack,

we found that the structured modularity of the Navigation Stack greatly facilitated

the process. Each separate module of the Navigation Stack communicates with

each other using ROS nodes. The Navigation Stack provides a well-defined and

comprehensive API, which allowed for the seamless integration of our algorithm.

This setup allowed us to test and validate our motion planning algorithm in room

based environment, ensuring its reliability and robustness.

5.3 Experimental Setup and Results with TurtleBot3 Burger

There are 10 obstacles within an approximate 150 × 300 cm environment as shown

in Fig. 5.1.

71

Figure 5.1: The Real Indoor Testing Environment for Path Planners

Initially, we constructed our map utilizing the ROS Gmapping package. The

Gmapping package offers laser-based SLAM (Simultaneous Localization and Map-

ping) functionality via a ROS node known as slam gmapping. By deploying slam gmapping,

it generates a two-dimensional occupancy grid map, using laser and pose data from

sensors. To streamline the experiments, the planning method is deployed after the

map is thoroughly explored. The virtual map is depicted in Fig. 5.2.

Figure 5.2: The Virtual Map using the SLAM Technology

Two experiments are carried out. The first experiment is to set the destination

point that is not directly obstructed by the obstacles. The initial distance between

the start and goal point is 1.6m. In Fig. 5.3, the robot started from the right side of

the map.

72

(a) The Physical Map (b) The Virtual Map

Figure 5.3: Test 1: TurtleBot3 at the Origin of Map

The robot successfully navigated past the first obstacle, and the planner quickly

converged. As a result, the search space continued to shrink, eventually approximat-

ing a straight line. This process is illustrated in Fig. 5.4.

(a) The Physical Map (b) The Virtual Map

Figure 5.4: Test 1: the First Obstacle is Passed.

The robot passed the narrow passage between two obstacles and get close to the

goal point near the fourth obstacles as shown in Fig. 5.5.

73

(a) The Physical Map (b) The Virtual Map

Figure 5.5: Test 1: the Narrow Passage is Passed and the Goal is Reached.

In Experiment 2, the destination region is put in a narrow passage and blocked

by two obstacles. The straight line distance between the start and goal point is 2.2m.

In Fig. 5.6, the robot started from the same position as Experiment 1.

(a) The Virtual Map

Figure 5.6: Test 2: TurtleBot3 at the Origin of Map

Through re-planning, the search space is quickly converged to a smaller area

when the robot is still in the initial region. When the localization module encounters

issues, such as providing inaccurate readings as shown in Fig. 5.7 for recalibration, the

74

process of Replanning comes into play. Replanning involves generating new plans in

response to changes in the robot’s knowledge of the world or when its existing plans

no longer align with the current reality.

(a) The Virtual Map: Initial Planning

(b) The Virtual Map: Re-planning

Figure 5.7: Test 2: TurtleBot3 with Re-Planning

The robot passed the first obstacle in Fig. 5.8 and aggressively optimized the path

75

length. It successfully and quickly found a straight line optimal path towards the

goal point.

(a) The Physical Map

(b) The Virtual Map

Figure 5.8: Test 2: the First Obstacle is Passed.

The robot navigated the narrow passage in Fig. 5.9 and updated the previous

path, which can pass through the last obstacle ahead.

76

(a) The Physical Map

(b) The Virtual Map

Figure 5.9: Test 2: the Narrow Passage is Passed.

The TurtleBot3 reached to the goal point in Fig. 5.10 and Experiment 2 is finished.

77

Figure 5.10: Test 2: TurtleBot3 Reached the Designated Goal Region.

In the final phase of our study, we conducted a comparative analysis between our

method used in Experiment 2 and the conventional method from SRRT implemented

in Experiment 3. Though the global planners employed in each experiment differ, all

other modules remained constant, incorporating the DWA local planner and AMCL

for localization. A fixed number of nodes, specifically 10,000, were sampled in both

cases. Whenever a shorter path emerged in Experiment 3, it was employed to replace

the previously longer one.

After we tested 10 times using SRRT, we identified the most effective initial

solutions. As depicted in Fig. 5.11 and Fig. 5.12, the derived solution, although not

optimal, provided a feasible path. Notably, this path navigated through obstacles

positioned centrally rather than skirting them from either side.

Figure 5.11: Test 3 with SRRT: Initial State

78

Figure 5.12: Test 3 with SRRT: Initial State 2

The robot diverged from the initially planned route, initiating its first replanning

process. This yielded a new trajectory, as depicted in Fig.,5.14, with its corre-

sponding physical map illustrated in Fig. 5.13a. When contrasted with our method

represented in Fig. 5.8, it becomes apparent that the SRRT struggles to consistently

reduce the length of its path.

(a) The Physical Map of Replanning 1 (b) The Physical Map of Replanning 2

Figure 5.14: Test 3: Replanning 1 After Deviation from Planned Path

79

Despite not traversing the third narrow passage, the robot bypassed the third

obstacle using a side route, as illustrated in Fig. 5.15 and Fig. 5.13b. Ultimately, this

maneuver brought it closer to its final destination.

Figure 5.15: Test 3: Replan Twice and Bypass the Third Obstacle.

Figure 5.16: Test 3: Get Closer to the Goal.

In comparing the estimated and actual paths from Experiments 2 and 3, it is

observed that the actual path is longer due to occasional inaccuracies within the

robot’s odometry and AMCL localization module. The final path executed by the

robot using SRRT falls within the range of 3.5m and 4.5m. Contrastingly, the path

derived through our method is consistently approximately 3m in length.

The results of the planned paths, originating from the initial state, are demon-

strated in Fig. 5.6 and Fig. 5.11. The path planned from the initial state using SRRT

80

in Experiment 3 is 3.3m, whereas the path determined by our method measures

2.7m.

Our path planning algorithm performed successfully in the real scenarios. The

algorithm guided the robot’s local planner and controller around obstacles, which

contributed to a new navigation strategy that reduces the path length and remains

smoothness. In the real testing, the localization module sometimes detected a sudden

change in the robot’s position due to a sensor error or some external factor. In that

case, the robot’s existing plan could become invalid. Replanning came into play to

generate a new plan that reflected its new understanding of the world. This can

involve re-calculating a path to a goal. TurtleBot3 continued to function effectively

even when AMCL or odometry module was not working correctly or robot itself

encountered unexpected changes in its environment. The search space continued

to shrink and path length became shorter during the operation, demonstrating the

algorithm’s capability to refine and focus its path planning effectively. This successful

field test is a milestone, confirming the robustness of our algorithm and its readiness

for more complex applications.

Chapter 6

Conclusion and Future Work

6.1 Conclusions

The primary contribution of this thesis is the creation and demonstration of an

innovative path planning algorithm tailored for non-holonomic robot systems. This

algorithm has been proven to locate a near-optimal path that maintains continuous

curvature at all points.

Our approach ensures the G2 continuity of curvature stays within pre-set con-

straints. For paths longer than the minimum extended edges from SRRT between

three consecutive states’ intermediate points and under maximum curvature con-

straints, the algorithm can be subdivided into piece-wise Bézier spline segments.

During the initial steering process, the approach accommodates a newly sampled

point even if it is unable to directly connect to the nearest point due to path collision.

The optimization function of our algorithm encompasses two main parts: the first

seeks to connect the new sampled node to the best neighbor node in a manner

that satisfies kinematic constraints, ensuring collision-free paths; the second part

introduces three alternative methods that can rewire tree nodes when at least three

consecutive nodes satisfy the kinematic constraints.

Two modified rewiring processes from RRT∗ are integral to our proposed method.

The first process involves the optimization of the initial path; during this phase, sub-

trees might be partially removed or reused as “new” sample nodes if previous vertices

and edges conflict with the kinematic constraints. To maintain curvature continuity,

a second rewiring process was introduced that mandates the consideration of at least

three or even four consecutive states.

To ensure the robustness and efficacy of the proposed path planning algorithm,

comprehensive simulations were conducted using Python 3 and ROS with C++.

These simulations demonstrated that the algorithm’s capacity to create efficient

paths under conditions mimicking those of ground robots. In addition, a field test

81

82

was performed using a TurtleBot3, providing evidence of the algorithm’s real-world

applicability and effectiveness.

The success of this work is exhibited in simulation and field-test results, validating

the effectiveness and efficiency of the modified optimization processes adapted from

Informed RRT∗ and RRT#, offering a similar degree of smoothness as SRRT. The

application of path smoothing techniques further refined the final path.

6.2 Future Work

The potential applications and developments of this work are vast, where our ap-

proach can pass through the sampled local control nodes, a contrast to the traditional

use of B-splines with RRT∗. We also plan to investigate and delve into other spline

methods. Additionally, we are intrigued by the prospect of extending this method to

higher dimensional space or non-Euclidean state spaces. Such a move could open up

new dimensions of possibilities, allowing for more diverse applications and addressing

more complex robotic path planning scenarios.

Looking ahead, our research can also harness the power of other artificial intelli-

gence (AI) technologies, especially machine learning (ML) to enhance our proposed

path planning algorithm, potentially solving several of its present limitations. The

integration of ML in sampling-based motion planners has been gaining attention due

to their ability to effectively tune several key parameters based on the environment

or the limits of the robots. It can also mitigate the “brute force” approach often

employed by these planners.

In this context, AI and ML could greatly improve this process by automatically

determining these tuning parameters and optimizing their sizes according to a pre-

defined metric. By doing so, it is expected that the AI could effectively trim the

unnecessary growth of the search space while still ensuring the optimal path plan-

ning.

Particularly in the case when our algorithm apply some traits of SRRT, there

are two essential parameters: curvature and angles, which are bound by the robot’s

kinematic limitations. Tuning these parameters manually can be a daunting task

but it is important to decide the minimum expanded length, often requiring a deep

83

understanding of the system and extensive trials. An AI-driven system could intu-

itively learn and adapt the tuning of these parameters, optimizing the path planning

process according to the unique characteristics of each robot and its environment.

Bibliography

[1] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and
trajectory planning algorithms: A general overview,” Motion and Operation
Planning of Robotic Systems: Background and Practical Approaches, pp. 3–27,
2015.

[2] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of motion
planning techniques for automated vehicles,” IEEE Transactions on intelligent
transportation systems, vol. 17, no. 4, pp. 1135–1145, 2015.

[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,” IEEE
Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[4] C. Niederberger, D. Radovic, and M. Gross, “Generic path planning for real-time
applications,” in Proceedings Computer Graphics International, 2004., pp. 299–
306, IEEE, 2004.

[5] C. Zhou, B. Huang, and P. Fränti, “A review of motion planning algorithms for
intelligent robots,” Journal of Intelligent Manufacturing, vol. 33, no. 2, pp. 387–
424, 2022.

[6] R. Meyes, H. Tercan, S. Roggendorf, T. Thiele, C. Büscher, M. Obdenbusch,
C. Brecher, S. Jeschke, and T. Meisen, “Motion planning for industrial robots
using reinforcement learning,” Procedia CIRP, vol. 63, pp. 107–112, 2017.

[7] Z. Liu, Y. Zhang, X. Yu, and C. Yuan, “Unmanned surface vehicles: An overview
of developments and challenges,” Annual Reviews in Control, vol. 41, pp. 71–93,
2016.

[8] M. Panda, B. Das, B. Subudhi, and B. B. Pati, “A comprehensive review of
path planning algorithms for autonomous underwater vehicles,” International
Journal of Automation and Computing, vol. 17, no. 3, pp. 321–352, 2020.

[9] X. Li, Z. Sun, D. Cao, D. Liu, and H. He, “Development of a new integrated
local trajectory planning and tracking control framework for autonomous ground
vehicles,” Mechanical Systems and Signal Processing, vol. 87, pp. 118–137, 2017.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Edsger
Wybe Dijkstra: His Life, Work, and Legacy, pp. 287–290, 1959.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems Science
and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

84

85

[12] A. Stentz, “Optimal and efficient path planning for partially known environ-
ments,” in Intelligent unmanned ground vehicles, pp. 203–220, Springer, 1997.

[13] S. Koenig and M. Likhachev, “Fast replanning for navigation in unknown ter-
rain,” IEEE Transactions on Robotics, vol. 21, no. 3, pp. 354–363, 2005.

[14] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with provable
bounds on sub-optimality,” Advances in neural information processing systems,
vol. 16, 2003.

[15] I. Pohl, “First results on the effect of error in heuristic search,” Machine Intel-
ligence, vol. 5, pp. 219–236, 1970.

[16] D. Harabor and A. Grastien, “Online graph pruning for pathfinding on grid
maps,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 25,
pp. 1114–1119, 2011.

[17] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[18] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,” IEEE
transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[19] R. Bohlin and L. Kavraki, “Path planning using lazy prm,” in Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and
Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp. 521–528
vol.1, 2000.

[20] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings
(Cat. No. 00CH37065), vol. 2, pp. 995–1001, IEEE, 2000.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion
planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–
894, 2011.

[22] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algo-
rithms for optimal motion planning,” in 2013 IEEE International Conference
on Robotics and Automation, pp. 2421–2428, IEEE, 2013.

[23] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many dimen-
sions,” The International journal of robotics research, vol. 34, no. 7, pp. 883–921,
2015.

86

[24] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt: Optimal
sampling-based path planning focused via direct sampling of an admissible el-
lipsoidal heuristic,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2997–3004, IEEE, 2014.

[25] L. E. Dubins, “On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents,” American
Journal of mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[26] J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards and
backwards,” Pacific journal of mathematics, vol. 145, no. 2, pp. 367–393, 1990.

[27] C. Runge, “Über empirische funktionen und die interpolation zwischen
äquidistanten ordinaten,” Zeitschrift für Mathematik und Physik, vol. 46,
no. 224-243, p. 20, 1901.

[28] C. De Boor and C. De Boor, A practical guide to splines, vol. 27. springer-verlag
New York, 1978.

[29] E. Catmull and R. Rom, “A class of local interpolating splines,” in Computer
aided geometric design, pp. 317–326, Elsevier, 1974.

[30] M. Brezak and I. Petrović, “Real-time approximation of clothoids with bounded
error for path planning applications,” IEEE Transactions on Robotics, vol. 30,
no. 2, pp. 507–515, 2013.

[31] K. Yang, D. Jung, and S. Sukkarieh, “Continuous curvature path-smoothing
algorithm using cubic b zier spiral curves for non-holonomic robots,” Advanced
Robotics, vol. 27, no. 4, pp. 247–258, 2013.

[32] J. P. Rastelli, R. Lattarulo, and F. Nashashibi, “Dynamic trajectory generation
using continuous-curvature algorithms for door to door assistance vehicles,” in
2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 510–515, IEEE,
2014.

[33] D. H. Kochanek and R. H. Bartels, “Interpolating splines with local tension,
continuity, and bias control,” in Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, pp. 33–41, 1984.

[34] K. Solovey, L. Janson, E. Schmerling, E. Frazzoli, and M. Pavone, “Revisiting
the asymptotic optimality of rrt,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2189–2195, IEEE, 2020.

[35] G. Ramalingam and T. Reps, “An incremental algorithm for a generalization of
the shortest-path problem,” Journal of Algorithms, vol. 21, no. 2, pp. 267–305,
1996.

[36] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning a*,” Artificial Intel-
ligence, vol. 155, no. 1-2, pp. 93–146, 2004.

87

[37] O. Arslan and P. Tsiotras, “The role of vertex consistency in sampling-based
algorithms for optimal motion planning,” arXiv preprint arXiv:1204.6453, 2012.

[38] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,”
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and
General Crystallography, vol. 32, no. 5, pp. 922–923, 1976.

[39] H. Sun and M. Farooq, “Note on the generation of random points uniformly dis-
tributed in hyper-ellipsoids,” in Proceedings of the Fifth International Confer-
ence on Information Fusion. FUSION 2002.(IEEE Cat. No. 02EX5997), vol. 1,
pp. 489–496, IEEE, 2002.

[40] G. Wahba, “A least squares estimate of satellite attitude,” SIAM review, vol. 7,
no. 3, pp. 409–409, 1965.

[41] A. H. de Ruiter and J. R. Forbes, “On the solution ofwahba’s problem on so
(n),” The Journal of the Astronautical Sciences, vol. 60, pp. 1–31, 2013.

[42] W. Kabsch, “A discussion of the solution for the best rotation to relate two
sets of vectors,” Acta Crystallographica Section A: Crystal Physics, Diffraction,
Theoretical and General Crystallography, vol. 34, no. 5, pp. 827–828, 1978.

[43] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sampling for
asymptotically optimal path planning,” IEEE Transactions on Robotics, vol. 34,
no. 4, pp. 966–984, 2018.

[44] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The
international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.

[45] K. Yang, S. Moon, S. Yoo, J. Kang, N. L. Doh, H. B. Kim, and S. Joo, “Spline-
based rrt path planner for non-holonomic robots,” Journal of Intelligent &
Robotic Systems, vol. 73, no. 1-4, pp. 763–782, 2014.

[46] K. Yang and S. Sukkarieh, “An analytical continuous-curvature path-smoothing
algorithm,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 561–568, 2010.

[47] B. A. Barsky and T. D. DeRose, “Geometric continuity of parametric curves:
three equivalent characterizations,” IEEE Computer Graphics and Applications,
vol. 9, no. 6, pp. 60–69, 1989.

[48] W. Cai, M. Zhang, and Y. R. Zheng, “Task assignment and path planning
for multiple autonomous underwater vehicles using 3d dubins curves,” Sensors,
vol. 17, no. 7, p. 1607, 2017.

[49] G. Vailland, V. Gouranton, and M. Babel, “Cubic bézier local path planner
for non-holonomic feasible and comfortable path generation,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7894–7900,
IEEE, 2021.

88

[50] ROS, “Navigation stack.” http://wiki.ros.org/navigation, 2023. Accessed:
2023-05-25.

[51] ROS, “Setup and configuration of the navigation stack on a robot.” http://

wiki.ros.org/navigation/Tutorials/RobotSetup, 2023. Accessed: 2023-05-
25.

Appendix A

Author’s Publication List

Peer-Reviewed

Z. Fei and Y.J. Pan, “A Parameterized Cubic Bézier Spline-based Informed RRT*

for Non-holonomic Path Planning,” in IEEE/ASME International Conference on

Advanced Intelligent Mechatronics, Seattle, USA, 2023, pp. 1267-1272.

89

