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Abstract

This thesis deals with the development of a binary integer programming (BIP) model
and novel matheuristics to solve the naval surface ship work period problem (NSWPP)
with multi-calendar activities and resources, multiple types of precedence relation-
ships, and timing requirements. As this extended NSWPP is NP-hard, its com-
putation time increases exponentially with the number of variables. The proposed
solution approach reduces computation times by using a decomposition matheuris-
tic method to quickly provide near-optimal solutions. The matheuristic method is
a sequential multi-step optimization (MSO) using heuristic priority rules to classify
the project activities into subgroups which are then optimally scheduled. Schemes
are then devised to construct a final solution from the smaller optimal subgroup so-
lutions. Extensive numerical experiments are then conducted using actual ship refit
data. The MSO matheuristic is shown to obtain near optimal feasible solutions for
large-scale instances of the problem in reasonable computation times.
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Chapter 1

Introduction

The naval surface ship work period problem (NSWPP) is a project scheduling problem

in which a large number of activities related to ship periodic maintenance, repairs,

renewal and engineering changes (EC) activities are planned and executed (Bertrand,

2020). The NSWPP is a variant of the resource constrained project scheduling prob-

lem (RCPSP) with specific network characteristics and constraints including limited

work periods, activities of varying priority, multi-calendars activities and resources,

multiple precedence relationships, and timing constraints.

The RCPSP aims to determine a project schedule that satisfies the resource con-

straints and precedence relationships between activities. The resource constraints

are induced by the limited number of workers, quantity of available tools, process-

ing time available on machines, space limitation, etc. Precedence relationships are

predefined operation sequences that need to be respected. The typical RCPSP aims

to create a schedule that minimizes the project completion time while respecting the

resource capacity and availability (Schwindt, 2015). The RCPSP has been shown to

be strongly NP-hard, i.e., the size of the solution space increases exponentially as

the number of activities (problem size) increases (Blazewicz et al., 1983). As a result

various solution approaches have been derived to tackle this problem in the literature

(Boer et al., 1997; Couch, 2016; Zaman et al., 2020).

The NSWPP is a generalization of the RCPSP and thus it is NP-hard (Bertrand,

2020; Prabhu, 2021). Exact and heuristic approaches may be used to solve such prob-

lem. However, for large scale problems an exact solution method using commercial

solvers may take more time than what a typical schedule planner doing what-if anal-

yses may be prepared to spend. Heuristic methods are generally capable of producing

feasible solutions, but there is no guarantee on the quality of the solution obtained.

1



2

A recent trend is the combination of mathematical optimization within the scope

of construction heuristics to provide higher quality solution. Such methods called

matheuristics have yielded promising results (Prabhu, 2021).

Available commercial project management software packages are typically not ca-

pable of handling the specific requirements of the NSWPP. As a result a manual

or semi-automated project scheduling approach may be used in such environment

(Bertrand, 2020). This not only is time consuming, but also may result in inefficient

sub-optimal schedule. Also new and emerging jobs may arise due to inspections or

other repair and maintenance activities which calls for multiple project re-scheduling

during the project execution time. For these reasons, the need for efficient, fast and

accurate automated project scheduling systems for naval surface ship work is essential

(Bertrand, 2020). This thesis continues the work on the NSWPP started a few year

ago.

1.1 Naval Surface Ship Maintenance Operation Scheduling

A typical maintenance lifecycle of naval surface ships is composed of several short

work periods (SWP) interspersed with a long dry- dock work period (DWP) flanked

by two extended readiness periods (EWP). The naval surface ship work period can

increase due to degradation in the condition of the ship or type of the work period.

Figure 1.1 shows the naval surface ship maintenance process consisting of three work

periods: SWP, EWP and DWP. A ship can have two to four short work periods

(SWPs) in a year. Each can take between 12 to 20 weeks to complete depending on

scope of work. A DWP, happening almost every 5 years, may take from 20 weeks to

50 weeks depending on the condition and the age of ships (Bertrand, 2020). Before

and after each DWP, naval surface ships undergo two extended work periods, each

lasting a few months in order to prepare for and after the DWP.

In the NSWPP, multiple work packages composed of several small to large-scale

projects have to be scheduled. Tasks in different work packages compete for resources

available for the project. The work packages can be generated by three sources:
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Figure 1.1: Naval surface ship maintenance lifecycle (Bertrand, 2020)

preventive maintenance schedules, inspections, and failures noticed during missions.

Schedules for the maintenance work periods are then generated using these work

packages, associated activities, and all other information needed. The current work

package generation process can be seen in Figure 1.2.

Figure 1.2: Naval ship refit work package and project generation process (Prabhu,
2021)

A planner/scheduler tries to include as many activities as possible in a work period.

However, several activities may remain pending or incomplete at the end of the work

period. A naval vessel can sail if all essential maintenance works are completed by

the end of the work period. Any remaining non essential maintenance work will be

planned for a subsequent work period.
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1.2 Problem Description and Requirements

The naval surface ship work period problem (NSWPP) is a highly complex schedul-

ing problem with many activities and resource limitations due to activity order, re-

lationships, dependencies and timing constraints. This section briefly reviews key

characteristics of the multi-calendar NSWPP considered in this thesis.

1.2.1 Work Packages Priority

The objective of the NSWPP is to complete within the assigned work period all

activities required for the ship to safely perform its following mission(s). Not all

activities need completing. Typically, three levels of priority are considered for each

work package based on the impact of the work package completion on the operation

of the ship. Work packages can be labeled Essential, High priority and Normal

opportunity work, indicated by priority number 1, 2, and 3 respectively. An essential

work package (priority 1) is critical to the successful completion of the next mission

and must be completed by the end of the work period. Work packages of priority 2

(High priority) are of less importance to the ship future mission, but also should be

complected before the end of the work period. Work packages of priority 3 (Normal)

are improvement opportunities and the ship can sail even if all or some of them are

not completed by the end of the work period Bertrand (2020). Activities in packages

inherit the priority of the corresponding work package. All activities in an essential

work package will have priority 1.

1.2.2 Long Duration

Activities in a work package vary in duration from short to long. If a long duration

activity is scheduled to be performed near the end of work period, there is a non-

negligible probability that it might not be completed in this work period and require

postponement to the next maintenance work period. This may mean that the work

package has to wait years to be rescheduled again, or if the activity is of priority 1 or

2, it could delay the work period unexpectedly causing unwanted consequences. As

a result, it is essential to schedule long duration work packages as early as possible

while considering their priority as well. This is called activity front-loading.
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1.2.3 Multi Calendar Activities and Resources

Activities in a NSWPP may follow different calendars while competing over the same

resources. Calendars may be classified using three characteristics: work days in the

week, working hours in a day, and holidays. Calendars with 5 or 7 days per week are

two examples. For an activity in a 5-day calendar, work cannot take place during

the weekends, while a 7-day calendar permits working on every day of the week.

Calendars may also have different working hours a day, which in turn will impact the

time an activity takes to be completed. For example, some activities follow an 8-hour

day calendar while others follow a 12-hour day calendar. An activity with a duration

of 24 hours will be completed in 3 days on a 8-hour per day calendar, while it will

take 2 days in a 12-hour per day calendar. Holidays exceptions identify days of the

year apart from weekends when work cannot be done. Examples are federal statuary

or provincial holidays. Resources may also follow different calendars. For example,

some equipment may be available on a 7-day per week calendar, while some operators

may follow a 5-day per week calendar.

1.2.4 Precedence Constraints

In earlier research, mainly only the Finish-to-Start (FS) precedence relationship be-

tween activities in a work package or project were considered Bertrand (2020) and

Prabhu (2021). A predecessor activity is an activity that logically precedes a successor

activity in the schedule. In this research, three additional precedence relationships

between activities are considered. These are Finish-to-Finish (FF), Start-to-Start

(SS), and Start-to-Finish (SF).

In the FS precedence relationship, the preceding activity must be finished before

the successor activity begins, as shown in Figure 1.3(a). The SF precedence relation-

ship requires that the preceding activity must start before the successor activity is

finished 1.3 (b). In the presence of FF precedence relationship, the preceding activity

must be finished before the successor activity is finished, as shown in Figure 1.3(c).

SS precedence relationship makes sure that the preceding activity starts before the

successor activity begins, as shown in Figure 1.3 (d).
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Figure 1.3: Precedence relationships

1.2.5 Start/Finish Time Constraint

Specific time or timing constraints on start and/or finish time of some activities may

be required due to some operational requirements. For example, a special tool may

be needed to perform tests before a specific activity can start. If the tool is only

available on a certain day of the work period, the start of that activity will be limited

to the day when the tool is available. There are six types of activity start/finish

time constraints: start on, finish-on, start-on-or-after, finish-on-or-after, start-on-or-

before, and finish-on-or-before.

An activity with Start-On constraint must start only on the specified date. An

activity with Finish-on constraint must be completed on the specified date. Start-on-

or-before constraint impose the activity to start-on-or-before a specific date. Start-

on-or-after constraints impose the activity to start on or after a specific date. Finish-

on-or-before constraint makes sure an activity finishes on or before the specified date.

Similarly, Finish-on-or-after constraint, makes sure an activity finishes on or after the
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specified date.

The term “timing constraints” is used throughout the remainder of this thesis to

refer to Start-On, Start-On or Before, Start-On or After, Finish-On, Finish-On or

Before, and Finish-On or After constraints.

1.2.6 Resource Constraint

Resources in the NSWPP can be categorized into two types: renewable and non-

renewable resources. Renewable resources are those that can be replenished or reused

during the project execution, such as human resources or certain types of equipment.

Non-renewable resources are those that are limited in supply and cannot be replen-

ished or reused during the project execution, such as spare parts or certain types of

specialized equipment.

Each resource in a NSWPP may have a specific calendar associated with it, indi-

cating the availability of the resource over time. The availability of resources is subject

to constraints, which must be taken into account when scheduling project activities.

These constraints are often related to the limited availability of non-renewable re-

sources or the availability of human resources, which may be required to work on

multiple projects simultaneously.

1.2.7 Special Network structure

In the general RCPSP, activities may have multiple precedence relationships to other

project activities forming a single project with one critical path while minimizing

the total makespan. Figure 1.4 shows an RCPSP Network structure, where the

nodes are the activities and the arrows show the precedence relationships between

the activities. However, in the NSWPP, work packages have sparse precedence re-

lationship between them, while the activities of a work package are constrained by

precedence relationships. All activities in work packagers compete for the same re-

sources (Bertrand, 2020). Figure 1.5 shows an NSWPP Network structure, where the
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lines show the precedence relationships between activities in a work package and be-

tween work packages. NSWPP, unlike RCPSP, does not require all work packages to

be completed within a work period, so dummy starting and ending activities (nodes)

are not required.

Figure 1.4: Example of a RCPSP project network showing its structure

Figure 1.5: Example of a NSWPP project showing its structure
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1.3 Thesis Objectives and Outlines

The NSWPP is a variant of the resource constrained project scheduling problem

(RCPSP) with its own specific network characteristics and constraints including

limited work periods, activities of varying priority, multi-calendar activities and re-

sources, precedence relationships, and time constraints. The objectives of this thesis

is to investigate, model and solve the NSWPP to minimize the total weighted priority-

duration of completed activities during planning horizon.

The remainder of this thesis is organized as follows. A literature review relevant

to project scheduling and RCPSP, and NSWPP is presented in Chapter 2. Chapter

3 will provide a detailed BIP and a matheuristic algorithm to solve the problem in

hand. Chapter 4 present numerical examples and test results of Matheuristic algo-

rithm and the serial SGS . Finally, conclusions and future research developments are

discussed in Chapter 5.



Chapter 2

Literature Review

The NSWPP is a highly complex variant of the RCPSP, with hundreds of activities to

be scheduled using the same shared resource pool. This section provides an overview

of RCPSP and NSWPP, including relevant RCPSP variants, current models, solving

methods, and research relevant to the multi-calendar NSWPP.

A project consists of a series of activities that take time to execute, require re-

sources, and incur costs or generate cash flow (Schwindt, 2015). There are many

factors that can complicate the project schedule impacting activities’ scheduled time,

resources, and performance. Examples are deadline penalties, priority requirements,

and multiple execution modes. Project management involves the coordination of all

these characteristics from beginning to end (Sathi et al., 1985). Project Schedul-

ing is the planning process that aims to successfully complete the project. Project

scheduling incorporates wide range of input data like project network structure, ac-

tivity duration, resource requirements, aggregating or dis-aggregating the activities

(Kerzner, 2017). There have been many variations of this problem proposed for a va-

riety of applications involving the scheduling of projects in practice (Schwindt, 2015).

Early project scheduling modeling works developed the Critical Path Method

(CPM) and Project Evaluation and Review Technique (PERT) in which project activ-

ities are scheduled only by considering activities’ precedence relationship (J. J. E. Kel-

ley & Walker, 1959; Malcolm et al., 1959). Although project scheduling techniques

can make great contribution to efficient project management, their application in

real world problems are limited as they fail to properly integrate resources availabil-

ity and other real-life requirements, which is the main concern of project management.

10
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Resources required to perform projects are often limited, so that even if the ac-

tivities are ready to start after satisfaction of precedence relationships, they may still

incur delays until all needed resources are available. Resource Constrained Project

Scheduling Problem (RCPSP) is a project planning and scheduling problem which

may consider multiple set of constraints, precedence relationships, resource types and

their availability, activity splitting, and execution modes, first introduced by Kelley

& E (1963). It has been widely applied and studied for developing or designing large-

scale projects, such as software and military industry projects. The RCPSP can be

complex and difficult to solve. Indeed, the RCPSP is an NP-hard problem Blazewicz

et al. (1983). Therefore, it is impossible or very expensive to find an optimal solution

to a problem involving a large number of activities and constraints within a given

time. However, it is possible to obtain a feasible solution for a large-scale problem

using heuristic methods. Because, solutions obtained by heuristics may be far from

the optimal solution, recent advances have seen the recourse to matheuristics to im-

prove solution quality (Kolisch & Hartmann, 2006). The importance of a fast solution

approach for RCPSP is even more critical with existence of changes in requirements,

and/or need to rescheduling the project.

RCPSPs can be classified according to seven main attributes: type of constraints,

type of precedence relations, type of activity splitting, number of execution modes,

type of resource, number of objectives, and level of information as detailed in Table

2.1 below.

2.1 Characteristics of NSWPPs

The NSWPP has typically a fixed due date (project horizon), activity duration con-

straints and/or start time and finish time requirements. No gap is assumed to be

required between activities finish or start times. In some problems the resource

availability in NSWPPP is further limited as the resources are shared by multiple

projects. Renewable resource capacities are limited during each time interval, but will

be returned to the pool of the resources when the activity using them is completed.

Machines, tools, and labour resources are regarded as renewable resources. Non-

renewable resources may also be needed to complete an activity. The non-renewable
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Table 2.1: RCPSP Characteristics (Schwindt, 2015)

ATTRIBUTES CHARACTERISTICS

Type of constraints
Time-constrained problem
Resource-constrained problem

Type of precedence relations
Ordinary precedence relations
Generalized precedence relations
Feeding precedence relations

Type of resources

Renewable resources
Non-renewable resources
Storage resources
Continuous resources
Partially renewable resources

Type of activity splitting
Non-preemptive problem
Integer preemption problem
Continuous preemptive problem

Number of execution mode
Single-mode problem
Multi-mode problem

Number of objective types
Single-criterion problem
Multi-criteria problem

Level of information

Deterministic problem
Problem under interval uncertainty
Stochastic problem
Problem under vagueness



13

resources capacity are used by activities over project horizon. NSWPP can be clas-

sified as an RCPSP problem with renewable resources. In NSWPP, all activities are

assumed to be non-preemptive, meaning jobs are not allowed to be interrupted once

they have started. Activities duration may be reduced to respect project due date by

selecting execution modes that speed up execution but use more resources.

A typical RSCSP objective is to minimize the makespan of the project. Alter-

natively, minimizing resource utilization or its deviation may be an objective for the

RSCSP optimization. Multi criteria objective function composed of two or more of

above mentioned objective functions may also be considered in some problems. In

the NWSPP, the objective is to complete as many as activities possible, while front-

loading activities with longer duration, and/or higher priority.

Available information and parameters of a scheduling problem, may be determin-

istic or stochastic (non-deterministic) due to the nature of the problem in the real

world. Stochastic information of a project may be presented in terms of uncertainty

in the values, modeled by some probabilistic distributions. For example, stochas-

tic information may be applicable to activity duration or resource availability. The

NSWPP problem in this thesis is deterministic.

Couch (2016) introduced a robust project scheduling policy through analyzing

three buffer placement approaches to improve schedule quality for naval maintenance

projects. This study formed the basis for the NSWPP study. Bertrand (2020) de-

veloped several binary integer programming (BIP) models for initial scheduling and

rescheduling of the NSWPP. Prabhu (2021) developed a decomposition matheuristic

to solve large-scale NSWPPs. Prabhu (2021) research included a single calendar and

Finish-to-Start precedence relationships only. A recent study by Yin (2022) extended

the original NSWPP to include multi-calendar resources and activities, and timing

constraints. Yin (2022) introduced a novel universal duration matrix to handle the

multi-calendar requirements and a formulation for calculating Earliest Start(ES) and

Latest Start(LS) for the additional precedence relationships (FF, SF, and SS).

Table 2.2 summarizes the important characteristics of the NSWPP used by Yin
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(2022) and also considered in this thesis.

Table 2.2: NSWPP Characteristics (Yin, 2022)

ATTRIBUTES CHARACTERISTICS

Type of constraints
Time-constrained problem
Resource-constrained problem

Type of precedence relations Generalized precedence relations
Type of resources Renewable resources

Type of activity splitting Non-preemptive problem
Number of execution mode Multi-mode problem
Number of objective types Multi-criteria problem

Level of information Deterministic problem

2.2 RCPSP Modeling for NSWPPs

The RCPSP model has been extensively studied in the past few decades leading to

the development of several linear models and solution techniques. In the following

section we will discuss the most important attempts and results in modelling RCPSP

and review their characteristics.

Considering an RCPSP with n activities to be completed using K resources.

J = {1, · · · , n} is the set of activities. Activity i has duration di and engages rik

units of resource k for its execution. P is a set of pairs of predecessors (i, j) which

means i is the immediate predecessor of j. The project horizon is represented by H.

Pritsker et al. (1969) modeled the RCPSP using a binary decision variables de-

noting that activity i starts at time t.

xit =

⎧⎨⎩1, if activity i starts at time t

0, otherwise.

The decision variable defined creates a binary variable for each activity in each

time period. This means that there will be nH binary decision variables. To reduce
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the number of binary variables, the range of xit can be limited to discrete time pe-

riods between the earliest start time ESi and the latest start time LSi of activity

i. A forward pass and backward pass approach can be performed to determine the

earliest start times ESi and the latest start times LSi. Equations (2.1) to (2.8) give

the formulas to calculate the earliest and latest start times under each of the four

types of precedence relationships (i.e., Finish-to-Start (FS), Finish-to-Finish (FF),

Start-of-Start (SS), and Start-to-Finish (SF)) when the project start time is set to 0

(Tormos & Lova, 2001).

FS:

ESj = max[ESi + di]; ∀(i, j) ∈ P (2.1)

LSi = min[LSj − di]; ∀(i, j) ∈ P (2.2)

FF:

ESj = max[ESi + di − dj]; ∀(i, j) ∈ P (2.3)

LSi = min[LSj − di]; ∀(i, j) ∈ P (2.4)

SS:

ESj = max[ESj]; ∀(i, j) ∈ P (2.5)

LSi = min[LSj]; ∀(i, j) ∈ P (2.6)

SF:

ESj = ESi + di; ∀(i, j) ∈ P (2.7)

LSi = min[LSj − dj]; ∀(i, j) ∈ P (2.8)

The following section presents and briefly discusses commonly used RCPSP mod-

els based on Time-indexed, Sequence-Based, and Event-Based formulationss.

The first formulation is the basic discrete-time (DT) formulation with a single
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activity and time-indexed binary decision variable Pritsker et al. (1969).

Indices:

i index of activities

j index of activities

k index of resource types

t index of time periods

Parameters for Sets:

n integer, number of non-dummy activities

H integer, time horizon considered for scheduling

K integer, number of resource types

Sets:

J Set of activities, J = {0, · · · , n} with index i or j

H Set of time periods, H = {0, · · · , H} with index t

K Set of types of resources, K = {1, · · · , K} with index k

P Set of finish to start precedence activity pairs (i, j)

Wi Set of time periods between the early start and late start of

activity i, Wi = {ESi, · · · , LSi}

Other Parameters:

di (dj) integer, duration of activity i (j)

rik integer, activity i demand for resource type k

Rk integer, maximum availability of resource type k

ESi integer, earliest start time of activity i

LSi integer, latest start time of activity i

pi integer, priority of activity i

θ exponent used to ponderate the priority of activities, θ ≥ 0

ε very small duration value assigned to activities with no dura-

tion (i.e., milestones), ε ≥ 0
α parameter used to give tie-breaking benefits to longer dura-

tion activity (α=1.1). α=0 makes the model ignore activity’s

duration in the objective function ; α ≥ 0
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Discrete-time formulation

Minimize =
∑︂
t∈Wi

txn+1,t (2.9)

subject to:

Activity Completion: ∑︂
t∈Wi

xit = 1 ∀i ∈ J (2.10)

Predecessor (Finish to Start):

∑︂
t∈Wi

txjt ≥
∑︂
t∈Wi

txit + di ∀(i, j) ∈ P (2.11)

Resource availability:

n∑︂
i=1

rik

min{LSi,t}∑︂
s=max{ESi,t−di+1}

xis ≤ Rk ∀t ∈ H,∀i ∈ J ,∀k ∈ K (2.12)

xit ∈ 0, 1 ∀i ∈ J , ∀t ∈ H (2.13)

The objective function in Equation2.9 minimizes the start time of activity n+ 1,

a dummy activity of zero duration created to mark the completion milestone of all

activities in the project (ie. makespan). Equations 2.10 ensure that each activity

within the project is scheduled exactly once and only once. Equations 2.11 ensure

that the finish-to-start constraints are satisfied (i.e., an activity can only start when

all its predecessors have been completed). Constraints (2.12) that there are enough of

each resource type for all scheduled activities in each time period. Equations (2.13)

define the decision variables as binary.

Christofides et al. (1987) proposed a disaggregated discrete time (DDT) formula-

tion that replaced Equation (2.11) with the following equation.
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LSi∑︂
s=ESi

xis +

min{LSj ,t+di−1}∑︂
s=ESj

xis ≤ 1 ∀(i, j) ∈ P (2.14)

The DDT modeling approach results in a tighter relaxation in the precedence re-

lationship constraint compared to the DT formulation.

Artigues et al. (2003) suggested a flow-based continuous-time formulation (FCT)

where activities are represented as flows, and resource constraints are modeled using

a continuous time approach. The flow-based representation allows for a more natural

and flexible way of modeling resource constraints, which makes FCT models more

efficient than other RCPSP models. Artigues et al. (2003) state that the FCT has

poor relaxations compared to DT and DDT.

Event-based formulations (Koné et al., 2011, 2013) also have the advantage of

dealing with non-integer activity processing times. More importantly, for instances

with long scheduling horizons, event-based models involve fewer decision variables in

comparison to the models indexed by time. Start/End Event Based Continuous Time

Formulation (SEE) and On/Off Event based formulation (OOE) were introduced by

Koné et al. (2011). SSE use two types of binary variables to represent the start and

end of an event. On/Off Event based formulation (OOE) uses only one type of binary

variable per activity. The SEE needs more variables for representing activities than

with the OOE. With the SEE, the number of events is exactly equal to the number

of activities. The representation of the resource constraints is also simpler and easier

Koné et al. (2013).

There is limited applicability of the standard discrete-time RCPSP model alone

in the real world of project planning, particularly in industries with fixed deadlines

that offer limited incentives to finish early and specially in projects with a large de-

gree of inherent uncertainty. Several resource-constrained project scheduling models

applicable to the real world problems are discussed in the following sections.

The standard RCPSP can be extended to include multiple objectives, such as
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minimizing the overall cost of the project, maximizing the availability of ships, and

minimizing the risk of downtime. Multi-objective optimization techniques, such as

genetic algorithms and evolutionary algorithms, can be used to find a set of Pareto-

optimal solutions that trade-off between the different objectives (Dridi et al., 2012).

In naval surface ship maintenance projects, the maintenance activities may have a di-

rect impact on the operational readiness of the ships. This interaction can be modeled

by including operational constraints such as availability and mission requirements in

the RCPSP (C. Li et al., 2022). Different maintenance strategies, such as preventive

maintenance, predictive maintenance, and condition-based maintenance can be con-

sidered in the RCPSP. This can be modeled by including different cost and resource

usage parameters for different maintenance strategies (Nguyen, 2017). In naval sur-

face ship maintenance projects, the parameters of the RCPSP, such as the duration of

activities, resource availability, and costs, can be uncertain. Stochastic programming

techniques can be used to model this uncertainty and find solutions that are robust

to different scenarios (Couch, 2016). Furthermore, the RCPSP can be extended to

include risk management considerations such as the risk of downtime and the risk

of over-maintenance. This can be modeled by including risk management metrics

such as the probability of failure, in the objective function. The RCPSP can be ex-

tended to include the life-cycle costs of the maintenance activities, such as the costs

of procurement, operation, maintenance, and disposal. This can be modeled by in-

cluding life-cycle cost parameters in the objective function (Yang & Frangopol, 2020).

Recently, the standard RCPSP model was extended to cover naval maintenance

projects with the goal of front-loading high-priority and long-duration activities (Bertrand,

2020; Prabhu, 2021; Yin, 2022). The priority duration formulation aims to incorpo-

rate both the priority and duration information of each activity into the scheduling

decision-making process.

Bertrand (2020) introduced a model to maximize the weighted sum of priority-

duration activities in a naval refit project. The deterministic and discrete-time MILP

formulation explained below is aiming to front-load high-priority and long-duration

activities, while multi-modes activities, basic precedence relationship constraints, and

resource constraints are available. A limited number of activities are permitted to be
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executed in overtime in this model.

Indices:

i index of activities

j index of activities

t index of time periods (e.g., days)

m index of execution modes

Parameters for Sets:

n integer, number of non-dummy activities

H integer, time horizon considered for scheduling

K integer, number of resource types

M integer, number of execution modes

Sets:

J Set of activities, J = {0, · · · , n} with index i or j

H Set of time periods, H = {0, · · · , H} with index t

K Set of types of resources, K = {1, · · · , K} with index k

M Set of execution modes, M = {0, · · · ,M} with index m

P Set of immediate finish-to-start activity pairs (i, j)

Wj Set of time periods between the early start and late start of

activity j, Wj = {ESj, · · · , LSj}

Other Parameters:

dim (dim) integer, duration of activity i (j) under mode m

rjk integer, activity j demand for resource type k

Rk integer, capacity of resource k

ESj integer, earliest start time of activity j

LSj integer, latest start time of activity j

pj integer, priority of activity j

θ exponent used to ponderate the priority of activities, θ ≥ 0

ε1 very small duration value assigned to activities with no dura-

tion (i.e., milestones), ε1 ≥ 0
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ε2 very small weight used to penalize late scheduling of activities,

ε2 ≥ 0
α parameter used to give tie-breaking benefits to longer duration

work (α=1.1) or making each work duration unit equal (α=0),

α ≥ 0
βM1 total alternative shift limit

βM2 alternative mode reduction limit

Decision Variables:

xjtm =

⎧⎨⎩1, if activity j starts at time t in mode m

0, otherwise.

BIP Model

The obtained binary integer programming (BIP) model is given below.

Max
∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M

xjtm

pθj
(ε1 + djm)

α (1− ε2t) (2.15)

s.t.: ∑︂
m∈M

∑︂
t∈Wj

t xjtm ≤ 1 ∀j ∈ J (2.16)

∑︂
m∈M

∑︂
t∈Wj

t xjtm ≥
∑︂
m∈M

∑︂
t∈Wi

(t+ dim)xjtm ∀j ∈ J ,∀(i, j) ∈ P (2.17)

∑︂
m∈M

∑︂
j∈J

min{LSj ,t}∑︂
r=max{t−djm+1,ESj}

rjkxjbm ≤ Rk ∀k ∈ K,∀t ∈ H (2.18)

∑︂
j∈J

∑︂
t∈Wj

(xjt2 + 2xjt3 + ...+ (M − 1)xjtM) ≤ βM1 (2.19)

∑︂
j∈J

∑︂
t∈Wj

(xjt2 + xjt3 + ...+ xjtM) ≤ βM2 (2.20)

xjtm ∈ {0, 1} ∀j ∈ J , t ∈ Wj (2.21)

Equation (2.15) represents the objective function aiming to front-load high-priority

activities with long duration. Constraints (2.16) guarantee that each activity is sched-

ule up to once. An activity j in an FS relationship can only be started after its

predecessor i has been completed as specified by constraints (2.17). Constraints 2.18
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ensure that resources required for a scheduled activity are available when it is exe-

cuted. Constraints (2.19) govern the amount of time that can be reduced by overtime

in an activity. Constraints (2.20) enforce a limit on the total number of activities

executed in overtime mode.

Prabhu (2021) developed a minimization variant of the BIP proposed by Bertrand

(2020) and used a matheuristic to find approximate solution for moderately large

instances of the NSWPP. The objective function used by Prabhu (2021) is given in

Equation (2.22).

Minimize
∑︂
j∈J

∑︂
t∈Wj

xjt

pθj
(ε1 + dj)

α(t) (2.22)

The models developed by Bertrand (2020) and Prabhu (2021) are single calendar

and use only the Finish-to-start relationship.

2.3 RCPSP Solution Methods for NSWPPs

The combinatorial nature and intrinsic complexity of RCPSPs have given rise to

major contributions during the last four decades. A comprehensive review of early

and recent developments in theory building and application of exact, heuristic, and

metaheuristic solution methods for RCPSPs can be found according to the differ-

ent scheduling environments. In Single-project scheduling environment, the RCPSP

is applied to schedule a single project with a set of tasks and resources. The goal

is to find the optimal schedule that minimizes the completion time of the project

or some other objective function (Demeulemeester et al., 1994). In Multi-project

scheduling environment, the RCPSP is applied to schedule multiple projects, each

with its own set of tasks and resources. The goal is to find the optimal schedules for

each project while taking into account the shared resources and inter-project depen-

dencies (Kolisch, 2013). In dynamic scheduling environment, the RCPSP is applied

to schedule a project in real-time, taking into account the changing conditions and

resource availability. The goal is to find the optimal schedule as the project pro-

gresses (Chakrabortty et al., 2020). Under the distributed scheduling environment,

the RCPSP is applied to schedule a project across multiple locations or sites. The

goal is to find the optimal schedules for each location while taking into account the
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communication and transportation costs between locations (Stiti & Driss, 2019). For

stochastic scheduling environments, the RCPSP is applied to schedule projects in the

presence of uncertainty (Herroelen & De Reyck, 1999). The goal is to find the optimal

schedule that takes into account the probability of disruptions and other risks. For

the majority of well-known RCPSP variants, it is evident that instances with many

activities and complex constraints are intractable and cannot solved by commercial

solvers. Each of these scheduling environments presents its own challenges and re-

quires a different approach to solving the RCPSP. For example, dynamic scheduling

requires real-time optimization techniques, while stochastic scheduling requires prob-

abilistic methods (Couch, 2016).

The focus of Bertrand (2020) , Yin (2022) and Prabhu (2021) has been on the for-

mulation of the NSWPP and the implementation of solution method capable of yield-

ing high-quality solutions for medium and large-scale problem instances within short

computation times. This section provides an overview of the exact approaches, heuris-

tics, metaheuristics, constraint programming and satisfiability testing, and matheuris-

tic methods used to solve the RCPSP. Each of these solution approaches has its own

advantages and disadvantages, and the choice of method will depend on the specific

requirements of the problem, such as the size and complexity of the problem, the

time and computational resources available, and the desired level of accuracy. The

NSWPP is recently introduced variant of the RCPSP and there are not many efficient

solution methods for large-scale instances.

2.3.1 Exact Solution Methods

State-of-the-art exact solvers such as Coin-OR branch and cut (CBC), CPLEX,

Gurobi, and Gusek/GLPK contain highly efficient algorithmic implementations of

the Simplex method. In particular, in the case of mixed-integer optimization, most

solvers use branch-and-bound, branch-and-cut algorithms, and some take advantage

of a warm-start. Branch-and-bound, Branch-and-cut algorithms outperform all other

exact methods for RCPSP models Demeulemeester & Herroelen (1992). The key

advantage of exact methods is that they can find the optimal solution for small to

medium size RCPSP problems within a reasonable time frame. With the help of
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advanced optimization software and computer hardware, exact methods can provide

a valuable benchmark solution for these problems. However, the RCPSP problem

is strongly NP-hard, making it challenging for exact methods to find optimal solu-

tions for larger problems (Blazewicz et al., 1983). A solution for larger size problems

may not be feasible in a reasonable time. Exact methods have been widely used in

scheduling and planning problems in various domains, including construction, manu-

facturing, and transportation. These methods have proven to be effective in finding

optimal solutions for problems with complex constraints and requirements. However,

their performance can be limited by the size and complexity of the problem, making

it necessary to consider approximate methods or heuristics for larger problems.

Exact methods can be used to schedule production processes to meet customer

demand and minimize waste. The RCPSP can be used to model the production pro-

cess and find the optimal schedule that meets the production capacity constraints and

resource availability (Neumann et al., 2002). In construction, exact methods can be

used to schedule construction activities to minimize the duration of the project and

reduce costs. The RCPSP can be used to model the construction process and find the

optimal schedule that meets the resource constraints and project requirements (Xie

et al., 2021). Exact methods can also be used to schedule supply chain activities,

such as transportation and warehousing, to minimize the cost of the supply chain

and maximize customer satisfaction. The RCPSP can be used to model the supply

chain process and find the optimal schedule that meets the resource constraints and

customer demand (Tirkolaee et al., 2020). Exact methods can be used to allocate

resources, such as machines and personnel, to various tasks in a project. The RCPSP

can be used to model the resource allocation problem and find the optimal allocation

that meets the resource constraints and project requirements (Daniels et al., 1996;

Jiang & Shi, 2005). These exact methods have proven to be effective in a variety of

scheduling and planning problems and continue to be used for the NSWPP.
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2.3.2 Constraint Programming

Constraint programming (CP) has been an active area of research since the 1980s and

it has gained popularity in recent years due to the increasing complexity of problems

that need to be solved and the need for efficient and effective methods for solving

them. CP is a mathematical modeling technique that can be used to solve a wide

range of combinatorial optimization problems, including the Resource Constrained

Project Scheduling Problem (RCPSP). When applying CP to the RCPSP, the prob-

lem is first modeled by defining the decision variables, such as the start times and

duration of tasks, and the constraints, such as resource availability and precedence

relationships between tasks (Hooker, 2002). The constraints can be represented using

a variety of formal languages, such as the Constraint Handling Rules (CHR) or the

Constraint Logic Programming (CLP) languages (Bistarelli et al., 2004). Once the

model is defined, a CP solver is used to find a solution that satisfies all constraints.

The CP solver can be based on a variety of search and optimization techniques, such

as local search, branch-and-bound, and branch-and-cut. One of the key advantages of

constraint programming is its ability to handle complex and non-linear constraints. It

allows for the modeling of complex relationships between variables, such as precedence

constraints, resource constraints and time windows, and also allows for the represen-

tation of uncertain or incomplete information. Additionally, CP can be combined

with other optimization methods, such as linear programming, to further improve

the quality of the solutions (F. Rossi & Walsh, 2006). CP has been applied to solve

many variants of the RCPSP, including multi-mode and multi-project scheduling, and

also has been combined with other techniques such as metaheuristics and satisfiabil-

ity testing for solving more complex instances of the problem (Schnell & Hartl, 2017;

H. Li et al., 2018).

Satisfiability testing, also known as the SAT problem, is the problem of deter-

mining whether a given Boolean formula is satisfiable, or equivalently, whether there

exists an assignment of Boolean values to the variables of the formula that makes

it evaluate to true. The SAT solver has a disadvantage in solving large and com-

plex models. It is difficult to represent the RCPSP because of the constraints on the

boolean variables and the various constraints (Coelho & Vanhoucke, 2014). However,
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a combination of Satisfiability testing and Constraint programming has been used to

tackle the RCPSP (de Azevedo et al., 2021).

2.3.3 Heuristics and Metaheuristics

Heuristics have been developed to solve the RCPSP, as the problem is known to be

NP-hard and finding an exact solution for large-scale problems can be infeasible in

a reasonable amount of time. Kelley & E (1963) introduced a priority rules sched-

ule generation scheme. Priority rules are used for sorting activities to be considered

for scheduling while avoiding resource conflicts in the RCPSP. Kolisch & Hartmann

(1999) introduced a heuristic based on critical path analysis, performing a forward

and backward pass on the network of tasks to determine the earliest and latest start

times for each task. Another popular heuristic is the Earliest Due Date (EDD) pri-

ority rule, which is a simple heuristic that schedules tasks in order of their due dates

with the earliest due date task being scheduled first. The EDD rule has been widely

used in practice and has been shown to be effective in solving RCPSP problems with

a small number of tasks Ballest́ın et al. (2006). The shortest processing time (SPT)

rule is another simple heuristic that schedules tasks in order of their processing time

with the shortest processing time task being scheduled first. The SPT rule has been

shown to be effective for RCPSP problems with a limited number of resources. Most

heuristic methods studied since the 1990’s have single-pass or multi-pass priority rules

methods (Tormos & Lova, 2003).

(Bertrand, 2020) compared the efficiency performance of certain priority rules pro-

posed by many researchers to identify a proper rule for the naval maintenance facility.

Multiple objective functions including Makespan, and Priority 1 Duration-Weighted

Centroid (DWC) were tested using different priority sorting schemes. The most suit-

able heuristic for NSWPP is concluded to be the serial SGS sorted by priority, ES,

duration, and priority. Yin (2022) modified the basic serial SGS to deal with multiple

calendars, multiple execution modes, precedence relationships (FS, SS, FF, FS) and

activity time-enforced constraints.

In the context of RCPSP, metaheuristics have been widely used to find high-

quality solutions in a relatively short amount of time. Some popular metaheuristics
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used to solve the RCPSP include Genetic Algorithms (Alcaraz et al., 2003), Ant

Colony Optimization (Merkle et al., 2002), Particle Swarm Optimization (Jarboui et

al., 2008), and Simulated Annealing (Józefowska et al., 2001). These methods work

by generating and improving candidate solutions through random exploration and

exploitation of the solution space. Metaheuristics have been shown to be effective

in solving RCPSP problems with large amounts of data, complex constraints, and

multiple objectives (Pellerin et al., 2020). The Genetic Algorithm (GA) is a meta-

heuristic that is based on the principles of natural selection and genetic evolution

(Kolisch & Hartmann, 1999). GA has been applied to the RCPSP and has been

shown to be effective in finding high-quality solutions in a reasonable amount of time

(Hartmann, 1998). Simulated Annealing approach is another metaheuristic inspired

by annealing in metallurgy. It uses randomness and a temperature control to search

for a near-optimal solution (Cho & Kim, 1997). Tabu search is a local search method

that uses a memory of recently visited solutions to avoid getting stuck in a local

optimum (Thomas & Salhi, 1998).

2.3.4 Matheuristic Methods

In this section, we will review most important decomposition methods that are closely

related to the method proposed in this thesis.

As discussed previously, both heuristics methods and mathematical programming

methods have been used to solve the RCPSP. Mathematical programming methods

give an optimal solution for scheduling problems. However, the limitation of math-

ematical programming is that it is difficult to find an optimal solution for large size

problems. Although heuristic methods only find feasible solutions, they can handle

large and complex scheduling problems. A large complex optimization problem can be

solved by hybrid solution methods, which combine both (meta)heuristics and math-

ematical programming methods. A hybrid solution method is called a matheuristic.

These matheuristics are increasingly being used to solve scheduling problems in in-

dustry.

Matheuristics can be classified into three approaches:
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1. Decomposition approaches. Decomposition approaches are a class of optimiza-

tion methods that involve breaking down a large and complex problem into

smaller and simpler subproblems that can be solved independently (Prabhu,

2021).

2. Improvement heuristics or metaheuristic. They work by exploring the solution

space and making small improvements to the current solution in order to find

better ones. They are particularly very useful in solving problems that are

difficult or impossible to solve exactly such as RCPSP, which is a NP-Hard

problem (Maniezzo et al., 2021).

3. Relaxation-based approaches. These solution approaches find an approximate

solution by relaxing certain or all constraints in the original problem. The

solution of the relaxed problem is then used as a starting point for finding a

solution to the original problem (An et al., 2021).

Several authors have addressed the rescheduling problem for single-stage, single-

unit production processes using a decomposition method (Roslöf et al., 2001). Their

proposed solution includes a MILP formulation for inserting batches of activities into

a schedule. A set of (direct and indirect) precedence constraints is used to maintain

the relative order of the activities in the batches. A similar approach can be used for

scheduling single-stage production process with parallel units as in Méndez & Cerdá

(2003) where a decomposition approach is used to generate an initial schedule. Roslöf

et al. (2002) used a MILP formulation to add new batches of activities to the current

partial schedule while maintaining the relative order of the scheduled batches of a

small-scale industrial problem.

Since the development of hybrid methods such as model-reduction methods, aggre-

gation techniques, and decomposition methods (Chen, 2002; Yee, 1998; Harjunkoski

& Grossmann, 2002), the use of exact methods to solve large-scale scheduling prob-

lems with complex constraints has become increasingly attractive (Maravelias, 2006;

Roslöf et al., 2001). These methods are mainly based on exploiting the flexibility
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provided by mixed-integer linear programming (MILP) to easily accommodate com-

plex technological constraints while restricting the number of simultaneous decisions

in order to ensure reasonable CPU time.

A process-specific MILP is tailored to the constraints and requirements of a spe-

cific process, such as scheduling, routing, or resource allocation. The use of a process-

specific MILP model allows to take into account all the details of the problem and find

optimal solutions. The model is reduced in size by using pre-processing rules (Méndez

& Cerdá, 2002). In the same way, applying the block-planning technique, by which

batches within a block are predetermined based on sequence-dependent changeover

times can also lead to significant improvement in performance of RCPSP solution

(Günther & Neuhaus, 2006).

In batch processing, a set of similar or identical tasks are grouped together and

processed as a batch with the goal of improving efficiency and reducing costs. Batch

processing is commonly used in industries such as chemical, pharmaceutical, and food

processing, as well as in manufacturing (Trautmann & Schwindt, 2005). Priority rules

are used in batch processing to determine the order in which batches are processed.

These rules are usually based on factors such as the urgency of the task, the avail-

ability of resources, and the cost of processing the batch. Common priority rules

include First-Come-First-Served (FCFS), Earliest Due Date (EDD), Shortest Pro-

cessing Time (SPT), and Critical Ratio (CR) (Trautmann & Schwindt, 2005). The

relative order of batches can be important in batch processing as it can affect the

overall efficiency and effectiveness of the process. For example, in the pharmaceutical

industry, batches must be processed in a specific order to ensure that the final prod-

uct meets regulatory requirements (Schwindt & Trautmann, 2000). To maintain the

relative order of batches in batch processing, various techniques have been proposed,

such as using priority rules and constraints within a mathematical model, such as

a mixed-integer linear programming (MILP) model. In some cases, pre-processing

procedures can be used to eliminate redundant variables and constraints within the

MILP model, resulting in improved computational efficiency. However, there are lim-

itations to these techniques, and sometimes the relative order may not be maintained
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(Maravelias, 2006).

A batch-based MILP model is a mathematical model used to solve RCPSPs. In

this model, the activities of a project are divided into a series of smaller, manage-

able batches, and the resources required for each batch are optimized over time. The

objective is to minimize the makespan or the total completion time of the project,

subject to constraints such as resource availability, task precedence, and time win-

dows. The advantage of using a batch-based MILP model is that it provides a more

fine-grained control over the scheduling process, allowing for more accurate and effi-

cient scheduling decisions (Afshar-Nadjafi, 2021).

A network-based MILP model is a type of mathematical optimization model that

represents the RCPSP as a network of activities and resources. In this model, the

activities are represented as nodes in the network, and the precedence constraints

between the activities are represented as directed edges. The resources are modeled

as constraints on the use of each activity. The objective of the model is to determine

the optimal schedule for the activities such that the project completion time is mini-

mized while satisfying all the resource constraints. This type of model is formulated

as a mixed-integer linear programming (MILP) problem and can be solved using op-

timization algorithms such as branch-and-bound or branch-and-cut (Alipouri et al.,

2020).

A batch-based MILP model and a network-based MILP model are proposed for

scheduling individual groups. Kopanos et al. (2010) propose a solution method con-

sisting of two steps: a constructive step and an improvement step. Two alternatives

batch-based MILP formulations are proposed for scheduling the activity batches in the

constructive step based on the number of suitable processing units. Reordering and

reinsertion are part of the improvement step. The reordering stage involves swapping

the order of activity batches processed to improve the workflow. Reinsertion con-

sists of the rescheduling of individual activity batches. The two stages are repeated

until no improvement is achieved within a predetermined number of iterations. The

cumulative model tends to have a higher computational cost. The best results were
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obtained when a single batch was scheduled per iteration in an experimental study

examining the effect of group size (Kopanos et al., 2010). A similar decomposition

method is applied to a real-world application of a multi-stage, single-unit problem

(Kopanos et al., 2012). According to Gomes et al. (2010), a discrete-time network-

based model can be used to insert additional activity batches into an existing schedule

for a production process with identical parallel processing units.

In the decomposition method, the short-term scheduling problem is divided into

two subproblems: the master problem and the subproblem. The master problem

is a linear programming problem that defines the overall objective function and the

constraints that are common to all subproblems. The subproblem is a mixed integer

linear programming problem that defines the objective function and the constraints

that are specific to each subproblem. The master problem and the subproblem are

solved iteratively, with the solution of one problem being used as input for the other,

until a satisfactory solution is found (Trautmann et al., 2008).

The short-term scheduling problem has been widely discussed in the literature.

This decomposition approach is based on a mixed-inter linear programming formula-

tion broken down into a set of shorter-term scheduling interdependent sub-problems.

Batching provides a set of batches with fixed sizes needed to satisfy the primary re-

quirements of the problem. Batch scheduling allocates the activities, duration, and

mode over time to the processing of activities in each batch.

Prabhu (2021) proposed a multi-step optimization matheuristic based on solving

MILP formulations repetitively for carefully grouped subsets of activities using three

ranking criteria (priority, earliest start, and duration). Their proposed multi-step

optimization (MSO) has three main steps: sorting activities, creating subproblems

consisting of activities in subgroups, and repetitively optimizing the schedule until

all subgroups are processes. Prabhu (2021) developed three variants of the MSO ap-

proach as illustrated in Figure 2.1.

The first variant (MSO-1) mainly divides the list of activities into two subgroups:

one with priority-1 activities, and the other with priority 2 and 3 activities. The
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Figure 2.1: Three variants of the MSO algorithm (Prabhu, 2021)

optimization model is then run on the first subgroup with priority 1 activities. The

solution obtained is then used to “fix or set” the ES and LS times of the activities

in the subgroup. Then, the optimization model is run on the activities in the second

subgroup.

MSO-2 the second variant creates subgroups of a predetermined size. First , the

network activities are first sorted by decreasing priority, increasing ES, and decreasing

duration. Once the activities have been sorted, subgroups of the appropriate size are

created. The algorithm then proceeds to optimizing the first subgroup. The obtained

solution is used to “fix or set” the start times of the activities in the subgroup. The

algorithm then proceeds to the next iteration where the next subgroup is optimized

and the start times of its activities determined and fixed. This process is repeated

until all subgroups have been optimized.

The third variant MSO-3 was developed with the aim of taking into account the

precedence relationships. Hence, the subgroups are not optimized independently as
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in MSO-2. Starting with the first subgroup, the algorithm first optimizes the current

batch then uses its solution to “fix or set” the start times of the activities in the batch.

Then, the algorithm adds the next subgroup to the current batch with information

about the precedence pairs, duration, availability of resources and demand for re-

sources to create a new batch of activities to optimize. This process repeats until the

final batch that contains all network activities is optimized. Numerical experiments

conducted by Prabhu (2021) show that MSO 3 is the most time efficient variant and

produces higher quality solutions. MSO-3 provides better quality solutions compared

to the serial-SGS, however the serial-SGS is capable if producing a solution for large

size problems in significantly shorter times.

2.4 Network Complexity Measures

There are four general categories of network complexity measures: precedence-oriented,

resource-oriented, time-oriented and hybrid coefficients.

Coefficient of Network complexity (CNC).

The precedence-oriented CNC measures how dense the project network is. It is the

ratio of the total number of non-dummy precedence pairs (P ) to the total number of

non-dummy activities (n).

CNC =
P

n
(2.23)

If many precedence pairs are present, a project is considered to be a disjunctive

project. In a disjunctive project many tasks cannot be carried out concurrently. On

the other hand, cumulative projects are those with a low number of precedence pairs.

In a cumulative project many activities can be carried out simultaneously. A number

of studies have indicated that problems become easier as their CNC increases (Her-

roelen & De Reyck, 1999).

Order Strength (OS).

The Order Strength (OS) is another precedence-oriented coefficient aiming to indi-

cate network density. The total number of precedence relationships is denoted by P̂

including both direct and transitive precedence relationships. n2−n
2

is the theoretical
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maximum number of all possible precedence relationships.

OS =
P̂

n2 − n

2

(2.24)

The OS is similar to the CNC as it also measures the density of the network

(Herroelen & De Reyck, 1999; De Nijs, 2013). Small values of the CNC and OS

indicate that the project has many activities that can be scheduled in parallel Koné

et al. (2011). Smaller values of CNC and OS result in longer solution time to find

an optimal solution resulting from a wider feasible region (Herroelen & De Reyck,

1999).

Resource Factor (RF ).

(RF ) is a resource-oriented complexity coefficient which indicates the average resource

demand per activity for a resource type.

RF =
1

n |K|
∑︂
i∈J

∑︂
k∈K

⎧⎨⎩1, if rik > 0

0, otherwise
(2.25)

where n is the number of activities, J is the set of activities, K is the set of resource

types, and rik is the demand for resource type k by activity i.

The RF measures the density of the resource demand based on the demand matrix

rik. It scans for each activity/resource combination whether the resource is requested

by the activity or not and calculates the average fraction of all resources requested by

all activities (percentage of resource use). If RF = 1, then all resources are demanded

by all activities. If RF = 0, then none of the resources are demanded by any of the

activities. Kolisch et al. (1995) conducted experiments on 480 RCPSP instances with

30 activities and four types of resources to demonstrate that CPU time increases with

higher RF .

Resource Constrainedness (RCk).

Resource Constrainedness (RCk), a resource-oriented network complexity coefficient,
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defines the average usage of resource type k over the activities using that resource k.

RCk =

∑︁
i∈J

rik

Rk

∑︁
i∈J

⎧⎨⎩1, if rik > 0

0, otherwise

(2.26)

where Rk is the availability for resource type k.

RC indicates the average amount of resources Constrainedness over all resources

(De Nijs, 2013; Kolisch et al., 1995; Patterson, 1976). It is calculated by:

RC =

∑︁
k∈K

RCk

|K|
(2.27)

A large value of RC indicates an extremely resource-constrained project. As

demonstrated in Figure 2.2, computation time increases as the RC increase at first,

then drops after it reaches a peak (Herroelen & De Reyck, 1999). It is interesting

to note that the RC exhibits an easy-hard-easy complexity pattern similar to a bell

curve. It is not very difficult to solve problem instances in which RC is extremely

small or extremely large. A higher computational effort is required to solve instances

with RC values between 0.4 and 0.75.

Resource Strength (RS)

Resource Strength (RS) is a measure of the resources available for performing tasks or

activities. It is a measure of how much resource (e.g., labor, material, or equipment)

is available to be used in a particular activity or set of activities.

RSk =
Rk

1

n

∑︁
i∈J

rik

(2.28)

RS is often used in scheduling and project management to evaluate the feasibility

of a project schedule, as well as to identify potential resource constraints and bottle-

necks. The higher the RS, the more resources are available to be used for completing

tasks, which can result in a faster solution or more efficient schedule. Conversely,

a low RS can indicate that there may not be enough resources to complete all the
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Figure 2.2: Computational complexity vs RC (Herroelen & De Reyck, 1999)

tasks in a schedule, or that the schedule may take longer or be more complex due to

resource constraints (Cooper, 1976).

Process Range (PR).

The quotient between the maximum and minimum duration of project activities is

known as the Process Range (PR) as shown in Equation (2.29). If the PR is large,

this means there are large duration differences between activities, which in turn in-

creases the computation time because the solver must search through a larger solution

space to assign an optimal start time for the longer-duration activities that may exist

among the short-duration activities (Herroelen & De Reyck, 1999).

PR =
max
i=1...n

{Di}

min
i=1...n

{Di}
(2.29)

Disjunction Ratio (DR).

Disjunction Ratio (DR) is the product of the coefficient of network complexity (CNC)

with the Resource Constrainedness (RC).
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DR = CNC ×RC (2.30)

Koné et al. (2011) proposes an MILP formulation type selection guide based on the

DR and PR indicators values as illustrated in Table 2.3 where the symbol ≻ means

“dominate”.

Table 2.3: Performance of MILP formulations based on DR and PR (Yin, 2022)

High DR Low DR

Low PR DDT ≻ DT≻ FCT ≻ OOEx ≻ SEE DDT ≻ DT ≻ OOEx ≻ FCT ≻ SEE

High PR FCT,OOEx ≻ SEE ≻ DT ≻ DDT OOEx ≻ FCT ≻ SEE ≻ DT ≻ DDT

In this thesis, the standard NSWPP formulation is extended to the multi-calendar

cases with additional precedence relationships and time constraints. The following

chapters provide detailed problem definition, mathematical modeling and solution

approaches followed by extensive numerical experiments and their discussion.



Chapter 3

Mathematical Model and Solution Approaches

The Naval Surface Ship Work Period Problem (NSWPP) is a complex scheduling

problem that involves coordinating multiple maintenance and refit activities on a

naval surface ship. The problem is characterized by a large number of activities that

are governed by multiple calendars for activities and resources. Additionally, there

are often other than Finish-to-Start precedence relationships that must be taken into

account, as well as timing constraints that dictate when an activity can start or end.

Another level complication is added when activities are permitted to be executed

in different modes requiring different amount of resources and resulting in different

activity duration. The objective is to front-load high-priority and long-duration ac-

tivities during the project time horizon.

Initially, the original NSWPP (without the multi-calendar, multi-mode activities

and time enforcement constraints) was formulated as an extension of the traditional

RCPSP problem. (Bertrand, 2020) and (Prabhu, 2021) have attempted to apply and

compare the performance of most RCPSP optimization modeling and solution tech-

niques in the literature to solve the NSWPP. Differences in approach performance

was observed between the two optimization problems although they both share sev-

eral elements.

The problem considered in this thesis aims at including the new requirements

and characteristics identified by the industrial partners of this research project. The

requirements and characteristics include multi-calendar activities, multi-calendar re-

sources, three additional activity relationships (FF, SS, and SF), and activity start

and/or finish time constraints. Adapting each of these new requirements add a level

of challenge to solve the problem.

38
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This chapter is organized as follows. The first section will present the univer-

sal matrix developed to accommodate the multi-calendar requirements. Then the

developed BIP formulation will be presented.

3.1 Universal Duration Matrix

To deal with multiple calendars, Yin (2022) proposed a universal duration matrix

that converts all calendars into a single one. Once the activity durations are set in

the universal calendar, the mathematical formulation can be developed as if we were

dealing with one calendar.

The following example is presented here to illustrate the process of building the

duration matrix as developed by Yin (2022). Table 3.1 shows the duration of two

activities following two different calendars. Activity 1 has a duration of 3 days and

follows a 7-day calendar while activity 2 has a duration of 5 days and follows a 5-day

calendar (i.e., no work on weekends). It also is assumed that day 5 (Friday) of the

week under consideration is a holiday and no work can take place in both calendars.

Table 3.1: Illustrative example with two activities

Activity Duration Calendar

1 3 7-day
2 5 5-day

Table 3.2 shows a calendar representation of the basic duration matrix d obtained

for the example considered. Element djt represents the effective duration of activity j

if it were to start on day t. Q is a large positive number. Days when work is prohib-

ited or not allowed because of calendar requirements have duration values of −Q to

prevent their selection by the optimization model. The value of Q must be selected

to avoid scaling issues. A decent value would be slightly larger than the planning

horizon to be determined later with the serial SGS heuristic.
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Table 3.2: Calendar representation of the duration matrix d

Days Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed
t 1 2 3 4 5 6 7 8 9 10

1 3 3 4 4 −Q 3 3 3 3 3
2 8 8 8 8 −Q −Q −Q 5 7 7

d =

(︄
3 3 4 4 −Q 3 3 3 3

8 8 8 8 −Q −Q −Q 5 7

)︄

For example, d11 = 3 means that the effective duration of activity 1 is 3 if it is

started on day 1. Indeed, if activity 1 starts at the beginning of day 1 (Monday) it

will finish at the end of day 3 (Wednesday), hence its duration is 3 full days. d13 = 4

means that the effective duration of activity 1 is 4 if it is started on day 3. The

duration is extended by one day because the fourth day of the workweek would be

Friday which is a holiday. Thus, the third day of actual work is Saturday or day 6.

So that the effective duration in the universal calendar is 4 days. Similarly, we get

d21 = 8 meaning that the effective duration of activity 2 is 8 if it is started on day

1 because its duration spans the holiday and the weekend, thus adding three days to

the effective duration in the universal calendar.

As exposed earlier, under the NSWPP naval vessels tend to have limited time

to undergo refit activities. NSWPPs also have timing constraints on activities that

prescribe their start dates and/or end dates. With these timing constraints and

complex precedence relationships, it is highly plausible for a problem to be infeasible

if some activities are not crashed (i.e., duration reduced). Multi-mode execution of

activities allow the modelling of varying activity duration. These processing modes

include overtime and other execution modes with decreasing activity duration in the

multi-mode model. To include the multi-mode characteristic in the universal calendar

extended problem formulation, the duration matrix is extended from two dimensions

to three dimensions where each element of the matrix is a row vector withM elements.
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M is the number of execution modes available. Mode 1 is the normal duration mode

while mode M is the smallest duration mode. The mth element djtm of the row vector

at the intersection of row j and column t of matrix d is the effective duration of

activity j under execution mode m if it were to start on day t. In general, we have:

d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

[d111, · · · , d11M ] [d121, · · · , d12M ] · · · [d1t1, · · · , d1tM ] · · · [d1H1, · · · , d1HM ]
...

...
...

...
...

...
...

...
... [· · ·, djtm, · · ·] ...

...
...

...
...

...
...

...

[dn11, · · · , dn1M ] · · · · · · [dnt1, · · · , dntM ] · · · [dnH1, · · · , dnHM ]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the illustrative example introduced at the start of this section in Table 3.1,

assuming that activity 1 can only be reduced by one day and activity 2 can be re-

duced by at most two days, the following duration per execution modes are defined

as depicted in Table 3.3.

Table 3.3: Activity duration per execution mode

Modes
Activity 1 2 3

1 3 2 2
2 5 4 3

The following transfer matrix is then obtained:

d =

(︄
[3, 2, 2] [3, 2, 2] [4, 3, 3] [4, 3, 3] [−Q,−Q,−Q] · · ·
[8, 7, 6] [8, 7, 6] [8, 7, 6] [8,7,6] [−Q,−Q,−Q] · · ·

)︄

Vector [8, 7, 6] at the intersection of row 2 and column 4 gives the three effective

duration values for activity 2 if it where to start on day 4. Under mode 1 the duration

is 8, under mode 2 the duration is 7 (reduced by one day), and under mode 3 the

duration is 6 (reduced by one additional day).
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3.2 Earliest Start and Latest Start

This subsection recalls the formulas developed by Yin (2022) to determine the [ES,LS]

windows for multi-mode problems. Table 3.4 shows that the [ES,LS] windows are

the same for Start On, Start On or Before, and Start On or After, but different for

the other three. For multi-mode problems, the start on/before/after constraints can

still be satisfied by pre-calculating [ES,LS] because the duration of the activity is not

needed. On the other hand, the windows must be determined for Finish on, Finish

on or before, and Finish on or after.

Table 3.4: ES and LS values for activity time constraints with multiple execution
modes (Yin, 2022)

Start On
ES date
LS date

Start On or Before
ES max{0,ESFS, ESFF , ESSS, ESSF}
LS min{date,LSFS, LSFF , LSSS, LSSF}

Start On or After
ES max{date,ESFS, ESFF , ESSS, ESSF}
LS min{H,LSFS, LSFF , LSSS, LSSF}

Finish On
ES date− dbj,date,1
LS date− dbj,date,M

Finish On or Before
ES max{0,ESFS, ESFF , ESSS, ESSF}
LS min{date− dbj,date,M ,LSFS, LSFF , LSSS, LSSF}

Finish On or After
ES max{date− dbj,date,1,ESFS, ESFF , ESSS, ESSF}
LS min{H,LSFS, LSFF , LSSS, LSSF}

3.3 BIP Model

A Binary integer programming (BIP) model based on the one introduced in Yin

(2022) is developed to find the optimal solution for this specific problem described

above. The objective function however is changed from maximization to minimization

because it was empirically observed that minimization models of the NSWPP could

be solved faster than their maximization counterparts (Prabhu, 2021). Minimization

problems have a well-established duality theory, which can be used to obtain addi-

tional information about the solution space and to generate solutions more efficiently.

In some scheduling problems, it may be more natural to express the objective as a

minimization problem. For example, minimizing makespan instead of maximizing
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throughput. More in depth discussion of advantage and disadvantage of each model-

ing approach will included in Chapter 4 dealing with the numerical experiments.

3.3.1 Notation

The following notation is used to formulate the scheduling optimization model.

Indices:

i index of activities

j index of activities

t index of time periods (e.g., days)

m index of execution modes

Parameters for Sets:

n integer, number of non-dummy activities

H integer, time horizon considered for scheduling

K integer, number of resource types

M integer, number of execution modes

Sets:

J Set of activities, J = {0, · · · , n} with index i or j

H Set of time periods, H = {0, · · · , H} with index t

K Set of types of resources, K = {1, · · · , K} with index k

M Set of execution modes, M = {0, · · · ,M} with index m

PFS Set of immediate finish to start activity pairs (i, j)

PSF Set of immediate start to finish activity pairs (i, j)

PFF Set of immediate finish to finish activity pairs (i, j)

PSS Set of immediate start to start activity pairs (i, j)

Wj Set of time periods between the early start and late start of

activity j, Wj = {ESj, · · · , LSj}

Fo Set of activity and time pairs (i, s) specifying the time s when

activity i must Finish On

Fb Set of activity and time pairs (i, s) specifying the time s when

activity i must Finish On or Before
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Fa Set of activity and time pairs (i, s) specifying the time s when

activity i must Finish On or After

So Set of activity and time pairs (i, s) specifying the time s when

activity i must Start On

Sb Set of activity and time pairs (i, s) specifying the time s when

activity i must Start On or Before

Sa Set of activity and time pairs (i, s) specifying the time s when

activity i must Start On or After

Other Parameters:

dim (djm) integer, baseline duration of activity i under mode m

ditm (djtm) integer, duration of activity i under mode m if starting at time

t based on its respective calendar

rjk integer, activity j demand for resource type k

Rk integer, capacity of resource k

ESj integer, earliest start time of activity j

LSj integer, latest start time of activity j

pj integer, priority of activity j

θ exponent used to ponderate the priority of activities, θ ≥ 0

ε1 very small duration value assigned to activities with no dura-

tion (i.e., milestones), ε1 ≥ 0

β parameter used to control the weight of execution mode in the

objective function, β ≥ 0

α parameter used to control the weight given to activity duration

in the objective function, α ≥ 0

Decision Variables:

The formulation contains a binary variable for activities determining the start time

of the activities:

xjtm =

⎧⎨⎩1, if activity j starts at time t in mode m

0, otherwise.
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3.3.2 Objective Function

Due to the limited time available to conduct refit operations, it is not always possible

to perform all maintenance activities before the naval vessel has to start its next

mission. Therefore, the objective of the problem in Equation (3.1) is to front-loading

high priority and long-duration activities as much as possible. To avoid artificially

prioritizing activities that see their duration increased due to holidays or days off in

their respective calendar, the baseline activity duration (djm) is used in the objective

function. The execution mode (M) is assumed to be the normal duration mode for

all activities.

Minimize
∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M

xjtm

pθj
(ε1 + djm)

α tmβ (3.1)

3.3.3 Constraints

1. Each activity must be executed only once within its ES and LS time window.

∑︂
t∈Wj

∑︂
m∈M

xjtm ≤ 1 ∀j ∈ J (3.2)

2. Activity Precedence relationships.

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

txjtm ∀i ∈ J ,∀(i, j) ∈ PFS (3.3)

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ ditm)xitm ∀i ∈ J ,∀(i, j) ∈ PFF (3.4)

∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

txitm ∀i ∈ J ,∀(i, j) ∈ PSS (3.5)

∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ ditm − 1)xitm ∀i ∈ J ,∀(i, j) ∈ PSF (3.6)

Constraints (3.3)–(3.6) enforce the precedence relationship for all four types of

requirements (FS, FF, SS, SF) respectively. Constraint (3.3), for a Finish-to-

Start relationship, ensures that a successor j can begin only after its predecessor

i has finished. Constraint (3.4) deals with the finish-to-finish relationships by

ensuring that the successor j cannot be completed until its predecessor i is

finished. Constraint (3.5) deals with the Start-to-Start relationship by ensuring
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that the successor j can only start if the predecessor i has started. Constraint

(3.6) deals with the Start-to-Finish relationship by ensuring that the successor

j can finish iff its predecessor i has started. The (−1) term is in the right-hand

side of constraint (3.6) because an activity starts at the beginning of a period

but finishes at the end of a period. So for an activity to be completed by the

beginning of a period, it must have been completed by the end of the previous

period (Pritsker et al., 1969).

3. Timing constraints.

Some activities must start or end on, before or after a certain date due to various

operational, logistics or administrative requirements.

∑︂
t∈Wi

∑︂
m∈M

txitm = s ∀(i, s) ∈ So (3.7)

∑︂
t∈Wi

∑︂
m∈M

txitm ≤ s ∀(i, s) ∈ Sb (3.8)

∑︂
t∈Wi

∑︂
m∈M

txitm ≥ s ∀(i, s) ∈ Sa (3.9)

Constraint (3.7) forces the activity to start exactly at time s. Constraints (3.8)

and (3.9) force an activity j to start before or after time s respectively.

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm − 1)xitm = s ∀(i, s) ∈ Fo (3.10)

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm − 1)xitm ≤ s ∀(i, s) ∈ Fb (3.11)

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm − 1)xitm ≥ s ∀(i, s) ∈ Fa (3.12)

Constraint (3.10) forces the activity to end exactly at time s. Constraints (3.11)

and (3.12) force an activity j to end before or after time s respectively.

4. Resource Constraints.

Constraints (3.13) guarantee that, in any given period t, the total amount of

resource k used by all scheduled activities does not exceed the resource capacity
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during that period Rtk.

∑︂
i∈J

min{LSi,t}∑︂
s=max{t−dbitm+1,ESi}

∑︂
m∈M

rjktxism ≤ Rtk ∀k ∈ K,∀t ∈ H (3.13)

5. Bounds constraints.

xjtm ∈ {0, 1} ∀j ∈ J , t ∈ Wj (3.14)

Putting the model together gives the following BIP.

Min
∑︂
j∈J

∑︂
t∈Wi

∑︂
m∈M

xitm

pθj
(ε1 + dim)

α tmβ

s.t.: ∑︂
t∈Wj

∑︂
m∈M

xjtm ≤ 1 ∀j ∈ J

∑︂
j∈J

min{LSj ,t}∑︂
b=max{t−dbjtm+1,ESj}

∑︂
m∈M

rjktxjbm ≤ Rtk ∀k ∈ K,∀t ∈ H

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

txjtm ∀(i, j) ∈ PFS∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ djtm)xjtm ∀(i, j) ∈ PFF∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

txjtm ∀(i, j) ∈ PSS∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm ∀(i, j) ∈ PSF∑︂
t∈Wi

∑︂
m∈M

t xitm = s ∀(i, s) ∈ So∑︂
t∈Wi

∑︂
m∈M

t xitm ≤ s ∀(i, s) ∈ Sb∑︂
t∈Wi

∑︂
m∈M

t xitm ≥ s ∀(i, s) ∈ Sa∑︂
t∈Wi

∑︂
m∈M

(t+ ditm − 1)xitm = s ∀(i, s) ∈ Fo
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t∈Wi

∑︂
m∈M

(t+ ditm − 1)xitm ≤ s ∀(i, s) ∈ Fb∑︂
t∈Wi

∑︂
m∈M

(t+ ditm − 1)xitm ≥ s ∀(i, s) ∈ Fa

xjtm ∈ {0, 1} ∀j ∈ J , t ∈ Wj

The formulation presented above will be modelled in Python and solved using the

commercial solver Gurobi through Gurobipy. Given that the current problem is a an

extension of the original NSWPP which is already an extension of the RCPSP, it is

thus NP-hard will be more difficult to solve as the instance size increases. In what

follows, we will present the adaptation made to the serial-SGS heuristic before the

developed matheuristics are introduced.

3.4 Modified Serial-SGS Algorithm

The standard Serial Schedule Generation Scheme (Serial-SGS) is a heuristic approach

used to generate a feasible schedule by considering the resources and time constraints

of the project. The method involves generating a schedule by assigning activities to

time slots in a serial manner, which means activities are assigned one by one in a pre-

determined order. The objective of this method is to minimize the makespan, which

is the total duration of the project (Chtourou & Haouari, 2008). The method uses a

greedy approach to assign the activities to the earliest available slot and adjusts the

schedule if resource conflicts arise. The key to serial-SGS is simply to schedule activ-

ities as early as possible. For the schedule generation process to work, there must be

an ordered list of activities. The project activities are ordered according to various

criteria such as priority, duration, and ES. With the help of these ranking rules, a

workable schedule that front-load high-priority and lengthy tasks can be created.

A modified serial-SGS heuristic is needed to deal with multiple calendars, relation-

ships and timings constraints which do not exist in the standard NSWPP or RCPSP.

Although the adapted serial SGS seems complex with many steps, decision making,

and formulations, its basic logic is to simply schedule activities as early as possible

within resource availability. If timing constraints are not satisfied for an activity,
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the duration of its predecessors are iteratively reduced until a feasible schedule is

obtained. The decision condition and statement Sj = Sj + 1 if c[j,Sj ] = 0 (line 50

and 51) is added to ensure that activities are not scheduled to start on a day-off.

Without this condition, if the immediate predecessor ends on a day before a holiday,

the successor will be scheduled to start on the holiday.

The pseudo-code of the modified serial-SGS developed by Yin (2022) is given be-

low.

Algorithm 1: Compute the start time Sj of activity j

1: Input data: n, djtm, dbjtm, M , Rkt, rjkt, PFS, PFF , PSS, PSF

2: Initialize: j = 1, m1 = 1

3: while j ≤ n do

4: Initialize Sj = 1

5: if PFS ̸= ∅ then

6: Initialize: i = 1

7: Find the cardinality PFS of set PFS: PFS = |PFS|
8: SFS = 1

9: while i ≤ PFS do

10: if SFS ≤ Si + di,Si,mi
then

11: SFS = Si+ di,Si,mi

12: end if

13: i = i+ 1

14: end while

15: end if

16: if PFF ̸= ∅ then

17: Initialize: i = 1

18: Find the cardinality PFF of set PFF : PFF = |PFF |
19: SFF = 1

20: while i ≤ PFF do

21: if SFF ≤ Si + di,Si,mi
− dbj,Si+di,Si,mi

,mi
then

22: SFF = Si + di,Si,mi
− dbj,Si+di,Si,mi

,mi
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23: end if

24: i = i+ 1

25: end while

26: end if

27: if PSS ̸= ∅ then

28: Initialize: i = 1

29: Find the cardinality PSS of set PSS: PSS = |PSS|
30: SSS = 1

31: while i ≤ PSS do

32: if SSS ≤ Si then

33: SSS = Si

34: end if

35: i = i+ 1

36: end while

37: end if

38: if PSF ̸= ∅ then

39: Initialize: i = 1

40: Find the cardinality PSF of set PSF : PSF = |PSF |
41: SSF = 1

42: while i ≤ PSF do

43: if SSF ≤ Si − dbjSimj
+ 1 then

44: SSF = Si − dbjSimj
+ 1

45: end if

46: i = i+ 1

47: end while

48: end if

49: Sj = max{Sj, SFS, SFF , SSS, SSF}
50: while cjSj

= 0 do

51: Sj = Sj + 1

52: end while

53: Initialize: g = 0

54: while g ≤ djSjmj
do
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55: if RkSj+g < rjkSj+g then

56: Sj = Sj + g + 1

57: g = 0

58: else

59: g = g + 1

60: end if

61: end while

62: if Sj > Start-On Datej OR Sj + DjSjmj
> Finish-On Datej OR Sj >

Start-On-or-Before Datej OR Sj +DjSjmj
> Finish-On-or-Before Datej then

63: j = j − 1

64: while mj ≥ M do

65: j = j − 1

66: end while

67: mj = mj + 1

68: else

69: Initialize: g = 0

70: while g ≤ DjSjmj
do

71: RSj+g,k = RSj+g,k − rj,k,Sj+g

72: g = g + 1

73: end while

74: j = j + 1

75: mj = 1

76: end if

77: end while

An example of this pre-processing is demonstrated in Tables 3.5 to 3.8. Activ-

ities, their priority, Earliest Start, and duration along with precedence relationship

and timing constraints are demonstrated 3.5. Sorting the activities base on Priority,

ES and Duration results in Table 3.6. Sorting the activities base on timing constraints

results in the order of activities as demonstrated in 3.7. For the third step, the out-

come of sorted activities is demonstrated in 3.8. 3.8 identifies the final order by which

the activities are scheduled.
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Table 3.5: Result of Standard Serial-SGS algorithm

Activity Priority ES Duration Precedence Relationship Timing Constraint

1 1 0 5 Activity 3 (FS-Successor)
2 1 3 1 Start on day 3
3 1 0 4 Activity 1 (FS-Predecessor)
4 1 0 8
5 2 0 4
6 2 0 8
7 1 7 2 Start on day 7
8 2 0 3

Table 3.6: Results after Sorting by Priority, ES, and Duration

Activity Priority ES Duration Precedence Relationship Timing Constraint

4 1 0 8
1 1 0 5 Activity 3 (FS-Successor)
3 1 0 4 Activity 1 (FS-Predecessor)
2 1 3 1 Start on day 3
7 1 7 2 Start on day 7
6 2 0 8
5 2 0 4
8 2 0 3

Table 3.7: Results after Sorting Based on Precedence Relationships

Activity Priority ES Duration Precedence Relationship Timing Constraint

4 1 0 8
3 1 0 4 Activity 1 (FS-Predecessor)
1 1 0 5 Activity 3 (FS-Successor)
2 1 3 1 Start on day 3
7 1 7 2 Start on day 7
6 2 0 8
5 2 0 4
8 2 0 3
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Table 3.8: Results after Sorting by Timing Constraints

Activity Priority ES Duration Precedence Relationship Timing constraints

2 1 3 1 Start on day 3
7 1 7 2 Start on day 7
4 1 0 8
3 1 0 4 Activity 1 (FS-Predecessor)
1 1 0 5 Activity 3 (FS-Successor)
6 2 0 8
5 2 0 4
8 2 0 3

3.5 New Matheuristic Algoritms

In this section new developments to solve the NSWPP using a decomposition ap-

proach and a local search using improved versions of Multi-Step Optimization (MSO)

are discussed. MSO being a matheuristic there is no guarantee of finding the optimal

solution. However, it is hoped that it would find high-quality solutions in reasonable

computation times. In a heuristic model, the goal is to find a local optimum. In a

matheuristic model, the goal is to escape the local optimum and find a better local

optimum in order to gradually approach the global optimum. In effect, Prabhu (2021)

found the original MSO to efficiently provide close to optimal solutions than other

heuristic methods.

Prabhu (2021) introduced a decomposition matheuristic where an instance with a

large number of activities is solved by creating subgroups of the activities and then it-

eratively optimizing each subgroup using a binary integer programming model. Three

variants (MSO–1, MSO–2, and MSO–3) were proposed. Brief descriptions of these

variants were presented earlier in section 2.3.4.

In this thesis, two new variants of the MSO algorithm based on the agorithms

proposed by Prabhu (2021) for solving the original NSWPP will be developed to

handle the new features and requirements identified by our industry partners, i.e.,

multi-calendar activities and resources, the three new activity relationships (FF, SS,

and SF), and timing constraints as previously discussed. The new variants MSO–4

and MSO–5 are presented below.
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3.5.1 Multi-Step Optimization Variant 4 (MSO–4)

The new variants must handle multi-calendar activities and resources, four activity re-

lationships (FS, FF, SS, and SF), and timing constraints. MSO–4 can be summarized

in four main steps as follows.

• Step 1 – Data preparation

– Run Algorithm 1 and get an initial schedule satisfying all precedence rela-

tionships, multi-calendar and timing constraints. An example is depicted

in Table 3.9.

Table 3.9: Result of Algorithm 1

Activity Priority ES Duration Precedence Relationship Timing Constraint

1 1 0 5 Activity 3 (FS-Successor)
2 1 3 1 Start on day 3
3 1 0 4 Activity 1 (FS-Predecessor)
4 1 0 8
5 2 0 4
6 2 0 8
7 1 7 2 Start on day 7
8 2 0 3

• Step 2 – Reordering the Activities

– First, activities are ordered based on three criteria (priority, ES, and du-

ration) as shown in Table 3.10.

– Second, activities with timing constraint (mandatory start date and end

date) are moved at the top of the list, because they must be dealt with as

early as possible when resources are available. See the example in Table

3.11.

– Third, activities with precedence relationship are rearranged as required

such that the successor activities are listed after their predecessors. See

the example in Table 3.12 .
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This sorting step ensures that activities are arranged in the desired order to

satisfy the goal of front-loading high-priority and lengthy jobs while respecting

other requirements.

Table 3.10: First Sorting Step for MSO–4

Sorting by Priority, ES, and Duration

Activity Priority ES Duration Precedence Relationship Timing Constraint
4 1 0 8
1 1 0 5 Activity 3 (FS-Successor)
3 1 0 4 Activity 1 (FS-Predecessor)
2 1 3 1 Start on day 3
7 1 7 2 Start on day 7
6 2 0 8
5 2 0 4
8 2 0 3

Table 3.11: Second Sorting Step for MSO–4

Sorting by Mandatory Start and End Dates

Activity Priority ES Duration Precedence Relationship Timing Constraint
2 1 3 1 Start on day 3
7 1 7 2 Start on day 7
4 1 0 8
1 1 0 5 Activity 3 (FS-Successor)
3 1 0 4 Activity 1 (FS-Predecessor)
6 2 0 8
5 2 0 4
8 2 0 3

• Step 3 – Subgroup Decomposition

– Divide the ordered activity list into subgroups of predefined fixed size

regardless of constraints and relationship requirements. Consequently, a

subgroup may contain activities that have precedence relationships with

activities in another subgroup. Each subgroup constitutes a sub-problem.

The size of the subgroups can be decided by calibration or test-and-error.

In this thesis, we used subgroups of size 50 after conducting a calibration

experiment to be presented later in Chapter 4. Figure 3.1 Illustrates how
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Table 3.12: Third Sorting Step for MSO–4

Sorting by Precedence Relationship

Activity Priority ES Duration Precedence Relationship Timing Constraint
2 1 3 1 Start on day 3
7 1 7 2 Start on day 7
4 1 0 8
3 1 0 4 Activity 1 (FS-Predecessor)
1 1 0 5 Activity 3 (FS-Successor)
6 2 0 8
5 2 0 4
8 2 0 3

subgroups are created under MSO–4 for subgroup size of two (2). Activities

with the same colour are activities that have precedence relations with one

another. Also note that if the total number of activities is not a multiple

of the subgroup size, the last subgroup will contain less activities than the

other subgroups.

• Step 4 – Iterations

1. Optimize the scheduling problem using the BIP model for sub-problem 1

containing only subgroup 1.

2. Using the results obtained in part 1, fix the start times and mode of ex-

ecution of activities in sub-group 1. This is called “scheduling” activities

in subgroup 1.

3. Update the remaining resources availability by subtracting the resources

used by the “scheduled activities” from the initial resource availability.

4. Create a new sub-problem by adding the next subgroup to the current sub-

problem (i.e., the one that was just optimized). This is done to maintain

precedence relationship and the timing constraints between sub-groups.

See Figure 3.2.

5. Repeat the sub-problem optimization, “scheduling subgroup activities, up-

dating remaining resource availability, and adding the next subgroup to

create a new sub-problem until all subgroups in the problem have been
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Figure 3.1: Illustration of subgroup creation under MSO–4
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optimized and scheduled.

Figure 3.2: Illustration of subproblem creation under MSO–4

3.5.2 Multi-Step Optimization Variant 5 (MSO–5)

MSO–5 uses a different idea to create the subgroups. The decomposition in sub-

groups of mostly equal size in MSO–4 may result in precedence relationships between

activities belonging to different subgroups. Thus, MSO–5 is designed to avoid these

inter-subgroup dependencies by allowing subgroups to deviate from the pre-specified

subgroup size. An activity along with all its “connected dependent activities” is

placed in a non-empty subgroup, if adding them will not exceed the predefined sub-

group size. Otherwise, they are placed in a new subgroup. An activity along with

all its “connected dependent activities” is placed in an empty subgroup even if their

number exceeds the predefined subgroup size (i.e., they must be placed in a subgroup

together).

For MSO–5, steps 1 and 2 are the same as for MSO–4. Step 3 creates the sub-

groups as described in the previous paragraph such that inter-subgroup dependencies

are avoided. This then allows the iterative optimization (Step 4) to be performed on

each individual subgroup as detailed below.

Step 4 – Iterations
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1. Optimize the scheduling problem using the BIP model for sub-problem 1 (i.e.,

also subgroup 1).

2. Using the results obtained in part 1, fix the start times and mode of execution

of activities in sub-group 1.

3. Update the remaining resources availability by subtracting the resources used

by the “scheduled activities” from the initial resource availability.

4. Repeat the optimization on the next subgroup, “scheduling subgroup activities,

updating remaining resource availability, until all subgroups in the problem have

been individually optimized and scheduled.

Figure 3.3: Illustration of subgroup creation under MSO–5

Figure 3.3 illustrates how subgroups are created under MSO–5 with a subgroup

size of two (2). Activities 3 and 1 that are connected are now in the same subgroup
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unlike previously under MSO–4 where they were in two different subgroups (see Fig-

ure 3.1). Figure 3.4 illustrates the individual subgroups that are iteratively optimized

under MSO–5.

Figure 3.4: Illustration of subproblem creation under MSO–5

3.5.3 Weighted Average Sorting Criterion

The objective of this problem is to front-load activities with high priority and long

duration. Thus, when ordering the activities before subgrouping them, they are

sorted based on their priority, then their ES and finally on their duration. These are

the sorting criteria used in the presentation of MSO–4 and MSO–5 above. Another

criterion, the Average Weighted Sorting Score (AWSSj) of each activity j as given by

equation (3.15), will be used in the numerical experiments section. The parameters

pj, ESj, and dj are the priority, ES and duration of activity j respectively. This

criterion would allow the decision maker to indicate their preferences by putting a

weight (wi) on each criterion i. The weights wj, wj, and wj are weight given by the

decision maker to the priority, ES and duration of activity j respectively.

AWSSj = wp pj + wES ESj + wd dj ∀j ∈ J (3.15)

where wp + wES + wd = 1. The performance of MSO-4 and MSO-5 are evaluated by

implementing this sorting criteria as well.
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Numerical Experiments and Test Results

Several techniques were proposed to solve the NSWPP in the methodology section,

including the BIP model, the modified serial-SGS heuristic, and two variant of a novel

matheuristic MSO–4 and MSO–5 each with two sorting criteria. The decomposition

method used in the heuristic and matheuristic methods is a combination of cutting

and stacking (Sprecher, 2002). The algorithms are written in Python and are used to

solve several examples to validate, verify, and compare the methodology introduced

in this research. The BIP model is solved by Gurobi 9.5.1 from a code written in

Pulp, an open-source linear integer programming modeller, which can call a variety

of solvers (both open source and commercial). All computations were done on one

of the Industrial Engineering Department Computational Servers (CPU clock rate:

2.20GHz; RAM: 16.00 GB).

4.1 Datasets and Instances

In this thesis, we use the OTC dataset with 136 activities called OTC–136 originally

provided by our industrial partner. A 680-activity dataset called OTC–680 was gen-

erated by duplicating OTC-136 with the goal of having a more complex and difficult

to solve problem (Yin, 2022). Table 4.1 shows the network complexity measures for

these two instances. In the original OTC–136 dataset, all activities have the same

priority level 3, which is not suitable to test the front-loading capabilities of the model

and methods proposed. Thus, 6 new instances were created for each of OTC–136 and

OTC–680 by randomly changing the priority levels of activities to 1 and 2. For OTC–

136, 10 and 20 of the activities are randomly changed to priority 1 and 2 respectively.

For OTC–680, 50 and 100 activities are randomly changed to priority 1 and 2 respec-

tively. These new instances are identified by OTC–136/A and OTC–680/B where

suffices A and B vary from 1 to 6 to represent each of the 6 new instances created.

61
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Table 4.1: Network Indicators

Indicators OTC–136 OTC–680

OS 0.0227 0.0045
CNC 0.7279 0.7279
RF 0.2312 0.2312
RC 0.4642 0.4642
PR 20.0000 20.0000
DR 0.3379 0.3379

4.2 Duration-Weighted Centroid (DWC)

Given that the NSWPP aims at front-loading high priority and long duration ac-

tivities, a Duration Weighted Centroid (DWC) index was introduced by Bertrand

(2020) to evaluate the quality of produced schedules by measuring the mean posi-

tion of the center of mass of priority 1 activities. An improved DWC as shown in

Equation (4.1) was proposed by Yin (2022). Equation 4.1 is intended to give more

weight/importance to schedules that have long-duration activities starting early.

DWC=
∑︂
i∈J1

Si + Fi

2 |J1|
d1.1i (4.1)

DWC is calculated by Equation 4.1, where J1 represents the set of priority-1

activities, Si represent the start time of activities, Fi represent finish time of activity

i respectively, and di represents the duration of activity i. DWC value is smaller when

high-priority long-duration activities are front-loaded.

4.3 Choosing the Gap Tolerance for the BIP Optimization

The tolerance gap is the gap between the incumbent solution and the best known

bound and it is used by optimization solvers as stopping criteria. If the tolerance gap

is set too small, the solver may spent a considerable amount of time trying to reduce

the optimization gap although the incumbent is optimal. Given that the NSWPP

is a NP-hard problem and finding an exact solution for large-scale problems can be

impossible in a reasonable amount of time, it can be beneficial to judiciously set the
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tolerance gap. Multiple runs of the BIP model introduced earlier were conducted

on the OTC-680 dataset for various values of the tolerance gap and the obtained

execution times (CPUt), objective function value (Z), actual gap and DWC values

were recorded as depicted in Table 4.2 and 4.3. A reasonable trade-off between the

optimization gap and the computation time can be decided based on the result of

these tables.

Table 4.2: Results for OTC–680

Tolerance (%) CPUt (s) Z value Z Gap(%) DWC

BIP (0.10) 6966 2675 0.12 973.17
BIP (0.50) 2289 2678 0.25 974.11
BIP (1.00) 1085 2695 0.92 980.24
BIP (5.00) 619 2759 3.35 1003.12

Table 4.3: Results for OTC–680/2

Tolerance (%) CPUt (s) Z value Z Gap(%) DWC

BIP (0.10) 5884 11452.3 0.259 1261.8
BIP (0.50) 3319 11461.7 0.540 1262.2
BIP (1.00) 1957 11490.8 0.963 1265.2
BIP (5.00) 271 11728.9 4.443 1277.4

As expected, the results in Tables 4.2 and 4.3 show that decreasing of the gap

tolerance increases the computation time. The influence is more significant on larger

datasets such as OTC–680 and OTC–680/2. The 0.1%, and 0.5% tolerance gaps lead

to the best quality solutions in terms of Z value (objective value defined in Equation

3.1), actual gap and DWC. The best trade-off between accuracy of the solution and

reasonable CPU time is obtained with the 1% tolerance gap. Therefore, the tolerance

gap for the BIP model is set to 1% for the remainder of this thesis.
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4.4 Selection and Calibration of Parameters for the Matheuristic

Algorithms

Several parameters need to be set or calibrated before extensive comparative experi-

ments can be carried out with the BIP model and MSO algorithms. Parameter selec-

tion can have substantial impact on solution quality and computation times. Some

parameters may result in greater chance of generating better solutions. However, it

can take a longer time to solve the problem. This section discusses the parameter

values used by Bertrand (2020); Prabhu (2021); Yin (2022) and how several other

parameters were selected or calibrated in the present study.

In the objective function (3.1), the term (ε+dim) represents the duration of activ-

ity i under mode m to which ε, a very small number, is added to allow the modelling

of zero-duration activities such as dummy activities or milestone activities which are

commonly incurred in project management. The higher the values of exponent α > 1

the more weight is given to the activity duration in the objective function. α is set

to 1.1 and ε is set to 0.01 in this thesis as have done Bertrand (2020), Prabhu (2021),

and Yin (2022).

The term pθi in the denominator of the first term of the objective function ensures

that activities with high priority are given higher weight and impact. The higher the

value of θ, the higher the impact of the activity’s priority on the objective function.

Through extensive testing and to prevent scaling issues, Bertrand (2020) sets θ = 5

as a reasonable value. This is the value that will be used in our experiments.

Parameter β is the exponent of the execution mode m in the objective function.

As the value of β increases, the number of activities executed in modes higher than

mode 1 will decrease. Recall that higher modes mean crashing activities through

more resources and/or more overtime (i.e., more costly). Thus, there is an incen-

tive to choose an appropriate value for β. Multiple values were tested in order to

determine the appropriate β for the problem under consideration. Table 4.4 shows

the results obtained. A good and reasonable range for β is between 8 and 15 as

its offers a good trade-off between computation time and optimality gap as well as
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not selecting higher execution modes. For the remainder of the tests in this thesis,

β = 10 is selected as it gives the best combination of computation time, optimality

gap, centroid, and makespan.

Table 4.4: Results for Different Values of Parameter β

Number of activities
β CPUt Z Z Gap(%) DWC Makespan Mode 1 Mode 2 Mode 3

5 9322 2674.11 0.67 966.4 567 658 22 0
6 9603 2692.23 0.87 975.5 567 672 8 0
7 9903 2679.74 0.33 974.7 567 680 0 0
8 8864 2695.61 0.92 980.2 571 680 0 0
9 8743 2695.61 0.92 980.2 571 680 0 0
10 8677 2676.54 0.25 973.6 567 680 0 0
15 8776 2684.58 0.54 976.3 571 680 0 0
30 9241 2696.54 0.96 980.6 578 680 0 0

The values of θ, α, β, and ε1 are set to 5, 1.1, 10, and 0.001 respectively. Thus,

the objective function used to solve the problem is:

MinimizeZ =
∑︂
i∈J

∑︂
t∈Wi

∑︂
m∈M

xitm

p5i
(0.001 + dim)

1.1 · t ·m10

4.5 Comparison Between Minimization, Maximization models, and

Serial-SGS

In this thesis, the developed BIP formulation is a minimization. A maximization

formulation with the same constraints was proposed by Yin (2022). A study is car-

ried out to compare performance of the Minimization model, Maximization model,

and the Serial SGS heuristic. The comparison is based on the DWC and makespan

resulting from the solutions obtained. The problem is run on 5 instances obtained by

duplicating the original OTC–136 dataset for up to 4 times as indicated in Table 4.5.

The results shown in Table 4.5 indicate that the minimization model has lower
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Table 4.5: Minimization, Maximization formulations and Serial-SGS Comparison

Minimization Maximization SGS
Size (n) DWC Makespan DWC Makespan DWC Makespan

136 235.5 180 290.4 180 320.8 181
272 403.5 231 534.3 229 567.5 249
408 591.4 343 762.7 340 854.4 382
544 784.6 462 1015.7 455 1094.0 511
680 980.2 571 1277.8 574 1340.6 630

DWC in all instances, meaning that it does a better job front-loading priority-1 ac-

tivities. The maximization model produces schedules with shorter or equal makespan

in most cases. Both minimisation and maximization formulations produce better

solutions in term of DWC and makespan than the Serial-SGS.

4.6 Impact of Subgroup Size for MSOs

MSO–4 and MSO–5 introduced in this thesis, slice the original activity set to sub-

groups of activities and iteratively solve each subgroup or a combination of subgroups

until the original problem is solved. Subgroup size must be carefully calibrated. An

experiment is carried out to illustrate how such a decision could be made. The OTC–

136 and OTC–680 instance were solved by the MSO–4 algorithm using subgroup

sizes varying from 2 to 100. The obtained results are depicted in Tables 4.6 and 4.7

in terms of Data Preparation Time, Constraint Generation Time, and Solver CPU

Time, as well as Objective Value (Z), Makespan (Cmax) and DWC.

Data Preparation Time is the time it takes to read the data from the raw data

files and converting them into a format that PuLP and Python codes can read. Con-

straint Generation Time is the time needed to construct the problem’s constraints in

PuLP. Solver solution time is the time required by the solver CPUt is the time used

by Gurobi to solve the problem. Total Time is the sum of all previous times.
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Table 4.6: Average performance of MSO–4 on OTC–136 with 1% optimality tolerance

Data Constraint
Subgroup Prep. Generat. Solver Total

Size time (s) time (s) CPUt (s) time (s) Z Cmax DWC

2 34.7 468.73 00.62 504.05 123.48 180 240.23
3 33.4 465.76 00.43 499.59 123.48 180 240.23
5 34 455.13 00.52 489.65 124.21 180 242.02
10 33 462.51 00.76 496.27 128.06 180 248.21
20 34 460.37 01.83 496.20 125.16 180 243.48
30 34 456.46 02.52 492.98 126.98 180 246.37
50 34 462.64 02.81 499.45 124.19 180 242.27
70 34 462.83 03.93 500.76 127.30 180 247.25
100 33 459.19 08.49 500.68 124.32 180 242.56

Table 4.6 displays the results obtained with OTC–136. It shows that while prob-

lem Data Preparation times, Constraint Generation times and Total Times are not

significantly impacted by subgroup size, the Solver CPUt increases when the subgroup

size increases. The objective value Z, DWC and makespan are not significantly af-

fected by the subgroup size. The fact that the dataset size is small may explain why

the subgroup size is not a significant factor in this case.

For OTC–680, Table 4.7 shows similar trends as with the smaller dataset. While

Data Preparation times and Constraint Generation times are not impacted by sub-

group size, the Solver CPUt increases when the subgroup size increases. There is

negligible variation for Z and DWC across the range of subgroup size. Subgroup size

30 exhibits an interesting result where the Solver CPUt and Total time are substan-

tially lower at 40.6 seconds and 9619 seconds respectively. It is the subgroup that

offers the best compromise between computation time and objective function, and

will be used for the remaining numerical experiments.
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Table 4.7: Average performance of MSO–4 on OTC–680 with 1% optimality tolerance

Data Constraint
Subgroup Prep. Generat. Solver Total

Size time (s) time (s) CPUt (s) time (s) Z Cmax DWC

2 706 9106 14.1 9872 14854.0 588 1110.9
3 708 9082 12.9 9909 14751.7 595 1103.9
5 706 8976 15.7 9810 14651.0 630 1110.8
10 711 9026 25.3 9951 14648.2 630 1119.6
20 710 8931 44.9 9890 14620.2 623 1119.7
30 714 9031 40.6 9619 14608.7 630 1120.8
50 707 8950 48.8 9925 14626.4 630 1120.1
70 706 9045 97.4 9903 13923.7 630 1123.9
100 710 9374 130.2 9893 14388.2 616 1110.2
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4.7 Comparison of SGS, BIP and MSO

This section presents a comparison of the Serial-SGS, BIP (with different optimality

gaps), MSO–4 and MSO–5 algorithms on computation times and solution quality. No

time limits were imposed for the different runs of the BIP model. They were run until

an optimum solution was achieved. The parameter combinations derived from the

previous calibration sections are applied for this experiment. Tables 4.8 and Table

4.9 display the results obtained for OTC–136 and OTC–680 respectively.

Table 4.8: Results for OTC–136

Data Constr. Opt.
Gener. Prep. BIP Total Gap
Time(s) Time(s) CPUt(s) Time(s) Z (%) Cmax DWC

SGS – – – 30 2418.3 19.1 181 328
BIP(0.1%) 33.1 439.0 5.18 378 2055.0 0.1 180 268
BIP(0.5%) 33.0 438.7 4.31 377 2058.0 0.3 180 272
BIP(1%) 34.8 437.9 4.04 377 2061.8 0.5 180 273
BIP(5%) 33.3 438.4 3.38 377 2100.2 3.9 180 312
MSO–4 33.4 447.0 2.53 491 2054.4 1.7 180 264
MSO–5 33.3 493.0 4.48 494 3034.1 47.7 180 260

Table 4.9: Results for OTC–680

Data Constr. Opt.
Gener. Prep. BIP Total Gap
Time(s) Time(s) CPUt(s) Time(s) Z (%) Cmax DWC

SGS – – – 649 16095 44.1 630 1420
BIP(0.1%) 686.9 6971.8 6971 14119 11452 0.3 588 1262
BIP(0.5%) 702.3 6917.7 2296 10475 11462 0.5 571 1262
BIP(1%) 706.2 6947.7 1090 9330 11491 1.0 567 1265
BIP(5%) 699.4 6974.0 632 8132 11729 4.4 567 1277
MSO–4 701.6 8806.0 43 9695 11954 6.5 630 1136
MSO–5 707.9 9658.0 66 10126 63932 479.0 630 1218

It is evident from Tables 4.8 and 4.9 that the Total Time of the Serial-SGS is



70

significantly smaller than any other method. This is expected as this is a crude al-

though efficient heuristic and it is also a required step for all other methods. The

data preparation times are consistent between the BIP model and MSO algorithms.

Small differences observed can be traced back to server workload variations and other

unknown factors.

Constraints generation times are consistent for the four BIP versions as the op-

timality gap is not involved at this stage. Constraints generation times are slightly

higher for MSO–5 than MSO–4 due to the additional steps needed when creating

subgroups for MSO–5. For the BIP models, the constraints are generated by PuLP

an open-source package for which development has stopped. It is expected that using

newer LP modellers such as Gurobipy would bring significant improvements to this

phase.

For the MSO algorithms the constraint generation was coded in Python. A code

written by a more advanced-coder could potentially reduce these times and bring the

MSO algorithms to the level of PuLP.

In terms of pure Solver times, MSO–4 and MSO–5 produce the lowest times. This

is more evident with the results achieved for the OTC–680 dataset where MSO only

needs 43 seconds. In terms of total times, BIP (5%) , BIP (1%) and MSO–4 perform

well. BIP (5%) has the lowest total time at 8,132 seconds for a 4.4% optimality gap.

BIP (1%) takes 9,330 seconds to reach a 1% optimality gap. MSO–4 9,695 seconds

to reach a 6.5% optimality gap. MSO–4 gets the best DWC at 1136 whereas BIP

(1%) and BIP (5%) get 1265 and 1277 respectively. MSO–4 is capable of better

frontloading activities than the BIP models. It should be noted that the objective

function of BIP model is not DWC. Although MSO–5 takes more time than the BIP

(1%), BIP (5%) and MSO–4, it still achieved a better DWC than BIP (1%) and BIP

(5%).

In summary, BIP (5%) , BIP (1%) and MSO–4 perform well. The matheuristic

principle based on subgroup decomposition is promising. It needs better coding im-

plementation in Python and use newer modellers such as Gurobipy to decrease the

constraint generation time to make the MSO–4 and MSO–5 more efficient.
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4.8 Comparing the Sorting Methods

As explained in subsection 3.5.3, when ordering the activities before subgrouping

them, they are sorted based on their priority, then their ES and finally on their dura-

tion. This is a sequential sorting method with no weight given to the sorting criteria

herein denoted “Sequential–no weight”. Another criterion is the Average Weighted

Sorting Score (AWSSj) of each activity j as given by equation (3.15). This section

compares the results obtained with MSO–4 using the “Sequential-no weight”, and the

Average Weighted Sorting Score (AWSSj) with different weight schemes resulting in

12 runs for each of the OTC–136/1 and OTC680–/1 datasets.

The first run uses the “sequential–no weight” method. Runs 2 to 7 use the

weighted average score with Priority having higher weight than ES and Duration,

and then ES having higher weight than Duration. Runs 8 to 12, use the weighted

average score with Priority having higher weight than ES and Duration, and then

Duration having higher weight than ES. The comparison of Total time, Z value, opti-

mality gap, DWC and makespan is displayed in Tables 4.10 and 4.11 for OTC–186/1

and OTC–680/1 respectively.

As expected, the sorting method has no bearing on the total computation times.

However, the observed results show that the weighted average method outperforms

the sequential method. An empirical observation is that runs 2 to 7 seem to produce

better results than runs 8 to 12. A strong recommendation is then to use the weighted

average score to order the activities before subgrouping them. A weaker recommen-

dation is to use the weighted average score with Priority having higher weight than

ES and Duration, and ES having higher weight than Duration. Additional results

obtained with OTC–136/2 and OTC–680/2 reported below in Tables 4.12 and 4.13

respectively confirm the previous observations. Further investigations are needed to

confirm the empirical observations made here.
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Table 4.10: Comparison of the Two Sorting Methods on OTC–136/1

Weights Total Gap
Runs (Priority, ES, Duration) Time(s) Z (%) DWC Cmax

1 (Sequential–no weight) 483 3262.5 4.68 291.0 181

2 (0.90, 0.05, 0.05) 486 3128.5 0.38 258.7 180
3 (0.85, 0.10, 0.05) 484 3128.0 0.36 259.9 180
4 (0.75, 0.15, 0.10) 483 3129.3 0.40 260.3 180
5 (0.70, 0.20, 0.10) 480 3127.9 0.36 259.9 180
6 (0.55, 0.25, 0.20) 487 3128.2 0.37 258.0 180
7 (0.50, 0.30, 0.20) 482 3128.2 0.37 258.1 180

8 (0.85, 0.05, 0.10) 488 3128.8 0.39 259.3 180
9 (0.75, 0.10, 0.15) 487 3128.6 0.38 258.8 180
10 (0.70, 0.10, 0.20) 491 3128.8 0.39 259.3 180
11 (0.55, 0.20, 0.25) 490 3128.6 0.38 258.8 180
12 (0.50, 0.20, 0.30) 486 3128.0 0.36 257.7 180

Table 4.11: Comparison of the Two Sorting Methods on OTC–680/1

Weights Total Gap
Runs (Priority, ES, Duration) Time(s) Z (%) DWC Cmax

1 (Sequential–no weight) 9917 14557.1 6.00 1050.5 580

2 (0.90, 0.05, 0.05) 9899 13788.2 0.11 1039.8 567
3 (0.85, 0.10, 0.05) 9823 13812.6 0.28 1047.2 588
4 (0.75, 0.15, 0.10) 9748 13799.1 0.18 1041.5 581
5 (0.70, 0.20, 0.10) 9852 13805.9 0.23 1045.7 588
6 (0.55, 0.25, 0.20) 9902 13795.4 0.16 1042.3 581
7 (0.50, 0.30, 0.20) 9932 13797.7 0.17 1042.8 581

8 (0.85, 0.05, 0.10) 9903 13796.4 0.17 1045.6 581
9 (0.75, 0.10, 0.15) 9865 13811.3 0.27 1049.0 567
10 (0.70, 0.10, 0.20) 9835 13796.4 0.17 1045.6 581
11 (0.55, 0.20, 0.25) 9826 13816.7 0.31 1045.4 574
12 (0.50, 0.20, 0.30) 9859 13844.1 0.51 1041.5 574
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Table 4.12: Comparison of the Two Sorting Methods on OTC–136/2

Weights Total Gap
Runs (Priority, ES, Duration) Time(s) Z (%) DWC Cmax

1 (Sequential–no weight) 491 2190.7 0.90 279.5 180

2 (0.90, 0.05, 0.05) 480 2192.5 0.99 264.4 180
3 (0.85, 0.10, 0.05) 481 2192.6 0.99 264.5 180
4 (0.75, 0.15, 0.10) 482 2192.4 0.98 264.5 180
5 (0.70, 0.20, 0.10) 477 2192.5 0.99 264.6 180
6 (0.55, 0.25, 0.20) 478 2191.9 0.96 264.0 180
7 (0.50, 0.30, 0.20) 471 2192.3 0.98 264.7 180

8 (0.85, 0.05, 0.10) 484 2197.5 1.22 266.9 180
9 (0.75, 0.10, 0.15) 481 2191.7 0.95 262.8 180
10 (0.70, 0.10, 0.20) 480 2197.5 1.22 266.9 180
11 (0.55, 0.20, 0.25) 485 2192.4 0.98 264.4 180
12 (0.50, 0.20, 0.30) 474 2192.9 1.01 265.1 180

Table 4.13: Comparison of the Two Sorting Methods on OTC–680/2

Weights Total Gap
Runs (Priority, ES, Duration) Time(s) Z (%) DWC Cmax

1 (Sequential–no weight) 9942 8807.4 6.74 1140.7 637

2 (0.90, 0.05, 0.05) 9707 8290.0 0.92 1052.6 637
3 (0.85, 0.10, 0.05) 9611 8330.0 1.40 1047.2 637
4 (0.75, 0.15, 0.10) 9658 8261.0 0.58 1052.6 637
5 (0.70, 0.20, 0.10) 9714 8330.0 1.40 1047.2 637
6 (0.55, 0.25, 0.20) 9685 8296.4 1.01 1052.8 637
7 (0.50, 0.30, 0.20) 9593 8269.0 0.67 1055.1 637

8 (0.85, 0.05, 0.10) 9615 8287.7 0.90 1062.2 637
9 (0.75, 0.10, 0.15) 9581 8269.2 0.68 1056.2 637
10 (0.70, 0.10, 0.20) 9610 8287.7 0.90 1062.2 637
11 (0.55, 0.20, 0.25) 9587 8288.6 0.91 1055.5 637
12 (0.50, 0.20, 0.30) 9665 8638.4 4.92 1049.0 637
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4.9 Comparing the BIP Models and MSO–4 with Weighted Sorting

Table 4.14 compares the results obtained using the BIP model with tolerance gaps

of 0.1% and 1%, and 6 runs of MSO–4 using the weighted average score for sorting

activities on OTC–680/2. The results show that MSO–4 is competitive in terms of

frontloading and computation times despite its “unoptimized Python coding” imple-

mentation. BIP with 1% tolerance is still the overall best. MSO–4 (0.75, 0.15, 0.10)

offers a good compromise between computation time, Z value and DWC.

Table 4.14: Comparison of BIP and MSO–4 with Weighted Sorting on OTC–680/2

Total Gap
Models/Algorithms Time (s) Z (%) DWC Cmax

BIP (0.1%) 14647 8221.7 0.10 1236.0 637
BIP (1%) 8287 8256.6 0.52 1242.8 637

MSO–4 (0.85, 0.10, 0.05) 9611 8330.0 1.40 1047.2 637
MSO–4 (0.75, 0.15, 0.10) 9658 8261.0 0.58 1052.6 637
MSO–4 (0.70, 0.20, 0.10) 9714 8330.0 1.40 1047.2 637
MSO–4 (0.50, 0.30, 0.20) 9593 8269.0 0.67 1055.1 637
MSO–4 (0.75, 0.10, 0.15) 9581 8269.2 0.67 1056.2 637
MSO–4 (0.50, 0.20, 0.30) 9587 8288.6 0.91 1055.5 637



Chapter 5

Conclusion and Discussion

This thesis proposed a new formulation and two matheuristic algorithms to deal

with the multi-calendar naval surface ship work period problem, which involves the

scheduling of maintenance tasks on naval ships with complex operational constraints

such as multiple execution modes, and timing constraints. First, a binary integer

programming model was developed for the NSWPP. Then, two novel matheuristic

algorithms that combine mathematical programming with heuristic techniques were

designed. The methods were tested on two sets of instances inspired by real-life naval

vessel refit operations and compared to other methods in the literature.

Numerical experiments showed that the proposed BIP model could achieve opti-

mal solutions with Gurobi in a reasonable amount of time for moderate-size instances

(under 400 activities) with optimality gap reasonabily set at 1%. However, for large-

size instances, the solver takes a very long to find the optimal solution. The proposed

MSO algorithms showed potential for finding high-quality solutions but the code effi-

ciency of the constraint generation phase must be improved. Empirical observations

from some of the numerical experiments suggest using the weighted average score to

order the activities before subgrouping them. A weaker recommendation is to use

the weighted average score with Priority having higher weight than ES and Duration,

and ES having higher weight than Duration.

Overall, the proposed method represents a significant contribution to the field of

naval operations research. It provides a powerful tool for scheduling maintenance

tasks on naval ships, which can lead to increased efficiency, reduced downtime, and

improved operational readiness. Furthermore, the matheuristic approach can be ap-

plied to other scheduling problems in various domains, making it a valuable tool for

operations research more broadly.
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There are several potential directions for future research on the multi-calendar

naval surface ship work period problem and the proposed matheuristic method. A

few suggestions are described below.

The first research avenue is the thorough investigation of the weighted average sorting

score to order the activities before subgrouping them. Empirical observations suggest

that it is superior to the sequential Priority-ES-Duration method. Extensive experi-

ments with statistical tests would allow to define the best combination of weights to

use small, moderate and large instances of the NSWPP.

The second research avenue would be to explore other types of formulations for

the multicalendar NSWPP. Indeed, so far only the discrete-time formulation has been

used. Flow-based formulations, Event On/Off formulations and even Constraint Pro-

gramming (CP) have not been used. Recent developments in CP could allow for

efficient algorithms.

Finally, it would be interesting to use recent advances in machine learning to tackle

the optimization of the NSWPP. For example, reinforcement learning (RL) is a very

promising avenue for combinatorial optimization research because of its efficacy in

terms of solution quality, ability to beat existing algorithms, and large running time

advantages over traditional heuristic techniques (Mazyavkina et al., 2021; Zhang et

al., 2022).
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Appendix A

Information of Computer Used for Experiments

Processor:10th Generation Intel® Core™ i7-10510U Processor (1.80 GHz, up to 4.90

GHz with Turbo Boost, 4 Cores, 8 Threads, 8 MB Cache)

Operating system:Windows 10 Pro

Memory:16 GB DDR4 2667MHz

Storage:1 TB PCIe SSD
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Appendix B

Detailed Experiment Data

Table B.1: Comparison Total Time with 136 activities

Total time 136/2 136/3 136/4 136/5 136/6

SGS 0:00:34.7 0:00:32.8 0:00:30.7 0:00:37.2 0:00:35.3

BIP (5%) 0:06:16.1 0:06:13.1 0:06:20.2 0:06:14.9 0:06:25.4
BIP (1%) 0:06:15.0 0:06:16.0 0:06:15.8 0:06:14.2 0:06:18.1
BIP (0.5%) 0:06:14.7 0:06:14.6 0:06:16.8 0:06:18.9 0:06:22.1
BIP (0.1%) 0:06:17.3 0:06:20.0 0:06:21.0 0:06:15.4 0:06:17.5

MSO–4 (β = 12) 0:08:12.1 0:08:09.3 0:08:09.4 0:08:12.5 0:08:13.1
MSO–4 (β = 11) 0:08:11.0 0:08:09.3 0:08:09.5 0:08:17.4 0:08:13.0
MSO–4 (β = 10) 0:08:19.4 0:08:09.3 0:08:12.4 0:08:13.7 0:08:12.9
MSO-4 (β = 9) 0:08:12.1 0:08:04.9 0:08:12.6 0:08:25.2 0:08:13.3
MSO-4 (β = 8) 0:08:13.5 0:08:03.5 0:08:04.8 0:08:05.3 0:08:07.3

MSO-5 (β = 12) 0:08:11.9 0:08:05.4 0:08:08.4 0:08:12.2 0:08:13.4
MSO-5 (β = 11) 0:08:09.5 0:08:07.1 0:08:08.4 0:08:10.7 0:08:08.8
MSO-5 (β = 10) 0:08:09.1 0:08:07.3 0:08:08.5 0:08:05.1 0:08:07.6
MSO-5 (β = 9) 0:08:10.9 0:08:08.7 0:08:04.4 0:08:13.7 0:08:06.9
MSO-5 (β = 8) 0:08:14.1 0:08:12.4 0:08:10.1 0:08:10.3 0:08:09.3
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Table B.2: Comparison Total Time with 680 activities

Total Time 680/2 680/3 680/4 680/5 680/6

SGS 0:11:33.5 0:11:39.7 0:11:34.1 0:11:33.3 0:11:31.1
BIP (5%) 2:10:57.9 2:14:16.1 2:12:10.3 2:11:51.1 2:13:53.1
BIP (1%) 2:18:07.3 3:29:33.1 2:26:21.8 2:25:48.0 2:48:06.8
BIP (0.5%) 2:38:06.3 4:04:40.4 2:40:31.2 2:36:13.1 3:19:58.4
BIP (0.1%) 4:04:07.2 4:04:41.9 3:39:25.0 3:25:05.3 3:40:40.4
MSO-4 (β = 12) 2:41:20.5 2:47:29.2 2:45:41.5 2:43:38.2 2:43:29.4
MSO-4 (β = 11) 2:45:42.0 2:46:27.8 2:44:12.9 2:40:58.5 2:42:06.3
MSO-4 (β = 10) 2:42:03.2 2:45:49.2 2:43:57.4 2:44:15.3 2:44:18.9
MSO-4 (β = 9) 2:43:05.5 2:44:22.8 2:44:35.4 2:43:27.6 2:43:24.6
MSO-4 (β = 8) 2:42:32.3 2:45:47.8 2:42:09.7 2:41:58.7 2:44:53.0
MSO-5 (β = 12) 2:40:56.2 2:45:19.1 2:42:15.1 2:43:55.4 2:44:48.5
MSO-5 (β = 11) 2:44:26.5 2:45:34.3 2:44:24.4 2:41:54.9 2:42:00.7
MSO-5 (β = 10) 2:43:28.5 2:45:49.2 2:42:47.6 2:43:19.8 2:42:58.8
MSO-5 (β = 9) 2:42:16.3 2:43:57.7 2:43:51.0 2:44:21.1 2:41:04.5
MSO-5 (β = 8) 2:41:20.2 2:43:50.5 2:43:54.9 2:43:34.0 2:41:31.6

Table B.3: Comparison Objective with 136 activities

Z- value 136/2 136/3 136/4 136/5 136/6

SGS 2757.3 1715.9 1573.6 3022.3 3022.3
BIP (5%) 2242.7 1694.9 1507.9 2882.8 2172.8
BIP (1%) 2195.7 1642.6 1475.6 2851.0 2144.0
BIP (0.5%) 2195.7 1642.6 1475.6 2840.8 2135.3
BIP (0.1%) 2193.5 1639.2 1471.8 2835.1 2135.3
MSO-4 (β = 12) 2192.6 1635.2 1466.8 2835.3 2139.5
MSO-4 (β = 11) 2190.7 1635.2 1466.9 2835.3 2140.0
MSO-4 (β = 10) 2190.7 1639.2 1466.9 2835.3 2140.0
MSO-4 (β = 9) 2190.8 1638.9 1466.3 2835.3 2140.6
MSO-4 (β = 8) 2190.7 1635.1 1461.5 2829.6 2140.6
MSO-5 (β = 12) 2676.7 2058.3 2181.4 4933.9 3319.9
MSO-5 (β = 11) 2676.7 2058.3 2181.4 4934.0 3319.9
MSO-5 (β = 10) 2676.7 2058.3 2181.4 4934.2 3319.9
MSO-5 (β = 9) 2676.7 2058.3 2220.4 4934.3 3319.9
MSO-5 (β = 8) 2674.3 2058.3 2203.7 4933.9 3319.9
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Table B.4: Comparison Objective with 680 activities

Z- value 680/2 680/3 680/4 680/5 680/6

SGS 11537.3 14892.6 18780.8 18428.4 16834.2
BIP (5%) 8417.1 10113.2 13373.3 13986.3 12754.5
BIP (1%) 8256.6 9887.7 13135.7 13657.1 12516.9
BIP (0.5%) 8227.7 9881.8 13116.9 13631.3 12450.9
BIP (0.1%) 8221.7 9881.8 13079.3 13629.2 12449.8
MSO-4 (β = 12) 8808.5 9872.8 13872.1 14612.8 12720.6
MSO-4 (β = 11) 8807.4 9871.8 13889.6 14608.7 12722.5
MSO-4 (β = 10) 8698.4 9867.7 13879.4 14603.5 12722.9
MSO-4 (β = 9) 8702.7 9852.4 14122.4 14665.7 12718.5
MSO-4 (β = 8) 8807.4 9846.5 13904.8 14643.0 12766.8
MSO-5 (β = 12) 49958.6 64346.8 67129.2 67954.2 70659.0
MSO-5 (β = 11) 49818.6 64375.3 66670.8 68323.7 70818.7
MSO-5 (β = 10) 50022.5 64347.6 66582.6 68357.8 70350.5
MSO-5 (β = 9) 50072.8 64283.3 67814.6 68078.1 70476.0
MSO-5 (β = 8) 50927.9 64254.8 67754.7 67913.4 70471.9

Table B.5: Comparison optimality gap with 136 activities

Gap % 136/2 136/3 136/4 136/5 136/6

SGS 27.002% 6.538% 8.080% 9.365% 44.729%
BIP (5%) 3.194% 4.971% 3.447% 4.141% 3.895%
BIP (1%) 0.244% 0.373% 0.378% 0.741% 0.631%
BIP (0.5%) 0.244% 0.373% 0.378% 0.325% 0.191%
BIP (0.1%) 0.081% 0.072% 0.078% 0.056% 0.090%
MSO-4 (β = 12) 0.993% 1.525% 0.747% 2.600% 2.458%
MSO-4 (β = 11) 0.903% 1.525% 0.755% 2.600% 2.481%
MSO-4 (β = 10) 0.903% 1.773% 0.754% 2.599% 2.481%
MSO-4 (β = 9) 0.908% 1.756% 0.715% 2.599% 2.510%
MSO-4 (β = 8) 0.901% 1.523% 0.383% 2.394% 2.510%
MSO-5 (β = 12) 23.288% 27.794% 49.832% 78.540% 58.981%
MSO-5 (β = 11) 23.288% 27.794% 49.832% 78.544% 58.981%
MSO-5 (β = 10) 23.288% 27.794% 49.832% 78.553% 58.981%
MSO-5 (β = 9) 23.288% 27.794% 52.505% 78.557% 58.981%
MSO-5 (β = 8) 23.179% 27.794% 51.363% 78.541% 58.981%
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Table B.6: Comparison optimality gap with 680 activities

Gap % 680/2 680/3 680/4 680/5 680/6

SGS 42.189% 54.915% 46.686% 38.336% 38.428%
BIP (5%) 3.603% 4.942% 4.262% 4.753% 4.654%
BIP (1%) 0.909% 0.983% 0.978% 0.976% 0.969%
BIP (0.5%) 0.442% 0.921% 0.453% 0.442% 0.444%
BIP (0.1%) 0.097% 0.921% 0.096% 0.100% 0.082%
MSO-4 (β = 12) 8.561% 2.699% 8.347% 9.693% 4.602%
MSO-4 (β = 11) 8.548% 2.688% 8.483% 9.663% 4.618%
MSO-4 (β = 10) 7.204% 2.645% 8.404% 9.624% 4.622%
MSO-4 (β = 9) 7.258% 2.486% 10.302% 10.091% 4.586%
MSO-4 (β = 8) 8.548% 2.425% 8.603% 9.920% 4.982%
MSO-5 (β = 12) 515.720% 569.346% 424.308% 410.110% 481.034%
MSO-5 (β = 11) 513.994% 569.643% 420.727% 412.884% 482.348%
MSO-5 (β = 10) 516.506% 569.354% 420.039% 413.140% 478.498%
MSO-5 (β = 9) 517.126% 568.685% 429.661% 411.041% 479.530%
MSO-5 (β = 8) 527.666% 568.389% 429.193% 409.804% 479.496%

Table B.7: Comparison DWC with 680 activities

DWC 136/2 136/3 136/4 136/5 136/6

SGS 358.6 340.4 308.8 311.1 321.2
BIP (5%) 365.2 357.7 277.7 292.7 268.0
BIP (1%) 284.8 302.5 261.9 274.9 253.3
BIP (0.5%) 284.8 302.5 261.9 254.8 255.9
BIP (0.1%) 283.4 291.1 254.7 252.6 255.9
MSO-4 (β = 12) 284.0 280.7 245.1 248.2 256.3
MSO-4 (β = 11) 279.5 280.7 244.8 248.2 257.2
MSO-4 (β = 10) 279.5 290.3 244.3 248.2 257.2
MSO-4 (β = 9) 278.5 289.7 244.5 248.2 259.0
MSO-4 (β = 8) 284.5 280.5 244.5 248.0 259.0
MSO-5 (β = 12) 280.8 245.3 209.9 296.5 269.3
MSO-5 (β = 11) 280.9 244.9 209.9 296.1 269.3
MSO-5 (β = 10) 280.8 245.3 209.9 296.7 269.3
MSO-5 (β = 9) 280.8 245.3 209.9 296.7 269.3
MSO-5 (β = 8) 280.2 245.3 208.7 296.4 269.3
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Table B.8: Comparison DWC with 680 activities

DWC 680/2 680/3 680/4 680/5 680/6

SGS 1367.9 1429.1 1462.2 1441.5 1401.0
BIP (5%) 1255.3 1312.5 1270.0 1307.0 1242.2
BIP (1%) 1242.8 1305.4 1258.8 1279.7 1239.1
BIP (0.5%) 1238.8 1303.4 1256.8 1278.3 1234.0
BIP (0.1%) 1236.0 1303.4 1257.8 1278.3 1233.4
MSO-4 (β = 12) 1130.8 1179.2 1161.9 1119.8 1073.0
MSO-4 (β = 11) 1140.7 1176.4 1169.6 1120.8 1074.2
MSO-4 (β = 10) 1147.9 1175.1 1163.6 1118.8 1073.4
MSO-4 (β = 9) 1147.9 1175.3 1163.3 1120.3 1072.9
MSO-4 (β = 8) 1133.0 1178.9 1166.5 1122.8 1074.2
MSO-5 (β = 12) 1003.7 1294.7 1222.6 1273.9 1305.5
MSO-5 (β = 11) 1007.0 1294.4 1215.6 1275.1 1308.1
MSO-5 (β = 10) 1005.1 1294.6 1211.3 1276.1 1301.8
MSO-5 (β = 9) 1003.5 1293.0 1231.2 1274.4 1304.7
MSO-5 (β = 8) 1012.8 1290.4 1230.7 1273.4 1303.6

Table B.9: Comparison CPU time with 136 activities

CPU time(s) 136/2 136/3 136/4 136/5 136/6

SGS
BIP (5%) 2.03 2.31 3.24 1.89 2.01
BIP (1%) 3.67 3.84 4.05 2.22 3.97
BIP (0.5%) 3.67 3.93 4.1 3.53 4.01
BIP (0.1%) 5.20 5.00 5.39 4.19 4.09
MSO-4 (β = 12) 2.69 2.26 2.09 2.28 2.11
MSO-4 (β = 11) 2.70 2.26 2.09 2.30 2.18
MSO-4 (β = 10) 2.68 2.23 2.10 2.33 2.11
MSO-4 (β = 9) 2.82 2.18 2.16 2.37 2.22
MSO-4 (β = 8) 2.56 2.32 2.17 2.55 2.29
MSO-5 (β = 12) 2.64 4.42 2.81 2.88 2.80
MSO-5 (β = 11) 2.57 4.13 3.20 2.94 2.55
MSO-5 (β = 10) 2.58 4.30 2.87 2.80 2.81
MSO-5 (β = 9) 2.60 4.22 2.91 2.91 2.53
MSO-5 (β = 8) 2.67 4.77 2.63 2.88 2.68
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Table B.10: Comparison CPU time with 680 activities

CPU time(s) 680/2 680/3 680/4 680/5 680/6

SGS
BIP (5%) 196.07 267.80 240.33 239.77 411.26
BIP (1%) 493.58 4849.24 982.69 1039.43 2420.34
BIP (0.5%) 1840.21 6902.66 1835.92 1692.44 4322.90
BIP (0.1%) 6905.54 6902.88 5394.41 4625.73 5592.53
MSO-4 (β = 12) 33.81 42.01 41.44 40.05 36.44
MSO-4 (β = 11) 35.27 43.11 40.07 40.60 36.37
MSO-4 (β = 10) 35.10 42.08 40.71 39.74 39.08
MSO-4 (β = 9) 33.10 42.76 39.96 42.08 39.12
MSO-4 (β = 8) 33.21 42.14 40.49 39.94 39.56
MSO-5 (β = 12) 54.13 65.69 59.86 71.98 58.00
MSO-5 (β = 11) 60.00 71.34 60.47 74.26 60.48
MSO-5 (β = 10) 56.82 65.33 62.66 75.32 60.35
MSO-5 (β = 9) 56.08 70.31 61.87 75.14 56.94
MSO-5 (β = 8) 54.33 64.25 62.57 71.58 61.64

Table B.11: Comparison subgroup sizes with MSO-4 and 680 activities

Subgroup Size Z value DWC Makespan CPU time(s) Total time

2 14854.0 1110.9 588 14.1 2:44:32.2
3 14751.7 1103.9 595 12.9 2:45:09.5
5 14651.0 1110.8 630 15.7 2:43:30.2
10 14648.2 1119.6 630 25.3 2:45:51.8
20 14620.2 1119.7 623 44.9 2:44:50.5
30 14608.7 1120.8 630 40.6 2:40:58.5
50 14626.4 1120.1 630 48.8 2:45:25.3
70 13923.7 1123.9 630 97.4 2:43:34.7
100 14388.2 1110.2 616 130.2 2:44:53.8

Table B.12: Comparison subgroup sizes with MSO-5 and 680 activities

Subgroup Size Z value DWC Makespan CPU time(s) Total time

30 68323.7 1275.1 609 74.3 2:41:54.9
50 67669.1 1302.7 609 85.0 2:42:46.0
70 67456.8 1315.3 629 260.2 2:44:38.4
100 62959.1 1303.2 623 1736.4 3:09:19.0



Appendix C

Python Code of the BIP model

# Create the problem called "problem1"

prob = LpProblem("problem1", LpMinimize)

# Create the variable x[j,t,m]

var =

[[[pulp.LpVariable("x[%s,%s,%s" % (j + 1, t

+ ES.iloc[j], m + 1), None,

None, LpBinary) for m in range(M.shape[0])]

for t in

range(LS.iloc[j] - ES.iloc[j] + 1)]

for j in range(n)]

# Set the initial value

for j in range(len(var)):

for t in range(len(var[j])):

for m in range(len(var[j][t])):

var[j][t][m].setInitialValue(0)

for i in range(asgs):

var[i][SGS[’ES’].iat[i] - ES.iloc[i]][0].setInitialValue(1)

# Create the objective function

prob += pulp.lpSum(

[[[var[j][t][m] * (t + ES.iloc[j] + 1) * (1 / (PR.iloc[j]

90
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** 5)) * \

((0.001 + int(D.iloc[j, t + ES.iloc[j]][m])) ** 1.1)

*((m+1)**11)

for m in range(M.shape[0])]

for t in range(LS.iloc[j] - ES.iloc[j] + 1)] for j in range(n)])

# Create constraint 1: all activities should be completed no more

than 1 time between ES and LS

for j in range(n):

prob += (pulp.lpSum([[var[j][t][m] for m in range

(M.shape[0])]

for t in range(LS.iloc[j] - ES.iloc[j] + 1)]) == 1)

# Create constraint 2: finish to start

for i in range(C7.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C7["pred"].iat[i]) - 1

j2 = int(C7["succ"].iat[i]) - 1

lag = int(C7["lag"].iat[i])

prob += (pulp.lpSum([[(t + ES.iat[j2]) *

var[j2][t][m]

for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * ((t + ES.iat[j1]) +

D.iat[j1, t + ES.iloc[j1]][m] + lag) for t in

range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 3: finish to finish
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for i in range(C8.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C8["pred"].iat[i]) - 1

j2 = int(C8["succ"].iat[i]) - 1

lag = int(C8["lag"].iat[i])

prob += (pulp.lpSum(

[[(t + ES.iat[j2] + D.iat[j2, t + ES.iloc[j2]][m]) *

var[j2][t][m]

for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * ((t + ES.iat[j1]) +

D.iat[j1, t + ES.iloc[j1]][m] + lag - 1) \

for t in range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 4: Start to start

for i in range(C9.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C9["pred"].iat[i]) - 1

j2 = int(C9["succ"].iat[i]) - 1

lag = int(C9["lag"].iat[i])

prob += (pulp.lpSum(

[[(t + ES.iat[j2]) * var[j2][t][m]

for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1] + lag)

for t in range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 5: Start to finish

for i in range(C10.shape[0]):

# print(P["element id"].iat[i])
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j1 = int(C10["pred"].iat[i]) - 1

j2 = int(C10["succ"].iat[i]) - 1

lag = int(C10["lag"].iat[i])

prob += (pulp.lpSum(

[[(t + ES.iat[j2] + D.iat[j2, t +

ES.iloc[j2]][m] - 1) * var[j2][t][m]

for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1] + lag)

for t in range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 6: finish on

for i in range(C2.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C2.iloc[i, 0]) - 1

j2 = int(C2.iloc[i, 1])

prob += (pulp.lpSum(

[[var[j1][t][m] * (t + ES.iat[j1] + D.iat[j1, t +

ES.iloc[j1]][m] - 1) for m in range(M.shape[0])] \

for t in range(LS.iloc[j1] - ES.iloc[j1] + 1)]) == j2)

# Create constraint 7: finish on or after

for i in range(C4.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C4.iloc[i, 0]) - 1

j2 = int(C4.iloc[i, 1])

prob += (pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1]

+ D.iat[j1, t + ES.iloc[j1]][m] - 1) \

for m in range(M.shape[0])]

for t in range(LS.iloc[j1] -

ES.iloc[j1] + 1)]) >= j2)
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# Create constraint 8: finish on or before

for i in range(C6.shape[0]):

j1 = int(C6.iloc[i, 0]) - 1

j2 = int(C6.iloc[i, 1])

prob += (pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1]

+ D.iat[j1, t + ES.iloc[j1]][m] - 1)

for m in range(M.shape[0])]

for t in range(LS.iloc[j1] - ES.iloc[j1] + 1)]) <= j2)

# Create constraint 9: resource availability

for k in range(int(R)):

for s in range(int(H + 1)):

temp = []

for j in range(n):

for m in range(M.shape[0]):

for t in range(int(max(s - DB.iloc[j, s][m] + 1,

ES[j])

- ES.iloc[j]), int(min(LS[j], s) - ES.iloc[j] + 1)):

form1 = RD.iloc[j, k] * var[j][t][m] *

AC.iloc[int(SGS["calendar"].iat[j]), s]

temp.append(form1)

prob += (pulp.lpSum(temp) <= AV.iat[k, s])

# Create the .lp file

prob.writeLP("problem1.lp")

prob.solve(GUROBI_CMD(mip=MIP,options=[

("Heuristics", 0.2),

("Symmetry", 2)],

warmStart=True,

gapRel=Tol))
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Appendix D

Python Code of the MSO-4 model

for B in range((asgs-1)//50 + 1):

#create iteration

BlistC += list(batch(Blist,50))[B]

SGS.sort_values("Activity", inplace=True)

SGS = SGS.reset_index(drop=True)

#create Mode(m)

M = []

for i in range(q):

M.append(i)

for i in range(previous_len,len(BlistC)):

ModeA.append([M])

Modes = pd.DataFrame()

Modes[’Mode’] = ModeA

# Create the problem called "problem1"

prob = LpProblem("problem1", LpMinimize)

# Create the variable x[j,t,m]

var = \

[[[pulp.LpVariable("x[%s,%s,%s" % (BlistC[j] + 1,

96
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t + ES.ia

t[BlistC[j]], m + 1),

lowBound=None, upBound=None,

cat=const.

LpBinary, e=None)

for m in ModeA[j][0]] for t in range(LS.iat[

BlistC[j]]

- ES.iat[BlistC[j]] + 1)] for j in range(len(BlistC))]

# Set the initial value

for j in range(len(BlistC)):

for t in range(len(var[j])):

for m in range(len(var[j][t])):

var[j][t][m].setInitialValue(0)

for i in range(len(BlistC)):

if SGS[’ES’].iat[BlistC[i]] - ES.iat[BlistC[i]] >= 0:

var[i][SGS[’ES’].iat[BlistC[i]]-ES.iat[BlistC[i]]][0]

.setInitialValue(1)

elif SGS[’ES’].iat[BlistC[i]] - ES.iat[BlistC[i]] <= 0:

var[i][0][0].setInitialValue(1)

#Objective(Minimize)

temp_arr = []

for j in range(len(BlistC)):

for t in range(LS.iat[BlistC[j]] - ES.iat[BlistC[j]] + 1):

if ModeA[j][0] ==[0,1,2,3]:

for m in ModeA[j][0]:
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form = var[j][t][m] * (t +

ES.iloc[BlistC[j]] + 1) * (1 / (PR.iloc[BlistC[j]] ** 5)) * \

((0.001 + int(D.iloc[BlistC[j],

t + ES.iloc[BlistC[j]]][m])) ** 1.1) * ((m + 1) ** 10)

temp_arr.append(form)

elif ModeA[j][0] != [0, 1, 2, 3]:

for m in ModeA[j][0]:

form = var[j][t][0] * (t +

ES.iloc[BlistC[j]] + 1) *

(1 / (PR.iloc[BlistC[j]] ** 5)) * \

((0.001 + int(D.iloc[BlistC[j],

t + ES.iloc[BlistC[j]]][m])) ** 1.1) * ((m + 1) ** 8)

prob += pulp.lpSum(temp_arr)

# Creat constraint 0: All activities cannot start on holiday

for j in range(previous_len, len(BlistC)):

for t in range(LS.iloc[BlistC[j]] -

ES.iloc[BlistC[j]] + 1):

prob += (pulp.lpSum([var[j][t][m] for

m in ModeA[j][0]]) \

<= AC.iat[int(SGS["calendar"]

.iat[BlistC[j]]),

t + ES.iat[BlistC[j]]])

# Create constraint 1: all activities should be completed no

more than 1 time between ES and LSint(C8["pred"].iat[i] - 1) in Bl

for j in range(len(BlistC)):

temp_arr = []

for t in range(LS.iat[BlistC[j]]
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- ES.iat[BlistC[j]] + 1):

if ModeA[j][0] == [0, 1, 2, 3]:

for m in ModeA[j][0]:

form = var[j][t][m]

temp_arr.append(form)

elif ModeA[j][0] != [0, 1, 2, 3]:

for m in ModeA[j][0]:

form = var[j][t][0]

temp_arr.append(form)

prob += pulp.lpSum(temp_arr) == 1

# Create constraint 2: finish to start

for i in range(C7.shape[0]):

lag = int(C7["lag"].iat[i])

if int(C7["pred"].iat[i]-1) in BlistC and int

(C7["succ"].iat[i]

-1) in BlistC:

j1 = BlistC.index(int(C7["pred"].iat[i]-1))

j2 = BlistC.index(int(C7["succ"].iat[i]-1))

j3 = int(C7["pred"].iat[i]) - 1

j4 = int(C7["succ"].iat[i]) - 1

temp_arry1 = []

temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:



100

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]) * var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0,1,2,3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]) * var[j2][t][0]

temp_arry1.append(form1)

for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m] * ((t + ES.iat[j3])

+ D.iat[j3, t + ES.iloc[j3]][m] + lag)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0,1,2,3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][0] * ((t + ES.iat[j3])

+ D.iat[j3, t + ES.iloc[j3]][m] + lag)

temp_arry2.append(form2)

prob += (pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2))

# Create constraint 3: finish to finish

for i in range(C8.shape[0]):

#print(P["element id"].iat[i])

lag = int(C8["lag"].iat[i])

if int(C8["pred"].iat[i] - 1) in BlistC

and int(C8["succ"].iat[i] - 1) in BlistC:

j1 = BlistC.index(int(C8["pred"].iat[i] - 1))
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j2 = BlistC.index(int(C8["succ"].iat[i] - 1))

j3 = int(C8["pred"].iat[i]) - 1

j4 = int(C8["succ"].iat[i]) - 1

temp_arry1 = []

temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4] + D.iat[j4,

t + ES.iloc[j4]][m]) * var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0,1,2,3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4] + D.iat[j4,

t + ES.iloc[j4]][m]) * var[j2][t][0]

temp_arry1.append(form1)

for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m] * ((t + ES.iat[j3])

+ D.iat[j3, t + ES.iloc[j3]][m] + lag - 1)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0,1,2,3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][0] * ((t + ES.iat[j3])

+ D.iat[j3, t + ES.iloc[j3]][m] + lag - 1)

temp_arry2.append(form2)

prob += (pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2))



102

# Create constraint 4: Start to start

for i in range(C9.shape[0]):

#print(P["element id"].iat[i])

lag = int(C9["lag"].iat[i])

if int(C9["pred"].iat[i] - 1) in BlistC and int(

C9["succ"].iat[i] - 1) in BlistC:

j1 = BlistC.index(int(C9["pred"].iat[i] - 1))

j2 = BlistC.index(int(C9["succ"].iat[i] - 1))

j3 = int(C9["pred"].iat[i]) - 1

j4 = int(C9["succ"].iat[i]) - 1

temp_arry1 = []

temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]) * var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0,1,2,3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]) * var[j2][t][0]

temp_arry1.append(form1)

for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m] * (t + ES.iat[j3] + lag)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0,1,2,3]:

for m in ModeA[j1][0]:
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form2 = var[j1][t][0] * (t + ES.iat[j3] + lag)

temp_arry2.append(form2)

prob += pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2)

# Create constraint 5: Start to finish

for i in range(C10.shape[0]):

#print(P["element id"].iat[i])

lag = int(C10["lag"].iat[i])

if int(C10["pred"].iat[i] - 1) in BlistC and

int(C10["succ"].iat[i] - 1) in BlistC:

j1 = BlistC.index(int(C10["pred"].iat[i] - 1))

j2 = BlistC.index(int(C10["succ"].iat[i] - 1))

j3 = int(C10["pred"].iat[i]) - 1

j4 = int(C10["succ"].iat[i]) - 1

temp_arry1 = []

temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4] + D.iat[j4,

t + ES.iloc[j4]][m] - 1) * var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0,1,2,3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4] + D.iat[j4,

t + ES.iloc[j4]][m] - 1) * var[j2][t][0]

temp_arry1.append(form1)
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for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m] * (t

+ ES.iat[j3] + lag)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0,1,2,3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][0] * (t

+ ES.iat[j3] + lag)

temp_arry2.append(form2)

prob += (pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2))

# Create constraint 6: Start on

for i in range(C1.shape[0]):

#print(P["element id"].iat[i])

j3 = int(C1.iloc[i,1])

if int(C1.iloc[i,0]-1) in BlistC:

j1 = BlistC.index(int(C1.iloc[i,0]-1))

j2 = int(C1.iloc[i,0]-1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m] * (t + ES.iat[j2])

temp_arr.append(form1)

elif ModeA[j1][0] != [0,1,2,3]:
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for m in ModeA[j1][0]:

form1 = var[j1][t][0] * (t + ES.iat[j2])

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) == j3)

# Create constraint 7: finish on

for i in range(C2.shape[0]):

#print(P["element id"].iat[i])

j3 = int(C2.iloc[i, 1])

if int(C2.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C2.iloc[i, 0] - 1))

j2 = int(C2.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m] * (t + ES.iat[j2]

+ D.iat[j2, t + ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][0] * (t + ES.iat[j2]

+ D.iat[j2, t + ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) == j3)

#Create constraint 8: Start on or after
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for i in range(C3.shape[0]):

#print(P["element id"].iat[i])

j3 = int(C3.iloc[i, 1])

if int(C3.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C3.iloc[i, 0] - 1))

j2 = int(C3.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m] * (t + ES.iat[j2])

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][0] * (t + ES.iat[j2])

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) >= j3)

# Create constraint 9: finish on or after

for i in range(C4.shape[0]):

#print(P["element id"].iat[i])

j3 = int(C4.iloc[i, 1])

if int(C4.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C4.iloc[i, 0] - 1))

j2 = int(C4.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):
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if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m] * (t + ES.iat[j2]

+ D.iat[j2, t + ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][0] * (t + ES.iat[j2]

+ D.iat[j2, t + ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) >= j3)

# Create constraint 10: Start on or before

for i in range(C5.shape[0]):

#print(P["element id"].iat[i])

j3 = int(C5.iloc[i, 1])

if int(C5.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C5.iloc[i, 0] - 1))

j2 = int(C5.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m] * (t + ES.iat[j2])

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:
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for m in ModeA[j1][0]:

form1 = var[j1][t][0] * (t + ES.iat[j2])

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) <= j3)

# Create constraint 11: finish on or before

for i in range(C6.shape[0]):

j3 = int(C6.iloc[i, 1])

if int(C6.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C6.iloc[i, 0] - 1))

j2 = int(C6.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m] * (t + ES.iat[j2]

+ D.iat[j2, t + ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][0] * (t + ES.iat[j2]

+ D.iat[j2, t + ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) <= j3)

# #Create constraint 12: resource availability

for k in range(int(R)):
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for s in range(int(H + 1)):

temp_arr = []

for j in range(previous_len, len(BlistC)):

if ModeA[j][0] == [0, 1, 2, 3]:

for m in ModeA[j][0]:

for t in range(int(max(s -

DB.iloc[BlistC[j], s][m] - 1+ AC.iloc[

int(SGS["calendar"].

iat[BlistC[j]]), s - DB.iloc[BlistC[j], s][m]]

+ AC.iloc[int(

SGS["calendar"].iat[BlistC[j]]),

s - DB.iloc[BlistC[j], s][

m] - 1],

ES[BlistC[j]])

- ES[BlistC[j]]),

int(min(LS[BlistC[j]], s)

- ES[BlistC[j]] + 1)):

form1 = RD.iloc[BlistC[j], k]

* var[j][t][m] * AC.iloc[int(SGS["calendar"].

iat[BlistC[j]]), s]

temp_arr.append(form1)

elif ModeA[j][0] != [0, 1, 2, 3]:

for m in ModeA[j][0]:

for t in range(int(max(s

- DB.iloc[BlistC[j], s][m] - 1 + AC.iloc[

int(SGS["calendar"].iat[BlistC[j]]),

s - DB.iloc[BlistC[j], s][m]]

+ AC.iloc[int(SGS["calendar"].

iat[BlistC[j]]), s - DB.iloc[BlistC[j], s][

m] - 1], ES[BlistC[j]]) \

- ES[BlistC[j]]),
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int(min(LS[BlistC[j]], s) - ES[BlistC[j]] + 1)):

form1 = RD.iloc[BlistC[j], k]

* var[j][t][0] * AC.iloc[int(SGS["calendar"].

iat[BlistC[j]]), s]

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) <= AV.iat[k, s])

# Create the .lp file

prob.writeLP("problem1.lp")

# Solve the .lp file

prob.solve(GUROBI_CMD(mip=3, options=

[("TimeLimit",

1500), ("Heuristics", 0.2), ("Symmetry", 2)],

warmStart=True))



Appendix E

Python Code of the MSO-5 model

for B in Blist:

# create iteration

BlistC = B

SGS.sort_values("Activity", inplace=True)

SGS = SGS.reset_index(drop=True)

# create Mode(m)

M = []

del ModeA[:]

for i in range(q):

M.append(i)

for i in range(len(BlistC)):

ModeA.append([M])

Modes = pd.DataFrame()

Modes[’Mode’] = ModeA

# Create the problem called "problem1"

prob = LpProblem("problem1", LpMinimize)

# Create the variable x[j,t,m]

var = \

[[[pulp.LpVariable("x[%s,%s,%s" %

(BlistC[j] + 1, t + ES.iat[BlistC
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[j]], m + 1), None, None, LpBinary)

for m in ModeA[j][0]] for t in range

(LS.iat[BlistC[j]] - ES.iat[BlistC

[j]] + 1)] for j in range(len(BlistC))]

# Set the initial value

for j in range(len(BlistC)):

for t in range(len(var[j])):

for m in range(len(var[j][t])):

var[j][t][m].setInitialValue(0)

# Objective(Minimize)

temp_arr = []

for j in range(len(BlistC)):

for t in range(LS.iat[BlistC[j]]

- ES.iat[BlistC[j]] + 1):

if ModeA[j][0] == [0, 1, 2, 3]:

for m in ModeA[j][0]:

form = var[j][t][m] * (t

+ ES.iloc[BlistC[j]] + 1) * (1 / (PR.iloc

[BlistC[j]] ** 5)) * \

((0.001 + int(D.iloc[BlistC[j],

t + ES.iloc[BlistC[j]]][m]))

** 1.1) * ((m + 1) ** 11)

temp_arr.append(form)

elif ModeA[j][0] != [0, 1, 2, 3]:

for m in ModeA[j][0]:

form = var[j][t][0] * (t
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+ ES.iloc[BlistC[j]] + 1) * (1 / (PR.iloc

[BlistC[j]] ** 5)) * \

((0.001 + int(D.iloc[BlistC[j],

t + ES.iloc[BlistC[j]]][m]))

** 1.1) * ((m + 1) ** 11)

temp_arr.append(form)

prob += pulp.lpSum(temp_arr)

# Creat constraint 0: All activities cannot start on holiday

for j in range(len(BlistC)):

for t in range(LS.iloc[BlistC[j]]

- ES.iloc[BlistC[j]] + 1):

prob += (pulp.lpSum([var[j][t][m]

for m in ModeA[j][0]])

<= AC.iloc[int(SGS["calendar"].iat[BlistC[j]]),

t + ES.iloc[BlistC[j]]])

# Create constraint 1: all activities should be completed no more

than 1 time between ES and LS

for j in range(len(BlistC)):

temp_arr = []

for t in range(LS.iat[BlistC[j]]

- ES.iat[BlistC[j]] + 1):

if ModeA[j][0] == [0, 1, 2, 3]:

for m in ModeA[j][0]:

form = var[j][t][m]

temp_arr.append(form)

elif ModeA[j][0] != [0, 1, 2, 3]:

for m in ModeA[j][0]:



114

form = var[j][t][0]

temp_arr.append(form)

else:

form = var[j][t][0]

temp_arr.append(form)

prob += (pulp.lpSum(temp_arr) == 1)

# Create constraint 2: finish to start

for i in range(C7.shape[0]):

lag = int(C7["lag"].iat[i])

if int(C7["pred"].iat[i] - 1) in BlistC

and int(C7["succ"].iat[i] - 1) in BlistC:

j1 = BlistC.index(int(C7["pred"].iat[i] - 1))

j2 = BlistC.index(int(C7["succ"].iat[i] - 1))

j3 = int(C7["pred"].iat[i]) - 1

j4 = int(C7["succ"].iat[i]) - 1

temp_arry1 = []

temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]) * var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0, 1, 2, 3]:

for m in ModeA[j2][0]:
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form1 = (t + ES.iat[j4]) * var[j2][t][0]

temp_arry1.append(form1)

for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m] *

((t + ES.iat[j3]) + D.iat[j3, t

+ ES.iloc[j3]][m] + lag)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][0] *

((t + ES.iat[j3]) + D.iat[j3, t

+ ES.iloc[j3]][m] + lag)

temp_arry2.append(form2)

prob += (pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2))

# Create constraint 3: finish to finish

for i in range(C8.shape[0]):

# print(P["element id"].iat[i])

lag = int(C8["lag"].iat[i])

if int(C8["pred"].iat[i] - 1) in BlistC and

int(C8["succ"].iat[i] - 1) in BlistC:

j1 = BlistC.index(int(C8["pred"].iat[i] - 1))

j2 = BlistC.index(int(C8["succ"].iat[i] - 1))

j3 = int(C8["pred"].iat[i]) - 1

j4 = int(C8["succ"].iat[i]) - 1

temp_arry1 = []
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temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]

+ D.iat[j4, t + ES.iloc[j4]][m]) *

var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]

+ D.iat[j4, t + ES.iloc[j4]][m]) *

var[j2][t][0]

temp_arry1.append(form1)

for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m]

* ((t + ES.iat[j3]) + D.iat[j3, t +

ES.iloc[j3]][m] + lag - 1)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][0]

* ((t + ES.iat[j3]) + D.iat[j3, t +

ES.iloc[j3]][m] + lag - 1)

temp_arry2.append(form2)

prob += (pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2))
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# Create constraint 4: Start to start

for i in range(C9.shape[0]):

# print(P["element id"].iat[i])

lag = int(C9["lag"].iat[i])

if int(C9["pred"].iat[i] - 1) in BlistC

and int(C9["succ"].iat[i] - 1) in BlistC:

j1 = BlistC.index(int(C9["pred"].iat[i] - 1))

j2 = BlistC.index(int(C9["succ"].iat[i] - 1))

j3 = int(C9["pred"].iat[i]) - 1

j4 = int(C9["succ"].iat[i]) - 1

temp_arry1 = []

temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]) * var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]) * var[j2][t][0]

temp_arry1.append(form1)

for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m] *

(t + ES.iat[j3] + lag)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0, 1, 2, 3]:
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for m in ModeA[j1][0]:

form2 = var[j1][t][0] *

(t + ES.iat[j3] + lag)

temp_arry2.append(form2)

prob += pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2)

# Create constraint 5: Start to finish

for i in range(C10.shape[0]):

# print(P["element id"].iat[i])

lag = int(C10["lag"].iat[i])

if int(C10["pred"].iat[i] - 1) in BlistC

and int(C10["succ"].iat[i] - 1) in BlistC:

j1 = BlistC.index(int(C10["pred"].iat[i] - 1))

j2 = BlistC.index(int(C10["succ"].iat[i] - 1))

j3 = int(C10["pred"].iat[i]) - 1

j4 = int(C10["succ"].iat[i]) - 1

temp_arry1 = []

temp_arry2 = []

for t in range(LS.iat[j4] - ES.iat[j4] + 1):

if ModeA[j2][0] == [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]

+ D.iat[j4, t + ES.iloc[j4]][m] - 1)

* var[j2][t][m]

temp_arry1.append(form1)

elif ModeA[j2][0] != [0, 1, 2, 3]:

for m in ModeA[j2][0]:

form1 = (t + ES.iat[j4]
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+ D.iat[j4, t + ES.iloc[j4]][m] - 1)

* var[j2][t][0]

temp_arry1.append(form1)

for t in range(LS.iat[j3] - ES.iat[j3] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][m]

* (t + ES.iat[j3] + lag)

temp_arry2.append(form2)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form2 = var[j1][t][0]

* (t + ES.iat[j3] + lag)

temp_arry2.append(form2)

prob += (pulp.lpSum(temp_arry1)

>= pulp.lpSum(temp_arry2))

# Create constraint 9: finish on or after

for i in range(C4.shape[0]):

# print(P["element id"].iat[i])

j3 = int(C4.iloc[i, 1])

if int(C4.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C4.iloc[i, 0] - 1))

j2 = int(C4.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:
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form1 = var[j1][t][m]

* (t + ES.iat[j2] + D.iat[j2, t +

ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][0]

* (t + ES.iat[j2] + D.iat[j2, t +

ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) >= j3)

# Create constraint 10: Start on or before

for i in range(C5.shape[0]):

# print(P["element id"].iat[i])

j3 = int(C5.iloc[i, 1])

if int(C5.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C5.iloc[i, 0] - 1))

j2 = int(C5.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m]

* (t + ES.iat[j2])

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:
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for m in ModeA[j1][0]:

form1 = var[j1][t][0]

* (t + ES.iat[j2])

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) <= j3)

# Create constraint 11: finish on or before

for i in range(C6.shape[0]):

j3 = int(C6.iloc[i, 1])

if int(C6.iloc[i, 0] - 1) in BlistC:

j1 = BlistC.index(int(C6.iloc[i, 0] - 1))

j2 = int(C6.iloc[i, 0] - 1)

temp_arr = []

for t in range(LS.iat[j2] - ES.iat[j2] + 1):

if ModeA[j1][0] == [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][m] *

(t + ES.iat[j2] + D.iat[j2,

t + ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

elif ModeA[j1][0] != [0, 1, 2, 3]:

for m in ModeA[j1][0]:

form1 = var[j1][t][0] *

(t + ES.iat[j2] + D.iat[j2, t

+ ES.iloc[j2]][m] - 1)

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr) <= j3)
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#Create constraint 12: resource availability

for k in range(int(R)):

for s in range(int(H + 1)):

temp_arr = []

for j in range(len(BlistC)):

if ModeA[j][0] == [0, 1, 2, 3]:

for m in ModeA[j][0]:

for t in range(int(max(s -

DB.iloc[BlistC[j], s][m] - 1 +

AC.iloc[int(SGS["calendar"].iat[BlistC[j]]),

s - DB.iloc[BlistC[j], s][m]]+

AC.iloc[int(SGS["calendar"].iat[BlistC[j]]),

s - DB.iloc[BlistC[j], s][m] -

1], ES[BlistC[j]]) - ES[BlistC[j]]),

int(min(LS[BlistC[j]], s) - ES[BlistC[j]] + 1)):

form1 = RD.iloc[BlistC[j], k]

* var[j][t][m] * AC.iloc[

int(SGS["calendar"].iat[BlistC[j]]), s]

temp_arr.append(form1)

elif ModeA[j][0] != [0, 1, 2, 3]:

for m in ModeA[j][0]:

for t in range(int(max(s -

DB.iloc[BlistC[j], s][m] - 1 +

AC.iloc[int(SGS["calendar"].iat[BlistC[j]]),

s - DB.iloc[BlistC[j], s][m]] +

AC.iloc[int(SGS["calendar"].iat[BlistC[j]]),

s - DB.iloc[BlistC[j], s][ m] - 1]

, ES[BlistC[j]]) - ES[BlistC[j]]), int(

min(LS[BlistC[j]], s) - ES[BlistC[j]] + 1)):

form1 = RD.iloc[BlistC[j], k]
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* var[j][t][0] * AC.iloc[

int(SGS["calendar"].iat[BlistC[j]]), s]

temp_arr.append(form1)

prob += (pulp.lpSum(temp_arr)

<= AV.iat[k, s])

# # prob.solve()

prob.solve(GUROBI_CMD(mip=3, options=[("TimeLimit", 1500),

("Heuristics", 0.2), ("Symmetry", 2)], warmStart=False))



Appendix F

Python Code of Set Project Start Dates to Optimized Ones

# save ES, LS, ES r decision variables

for j in range(len(BlistC)):

for t in range(len(var[j])):

for m in range(len(var[j][t])):

if var[j][t][m].varValue >= 0.9:

# if not SGS["ES"].iat[BlistC[j]]

== SGS["LS"].iat[BlistC[j]]:

SGS["ES"].iat[BlistC[j]] = t + ES.iloc[BlistC[j]]

SGS["ES r"].iat[BlistC[j]] = t + ES.iloc[BlistC[j]]

SGS["LS"].iat[BlistC[j]] = t + ES.iloc[BlistC[j]]

ES = pd.Series(SGS["ES r"].values)

ES = ES.astype(’int’)

LS = pd.Series(SGS["LS"].values)

LS = LS.astype(’int’)

# PR = pd.Series(SGS["Priority"].values)

# PR = PR.astype(’int’)

# recreate Mode list

del ModeA[:]

# update decision variables modes

for j in range(len(BlistC)):

K = 0

for t in range(len(var[j])):
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T = 0 for m in range(len(var[j][t])):

J = 0

if var[j][t][m].varValue >= 0.9:

M = []

M.append(m)

ModeA.append([M])

J = 1

T = T + J

K = K + T

for j in range(len(BlistC)):

K = 0

for t in range(len(var[j])):

T = 0

for m in range(len(var[j][t])):

J = 0

if var[j][t][m].varValue >= 0.9:

M = []

M.append(m)

ModeA.append([M])

J = 1

T = T + J

K = K + T

if K != 1:

M = []

for i in range(q):

M.append(i)
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ModeA.append([M])

# Store t value

jValue = []

tValue = []

for j in range(len(var)):

for t in range(len(var[j])):

for m in range(len(var[j][t])):

if var[j][t][m].varValue >= 0.9:

numbers = re.findall(r’\d+’, var[j][t][m].name)

Act = int(numbers[0]) - 1

numbers = int(numbers[1])

jValue.append(Act)

tValue.append(numbers)

# Use resource

for j in range(len(BlistC)):

for m in ModeA[j][0]:

for k in range(int(R)):

for s in range(tValue[j], tValue[j] + D.iat[jValue[j],

ES.iloc[jValue[j]]][m] - 1):

AV.iat[k, s] = AV.iat[k, s] - (

RD.iloc[jValue[j], k] * AC.iloc[

int(SGS["calendar"].iat[jValue[j]]), s])
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