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Abstract

Instant Messaging Applications (IMAs) are the primary communication tools for

smartphone users. However, analyzing encrypted network traffic from IMAs poses

challenges due to end-to-end encryption, user privacy, and dynamic port usage. Lim-

ited research exists on encrypted network traffic analysis of IMAs on mobile devices.

This thesis proposes a comprehensive framework for generating and analyzing en-

crypted IMA traffic on mobile devices. The framework utilizes open-source tools to

emulate user behavior and capture, filter and label resulting traffic on Android de-

vices. It employs a data-driven approach using machine learning classification models

to automatically extract features from network traffic and distinguish between differ-

ent IMAs. Evaluation results show that it is possible to accurately identify different

IMAs with high F1 scores. The thesis also evaluates the behavior of six popular

IMAs and provides insights that could assist network operators and security experts

to monitor and analyze network traffic effectively.
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Chapter 1

Introduction

As the summer of 2022, mobile network traffic produced by smartphones constituted

more than 50% of the entire Internet traffic [1]. In addition, Instant Messaging

Applications (IMAs) have emerged as the dominant mode of communication on these

devices, surpassing the number of text messages sent via cellular connections [1].

Instant Messaging (IM) is a service that supports text message transmission over the

Internet. IMAs refer to any smartphone application that facilitates Instant Messaging,

with WhatsApp being an example of a popular IMA [2]. Since the massive increase

in the popularity of smartphone usage, Instant Messaging Applications (IMAs) have

become widely used among smartphone owners.

There are various types of IMAs with various types of user bases. For example,

WhatsApp and Messenger are for general users, each boasting more than 2 billion

active monthly users who use the IMAs mainly for text messaging [1]. On the other

hand, Discord is an IMA with a younger audience who use the IMA for extended

voice chats, and Teams is an IMA with a professional audience [3].

With the widespread adoption of IMAs, a comprehensive understanding of their

network communication patterns necessitates further investigation. Understanding

and modeling IMA communication can yield numerous benefits, including but not

limited to:

• Enabling network administrators to allocate network resources based on busi-

ness requirements [4],

• Identifying IMA traffic from ground truth to investigate the services being on

the network [5], and

• Analyzing threat models of attackers who violate user privacy by executing

side-channel attacks [6]

1
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Previous research in the field of network traffic analysis focus on various computer

platforms [7]. However, there is a lack of understanding, modeling, and identifying

IMAs on smartphones. This is shown to be challenging for several reasons. Firstly,

the traditional method of port-based application/service identification does not work

in this case, because IMAs often use HTTP/HTTPS to deliver their data [6]. In this

thesis, I show this to be the case; as I will present in Section 4, all IMAs (except

for WhatsApp) require ports 443 or 80 to be functional. Secondly, IMAs traffic is

encrypted, and therefore opaque, which makes it challenging to employ traditional

deep packet inspection approaches. Despite these challenges, there are some works

on smartphone application traffic analysis in more general terms [6][8][9].

While the importance of the study of IMAs cannot be overstated, research in this

area is currently limited. Notably, no comprehensive research has been conducted on

how IMAs transmit and receive packets over the Internet. As such, this thesis aims

to provide a comprehensive framework to study the ports and protocols necessary for

IMAs as well as the connections they typically establish.

Furthermore, the limited amount of existing research on IMA traffic analysis is not

reproducible, primarily because the existing research uses either network traffic data

that cannot be made publicly available due to privacy reasons [1] and traffic datasets

derived from real user traffic [6]. Thus, such datasets were not shared with the research

community at large due to ethical concerns. To address this, I propose a framework

that includes emulation and capturing of IMA traffic using empirical research findings

from the literature. This then enables the datasets to be provided publicly for the

reproducibility of the research to the benefit of the research community. Thus, this

thesis presents a method for generating realistic IMA traffic that takes into account

the various qualities that real IMA users exhibit, including message content, delivery

times, typing speed, and patterns of opening/closing IMAs on a smartphone. Using

these data, I perform flow-level encrypted traffic analysis via Machine Learning (ML)

based approach employing six IMAs, namely WhatsApp, Messenger, Discord, Signal,

Microsoft Teams, and Telegram [2][3][10]. For the purposes of my analysis, a flow

is defined as a communication channel that represents aggregated packets with the

same unique 5-tuple values, including the source and destination IP addresses, source

and destination ports, and protocol in use [11]. Moreover, it is important to note that
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this study is concerned specifically with encrypted traffic analysis. While there is a

wide variety of user bases and use cases in the IMAs I study, there are similarities in

the nature of their traffic. Specifically, all IMA traffic is encrypted although there are

differences in the specific encryption scheme used by the IMAs. The descriptions of

all the IMAs used are detailed in Section 3.1. It should also be noted here that this

thesis does not contain any results from deep packet inspections or content analysis.

Cryptography analysis of the schemes used for IMA traffic is beyond the scope of this

research.

In the following, I present a multi-faceted approach to analyzing encrypted traffic

from major IMAs. In particular, I aim to answer the following research questions:

• How do IMA flows behave, and are they distinguishable from other types of

network traffic?

• Are there any differences between the network traffic generated by different

IMAs?

To study the above research questions, I focus on the aforementioned IMAs on

Android smartphones. To analyze and study IMA traffic characteristics on Android

platforms, I first generate a dataset using Android emulators. To generate IMA traffic

as close to real life as possible, I first use the latest versions of the IMAs that smart-

phone owners use. Secondly, I design my user emulation process using state-of-the-art

empirical research on how smartphone users interact with IMAs [12][13]. Thirdly, I

have made this dataset public for not only the benefit of the network research commu-

nity but also for the reproducibility of my research 1. Using the datasets generated, I

perform a comprehensive analysis of the IMA network traffic behavior. To this end,

I determine the network protocols and ports that IMAs typically use. Then, I train

machine learning (ML) models (classifiers) to model the traffic behavior of the IMAs.

As I analyze IMAs, I find that they produce different behaviors in terms of how they

create and maintain flows.

The results of this research are valuable to both network operators and engineers.

By reliably identifying IMA traffic, resources can be better allocated and efficiency

increased. Further insights can also be gained into the nature of traffic characteristics

1https://ieee-dataport.org/documents/encrypted-mobile-instant-messaging-traffic-dataset



4

and behavior within their network for security, operations, and management purposes.

Therefore, the main contributions of this research are as follows:

• Generating and capturing IMA traffic as close to real-life behavior as possible

[14][15],

• Understanding the traffic characteristics of IMAs, including what ports and

protocols they use to communicate with their respective servers [16],

• Distinguishing IMA encrypted traffic from non-IMA encrypted traffic using

datasets generated by the most popular IMAs on the market,

• Distinguishing the aforementioned IMAs using their encrypted traffic charac-

teristics as well as identifying the most significant attributes of different IMAs,

and

• Designing, developing, and evaluating a comprehensive framework to deliver the

above activities on IMAs for monitoring, operations, and management purposes.

The rest of the thesis is organized as follows. Chapter 2 summarizes related litera-

ture in this field. Chapter 3 introduces the proposed framework and the methodology

followed. Chapter 4 details the evaluations, results, and comparisons to the related

literature. Finally, conclusions and future work are discussed in Chapter 5.



Chapter 2

Related Work

This research builds on an existing literature in the field of encrypted traffic analysis

and mobile application traffic analysis. I will present this array of existing work in

three sections. Section 2.1 gives an overview of the state-of-the-art in the area of

identifying smartphone applications. Section 2.2 summarizes the state-of-the-art in

the area of identifying user actions on smartphone applications using their network

traffic. Section 2.3 presents the existing works which have studied the IMAs in the lit-

erature. Finally, the last section summarizes the research gaps that are not addressed

in the literature.

2.1 Analyzing Smartphone Traffic

Fingerprinting smartphone applications using their encrypted network traffic is a

well-explored area of research. Researchers have fingerprinted the traffic of several

Android and iOS applications using a variety of methods.

Taylor et al. analyze a set of 110 most commonly used Android applications [6].

Using the Random Forest classifier, the authors achieve a classification accuracy of

over 90% in identifying these applications by analyzing their network traffic. The

authors show that traffic patterns of these studied applications change over time with

version updates, and highlight the need to continuously retrain their models to main-

tain reliability. While popular IMAs, namely Facebook Messenger and WhatsApp,

are studied in this research, the authors do not focus on these IMAs and analyze

them as a category.

Extending the work of Taylor et al., Cai et al. use Markov Chains and Graph

Neural Networks to more accurately identify 29 widely used smartphone applica-

tions, not including any IMAs, using their network traffic [8]. The proposed method

utilizes Markov chains to extract hidden topological information from the traffic flow.

Based on this topological information, the authors construct a graph structure and

5
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incorporate the sequence information of traffic into node features of the graph. The

authors test the method on real-world datasets and achieve a classification accuracy

of over 96%, a significant improvement over [6]

While Android is the main OS used for smartphones due to its open-source na-

ture and ease of use, some researchers have also analyzed iOS traffic. Wang et al.

detect mobile application traffic using only packet-level features [17]. The authors also

perform feature selection to prune the most important features and achieve a classifi-

cation accuracy of over 68.59% with selected features and over 87.23% with complete

features. The authors find that Random Forest is the best classification algorithm

for the task of classifying between 13 iOS applications. While these applications use

Facebook Messenger and Snapchat, they do not study IMAs as a category.

Alan et al. examine the possibility of identifying Android applications using only

TCP/IP header contents [18]. Their approach was based on packet sizes within the

launch time traffic, which are expected to yield good feature sets for application

identification. The experiments were carried out on 1,595 applications across four

Android devices, none of which are IMAs, and achieved a classification accuracy of

over 88%.

Jiang et al. focus on encrypted traffic used by remote desktop applications.

Specifically, the authors study the information leakage of six remote desktop soft-

ware programs on Windows 10 and 7 platforms: Anydesk, ConnectWise, MicroRDS,

RealVNC, Teamviewer, and Zoho Assist. The authors use a variety of supervised

machine learning algorithms built on statistical features of flow bursts to analyze the

data. The results indicate that an adversary can accurately classify 5 types of daily

activities, including editing documents, reading documents, surfing the web, watch-

ing videos, and installing software, with a true positive rate of over 95% and a false

positive rate of less than 3%.

Similarly, Shi et al. propose a method that is able to accurately identify smart-

phone applications within a limited number of transmission packets or bytes [9]. The

proposed method, called SpBiSeq (Simple Bi-Directional Sequence), generates highly

robust early-stage classification fingerprints for encrypted mobile traffic with better

classification performance. Furthermore, SpBiSeq has low time and space complex-

ity, making it well-suited to high-speed network environments. The authors use 60
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popular Android applications which they do not specify, and achieve over 86% accu-

racy. While the works in this section fingerprint network traffic from a wide variety of

smartphone applications, none of them specifically explore the nature of IMA traffic.

In contrast, this research examines IMA traffic exclusively and as a category.

2.2 Analyzing User Actions

Extending smartphone application analysis, some researchers aimed to analyze spe-

cific user actions on mobile applications. In this section, I detail such work since most

of them intersect with the aim of this research.

Conti et al. fingerprint a set of user actions for traffic resulting from smartphone

applications [19]. The authors use categorical information (such as IP addresses,

domain filtering, and port numbers) as well as statistical features to build a variety of

ML models. The authors focus on three widely used mobile applications: Facebook,

Gmail, and Twitter. They obtain accuracy and precision of over 95%.

Fiscone et al. use side-channel analysis to identify specific user actions on What-

sApp using traffic analysis [20]. These actions include starting/ending a call, and

joining/leaving a group chat since these actions produce consistent network traffic

packets. The authors achieve a classification accuracy of over 90% when fingerprint-

ing most of these actions.

In a multidimensional study in the traffic analysis of Instagram, Wu et al. demon-

strate that it is possible to fingerprint the network traffic pattern that is generated by

Instagram IMA when a user opens and uses direct messaging [21]. However, beyond

Instant Messaging, the authors fingerprint a variety of behaviors one can exhibit when

using Instagram, including sharing pictures, opening settings, etc. Specifically, the

authors suggest an approach to divide the distribution ranges of these stable features

based on the principle of maximum entropy and map the feature space into the sup-

port vector machine (SVM) vector space. On a dataset generated by real users, the

authors report a classification accuracy of over 99%.

Liu et al. have developed an analyzer capable of classifying encrypted mobile

traffic into application usage activity [22]. To achieve this, the authors select dis-

criminative features from traffic packet sequences, using similarity measurements.

Specifically, the authors group time windows generated from the same service usage
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activity using recursive KMeans clustering (rCKC). The authors then use the feature

vectors of cluster centers as input to a Random Forest classifier to identify corre-

sponding service usages. For experiments, the authors analyze WeChat, WhatsApp,

and Facebook applications. The authors report a classification accuracy of over 86%

for all of the applications.

Jiang et al. focus on encrypted traffic used by remote desktop applications.

Specifically, the authors study the information leakage of six remote desktop soft-

ware programs on Windows 10 and 7 platforms: Anydesk, ConnectWise, MicroRDS,

RealVNC, Teamviewer, and Zoho Assist. The authors use a variety of supervised

machine learning algorithms built on statistical features of flow bursts to analyze

the data. The results indicate that an adversary can accurately classify 5 types of

daily activities, including editing documents, reading documents, surfing the web,

watching videos, and installing software, with a true positive rate of over 95% and a

false positive rate of less than 3%. While these works fingerprint actions from IMA

applications, they do not provide descriptive analysis, such as ports/protocols used

and flows generated.

2.3 Analyzing Instant Messaging Traffic

This section lists previous works that are most similar to this research. Specifically, I

describe all of the works that study IMA traffic specifically for network analysis and

potential security vulnerabilities.

Coull et al. report on one of the first studies to characterize Instant Messaging

traffic [23]. The authors study iMessage, Telegram and Viber IMAs and found that

there are significant differences in packet sizes for traffic generated by different user

actions. The user actions include typing a text, sending a text and reading a text.

The authors then developed a classifier to distinguish between user actions [23], with

a classification accuracy of over 96% for all actions. While this work acts as the first

study that profiles IMA traffic specifically, it only measures the differences in packet

size distribution between these IMAs. Since they do not further profile IMA traffic,

I extend this work to provide a more comprehensive analysis on this topic.

Sina et al. show that IP addresses that a flow uses are accurate indicators to

classify IMAs [1]. Then, using those IP addresses, they profile traffic from four popular
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IMAs- Facebook Messenger, Google Hangouts, Snapchat, and WeChat- on a campus

network over several days where the profile includes traffic volume, TCP connection

characteristics, and throughput [1]. The authors report that it is possible to identify

IMAs with over 99% accuracy using only IP addresses. However, similar to [23], this

work is limited in its scope of IMA traffic analysis. Specifically, this research only

analyzes the IP address of the IMA traffic and the volume of traffic that IMA produce.

Extending this type of analysis, we also study the statistical profile of IMA traffic.

Bahramali et al. show that traffic analysis can be used by researchers to reveal

memberships in group chats hosted on Telegram [24]. To accomplish this, the authors

first join a group chat, g1, as an active rogue user. Then, they collect IMA traffic at

the target location and determine if the target is subscribed to g1 using timing-based

traffic analysis [24]. The authors achieve a classification accuracy of over 98% when

identifying group membership. While this work analysis IMA traffic and show that it

is possible to carry a specific type of attack, it does not report any further analysis of

IMA traffic in general. Furthermore, this work only focuses on one IMA- Telegram.

2.4 Summary

Existing literature either focuses on one IMA to show the minimum viability of IMA

traffic identification, or hunt for specific vulnerabilities in the encrypted traffic gen-

erated by an IMA. Therefore, as discussed above, there has been a lack of work that

qualitatively analyzes IMA traffic in general.

In this research, I use a wide variety of IMAs (differing in their demographics and

functionalities) to cover a variety of IMA traffic (Section 3.1) [2][3]. To the best of

my knowledge, this research is the first to describe IMA traffic as a category, aiming

to distinguish IMA traffic from other types of encrypted network traffic as well as

aiming to distinguish one type of IMA traffic from another type of IMA (Section 3.2

and Section 3.8). Furthermore, this thesis is the first to generate encrypted IMA

network traffic incorporating realistic user behaviors and releasing it to the research

community at large (Section 3.3).



Chapter 3

Methodology

In this chapter, the proposed framework is detailed and the methods used to analyze

IMA traffic are discussed. In particular, section 3.1 details the set of Instant Messag-

ing Applications used for this research. Section 3.2 details my approach to determine

the traffic characteristics that IMAs utilize. Section 3.3 details how the IMAs traffic

datasets are generated, captured, and analyzed. Figure 3.1 illustrates the overview

of the proposed framework.

3.1 IMAs employed

In this research, I study six of the most widely-used IMAs on the market with diverse

user bases (Table 3.1). As IMAs vary in terms of user demographics and position in

the marketplace, I picked applications that most comprehensively represent a cross-

section of IMA users. I review each of the six IMAs below.

3.1.1 Whatsapp

WhatsApp is a cross-platform instant messaging application that is owned by Face-

book. The application uses end-to-end encryption to protect user conversations and

data, ensuring that only the sender and recipient can access the messages. WhatsApp

WhatsApp Messenger Telegram Teams Discord Signal
Monthly Users ∼2 billion ∼1.3 billion ∼700 million ∼270 million ∼150 million ∼40 million

Owned By Meta Meta
Telegram
Messenger Inc.

Microsoft Discord Inc.
Open Whispers
Systems

Extra
Functionalities

Calls, Files,
Private Group
Chats,
Handling Payments

Calls, Files,
Private Group Chats

Calls, Files,
Public and Private
Group chats

Calls, Files,
Private Group
Chats

Calls, Files,
Customizable
Public and Private
Group Chats

Calls, Files,
Private Group
Chats

Requirement
for Usage

Valid phone number An email address Valid phone number An email address An email address Valid phone number

Primary User Base
General (used
heavily in Asia
and Europe)

General (used
heavily in Asia
and North America)

General (used
heavily in Asia)

Catered towards
Professional
settings.

Catered towards
young audience

Catered towards
privacy-focused
audience

Table 3.1: IMAs employed in this thesis.

10
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Figure 3.1: Overview of the proposed framework.
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provides end-to-end encryption, implemented using the Curve25519 cryptographic al-

gorithm [25]. Interestingly, this end-to-end encryption functionality is implemented

by Open Whispers Systems which owns Signal. As of June 2022, WhatsApp has over

2 billion monthly active users, with a majority of its users residing in developing coun-

tries. The application is popular among individuals, families, and small businesses for

its ease of use, free messaging and voice/video calls, and ability to send multimedia

content.

WhatsApp was founded in 2009 by two former Yahoo employees, Jan Koum and

Brian Acton [25]. It quickly gained popularity for its simple user interface and the

ability to send messages, images, and videos without incurring additional charges

beyond the user’s internet data plan. In 2014, Facebook acquired WhatsApp for

$19 billion. In January 2021, WhatsApp updated its privacy policy, causing some

backlash from users concerned about how their data would be used [25]. The policy

would have allowed Facebook, which owns WhatsApp, to access more user data, such

as phone numbers and transaction data. After the backlash, WhatsApp delayed the

implementation of the policy to May 2021 and clarified that the changes would not

affect the privacy of users’ conversations.

3.1.2 Messenger

Messenger is a messaging application that is also owned by Facebook. It has similar

features to WhatsApp, including end-to-end encryption for private conversations. As

of June 2022, Messenger has over 1.3 billion monthly active users. The application is

also used by businesses for customer support and marketing purposes [26]. While it is

mainly for individual consumers, businesses can also use Messenger to deploy scripts

that send automated replies to business inquiries [26].

Messenger was first introduced as a standalone application in 2011 and was inte-

grated into the Facebook platform in 2014. Messenger’s end-to-end encryption is also

based on the Signal Protocol, ensuring that user data is private and secure. Messen-

ger has also been criticized for its handling of user data, particularly in relation to

the Cambridge Analytica scandal in 2018 [27].
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3.1.3 Telegram

Telegram is a cloud-based messaging application that emphasizes user privacy and se-

curity. Telegram also offers a Secret Chat feature, which uses a self-destruct timer and

does not allow forwarding or screenshotting of messages. As of June 2022, Telegram

has over 700 million monthly active users.

Telegram is popular among users who prioritize privacy and customization, as it

allows for the creation of custom themes, channels, and bots. As it promises secure

and private communication channels (including public forums), it has been recently

relied on in a number of protest movements [24]. Therefore, Telegram has faced

criticism for its potential to be used by extremist groups, with some countries, such

as Russia and Iran, banning the application [24].

3.1.4 Teams

Microsoft Teams is a collaboration platform that allows users to chat, meet, call, and

collaborate on projects. Teams was launched in 2017 as a part of Microsoft’s Office 365

suite of productivity tools. The platform has a wide range of features, including the

ability to host virtual meetings, collaborate on files, and integrate with other Microsoft

applications. It uses Microsoft’s Secure Real-time Transport Protocol (SRTP) for

audio and video calls, which provides encryption for media transmission. Teams also

supports end-to-end encryption for chat conversations, which is currently in preview

mode. As of June 2022, Teams has over 270 million monthly active users. Teams is

popular among businesses and organizations for its collaboration features, including

file sharing, co-authoring, and project management. Microsoft also announced new

features, such as the ability to host interactive webinars and integration with its Viva

platform for employee engagement.

3.1.5 Discord

Discord is a messaging and voice chat application that is popular among gamers

and online communities. Specifically, Discord is marketed as a place for users to

gather in a community-oriented manner using customizable and public servers. Due

to this nature, Discord mainly appeals to a younger audience. Discord was launched
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in 2015 and has gained popularity among the gaming community for its voice chat

capabilities, ease of use, and customizable features.

Because Discord does not offer end-to-end encryption for private conversations,

messages are technically accessible to Discord’s servers and could potentially be ac-

cessed by third parties. As of June 2022, Discord has over 150 million monthly active

users. Discord is popular among gamers, creatives, and online communities for its

ease of use, voice chat capabilities, and customizable features.

3.1.6 Signal

Signal was launched in 2014 by the non-profit organization Signal Foundation. The

application has gained a reputation for its strong focus on user privacy and security,

with features such as end-to-end encryption, self-destructing messages, and the ability

to hide the sender’s metadata. Signal’s encryption method, the Signal Protocol, is

open-source and has been independently audited for its security [10]. Signal also does

not collect user data, ensuring that conversations remain private. It uses the Signal

Protocol for end-to-end encryption, ensuring that user conversations and data are

private and secure. Signal also uses the Double Ratchet Algorithm for message key

generation, which provides additional security for user data [10].

As of June 2022, Signal has over 40 million monthly active users. Signal is pop-

ular among privacy-conscious individuals and activists for its secure messaging and

voice call capabilities. In May 2021, Signal announced a new feature called ”Signal

Payments,” allowing users in the UK to send and receive cryptocurrency through the

application. The feature is currently only available for UK users, but Signal plans to

expand to other regions in the future [10].

3.2 Describing IMA Flows

This research aims to analyze the ports and flows utilized by different IMA applica-

tions.

Determining Ports Used. To determine the ports and protocols required for

an IMA, I blocked certain widely-used TCP and/or UDP ports, and determine if the

IMA remains functional (Figure 4.3). I consider an IMA functional if they are able
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Figure 3.2: Visual indication - the IMA is non-functional.

to send messages and the messages are received on the other end. In particular, for

an IMA to remain functional, I verify the following:

1. The sender sends a message without receiving an error,

2. The receiver of the message receives the message, and

3. The sender receives a receipt notifying that the message was delivered.

For example, Figure 3.6 shows the visual cues that IMAs typically display when they

are operating normally. If any of these conditions are not met, I consider the IMA to

be non-functional. For example, Figure 3.2 represents the error message that IMAs

typically display when they are non-functional, such as when they cannot connect to

the network. For each scenario that I studied, I verify the above conditions manually

during testing. Section 4.2 presents the results from this analysis.

Determining Flows Generated. I test flows generated by each of the IMAs

during a one-hour period of constant use, studying also their associated lifetime. I

isolate the network traffic for each IMA using the method described in Section 3.3.10.
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Using the flow characteristics exhibited by IMAs, this research can shed light into its

network behavior patterns. This study is interested in the following:

1. How many flows each IMA generate within the period,

2. How long these flows are kept alive, and

3. How much data does the IMA send through each of the flows.

3.3 Realistic Data Generation

As one of the main contributions in this thesis, I describe my method of generating

realistic encrypted traffic from IMAs, utilizing previous research on user behavior on

IMAs. In this subsection, I detail the procedures of emulating general user inputs,

collecting traffic resulting from emulation, and the qualities of various user behavior I

considered to make my traffic set realistic. Figure 3.3 outlines the four main qualities

that this research incorporated into the data generation process. They consist of two-

way conversational traffic, realistic dialogue contents, different methods of responses,

and realistic interactions with the IMA applications.

3.3.1 Equipment Setup

All IMAs are installed on an emulated instance of Google Pixel 4a running AndroidOS

13. The emulator tool that this study uses is provided by the Android Software

Development Kit. I deploy twelve instances of the emulator, two for each IMA. This

research uses two emulators for every IMA which I run both at the same time to

emulate two-way conversations. These instances are installed on a powerful modern

computer (Processor - Core i9, 8-core, 3.9 GHz CPU; 32 GB RAM) running Windows

11. I install no more than one IMA for each emulator instance. I install the latest

the IMA as an apk file and push it into the emulated device using the Android Debug

Bridge (ADB)1. To intercept the network traffic, I install tcpdump on all emulators

and capture encrypted traffic at the source.

The setup that I used posed a number of challenges. Interestingly, I found that

IMAs generally required at least 2 GB of emulated host random access memory.

1https://developer.android.com/studio/command-line/adb
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When using less than 2 GB of memory, the application would often throttle or quit

at random times. Therefore, all of my IMAs have at least 2 GB of emulated memory.

Then, I found that my machine was not enough to run all 12 emulators at the same

time. Therefore, as I collected my data, I performed the emulation in succession,

running no more than two emulators at a time.

3.3.2 Emulating Inputs

I use ADB commands to send messages at specified intervals. Through ADB, I can

send touch inputs to emulate interactions involving taps and swipes performed by

actual users. Then, by using scripts, I can send a specific sequence of inputs to mimic

messaging and interact with each of the IMAs. For example, to mimic a user sending

a message on Signal, I build a script to:

1. Open the Signal IMA

2. Open a chat messenger for a dummy user that I created for experimental pur-

poses

3. Type a message, such as ”Hello”, in the chat box

4. Click send to send the message

5. Close the Signal IMA

Then, I translate the task detailed above into the following sequence of ADB

commands:

1. adb shell input tap 350 500

2. adb shell input tap 500 200

3. adb shell input tap 400 1400

4. adb shell input text Hello

5. adb shell input tap 800 1400
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To automate the traffic collection process, I run these commands using python

scripts. Since different IMA have different UI designs, I build specific scripts to

handle user actions for each IMA. However, as I perform the collection, the scripts

synchronize so that the IMAs open, send a message, and close at the same time.

3.3.3 Two-way traffic generation

Initially, I had used generated traffic where messages only flow in one direction. How-

ever, real conversations for an IMA comprise outgoing messages and incoming mes-

sages. Towards realistic traffic generation, I use two emulators for each IMA that

represent two parties in a conversation. For each conversation that I emulate, I con-

sider one of the emulators as speaker A and the other speaker B. The conversations

that I use (as detailed in Section 3.3.4) assume there are two speakers for a conversa-

tion, A and B. Then, I can map these roles to my emulators in a one-to-one manner.

Therefore, the encrypted traffic that I generate transmits both incoming and outgoing

messages as well as resulting push notifications.

3.3.4 Realistic Dialogue

I use the SAMSum dataset as a repository of dialogues to replay [28]. This dialogue

dataset consists of natural conversations, written by linguists who are proficient in

English. The conversations exhibit a diverse range of styles and registers, including

informal, semi-formal, and formal language, as well as slang phrases, emoticons, and

typos. The authors collaborated with professional linguists for this task. The lin-

guists were instructed to create conversations that were similar to those they engage

in on a daily basis, with topics that reflected the proportion of real-life IMA con-

versations. These topics include casual conversation, gossip, meeting arrangements,

political discussions, and university assignments. The dataset does not contain any

sensitive information or fragments from other corpora. Each dialogue was created by

a single person and subsequently annotated by language experts with summaries that

are short, extract important information, include the names of the interlocutors and

are written in the third person. Each dialogue contains only one reference summary.

The dataset contains a list of 14732 realistic and complete textual dialogues which

all contain two speakers and realistic messaging patterns. Since researchers have not
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Figure 3.3: IMA traffic generation - Synchronous and Asynchronous.
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released real-world conversational dialogues due to privacy concerns, I was forced to

resort to an artificially-created dataset of dialogues. To the best of my knowledge,

SAMSum is the only corpus of chat dialogues that I could incorporate for my research.

To incorporate this dataset into my dataset generation process, I replay the provided

dialogues where each of the two emulators for each IMA assumes a role of a separate

speaker (Figure 3.1).

3.3.5 Two Types of Text Conversations

I found that IMA users engage in two different types of messaging conversations: syn-

chronous and asynchronous [29]. Synchronous messaging involves two or more parties

actively engaging in a text conversation in real-time (similar to a phone call) while

asynchronous messaging concerns conversations where participants are not actively

responding to each other in real time (similar to an email thread). Therefore, asyn-

chronous messaging is characterized by delayed response times between messages.

Depending on the type of delivery, I implement different types of delays to emulate

real users more closely.

When emulating synchronous messaging, I emulate the delay that it takes for a

user to type and send a message. Isaacs et al. [12] shows that the median response

time in synchronous text chats is 18.7 seconds. For this conclusion, the authors

recorded and analyzed a dataset consisting of 61,833 messages, comprising 3,096

conversations between 138 pairs of users. The chats were recorded at a workplace

as the participants discussed mainly work-related topics. While this dataset contains

work-specific and non-casual conversations, I concluded that it would still be an

accurate representation of the time it takes for a user to prepare a response to a

message, type it and send it. Using their findings, I build a probability distribution

model to sample delays when emulating realistic synchronous messaging (Figure 3.4).

Similarly, when emulating asynchronous messaging, I emulate the delay that it

typically takes for an IMA user to respond. Pielot et al [13] show that the average

response time in asynchronous text chats is 369.0 seconds. In an effort to study the

attentiveness of smartphone users when interacting with instant messaging applica-

tions, the authors develop a logging application and installed it on the phones of 24

Android phone users. For two weeks, the authors recorded both contextual data and
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Figure 3.4: Distribution of delays sampled to emulate synchronous conversations.

Figure 3.5: Distribution of delays sampled to emulate asynchronous conversations.
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attentiveness information. While there was an array of surveys that may possibly

indicate waiting delays for asynchronous messaging, I resorted to this study as my

reference to building my asynchronous messaging model. This is because the authors

note that there is a mismatch between users’ answers to surveys and their actual at-

tentiveness and response times as factually logged on their smart devices. Using their

findings, I build a probability distribution model to sample delays when emulating

realistic asynchronous messaging (Figure 3.5).

3.3.6 Opening and Closing IMAs

I implement a methodical approach to open and close the IMAs during the traffic gen-

eration process. As presented in Section 4.2, all IMAs close any network connection

when the user exits the respective Android application and opens new connections as

soon as a user opens an IMA. Since this demarcates the beginning and the end of a

network flow, I implement careful rules to closely replicate user behavior. Let A and

B be the two parties in my emulated conversation where A starts the conversation.

Then, my process of emulating user behavior is as follows:

• The IMA applications are closed during the times when A and B are not ac-

tively engaged in the conversation i.e. during the times of ”texting delay” when

emulating asynchronous conversations.

• If the chat is asynchronous, both A and B close the IMA immediately after

sending a message or a reply. If the chat is synchronous, the IMA is kept open

and alive.

• To start a dialogue, A always opens the IMA and sends the first message.

• Before B sends the first reply, B always waits for the first message from A to

arrive as a push notification.

• Once all the messages in a dialogue are sent, both A and B close the IMA.

Then, it waits for one minute before starting the next dialogue.

Therefore, my user emulation comprehensively includes dialogues with realistic
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content, realistic types of delivery and response, and realistic IMA interactions. Fig-

ure 3.6 shows an example of the emulation process, including opening and closing the

IMAs.

3.3.7 Running the complete emulation

Incorporating all of the qualities of a real conversation as discussed above, includ-

ing delay times and overall user interactions with an IMA, I build a comprehensive

pipeline to emulate user IMA conversations. For my final dataset, I emulate syn-

chronous conversations for 48 hours total for each IMA and asynchronous conversa-

tions for 24 hours total for each IMA. The characteristics of the resulting dataset is

detailed in Section 4.

It is important to note my dataset is unbalanced in that the significant majority

of the flows it contains are from synchronous conversations. While I spend a con-

siderable amount of time collecting traffic from asynchronous conversations, it does

not produce as many flows due to its highly time-consuming nature. In fact, due to

the distribution models I built, some delays are as long as 6 hours. Since I close the

IMA on my emulators during waiting delay periods, there are long periods during my

asynchronous conversation data collection process where I do not collect any flows at

all.

3.3.8 Collecting IMA traffic as PCAP files

In this research, tcpdump is used on the Android emulators to capture resulting

packets from my emulation as .pcap files. This tool, tcpdump, is a network packet

capture tool that allows users to intercept and analyze network traffic in real time.

It operates by capturing packets that are transmitted over a network interface and

displaying their contents in a human-readable format (.pcap files in my case). For my

benefit, tcpdump is powerful and highly configurable. I set the ”vantage point” of my

traffic capture at the device as there are no other devices that are involved in this

data collection process. The steps I took to process these .pcap files and turn them

into a dataset is described in Section 3.5.

However, collecting all packets sent during my data collection periods does not

give us an accurate dataset to model traffic from specific IMAs, even when there were
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no other active applications running besides IMAs. Specifically, when I collected all

traffic from the emulated device during the traffic generation process, the resulting

pcap included non-IMA traffic including Android’s own service traffic and traffic from

other background applications. Therefore, I first need to filter the packets to clean

the PCAP files such that they contain traffic from only my IMAs of interest. The

process I used to filter for traffic from specific IMAs is described in Section 3.3.10.

3.3.9 Collecting non-IMA traffic as PCAP files

In order to build a model, in addition to collecting traffic from IMA applications,

I also require traffic from non-IMA applications - mobile applications that are not

used for Instant Messaging. Specifically, I collect traffic from three commonly used

services on smartphones: Web-browsing, Video streaming, and Sending emails. For

each of these services, I use the mobile applications Chrome, YouTube, and Gmail,

respectively. To collect traffic from these non-IMA applications, I use similar scripts

to those detailed in 3.3.2. Specifically, for each of the scripts I issue the following

inputs to the emulators:

1. Open a non-IMA application.

2. Issue touch events to the emulator at random points on the screen every five

seconds.

3. Repeat the previous steps for 1 minute.

4. Close the non-IMA application.

I also collect and include, in my model, all the background flows that are generated

by the emulators that are not related to any of the IMAs employed in this research.

3.3.10 Isolating IMA Traffic

As outlined in Section 3.3.8, the .pcap files I obtain from tcpdump regularly contain

traffic from unrelated connections, and I must filter traffic to isolate network traffic

that only corresponds to my IMAs. Specifically, such traffic filtering allows the labels

for the ground truth dataset to be accurate. Since there is no straightforward method
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or an available tool to isolate traffic from specific applications, I use netstat to create

my method and accomplish the task. I describe this method in this section.

All apps on Android operate as distinct users with their own UID. Furthermore,

Linux’s netstat2 tool tracks and reports all active connections that an Android device

has established. The netstat tool also reports the UIDs of the Linux users that use

each connection as well as the associated port numbers.

Then, to collect the resulting traffic from a specific application, I use netstat

to track connections that are used by my IMAs. Specifically, as collect traffic, I

develop a script to issue netstat commands to obtain the list of ports (UDP and

TCP) maintained by my IMA of interest (Figure 3.1). Then, I have a timeline of

when all the ports, P , used by my IMA are opened and closed. Using this, I filter my

captured PCAP files such that I isolate the packets that are sent through the ports,

P , during the times that they were active.

Figure 3.8: Examples of the connections maintained by Android during the data
generation process. The highlighted connections are maintained by the IMA.

3.3.11 Limitations

There are a few limitations in our data generation process which could be improved by

further research. To this end, adding new IMAs to the dataset requires a custom script

that fits the particular application design and layout. For each IMA, this process

needs to be repeated. Furthermore, a non-practitioner may not be skilled enough to

perform the traffic isolation as described in Section 3.3.10. Additionally, while I collect

flows from both synchronous and asynchronous conversations, the resulting dataset is

heavily unbalanced in favor of traffic from synchronous conversations. The reason is

2https://linux.die.net/man/8/netstat
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that emulating synchronous conversations consume significantly larger amount of time

since the waiting delays can get hours long. Lastly, the strategy that we employed for

non-IMA traffic generation could be improved by incorporating further user behavior

patterns. While this may affect the classification performance, this dataset can still

highlight the significant differences between IMA and non-IMA traffic.

3.4 Classification Tasks

My goal with this research is to model IMA traffic. Specifically, I aimed to model

IMA traffic in two stages. Firstly, I aimed to model all IMA traffic as a homogeneous

group of mobile application traffic. This means that I aimed to explore whether IMA

traffic, as a class, is distinguishable from non-IMA traffic. This would allow network

operators to identify IMA traffic as a category and identify IMA traffic from ground

truth traffic that can be captured realistically on the internet. Secondly, I aimed to

explore whether there are any differences between different IMAs. Finally, I combine

these types of classifiers to determine if it is possible to identify specific IMAs from

ground truth traffic.

Therefore, using the traffic set I generated (Figure 4.1 and 4.2), I perform two

types of classification analysis to distinguish:

1. IMA flows from non-IMA flows,

2. Specific IMA flows from other IMA flows, and

3. Specific IMA flows from all flows (IMA and non-IMA).

Since these are two different classification problems, I use two different types of

labeling when generating the dataset used for training machine learning (ML) models.

IMA vs non-IMA classification. IMA vs non-IMA classification. For this type

of classification model, I label the flows as either ”IMA” or ”non-IMA”, accordingly.

Then, the model for this classification only has two possible classes. Section 4.3

reports the result of this type of classification model.

Between-IMAs Classification. For this type of classification model, I label the

flows with the name of the IMA. As a result, the model for this classification has six

possible classes. Section 4.3.2 reports the result of this type of classification.
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Combining Classifiers. I combine the previous two types of classifiers to build

a 2-stage pipeline to identify traffic from each IMA from ground truth (Figure 3.9).

Therefore, I label the flows with all seven possible different classes- six IMAs and

non-IMA. Section 4.3.3 reports the result of this approach.

Figure 3.9: Training two types of classifiers to differentiate and identify specific IMA
traffic using data with ground truth (labels).

3.5 Extracting Features

There are a number of tools researchers typically use to extract features from .pcap

files and convert them into a dataset. The tools that researchers for this purpose

are called ”flow exporters”. The popular options for flow exporters include Maji,

Yaf, Softflowd, Netmate and Tranalyzer2 [30]. Haddadi et al. compared several flow

exporter tools and found that Tranalyzer demonstrated the best performance [30].

Therefore, I use the newest version of Tranalyzer, Tranalyzer2, as my tool to export

flows from the .pcap files that I collected.

Tranalyzer2 is a software tool used for generating network traffic flows and an-

alyzing packet dumps, even those of large sizes [31]. The software comprises a core

and plugins that users can selectively activate. By aggregating packets into flows, the

software allows for better network operation analysis. Tranalyzer2 supports packet

mode, similar to tshark, but it also links each packet with its flow using a unique
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numerical ID. The software can capture packets, allocate packets to flows, handle flow

timeouts, invoke plug-in functions, and generate flow/packet-based output formats.

Unlike other flow exporters, Tranalyzer2 also provides information about flow direc-

tion, labeling A and B flows (client to server and server to the client respectively).

Researchers often use Tranalyzer2 to preprocess network traffic before training ML

classifiers for malicious traffic detection.

In total, Tranalyzer2 extracts 109 features from each flow, ranging from size statis-

tics to protocol header statistics [31]. After I collect network traffic with labels in-

dicating each IMA, I extract flows and the standard 109 features from them using

Tranalyzer2 [31]. Table A.1 lists all of the features that are extracted. I use these

statistical data points as the features for my ML classifier model. Before I use these

features as data points for my study, I first preprocess them to remove features that

are either irrelevant or introduce heavy bias.

3.6 Preprocessing

I use every flow generated by my IMAs as data points for my analysis. Before I train

my classifiers using the dataset, I preprocess my data to ensure the integrity of my

research.

As explained in Section 3.3.1, I could not generate data simultaneously for all of my

IMAs. Therefore, the flows that I collected for my IMAs have differing timestamps.

Since these timestamps differ in amounts of up to a week, it introduces bias to my

classification tasks without representing any insight into my analysis. Therefore, I

first eliminate timestamp features since the time of my data collection is unrelated to

the unique characteristics of my IMA traffic. These features include timeFirst and

timeLast (Figure 3.10).

Furthermore, there are various features that are not exported by Tranalyzer2 due

to the hardware and the environment that I used for data collection. Specifically, my

flow exporter outputs empty ethType and ethV lanID fields. Therefore, I eliminate

these features from my dataset.

After preprocessing, I am left with a set of 105 total features that I use for my

study.
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3.7 Varying Feature Sets

I explore my dataset by building ML classifiers using three different sets of features

(Figure 3.10). By using different feature sets, I sought to explore the following ques-

tions:

1. Can I profile IMA traffic when it is not obfuscated?

2. Are there any statistical markers that distinguish IMA traffic?

3. Can I profile IMA traffic when it is obfuscated by VPN?

Many smartphone applications use cloud Content Delivery Networks (CDN) to

provide services [6]. This means that IP addresses are poor indicators when analyzing

mobile application network traffic. However, my results, as well as previous research

[1], show that all major IMA services have their own dedicated IP address and domain

name spaces. Therefore, I can accurately identify IMA traffic using only their IP

address.

However, to understand IMA encrypted traffic comprehensively, I aim to analyze

whether there are any statistically significant markers of IMA traffic. Therefore, I

separate my features obtained in Section 3.5 into two main types: descriptive features

and statistical features. Descriptive features provide categorical information about

the flows. Examples of descriptive features include IP addresses, protocols used,

and header flags. On the other hand, statistical features are obtained by deriving

numerical analysis on the aggregate flow. Examples of statistical features include the

number of TCP retransmissions and flow duration. Lastly, I separate the statistical

features that relate strictly to packet sizes and arrival times which I refer to as ”packet

size and timing features”.

Furthermore, network traffic can be obfuscated in various ways. The most common

way to obfuscate traffic is through a Virtual Private Network (VPN). Jayatilleke

et al. conducts a survey into VPN usage and finds that 85% of the respondents

have used VPN services on their smartphones [32]. All traffic, encrypted or not,

that are routed through VPN is encrypted by the VPN client; therefore, any header

content from the original packets is completely obfuscated. The only metadata or

side-channel information that I can use to profile VPN-routed traffic are packet sizes
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Figure 3.10: Feature sets employed in this research.

and interarrival times. Therefore, I experiment using a feature set that only contains

packet size and timing features.

Therefore, I group the flow-level features, generated by Tranalyzer2, into three

types and build distinct classifiers for each of these groups. These are: All features,

Statistical features, and Packet Size and Timing features (Figure 3.10). Moreover, to

eliminate any biases based on source and destination IP addresses and port numbers,

I exclude these features while training the ML models employed in this thesis.

All features: By using all of the features, I aim to discover if I can reliably

identify and profile IMA traffic under normal conditions.

Statistical features: By using this set of features, I aim to discover the statistical

differences between the flows generated by my IMAs.

Packet size and timing features: In this approach, I only use features derived

from packet sizes and interarrival times. This means that I do not use any features

that are derived from any of the packet headers or protocol usage. I include this

approach to discover the viability of IMA traffic analysis in the presence of VPN,

which hides the original per-flow packet headers.

3.8 Building Machine Learning Classifiers

In this thesis, I trained and tested a series of ML models for each of the feature sets

using eight distinct supervised learning algorithms: Nearest Neighbors, Linear SVM,
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Decision Tree, Random Forest, Neural Network, Naive Bayes, Logistic Regression,

and Gradient Boost. In doing so, my goal is to compare the performance of all these

models and identify the most appropriate one for the research tasks in this thesis.

In the following, an overview of each ML algorithm is presented. More detailed

information on each algorithm could be found in [33].

3.8.1 Nearest Neighbors

Nearest Neighbors is a simple yet powerful classification algorithm that works by

finding the closest training examples in the feature space to a new input example and

classifying the new example based on the majority class of its nearest neighbors [33].

It can be used for both regression and classification problems. Mathematically, the

k-Nearest Neighbors algorithm can be represented as the following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the k-Nearest Neighbors algorithm works as follows:

1. Calculate the distance between x and each training example xi

2. Find the k training examples with the smallest distance to x (i.e., the nearest

neighbors)

3. Assign the class label of the majority of the k nearest neighbors to x

3.8.2 Linear SVM

Support Vector Machines (SVMs) are a popular machine learning algorithm used

for both classification and regression problems [33]. SVMs work by finding the best

hyperplane that separates the two classes in the feature space. Linear SVM is a variant

of SVMs that uses a linear kernel to compute the hyperplane. Mathematically, the

Linear SVM algorithm can be represented as the following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the Linear SVM algorithm works as follows:

1. Find the hyperplane that separates the two classes in the feature space

2. Assign the class label to the new example based on which side of the hyperplane

it falls
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3.8.3 C4.5 Decision Tree

A decision tree is a simple yet powerful algorithm that works by recursively parti-

tioning the feature space into smaller and smaller subsets until each subset contains

only examples from a single class [33]. Each partition is made based on the value

of a feature, and the partitions are chosen to maximize the information gained at

each step. Mathematically, the Decision Tree algorithm can be represented as the

following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the Decision Tree algorithm works as follows:

1. Choose the feature that maximizes the information gained at the current node

2. Partition the data based on the value of the chosen feature

3. Repeat the process recursively for each partition until all subsets contain exam-

ples from a single class.

3.8.4 Random Forest

Random Forest is an ensemble learning algorithm that builds multiple decision trees

and combines their predictions to improve accuracy and reduce overfitting [33]. The

algorithm works by randomly selecting a subset of features and a subset of training

examples for each tree and then averaging their predictions. Mathematically, the

Random Forest algorithm can be represented as the following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the Random Forest algorithm works as follows:

1. Choose a random subset of features

2. Choose a random subset of training examples

3. Build a decision tree using the selected features and examples

4. Repeat the process to build multiple trees

5. Average the predictions of all trees to get the final prediction for the new ex-

ample
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3.8.5 Neural Network

A neural network is a machine learning algorithm inspired by the structure and func-

tion of the human brain [33]. It consists of multiple layers of interconnected nodes

(neurons) that learn to represent the input data in a hierarchical manner. The algo-

rithm works by feeding the input data through the network and adjusting the weights

between the neurons to minimize the error between the predicted output and the ac-

tual output. Mathematically, the Neural Network algorithm can be represented as

the following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the Neural Network algorithm works as follows:

1. Feed the input example through the network

2. Compute the output of each neuron in each layer using the weights between the

neurons

3. Compute the error between the predicted output and the actual output

4. Backpropagate the error through the network and adjust the weights using

gradient descent to minimize the error

5. Repeat the process for multiple epochs until the error is minimized

3.8.6 Naive Bayes

Naive Bayes is a simple probabilistic algorithm that makes predictions based on the

probability of each feature belonging to each class [33]. It assumes that the features

are conditionally independent given the class, which simplifies the computation of the

probabilities. Mathematically, the Naive Bayes algorithm can be represented as the

following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the Naive Bayes algorithm works as follows:

1. Compute the prior probability of each class

2. Compute the conditional probability of each feature given each class
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3. Multiply the probabilities of each feature given the input to get the probability

of the input belonging to each class

4. Assign the class label with the highest probability to the input

3.8.7 Logistic Regression

Logistic Regression is a classification algorithm that models the probability of the

positive class using a logistic function [33]. It works by finding the weights that

maximize the likelihood of the training examples, and then using the logistic function

to compute the probability of the positive class for the input. Mathematically, the

Logistic Regression algorithm can be represented as the following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the Logistic Regression algorithm works as follows:

1. Find the weights that maximize the likelihood of the training

examples: maxw
∑n

i=1 logP (yi|xi, w)

2. Compute the probability of the positive class for x: P (y = 1|x,w) = 1
1+exp(−wT x)

3.8.8 Gradient Boost

Finally, Gradient Boost is an ensemble learning algorithm that combines multiple

weak learners to form a strong learner [34]. It works by sequentially adding new

learners to the ensemble, where each new learner is trained to correct the errors of

the previous learners. The algorithm uses a loss function to measure the errors of the

ensemble and uses gradient descent to minimize the loss function. Mathematically,

the Gradient Boost algorithm can be represented as the following:

Given a training set of examples (x1, y1), (x2, y2), ..., (xn, yn) and a new input ex-

ample x, the Gradient Boost algorithm works as follows:

1. Initialize the ensemble with a constant value: F0(x) = argminγ
∑

i = 1nL(yi, γ)

2. For m = 1 to M :

(a) Compute the negative gradient of the loss function with respect to the

current ensemble: rim = −
[
∂L(yi,Fm−1(xi))

∂Fm−1(xi)

]n
i=1
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(b) Train a new learner to predict the negative gradient:

hm(x) = argminh
∑

i = 1nL(rim, h(xi))

(c) Update the ensemble by adding the new learner: Fm(x) = Fm−1(x) +

ηhm(x)

(d) Return the final ensemble: FM(x)

where L is a loss function, η is the learning rate, and hm is the m-th learner in

the ensemble.

3.8.9 Training and Evaluating Models

To train and evaluate the ML models, I utilized the Scikit-learn3 tool, which contains

all the necessary packages to build models with the algorithms I employed. By default,

I used the settings provided by Scikit-learn for all the ML models generated, to ensure

consistency and facilitate benchmarking.

To evaluate the performance of each algorithm on each classification task, I imple-

mented 10-fold Monte Carlo cross-validation. Specifically, my dataset is unbalanced

with Teams producing more flows than the rest of the IMAs combined. The reason

for the difference in flow volumes between IMAs is unclear since the content of all

communication is encrypted. To combat the unbalanced dataset, I use the same num-

ber, x, of training data points from each IMA. I split my dataset into training and

testing using a 60-40 split. To ensure that I have a sufficient amount of training data

from every class, I pick x to be 60% of total data points for WhatsApp (the class with

the lowest number of data points). Therefore, for each fold, I randomly select 3981

data points from each IMA to be my training set. Then, I use the rest for testing.

For each fold, I measured the Accuracy, Precision, Recall, and F1 score. Accuracy

is defined as TP+TN
TP+TN+FP+FN

across all classes. I calculate the Precision and Recall

using the formulas TP
TP+FP

, and TP
TP+FN

respectively. Finally, I define my F1 score as

2∗Precision∗Recall
Precision+Recall

= 2∗TP
2∗TP+FP+FN

. In multi-class cases, I calculated these scores using

the unweighted mean of all classes.

3https://scikit-learn.org/
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3.9 Feature Selection Analysis

For each algorithm used on each feature set, I present a range of scores resulting from

the 10-fold Monte-Carlo cross-validation. Specifically, I report the lowest and the

highest scores observed among all 10 folds.

The feature sets that I use have a relatively high number of features which in-

creases computational complexity and decrease interpretability. However, network

monitoring is typically performed on high-performance networking equipment [35].

In such environments, the number of features could increase resource consumption

and computational speed exponentially [35]. Therefore, I perform feature selection

analysis on the ML models to potentially decrease computational overhead. Specifi-

cally, for each task and feature set described previously, I aimed to discover the least

number of features necessary to achieve comparable performance and identify those

features. Therefore, the resulting feature set can be used without any performance

costs.

To achieve this, I rank my features according to three different techniques com-

monly used in feature selection: Information Gain, Mutual Information and Chi

Squared Test. Information Gain is a measure of the amount of information that a

feature provides about the class variable. It is used to determine which features are

the most informative and relevant for the classification problem [36]. Features with

high Information Gain are considered more important for the model. Mutual Infor-

mation is another measure of the dependence between two variables, which in the

context of feature selection, is used to evaluate the relationship between the features

and the target variable [37]. It calculates the amount of information that a feature

provides about the target variable, taking into account the correlation between the

two variables. Chi-Squared Test is a statistical measure that evaluates the inde-

pendence between two variables [38]. In feature selection, Chi-Squared test is used

to determine the most significant features by measuring the difference between the

observed distribution and the expected distribution of a feature.

Our goal is to find a minimal set of features I need to achieve the baseline

performance- the performance that I get from using all the features. Therefore, using

each of my feature selection algorithms, I first rank them according to the output.

Then, I iteratively add the features one by one according to the rankings. Specifically,
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I perform the following procedure for each feature selection algorithm, ax:

1. Start with the most important feature, f1, as ranked by ax, and add it to my

current set of features, fc = {f1}.

2. Using fc and the method outline in Section 3.8, train a classifier.

3. Measure the F1 score of the model trained using fc.

4. If the F1 score is lower than the baseline score, I add the next feature in the

rank to fc, and go back to step 2.

5. If the F1 score is the same as the baseline score, I consider fc to be the minimal

feature set required for comparable performance.

3.10 Summary

In this chapter, I detail my proposed framework from generating a realistic dataset,

to understanding the network characteristics of IMA traffic to feature selection and

analysis via ML classifiers. Using the proposed framework, my first priority in this

research was to generate a set of realistic encrypted IMA traffic flows. To achieve

this, I use Android equipment to emulate two-way conversational user interactions

using behavior patterns based on the results provided in the state-of-the-art litera-

ture. Such behavior patterns include a delay between messages, typing speed, and

opening/closing IMAs under real-world conditions. Then, I detail my methods of an-

alyzing the descriptive qualities of IMA traffic. Specifically, I report on the identified

ports and the protocols each IMA uses for functionality. Furthermore, I analyze the

quality of the ports that are typically created and maintained by the IMAs employed

in this thesis. This is followed by how I transform the captured traffic into datasets

using the flow exporter Tranalyzer2. I first describe the characteristics of the flow

exporter and the features I extracted using this tool. Then, I present how I preprocess

the datasets such that the biases are minimized before ML training starts. Moreover,

I describe the classification tasks I aim to accomplish, the classifiers used for these

purposes, and their justification. Finally, I describe how I selected the minimum
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necessary feature set using various feature selection algorithms to decrease computa-

tional complexity. The evaluations and results based on the proposed framework are

discussed in Chapter 4.



Chapter 4

Evaluations and Results

In this chapter, I present the evaluations and the results of my analysis on the en-

crypted traffic generated by the IMAs and non-IMAs employed in this research. First,

Section 4.1 describes the datasets that are captured, including the total size, num-

ber of flows, and number of packets. Then, Section 4.2 describes the qualitative

characteristics of IMA traffic, including the ports and protocols IMAs use, and the

characteristics of the flows they create. Then, 4.3 details the result of the ML models

that are built to identify text messaging-based IMA traffic as well as specific IMAs

used in this research. Lastly, Section 4.4 details the result of the feature engineering

analysis and the insights gained.

4.1 Dataset Generation

Using the methods described in Section 3.3, I collect data over 72 hours for each IMA.

To build the datasets, I emulate synchronous messaging for 48 hours and asynchronous

messaging for 24 hours. Each of the IMAs generates at least 5000 flows over the

same period. Table 4.1 details the characteristics of the resulting IMA traffic. Table

4.2 details the characteristics of the traffic that is produced using non-IMA mobile

WhatsApp Messenger Telegram Teams Discord Signal

# of
Flows

6636 8904 12740 40562 8996 10804

Protocol TCP TCP TCP TCP TCP TCP
Total Size 17 MB 85 MB 154 MB 526 MB 99 MB 195 MB
# of
Packets

19164 207885 553887 941198 265517 142854

# of DNS
pkts

DoH DoH DoH 2118 1498 DoH

Encryption TLSv1.2 TLSv1.2 SSL TLSv1.2 TLSv1.2 TLSv1.2

Table 4.1: Summary of the traffic generated by each IMA application.

41
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Web-
browsing

Streaming
Videos

Sending
Emails

Background

# of Flows 9040 14420 1120 9188
Main Pro-
tocol

TCP and
QUIC

UDP and
QUIC

TCP, UDP
and QUIC

TCP, UDP
and QUIC

Size 358 MB 953 MB 14 MB 127 MB
# of Pack-
ets

463361 925152 39166 294652

# of DNS
pkts

DoH DoH DoH n/a

Encryption TLSv1.3
/QUIC

QUIC TLSv1.3
/QUIC

TLSv1.3
/QUIC

Table 4.2: Summary of the traffic generated by each non-IMA application (Web-
browsing, e-mail, and video streaming).

applications.

We can see that there is a large diversity in the quantity of the flows and the size

of the traffic that IMAs produce. Teams produce the most traffic with over 40562

flows total, while WhatsApp produces the least number of flows at 6636. To combat

this significant imbalance in my dataset and validate my results comprehensively, I

use Monte-Carlo cross validation method as described in Section 3.8. The traffic set

mainly contains traffic that uses TCP as its main protocol. While Discord and Teams

occasionally use UDP, I found that the overwhelming majority of the traffic was TCP.

On the other hand, I see that non-IMA traffic has more variability in the protocols

they use. Since all of the non-IMA applications I used to produce non-IMA traffic

were Google products (Chrome, YouTube, and Gmail apps), I see that all of them

use the QUIC protocol.

In total, I have generated 88642 flows (with a total size of 1076 MB) from my

six IMAs and 33762 flows (with a total size of 1452 MB) from my four non-IM

applications.

4.2 IMA Traffic Protocol

Using the methods described in Section 3.2, I perform a qualitative analysis of the

IMA traffic. First, I identify the necessary ports and protocols used by the IMAs

(Table 4.3). Then, I present the nature of the traffic flows generated by the IMAs.
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IMA Signal Discord Telegram Teams WhatsApp Messenger
Block
TCP

∅ ∅ ∅ ∅ ∅ ∅

Block
HTTP

∅ ∅ ∅ ∅ ✓ ∅

Block
UDP

✓ ∅ ✓ ∅ ✓ ✓

Block
DNS

✓ ∅ ✓ ∅ ✓ ✓

Block
UDP ex-
cept DNS

✓ ✓ ✓ ✓ ✓ ✓

Table 4.3: The ports and protocols essential for IMAs. ∅ indicates that the IMA
becomes non-functional after I block the specified port, while ✓indicates that the
IMA remains functional.

Figure 4.1: Signal only uses 2 elephant connections to manage all of the data transfers
necessary for its functionalities.
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Figure 4.2: Teams uses 2 persistent elephant connections to intermittent short periods
of connections for its data transfer.

4.2.1 Ports and protocols used

I observed that TCP is used by all IMAs and that most communication is encrypted

over TLS. Furthermore, all IMAs use port 443 on the server side except for What-

sApp which uses port 5222. Therefore, when I block port 443 on my emulators, all

IMAs, except WhatsApp, are rendered non-functional. When I block port 5222 on

WhatsApp, it starts using port 443 instead and when both ports 443 and 5222 are

blocked, WhatsApp is also rendered non-functional. This indicates that all IMAs rely

on TCP connections over port 443 to transfer the required data. Furthermore, I find

that all IMAs use TLS (mostly TLS version 1.2) as the default encryption protocol
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Figure 4.3: Compared to IMA traffic, web-browsing traffic makes a large number of
parallel connections. Each horizontal line represents a unique flow.
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except Telegram which uses a proprietary encryption protocol known as MTProto.

Also, I observed that most IMAs do not utilize UDP. In fact, when I block all

UDP ports, only Discord and Teams are affected. I also found that these two IMAs

use UDP only for DNS inquiries, as presented in Figure 4. I presume that the rest

of the IMAs use DNS over HTTPS (DoH) since they remain functional when UDP

traffic is blocked as presented in Table 4.3.

4.2.2 Flows generated by the IMAs

My results show that IMAs vary in the number of unique flows they create. However,

I found that all IMAs utilize two persistent connections. My observations show that

all IMAs consistently maintain two persistent flows through which the majority of

the data is transferred. These two flows are never interrupted as long as the IMA is

open. Furthermore, I consider these connections as elephant flows since they handle

a majority of the necessary data transfer for their respective IMA (Figure 4.1 and

Figure 4.2). This behavior is in stark contrast with flows that other types of network

services typically use. For example, Figure 4.3 shows that web browsers use a large

number of short bursts of flows (10 minutes in duration) where each flow transfers a

small amount of data.

Signal and Telegram utilize only the two elephant flows, regardless of

user input and data received by these IMAs (Figure 4.1). In contrast, the other

IMAs constantly create new parallel connections that are short in duration and low

in bandwidth. I present Teams as an example in Figure 4.2. I see that Teams utilize

a high number of flows- a total of 77 flows under the same conditions and timeframe

(Figure 4.2). However, I can see that all of these flows except for the two elephant

flows are short and transfer low amounts of data.

4.3 Building Machine Learning Classifiers

I build three types of classifiers to analyze IMA traffic and test them on the feature

groupings I defined in Section 3.5. For each of these feature groupings, I build a model

for two classification tasks: classifying IMA vs non-IMA, and classifying between

IMAs. I found that the Random Forest (RF) is the best-performing classifier for this

task, achieving the highest F1 score under all scenarios.
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4.3.1 Distinguishing IMA traffic from non-IMA traffic

I show that the objective of distinguishing IMA traffic from non-IMA traffic is well

achieved.

Using all features. When I use all flow features, I see that I can obtain an

excellent F1 score (Figure 4.4), with Random Forest performing the best. Table 4.13

shows the features with the highest importance for this model (defined using the

method specified in Section 3.8).

Using statistical features. After eliminating descriptive features (refer to Sec-

tion 3.9), I see that my model performance for Random Forest holds strong. This

shows that IMAs generate flows with statistically different characteristics compared

to non-IMA applications.

Using packet size and timing features. When I use strictly packet size and

timing features, I still obtain high F1 scores over 92% when using Random Forest

(Figure 4.8). This means that even if the original packet headers are missing, for

example when the traffic is routed through a VPN, IMA traffic could still be identi-

fiable.

4.3.2 Distinguishing between different IMAs

I obtain comparable results in these classification tasks to those in Section 4.3.

Using all features. Similar to the results in Section 4.3, I see that I can obtain

strong results when using all of the flow features (Figure 4.5), with Random Forest

boasting the highest performance.

Using statistical features. my model remains highly accurate when using only

statistical features (Figure 4.7). This shows different IMAs produce network traffic

with different statistical characteristics under the same conditions.

Using packet size and timing features. When I use strictly packet size and

timing features, I obtain high F1 scores over 81% using Random Forest or Gradient

Boost classifiers (Figure 4.9). This is promising for future research into identifying

the usage of common IMAs even when their traffic is routed and obfuscated through

VPNs.
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4.3.3 Identifying IMA Traffic From Ground Truth

Through sections 4.3.2 and 4.3, I have established that I can both distinguish IMA

from non-IMA and distinguish between IMAs. Then, I combine these two types of

classifiers to show that I can identify and classify IMA traffic from non-IMA as shown

in Section 3.4. I use strictly Random Forest for this section since it proved to be the

most effective model for modeling IMA traffic.

Using all features, I can build a resilient model with F1 scores over 99% for all

classes as shown in Figure 4.10. Furthermore, my model holds strong when I only use

statistical features, boasting F1 scores over 96% for all classes (Figure 4.11). This

shows that I can identify IMA traffic from ground truth extremely reliably.

Lastly, Figure 4.12 shows the performance of my model that only uses packet sizing

and timing features. Overall, I achieve a median F1 score of 80.5% across the 10 folds

of my cross-validation. This shows that I can identify IMA traffic from ground truth

even when it is obfuscated by VPN highly reliably. Furthermore, Figure 4.12 shows

that Teams, Signal, and Telegram all boast F1 scores of over 90% which indicates

that those IMAs have highly specific traffic characteristics with unique packet sizes

and interarrival times.

This shows that I can build statistically accurate models for all of the feature sets

I defined according to my research questions in Section 3.9.

4.4 Feature Selection

I perform feature selection analysis as described in Section 3.7 on all three of my

feature sets. I aim to find the minimal feature set needed to achieve performance

comparable to the baseline performance. I define baseline performance as the perfor-

mance that I achieve using all features in each feature set. For example, I achieve an

overall F1 score of 99.2% when classifying between IMAs using statistical features.

Therefore, I consider the baseline performance for this scenario to be 99.2%.

4.4.1 All Features

All three of my algorithms rank IP addresses as the top two most important features.

Furthermore, the pair of IP addresses is a unique identifier when identifying IMA
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traffic. In fact, I can achieve an overall F1 score of 99.9% when only the following

features are considered: source and destination IP addresses. Therefore, the mini-

mal set of features (both statistical and categorical) that is needed for comparable

performance consist of the IP addresses.

4.4.2 Statistical Features

Using the methods presented in Section 3.9, I discover the least number of statistical

features required for each classification task. My results show that I can achieve

baseline performance using only 20 features (out of 61 total statistical features) when

classifying IMA vs Non-IMA (Figure 4.4). This minimal set of features used to achieve

the baseline performance is listed in Table 4.13. When classifying between different

IMAs, I achieve similar results using only eight features (Figure 4.14). Similarly, the

features required for this task are listed in Table 4.14. For both of the classification

tasks, features selected using Mutual Information achieve the highest F1 scores.

4.4.3 Packet Size/Timing Features

I discover the minimal set of packet size/timing features required for each classifi-

cation task. My results show that I can achieve baseline performance using only 10

packet size/timing features (out of 13 total packet size/timing features) when clas-

sifying IMA vs Non-IMA (Figure 4.7). This minimal set of features used to achieve

the baseline performance is listed in Table 4.15. When classifying between different

IMAs, I achieve similar results using only 10 packet size/timing features (Figure 4.6).

Similarly, the features required for this task are listed in Table 4.16. For both of the

classification tasks, features selected using Mutual Information achieve the highest

F1 scores.

4.5 Summary

In this section, I describe the results of my IMA encrypted traffic analysis. Firstly,

this chapter reports on the characteristics of the dataset that I produced using the

approach described in Section 3.1. Specifically, I detail the number of flows produced

from each IMA as well as non-IMA traffic, the total size of all the flows generated, as
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Model
Nearest
Neighbor

Linear
SVM

Decision
Tree

Random
Forest

Precision 0.863-0.871 0.701-0.797 0.995-0.999 0.998-0.999
Recall 0.820-0.837 0.167-0.167 0.996-0.999 0.998-0.999
F1 0.840-0.852 0.720-0.755 0.996-0.999 0.997-0.999

Model
Multi-Layer
Perceptron

Naive
Bayes

Logistic
Regress

Gradient
Boost

Precision 0.867-0.910 0.405-0.715 0.405-0.931 0.997-0.999
Recall 0.784-0.933 0.500-0.824 0.5-0.739 0.992-0.997
F1 0.811-0.841 0.448-0.730 0.448-0.792 0.994-0.998

Table 4.4: Distinguishing IMAs from non-IMAs using all features.

well as the main protocols that the IMAs used.

Then, I include a report on the ports and the protocols that the IMAs require

for functionality. The report follows the methods that is described in Section 3.2.

The study shows that all IMAs use HTTP/HTTPS protocols and ports 80/443 to

transmit, except for WhatsApp. Furthermore, it is found that all IMAs use TCP as

blocking TCP traffic rendering all IMAs non-functional. This chapter also describes

the number of flows that IMAs create and compare them to traffic patterns produced

by more traditional services.

Next, I detail the results of a thorough evaluation of the ML models that were

built. I report the performance achieved using various supervised learning algorithms

for the two classification tasks studied and the feature sets used. Random Forest

shows the best performance for all tasks and scenarios studied in this research. The

results show that it is possible to achieve near-perfect scores when using all features

and only statistical features, and significantly high results when using only packet

size/timing features.

Lastly, I report the findings of my feature engineering analysis. Specifically, three

different feature selection algorithms are tested to find the minimal set of features

required for baseline performance for both classification tasks and all feature sets.

It is possible to achieve baseline performance when using 10-20 statistical features

and 10 packet size/timing features. This shows that by using these minimal feature

sets, it is possible to significantly reduce the necessary feature set size to decrease

computational complexity.
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Model
Nearest
Neighbor

Linear
SVM

Decision
Tree

Random
Forest

Precision 0.863-0.871 0.701-0.797 0.995-0.999 0.998-0.999
Recall 0.820-0.837 0.729-0.772 0.996-0.999 0.998-0.999
F1 0.840-0.852 0.720-0.755 0.996-0.999 0.997-0.999

Model
Multi-Layer
Perceptron

Naive
Bayes

Logistic
Regression

Gradient
Boost

Precision 0.867-0.910 0.405-0.715 0.405-0.931 0.997-0.999
Recall 0.784-0.933 0.500-0.824 0.5-0.739 0.992-0.997
F1 0.811-0.841 0.448-0.730 0.448-0.792 0.994-0.998

Table 4.5: Distinguishing between different IMAs using all features.

Model
Nearest
Neighbor

Linear
SVM

Decision
Tree

Random
Forest

Precision 0.318-0.374 0.073-0.073 0.992-0.997 0.997-0.999
Recall 0.316-0.348 0.167-0.167 0.993-0.996 0.992-0.998
F1 0.315-0.353 0.101-0.101 0.993-0.996 0.995-0.999

Model
Multi-Layer
Perceptron

Naive
Bayes

Logistic
Regression

Gradient
Boost

Precision 0.229-0.470 0.405-0.684 0.405-0.934 0.994-0.996
Recall 0.171-0.208 0.500-0.792 0.500-0.741 0.982-0.988
F1 0.041-0.172 0.449-0.680 0.449-0.795 0.988-0.992

Table 4.6: Distinguishing IMAs from non-IMAs using strictly statistical features.

Model
Nearest
Neighbor

Linear
SVM

Decision
Tree

Random
Forest

Precision 0.189-0.201 0.072-0.073 0.937-0.954 0.977-0.984
Recall 0.241-0.257 0.167-0.167 0.969-0.980 0.991-0.994
F1 0.127-0.133 0.101-0.101 0.953-0.966 0.984-0.989

Model
Multi-Layer
Perceptron

Naive
Bayes

Logistic
Regression

Gradient
Boost

Precision 0.580-0.706 0.025-0.192 0.016-0.016 0.974-0.983
Recall 0.512-0.672 0.167-0.167 0.167-0.167 0.990-0.994
F1 0.525-0.667 0.044-0.045 0.029-0.029 0.982-0.989

Table 4.7: Distinguishing between different IMAs using only statistical features.
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Model
Nearest
Neighbor

Linear
SVM

Decision
Tree

Random
Forest

Precision 0.873-0.898 0.072-0.073 0.918-0.925 0.939-946
Recall 0.829-0.847 0.167-0.167 0.905-0.917 0.914-0.924
F1 0.852-0.870 0.101-0.101 0.915-0.921 0.927-0.934

Model
Multi-Layer
Perceptron

Naive
Bayes

Logistic
Regression

Gradient
Boost

Precision 0.732-0.808 0.405-0.582 0.405-0.643 0.942-0.948
Recall 0.601-0.786 0.500-0.527 0.500-0.526 0.814-0.832
F1 0.621-0.784 0.448-0.518 0.448-0.508 0.860-0.875

Table 4.8: Distinguishing IMA vs Non-IMA using only packet size and timing features.

Model
Nearest
Neighbor

Linear
SVM

Decision
Tree

Random
Forest

Precision 0.484-0.496 0.01-0.188 0.670-0.699 0.754-0.774
Recall 0.830-0.842 0.167-0.172 0.885-0.902 0.909-0.919
F1 0.572-0.588 0.008-0.023 0.742-0.769 0.812-0.819

Model
Multi-Layer
Perceptron

Naive
Bayes

Logistic
Regression

Gradient
Boost

Precision 0.366-0.519 0.269-0.313 0.174-0.198 0.698-0.730
Recall 0.627-0.760 0.305-0.331 0.269-0.343 0.899-0.912
F1 0.368-0.517 0.073-0.131 0.085-0.143 0.752-0.775

Table 4.9: Distinguishing between different IMAs using only packet size and timing
features.

Class Discord Messenger Telegram Teams
Precision 0.993-0.999 0.999-0.999 0.992-0.998 0.998-0.999
Recall 0.996-0.999 0.999-0.999 0.996-0.999 0.998-0.999
F1 0.995-0.998 0.999-0.999 0.996-0.999 0.997-0.999
Class WhatsApp Signal Non-IMA
Precision 0.995-0.999 0.999-0.999 0.996-0.999
Recall 0.996-0.999 0.999-0.999 0.995-0.999
F1 0.995-0.998 0.999-0.999 0.996-0.998

Table 4.10: Identifying IMA traffic using all features.



53

Class Discord Messenger Telegram Teams
Precision 0.944-0.961 0.985-0.990 0.988-0.993 0.999-0.999
Recall 0.995-0.999 0.995-0.999 0.994-0.998 0.997-0.997
F1 0.969-0.979 0.990-0.994 0.992-0.995 0.998-0.998
Class WhatsApp Signal Non-IMA
Precision 0.915-0.957 0.998-0.999 0.991-0.995
Recall 0.986-0.999 0.992-0.996 0.991-0.999
F1 0.953-0.973 0.996-0.997 0.992-0.996

Table 4.11: Identifying IMA traffic using only statistical features.

Class Discord Messenger Telegram Teams
Precision 0.641-0.672 0.720-0.741 0.898-0.902 0.995-0.995
Recall 0.885-0.920 0.956-0.974 0.918-0.925 0.917-0.918
F1 0.744-0.772 0.822-0.840 0.909-0.913 0.954-0.955
Class WhatsApp Signal Non-IMA
Precision 0.143-0.167 0.977-0.985 0.854-0.869
Recall 0.860-0.916 0.987-0.993 0.902-0.917
F1 0.247-0.282 0.983-0.989 0.877-0.891

Table 4.12: Identifying IMA traffic using only packet sizing and timing features.

Figure 4.4: F1 score of models that distinguish between flows from different IMAs,
trained on varying sets of statistical features selected by different feature selection
algorithms.
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Figure 4.5: F1 score of models that distinguish IMA vs. Non-IMA traffic, trained on
varying sets of statistical features selected by different feature selection algorithms.

Figure 4.6: F1 score of models that distinguish IMA vs. Non-IMA traffic, trained
on varying sets of packet size/timing features selected by different feature selection
algorithms.
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Feature
Number of unique destination IPs
TCP initial sequence number
TCP trip time for SYN, SYN-ACK
TCP maximum window size
IP maximum delta IP ID
TCP average window size
TCP packet ACK count
TCP packet sequence count
TCP max bytes in flight
TCP initial window size
Minimum packet size
Maximum interarrival time
IP maximum TTL
Packet stream asymmetry
Standard deviation in interarrival time
Number of packets received
Number of connections between source and destination IPs
Number of unique source IPs
Standard deviation in packet size
Byte stream asymmetry

Table 4.13: Statistical features selected by Mutual Information to build a classifier
to distinguish IMA vs. Non-IMA, achieving the baseline performance as defined in
Section 3.9.

Feature
TCP max bytes in flight
Number of unique destination IPs
Maximum packet size
Average packet size
Standard deviation in packet size
Number of connections between source and destination IPs
Number of unique source IPs
Maximum interarrival time

Table 4.14: Statistical features selected by Mutual Information to build a classifier to
distinguish between IMAs, achieving the baseline performance as defined in Section
3.9.
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Figure 4.7: F1 score of models that distinguish between flows from different IMAs,
trained on varying sets of packet size/timing features selected by different feature
selection algorithms.

Feature
Maximum packet size
Minimum packet size
Maximum interarrival time
Standard deviation in interarrival time
Number of packets received
Bytes per second
Minimum interarrival time
Number of bytes received
Number of bytes send
Average packet size

Table 4.15: Packet size/timing features selected by Mutual Information to build a
classifier to distinguish IMA vs. Non-IMA, achieving the baseline performance as
defined in Section 3.9.



57

Feature
Maximum packet size
Average packet size
Standard deviation in packet size
Maximum interarrival time
Number of bytes received
Number of bytes sent
Average interarrival time
Standard deviation in interarrival time
Bytes per second
Number of packets received

Table 4.16: Packet size/timing features selected by Mutual Information to build a
classifier to distinguish between IMAs, achieving the baseline performance as defined
in Section 3.9.



Chapter 5

Conclusion And Future Work

Due to its wide use and impact, I study Instant Messaging Applications (IMAs) and

their traffic characteristics. As discussed in previous chapters IMAs have been more

and more widely used over the last five years. As such more functionalities are added

to IMAs from text messaging to voice over IP to audio/video to file exchanges and

more. These could make the IMAs also very attractive for malicious intents. On one

hand, attckers could also use IMAs for their information exchange but they could

also use IMAs for data theft. Thus understanding and analyzing IMA encrypted

traffic requires further research. To this end, I first study how IMAs generate and

maintain flows, and provide descriptive analysis. In particular, I build ML classifiers

to differentiate IMA traffic from non-IMA traffic as well as to distinguish between

different IMAs. Additionally, I report my findings on my feature engineering analysis.

I carefully select six most widely-used IMAs for my study: Discord, WhatsApp,

Messenger, Teams, Signal, and Telegram. While they are all widely used and recog-

nized, these IMAs have a diverse set of user bases, use cases, and functionalities.

As a major contribution to this research, I design and develop a methodology to

generate labeled IMA traffic traces using Android emulators with Linux networking

tools to help alleviate the severe lack of public datasets of IMA traffic. To make

my traffic set realistic, I implement a number of user behavior patterns, backed by

research, and emulate two-way conversations using Android emulators and custom

scripts. I design a method of emulating synchronous conversations using typing de-

lays. Then, I also implement a method of emulating asynchronous conversations

using waiting delays. Finally, I use existing research to incorporate realistic patterns

of opening/closing IMAs.

Using this method of data generation, I build a dataset of over 80 thousand flows

generated by IMAs. I publicly release this dataset of over 1GB total size to the benefit

of the wider network research community. This is the first publicly available dataset

58
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of encrypted IMA network traffic.

To comprehensively profile IMA traffic, I analyze the ports and the protocols that

IMAs use and require. Similar to most general smartphone applications, IMAs use

HTTPS protocols over port 443. In fact, all IMAs, except WhatsApp, render non-

functional when port 443 is blocked. While TCP is required for all IMAs, UDP is only

required for Discord and Teams. Unlike traditional web services, such as browsers,

IMAs do not use a large number of flows to send information. In fact, all IMAs use

two main elephant flows through which they transfer the majority of the packets.

While Signal and Telegram only use two flows, others use extra short bursts of flows

to send information in parallel.

Next, using the dataset generated, I build a comprehensive set of ML models

to profile the traffic from all of my IMAs. First, I extract 109 features from my

traffic set using Tranalyzer2 and I remove any biased features. I test and evaluate

my models using three different feature sets- all features, statistical features, and

packet size/timing features. Further, I perform two general classification tasks- IMA

vs non-IMA classification, and between IMAs. Then, I combine these two types of

classifiers to build a 7-class model that can identify IMA traffic from the ground

truth. I achieve a 99.9% F1 score when using all features which means that I can

identify specific IMAs using their traffic highly accurately. Then, I achieve a 99.9%

F1 score when using only statistical features which indicates that IMA traffic has

a highly unique statistical signature. Lastly, I achieve an 80% F1 score when only

using packet size/timing features which indicates that IMA traffic can be identified

accurately even when the traffic is completely obfuscated by VPN.

My last contribution to this research is my feature engineering analysis. Specifi-

cally, I utilize three different feature selection algorithms to evaluate the importance

of features in my feature sets and find the minimal set of features needed without

degradation in performance. I can achieve baseline performance when only the pair

of IP addresses features. However, a set of 10-20 statistical features is required to

identify IMAs without a drop in performance, and 10 packet size/timing features for

the same results. Using a smaller feature set, it is shown possible significantly reduce

my computational complexity and training time.

Future work would address the limitations described in Section 3.3.11. Specifically,
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an easier to use approach could be developed to make the dataset scalable and the

data generation process more accessible for non-practitioners. Furthermore, the traffic

collection for asynchronous traffic could be extended over longer periods of time such

that enough flows are generated to make the dataset balanced in terms of conversation

types. To this end, more realistic user behavior patterns could be implemented for

non-IMA traffic generation as well.

It is worth noting that the scope of this research includes analysis of traffic re-

sulting from only the core functionality of IMAs sending text messages. To better

understand IMA network traffic behavior, it would be beneficial to extend my analy-

sis to include other functionalities. As discussed earlier, most IMAs are capable of a

wide variety of functionalities, including sending files, voice calls, and even monetary

transactions. Thus, future research will include collecting traffic from such interac-

tions involving these extended IMA functionalities, and then perform further analysis

to more comprehensively characterize IMA traffic.

While I selected a comprehensive set of IMAs for my study, it is not exhaustive.

Ideally, the network research community could benefit from analyzing and studying

traffic from every Instant Messaging mobile application. Therefore, future work could

explore IMAs beyond the ones I studied in this research. Specifically, I limited my

set to IMAs that are widely used in North America. However, there are specific

IMAs that are specific to a geo-location, such as WeChat and KakaoTalk. To extend

IMA traffic analysis to a global level, future work could explore IMAs used in specific

regions.
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Appendix A

Appendix

A.1 Features extracted by Tranalyzer2

Feature ID Description

1 %dir Flow direction

2 flowInd Flow index

3 flowStat Flow status and warnings

4 timeFirst Date time of the first packet

5 timeLast Date time of the last packet

6 duration Flow duration

7 numHdrDesc Number of different headers descriptions

8 numHdrs Number of headers (depth) in header descrip-

tion

9 hdrDesc Headers description

10 srcMac source MAC address

11 dstMac destination MAC address

12 ethType Ethernet type

13 ethVlanID VLAN IDs

14 srcIP source IP

15 srcIPCC source IP country

16 srcIPOrg source IP organization

17 srcPort source port

18 dstIP destination IP

19 dstIPCC destination IP country

20 dstIPOrg destination IP organization

21 dstPort destination port

22 l4Proto Layer 4 protocol

65
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Feature ID Description

23 macStat MAC statistics

24 macPairs MAC pairs

25 srcMac dstMac numP source/destination MAC ad-

dresses, number of packets

26 srcManuf dstManuf source/destination MAC manufac-

turers

27 dstPortClassN port-based classification of the destination

port number

28 dstPortClass classification of the destination port

29 numPktsSnt number of packets sent

30 numPktsRcvd number of packets received

31 numBytesSnt number of bytes sent

32 numBytesRcvd number of bytes received

33 minPktSz minimum packet size

34 maxPktSz maximum packet size

35 avePktSize average packet size

36 stdPktSize standard packet size

37 minIAT minimum inter-arrival time

38 maxIAT maximum inter-arrival time

39 aveIAT average inter-arrival time

40 stdIAT standard inter-arrival time

41 pktps sent packets per second

42 bytps sent bytes per second

43 pktAsm packet stream asymmetry

44 bytAsm byte stream asymmetry

45 tcpFStat multiple values possible for TCP flag stat

46 ipMindIPID IP Minimum delta IP Identification

47 ipMaxdIPID IP Maximum delta IP Identification

48 ipMinTTL IP Minimum Time to Live (TTL)
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Feature ID Description

49 ipMaxTTL IP Maximum Time to Live (TTL)

50 ipTTLChg IP TTL Change Count

51 ipTOS IP Type of Service

52 ipFlags IP flags

53 ipOptCnt IP options count

54 ipOptCpCl Num the aggregated IP options are coded as

a bit field in hexadecimal notation where the

bit position denotes the IP options

55 ip6OptCntHH IPv6 aggregated hop by hop dest option

counts

56 ip6OptHH IPv6 hop by hop destination options

57 tcpISeqN TCP initial sequence number

58 tcpPSeqCnt TCP packet sequence count

59 tcpSeqSntBytes TCP sent sequence diff bytes

60 tcpSeqFaultCnt TCP sequence number fault count

61 tcpPAckCnt TCP packet ACK count

62 tcpFlwLssAckRcvdBytes TCP flawless ACK received bytes

63 tcpAckFaultCnt TCP ACK number fault count

64 tcpInitWinSz TCP initial effective window size

65 tcpAveWinSz TCP average effective window size

66 tcpMinWinSz TCP minimum effective window size

67 tcpMaxWinSz TCP maximum effective window size

68 tcpWinSzDwnCnt TCP effective window size change down

count

69 tcpWinSzUpCnt TCP effective window size change up count

70 tcpWinSzChgDirCnt TCP effective window size direction change

count

71 tcpWinSzThRt TCP packet count ratio below window size

WINMIN
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Feature ID Description

72 tcpFlags TCP aggregated protocol flags (FIN, SYN,

RST, & PSH, & ACK, URG, ECE, CWR)

73 tcpAnomaly TCP aggregated header anomaly flags

74 tcpOptPktCnt TCP options packet count

75 tcpOptCnt TCP options count

76 tcpOptions TCP aggregated options

77 tcpMSS TCP maximum segment size

78 tcpWS TCP window scale factor

79 tcpMPTBF MPTCP type bitfield

80 tcpMPF MPTCP flags

81 tcpMPAID MPTCP address ID

82 tcpMPdssF MPTCP DSS flags

83 tcpTmS TCP time stamp

84 tcpTmER TCP time echo reply

85 tcpEcI TCP estimated counter increment

86 tcpUtm TCP estimated up time

87 tcpBtm TCP estimated boot time

88 tcpSSASAATrip (A) TCP trip time SYN, SYN-ACK,(B) TCP

trip time SYN-ACK, ACK

89 tcpRTTAckTripMin TCP ACK trip minimum

90 tcpRTTAckTripMax TCP ACK trip maximum

91 tcpRTTAckTripAve TCP ACK trip average

92 tcpRTTAckTripJitAve TCP ACK trip jitter average

93 tcpRTTSseqAA (A) TCP round trip time SYN, SYN-ACK,

ACK (B) TCP round trip time ACK-ACK

94 tcpRTTAckJitAve TCP ACK round trip average jitter

95 tcpStates TCP states

96 icmpStat status

97 icmpTCcnt type code count
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Feature ID Description

98 icmpBFTypH TypL Code aggregated type H(¿128),L(¡32)

and code bitfield

99 icmpTmGtw time/gateway

100 icmpEchoSuccRatio echo reply/request success ratio

101 icmpPFindex parent flow index

102 connSip number of unique source IPs

103 connDip number of unique destination IPs

104 connSipDip number of connections between source and

destination IPs

105 connSipDprt number of connections between source and

destination port

106 connF the f number, experimental:

connSipDprt/connSip

Table A.1: The list of features extracted by Tranalyzer2

A.2 Improving my packet size/timing features classifier

In Section 4.3.2, I presented the results of my Random Forest model that classifies

between IMAs using only packet size/timing features. Table A.2 show the scores of

this classifier for each class and I see that I get an overall average F1 score of over

81%.

However, I see that the classes Discord, Telegram, and WhatsApp have low pre-

cision and the confusion matrix for this classifier (Figure A.1) shows that these three

classes are often mistaken for one another. Furthermore, the other three classes- Mes-

senger, Teams, and Signal- exhibit unique characteristics as indicated by F1 scores

that are higher than 0.91%. Therefore, I concluded that my original 6-class Random

Forest model fails to capture and model the differences between Discord, Telegram,

and WhatsApp.
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Then, I investigated whether I could improve my results for this classification

task. To determine if I can even accurately distinguish between Discord, Telegram,

and WhatsApp, I built another Random Forest model for the three ”culprit” IMAs.

I will refer to this model as my ”3-class model”. Table A.3 shows the result of this

3-class and I can see that I achieve high F1 scores (average F1 score of 90.1%).

Therefore, I concluded that my original 6-class model simply fail to capture the

statistical differences between these three classes.

Furthermore, I rank the features by their importance for my original 6-class model

and for my 3-class model. Figure A.2 shows that my 6-class model generally relies on

traffic volume features (such as the number of bytes received and packet sizes) more

than timing features (such as standard interarrival time), while the opposite is true

for my 3-class model.

To improve the overall performance for this classification task, I combine my

original 6-class model with my 3-class model. Figure A.3 describes how I combined

these two classifiers. For each input, I first use my 6-class classifier. Then, if the

output of this first classifier is Telegram, WhatsApp, or Discord, I reclassify the

input using my 3-class model.

Figure A.4 presents the result of this combined model and compares it with my

original 6-class model. I can see that the combined model shows clear improvements

as evidenced by an increase in F1 scores for Discord, Telegram, and WhatsApp.
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Table A.2: Classifying between IMAs using packet/timing features.

Figure A.1: Classifying between IMAs using packet/timing features.
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Table A.3: Classifying between Discord, Telegram and WhatsApp.

Figure A.2: Comparing the importance of features for my 6-class and 3-class models.
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Figure A.3: Combining my 6-class model with my 3-class model.
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