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Do not go gentle into that good night,

Old age should burn and rave at close of day;

Rage, rage against the dying of the light.

ii
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ABSTRACT

Intermolecular interactions are the forces that exist between molecules and are fundamental to many

aspects of chemistry and the natural sciences, including the determination of the phases of matter.

A correct theoretical description of intermolecular interactions at the quantum mechanical level is

required for quantitative understanding of chemistry. While highly accurate wavefunction-based

methods exist, they are impractical or impossible to apply to the large molecular systems relevant to

most areas of chemistry, making dispersion-corrected density-functional theory (DFT) the standard

class of methods for such applications. This thesis first characterised the shortcomings and laid out

the requirements for high accuracy within dispersion-corrected DFT approaches, and highlighted

some advantages of the exchange-hole dipole moment (XDM) dispersion method. This thesis

then focused on the implementation of XDM within the Fritz Haber Institute ab initio materials

simulations package (FHI-aims), which allowed for the first time the routine use of XDM-corrected

hybrid functionals for the study of molecular solids. Using a selection of common molecular

and solid-state benchmarks as test systems allowed for the validation of the XDM model within

FHI-aims. Specifically, XDM-corrected hybrid functionals were shown to yield unprecedented

accuracy for predicting energies of forming crystals from their constituent molecules, as well

as remarkable predictive capacity for stable crystal packing motifs, or polymorphs, of organic

molecules in the solid state. Finally, these methods were then applied to the compounds forming

the 7th blind test of first-principles molecular crystal structure prediction. The implementation of

XDM within the FHI-aims package presented within this work now allows for the accurate and

efficient computational study of a new and interesting range of important chemical compounds and

materials.
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CHAPTER 1

INTRODUCTION

1.1 LONDON DISPERSION IN SOLIDS

Modern density-functional theory (DFT)1,2 has its origins in 1964–1965 works by Hohenberg,

Kohn, and Sham.3,4 They showed that the total electron density, ρ, completely describes all ground-

state properties of an N -electron system, which simplifies the complexity down to a function of

three coordinates, independent of the number of electrons.1 The variational principle must also be

applied, where the density that minimises the total energy is the exact ground-state density.1,3 The

breakthroughs in the works by Hohenberg, Kohn, and Sham ultimately allow one to write the total

energy as

E = TKS +

∫︂
Vextdr + J(ρ) + Exc(ρ), (1.1)

where TKS is the kinetic energy of the non-interacting electrons, Vext is the external potential from

the nuclear charges, J(ρ) is the classical Coulomb self-energy, and the only unknown term is the

exchange-correlation functional, Exc.1 Much of the DFT work since 1965 has focused on the

development of newer and more accurate functionals for Exc.1,2

Modern DFT allows for the modelling of electronic structure of both molecules and solid

materials. DFT is widely used across computational chemistry, physics, and materials science in

order to investigate the fundamental nature of interactions in matter, which aid in the interpretation

and prediction of experimental results. The power of DFT has helped in the design of new drugs,

reactions, catalysts, and materials, amongst many other things.1,2,5–7 While DFT has been shown

to be highly accurate for most examples of intramolecular chemistry, its applications to problems

in intermolecular chemistry are still not as developed. A key issue with DFT is that many of the

original exchange-correlation functionals are based on the local (local density approximation) or the

semi-local density (generalized-gradient approximations) and, by definition, neglect all non-local

interactions. This leads to inaccuracies by many density functionals for the modelling of systems
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Figure 1.1: Potential energy curve for graphite exfoliation computed using B86bPBE8,9

(without dispersion) and B86bPBE-XDM8–10 (with dispersion), as described in Ref. 10.
The experimental reference value is taken from Ref. 11.

involving London dispersion, which is a wholly non-local type of electron correlation.

London dispersion12,13 interactions are long-range interactions that arise between instantaneous

dipole (and higher-order multipole) moments in the electron distribution of atoms or molecules.

These instantaneous dipoles originate from time-dependent variation of the electron distribution

around the nuclei, and these changes in density can create instantaneous electric fields. These elec-

tric fields are in turn felt by neighbouring atoms or molecules around this instantaneous dipole and

induce further density polarization, resulting in an attractive force. London dispersion is the driving

force behind the condensation of non-polar molecules and, despite being the weakest intermolecular

interaction, is ubiquitous in chemistry. London dispersion forces are key to determining the 3D

structure of biomolecules such as proteins and DNA,14 molecular self-assembly,15 interactions

within layered materials such as the carbon sheets of graphene to make graphite,16 surface adsorp-

tion,17 phase transitions,18 and molecular crystal packing.12,19,20 The importance of dispersion

for layered materials can be seen in the potential energy curves for the exfoliation of graphite, as

seen in Fig. 1.1. Without the inclusion of dispersion, graphene layers are not predicted to bind

together. However, with the inclusion of a dispersion correction, DFT instead predicts an interlayer

separation and exfoliation energy that matches experiment.11 There are currently a number of

distinct methods to address the lack of dispersion forces within the base DFT functional.10,21

Consider two non-polar atoms A and B. The dispersion energy between these two atoms can

be determined from second-order perturbation theory, where the non-interacting atomic wave

functions are used as the unperturbed reference state and the dispersion forces are treated as a small

perturbation.10,22–24 As the atoms are non-polar, they have no permanent dipoles and the first-order
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energy correction can be shown to be zero.22–24 Therefore, one must look at the second-order

correction to describe the dispersion forces. Using the closure approximation,24,25 which avoids

the explicit sum over excited atomic states, the second-order dispersion energy (in atomic units) is

E(2) ≈ −2

3

(︃
1

∆EA +∆EB

)︃ ⟨︁
µ2A

⟩︁ ⟨︁
µ2B

⟩︁
R6

ab

, (1.2)

where R is the internuclear separation,
⟨︁
µ2

⟩︁
is the dipole moment integral, and ∆E is the average

excitation energy. In the absence of a permanent dipole moment,
⟨︁
µ2A

⟩︁
≈ 3

2αA∆EA due to the

relationship between the mean-square dipole moment and the polarizability. Also, ∆EA,B can

be replaced by taking the average excitation energies as roughly equal to the atomic ionisation

potentials, IA,B . This substitution gives rise to the London formula,24

E(2) ≈ −3

2

(︃
IAIB
IA + IB

)︃
αAαB

R6
, (1.3)

which simplifies the dispersion energy down to an expansion in terms of the atomic ionisation ener-

gies, IA,B , and polarizabilities, αA,B . Although approximate, it begins to allow an understanding

of the true physics of dispersion interactions. The London formula, for example, correctly predicts

that atoms with large polarizabilites have the greatest interatomic dispersion interactions.

An early way of modelling dispersion interactions was through the use of a Lennard-Jones

potential,26 which consists of two fundamental parts: a steep repulsive R−12 term and a smooth

attractive R−6 term. It is represented as potential:

V (R) = 4ϵ

[︃(︂ σ
R

)︂12
−
(︂ σ
R

)︂6
]︃
, (1.4)

where ϵ is the potential well depth or strength of the interaction between two particles, and σ

is the sum of van der Waals radii of the particles. Although simplistic in its formulation, the

Lennard-Jones potential is still in use today in force field calculations, with empirical atom typing

for the dispersion coefficients.27–29

Building on the insight gained from second-order perturbation theory, a number of methods have

been formulated to address the missing component of dispersion within DFT. These can be broken

down into two key categories: dispersion corrections and dispersion-including functionals. These

two types further can be subdivided into asymptotic dispersion corrections,10,30–43 dispersion-

correcting potentials,44–50 non-local functionals,42,43,51–56 parameterised exchange-correlation

functionals,57–61 and others.36,37,62

The focus of this work is on the subclass of asymptotic dispersion corrections. This subclass is
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attractive as asymptotic dispersion corrections are simple in their formulation and capable of high

accuracy, whilst also being low in computational cost when compared to other types of dispersion

methods. In a general asymptotic dispersion correction, the leading-order dispersion energy term is

represented as

E
(6)
disp = −

∑︂
i<j

C6,ijf6,ij(Rij)

R6
ij

, (1.5)

where the sum runs over all atomic pairs and the C6,ij are the interatomic dispersion coefficients

which can be approximated, for example, by the London formula above. In order to ensure

physicality, the dispersion energy is damped by some function, f6,ij(Rij), at short internuclear

distances to avoid divergence.

Commonly employed asymptotic dispersion corrections include Grimme’s D2,30 D3,31,32 and

D4 models,33,34 the Tkatchenko-Scheffler (TS)35 method, and the exchange-hole dipole moment

correction (XDM)10,63 of Becke and Johnson. The difference in each correction arises from the

method by which the C6 term is calculated and whether higher-order dispersion terms, such as C8

or C10, are included. For example, the early D2 implementation of Grimme’s series of corrections

was limited to the C6 term and used fixed parameterised values for the dispersion coefficients. The

later D3 correction computes the C6 terms using coordination numbers and also includes C8. XDM

improves on the accuracy of the dispersion energy through the inclusion of both C8 and C10 terms,

and the dispersion coefficients are calculated from the electron density, which allows the correction

to respond robustly to a wide range of chemical environments.

1.2 THESIS GOALS

Currently, XDM is only implemented in a limited selection of electronic-structure codes, and

its implementation within the Fritz Haber Institute ab initio materials simulations package (FHI-

aims)64–70 is a key objective of this thesis. FHI-aims is an all-electron electronic-structure code

package, designed for both finite molecular and periodic solid-state applications. It uses numerical

atomic orbitals (NAOs) as basis functions, which allows computational flexibility and speed not

seen with planewave codes for periodic solids. The flexibility and speed of NAOs arises due to the

fact that they are localised around atoms, allowing them to be truncated in space beyond a given

distance, and the number of basis functions needed to converge the energy is usually smaller than

with other competing methods.71 The computational efficiency of FHI-aims paired with XDM will

allow for the study of very large (> 200 atoms/unit cell) solid-state systems that would previously

have been impractical with conventional planewave codes. Furthermore, FHI-aims is able to extend

the range of applicability of hybrid-functionals to solids, which have been too computationally

4



expensive or impractical for planewave-based codes (except for small unit cells, of ∼ 30 atoms

or less), and with greater accuracy than can be attained with minimal Gaussian basis sets in the

CRYSTAL code.72,73

The purpose of the current work is the implementation and testing of the XDM model within the

FHI-aims code. The new implementation will be rigorously benchmarked against conventional

systems from the literature, including the KB49,74,75 S22×5,76 S66×8,77 and 3B-6978 sets of

intermolecular interactions. We will also perform benchmarking on the more challenging test of

lattice energies, considering the X23 set of molecular crystals10,79,80 and the ICE13 set of 13 ice

polymorphs,81 with the intent to compare the XDM module’s performance head-to-head with other

commonly employed dispersion corrections. Once the performance of the XDM module has been

demonstrated, it will be tested for application to molecular crystal structure prediction (CSP) by

considering the energy ranking of candidate crystal structures.

This thesis will focus on the FHI-aims implementation of XDM and its application to solid-state

systems involving molecular crystals. Chapter 2 will start with a detailed description of DFT and

the forms of the exchange-correlation functionals to be used in this work. The considerations of how

periodic boundary conditions affect solid-state DFT calculations will also be discussed, along with

an overview of both pseudopotential methods using planewave basis sets and all-electron methods

using atom-centered basis sets. The last section within Chapter 2 will be a review of dispersion

methods, with a detailed description of the XDM method, as well as outlines of Grimme’s methods

and the Tkatchenko-Scheffler and many-body dispersion corrections. Chapter 3 will discuss the

requirements for the selection of an appropriate density functional and dispersion correction for

the accurate description of non-bonded repulsion and dispersion attraction and will inform the

proceeding chapters within this work. Chapter 4 will describe a completed computational research

project that investigates surface adsorption through XDM-corrected DFT to enable the theoretical

assignment of structures characterised experimentally by scanning tunneling microscopy (STM)

and will directly apply the theory discussed in Chapters 2 and 3. Chapter 5 will then outline the

implementation of the XDM method within the FHI-aims electronic structure package. Chapter 6

will compare the performance of the FHI-aims XDM implementation with that of other dispersion

corrections for a range of both molecular and solid-state benchmarks found within the literature.

Chapter 7 will then discuss an application of the FHI-aims XDM tool to crystal structure prediction

for all molecular crystals found within the Cambridge Crystallographic Data Centre’s (CCDC)

first six CSP blind tests.82–87 Chapter 8 will present the results obtained using the FHI-aims

implementation of XDM for the recently concluded 7th blind test. Finally, Chapter 9 will discuss

the conclusions formed within this thesis and aim to outline the future work left to complete.
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CHAPTER 2

THEORY

2.1 DENSITY-FUNCTIONAL THEORY

Density-functional theory (DFT)1,2 is fundamentally a quantum-mechanical modeling method

underpinned by the time-independent Schrödinger equation,88

Ĥψ = Eψ. (2.1)

Here, E is the energy, ψ(r1, . . . , rN ) is the N -electron wavefunction, and equation 2.2, Ĥ is the

Hamiltonian,

Ĥ = T̂ + V̂ + Û , (2.2)

shown here broken into its kinetic energy term (T̂ ), the external potential energy term (V̂ ), and the

electron-electron interaction energy (Û ).

DFT is used in many branches of chemistry and physics to answer fundamental questions

concerning the electronic structure of many-body systems in the forms of atoms, molecules, or

condensed phases.1,2,5,89,90 DFT does not directly solve the time-independent Schrödinger equation,

but instead systematically maps the many-body problem onto a single-particle problem with the

key variable being the electron density, ρ(r), given by

ρ(r) =

∫︂
· · ·

∫︂
ψ∗(r1, . . . , rN )ψ(r1, . . . , rN )dr2, . . . drN . (2.3)

DFT was made practical by the work by Kohn and Sham in 1965.4 Their fundamental assumption

is that the exact ground-state density can be obtained from the numerical solution of a set of

single-particle Schodinger-like equations for a system of non-interacting electrons.4 The total
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energy functional for a Kohn-Sham system can be written as

E[ρ] = TKS +

∫︂
vext(r)ρ(r)dr+ J [ρ] + EXC[ρ]. (2.4)

Here, TKS is the kinetic energy (in atomic units) which can be written in terms of the occupied

Kohn-Sham orbitals, ϕi, as

TKS =

N∑︂
i=1

∫︂
ϕ∗i (r)

(︃
−1

2
∇2

)︃
ϕi(r)dr, (2.5)

where ∇2 is the Laplacian operator. For the subsequent terms, vext is the external potential that

arises from the electron-nuclei interactions and

J [ρ] =
1

2

∫︂ ∫︂
ρ(r)ρ(r′)

|r− r′|
drdr′ (2.6)

is the Hartree or classical Coulomb energy between electrons. Lastly, EXC is the exchange-

correlation energy, which contains all of the energetic contributions neglected by the other terms.

In practice, Equation 2.4 must be solved in an iterative or self-consistent fashion. This is done

through the self-consistent field (SCF) procedure, as in Hartree-Fock (HF) theory, which obtains

the orbitals that minimise the energy of the system. This occurs through variationally lowering the

electronic energy by optimising the electron density. The density is constructed from the occupied

Kohn-Sham orbitals as

ρ(r) =

N∑︂
i

|ϕi(r)|2. (2.7)

The Kohn-Sham equations are then solved for the energy and an updated set of Kohn-Sham orbitals.

This iterative process is continued until the energy is converged to within a certain tolerance and

the procedure is finished.

As mentioned earlier, it is the EXC term in Equation 2.4 where all previously neglected energetic

components are packaged. Since the exact form of EXC is not known, there have been many

different density-functional approximations proposed over the years of DFT.1,2 The exchange-

correlation energy can be separated into its component parts, exchange energy (EX) and correlation

energy (EC), as EXC = EX + EC. For the remainder of this section, only the form of exchange

functional will be discussed, as its contribution to EXC energy is far greater than that of EC.1

The first and simplest exchange functional is the local spin density approximation (LSDA),

which has the form

ELDSA
X = −3

2

(︃
3

3π

)︃1/3∑︂
σ

∫︂
ρ4/3σ (r)dr, (2.8)
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where the sum is over electron spins and ρσ is the spin-dependent density. The correlation energy for

the LSDA is obtained from quantum Monte Carlo calculations on the uniform electron gas, as there

is no closed-form expression.91 The LSDA typically leads to an underestimation of the exchange

energies and an overestimation of correlation and bond energies.1 This led to the first improvement

on the LSDA and spawned a class of functionals called generalized gradient approximations (GGA).

Real chemical systems do not contain a uniform density. For GGA-type functionals, the exchange

energy depends on both the density and the density gradient, ∇ρ, and has the general form

EGGA
X =

∑︂
σ

∫︂
εX(ρσ,∇ρσ)dr. (2.9)

where εX is the exchange-energy density. Two common GGAs used in this work are the Becke86b

(B86b)8 and Perdew-Burke-Ernzerhof (PBE)9 exchange functionals. These GGAs have the form

EGGA
X = −

∑︂
σ

∫︂
cXρ

4/3
σ F (χσ)dr, (2.10)

where F (χσ) is termed the enhancement factor, cX is a constant term, and χσ is the dimensionless

density gradient,

χσ =
|∇ρσ|
ρ
4/3
σ

. (2.11)

The differences between PBE and B86b arise in the enhancement factor. In PBE, it has the form92

F (χσ) = 1 +
β

cX

χ2
σ

1 + γχ2
σ

, (2.12)

where the values of the two parameters β and γ are determined by imposing known constraints.9

This functional corrects for the uniform-electron gas in the low-gradient limit, but misses the correct

behaviour in the large-gradient limit.8 The B86b functional was developed to address the large

gradient limit. It has the same form for the exchange energy as Equation 2.10, but the enhancement

factor is different:

F (χσ) = 1 +
β

cX

χ2
σ

(1 + γχ2
σ)

4/5
. (2.13)

In the case of B86b, the parameters β and γ were fit to atomic exchange energies.8 Both PBE and

B86b exchange are typically paired with the PBE correlation functional.9 PBE is generally the

most widely used density functional for solid-state applications.2,9 However, B86bPBE8,9 is our

functional of choice in this work due to its behaviour in the large-gradient limit, which ensures

better performance for non-bonded repulsion.93,94

GGAs represent major improvements over the LSDA for many systems of chemical interest, but

8



are still limited in their performance as they are semi-local. More complicated classes of functionals

include meta-GGAs95 and hybrid functionals,96 which can achieve greater chemical accuracy.1

For meta-GGAs, this is achieved through the additional inclusion of the kinetic energy density, τσ,

and the Laplacian of the density, ∇2ρσ,95 with more information given in Section 2.5. Moving

beyond GGAs and meta-GGAs, exact (HF) exchange may be included to give a hybrid functional,

Ehybrid
Xσ = aXE

HF
Xσ + (1− aX)E

GGA
Xσ , (2.14)

with the mixing parameter, aX, typically varying between 20 - 50%, depending on the functional

used. EHF
X has the form

EHF
X = −1

2

∑︂
σ

∫︂∫︂
ϕ∗i (r)ϕ

∗
j (r

′)
1

r12
ϕi(r)ϕj(r

′)drdr′ (2.15)

and uses the occupied Kohn-Sham orbitals. One of the most common hybrid functionals is PBE0,97

which has aX = 25%. Hybrid functionals address some of the shortcomings found within both

pure HF and GGAs. They outperform both GGAs and HF by mitigating issues common in GGAs,

such as delocalization error, and yet still include electron correlation absent in pure HF. However,

as exact exchange is non-local in nature, hybrid functionals can become increasingly costly for

large molecular systems and prohibitively expensive with increasing unit-cell size for solid-state

systems (becoming impractical for roughly > 30 atoms/unit cell, within planewave-based codes).

2.2 PERIODIC BOUNDARY CONDITIONS IN THE SOLID
STATE

The treatment of solids has a difficulty not seen within gas-phase calculations on finite molecules,

which is the requirement to treat an infinitely extending system with an infinitely large number

of electrons. This is only surmountable due to the ability to break down solid-state systems into

periodic components, or unit cells. Unit cells are the most basic repeating structure of a given

material from which the whole can be constructed. A unit cell provides periodicity and can be

completely specified by three Bravais lattice vectors,

R = n1a1 + n2a2 + n3a3, (2.16)

where a1, a2, and a3 represent the primitive vectors which span the unit cell and n1, n2, and n3

range through all integer values. As the entire repeating system can be represented by translations
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of the unit cell along the lattice vectors, the problem can be reduced from considering the whole

infinitely repeating solid and its orbitals down to considering just the unit cell.

Given that the potential U(r) can be represented using the periodicity of the Bravais lattice,

U(r) = U(r+R), (2.17)

Bloch’s theorem98 allows the eigenstates ψ of the one-electron Hamiltonian,

Ĥ = −1

2
∇2 + U(r), (2.18)

to be chosen such that they have the periodicity of the Bravais lattice through the use of plane

waves,

ψnk(r) = eik·runk(r), (2.19)

with

unk(r) = unk(r+R), (2.20)

which can be written in the terms of its Fourier expansion as

uk(r) =
∑︂
G

uk,GeiG·r. (2.21)

Here, k is a reciprocal wave vector of the form,

k = m1b1 +m2b2 +m3b3 , (2.22)

where the reciprocal lattice vectors are,

b1 =
2π

Ω
a2 × a3 , b2 =

2π

Ω
a3 × a1 , b3 =

2π

Ω
a1 × a2 . (2.23)

Where the volume of the unit cell is represented by Ω = a1 · (a2 × a3), and the real-space primitive

lattice vectors satisfy ai · bj = 2πδij , where δij is the Kronecker delta. G can be any of the

periodic wave vectors such that G ·R = 2πm for some integer m, where R is a lattice vector of

the crystal. The electronic wavefunction can then be written as

ψi(r) =
1√
Ω

∑︂
G

ci,k+Gei(k+G)·r. (2.24)

This use of Bloch’s theorem maps the problem of writing wavefunctions for an infinite number
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of electrons to one of expressing the wavefunctions in terms of a finite number of electrons, but

using an infinite number of reciprocal-space vectors in the first Brillouin zone. This is then solved

through the sampling of k-space within the Brilloun zone.

In principle, k-space must be sampled completely for an exact solution. In practice, this can be

avoided to give an accurate and tractable solution through an efficient sampling algorithm. Similar

to the unit cell, as noted before, there exists a way to uniquely define a primitive cell in reciprocal

or k-space. The first Brillouin zone can be mapped by a set of k-points, denoted as x× y × z,

where every possible k in the infinite solid is equivalent to exactly one point in this region. There is

an infinite density of k-points within the first Brillouin zone and, therefore, an efficient yet accurate

sampling must be used. One such scheme is that developed by Monkhorst and Pack,99 which

distributes the sampled k-points homogeneously in columns and rows parallel to the reciprocal

lattice vectors and is based on point-group symmetries. Schemes like the Monkhorst-Pack scheme

are viable even though they do not span all possible k-points because they offer an efficient route to

a sufficiently dense integration grid in reciprocal space, and a well-converged set of finite k-points

can still determine the total energy within an acceptable margin of error.

2.3 PLANEWAVES AND PSEUDOPOTENTIALS

A finite set of planewaves can be used as a basis because there are only discrete G vectors that

fit within the lattice periodicity. The kinetic-energy cutoff that limits the energy/frequency of the

planewaves is represented by

Ecut =
1

2
|k+Gmax|2, (2.25)

which may be used in practice to limit the basis as the contributions of the higher Fourier components

are ever diminishing. Separate kinetic-energy cutoffs are employed for the charge density and

potential and for wavefunctions, respectively. As many planewaves are used to build up the true

wavefunction, the calculation must be converged with respect to these cutoffs to ensure an accurate

total energy.

In practice, even with the use of planewaves and efficient integration grids, there are caveats for

calculations on solid-state systems. One such drawback is the inability of planewaves to easily

describe wavefunctions containing sharp features, such as those at electron-nuclear cusps. To

address this drawback and reduce the number of planewaves required to describe the wavefunctions

and electron density, all atomic core regions are replaced with fixed pseudopotentials, so that

the planewaves are only used to describe the valence charge density. These pseudopotentials

have a simplified wavefunction with no nodes or cusps and, in the case of norm-conserving
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pseudopotentials, a correct total charge. Outside some defined radial cutoff (rc), the all-electron

and pseudo wavefunctions are the same. Additionally, pseudopotentials can be classed as hard or

soft, where a pseudopotential is considered soft when it requires a small number of planewaves for

an accurate representation, and hard otherwise. The pseudopotentials also should be constructed

from the specific type of exchange-correlation functional to be used in calculations.

Norm-conserving pseudopotentials are a specific type of pseudopotential that allow for a basis set

with a significantly lower cutoff for the highest Fourier mode of the planewaves. Norm-conserving

pseudopotentials, first proposed in 1979 by Hamann, Schlüter, and Chiang100 and later modified by

Troullier and Martins,101–103 follow four general conditions. The first is that the valence pseudo-

wavefunction generated from the pseudopotential contains no nodes. Second, the normalised

atomic radial pseudo-wavefunction with angular momentum l and the normalised radial all-electron

wavefunction are equal for a chosen cutoff radius, rcl. Third, the charge within that cutoff region

rcl is equal for the pseudopotential (PP) and all-electron (AE) radial wavefunctions, Rl:∫︂ rcl

0

⃓⃓
RPP

l (r)
⃓⃓2
r2dr =

∫︂ rcl

0

⃓⃓
RAE

l (r)
⃓⃓2
r2dr. (2.26)

Lastly, the valence pseudopotential and all-electron eigenvalues, ϵl, are also equal:

εPPl = εAE
l . (2.27)

Although, norm-conserving pseudopotentials have wide applications in solid-state calculations,

they are not as accurate as the projector augmented-wave (PAW) method developed by Blöchl in

1994104 and generalized by Kresse and Joubert.105

The PAW method is a type of augmented-wave method. Augmented-wave methods have various

forms which began with the development of the augmented planewave method (APW). The APW

method aims to solve the Kohn-Sham equations, shown in matrix form as

∑︂
n′

(Hn,n′ − εnSn,n′)cn′ = 0, (2.28)

where εn is the eigenvalue of the energy, and cn′ are expansion coefficients. Hn,n′ is the Hamiltonian

matrix,

Hn,n′ =
⟨︁
ϕn

⃓⃓
−∇2 + Veff

⃓⃓
ϕn′

⟩︁
, (2.29)

Veff the effective potential, and Sn,n′ is the overlap matrix,

Sn,n′ = ⟨ϕn|ϕn′⟩ . (2.30)
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APW methods solve the Kohn-Sham equations 2.28 through linearising the eigenvalue problem

and forms of this method are called linearised augmented planewave (LAPW) methods.106,107 The

LAPW method uses a dual basis type, where regions within the atomic spheres use atomic-like

basis functions and the interstitial regions between atoms are treated with a planewave basis. The

atomic regions are represented as muffin-tin spheres, where the number of planewaves required

to represent the system is dependent on the muffin-tin cutoff radius, with a large region requiring

fewer planewaves and a smaller one requiring more planewaves. The LAPW method has the benefit

of being a true all-electron method and, therefore, can give an accurate description of chemistry

involving the atomic cores. Unfortunately, this accuracy comes at the cost of being computationally

costly compared to other techniques such as using pseudopotentials.

PAW is another common method of core-region reconstruction within solid-state calculations,

which aims to have the accuracy seen with LAPW methods, and the efficiency seen with pseudopo-

tential methods. This is achieved through transforming the true all-electron wavefunction, Ψ(r),

into a pseudised wavefunction, Ψ̃(r), through the use of a transform operator:

Ψ(r) = T̂ Ψ̃(r). (2.31)

This transform operator, T̂ , is written as T̂ = 1 +
∑︁

R SR and has some constraints so that the

pseudo-wavefunctions remain smooth, and can be expanded in terms of a minimal number of

planewaves. SR adds the difference between the all-electron and pseudo-wavefunctions, which are

expanded in partial waves for free isolated atoms:

SR|ϕ̃i⟩ = |ϕi⟩ − |ϕ̃i⟩, (2.32)

where |ϕ̃i⟩ is the pseudo partial wave and |ϕi⟩ is the all-electron valence partial wave. The

augmentation region Ψ̃n(r) is then expanded in partial waves of |ϕ̃i⟩ and is written as

Ψ̃n(r) =
∑︂
iεR

ϕ̃i(r)cin, (2.33)

where the ci are determined by the projector functions ⟨p̃i|, which provide the contribution of each

wave and is the projector part of PAW. This leaves the transform operator to be

T̂ = 1 +
∑︂
i

(︂
|ϕi⟩ − |ϕ̃i⟩

)︂
⟨p̃i| , (2.34)

and therefore the true wavefunction is recovered from Ψ(r) = T̂ Ψ̃(r). The PAW method is
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Figure 2.1: Schematic representation of PAW method. Figure adapted from Ref. 108.

represented schematically in Fig. 2.1, where ρv is the total valence charge density, ρ̃ is the density

from the pseudopotential calculation over the entire cell, ρ1 represents the all-electron charge

density within the PAW spheres, and ρ̃1 the pseudo charge densities within the PAW spheres.108

The PAW method achieves efficient and accurate densities by calculating the pseudopotential

density and correcting the core region of each atom through the subtraction of the in-sphere pseudo

part of the total charge density, replacing it with the all-electron in-sphere component.108 This

method has the benefit of retaining the core wavefunctions, with a reduction in the computational

expense that arises from the planewave basis-set treatment of the core region.

All PAW datasets in this work were generated with B86bPBE using the “atomic" code from

Quantum ESPRESSO,109 version 5.1.1. The cutoff radii used for the pseudisation of the all-electron

wavefunctions were set to those specified in Table 2.1. These components are important as PAW

sphere overlap can cause spurious coulombic interactions between spheres108 due to the unwanted

augmentation of the charge densities. For the PAW calculations performed in Chapter 4 of this

work, the possible minimum overlap distances are listed in Table 2.2. C – H bonds have the shortest

bond lengths considered and also have one of the smallest differences between the optimised bond

lengths and the sum of the core radii. The minimum distance between the PAW spheres is 0.23 bohr

for C –– O double bonds and this is the closest the spheres come to overlapping within the systems

studied in this work. This is still beyond the range where the compensation densities would be

expected to be overlapping and, therefore, PAW overlap would not be expected to be a major source

of error within this work.

2.4 ALL-ELECTRON METHODS

2.4.1 ATOM-CENTERED BASIS SETS

There exist two main approaches to treating the core region wavefunctions, one being pseudopoten-

tials and the other being all-electron-based methods. Although a pseudopotential-based method has

the benefits of obtaining arbitrarily high accuracy with systematic increases in the kinetic-energy

cutoffs for planewave basis sets and straightforward inclusion of scalar relativistic effects, they
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Table 2.1: Valence configuration and core-region cutoff radii, rc, in atomic units for the
B86bPBE PAW datasets used in this work.

Element Valence Configuration
shell occupation rc

H 1S 1.00 0.80
C 2S 2.00 1.00

2P 2.00 0.90
N 2S 2.00 1.00

2P 3.00 0.90
O 2S 2.00 1.00

2P 4.00 0.90
Fe 4S 1.70 1.30

2P 0.00 1.30
3D 6.30 1.30

Ag 5S 1.50 2.20
5P 0.00 2.20
4D 9.50 1.70

Table 2.2: Minimum bond distances from optimised geometries in Chapter 4 of this work,
compared to the sum of maximum core cutoff radii for each element. All quantities are in
atomic units.

Bond Optimised Distance
∑︁

rc Difference
C-H 2.06 1.80 0.26
C-C 2.65 2.00 0.65
C-N 2.64 2.00 0.64
C-O 2.23 2.00 0.23
N-Fe 3.63 2.30 1.33

Fe-Ag 5.50 3.30 2.20
Fe-C 3.31 2.30 1.01

Ag-Ag 5.39 4.40 0.99
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still have the drawbacks of transferability and the introduction of an approximation error. The

alternative to the use of pseudopotentials is to treat all of the electrons in the core and valence

on an equal footing by employing atom-centred basis sets. This allows for increased accuracy

in calculations on excited states, electric and magnetic response properties, and high-pressure

applications where a pseudopotential may either overlap with the valence wavefunction or not allow

for a density change to occur.64,65,110 Many types of atom-centred basis sets can be used both with

pseudopotentials and in all-electron calculations. The specific focus in this section will be on the

all-electron implementation of numerical atomic orbitals (NAOs), with a survey of other common

atom-centered basis sets.

The electronic wavefunction is expanded as a linear combination of the functions that comprise

the basis set. The use of basis sets converts the three-dimensional partial differential equations

from the base mathematical formalism of KS-DFT into algebraic equations, whose solution can

be implemented on a computer. These basis functions can be either constructed from the atomic

orbitals or planewaves, each of which has its own benefits and drawbacks. The KS orbitals can be

written as linear combinations of basis functions, φp(r), with optimised coefficients cip:

ϕi(r) =
∑︂
p

cipφp(r). (2.35)

As mentioned previously, one major source of error in DFT calculations is the selection of the

exchange-correlation energy functional. One of the next major sources of error can be found in the

basis-set selection and its completeness. Basis set superposition error (BSSE) is a manifestation of

the issues of basis set incompleteness. In practical quantum-chemical calculations, a finite basis

must be used, as a complete basis would not be computationally tractable. The use of a finite basis

means that, as subunits of the calculation (for example atoms, in atom-centred basis sets) are brought

together, their basis functions begin to overlap. This allows for the subunits to borrow functions from

the other nearby interacting components, which effectively increases its basis set. Thus, the energies

of molecular complexes are artificially lowered when compared to the separated molecules. While

not used in this work, methods to address or minimise BSSE beyond the use of an ever-increasing

basis set exist, such as the chemical Hamiltonian approach,111,112 the traditional Boys-Bernardi

counterpoise (CP) correction (which approximates the energy contribution arising due to this

overlap and subtracts it from the energy),113 and Grimme’s geometric CP correction,114–116 all of

which aim to address BSSE in a systematic way but can themselves introduce error.

There are many different types of basis sets in common employ within computational chemistry

codes. What follows is a list of the most common basis sets, along with their form and uses. As

mentioned earlier, planewave basis sets are common within the solid state community. These basis
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sets have the form

φk(r) =
1√
V
eik·r, (2.36)

where the prefactor ensures normalization for integration over a volume, V . Planewave basis sets

are desirable for periodic systems, although they do have the caveat of requiring pseudopotentials,

as mentioned in the section on planewave DFT above.

Slater-type orbitals (STOs) are an obvious first choice for atom-centered basis sets for electronic

structure theory due to their exponential decay at long range and their nuclear cusp. These have the

form

φnlm(r) = Nrn−1e−αrYlm(θ, ϕ), (2.37)

where n, l, and m are the quantum numbers, N is a normalisation factor, α an adjustable exponent,

and Ylm(θ, ϕ) are the spherical harmonics. STOs correctly capture the nature of the wavefunction

within the nuclear cusp region,117 although they are difficult to use in a computationally expedient

manner due to the derivative discontinuity at the nuclei and integration of the radial part.118,119

In order to address these mathematical shortcomings, basis sets composed of Gaussian-type

orbitals (GTOs) were developed. While missing the nuclear cusp, these functions allow for easier

treatment of the nuclear core regions and can be constructed of many primitive Gaussian functions.

By Gaussian product theorem, we can create a function that is analytically solvable/integrable but

closely matches the form of the exact hydrogen-like atomic orbitals.118–121 Gaussian-type orbitals

have the form

φnlm(r) = Nrn−1e−αr2Ylm(θ, ϕ), (2.38)

which is comparable to the STO form, except for the power of r in the exponential. GTOs and

STOs are both atom-centered and commonly used in all-electron calculations, although they can

also be used in conjunction with pseudopotentials, as is common for heavy elements. GTOs have

issues with their radial tails, which decay very slowly, and require many primitive gaussians in

order to correctly capture the true electronic wavefunction. This increases the computational

expense and can lead to poor SCF convergence, which can make the choice of a Gaussian basis

set unappealing for periodic systems, although codes such as CRYSTAL73 do employ GTOs for

solid-state calculations.

NAOs are another type of atom-centred, all-electron basis set, which allow for the treatment of

both molecular and periodic systems, but without the need for pseudopotentials to be computation-

ally tractable.64 NAOs have the general form

φnlm(r) =
u(r)

r
Ylm(θ, ϕ), (2.39)
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where the angular component Ylm(θ, ϕ) is the same as in GTOs and STOs.64,110 The flexibility of

NAOs comes in the form of the radial component, u(r), which is numerically constructed and fully

flexible. The Fritz Haber ab initio materials simulations program (FHI-aims) is one program that

utilises basis sets of this form. Although FHI-aims will be the main discussion of this thesis, other

codes do exist that utilise NAOs, such as the SIESTA code,122 DMOL3,123 PLATO,124 and more.

FHI-aims is mainly a DFT-based code that is able to compute ground-state total energies for both

molecular and solid-state matter, but also has a wide range of beyond-DFT methods built up within

the code (GW, MP2, RPA, wavefunction-based methods, etc.).64 The focus of this work will be on

the pure and hybrid DFT components of the code.

Within FHI-aims, u(r) is constructed in such a way that it satisfies the single-particle, Schrödinger-

like equation [︃
−1

2

d2

dr2
+
l(l + 1)

r2
+ vi(r) + vcut(r)

]︃
ui(r) = εiui(r). (2.40)

The vi(r) term can correspond to an atomic, ionic, or hydrogen-like potential of the form vi(r) =

Z
R ,125–127 as well as other forms.128 The construction of the FHI-aims basis sets was done through

an optimisation algorithm that minimised the total energy error for a selection of spin-unpolarised,

symmetric dimers at 4-5 differing bond distances at the DFT-LDA level of theory,

∆basis =
1

Nd

Nd∑︂
i=1

[εbasis(di)− εcb(di)] . (2.41)

Here, εbasis(di) represents the non-self-consistent total energy for each atom at the specified bond

length, di, εcb(di) represents the converged basis set limit for the non-self-consistent total energy,

and Nd non-spinpolarized symmetric dimers at approximately 4-5 different bond lengths.64 The

various tiers of basis sets, as shown for the examples of C and H in Table 2.3, are converged to

varying levels. With tiers 1 and 2 for the light elements, which represent the “light” and “tight”

levels referred to in this work, the energies are converged to ∼0.1 eV and ∼0.01 eV, respectively.

One key point concerning the construction of NAOs within FHI-aims is that these functions are

strictly localised by the confining potential, vcut(r), which cuts off the slowly decaying tails:64

vcut(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 r ≤ ronset,

s · exp
(︂

w
r−ronset

)︂
· 1
(r−rcut)2

ronset < r < rcut,

∞ r ≥ rcut.

(2.42)

At ronset, the confining potential begins and smoothly proceeding towards infinity at rcut. Addi-

tionally, w = (rcut − ronset) and s is used as a global scaling parameter. The values of ronset, rcut,
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Table 2.3: Representation of radial functions, ui(r), that construct the various tiers of
basis functions within FHI-aims. The minimal basis set is constructed from free-atom-like
defining potentials, vi(r) from Eq. 2.42, while the H(nℓ, Z) notation represents hydrogen-
like basis functions with quantum numbers n, ℓ using the bare Coulomb potential, Z/R.
Table recreated from Ref. 64.

H C
minimal 1s [He] + 2s2p

Tier 1 (light) H(2s, 2.1) H(2p, 1.7)
H(2p, 3.5) H(3d, 6.0)

H(2s, 4.9)

Tier 2 (tight) H(1s, 0.85) H(4f, 9.8)
H(2p, 3.7) H(3p, 5.2)
H(2s, 1.2) H(3s, 4.3)
H(3d, 7.0) H(5g, 14.4)

H(3d, 6.2)

and s are preselected within the construction of the basis sets, and these defaults have been shown

to provide excellent performance in other works.64,65 The use of the confining potential drives

the radial component to zero, and provides functions that are strictly confined to a certain domain

in space.64,65 This allows for the expensive steps in the SCF procedure, such as integrations or

density updates, to scale linearly with system size, which is a primary source of the NAO method’s

efficiency.64,65,110

Another key aspect of the construction of NAOs in this manner is that it allows for optimised

element-dependent basis sets that have both systematically achievable levels of accuracy, through

the inclusion of ever more basis functions, and high transferability for a wide range of possible

chemical species.64 Previous works have illustrated that, beyond the minimal basis set, BSSE is not

a major source of error within DFT calculations using the precompiled FHI-aims basis sets.64 As

an example, in the case of a water dimer for the tier 2 basis set, the energy (with no counterpoise

correction) is already within 5 meV of the accepted full basis set converged values.64

2.4.2 REAL-SPACE INTEGRATION GRIDS

As discussed earlier, integrals that involve the exchange-correlation functionals or potentials

cannot trivially be solved and require numerical methods to compute. Evaluation of the exchange-

correlation energy requires numerical integration over a grid of points, with many pseudopotential

codes achieving this through the use of even-spaced grids within the Brillouin zone. For chemical
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systems, the density changes rapidly near the atomic nuclei. Thus, an equally distributed grid

of points in Cartesian space is highly inefficient for all-electron calculations, and would either

require a massively large number of total points or miss fully characterising the density changes.

An alternative method must then be sought and arises in the form of the grids proposed by Becke in

1988.129

In numerical integration, we must evaluate 3D molecular integrals of the form

I =

∫︂
F (r)dr ≈

∑︂
i

AiF (ri), (2.43)

where F (r) is an arbitrary integrand. These integrals can be approximated by the summation of the

integrand over discrete integration points, ri, multiplied by their integration weights, Ai. Rather

then spreading the points equally across the system of interest, it can be partitioned into atomic

regions, where the numerical integration is carried out via spherical coordinates. This splitting of

the function F (r) is done through employing relative weight functions, wn(ri), which are assigned

to each nucleus n in the system, sum to one within the vicinity of each atom, and decay to zero at

all other nuclei: ∑︂
n

wn(ri) = 1. (2.44)

This then allows us to write

F (r) =
∑︂
n

Fn(r) =
∑︂
n

wn(r)F (r), (2.45)

where the arbitrary integrand is partitioned into atomic regions, allowing the initial integral I to be

written as

I =
∑︂
n

In =
∑︂
n

(︃∫︂
wn(r)F (r)dr

)︃
. (2.46)

The exact selection of the integration weights can vary, but most DFT codes use the “Becke weights",

which arise from smoothed Voronoi polyhedra.129 FHI-aims uses the modified weight functions

described in Appendix C of Ref. 70 to limit the extent of each integrand to the atom-centered grid

that is associated with each basis function.

The selection of the integration weights, assuming that they are numerically well-behaved, lets

us write each atomic subintegration, In, as a single-centre integral in spherical coordinates as

In =

∫︂∫︂∫︂
V
wn(r)F (r)r

2 sin θdrdθdϕ. (2.47)

Lebedev quadratures are utilised to carry out the angular integration and the radial integrations are
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mapped from 0 < r <∞ to the interval −1 < x < 1 used in standard Gaussian quadratures, via

the transform

r = rm
1 + x

1− x
, (2.48)

where rm is taken as half the empirical Bragg-Slater radii130 and corresponds to the midpoint of the

integration interval.129 Overall, this definition allows for more integration points to be concentrated

at the nucleus, with ever-decreasing amounts of points contained within the tail region, providing

an accurate and systematic prescription for increasing numerical precision with atom-centred basis

sets.129

2.5 THE EXCHANGE-HOLE DIPOLE MOMENT
DISPERSION MODEL

The exchange-hole dipole moment (XDM) dispersion model, developed by Becke and John-

son,10,63,131 overcomes the lack of dispersion within conventional DFT exchange-correlation

functionals. This is achieved by a post-SCF correction to the base DFT energy of the form

E = Ebase + Edisp, (2.49)

where Ebase contains only the semi-local and local effects. The dispersion energy within a periodic

lattice is given by

Edisp = −1

2

∑︂
n

∑︂
L

∑︂
ij

′Cn,ijfn(Rij,L)

Rij,L
, (2.50)

with L indicating the lattice vector, Cn,ij the n-th order interatomic dispersion coefficients, and

fn(Rij,L) a damping function for the deactivation of the dispersion interaction at short ranges.10

Here, the primed notation on the summation indicates i ̸= j for L = 0. In practice, XDM truncates

equation 2.50 at the n = 10 term.10,63

For the XDM model, the dispersion coefficients are determined from second-order perturbation

theory.10,21,22,63 The first three pairwise Cn,ij dispersion coefficients between atoms i and j are

C6,ij = αiαj

⟨︁
M2

1

⟩︁
i

⟨︁
M2

1

⟩︁
j

αj

⟨︁
M2

1

⟩︁
i
+ αi

⟨︁
M2

1

⟩︁
j

, (2.51)

C8,ij =
3

2
αiαj

⟨︁
M2

1

⟩︁
i

⟨︁
M2

2

⟩︁
j
+
⟨︁
M2

2

⟩︁
i

⟨︁
M2

1

⟩︁
j

αj

⟨︁
M2

1

⟩︁
i
+ αi

⟨︁
M2

1

⟩︁
j

, (2.52)
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C10,ij = αiαj

2
⟨︁
M2

1

⟩︁
i

⟨︁
M2

3

⟩︁
j
+ 2

⟨︁
M2

3

⟩︁
i

⟨︁
M2

1

⟩︁
j
+ 21

5

⟨︁
M2

2

⟩︁
i

⟨︁
M2

2

⟩︁
j

αj

⟨︁
M2

1

⟩︁
i
+ αi

⟨︁
M2

1

⟩︁
j

, (2.53)

where C6,ij captures dipole-dipole, C8,ij captures dipole-quadrupole, and C10,ij captures dipole-

octupole and quadrupole-quadrupole interactions. αi is the atom-in-solid polarizability,

αi =
Vi

Vi,free
αi,free, (2.54)

which is proportional to the ratio between the in-solid (Vi) and free (Vi,free) atomic volumes.
⟨︁
M2

l

⟩︁
(l = 1, 2, 3, . . . ) are the expectation values for the exchange-hole multipole moments. Although

equation 2.50 only includes pairwise contributions to the dispersion energy, some electronic many-

body effects are accounted for in the construction of the dispersion coefficients from the exchange

hole, where the fully-interacting electron density is used.10,21

As can be seen in equations 2.51–2.53, the exchange-hole multipole moments are required for

the formulation of the XDM dispersion coefficients. The expectation values for these multipole

moments are ⟨︁
M2

l

⟩︁
i
=

∫︂
wi(r)ρσ(r)[r

l − (r − dXσ)
l]2dr, (2.55)

where wi are the weights used in the partitioning scheme for the density. For XDM this is achieved

through Hirshfeld partitioning:132,133

wi(r) =
ρi,free(r)∑︁
j ρj,free(r)

, (2.56)

where ρi,free is the sphericalised free atomic density of atom i. The partitioning weights have a

value of one near atom i and close to zero elsewhere.

In equation 2.55, the exchange-hole dipole,

dXσ(r) =

∫︂
r′hXσ(r, r

′)dr′ − r, (2.57)

can be calculated either exactly, which uses the occupied orbitals, or using the Becke-Roussel

(BR) exchange-hole model.10,95 In the solid-state, the BR model is employed to approximate the

exchange-hole, hXσ, due to the prohibitive computational cost associated with exact exchange.131

The BR approach also has been shown to be in better agreement with reference data for molecular

C6 dispersion coefficients and binding energies, due to the fact that it models a localised exchange-

hole. This is a better approximation to the full exchange-correlation hole than can be described

by Hartree-Fock alone, as it captures some aspects of electron correlation by the assumption that

the exchange-hole is localised to a region of atomic size.10,134,135 The BR model hole relies on
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the (spin-dependent) electron density (ρσ), the density gradient (∇ρσ), Laplacian (∇2ρσ), and the

kinetic-energy density (τσ),10,95 and hence is classified as a meta-GGA functional.

The BR exchange hole is modeled as an off-centre exponential function with the form Ae−ar,

which is centred at a distance b from the position of the reference electron.10 There are three

constraints for the BR model that uniquely determine the three parameters: the exponent (a),

normalisation (A), and displacement (b). These constraints are that the hole must be normalised to

-1 electron, deplete to the spin density at the reference point, and have the same curvature as the

exact exchange hole at the reference point.10 These constraints cause the normalisation to be

A = − a3

8π
, (2.58)

and the density to be

ρσ =
a3

8π
e−ab. (2.59)

The exact exchange hole curvature is

Qσ =
1

6

[︃
∇2ρσ − 2τσ +

1

2

(∇ρσ)2

ρσ

]︃
, (2.60)

which gives the curvature constraint the form of

Qσ =
ρσ
6b

(a2b− 2a), (2.61)

where the positive-definite kinetic-energy density τσ is

τσ =
∑︂
i

|∇ψi,σ|2, (2.62)

where ψi,σ are the occupied Kohn-Sham orbitals. The values of a and b are fixed by solving the

non-linear equations that arise from combining equations 2.59 and 2.60 for x = ab:

xe−2x/3

(x− 2)
=

2

3
π2/3

ρ
5/3
σ

Qσ
, (2.63)

which is canonically solved via the numerical Newton-Raphson method.95,136 The exchange-hole

dipole is dXσ = b, where b is calculated from the rearrangement of equation 2.59 and the valence

spin density to give

b3 =
x3e−x

8πρσ
, (2.64)

with the added constraint that, in certain cases, non-physical values of the exchange-hole dipole
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moment can be obtained, which manifests as b > r. In these cases, b > r is replaced with b = r as

a limiting value.10,131

The last key component for discussion of equation 2.50 is the inclusion of a damping function

(fn). The perturbation-theory expansion of the dispersion energy is valid in the limit of large

atomic separation, but a damping function is used to prevent a divergence of the dispersion energy

at small internuclear distances and correct errors in the multipolar expansion.10 XDM takes a

novel approach to this issue: rather than requiring the dispersion energy to approach zero at small

separations, it instead requires the dispersion force to approach zero and the dispersion energy

approach a constant, non-zero value.10 This is consistent with the perturbation theory result for two

hydrogen atoms at short interatomic separations.137 The Becke-Johnson damping function used in

XDM10,138 is given by

fn(Rij) =
Rn

ij

Rn
ij + (a1Rc,ij + a2)n

. (2.65)

The van der Waals radius is given by a1Rc,ij + a2 = Rvdw, where the critical damping radius,

Rc,ij , denotes the internuclear distance at which the multipolar expansion breaks down and the

successive dispersion-energy terms become equal:

Rc,ij =
1

3

[︄(︃
C8,ij

C6,ij

)︃ 1
2

+

(︃
C10,ij

C6,ij

)︃ 1
4

+

(︃
C10,ij

C8,ij

)︃ 1
2

]︄
. (2.66)

The parameters a1 and a2 are fit through the minimisation of residual errors between the computed

and reference binding energies for non-covalently bound dimers.10 It is important to note that these

parameters depend upon the density functional employed by the calculation, but are transferable to

all elements.10

The contribution to the atomic forces and the stress tensor can be approximated from differentiat-

ing equation 2.50, under the assumption that the dispersion coefficients are approximately constant.

For atom i, the force would be131

Fdisp,i =
∑︂
L

∑︂
j

′ ∑︂
n=6,8,10

nCn,ijR
n−2
ijL

(Rn
vdw,ij +Rn

ijL)
2
RijL, (2.67)

and components of the stress tensor are represented by

σdisp,ξη = − 1

2V

∑︂
L

∑︂
ij

′ ∑︂
n=6,8,10

nCn,ijR
n−2
ijL (RijL)ξ(RijL)η

(Rn
vdw,ij +Rn

ijL)
2

, (2.68)

where the V is the cell volume and ξ, and η are two Cartesian coordinates of x, y, z. Again, the

primed notation here denotes i ̸= j for L = 0. The assumption of constant dispersion coefficients,
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although not exact, does not drastically affect most geometry optimisations.131 In practice, several

iterations of geometry relaxations, each with fixed dispersion coefficients, are done in order to

converge the dispersion coefficients and the structural geometry. This approach has been shown to

result in the same geometry for molecular solids as if the dispersion coefficients were recalculated

at each step, while being more computationally efficient.131

2.6 ALTERNATIVE POST-SCF DISPERSION METHODS

There are a number of alternative dispersion-correction methods for DFT. These can be broken

down into two categories, the first of which builds dispersion into the base exchange-correlation

functional. The second, which will be the main focus of this work, is an a posteriori correction

added to the self-consistent DFT energy, of which the exchange-hole dipole moment (XDM) model

is one example. Of this second type, there are two other classes of dispersion corrections in common

use, one being the Grimme D series (D2, D3, D4) and the other being the Tkatchenko-Scheffler

(TS) and subsequent many-body dispersion (MBD) correction models. These two series of models

differ from XDM in the way they arrive at the components of equation 2.50. These methods will

now be discussed and compared with the XDM model.

2.6.1 THE GRIMME-D SERIES OF DISPERSION MODELS

Grimme and colleagues have introduced a series of dispersion corrections, which are add-ons to

the standard Kohn-Sham density functionals.30–32,139 The Grimme-D2 model30 contains only the

leading-order dispersion-energy term and the C6,ij heteroatomic dispersion coefficients are derived

from the geometric mean of the homoatomic values:

Cij
6 =

√︂
Ci
6C

j
6 . (2.69)

The homoatomic dispersion coefficients are based on DFT/PBE0 calculations of atomic ionisation

potentials, Ip, and static dipole polarizabilities, α:

Ca
6 = 0.05NIapα

a, (2.70)

where N is the maximum atomic number for the elements in each given row of the periodic table.

The damping function used for Grimme-D2 is given by

fWY(Rij) =
1

1 + exp
[︂
−d

(︂
Rij

s6Rr
− 1

)︂]︂ , (2.71)
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where Rij is the interatomic distance and Rr is the sum of atomic van der Waals radii, treated

as parameters for each element.140–142 The D2 model’s damping function has two empirical

parameters, d = 20 is a fixed parameter, and s6, a global scaling factor, which depends on the

functional used and is determined by a least-squares minimisation of interaction-energy errors for

40 noncovalently bound complexes.30 D2 has since been improved through the reformulation of

the dispersion coefficients, the inclusion of higher-order dispersion terms, the optional inclusion

of the three-body Axilrod-Teller-Muto (ATM) dispersion term, and the use of the Becke-Johnson

damping function, to give the D3 model.31,32

Instead of using an empirical basis for the formulation of the dispersion coefficients in D2, the

D3 dispersion coefficients are derived from the Casimir-Polder formula:31

CAB
6 =

3

π

∫︂ ∞

0
αA(iω)αB(iω)dω, (2.72)

where α(iω) is the averaged dipole polarizability at an imaginary frequency (iω), which may be

computed by time-dependent DFT. In practice, the dispersion contributions are calculated not

directly from equation 2.72, and therefore are not computed from the α(iω) values for free atoms.

Instead, they are computed for reference stable hydrides, which exist for every element in the

periodic table except for the rare gases.31 The CAB
6 coefficient can then be calculated using the

stable hydrides AmHn and BkHl as reference molecules, with no contribution from the hydrogen

atoms:

CAB
6 =

3

π

∫︂ ∞

0

1

m

[︂
αAmHn(iω)− n

2
αH2(iω)

]︂
· 1
k

[︃
αBkHl(iω)− l

2
αH2(iω)

]︃
. (2.73)

Here, αH2(iω) is the polarizability of the dihydrogen molecule, m, k, n, l are stoichiometric factors,

and αAmHn(iω) and αBkHl(iω) are the reference polarizabilities of the stable hydrides. This allows

for the D3 C6 coefficients to be dependent upon the atomic coordination number (CN), which is

defined as

CNA =
N∑︂

A ̸=B

[︂
1 + e−k1(k2(RA,cov+RB,cov)/rAB−1)

]︂−1
, (2.74)

where RA,cov and RB,cov are the scaled covalent single-bond radii for atoms A and B, and the k1

and k2 terms are scaling parameters fit for carbon atoms in common structures. The C6 for any

fractional coordination in a specific chemical environment may then be obtained by interpolation

between a set of reference values, CAB
6,ref(CN

A,CNB), computed according to equation 2.73.

Early implementations of Grimme-D3 utilise the damping function of Wu and Yang, as in D2.10

Later implementations of D3 utilise the BJ damping function, detailed above in equation 2.65.31,32
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This has been shown to improve the results from the D3 model and is now the default in most

applications.31,32

The higher-order C8 coefficients are also included and computed in a recursive fashion via

CAB
8 = 3CAB

6

√︁
QAQB, (2.75)

where

QA = s42
√
ZA

⟨︁
r4
⟩︁A

⟨r2⟩A
(2.76)

is the effective charge for atom A.
⟨︁
r4
⟩︁

and
⟨︁
r2
⟩︁

are radial expectation values, which are computed

from geometrically averaged atomic densities, ZA is the nuclear charge factor, and s42 is a scaling

factor fit for noble-gas atoms.31

Grimme’s D3 model also has the ability to include a three-body ATM dispersion term. This

leading non-additive term is derived from third-order perturbation theory and, for three atoms ABC,

is written as

EABC =
CABC
9 (3 cos θa cos θb cos θc + 1)

(RABRBCRCA)3
, (2.77)

with θa,b,c representing the internal angles of the triangle formed between atoms ABC, and CABC
9

the triple-dipole dispersion coefficient,

CABC
9 =

3

π

∫︂ ∞

0
αA(iω)αB(iω)αC(iω)dω, (2.78)

which is approximated as

CABC
9 ≈ −

√︂
CAB
6 CAC

6 CBC
6 . (2.79)

The ATM term is similarly damped to remove non-physical effects that arise from the dispersion

contributions at close range.32,33

Although the Grimme-D3 model addresses many of the issues found in D2, it is still funda-

mentally an advanced form of atom typing.21 For many systems, D3 can be as accurate as XDM,

but D3 falls short in some cases due to the fact that it is not dependent on the density and cannot

respond to changing chemical environments. Some headway has been made in the formulation of

D4, which is the newest iteration of the series, and includes an oxidation-state dependence but, at

this time, has not been extensively tested for solids.21,143

2.6.2 THE TS AND MBD METHODS

The final post-SCF dispersion methods to be discussed are the works pioneered by Tkatchenko and

colleagues, in the form of TS35 and MBD.36,37,144,145 The TS scheme, much like the Grimme-D2
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model, truncates the dispersion-energy expansion at the C6 term and does not include any higher-

order terms, such as C8. The TS method begins with the Casimir-Polder formula for the free-atom

C6’s, as in equation 2.72. In order to arrive at the C6 terms for an atom inside a molecule or solid,

the TS scheme utilises a simple volume scaling:

Ceff
6,ii =

(︃
V eff
i

V free
i

)︃2

C free
6,ii . (2.80)

This makes use of the direct relation between polarizability and volume,

αeff
i

αfree
i

∝ V eff
i

V free
i

=

(︃∫︁
r3wi(r)ρ(r)dr∫︁
r3ρfreei (r)dr

)︃
, (2.81)

where the wi(r) are the Hirshfeld partitioning weights, as detailed above in XDM.63,132 From this,

the effective coefficient C6,ij can be determined as

C6,ij =
2αiαjC6,iiC6,jj

α2
jC6,ii + α2

iC6,jj
. (2.82)

TS also uses a Fermi-type damping function of the form35

fWY(Rij) =
1

1 + exp

[︃
−d

(︃
Rij

βR0
ij
− 1

)︃]︃ , (2.83)

where R0
ij is the sum of the van der Waal radii, and d and β are empirically fit parameters as we

saw in D2. For TS, d is fixed to 20, and β is fit for a given functional.

The TS method was improved upon through the inclusion of long-range many-body terms which

are neglected in pairwise dispersion models.37,145 This method is called the many-body dispersion

(MBD) model and shows significant improvements over TS.37,145 The main idea behind MBD is to

replace all of the atoms within the system with quantum harmonic oscillators and then to calculate

the coupled and uncoupled energy states of that system, this difference in energy is considered

to be the MBD dispersion energy.145 This was achieved by implementing the coupled fluctuating

dipole model (CFDM) Hamiltonian,146–150

Ĥ = −1

2

N∑︂
i

∇2
ξi
+

1

2

N∑︂
i

(︁
ωSCS
i ξi

)︁2
+

N∑︂
i

N∑︂
j<i

ωSCS
i ωSCS

j

√︂
αSCS
i αSCS

j ξiT′
ijξj , (2.84)

where ξi =
√
mi∆ri is the ith atom’s mass-weighted displacement from equilibrium, and Tij is

the dipole-dipole interaction tensor.37,145 The SCS labels on the variables indicate that they were
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refined through a self-consistent screening process.37 The CFDM Hamiltonian is normally solved

via matrix diagonalization to yield 3N eigenvalues, λi, which correspond to the square of the

interacting quantum harmonic oscillator frequencies. The MBD interaction energy is then given by

the difference between the interacting and non-interacting frequencies, ωSCS
i , as

EMBD =
1

2

3N∑︂
i=1

√︁
λi −

3

2

N∑︂
i=1

ωSCS
i . (2.85)

MBD attains comparable accuracy to that found with XDM for molecular solids, although conver-

gence issues are common for metals and ionic solids.21

2.6.3 NON-LOCAL VAN DER WAALS FUNCTIONALS

As mentioned previously, there is an entirely different approach that can be taken within DFT

to address the lack of non-local dispersion terms within the base functional. The van der Waals

functionals insert these terms directly into the exchange-correlation functional51 through a non-

local kernel, which acts as a response function packaged into the correlation energy of the EXC

term.51 These functionals all have the general form

Enl
C =

1

2

∫︂∫︂
ρ(r)Φ(r, r′)ρ(r′)drdr′, (2.86)

where ρ is the total electron density and Φ is the non local correlation kernel. There are many

different approaches to how this kernel is formed and with what base functional it is paired. Two of

the main categories are the VV functionals of Vydrov and Voorhis53,54 and the vdW-DF functionals

of Langreth and Lundquvist.42,43

The vdW functionals have various caveats, such as the level of empiricism, the computational

expense of having the dispersion energy recalculated at each SCF step,53 and the sensitivity to the

choice of base functional.51 Whilst some work well for intermolecular interactions, they are much

more computationally expensive than the post-SCF corrections for large systems due to their poor

scaling with system size.
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CHAPTER 3

REQUIREMENTS FOR AN ACCURATE
DISPERSION-CORRECTED DENSITY
FUNCTIONAL

This chapter is adapted from: A. J. A. Price, K. R. Bryenton, and E. R. Johnson, “Requirements for

an accurate dispersion-corrected density functional” J. Chem. Phys. 154, 230902 (2021), with the

work performed by K. R. Bryenton omitted.

3.1 INTRODUCTION

The dispersion interaction, first described by London,12 arises from the formation of instantaneous

dipole moments in the electron distributions of atoms or molecules. For a pair of atoms separated

by a distance R, long-range attraction between these instantaneous dipoles leads to the following

expression for the dispersion energy:

Edisp = −C6

R6
, (3.1)

where C6 is referred to as the dispersion coefficient. More sophisticated treatments of dispersion

use second-order perturbation theory to obtain the dispersion coefficients.22,151 The perturbation-

theory treatment allows formulation of the dispersion energy as a series expansion that includes

terms arising from higher-order instantaneous multipole moments in the atomic electron-density

distributions:13,23

Edisp = −C6

R6
− C8

R8
− C10

R10
− . . . (3.2)

30



This series expansion is commonly truncated at either the C8 or C10 term,21,31,138 as higher-order

terms will have negligible contributions to the overall dispersion energy.152 Finally, third-order

perturbation theory can be used to evaluate non-additive dispersion terms involving interaction of

three instantaneous atomic dipole moments.153,154 The leading-order term is the C9, or Axilrod-

Teller-Muto, dispersion energy. Its contribution is typically smaller in magnitude than the pairwise

C10 dispersion energy.21,152

Despite the importance of London dispersion in chemistry, biochemistry, and materials science,

it has proved difficult to include in quantum chemical simulations since dispersion physics are

missing from mean-field electronic structure methods, such as Hartree-Fock (HF) theory and Kohn-

Sham density-functional theory (DFT).155 Initial HF+D156 and DFT+D135,139,157–159 dispersion

corrections included only the leading-order C6 term and used empirical dispersion corrections

for a limited set of elements. Subsequently, the D230 and TS35 dispersion methods provided

simple general prescriptions to obtain C6 coefficients for any element of the periodic table. The

drawback of these models is that they have either no dependence, or only weak dependence, on an

atom’s charge state, coordination, and other factors that determine its local chemical environment.

More complex methods that allow increased variation of the atom-in-molecule or atom-in-solid

dispersion coefficients have been proposed and are still the focus of ongoing development. Such

methods include the D3,31,32 D4,33,34 density-dependent correction (dDsC),41 and exchange-hole

dipole moment (XDM) models,10,63 as well as the many-body dispersion (MBD) method36 and its

fractionally ionic (FI)160 and uMBD161 variants.

For each of the models listed above, the dispersion energy is added as a post self-consistent-field

(SCF) correction to a base density functional:

EDFT = Ebase + Edisp, (3.3)

whereEDFT is the total DFT energy,Ebase is the base-functional energy, andEdisp is the dispersion

correction. As an alternative to these post-SCF dispersion models, there is also the class of explicitly

non-local dispersion methods, based on the van der Waals (vdW) density functional,162 of which

there are now many variations.42,43,53,54,163–166 However, while capable of high accuracy, these

methods are inherently more computationally expensive than post-SCF models due to their non-

locality and will not be discussed further here.

In this chapter, we discuss the most desirable requirements for a reliable and physically reason-

able post-SCF dispersion-corrected density functional. Development of such a method necessitates

high accuracy for both components of the total DFT energy in Eqn. 3.3: the base density functional

and the dispersion correction. Users of dispersion-corrected DFT should be mindful of these
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requirements when deciding on their computational methodology. Method developers should also

consider them when designing new base functionals and dispersion models.

3.2 REQUIREMENTS FOR THE BASE DENSITY
FUNCTIONAL

3.2.1 DISPERSIONLESS

The key requirement for a base density functional to pair with a dispersion correction is that it is

itself dispersionless.167 While dispersion is properly a highly non-local correlation effect, the local

density approximation (LDA) and many generalized gradient approximation (GGA) functionals

capture some ‘dispersion-like’ binding through their exchange functionals.93,94,168–172 This arises

because the large-gradient regions in the free atoms (or isolated molecules) do not contribute

sufficiently to the exchange energy, causing the isolated monomers to be artificially destabilised

relative to the vdW complex. However, this ‘dispersion-like’ binding is inherently short range and

does not recover the proper C6/R
6 asymptotic behaviour that is characteristic of London dispersion.

This is shown by examination of the potential-energy curves for graphite exfoliation, in Figure 3.1,

for the LDA and selected GGA functionals without any dispersion correction.

Adding a dispersion correction to an exchange functional that already mimics dispersion-like

binding means that there will be some double counting of dispersion at short range,173,174 resulting

in significant overstabilisation of vdW complexes. Empirical parameterisation to equilibrium

binding energies will therefore result in excessive damping of the dispersion correction at short

range to reduce this double counting, resulting in under-estimation of dispersion at intermediate

ranges. This leads to poor performance for bulk materials, where there are many intermediate-range

atomic contacts, such as in molecular crystals.79

Double counting of dispersion from the base functional also creates a bias where hydrogen-

bonding interactions are favoured relative to dispersion-driven interactions, such as π-stacking.75

Hydrogen-bond strengths (as in the water dimer) are typically over-estimated with non-dispersionless

functionals.183 In such cases, the addition of a dispersion correction, unfortunately, introduces

greater errors for hydrogen bonds, despite being necessary to stabilise dispersion-bound dimers

(such as the methane or benzene dimers). Hence, parameterizing the damping function for a non-

dispersionless base functional typically leads to over-stabilization of hydrogen-bonded complexes,

and under-stablisation of dispersion-bound complexes, to minimise the overall error.75

To design a dispersionless GGA functional, we must ensure accurate large-gradient behaviour,

which is determined by the functional’s enhancement factor. GGA exchange functionals have the
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Figure 3.1: Graphite exfoliation energies computed using selected base density function-
als.8,9,175–181 Calculations were performed with Quantum ESPRESSO,109 using the projec-
tor augmented-wave (PAW) approach104,105 with a 12× 12× 4 k-point mesh. Planewave
cut-offs of 100 and 1000 Ry were used for the kinetic energy and electron density, respec-
tively. The B86bPBE-XDM8–10 curve and Quantum Monte Carlo equilibrium result182 are
included for reference.

general form:

EGGA
X =

∑︂
σ

∫︂
εLDA
X,σ F (χσ)dr, (3.4)

where εLDA
X,σ is the spin-dependent LDA exchange-energy density

εLDA
X,σ = −3

2

(︃
3

4π

)︃1/3

ρ4/3σ , (3.5)

ρσ is the σ-spin density,

χσ =
|∇ρσ|
ρ4/3

(3.6)

is the reduced density gradient, and F (χσ) is the enhancement factor. Enhancement factors for

several popular GGA exchange functionals8,9,176–180 are shown in Figure 3.2.

For a proper, dispersionless exchange functional, the large-gradient limit of the enhancement

factor should be93,94,168

lim
χσ→∞

∝ χ2/5
σ . (3.7)

This limit is only obeyed by the PW86176 and B86b8 GGAs. As seen in Figure 3.2, the LDA,
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Figure 3.2: Plots of the exchange enhancement factor for the LDA and selected
GGA8,9,176–180 functionals.

PBEsol,179 PW91,178 and PBE9 functionals all have enhancement factors that converge to a

constant value in the large-gradient limit. As a result, these functionals mimic dispersion-like

binding at short range to varying extents, making them unsuited for use with asymptotic dispersion

corrections. Conversely, the B88177 GGA has an enhancement factor that diverges too quickly,

proportional to χσ/ ln(χσ), in the large-gradient limit. While B88 exchange is dispersionless, it

notoriously over-estimates non-bonded repulsion. One strategy to obtain a dispersionless GGA

functional has been to take linear combinations of PBE and B88,184 as in the APF185 functional.

In light of their correct behaviour in the large-gradient limit, PW86 and B86b are the GGA

functionals of choice to pair with dispersion corrections to avoid any double counting of dispersion.

Due to their accurate description of non-bonded repulsion, these functionals have demonstrated

improved performance for solid-state benchmarks when paired with unscaled dispersion correc-

tions,10,79 as well as with non-local vdW functionals.43 This is illustrated in Table 3.1 for several

XDM-corrected GGA functionals, which shows mean absolute errors (MAEs) for the KB4974,75

benchmark of molecular-dimer binding energies and the X2379,80 benchmark of molecular-crystal

lattice energies. Similar results are obtained with the two dispersionless base functionals: B86bPBE

and PW86PBE. However, we tend not to favour PW86PBE for the practical reason that it shows

poorer SCF convergence. Larger errors are obtained for the non-dispersionless base functionals:

PBE, PBEsol, and PW91. While non-dispersionless functionals tend to perform better when paired

with a zero-damped dispersion correction due to error cancellation (see Sec 3.3.1), we note that the
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Table 3.1: Mean absolute errors, in kcal/mol, obtained with selected XDM-corrected GGA
functionals for the KB4974,75 and X2380 benchmarks. All calculations were performed
with Quantum ESPRESSO109 using the projector augmented-wave (PAW) approach104,105

and planewave cut-offs of 80 and 800 Ry. A 4 × 4 × 4 k-point mesh was used for all
molecular crystals, while only the Γ point was used to treat the isolated molecules. The
B86bPBE, PW86PBE, and PBE results were taken from Ref. 10, while the PW91 and
PBEsol results were determined for the present work. The a1 and a2 parameters used in
the XDM damping function are also shown.

Functional a1 a2 (Å) KB49 X23
B86bPBE 0.6512 1.4633 0.41 0.85
PW86PBE 0.6836 1.5045 0.41 0.88
PBE 0.3275 2.7673 0.50 1.11
PW91 0.0000 4.0228 0.63 1.89
PBEsol 0.5432 2.3686 0.78 2.11

largest such error reduction for the KB49 set is only 0.06 kcal/mol for PBEsol. In our opinion, the

large-gradient limit of Eqn. 3.7 is a drastically underutilised constraint in functional development.

3.2.2 NUMERICALLY STABLE

A further desirable requirement for a base density functional is that it should be numerically

stable and give smooth potential energy curves for vdW complexes. While this criterion is met

by the LDA and GGA functionals, some meta-GGAs display substantial numerical sensitivities

that lead to oscillations in potential energy curves of vdW dimers.170,186–190 These oscillations can

result in errors in vibrational frequencies191 and geometry optimisation to spurious high-energy

conformations,192 unless extremely fine integration grids are used. Previous works observing

such oscillations have focused on meta-GGA calculations for gas-phase complexes, such as the

π-stacked benzene dimer.193 However, similar behaviour can also be seen for solid-state systems,

as shown in Figure 3.3 using the SCAN functional for the example of graphite exfoliation. From

the figure, we additionally note that the SCAN functional is not dispersionless and it provides

significant, spurious dispersion-like binding for graphite.

In the Quantum ESPRESSO program,109 the real-space integration grid is controlled by the

choice of the planewave cut-off for the density expansion (the ecutrho parameter). It is common

to take this value as only four times the wavefunction planewave kinetic-energy cutoff, ecutwfc,

when using norm-conserving pseudopotentials. However, as seen in Figure 3.3, low values of

ecutrho are clearly insufficient and result in massive oscillations of the potential energy curve.

Indeed, a smooth potential can only be obtained with SCAN if ecutrho is increased to near 2500

Ry or higher. The need for very large real-space integration grids contributes to the increased
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Figure 3.3: Graphite exfoliation energies computed using the SCAN194 meta-GGA func-
tional with varying planewave cut-offs (in Ry) for the electron density expansion. Calcula-
tions were performed using Quantum ESPRESSO,109 with norm-conserving pseudopoten-
tials102,103 and a 12 × 12 × 4 k-point mesh. A planewave cut-off of 80 Ry was used for
the kinetic energy. Results from the r2SCAN195 functional using the same options and a
1000 Ry density cut-off are also shown. The B86bPBE-XDM8–10 curve, using the same
calculation options described in Figure 3.1, and the Quantum Monte Carlo equilibrium
result,182 are included for reference.

computational cost of meta-GGA functionals relative to GGAs, making them unappealing for large

systems even if they were dispersionless.

In previous work,186 we showed that the numerical sensitivity of meta-GGAs arises from the

behaviour of the τ -dependent ratios employed in these functionals for the low-density and low-

gradient regions near the bond critical points of vdW dimers. Here, we focus on the SCAN

meta-GGA functional,194 which is finding increasingly widespread use in solid-state applications.

Comparisons will be made to a new, more numerically stable modification of SCAN, termed

r2SCAN.195 As seen in Figure 3.3, the r2SCAN functional remedies the numerical sensitivities

seen with SCAN, giving a well-behaved potential energy curve for graphite exfoliation with a

modest value of ecutrho.

The τ -dependent term used in SCAN is194

a =
τσ − τWσ
τUEG
σ

, (3.8)
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where we have used a, as opposed to the symbol α used in Ref. 194, to avoid confusion with the

atomic polarizability. Here,

τWσ =
1

4

(∇ρσ)2

ρσ
(3.9)

is the von Weizsäcker kinetic-energy density and

τUEG
σ =

3

5

(︁
6π2

)︁2/3
ρ5/3σ (3.10)

is the kinetic-energy density of the uniform electron gas (UEG). A similar τ -dependent ratio is

used in the r2SCAN functional:

ā =
τσ − τWσ

τUEG
σ + ητWσ

, (3.11)

where η = 10−3. As seen previously186 for ingredients of other meta-GGAs, such as VSXC,196

M06-L,58 and TPSS,197 there is sharp variation in both a and ā near the bond critical point of van

der Waals dimers.

The key difference between the SCAN and r2SCAN functionals that controls their numerical

stability lies in the form of the “x” functional, which is one component of the exchange term. In

SCAN, this functional is

x(χσ, a) = µχ2
σ

[︃
1 +

(︃
b4
µ
χ2
σ

)︃
exp

(︃
−b4
µ
χ2
σ

)︃]︃
(3.12)

+
[︁
b1χ

2
σ + b2 (1− a) exp

{︁
−b3(1− a)2

}︁]︁2
,

which involves τσ dependence. However, in r2SCAN, this functional is replaced by

x(χσ) =
[︁
C exp

(︁
−dχ4

σ

)︁
+ µ

]︁
χ2
σ, (3.13)

which is independent of τσ. Here, C, d, µ, and all the bn’s are constants.

Figure 3.4 shows the values of the x functionals used in the SCAN and r2SCAN meta-GGAs

along the internuclear coordinate of the argon dimer. While both functionals approach zero at the

bond critical point, they give very different behaviour on either side of it. The SCAN results show a

divergence that increases with internuclear distance, which is not present in the r2SCAN results. The

region surrounding the critical point is only sparsely sampled by atom-centred integration grids,129

and the exchange-energy contributions can vary substantially depending on the precise location of

the sampled grid points relative to the peaks of the diverging function. Overall, r2SCAN is well

behaved for molecular dimers,200 while SCAN and TPSS show reduced numerical sensitivity186,193

compared to VSXC196 and several of the related Minnesota functionals.58,59
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Figure 3.4: Values of the x function (Eqns. 3.12 and 3.13) used in the SCAN194 and
r2SCAN195 functionals along the internuclear axis of Ar2. Results are shown for internu-
clear distances of 1.00, 1.25, 1.50, and 1.75 times its equilibrium separation of 3.76 Å.198

Calculations were performed using the NUMOL program.199 The black circles indicate
the positions of the Ar nuclei and the points correspond to the integration grid for a mesh
containing 120 radial points per atom.
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Care should be taken by developers to select well-behaved τ -dependent terms for use in the

design of meta-GGA functionals. Meta-GGAs can offer significant improvements over GGAs

for electronic properties, such as the band gap, and tend to give lower errors for molecular

thermochemistry. However, they are much more computationally costly than GGAs for solid-state

applications, frequently suffer from poor SCF convergence, and cannot be used for variable-cell

relaxations in most planewave codes. Users are strongly cautioned to avoid most meta-GGA

functionals for applications where dispersion plays a role since they are frequently numerically

unstable. Even meta-GGA functionals that are well-behaved numerically are still not dispersionless,

as is shown for r2SCAN in Figure 3.3.

3.2.3 MINIMAL DELOCALIZATION ERROR

Delocalization error is almost certainly the key outstanding challenge in DFT today. This error is

a result of overstabilisation of systems with highly delocalised electrons, especially in situations

with fractionally charged atoms.201–205 It affects a diverse range of chemical problems, including

charge-transfer complexes206–210 and excitations,211–218 transition states of radical reactions,219–224

and molecules with extended π-conjugation,225–230 to list only a few examples. Manifestations of

delocalization error can be broken down231 into energy-driven examples, as in the case of stretched

H+
2 ,232–234 and density-driven examples, such as solution-phase ions.204,235,236 Delocalization error

is most prevalent with GGA functionals and can be reduced through use of hybrid functionals

that include some fraction of exact (HF) exchange mixing. Moreover, performing DFT energy

evaluations on HF densities, termed density-corrected DFT,237,238 is particularly effective in

mitigating density-driven errors.

While delocalization error is well studied in finite molecules, much less is known about how it

affects solid-state calculations, other than causing the notorious band-gap problem.239–244 This is

largely because hybrid calculations can be prohibitively expensive in planewave codes for all but

the smallest unit-cell sizes. Despite this restriction, it has been recently shown245 that dispersion-

corrected hybrid functionals yield more accurate lattice energies than dispersion-corrected GGAs

for the X23 benchmark and, particularly, for halogen-bonded molecular crystals. Dispersion-

corrected hybrid functionals also significantly improve upon GGAs for predictions of alkali-halide

lattice constants246 and the relative stabilities of diamond and graphite.230 A dramatic example

of delocalization error in the solid state occurs for organic acid-base co-crystals, where geometry

optimisation with GGA functionals can result in a spurious proton transfer, incorrectly yielding an

organic salt structure.247

In some cases, particularly involving strong halogen bonding, delocalization error causes over-

binding of a vdW complex with the base functional alone.248–251 This means that the addition of
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Table 3.2: Lattice energies (in kcal/mol per molecule) of the 7 ice polymorphs for which
reference experimental data, back corrected for thermal and vibrational effects, is available
from the ICE10 benchmark.253 Also shown are lattice energies computed using a series of
hybrid functionals245 based on B86bPBE-XDM,8–10 with specified percentages of exact
(HF) exchange mixing. Calculations used the Quantum ESPRESSO program,109 norm-
conserving pseudopotentials,102,103 and a 4× 4× 4 k-point mesh. Plane-wave cutoffs of
100 and 1000 Ry were used for the kinetic energy and electron density, respectively. MAE:
mean absolute error, relative to the reference data.

% HF exchange mixing
Phase 0% 10% 20% 30% 40% 50% Ref.

Ih 16.77 16.28 15.87 15.52 15.22 14.97 14.07
II 15.97 15.57 15.24 14.96 14.73 14.55 14.05
III 16.15 15.70 15.32 15.00 14.72 14.50 13.85
VI 15.55 15.20 14.90 14.67 14.47 14.33 13.68
VII 14.46 14.22 14.04 13.92 13.85 13.81 13.07
VIII 14.46 14.23 14.05 13.93 13.85 13.81 13.31
IX 16.28 15.85 15.48 15.17 14.92 14.71 13.97

MAE 1.95 1.58 1.27 1.02 0.82 0.67

a dispersion correction results in larger binding-energy errors, despite adding necessary, missing

physics. GGA functionals also tend to overstabilize co-operative hydrogen bonding due to delocal-

ization error.252 To highlight an example of delocalization error in molecular crystals, we focus

on the lattice energies of seven ice polymorphs.253 As shown in Table 3.2, the B86bPBE-XDM

functional over-estimates the ice lattice energies. This error can be reduced, although not eliminated,

by using hybrid functionals with increased fractions of exact-exchange mixing. Perhaps further

increases in accuracy could be obtained with dispersion-corrected range-separated hybrids with

long-range exact exchange,254–257 although such calculations are not yet feasible in plane-wave

codes.

An ideal base functional to pair with a dispersion correction would be free of delocalization error

and dispersionless. In practice, this cannot yet be achieved as hybrids do not completely resolve the

delocalization error problem and the optimal amount of exact exchange required to minimize it can

be highly system dependent.258–260 Moreover, hybrid functionals still are not practical for most

solid-state calculations with planewave basis sets. The use of finite, numerical64,122 or Gaussian261

basis sets for molecular crystals leads to significant errors from basis-set incompleteness. This

highlights the need for ongoing density-functional development to reduce and ideally resolve

delocalization error, with a particular eye to the solid state.
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3.3 REQUIREMENTS FOR THE DISPERSION
CORRECTION

3.3.1 FINITE DAMPING

We now turn to the requirements for the dispersion correction itself. The use of a perturbation-

theory expansion for the dispersion energy, as in Eqn. 3.2, is correct at infinite separation, but will

break down for short interatomic distances. As a result, the dispersion energy for each atom pair

is typically multiplied by an empirical damping function, f(R), to avoid divergence as R → 0.

Considering only the leading-order C6 dispersion term for simplicity, the damped dispersion energy

between a single pair of atoms is

Edisp = −C6f(R)

R6
. (3.14)

Many possibilities have been proposed for the damping function. The D230 and TS35 dispersion

corrections use a Fermi-type damping function of the form

fWY(R) =
1

1 + exp
[︂
−d

(︂
R

sRvdW
− 1

)︂]︂ (3.15)

proposed by Wu and Yang,158 where d and s are empirical parameters and RvdW is the sum of the

atomic van der Waals radii. In the D331 dispersion correction, an alternative damping function

fCHG(R) =
1

1 + 6
(︂

R
sRvdW

)︂−γ (3.16)

proposed by Chai and Head-Gordon257 was used, where γ and s are again empirical parameters.

Both the Wu-Yang and Chai–Head-Gordon functions ensure that the damped dispersion energy

reaches zero, as shown in Figure 3.5. However, the Chai–Head-Gordon form prevents the divergence

seen with the Wu-Yang damping function at very small internuclear separations. Damping the

dispersion energy to zero means that its magnitude will reach a maximum value at some intermediate

interatomic distance. At shorter distances, a non-physical, repulsive dispersion force will be

introduced.

Using a convergent multipole expansion, it can be shown that the dispersion energy should

approach a small, but finite, value for two hydrogen atoms in the united-atom limit.137 As a result,

we and others32 favour damping the dispersion energy to a constant, finite value as R→ 0. One

way to achieve this is through the Becke-Johnson damping function,138 which has the form

fBJ
n (R) =

Rn

Rn +Rn
vdW

, (3.17)
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Figure 3.5: Comparison of the effect of various damping functions138,158,257 on the leading-
order dispersion energy between two atoms with C6 = 100 a.u. and RvdW = 3 Å. Empirical
parameters in the damping functions are set to s = 1, d = 20, γ = 14.

where n = 6 for the leading-order C6 dispersion term. It should also be noted that the definitions

of the vdW radii differ between various damping functions, but will not be discussed further here.

The BJ form ensures that the dispersion energy approaches a non-zero constant at short interatomic

separations, as shown in Figure 3.5, and the dispersion force is never repulsive.

The choice of damping function can significantly affect the performance of a dispersion correc-

tion, as demonstrated for the D3 dispersion model.32 When D3 was paired with dispersionless or

near-dispersionless base functionals, finite damping produced substantially more accurate results

than zero damping for several molecular benchmarks. However, zero-damping does provide im-

proved performance for exchange functionals that mimic short-range dispersion binding,173,174

such as SCAN194 and the Minnesota functionals.58,59 In these cases, zero damping ensures that the

dispersion energy will reach a maximum at intermediate atomic distances, while being significantly

damped near equilibrium geometries of vdW complexes to offset the dispersion-like binding from

the base functional. This results in accurate potential energy curves through a cancellation of

errors. An example of such a cancellation of errors is shown in Figure 3.6. Here, the SCAN

meta-GGA is paired with the zero-damped D3 dispersion correction, and the results are compared

with B86bPBE-XDM for graphite exfoliation. While the component base functionals and dispersion

corrections show very different behaviours, the overall potential energy curves from SCAN-D3 and

B86bPBE-XDM are similar.
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3.3.2 HIGHER-ORDER DISPERSION TERMS

Force-field implementations27–29 of the LJ potential,262 as well as early DFT+D dispersion correc-

tions135,139,157–159 including the D230 and TS35 models, limited themselves to inclusion of only the

leading-order C6 dispersion term. If empirical scaling of the dispersion coefficients30 is introduced,

such methods can be capable of very high accuracy for small molecular dimers.21,30 However,

without empirical scaling, C6-only models severely under-bind π-stacked complexes.135 It has

since been shown that the inclusion of at least the C8 dipole-quadrupole term in the dispersion-

energy expansion, as in the D331 and XDM10 models, is required for an accurate treatment of

π-stacking,138 graphite exfoliation,21 the S12L benchmark263 of supermolecular complexes,264

and lattice energies of molecular crystals.21,79

We recently presented a detailed discussion of the importance of higher-order terms in a disper-

sion model.21 Table 3.3 shows a summary of our previous results, where we employed a damped

dispersion-energy, summed over all atom pairs, of the form

Edisp = −
∑︂
i<j

∑︂
n=6,8,10

C6,ijf
BJ
n (Rij)

Rn
ij

, (3.18)

truncating it at either the C6, C8, or C10 terms. The BJ damping function involves two parameters

(a1 and a2) in the definition of the vdW radii (Eqn. 3.17) that were optimized in each case to
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Table 3.3: Mean absolute errors (MAE), and mean errors (ME), in kcal/mol, for the
KB4974,75 and X2380 benchmarks using the B86bPBE8,9 base functional and selected
XDM dispersion terms. Multiplication of a term by s indicates empirical scaling. Table
adapted from Ref. 21.

Dispersion Energy KB49 X23
Expression MAE ME MAE ME
E(6) 0.83 -0.23 1.97 -1.59
E(6) + E(8) 0.48 0.02 0.94 -0.38
E(6) + E(8) + E(10) 0.41 0.03 0.86 -0.26
sE(6) 0.38 0.01 1.78 1.61
E(6) + sE(8) 0.40 0.01 0.84 0.08

minimise the error for the KB4974,75 molecular-dimer benchmark. In the last two rows of the table,

the value of an empirical scaling coefficient multiplying the C6 or C8 dispersion-energy terms was

also optimised. Errors for the X2380 lattice-energy benchmark were then evaluated using these

optimised parameters.

The results in Table 3.3 show that the unscaled C6 dispersion-energy term alone performs

poorly for the KB49 molecular benchmark, since neglect of higher-order dispersion terms results in

under-estimation of the dispersion energy. This model similarly results in systematic under-binding

of the X23 molecular-crystal benchmark, leading to a mean error of -1.59 kcal/mol. Conversely,

the use of a scaled C6 term gives excellent performance for molecules, but this requires doubling

of the dispersion coefficients, with s = 2.09.21 However, the scaled C6 dispersion correction

now results in systematic over-estimation of the molecular-crystal lattice energies, with a mean

error of 1.61 kcal/mol. This over-binding occurs because the scaled C6 term’s asymptotic decay

is too gradual to properly account for higher-order C8 dispersion. Consequently, the dispersion

stabilisation is overestimated for the many atomic contacts in a molecular crystal with large

internuclear separations. This error is not seen for small molecular dimers since, unlike for periodic

solids, there will be few distant atomic contacts. Overall, inclusion of a C8 term, either scaled or

unscaled, is necessary for simultanous good performance on both benchmarks.

Interestingly, contrasting the X23 results using scaled and unscaled C6 dispersion terms provides

insight into systematic trends in atomic dispersion coefficients employed in common molecular-

mechanics force fields.27–29 We recently found that force-field dispersion coefficients are typically

1.5 times greater than the corresponding XDM values for small organic molecules,265 as well

as for biomolecules.266 It was argued that the 1.5 factor allowed the force fields to approximate

contributions from the higher-order C8 dispersion term using only the C6 dispersion term available

in the LJ potential. From the XDM results above, the mean errors for the X23 set obtained using
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scaled (s = 2.09) and unscaled (s = 1) C6 dispersion terms are equal in magnitude, but opposite

in sign. Thus, the scaling of s = 1.5 found for the force fields should evenly balance the over- and

under-binding tendencies and would be expected to give near zero mean error for the molecular

crystals and other condensed-phase systems. However, using a scaled C6 dispersion term to account

for C8 dispersion contributions neglects important physics and can still result in substantial error.

Explicit inclusion of theC8 term in both DFT dispersion corrections and molecular-mechanics force

field is favoured and, for example, can considerably increase the accuracy of a four-point-charge

water model.267

3.3.3 RESPONSE TO ATOMIC ENVIRONMENT, A.K.A. ELECTRONIC
MANY-BODY EFFECTS

There has been substantial confusion in the literature regarding the meaning of many-body dis-

persion. This pertains to deconvoluting non-additivities in the dispersion coefficients themselves,

termed electronic many-body effects in our recent work,21 from the triple-dipole Axilrod-Teller-

Muto (ATM)153,154 and higher-order non-pairwise terms in the perturbation-theory expansion of

the dispersion energy. The ATM terms can be modeled even using fixed dispersion coefficients,

and can optionally be included in calculations using the D3 dispersion correction.31 However, such

triple-dipole terms are not required for an accurate dispersion correction as they are negligible for

most chemical systems,21,152,268 although they can be significant in π-stacked dimers depending on

the choice of damping function.269 Conversely, electronic many-body effects are not included in

empirical dispersion methods that use fixed dispersion coefficients, but can have massive effects on

the dispersion energies.16,21,270,271 Manifestations of electronic many-body effects include changes

in dispersion coefficients due to varying atomic charge state, coordination, and even the presence

of neighbouring molecules, all of which collectively determine an atom’s chemical environment.

A particularly striking example of electronic many-body effects is the change in leading-order

C6 dispersion coefficients for common transition-metal elements when going from a free atom to

the bulk metal.271 Table 3.4 shows computed C6 dispersion coefficients for five bulk transition

metals,273 obtained with various dispersion corrections, compared to the free-atomic values.272

Unfortunately, there is no accurate reference data for atomicC6 coefficients in bulk metals. However,

XDM10 and TSsurf272 (which is a pre-cursor to the MBD36 method) aim to account for variations

in dispersion coefficients with chemical environment. As both of these methods provide highly

accurate binding energies for the adsorption of benzene on copper, silver, and gold surfaces,271,272

they should provide the most reasonable C6’s for these metals.

Free transition-metal atoms are highly reactive, possessing loosely bound s-shell electrons. This

leads to a much more diffuse and polarizable electron density distribution for a free atom compared
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Table 3.4: Homoatomic dispersion coefficients for selected metals, in atomic units; free-
atom values272 are compared with results for the bulk metals273 using various dispersion
corrections. The D331 and D433 dispersion coefficients are determined entirely by the
atom positions, while the TSsurf data was taken from Ref. 272. The XDM results were
obtained from B86bPBE calculations using the Quantum ESPRESSO program,109 the
PAW104,105 approach, a 12× 12× 12 k-point mesh, and a cold smearing274 parameter of
0.01 Ry. Planewave cutoffs of 120 and 1200 Ry were used for the kinetic energy and
electron density, respectively. The TS35 dispersion coefficients were evaluated by scaling
the free-atom values using the ratio of Hirshfeld volumes132 obtained from the XDM
calculations.

Element Free Bulk Metal
Atom TS D3 D4 TSsurf XDM

Cu 253 230 175 62 59 106
Pd 158 172 266 192 102 92
Ag 339 349 269 134 122 180
Pt 347 383 337 331 120 124
Au 298 342 317 41 134 130

to the bulk metal. As a result, one would expect a marked decrease in homoatomic C6 coefficients

for bulk metals; this is exactly what is seen in Table 3.4 with the TSsurf and XDM methods, albeit

to varying extents. Conversely, the TS35 and D331 dispersion models, in which the C6 coefficients

depend only on atomic volumes or local coordination numbers, are too simplistic to correctly

account for the expected physics in bulk metals. In several cases, TS and D3 predict higher C6

coefficients for the bulk metal than for the free atoms, explaining why they overestimate adsorption

energies of benzene on these metal surfaces.271 The very recent D433,34 model, which has not yet

been comprehensively benchmarked for metal-containing systems, predicts dispersion coefficients

that are similar to the free-atom values for Pd and Pt, while showing good agreement with TSsurf

for Cu, Ag, and Au.

In prior works, we have highlighted how the description of molecular surface adsorption,271 and

of alkali-halide lattice constants,246 is improved due to the leading-order C6 dispersion coefficients’

response to variations in chemical environment. More dramatically, inclusion of electronic many-

body effects is essential for accurate prediction of the interlayer distances and exfoliation energies of

the transition-metal dichalcogenides16 using a post-SCF dispersion model. Accounting for changes

in dispersion coefficients with atomic environment is also essential for modeling exfoliation of

other layered materials, such as inorganic minerals.275 While simple dispersion models have proved

highly successful for organic chemistry, incorporating the physics of electronic many-body effects

constitutes an additional requirement for a density-functional dispersion model to attain high

accuracy for inorganic chemistry.
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3.4 SUMMARY

In this chapter, we have presented what we believe are the key requirements for a general and

accurate dispersion-corrected density functional. Accuracy of the base functional and dispersion

correction should be enforced separately to ensure that their combination properly describes

the physics of both non-bonded repulsion and dispersion attraction, rather than relying on error

cancellation.

A reliable dispersion correction should use finite-damping to prevent introduction of an artificial,

repulsive dispersion force at short internuclear separations. It should involve minimal empiricism

and evaluate the dispersion coefficients in such as way that they are dependent on the electron

density and, consequently, can respond to changes in chemical environment. Variations in the

dispersion coefficients with chemical environment, including changes in charge state, coordination,

and the presence of neighbouring molecules, can be captured through density dependence and are

collectively termed electronic many-body effects.

A reliable base density functional must be dispersionless, which can be achieved by imposing a

constraint on the large-gradient limit of the exchange enhancement factor for GGAs, as well as

being numerically stable. These requirements are not met by the majority of meta-GGAs, where

the semi-local exchange functionals tend to mimic short-range ‘dispersion-like’ binding, which

is properly a non-local correlation effect. Moreover, many popular functional forms that build

in kinetic-energy dependence result in significant numerical sensitivities to the spacing of the

integration mesh relative to low-density bond critical points, as occur in vdW complexes. Finally,

an accurate base functional should be free of delocalization error. This error can be reduced through

use of hybrid and range-separated hybrid functionals, but such approaches are not practical for

planewave calculations on most periodic solids. Development of a general method to eliminate

delocalization error in both molecular and solid-state systems constitutes what is, in our opinion,

the greatest outstanding challenge in density-functional theory.
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CHAPTER 4

INTERPRETING
SURFACE-ADSORPTION CHEMISTRY
FROM STM IMAGES GENERATED VIA
DISPERSION-CORRECTED DFT

This chapter is adapted from: M. DeJong, A. J. A. Price, E. Mårsell, T. Gary, G. Nguyen, E. R.

Johnson, and S. Burke “Small molecule binding to surface-supported single-site transition-metal

reaction centres” Nat. Comm. 13, 7407 (2022). Note: All experimental data included in this chapter

were provided by Dr. Miriam DeJong and Prof. Sarah Burke, at the University of British Columbia.

All DFT calculations were performed by the author.

4.1 INTRODUCTION

Heterogeneous catalysis employs a catalyst that is a different phase from the reactants and/or

products. It is an important tool for the chemical industry, as it allows for the efficient large-scale

generation of easily separable chemical products without the need for a further step of specialized

separation. Heterogeneous catalysis is estimated to be a part of almost 90% of industrial chemical

processes world wide,276,277 such as in the food, petrochemical, pharmaceutical, and automotive

industries.278–281

A key step to further develop heterogeneous catalysts is understanding of the fundamental

processes at work. Solid-state heterogeneous catalysis follows a process consisting of adsorption

of reactant molecules to a surface, reaction, and then dissociation or desorption from the surface.

Previous work by Burke and colleagues used supramolecular chemistry and a metal-organic

process for self-assembly to make a novel active catalyst material.282,283 The experimental focus
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was generation of atomically precise, self-assembled metal-organic Fe-terpyridine-phenyl-phenyl-

terpyridine [4′,4′′′′-(1,4-11-Phenylene)bis(2,2′:6′,2′′-terpyridine), TPPT] complexes on an Ag(111)

surface, which were characterized using low-temperature scanning tunnelling microscopy (STM).

In order to investigate the initial steps of heterogeneous catalysis, the adsorbed Fe-TPPT com-

plexes were exposed to either of the gaseous reagents CO or C2H4. These reactants have applications

in many industrial catalytic processes, such as those in the refining industry, or combustion within

car exhausts, where the metal catalyst can activate C –– C, C – H, and C – O bonds.284 Experimental

characterization was performed by STM, which allowed for the imaging of Fe-TPPT complexes on

the surface, before and after exposure to the gaseous CO and C2H4 reagents. The imaging before

and after exposure aided in understanding of the aforementioned adsorption process, which is a

key step in heterogeneous catalysis. However, STM images alone can be challenging to interpret

and assign to specific chemical species on the surface.285,286 Here, we will use theory in order to

provide a more rigorous structural assignment for the experimental results.

Computational modelling of surface adsorption can be done with density-functional theory

(DFT). Previous work studying adsorption of benzene on noble-metal surfaces has demonstrated

the importance of dispersion and sensitivity to the choice of dispersion correction.16,271 The process

of physisorption is dominated by weak, long-range noncovalent interactions, but has little impact

on the electronic levels. A full treatment of these long-range effects is essential to accurately

describe the physisorption geometries and energies. A key missing long-range effect within

conventional DFT is an accurate treatment of London dispersion interactions, where non-dispersion-

corrected functionals yield drastically underestimated adsorption energies relative to those seen in

experiment.271 Empirical dispersion models like D2, D3, and TS30,31,35 can model these missing

forces, but tend to overestimate dispersion binding to metal surfaces.16,271 This overestimation

occurs due to their dispersion coefficients, which are based on free-atom values, being too large

for bulk metals. Conversely, the XDM and MBD models have been found to treat the process of

surface adsorption accurately, since their dispersion coefficients have been formulated to vary with

chemical environment and both show similar changes in C6 going from a free metal atom to a metal

surface or bulk.271 Such a flexible treatment of dispersion is central to the accurate generation of

computational STM results.

In this chapter, we modelled surface adsorption of two common gaseous reactants, CO and

C2H4, with a model of the Fe-TPPT heterogeneous catalyst on the Ag(111) surface. This was

achieved through the use of dispersion-corrected DFT using the XDM dispersion model. For the

DFT simulations, a truncated Fe-terpyridine (Fe-tpy) complex was selected in order to accurately

recreate the active site of the complex, while reducing the molecular size to make the calculations
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feasible. From the DFT results, STM images were generated computationally for both prebonded

and bonded complexes of CO/C2H4 with Fe-tpy on the surface. Excellent agreement has been

found between the experimental and theoretical results, allowing us to unambiguously assign

structures.

4.2 SCANNING TUNNELLING MICROSCOPY THEORY

STM was developed in 1981 by Binnig and Rohrer and has become a key tool in the imaging

of nanostructures at the atomic scale.287,288 STM offers the possibility of direct real-space deter-

mination of 3D surface structures using a sharp single-atom tip to apply a voltage to a sample

surface. The STM tip is brought towards the surface at a constant resistance and moved across it

via a piezodrive, which consists of 3 independent piezoelectric transducers for each of the cartesian

axis (x, y and z).289 The mapping of the surface then comes via the weakly flowing current, I ,

which occurs due to the tunnelling of electrons through a vacuum between the tip and surface. The

vacuum tunnelling resistance is measured as the tip is scanned, and the height adjusted to maintain

a constant tunnelling resistance, which yields a contour map of the surface.289 The experimental

formalism comes from the Bardeen approach,290 which uses time-dependent perturbation theory.

The tunnelling current is given to first order by

I =
2πe

ℏ
∑︂
µ,ν

f(Eµ)
[︁
1− f(Ev + eV )

]︁
|Mµν |2 δ(Eµ − Eν), (4.1)

where ℏ is the reduced Planck’s constant, e is the electron charge, f(E) is a Fermi function, V is

the applied voltage, Eµ is the energy of the state ψµ without tunnelling, and Mµν is the tunnelling

matrix elements between the states ψµ of the probe and ψν of the surface.289

This work utilizes DFT in order to generate STM plots, which are compared to those found via

experiment. The DFT calculations rely on the Tersoff-Hamann approximation, where the current is

taken to be proportional to the calculated density of states at the Fermi level,

I ≈ V ρloc(r, V ), (4.2)

where I is the current, and V is the bias voltage. ρloc is the local density of states at the Fermi-level

EF ,

ρloc(r, V ) =

EF−eV→EF∑︂
k,n

|ψk,n(r)|2, (4.3)

where the sum runs over the one-electron states that have energies between EF − eV and EF .291
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4.3 COMPUTATIONAL METHODS

This work utilized DFT in order to generate both theoretical STM plots and relative energy rankings

for the possible catalytic species. Pseudopotential/plane-wave calculations were conducted using

the projector-augmented-wave (PAW) method104 with Quantum ESPRESSO,109 version 5.1.1. All

calculations employed the B86bPBE functional8,9 with the XDM dispersion correction.10,63,131 As

discussed previously, the XDM model evaluates the dispersion energy as a sum over all atomic

pairs, and is damped to prevent divergence at short internuclear separations. This damping function

is controlled through two adjustable parameters based on the functional used. The value of the two

adjustable parameters in the XDM damping function were set to their standard values for use with

B86bPBE of a1 = 0.6512 and a2 = 1.4633 Å.10

The Ag (111) surface was modelled as a 4-layer, 4 × 4 supercell with lattice constants fixed to

their XDM-optimized values throughout this work. This model surface was selected as it has been

previously shown to correctly capture the physisorption interaction between organic molecules

and noble-metal surfaces when combined with XDM.271 Next a truncated form of the Fe-TPPT

complex was generated, consisting of Fe coordinated to a single terpyridine molecule (Fe-tpy), as

shown in Fig. 4.1(a). Initial geometry relaxation was performed with the Fe-tpy placed on the Ag

(111) surface and all surface atoms frozen. The planewave cutoffs for the kinetic energy and charge

density were 50 and 400 Ry, respectively. These first calculations were done at the gamma point

for both the singlet and triplet states of the Fe-tpy. For the triplet state, the initial spin bias was set

to 2 and an unconstrained starting magnetization of 0.1 was placed on the Fe atom. Following this

a second relaxation was performed, where the atomic positions of the Fe-tpy molecule and top two

layers of the Ag (111) surface were allowed to relax. These calculations used an increased k-point

grid of 2 × 2 × 1, with the same planewave cutoffs for the kinetic energy and charge density.

Finally, single-point energy calculations were conducted for evaluation of the adsorption energy.

For the single-point energy calculations, a k-point mesh of 2 × 2 × 1 and planewave cutoffs for

the kinetic energy and charge density of 60 and 600 Ry were used, following previous work on

molecular surface adsorption.271

Starting from the optimized Fe-tpy structure, two catalytically active reactants, carbon monoxide

(CO) and ethylene (C2H4), were placed on the surface in a number of candidate configurations

involving prebonding and bonding to the Fe-tpy complex to probe the energetic landscape and

reflect the possible structures observed in the experimental STM images. Their geometries were

then relaxed following the same computational protocol described above for the reactant-free Fe-tpy

complex. These structures either collapsed to the prebonding and bonding configurations shown in

Fig. 4.2 or were considerably higher in energy and not considered further. For all structures, except
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that of CO in the bonded configuration which has a single ground state, both the triplet and singlet

states were considered and the triplet found to be more stable. Supercell calculations were also

undertaken on CO, C2H4, and triplet Fe-tpy at the gamma point, with cutoffs for the kinetic energy

and charge density of 60 and 600 Ry, in order to evaluate the binding energies.

The STM images were generated using the critic2291 code from the resultant densities from

the single-point calculations with 1.2 times the number of occupied bands. critic2291 uses the

Tersoff-Hamann approximation,289 where the modelled current, I , is proportional to the applied

bias voltage and local density of states (LDOS) at the Fermi level. To generate the STM plots a

sample bias of -0.02 eV was selected to match experiment.

4.4 RESULTS AND DISCUSSION

4.4.1 STM IMAGES

STM’s ability to directly image reactive sites is a key tool in the understanding of experimental

patterning of novel substrates on a surface. One key weakness for pure STM studies is the

assignment of structures, where educated guesses can be made as to what each image reflects,

but structures cannot be conclusively assigned with 100% accuracy. Here, we compare both

experimental and theoretical STM results. As noted above, the experimental system consists of a Fe

adatom coordinated to a single terpyridine (tpy) group of a terpyridine-phenyl-phenyl-terpyridine

(TPPT) molecule adsorbed on an Ag (111) surface. The DFT calculations used a truncated Fe-tpy

molecule, containing just the active site of the complex with a central Fe adatom coordinated to the

terminal terpyridine (tpy) group, adsorbed on a 4-layer Ag (111) surface.

A schematic structural representation, as well as DFT-generated and experimental STM images

are shown Fig. 4.1 for the Fe-tpy (or Fe-TPPT) complex, without any coordinated gaseous reactants.

Fig. 4.1(a) is a schematic representation of the minimum-energy DFT structure. Both the singlet

and triplet configurations of the Fe-tpy were considered, with the triplet yielding a lower energy by

5.9 kcal/mol. The DFT results place the z-distance of the Fe and the average position of the rings at

2.34 and 3.2 Å, respectively, above the surface, which is in line with the physisorption seen for

organics on metal surfaces.271

The experimental and simulated STM images for Fe-typ are compared in Fig. 4.1(b,c). In the

experimental STM in Fig. 4.1(c), the iron is coordinated to the tpy on the right side of the TPPT

molecule, as indicated by the orange diamond. The increased brightness upon iron coordination

is due to the increased electron density on the negatively charged tpy ring. In both DFT and

experimental STM images, the tpy bonded to the iron has a fairly uniform height, with the iron

appearing less bright. This can be explained by both the partial positive charge on the Fe and the
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Figure 4.1: Minimum-energy geometry of the Fe-terpyridine complex on the Ag(111)
surface (a), along with the simulated STM image (b). All computational simulations
were truncated to just the orange region of subfigure (c), due to computational costs. The
experimental image for the full Fe-TPPT complex (d) is shown for comparison, adapted
from Ref. 292.
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(b) Simulated STM

(c) Fe-tpy monomer (d) Experimental STM

fact that, in the DFT structure, the Fe has a vertical height above the surface of 0.9 Å less than the

average ring height.

The experimental focus of the work by Burke and colleagues was to use STM imaging to explore

the reactivity of the active Fe sites when exposed to low concentrations of CO and C2H4. In

the experimental results after CO exposure, two key motifs were observed. The first involves

CO in a prebonded configuration, where it physisorbs to the Ag(111) surface, and the second

motif corresponds to a bonded configuration, where the CO is fully coordinated to the metal

centre through a metal-carbon bond. As the proportion of the bonded species increased compared

to the prebonded when annealed, the prebonded structure was determined to be a metastable

surface-bound intermediate.292

The DFT results for CO yielded only two stable motifs, seen in Fig. 4.2. All placements of

the CO near the Fe would collapse to either the bonded or prebonded configuration (or some

much higher energy state) depending on the choice of starting geometry. For the prebonded motif

in Fig. 4.2(a), the CO is perpendicular to the surface and forms a C-Ag σ-bond, as well as η2

coordination to the Fe atom. For the bonding motif in Fig. 4.2(d), the CO is σ-bonded to the Fe

through the carbon atom and lies parallel to the surface. The DFT calculations found that, in the

prebonded configuration, the CO-Fe-tpy complex was most stable in the triplet state, consistent with
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Figure 4.2: Low-energy structures of CO and C2H4 coordinated with the adsorbed Fe-tpy
complex, along with the simulated STM image. The experimental images for the full
Fe-TPPT complexes with the adsorbed species are shown for comparison, adapted from
Ref. 292.
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(d) CO bonded
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(e) Simulated STM (f) Experimental STM

(g) C2H4 prebonded
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(j) C2H4 bonded
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the free Fe-tpy complex, whereas the CO-Fe-tpy complex is a singlet in the bonded configuration.

This is likely due to the strong Fe – CO bond, which is stabilized by the back-bonding from the

metal d-orbital to the π∗ orbital of the CO that occurs in the bonded form of the complex. Back

donation of electron density to the π system of the CO extends the C – O bond and shortens the

metal-carbon bond. This phenomenon changes the electronic state of the Fe centre to the singlet,

instead of the triplet found for the CO prebonded or free Fe-tpy complexes.

The DFT-optimized geometries were then used to generate simulated STM images, as seen in

the middle column of Fig. 4.2. For the simulated STM of the bonded state in Fig. 4.2(e), the two

parts of the CO molecule can be seen, with the carbon corresponding to the bright half sphere to

the right of the Fe centre and a darker shadow behind it, which corresponds to the oxygen atom.

When comparing the CO simulated and experimental STM images (Fig. 4.2(e-f)), both have the

bright spot to the right of the Fe from the electron-rich carbon. Additionally, the central iron is

much brighter and more prominent than in any other of the simulated or experimental STM images.

The simulated STM of the prebonded CO complex in Fig. 4.2(b) shows a single, slightly less-

intense sphere to the right of the iron centre, which is the top of the CO oxygen. The simulated

image also shows a region that appears to be below the surface as a black halo around the CO

molecule. Although comparing the simulated and experimental STM images for the CO prebonded

configuration, as in Figs. 4.2(b,c), provides a less convincing assignment, both do contain rounded

features with a darkened halo to the right of the Fe centre. These consistent features and the

prediction of only two low-energy motifs allowed for conclusive assignments of the experimental

structures.

For C2H4, two key motifs were observed experimentally for direct interaction with the Fe-tpy

complexes, which were again labelled as prebonded and bonded. The experimental work found

that switching between the prebonded and bonded forms could be induced by a voltage pulse

of -0.7 V for 200 ms and was entirely reversible.292 The assignment of which is the prebonded

versus the bonded configuration was based on the measurement of differential conductance by

scanning tunnelling spectroscopy (STS) localized around the Fe site, which would indicate a new

Fe-centred state.282,283 The bonded structure showed a new tunnelling resonance at -0.30 V, that

was absent in the prebond species.292 This indicated a downward shift of the Fe-centred state and

a stabilization of the Fe-centred HOMO from the interaction with C2H4. Again via differential

conductance measurements, the C2H4 prebonded configuration was found to be more stable than

the CO prebonded configuration.292

The experimental STM images were compared to DFT results to further assign specific structures.

As for CO, the C2H4 calculations either collapsed into one of two motifs, or were found to be much
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higher in energy. When investigating the two low-energy DFT motifs, the less-stable prebonded

configuration in Fig. 4.2(g) was found to have the two carbons parallel to the Ag surface, whereas

the carbons are perpendicular to the surface for the more-stable bonded configuration in Fig. 4.2(j).

In the case of the prebonded motif, the iron centre lies 2.76 Å from the silver surface, which is

significantly higher than in the bonded form, where the distance is 2.47 Å. Additionally, as for the

bare Fe-tpy complex, the complex is most stable in the triplet state for both C2H4 motifs.

For the prebonded C2H4 configuration in Fig. 4.2(h), the simulated STM shows a rounded

termination with a uniform intensity to the right of the Fe centre, which corresponds to the C2H4

molecule as it associates with the iron. For the bonded configuration in Fig. 4.2(k), the simulated

STM image has two distinct features. The first is an altered iron centre, which is triangular in shape

with a reduced intensity similar to the rest of the Fe-tpy complex. The second is a much brighter

lobe to the right of the Fe centre, which corresponds to the C2H4 molecule oriented perpendicular

to the surface.

Unlike those for CO, the experimental and simulated STM images for C2H4 show clear similar-

ities that allowed for straightforward assignments. The STM images for the prebonded motif in

Fig. 4.2(h,i) share the key features of the low-intensity hemispherical lobes to the right of the Fe

centre, arising from the C2H4 molecule parallel to the Ag surface. For the bonded configuration of

C2H4 in Fig. 4.2(k,l), both STM images have a localized bright spot to the right of the Fe due to

one ethylene CH2 group that is pointed up, away from the Ag surface.

4.4.2 BINDING ENERGIES

The Fe-tpy complex adsorbs to the Ag(111) surface via a physisorption process. Due to this, accurate

prediction of geometries and energies requires the inclusion of London dispersion interactions.

This is illustrated in Table 4.1, which shows the binding energy of Fe-tpy on the surface, along

with the decomposition into the base-functional and XDM contributions. In the case of Fe-tpy,

dispersion accounts for 77% of the binding energy, illustrating the importance of its inclusion

for these systems. Previous calculations for benzene adsorbed on an Ag(111) surface,271 which

employed the same methodology used here, gave a binding energy of 19.6 kcal/mol, coincidentally

in exact agreement with the reference experimental value.293 That work also gave a binding energy

of 18.7 kcal/mol for pyridine on Ag(111).271 Our binding-energy result for Fe-tpy, which contains

3 pyridine rings, is slightly over 3 times higher than that for the single pyridine on Ag(111). The

additional contribution to the binding energy primarily comes from the dispersion interactions

between the Fe atom and the surface.

Table 4.1 also shows the binding energies for both CO and C2H4 with the adsorbed Fe-tpy

complex, for both bonded and prebonded arrangements. Although reduced here, the dispersion
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Table 4.1: Computed binding energies (BE) for the Fe-tpy species, along with the base-
functional (BEbase) and XDM dispersion (BEdisp) contributions. Values for Fe-tpy are
relative to the clean Ag(111) surface and isolated molecule. Values for CO and C2H4 are
relative to the isolated molecules and the adsorbed Fe-tpy complex on the surface. All
quantities are in kcal/mol.

Species Configuration BE BEbase BEdisp

Fe-tpy – 78.3 21.3 57.0
CO prebond 17.6 10.5 7.1
C2H4 prebond 19.9 8.1 11.8
C2H4 bond 26.4 14.7 11.7
CO bond 48.6 42.0 6.6

contributions range from 13.6% to 60% of the total binding energies and are still important to the

overall picture of reactant binding. The binding energies of the prebonded configurations for both

CO and C2H4 are more sensitive to dispersion than their bonded counterparts are. The smallest

dispersion contribution, of only 13.6%, is seen for the CO bonded species, which contains a direct

Fe – C bond and has the highest overall binding energy of all four CO or C2H4 species discussed.

The DFT calculations for both CO and C2H4 found that the prebonded motifs were less stable

than the bonded configurations, which confirmed our assignments of the STM results. The

small binding-energy difference between the C2H4 prebonded and bonded configurations listed

in Table 4.1 is consistent with the reversible conversion found in the STS experiments. For the

cases of the CO motifs, the large binding-energy difference between the prebonded and bonded

species in Table 4.1 is also consistent with the non-reversible conversion seen experimentally upon

annealing. Another feature of the STS results that was recovered by the DFT binding energies is the

fact that the CO prebonded complex was found to be less stable than the C2H4 prebonded complex.

The inclusion of dispersion is key for this specific result, as the base-functional contribution alone

(Table 4.1) would invert this ordering.

4.5 CONCLUSIONS

The ability of STM to image at the atomic level makes it a powerful tool for the fundamental

understanding of surface chemistry. However, a major weakness of STM is that explicit assignment

of the images to exact chemical species and subtle bonding arrangements can be extremely difficult.

This work aimed to show DFT as a promising tool to aid in the assignment of STM images to specific

species and bonding motifs, through the generation of high-quality physisorption geometries.

The calculations employed the B86bPBE functional8,9 with the XDM dispersion correction10,63,131
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to study the physisorption of Fe-tpy, and its complexes with CO and C2H4, on an Ag(111) sur-

face. The resulting binding energies and simulated STM images were then compared with the

experimental work done by Burke and colleagues.292 Previous work has shown that dispersion

is important for predicting accurate geometries and energetics for the physisorption of organics

on metal surfaces.271 As theoretical STM plots are sensitive to geometry changes, we therefore

expected the inclusion of dispersion to be key for the structural assignment between theory and

experiment. The importance of including dispersion was also apparent in the energetic ordering as,

without it, the relative stabilities of the CO and C2H4 prebonded complexes would be switched and

no longer reflect the trend seen in experiment.

Further experimental trends seen for the adsorption energies were also reflected within theory.

The ability of CO to form a strong Fe – C bond made the structural assignment between prebonded

and bonded complexes relatively simple. The large energetic difference agrees with the irreversible

conversion to the bonded form seen experimentally after annealing. For the C2H4 complexes, it was

not initially clear from experiment which structures would correspond to the bonded and prebonded

motifs. Inspection of the DFT binding-energy results allowed assignment of the lower-energy

structure as the bonded motif and the higher-energy as prebonded, and the calculated STM images

had straightforward analogues with experiment. Confidence in the C2H4 result arose from the small

difference in DFT adsorption energies, consistent with the observed reversibility of interconversion

between the two motifs. Ultimately, the calculated binding energies, in addition to the generated

STM images, made correct structural assignment of experimental results possible. The power of

high-quality dispersion-corrected DFT calculations to aid interpretation of STM studies of surface

chemistry can be seen from the results of this work.
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CHAPTER 5

XDM IMPLEMENTATION WITHIN
FHI-AIMS

The implementation of XDM within the FHI-aims code base, for both finite molecules and periodic

solids, is the main goal of this thesis and will be the focus of this chapter. This combination of

methods was selected due to the high accuracy of XDM to treat dispersion physics, and the near

linear scaling and the routine application of hybrid density functionals to solids enabled with FHI-

aims. The XDM implementation relies on the theory described within Chapter 2, particularly the

equations found within Section 2.5 of this thesis. FHI-aims is written in the Fortran programming

language, with the majority of the code using the Fortran 90 standard. This chapter will detail the

modules and subroutines that were directly written for this work, the choices that were made for the

implementation, and any modules that were already present within FHI-aims that were modified in

the implementation of XDM. The added section present within the FHI-aims manual, describing

how users can run an XDM calculation using FHI-aims, is also recreated here. Finally, this chapter

will detail the preliminary tests that were undertaken during the creation of the module to ensure

accuracy and consistency with other implementations of XDM.

5.1 IMPLEMENTATION

5.1.1 THE XDM MODULE

A new module within the FHI-aims software package64 was written to contain the calculation of

the XDM dispersion energy and the resulting contributions to the atomic forces and, for periodic

solids, the stress tensor. The module contains a collection of subroutines:

• xdm_collect uses a flag to determine if the XDM dispersion coefficients (Eqns. 2.51-

2.53) should be computed or reused from the last time it was called. If the coefficients are to
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be computed, it obtains ρσ and Qσ (Eqn. 2.60) at every grid point, and calls a number of

routines listed below to obtain the moment integrals and polarizabilities, and then computes

the dispersion coefficients. Once the coefficients are in hand, it calls energy_xdm.

• bhole computes the exchange-hole dipole moment at an arbitrary grid point using the

Becke-Roussel95 (BR) model (Eqn. 2.64), (where xdm_collect applies it on a each grid

point).

• xfuncs computes the difference between both sides of Eqn. 2.63 during solution for the x

parameter used in the BR model using the Newton-Raphson algorithm95,136.

• xdm_hirshfeld_free computes the free atomic volumes and polarizabilities.

• run_xdm_hirshfeld computes the atomic volumes and exchange-hole multipole mo-

ment integrals.

• energy_xdm computes the XDM dispersion energy, as well as the contributions to the

atomic forces and stresses.

There exist other subroutines that were already present within FHI-aims that are called within the

XDM module to aid in the evaluation of the density-based properties, the MPI parallelism, and

writing output that are not discussed in this work for brevity. Additional modifications were also

made to existing routines within the code, which will be described in Section 5.1.3.

If the XDM dispersion method is selected, the program will enter the xdm.f90 module once the

self-consistent field (SCF) calculation is converged. Within the xdm module, the parent routine is

referred to as xdm_collect, which returns the xdm energy, atomic forces, and unit-cell stresses.

Once the dispersion coefficients are first computed within xdm_collect, they are held fixed for

all subsequent energy evaluations within a geometry optimisation. However, after the optimisation

has converged, they are recalculated to assess whether this results in a significant energy change

that would require resubmission of the optimisation. Therefore the XDM dispersion coefficients

are only calculated at the first and last instances of calling xdm_collect. To accomplish this, the

routine is passed a boolean variable, recalc_c6, which indicates whether the XDM dispersion

coefficients should be recalculated or if values from a previous energy evaluation should be used.

If the a1 and a2 damping parameters are not provided by the user in the FHI-aims input (see

Section 5.1.4), then given default values will be used depending on the particular XC functional.

Within the xdm_collect routine, the default damping parameters of a1 and a2 are specified for

two GGAs, B86bPBE and PBE, as well as five hybrid functionals, HSE06, PBE0, PBE50 (50%

exact exchange), B86bPBE-25X (25% exact exchange), and B86bPBE-50X (50% exact exchange).
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Discussion of these functionals and the parameters themselves are included in Chapter 6. The

program will terminate with an error message if no damping parameters are specified and the

functional selected is not one of those listed here.

At the first instance of running xdm_collect, the arrays for the C6, C8, and C10 dispersion

coefficients and the sums of van der Waals radii (RvdW) are allocated, and consist of matrices of

values with entries for all atom pairs. Arrays are also allocated for the free atomic volumes and

polarizabilities, which are populated through calling the xdm_hirshfeld_free subroutine.

Within this subroutine, the free atomic polarizabilities from the CRC handbook of chemistry and

physics294 are tabulated and the free atomic volumes are computed by integration of the reference

free atomic densities contained within the free_atoms module. Similarly, the atomic volume

and moment integral arrays are allocated within the xdm_collect routine and populated by the

run_xdm_hirshfeld routine, which requires the Becke-Roussel95 exchange-hole dipole mo-

ment, b, at each integration point as input. Next, the xdm_collect routine calculates the atomic

polarizabilities by scaling the free-atom polarizabilties using a ratio of environment-dependent

and free-atom volumes (Eq 2.54). The dispersion coefficients are then computed from the polariz-

abilities and moment integrals using Eq 2.51-2.53, via a nested loop over all atom pairs. Finally,

the XDM energy, forces, and stresses (if necessary) are computed by calling the energy_xdm

subroutine.

The run_xdm_hirshfeld subroutine requires the values of the BR exchange-hole dipole

moment, b, on a grid to calculate the moment integrals of Eq. 2.55, which are passed back to

xdm_collect and used to obtain the dispersion coefficients. In order to calculate all of the quan-

tities needed to obtain the b values, a number of other subroutines are required, which are also called

by xdm_collect. First, the existing evaluate_density_direct_from_densmat rou-

tine is called by xdm_collect to obtain the electron density (ρ), gradient (∇ρ), Laplacian (∇2ρ),

and kinetic-energy density (τ ) on the grid. These quantities are then combined to obtain the curva-

ture of Eqn. 2.60. The density and curvature are then passed to the bhole subroutine to obtain the

BR b values. For the calculation of the exchange-hole dipole within bhole, the method is copied

directly from the postg code,75,295 which was one of the first implementations of XDM within a

molecular electronic-structure code. The subroutine uses the Newton-Raphson method95,136 to find

the root, x, of a real-valued function given by Eqn. 2.63, from which the b value can be obtained

by Eqn. 2.64. The final b array is passed back to xdm_collect before being used within the

run_xdm_hirshfeld subroutine for the ultimate calculation of the XDM moment integrals.

Finally, in the energy_xdm subroutine, the dispersion energy, forces, and stresses are com-

puted from the dispersion coefficients. As FHI-aims can perform both molecular and solid-state
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SCF Converged
scf_solver calls xdm_collect

enter xdm_collect

first/last step or
variable_c6

obtain ρ, Qσ from
evaluate_density_

direct_from_densmat

obtain exchange-hole dipole from
bhole, xfuncs

obtain free-atom volumes
and polarizabilities from
xdm_hirshfeld_free

obtain atomic volumes
and moment integrals from
run_xdm_hirshfeld

evaluate C6, C8, C10 and RvdW

xdm_energy evaluates
dispersion energy, atomic forces,

and stress tensor

return to scf_solver

Figure 5.1: Flow chart to illustrate the computational procedure for XDM within FHI-aims.
Green boxes indicate existing routines within the code, while blue boxes indicate new
routines added by the author.

calculations, there is a fork within this routine. For finite-molecular calculations the dispersion

energy and atomic forces are simply computed via a nested do loop over all atom pairs. The
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calculation of the XDM energy for a solid is detailed by Eq 2.50, with the energy calculation also

requiring summation over the lattice vectors to include the dispersion energy between atoms in the

reference unit cell and its periodic replicates. The atomic forces and the stress tensor are calculated

within the same nested loop as for the energy, using Eq. 2.67 and Eq. 2.68, respectively, which

assume that the dispersion coefficients do not depend on the atomic positions.131 For solid-state

calculations, much of the same machinery is utilised as for the finite-molecule calculations, except

another layer of convergence is required – that of over periodic cells. The sum over atomic pairs

is therefore nested in a further loop over supercell size, where the change in dispersion energy

(resulting from including successively many unit-cell replicates at increasing distances from the

reference cell) is checked against a predetermined energy convergence threshold and, once it falls

below this value, no further image cells are considered in the summation. This procedure and

the choice of convergence threshold was present already within FHI-aims for use with the TS35

dispersion method. Similarly, if a geometry optimisation is undertaken for a periodic solid, the

convergence of the forces will be checked using another predetermined threshold value within the

code. We note, however, that the convergence of the stress is not tested with either of the TS or

XDM methods. Once the summation over supercells has converged, the final dispersion energy,

forces, and stresses are passed back to the xdm_collect subroutine.

5.1.2 CHOICES MADE WITHIN THE IMPLEMENTATION

A number of choices were made during construction of the XDM module in order to achieve

good performance, accuracy, and ease of use for those who wish to employ the XDM dispersion

correction within FHI-aims. The first was that, after the first calculation of the dispersion coefficients

at the outset of the calculation, the coefficients are held fixed until the last step of a geometry

optimisation, when they are recalculated. The default behaviour of the code when the xdm keyword

is used is to do exactly this and hold the dispersion coefficients fixed. This is done because

continually recalculating the XDM dispersion coefficients increases the computational cost and,

more importantly, causes poor convergence of geometry optimisations due to the minor force-energy

inconsistency that results from the assumption that the dispersion coefficients are independent

of atomic position when evaluating the atomic forces and stress tensor (Eqns 2.67 and 2.68).131

All calculations in the proceeding chapters were achieved through the use of constant dispersion

coefficients during optimisation, followed by resubmission from the converged geometry.

Another choice was to hard-code the damping parameters for a selection of common functionals

employed both in the literature and in our own work. As detailed in Subsection 5.1.4, if only

the xdm keyword is used, the code will read the selected exchange-correlation functional from

control.in, and use the corresponding a1 and a2 parameters for the light-dense basis sets for
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that functional. Having predetermined a1 and a2 parameters within the XDM module makes it

easier for others to use XDM within FHI-aims.

In periodic-boundary implementations, a choice must be made to define the spatial extent for

summation over the periodic unit cells surrounding the initial reference cell when evaluating the

dispersion energy, as well as the forces and stress tensor. In FHI-aims, a cutoff was determined by

evaluating the change in the total dispersion energy with respect to adding each successive shell of

image cells surrounding the reference cell. When this energy change falls below a predetermined

threshold, the evaluation of the dispersion energy is considered converged. This choice was made

for consistency with the TS dispersion method already implemented within FHI-aims, where a

dispersion energy convergence threshold, in eV, was set to

δ = max(natoms × 10−8, 10−6), (5.1)

where natoms is the number of atoms within the unit cell. This differs from the previous XDM

implementation in Quantum ESPRESSO,109 where the number of cells that contribute to the

dispersion energy is summed up to a set radius (determined based on the C6 value) from a given

atom within the initial reference cell. It will be seen later in this work that there are minimal

differences in accuracy achieved between both implementations of XDM at the GGA level for

molecular crystals.

5.1.3 DESCRIPTION OF OTHER CODE MODIFICATIONS

FHI-aims contains two mandatory input file types for a general calculation: control.in and

geometry.in. The geometry.in file contains the atomic positions and, additionally, the

lattice vectors if a periodic calculation is performed. The XDM implementation did not modify any

parts of the code involving the reading or writing of geometry.in, which will not be discussed

further. The other mandatory input file is the control.in and this was where modifications

were made within the code to allow the running of XDM. The control.in file contains the bulk

of the runtime-specific information, such as type of calculation, choice of exchange-correlation

functional (for DFT calculations), total-spin and charge, the type of dispersion correction and its

flags, as well as the species subtags which detail the NAO basis set for each of the elements found

in geometry.in. For the selection of the dispersion correction within control.in, the details

specific to XDM will be described in subsection 5.1.4.

In order to run an XDM calculation, a new xdm keyword must be defined that can be invoked

within the control.in file. To define this keyword, several key files were modified within

the code: read_control.f90, runtime_choices.f90, and dimensions.f90. The
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control.in file is read within read_control.f90, which sets the flag of xdm to true within

the code if the keyword is present. This routine will also read any additional input options, or set

these options to their default values, depending on what, if anything, is present in the input line

after invoking the xdm keyword. Variables for these additional input options were also defined

in runtime_choices.f90. Here two real variables were defined for the a1 and a2 damping

parameters, as well as two boolean variables to specify whether the default damping parameters

(preprogrammed and specific to each functional) will be used and whether the XDM calculation will

use variable or fixed dispersion coefficients. Any keyword defined within read_control.f90

must also be defined within dimension.f90, which is the module where all directly accessible

array dimensions are allocated through parsing the input files. Here, if the xdm keyword has been

invoked within control.in, a boolean varible flag to specify whether an XDM calculation

should be performed is set to true, starting the cascade of choices within the rest of the code to run

the xdm.f90 module and calculate the dispersion energy.

The last parts of the code that were modified for the inclusion of XDM were scf_solver.f90,

get_total_energy.f90, get_total_forces.f90, analytical_stress.f90, and

main.f90. Each of these modifications can be broken up into calling the XDM module,

adding the dispersion contributions to the total energy, forces, and stresses, writing the results

to the output file, and determining the stage of the overall calculation. It is within the rou-

tine scf_solver.f90 that the XDM module is called with call xdm_collect. Upon

its first invocation, the dispersion coefficients, energy, atomic forces, stress tensor, are calcu-

lated. At the end of each subsequent SCF, the energy, forces, and stresses are recalculated

but, the dispersion coefficients are held fixed, unless xdm_variable_c6 is set to true. The

scf_solver routine also calls get_total_energy.f90, get_total_forces.f90,

and analytical_stress.f90, which sum up the SCF and dispersion contributions to the

total energy, atomic forces, and stress tensor, respectively. These routines were modified to in-

clude the dispersion contribution if the xdm keyword is invoked within the control.in file.

Finally, main.f90 is a high-level routine within FHI-aims from which all main tasks branch.

This routine calls the SCF solver and it is also in main.f90 where the convergence of a geometry

optimisation is assessed. Here, if the optimisation is considered converged, a boolean variable

xdm_last_pass is set to true and there is a final call to the XDM module such that the dispersion

coefficients are recalculated to update the dispersion energy.

5.1.4 INPUT OPTIONS

A new section was added to the FHI-aims manual to provide instructions for using the xdm

keyword, as well as examples. The implementation of XDM within FHI-aims is able to calculate
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the dispersion energy for both molecules and solids and is achieved as a post-SCF correction to the

base DFT energy as in Eq. 2.43. With the dispersion energy calculated as a damped asymptotic

expression as in Eq. 2.65. XDM can be run within the code by using the tag of xdm within the

control.in file.

Usage: xdm a1 a2 variable_c6

Purpose: activates the calculation of the XDM dispersion energy and its derivatives.

Options:

• a1 a2: XDM dispersion coefficients (a2 in units of Å).

Default: the default damping coefficients (a1 and a2) are chosen based on the functional

used (see the xc keyword), and correspond to a “light” basis set with a dense grid. The

dispersion coefficients for the following functionals are available: B86bPBE, B86bPBE-25,

B86bPBE-50, PBE, PBE0, PBE50, HSE06. If your functional is not on this list, or if you

want to use parameters optimised for the “tight” basis set, you need to supply the XDM

parameters.

• variable_c6: in a geometry relaxation, recompute the dispersion coefficients at every

step.

Default: the dispersion coefficients are calculated in the first and last step of a relaxation.

Examples:

• xdm (calculate XDM with default settings)

• xdm 0.4572 0.5921 (use a1 = 0.4572 and a2 = 0.5921Å)

• xdm variable_c6 (recalculate XDM coefficients at every relaxation step)

5.1.5 B86B-BASED EXCHANGE FUNCTIONALS

The functional that has been shown to pair best with the XDM dispersion correction is B86bPBE.8,9

The PBE correlation9 functional was already present within the FHI-aims code base and is used

as is. The B86b-based functionals (including B86bPBE and its hybrid counterparts) were newly

implemented within FHI-aims for this thesis. PBE exchange and B86b exchange differ only within

the description of their enhancement factors (Fig 3.2), which can lead to subtle differences in their

treatment of non-bonded repulsion; see Fig 3.1 for graphite exfoliation energies, for example. The

enhancement factor for PBE is

F (χσ) = 1 +
β

cx

χ2
σ

1 + γχσ
, (5.2)
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where χσ = |∇ρ|
ρ4/3

is the reduced density gradient, and β and γ are parameters. As stated within

Chapter 3, the B86b enhancement factor follows the correct behaviour in the large-gradient limit of

χ
4/3
σ , and is written as

F (χσ) = 1 +
β

cx

χ2
σ

(1 + γχσ)4/5
(5.3)

for two different β and γ parameters.

For the implementation of B86b exchange within FHI-aims, the PBE exchange subroutine,

pbe_partial_derivs.f90, was utilised as a template. Only the enhancement factor within

the subroutine was modified to create the new b86b_partial_derivs.f90 exchange subrou-

tine. In order for the B86bPBE exchange to be recognised as a possible call within control.in,

two other components of the code were modified: xc.f90, and xc_library.f90. The

xc.f90 module provides the functions that calculate the exchange-correlation energy, where

again the subroutine for PBE was used as a template. Both subroutines are passed the electron

density (ρ) and the gradient (∇ρ), and pass back the exchange-correlation energy. Finally, within

xc_library.f90, additions were made for the handling of input cases within control.in

for B86bPBE, as well as the B86bPBE-25X and B86bPBE-50X hybrid functionals. It is within

xc_library.f90 that the string input within control.in is parsed and translated to an index

or flag used by FHI-aims. It is also within this module that the percentage of exact exchange

mixing is set for the B86bPBE-25X (25%) and B86bPBE-50X (50%) hybrid density functionals,

depending on the flag set by the parsed string.

5.2 TESTS

A selection of tests was undertaken in order to verify the XDM implementation within FHI-aims.

The central quantity of the exchange-hole dipole, b, must be calculated using Eq. 2.64, which relies

on the spin density ρσ, the Weizsäcker term |∇ρσ |2
ρσ

, the Laplacian of the spin density, ∇2ρσ, and

the spin kinetic density, τσ. The results from the calculation of these quantities at every point on

the integration grid can be seen in Fig. 5.2 for an argon dimer. Here, Quantum ESPRESSO109

uses the PAW method and an effectively complete planewave basis set, Numol199 is all-electron

fully numerical code, and FHI-aims uses a “tight” NAO basis set. The FHI-aims result for the

exchange-hole dipole closely follows that of the Numol code within the core regions due to their

all-electron nature, and differs from that of the Quantum ESPRESSO implementation due to the

pseudized nature of the core region. For each of the quantities listed above it can be seen that

FHI-aims accurately reproduces the Numol implementation. The only notable difference is that

FHI-aims slightly underestimates the exchange-hole dipole at grid points far from the atomic nuclei.
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Figure 5.2: Comparison of the exchange-hole dipole and its component quantities, obtained
with selected codes, for the argon dimer along the internuclear coordinate. Shown are:
(a) ρσ, the spin density, (b) |∇ρσ |2

ρσ
, the Weizsäcker term, (c) ∇2ρσ, the Laplacian of the

spin density, (d) τσ the spin-dependent kinetic density, and (e) b = dχσ, the exchange-hole
dipole moment. The Numol199 calculations used the LDA91 and an isolated argon dimer
with a 3.70 Å internuclear distance, the Quantum ESPRESSO109 calculations used the
PBE functional9 and an argon atom in the centre of a cubic box with lattice vectors of
3.70 Å, and the FHI-aims calculations used the PBE functional,9 the “tight” basis set, and
an isolated argon dimer. All values are presented in atomic units.

This is likely due to not fully capturing the long-rage exponential decay of the electron density,

although it may also be partially due to differences in the long-range behaviour of PBE and the

LDA.

Further tests were run in order to compare the C6 dispersion coefficients calculated using FHI-

aims with those from Gaussian296 (and the postg implementation75 of XDM) for the isolated

molecules, and with Quantum ESPRESSO109 for the molecular crystals, present within the X23

set.80 The comparison for the homoatomic C6 dispersion coefficients can be seen in Fig. 5.3,

with each point representing an atom found within each of the respective molecules or unit cells.

For the FHI-aims vs. Gaussian comparison, the plot shows a slight skew from linearity, likely

due to the truncation of the NAO basis set tails when compared to the aug-cc-pVTZ Gaussian

68



 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

F
H

I−
a

im
s
 C

6
 (

a
u

)

Gaussian C6  (au)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

F
H

I−
a

im
s
 C

6
 (

a
u

)

Quantum ESPRESSO C6  (au)

Figure 5.3: Comparison of homoatomic C6 dispersion coefficients, in atomic units,
computed using FHI-aims and either Gaussian296 (isolated molecules, left) or Quantum
ESPRESSO109 (molecular crystals, right) for the components of the X23 lattice-energy
benchmark.80 All calculations were undertaken with the PBE functional.9 The FHI-aims
calculations used the light dense basis set described later in this work, the Gaussian calcu-
lations used the aug-cc-pVTZ basis set and the ultrafine integration grids, and the Quantum
ESPRESSO calculations used kinetic energy cutoffs for the wavefunction and charge
density of 80 and 800 Ry, respectively, and employed PAW data sets. The solid black line
(y = x) represents a slope of one, indicating identical values.

basis set. Although the density is low far away from an atom in an isolated molecule, there are

large contributions to the exchange-hole dipole moments. This becomes most apparent for points

corresponding to carbon atoms, seen at the top right of the plot. Carbon atoms have the largest

dispersion coefficients of the elements appearing within the X23 set (H, C, N, O), while hydrogen

atoms have the smallest. For the FHI-aims vs. Quantum ESPRESSO comparison using molecular

crystals, there are negligible differences between the codes due to two factors. First, while the core

region is not fully described within QE, it does contribute greatly to the exchange-hole dipole for the

light elements considered here due to its small spatial extent; this can be contrasted with transition-

metal atoms, where the core contributions are larger.297 Second, although there is a truncation

of the NAOs in FHI-aims, periodic solids lie within a regime where the overlap of the valence

densities dominates, which is where the largest contribution to the dispersion coefficients exists.

Overall, the FHI-aims results were found to be close to those from previous XDM implementations

when comparing C6 coefficients for both molecular and solid-state systems. This provided us with

confidence to apply our new implementation to energy-based benchmarks in the next chapter.
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CHAPTER 6

XDM-CORRECTED HYBRID DFT
WITH NUMERICAL ATOMIC ORBITALS
FOR MOLECULAR CRYSTAL
ENERGETICS

This chapter is adapted from: A. J. A. Price, A. Otero de la Roza, and E. R. Johnson, “XDM-

corrected hybrid DFT with numerical atomic orbitals predicts molecular crystal energetics with

unprecedented accuracy” Chem. Sci. 14, 1252-1262 (2023).

6.1 INTRODUCTION

The accurate description of molecular crystals is a challenge for current computational

methods. Molecular crystal structures typically have unit cells containing hundreds of

atoms, meaning a high computational expense, and feature a delicate balance between

weak non-covalent (intermolecular) and strong covalent (intramolecular) interactions,

both of which have to be described accurately by the chosen method. The computational

description of these systems is important in the study of polymorphism, which is par-

ticularly prevalent in molecular crystals,298,299 pressure-temperature phase diagrams,299

and for any discipline in which the solid form of a molecular material controls a prop-

erty of interest: pharmaceuticals (solubility/bioavailability and patentability300–303), food-

stuffs (organoleptic properties304), energetic materials (sensitivity to detonation305–307),

organic semiconductors (charge carrier mobility308–312), and others.309
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Having a method that is able to rank molecular crystal structures accurately is essen-

tial for crystal structure prediction (CSP) – the prediction of the crystal structure of a

compound from its molecular diagram only.303,313,314 A reliable CSP protocol would be

extremely useful in the disciplines listed above, as it would allow circumventing experi-

mental solid-form screening processes, which are expensive and time-consuming,315–319

and would provide a detailed energy-structure-function map for the chosen molecule and

property of interest.308,309 To gauge progress in the field, the Cambridge Crystallographic

Data Centre (CCDC) periodically runs CSP blind test competitions in which participant

groups try to predict the observed crystal structures of a few molecular compounds.82–87

The 5th blind test, held in 2011, showed that final ranking of the candidate structures us-

ing dispersion-corrected DFT is quite effective, and far superior to force fields in most

cases.86,320–323 Although other techniques such as fragment-based methods,299,324–328

wavefunction theory,329,330 and machine-learning methods328,331 have been used, DFT

is arguably the current workhorse for modeling molecular materials.314,332–345

Dispersion-corrected functionals based on the exchange-hole dipole moment (XDM)

model,10,63,131,346 in particular the semilocal functional B86bPBE-XDM,8,9 have shown ex-

cellent performance for description of molecular crystals131,335,336,347 and non-covalent

interactions in general.16,348 In its current plane-wave/pseudopotentials implementation,

while still effective for CSP, B86bPBE-XDM is affected by outstanding drawbacks shared by

all semilocal functionals. First, the use of a plane-wave basis set makes the computational

requirements scale significantly with system size, such that calculations involving unit cells

with hundreds to thousands of atoms are on the verge of being infeasible. Second, GGA

functionals spuriously over-stabilize systems affected by delocalization error,204,231,349

which negatively impacts the modeling of molecular salts, acid-base co-crystals, hydro-

gen bonding, and halogen bonding, to list only a few examples.245,247,250,335 Lastly, GGA

functionals give a poor description of conformational energies, which are important when

comparing crystal polymorphs composed of flexible molecules.336,350–352

In this work, we address these shortcomings by combining XDM functionals with the

numerical atomic orbital (NAO) basis sets in the Fritz Haber Institute ab initio materials

simulations (FHI-aims) package.64,65,68,353 Being finite-support functions, NAOs have the

dual advantages of providing linear scaling with system size and enabling relatively inex-

pensive use of hybrid functionals, compared to plane-wave approaches. This is important

because hybrid functionals can be used to mitigate delocalization error75,245,349,354–357
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and are generally more accurate than GGAs for conformational energies.352 One draw-

back of NAOs is the possible appearance of basis-set incompleteness error (BSIE), which is

known to have a deleterious effect on the description of non-covalent interactions,358–360

although we show that BSIE can be effectively mitigated by parametrization of the disper-

sion damping function.

Dispersion-corrected DFT methods with NAOs have been applied to molecular crystals

in combination with the Tkachenko-Scheffler (TS)35 and many-body dispersion (MBD)36,37

family of corrections.340–344 To assess the new XDM-corrected hybrid functionals, we focus

on molecular crystal lattice energies as they are the key property for CSP ranking361 and

one of the most demanding tests for computational methods regarding non-covalent inter-

actions.299 In particular, we consider the lattice energies of the X23 set80,131,326,329,330,362

and of 13 ice phases, for which diffusion Monte Carlo (DMC) data has been generated.81

The latter is a particularly stringent test because determining accurate lattice energies for

ice relies on a fine balance of dispersion, electrostatic, and many-body induction effects.

At present, there is no functional that gives a good description of the absolute and relative

energies of all ice phases,81 and therefore the reliable treatment of water and ice with

DFT methods remains an unsolved problem.81,363,364

Herein, we show that the NAO implementation of XDM-corrected functionals provides

excellent performance for the description of molecular dimers, ice, and molecular crys-

tal lattice energies in general, with high computational efficiency. In particular, a com-

posite method combining B86bPBE-XDM and its sequent 25% hybrid functional achieves

mean absolute errors (MAEs) for the X23 and ice lattice energies of 0.48 kcal/mol and

0.19 kcal/mol, respectively. For the X23, the reported MAE is roughly half the previous

best value, making the new XDM methods the most accurate DFT approaches for modeling

of molecular materials currently available.

6.2 METHODS

6.2.1 THEORY

A summary of the XDM dispersion model and its implementation in the FHIaims package

is presented in this section. More details about the XDM method can be found in previous

works (see Ref. 10 and references therein). In XDM, the dispersion energy is calculated
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using a damped asymptotic pairwise dispersion expression,

EXDM = −
∑︂

n=6,8,10

∑︂
i>j

Cn,ij

Rn
ij +Rn

vdW,ij

, (6.1)

which is then added to the energy from the base density functional,

E = Ebase + EXDM . (6.2)

In Eq. 6.1, i and j run over atoms, Rij are the interatomic distances, Cn,ij are the disper-

sion coefficients, and the RvdW,ij are damping lengths calculated as

RvdW,ij = a1Rc,ij + a2 , (6.3)

with

Rc,ij =
1

3

[︄(︃
C8,ij

C6,ij

)︃ 1
2

+

(︃
C10,ij

C8,ij

)︃ 1
2

+

(︃
C10,ij

C6,ij

)︃ 1
4

]︄
. (6.4)

The a1 and a2 parameters are the damping function coefficients, which are determined for

every functional and basis set combination by minimizing the root-mean-square percent

error in binding energies for 49 small molecular dimers, relative to high-level reference

data (the Kannemann-Becke set,74,75,171 KB49). The damping function is therefore used

to match the XDM dispersion contribution to the particular exchange-repulsion behavior

of the chosen functional, as well as to mitigate any (moderate) BSIE from a less-than-

complete basis set. Importantly, once the a1 and a2 parameters are determined, they

remain the same for every system to which the functional and basis set are applied, molec-

ular or periodic, and are never re-parametrized for specific cases.

The dispersion coefficients in Eq. 6.1 (Cn,ij) are calculated non-empirically from the

self-consistent electron density, its derivatives, and the kinetic energy density. It has been

shown that the dependence of these coefficients on the chemical environment (the elec-

tronic many-body dispersion effects) is essential to the accuracy of the XDM method.21

Calculation of three-body and higher-order dispersion coefficients, of which the Axilrod-

Teller-Muto (C9) is the leading term, is possible in XDM,152 but we have found that in-

cluding this term has either little impact or degrades the accuracy of XDM-corrected func-

tionals.21

The performance of a XDM-corrected method depends critically on the base functional

with which it is paired. In this article, we consider two generalized-gradient-approximation
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(GGA) functionals: PBE,9 due to its popularity in the solid-state community, and B86bPBE,8,9

which is our GGA of choice when non-covalent interactions are dominant, thanks to its

ability to accurately describe non-bonded repulsion.93,94,131,171,348 In addition, we con-

sider multiple hybrid density functionals with exchange-correlation (XC) energies of the

form

EXC = (1− aX)E
PBE/B86b
X + aXE

HF
X + EPBE

C . (6.5)

The exchange GGA is either PBE or B86b, aX controls the fraction of exact (Hartree-

Fock, HF) exchange used in the functional, and the correlation contribution comes from

PBE. The PBE0 functional97 corresponds to the choice of PBE exchange and aX = 0.25.

Functionals with 50% exact exchange (“half-and-half”) have been shown to minimize

delocalization error,245,250,365 so we also considered “PBE-50” with PBE exchange and

aX = 0.5. Given the good behavior of B86bPBE for intermolecular closed-shell repulsion,

we define 25% and 50% hybrids built on B86b exchange as well, termed B86bPBE-25

and B86bPBE-50, respectively.245 Finally, we included the range-separated HSE06 hybrid

functional366 as its use is fairly common in solid-state applications.

6.2.2 COMPUTATIONAL DETAILS

All calculations in this work were carried out with the FHI-aims program (version 210513).

The XDM method, B86b exchange, and the ensuing hybrid functionals, were all imple-

mented in a copy of the code. The basis sets used for the calculations were either the

“light” or the “tight” settings, which correspond to double-ζ and triple-ζ basis sets, respec-

tively. Based on our initial exploration, the choice of integration mesh can substantially

affect the stability of the geometry relaxation procedure for molecular crystals. We there-

fore chose to always use the integration meshes from the tight settings, with up to 434

angular grid points.

The memory requirements of hybrid functional calculations with the tight basis set

exceeded our current computational resources, so we approximated the hybrid/tight result

using a correction calculated by evaluating the energy difference between tight and light

bases at the GGA level:

Etight
hybrid ≈ Elight

hybrid +
(︂
Etight

GGA − Elight
GGA

)︂
. (6.6)

This type of basis-set correction is analogous to using the difference between large- and

small-basis MP2 energies to correct small-basis CCSD(T) energies, as in common practice
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in wavefunction theory calculations.367 In addition to the XDM-corrected functionals men-

tioned above, we also considered the Tkachenko-Scheffler (TS)35 and many-body disper-

sion (MBD)36,37 methods for comparison, since they are already implemented in FHIaims

and are routinely used for molecular crystals and CSP.340–344 In the case of MBD, we used

MBD@rsSCS37 (where rsSCS indicates range-separated self-consistent screening of the

polarizabilities used as input to MBD) as recommended by the FHI-aims documentation.

In the rest of the article, MBD@rsSCS is referred to simply as MBD.

All molecular calculations were carried out as single-point energy evaluations at the

literature geometries. The molecular datasets considered are the KB49,74,75 S22×5,76

and S66×877,368 sets of gas-phase dimer binding energies, and the 3B-6978 set of three-

body interaction energies in molecular trimers. All solid-state calculations were carried

out by performing a full geometry relaxation with each functional. Reciprocal-space k-

point grids were selected with the number of points, n1 × n2 × n3, given by

ni = int [max (1, Rk|bi|+ 0.5)] , (6.7)

where |bi| is the length of the ith reciprocal lattice vector andRk = 50 bohr. The solid-state

benchmarks are the lattice energies of the X2379,80,362 set of molecular crystals (with the

most recent reference values of Dolgonos et al.362) and the ICE13 set of ice polymorphs.81

6.3 XDM PARAMETRIZATION

Before using the new FHIaims XDM implementation, we first need to parametrize the XDM

damping function (Eq. 6.3) and find the optimal a1 and a2 for all chosen functional and

basis set combinations. This is done in the same way as in previous studies, by minimizing

the root-mean-square percent (RMSP) error in the binding energies of the 49 molecular

dimers comprising the Kannemann-Becke set.74,75 The optimal parameter values, along

with the resulting KB49 error statistics, are collected in Table 6.1. It is important to

note that these a1 and a2 values are fixed for each particular functional and basis set

combination, and do not change with the system to which XDM is applied.

The errors shown in Table 6.1 are comparable to those obtained with our previous

plane-wave (Quantum ESPRESSO131,369) and Gaussian basis-set (using Gaussian296 or

psi4370 with the postg program295) results contained in the current XDM parametriza-

tion database.371 For example, the MAPE for B86bPBE/tight in Table 6.1 (11.0%) is very

close to the MAPE obtained for the same functional using the projector augmented wave
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Table 6.1: Optimal XDM parameters (a1 and a2) for selected functionals, with
exact-exchange mixing fractions (aX) indicated. The mean absolute errors (MAE,
in kcal/mol) and mean absolute percent errors (MAPE) for the KB49 fit set are
also shown. The best overall results for each basis set are indicated in bold.

Functional aX a1 a2 (Å) MAE MAPE
Light basis set

PBE 0.00 0.5312 2.3270 0.67 19.0
B86bPBE 0.00 0.8219 1.2069 0.54 14.9
HSE06 0.11a 0.3268 3.0431 0.52 13.6
PBE0 0.25 0.3302 3.0042 0.46 12.5
PBE-50b 0.50 0.0000 4.1971 0.38 9.8
B86bPBE-25 0.25 0.5235 2.1995 0.35 9.7
B86bPBE-50 0.50 0.0831 3.7362 0.30 8.5

Tight basis set
PBE 0.00 0.6438 1.8533 0.50 14.1
B86bPBE 0.00 0.8976 0.8518 0.38 11.0
HSE06 0.11a 0.5020 2.3000 0.46 11.1
PBE0 0.25 0.5053 2.2527 0.41 10.2
PBE-50 0.50 0.3983 2.5986 0.42 9.6
B86bPBE-25 0.25 0.6546 1.6097 0.32 8.4
B86bPBE-50 0.50 0.4887 2.1855 0.36 8.5

aThis value is the range-separation parameter (ω) instead of the
exact-exchange fraction.
bThe optimal a1 value was negative, so it was set to zero during the
parametrization.

(PAW) method104 (11.8%), plane waves plus norm-conserving pseudopotentials (12.4%),

and the reasonably complete aug-cc-pVTZ Gaussian basis set (11.4%). The MAPEs ob-

tained with other functionals, such as PBE, PBE0, or HSE06, also deviate from those in

the parametrization database by around 1% at most. This is a strong indication that our

FHIaims XDM implementation is working correctly.

Focusing on the results for the tight basis set, Table 6.1 shows that hybrid functionals

outperform GGAs, and that B86b-based functionals consistently give lower errors than the

analogous PBE-based functionals. This is also in agreement with our previous works.75,131

The lowest errors among the functionals studied are obtained for the B86bPBE-25 hybrid,

with a MAE of 0.32 kcal/mol and a MAPE of 8.4%.

Because the tight basis set is too expensive for routine geometry optimizations, we re-

sort to using a less-than-complete basis set and relying on the XDM damping function
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to partially alleviate any BSIE.75,358 Table 6.1 shows the average errors for the light

(double-ζ) basis set. While lower errors are obtained with the tight (triple-ζ) basis set,

the good performance of the light basis set indicates a reasonably low impact on the ac-

curacy caused by BSIE. This is in stark contrast to our previous results using the double-ζ

basis set in the SIESTA NAO code,122,372 where the MAPE was in the 20% to 30% range

and could not mitigated by using counterpoise corrections. The small magnitude of the

BSIE can be confirmed by comparing the dispersion-uncorrected binding energies calcu-

lated with the light and tight basis sets using the same functional. For example, the mean

absolute difference between the light and tight binding energies obtained using B86bPBE

(without XDM) is 0.32 kcal/mol, with individual errors not exceeding 0.75 kcal/mol.

6.4 MOLECULAR BENCHMARKS

In order to build a method that works reliably for molecular crystals, it is imperative

to avoid error cancellation as much as possible. Therefore, it is interesting to exam-

ine whether individual interactions between monomer pairs are accurately represented.

For this reason, we first evaluate the performance of the new implementation of XDM

for selected molecular benchmarks comprising gas-phase dimers, and compare it to the

TS35 and MBD36,37 dispersion corrections also implemented in FHI-aims. We consider the

S22×576 and S66×877,368 benchmarks, which comprise non-covalent interaction energies

of small molecular dimers at and around their equilibrium geometries. It is worth noting

that the single damping parameter employed in MBD was fit to minimize the mean abso-

lute relative error in the S66×8 binding energies,37 although this parameter was only fit

for use with the tight setting (termed the “tier 2” basis set in Ref. 37) and, unlike the XDM

damping parameters, is not basis-set dependent. TS and MBD are paired only with the

PBE, HSE06, and PBE0 functionals for which damping parameters are available.

The S22×5 and S66×8 error statistics for the various combinations of functional, basis

set, and dispersion correction are shown in Table 6.2. As for the KB49 set, the average

errors are lower for the tight basis set and hybrid functionals slightly outperform GGAs,

regardless of the dispersion correction employed. The XDM values in the table are also

similar to those reported for the same benchmarks using a nearly complete Gaussian basis

set.10 While all basis set, functional, and dispersion method combinations perform gener-

ally well, B86bPBE-25-XDM consistently gives the lowest errors by a small margin, with

MAEs in the range of 0.2-0.4 kcal/mol.

Beyond-pairwise intermolecular interactions are also important in molecular crystals,
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Table 6.2: Mean absolute errors (in kcal/mol) for the S22×5,76 S66×8,77 and 3B-
6978 molecular benchmarks using selected functionals and dispersion corrections.
The best overall results in each column are indicated in bold.

Functional
Dispersion S22×5 S66×8 3B-69
Correction Light Tight Light Tight Light Tight

PBE TS 0.57 0.39 0.60 0.38 0.078 0.080
HSE06 TS 0.63 0.45 0.64 0.38 0.046 0.042
PBE0 TS 0.58 0.42 0.59 0.33 0.044 0.039
PBE MBD 0.55 0.44 0.44 0.28 0.113 0.113
HSE06 MBD 0.53 0.48 0.45 0.29 0.069 0.066
PBE0 MBD 0.50 0.46 0.40 0.26 0.060 0.055
PBE XDM 0.58 0.44 0.45 0.29 0.101 0.099
B86bPBE XDM 0.46 0.34 0.35 0.20 0.050 0.052
HSE06 XDM 0.52 0.45 0.41 0.28 0.054 0.055
PBE0 XDM 0.49 0.43 0.38 0.25 0.044 0.045
PBE-50 XDM 0.47 0.47 0.37 0.28 0.047 0.030
B86bPBE-25 XDM 0.39 0.35 0.30 0.19 0.037 0.040
B86bPBE-50 XDM 0.40 0.41 0.32 0.24 0.055 0.051

since they represent a small but significant fraction of the total lattice energy.299,373 For

this reason, we consider as an additional benchmark the 3B-69 set of molecular trimers.78

In this case, the reference data corresponds to the difference between the trimer binding

energy and the pairwise sum of the constituent dimer binding energies. This is a good

measure of whether the considered methods can describe non-additive many-body inter-

molecular interactions21 and, as such, highlight their performance in the treatment of

beyond-pairwise effects. Table 6.2 shows that BSIE has less impact on the three-body en-

ergies than it does for the pairwise binding energies, with the light and tight MAEs being

approximately the same.

MBD might be expected to be the most accurate dispersion correction for the 3B-69

benchmark due to the many-body nature of the interactions. However, we observe that

all three dispersion methods provide roughly comparable performance, with XDM being

slightly superior to MBD for the same functional and basis set combination. Instead, it

is the choice of base functional that is the determining factor, with PBE consistently giv-

ing the largest errors, while use of either B86b or HF exchange improves performance in

the treatment of three-body interactions. This confirms our previous observation that the

choice of base functional is critical for accurate treatment of beyond-pairwise non-covalent

interactions.374 Overall, XDM paired with either the B86bPBE-25 or PBE-50 hybrid func-

tionals (depending on basis set) gives the lowest MAE. The fact that XDM (which does not
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incorporate a three-body dispersion contribution) outperforms MBD (which does) for the

description of three-body intermolecular interactions suggests that electronic many-body

effects are much more important than the atomic many-body dispersion effects encapsu-

lated by the Axilrod-Teller-Muto term.21

6.5 X23 LATTICE ENERGIES

The lattice energy of a molecular crystal is the energy required to separate the crystal at

its equilibrium geometry into its component molecules. Lattice energies are key quantities

in CSP,299,361 and they are an essential parameter when assessing the accuracy of compu-

tational methods for modeling molecular crystals because their value is determined by a

delicate balance between intermolecular and intramolecular interactions.299 The accurate

calculation of lattice energies is also a stricter performance test for computational meth-

ods than energy differences between molecular crystal pairs because the benefits from

error cancellation are minimized, while longer-range interactions and many-body effects

become far more important.

Reference lattice energies for molecular crystals are typically derived from experimental

sublimation enthalpies375 using a back-correction for vibrational effects.80,131,326,329,330,362

The X23,79,80 which comprises 23 reference lattice energies, has become the standard

benchmark and DFT methods have been extensively tested using this set.80,131,329,376,377

Here, we use the most recent re-determination of the X23 reference data362 to assess the

performance of the various functionals and dispersion corrections examined in this work.

The error statistics are shown in Table 6.3.

The table is separated into two sections, with the upper part showing results obtained

with full geometry optimization of the molecular crystals at each listed level of theory. As

noted in the computational methods section, we were only able to perform calculations

using the tight basis set for GGA functionals due to the high memory requirements for

hybrids. However, literature results37 for PBE0-TS and PBE0-MBD with tight settings

(which used the earlier X23 reference data80) are provided as these combinations give the

lowest MAEs obtained with each of these dispersion corrections. We note that updating

the reference data causes the MAEs to change by at most 0.25 kcal/mol, although often

the deviation is lower.

As observed previously,37,79 TS massively overbinds these molecular crystals. With TS

and MBD, there is a significant difference between the light and tight results, which occurs

because the damping parameters within these dispersion corrections are not optimized
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Table 6.3: Mean absolute errors (in kcal/mol) for the X23 solid-state benchmark
with selected functionals, dispersion corrections, and basis sets.

Functional Dispersion Light Tight
Full Geometry Relaxation

PBE TS 4.17 3.14
HSE06 TS 4.57 —
PBE0 TS 4.44 2.39a

PBE MBD 1.61 0.94
HSE06 MBD 2.12 —
PBE0 MBD 1.98 0.84a

PBE XDM 1.14 1.04
HSE06 XDM 1.20 —
PBE0 XDM 1.14 —
PBE50 XDM 1.25 —
B86bPBE XDM 0.83 0.72
B86bPBE-25 XDM 0.81 —
B86bPBE-50 XDM 1.06 —

Single Points at GGA/Light Geometries
PBE0//PBE MBD 1.97 1.07b

PBE0//PBE XDM 1.01 0.96b

PBE-50//PBE XDM 1.00 0.87b

B86bPBE-25//B86bPBE XDM 0.66 0.48b

B86bPBE-50//B86bPBE XDM 0.70 0.53b

aLiterature value obtained from Ref. 37. bThe hybrid energies with the light
settings are corrected using the difference between light and tight results at the

GGA level (via Eq. 6.6).

for each basis set independently. As a result, XDM significantly outperforms MBD with

the light basis set, although the two methods give comparable MAEs with the tight basis.

Also, the PBE-XDM and B86bPBE-XDM MAEs with light are in excellent agreement with

previous results obtained using the Quantum ESPRESSO plane-wave code.348

B86bPBE-XDM with the tight basis set yields the lowest MAE (0.72 kcal/mol) yet ob-

tained for the X23 set with any dispersion-corrected GGA, although this is largely due

to the improvement in the reference data (the MAE compared to the values in Ref. 80 is

0.90 kcal/mol). For comparison, the MAE for PBE0-MBD in Table 6.3 is 0.84 kcal/mol and

the lowest MAE reported by Thomas et al.378 for the X23 is 0.81 kcal/mol, obtained with

the TPSS-D3 dispersion-corrected meta-GGA. (The D3 dispersion correction by Grimme

et al. is not available in FHIaims, so a direct comparison was not possible.) Regarding

the dispersion-corrected hybrid functionals, the best results are obtained with B86bPBE-

25/light (0.81 kcal/mol with either the Dolgonos et al.362 or the older Reilly et al.80
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reference data) followed by PBE0-MBD/tight (0.84 kcal/mol), with the former being con-

siderably more efficient. For comparison, Thomas et al.378 report MAEs of 0.93 kcal/mol

for PBE0-MBD at the PBE-TS optimized geometries and 1.03 kcal/mol for PBE0-D3.

Computational efficiency is an important consideration in CSP, where hundreds to thou-

sands of candidate crystal structures must be ranked with DFT for a given compound.

Composite approaches, in which a relatively low level of theory is used for geometry op-

timization, followed by single-point energy evaluation at a higher level of theory, are an

excellent strategy to reduce the computational cost without losing accuracy.337,379 In this

work, we consider composite approaches that use dispersion-corrected GGA functionals

(PBE-MBD, PBE-XDM, or B86bPBE-XDM) and the light basis set for geometry optimiza-

tion. Single-point energies are then evaluated with the corresponding 25% or 50% hybrid

functionals and the light basis set and, in some cases, also with the same GGA and the

tight basis set. This allows us to obtain energies (via Eq. 6.6) with an accuracy compara-

ble to what would be expected from full hybrid/tight calculations, but with a drastically

reduced computational cost. MAEs in the X23 lattice energies obtained using this type of

composite approach are shown in the lower portion of Table 6.3. The notation in the table

is high-level (hybrid)//low-level (GGA).

The MAEs obtained with the composite approach using B86bPBE-25-XDM and B86bPBE-

50-XDM are the lowest errors yet obtained for the X23 set with any DFT method. The

composite B86bPBE-25-XDM//B86bPBE-XDM approach with basis-set correction gives an

MAE of only 0.48 kcal/mol, well below the usual target of 1 kcal/mol deemed to be chem-

ical accuracy and almost exactly on the 2 kJ/mol mark commonly cited as the average

energy difference between polymorphs.380 It is also reassuring that the average error for

molecular crystals is similar to that for dimers formed from molecules with similar sizes

(Table 6.2), for which the MAEs were in the 0.2 kcal/mol to 0.4 kcal/mol range.

While good performance for absolute lattice energies is highly desirable, it does not nec-

essarily ensure reliable polymorph ranking, which is dependent on accurate lattice-energy

differences (as well as thermal and kinetic factors). The performance of the proposed

methods for relative lattice energies will be examined in detail elsewhere. Nonetheless,

improvements in absolute lattice energies do tend to result in more accurate relative lat-

tice energies, as seen for the two oxalic acid polymorphs (α and β forms) appearing in

the X23 set. The choice of dispersion correction has only a minor effect on this energy dif-

ference, although the polymorph ordering is highly dependent on exact-exchange mixing
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in the base functional. As shown in Figure 6.1, the GGAs predict the incorrect energy or-

dering and relatively large fractions of exact exchange (near 50%) are needed to recover

the reference lattice-energy difference. This suggests that delocalization error is a factor

in determining the most stable oxalic acid polymorph, with the β form likely favored by

GGAs due to its dimeric hydrogen-bonding.

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.1  0.2  0.3  0.4  0.5

R
el

at
iv

e 
E

n
er

g
y
 (

k
ca

l/
m

o
l)

Exact exchange fraction, aX

PBE−XDM

B86bPBE−XDM

Reference

Figure 6.1: Relative energies of the α and β polymorphs of oxalic acid computed
with various XDM-corrected GGA and hybrid functionals with the light basis set,
evaluated at the corresponding GGA geometries. The α form is the most stable
experimentally.

6.6 ICE LATTICE ENERGIES

Lastly, we examine the calculation of the lattice energies for the various phases of ice. The

study of intermolecular interactions in water is both very important, because of its central

role in many disciplines, and very challenging computationally, as electrostatics, induction,

and dispersion all play a role. In general, it is agreed that the dispersion contribution,

albeit smaller than in other non-covalently bound systems, is still necessary to describe

water-water interactions accurately.81,363 There are also significant many-body effects in

water arising from intermolecular electron delocalization364 that lead to delocalization

error. As a result, a functional that describes the properties of water and ice accurately is

still missing.81,364
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Table 6.4: Mean absolute errors (in kcal/mol) for the ICE13 ice phases benchmark
with selected functionals, dispersion corrections, and basis sets.

Functional
Dispersion Absolute Relative
Correction Light Tight Light Tight

Full Geometry Relaxation
PBE TS 3.69 2.18 0.56 0.51
HSE06 TS 2.68 — 0.40 —
PBE0 TS 2.38 — 0.37 —
PBE MBD 3.70 2.19 0.66 0.60
HSE06 MBD 2.68 — 0.40 —
PBE0 MBD 2.38 — 0.37 —
PBE XDM 2.79 1.71 0.91 0.73
HSE06 XDM 1.60 — 0.72 —
PBE0 XDM 1.35 — 0.65 —
PBE50 XDM 0.79 — 0.46 —
B86bPBE XDM 2.69 1.78 0.67 0.45
B86bPBE-25 XDM 1.16 — 0.53 —
B86bPBE-50 XDM 0.55 — 0.42 —

Single Points at GGA/Light Geometries
PBE0//PBE MBD 2.13 0.61a 0.34 0.29a

PBE0//PBE XDM 1.11 0.30a 0.61 0.43a

PBE-50//PBE XDM 0.25 1.16a 0.35 0.21a

B86bPBE-25//B86bPBE XDM 0.93 0.19a 0.49 0.28a

B86bPBE-50//B86bPBE XDM 0.32 1.20a 0.31 0.19a

aThe hybrid energies with the light settings are corrected using the difference
between light and tight results at the GGA level (via Eq. 6.6).

A strict test of density functionals and dispersion corrections for water is calculation

of the absolute lattice energies of the various (ordered) ice phases. Different ice phases

vary in molecular arrangements and in the extent of electron delocalization, which has

been shown to correlate with the absolute lattice energy.381 In a recent work, Della Pia et

al.81 reported absolute lattice energies of 13 ordered ice phases calculated using Diffusion

Monte Carlo (DMC), and subsequently benchmarked a number of functionals using a

plane-wave approach. Relative to the X23, this set has the advantage that no vibrational

or nuclear quantum effects need to be removed before comparing to DFT results. We now

use this ICE13 set, which is a superset of the previous ICE10 set proposed by Brandenburg

et al.,363 to evaluate the performance of our XDM-corrected methods.

Table 6.4 shows the MAEs calculated for the absolute and relative lattice energies of the

ICE13 set with respect to the DMC data. The MAE of the relative energies is calculated by

considering all 78 pairs of crystals in the ICE13 set, to avoid singling out any particular
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ice phase. As in the case of the X23, the MAEs with the tight basis set are lower (in most

cases) than with light, both for the absolute and for the relative lattice energies. XDM

outperforms TS and MBD for absolute lattice energies by around 0.4–0.5 kcal/mol, but

gives higher errors by a few tenths of a kcal/mol for the relative lattice energies. The

average errors from the GGA functionals are quite high, in the vicinity of 2 kcal/mol for

the absolute lattice energies and ca. 0.5 kcal/mol or more for the relative lattice energies.

Hybrids give improved results, providing another indication that the cooperative hydrogen

bonding networks in ice exhibit considerable delocalization error.

While we could not run the hybrid calculations with the tight basis set, the light results

indicate that 25% hybrid functionals reduce the MAE, and 50% hybrids reduce it even fur-

ther. However, the statistics for the composite methods in Table 6.4 allow us to understand

the effects of BSIE and the incorporation of exact exchange separately, and reveal that this

may be ascribed to error cancellation. While the results with the 25% hybrids improve

when the basis-set correction of Eq. 6.6 is added, the 50% hybrid functionals perform bet-

ter with the light basis set and no BSIE correction. This suggests that, when half-and-half

functionals are used for water, there is error cancellation between delocalization error and

BSIE.

As for the X23, the best-performing method for ice is found to be the composite ap-

proach using B86bPBE-25-XDM with the additive BSIE correction, which yields MAEs of

0.19 kcal/mol and 0.28 kcal/mol for the absolute and relative lattice energies, respec-

tively. This absolute lattice-energy error is lower than the MAEs of all functionals studied

by Della Pia et al.81, and the relative-energy error is also among the best. For comparison,

the best-performing functional reported81 for absolute lattice energies is the revPBE-D3

GGA, with a MAE of 0.22 kcal/mol, and the best functionals in each of the other classes are

rSCAN (meta-GGA, 0.23 kcal/mol), vdw-DF2 (non-local, 0.32 kcal/mol), and revPBE0-D3

(hybrid, 0.39 kcal/mol). Naturally, all these functionals are well within the “good func-

tional” category established by the authors (MAEs < 0.96 kcal/mol and < 0.48 kcal/mol

for absolute and relative lattice energies, respectively).

6.7 CONCLUSIONS

The calculation of lattice energies, the energy required to separate a molecular crystal

into its component molecules, is of fundamental importance and a particularly stringent

test for computational methods. The plane-wave implementation of exchange-hole dipole
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moment (XDM) dispersion model, in particular in combination with the B86bPBE func-

tional, has been shown to give excellent results for the calculation of absolute and relative

lattice energies. This makes it a good choice for the final energy ranking in molecular

crystal structure prediction (CSP). However, the reliance on plane waves imposes a poor

computational scaling with system size and limits the applicability of XDM to semilocal

functionals, which results in poor performance for systems with high conformational flex-

ibility or significant delocalization error. In this work, we presented the implementation

of XDM with numerical atomic orbitals (NAO) in the FHIaims package. This makes our

methods effectively linear scaling and enables efficient combination of XDM with hybrid

functionals without significant basis-set incompleteness errors, thus mitigating the afore-

mentioned problems.

To test the accuracy of the new XDM-corrected hybrid functionals, we assessed their

performance for binding energies of molecular gas-phase dimers and trimers, as well

as lattice energies of small molecular crystals (the X23 set) and 13 phases of ice (the

ICE13 set). The results were compared to the Tkachenko-Scheffler (TS) and state-of-the-

art many-body dispersion (MBD@rsSCS) methods. For molecular dimers, XDM-corrected

functionals achieve a mean average error (MAE) of between 0.2 and 0.4 kcal/mol, slightly

outperforming TS and MBD. More importantly, XDM-corrected functionals also show ex-

cellent performance for three-body interaction energies (the 3B-69 set), suggesting that

electronic many-body effects are much more important than atomic many-body dispersion

effects, which are not included in the canonical XDM methods.

The XDM-corrected methods also yield very low average errors for the X23 set of lattice

energies, particularly if hybrid methods or relatively large (“tight”) basis sets are used. The

most intriguing result is the spectacular performance of composite methods, in which a

GGA geometry optimization (e.g. B86bPBE-XDM) is followed by a single-point energy cal-

culation to incorporate the benefits of using a hybrid functional (e.g. B86bPBE-25-XDM),

and perhaps an additional single-point correction to treat basis-set incompleteness error

(the difference between tight and light energies at the GGA level). The best-performing

composite method (B86bPBE-25-XDM with basis-set correction, at the B86bPBE-XDM

equilibrium geometries) achieves a MAE of only 0.48 kcal/mol for the X23 set, roughly

half the error of other similar DFT methods.

The excellent performance of the basis-corrected B86bPBE-25-XDM//B86bPBE-XDM

composite method extends to the calculation of the absolute lattice energies of 13 ice
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phases, for which it achieves an MAE of only 0.19 kcal/mol, outperforming all DFT func-

tionals reported to date. The calculation of absolute lattice energies of ice is particularly

difficult due to the presence of delocalization error and the delicate balance between elec-

trostatics, dispersion, and induction. It is a key point that one single methodology works

well for molecular dimers and trimers, and achieves the lowest MAE for both the X23 and

ICE13 lattice energies. Obtaining good across-the-board performance in all tests exam-

ined is of paramount importance when modeling complex materials that feature several

disparate types of non-covalent interactions. This makes us confident that the proposed

XDM-corrected methods will serve nicely for accurate energy ranking in crystal structure

prediction.
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CHAPTER 7

ACCURATE AND EFFICIENT POLYMORPH

ENERGY RANKING WITH

XDM-CORRECTED HYBRID DFT

This chapter is adapted from: A. J. A. Price, R. A. Mayo, A. Otero de la Roza, and E. R.

Johnson, “Accurate and efficient polymorph energy ranking with XDM-corrected hybrid

DFT" CrystEngComm, 25, 953-960 (2023).

7.1 INTRODUCTION

Molecular crystals are of central importance as pharmaceuticals,300–302 energetic materi-

als,305,306 and in the emerging field of organic electronics.309,310 Due to the sensitivity

of solid-state properties such as solubility and charge transport on crystal packing, it is

important to identify all likely polymorphs when developing compounds for these applica-

tions.311,315–319 The problem of theoretical identification of isolable polymorphs is termed

first-principles crystal structure prediction (CSP).

Periodically, the Cambridge Crystallographic Data Centre (CCDC) organises blind tests

of CSP methods in which crystal structures of small sets of compounds are determined by

X-ray diffraction, but are not released to the community until researchers have attempted

to predict the structure(s) of the isolated polymorph(s).82–87 There are two challenges

at the core of CSP – that of exhaustive structure generation and that of accurate energy

ranking of the resulting structure candidates. Ideally, the experimentally observed poly-

morph(s) should be among the most energetically stable of the putative crystal structures.
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Figure 7.1: Structures of the compounds provided by the CCDC for
the first 6 CSP blind tests. Rectangles are used for molecule group-
ing in co-crystals. I: 3-oxabicyclo[3.2.0]hepta-1,4-diene, II: 4-hydroxy-2-
thiophenecarbonitrile, III: 2-(2-phenylethenyl)-1,3,2-benzodioxaborole, IV:
3-azabicyclo[3.3.1]nonane-2,4-dione, V: 7-endo-(bromocamphorylsulfonyl)imine,
VI: 6-amino-2-phenylsulfonylimino-1,2-dihydropyridine, VII: propane, VIII:
hydantoin, IX: 2,9-diiodoanthanthrone, X: 2-acetamido-4,5,-dinitrotoluene,
XI: azetidine, XII: 2-propenal, XIII: 1,3-dibromo-2-chloro-5-fluorobenzene,
XIV: N-(dimethylthiocarbamoyl)benzothiazole-2-thione, XV: 2-amino-4-
methylpyrimidine:2-methylbenzoic acid, XVI: 2-diazo-3,5-cyclohexadiene-2-one,
XVII: 1,2-dichloro4,5-dinitrobenzene, XVIII: (1-((4-chlorophenyl)sulfonyl)-2-
oxopropylidene)diazenium, XIX: 1,8-naphthyridinium fumarate, XX: benzyl-
(4-(4-methyl-5-(p-tolyl-sulfonyl)-1,3-thiazol-2-yl)phenyl)carbamate, XXI: gallic
acid monohydrate, XXII: tricyano1,4-dithiino[c]-isothiazole, XXIII: 2-((4-(3,4-
dicholorophenethyl)phenyl)amino)benzoic acid, XXIV: chloride salt hydrate
of (Z)-3-((diaminomethyl)thio)acrylic acid, XXV: 2,8-dimethyl-6H,12H-5,11-
methanodibenzo[b,f][1,5]diazocine:3,5-dinitrobenzoic acid, XXVI: N,N’-([1,1’-
Binaphthalene]-2,2’-diyl)bis(2-cholorobenzamide).
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The focus of the present work is on the energy ranking step of CSP, where computa-

tional methods that provide well-balanced descriptions of electrostatics, charge transfer,

polarization, non-bonded repulsion, and London dispersion are required. The advent

of dispersion corrections has opened the door for the use of periodic-boundary density-

functional theory (DFT) for CSP, as illustrated by Neumann and coworkers320–323 in the

5th CSP blind test86 and further demonstrated in many subsequent studies.311,314,332–344

As dispersion-corrected DFT outperforms alternative energy-ranking methods for CSP, it

is essential to have a DFT-based dispersion method that is as accurate and efficient as

possible for molecular crystals.

Many successful applications of DFT to molecular crystals have used planewave ba-

sis sets and the projector augmented-wave method.311,320–323,332,334–336,347,382 However,

such an approach has two key limitations. The first is that planewave methods have

unfavourable computational scaling for large unit cells. This drastically limits their ap-

plicability to CSP since many polymorphs of fairly complex active pharmaceutical com-

pounds, and other materials of interest, can contain many molecules per unit cell. The

second is that planewave calculations are limited to generalized gradient approximation

(GGA) methods and do not allow routine use of hybrid density functionals. This is im-

portant due to delocalization error,204,231,349 which is prevalent in GGAs. Delocalization

error can affect polymorph ranking for flexible molecules where there is a competition

between intramolecular conjugation and intermolecular interactions,336,350,351 as well as

for organic salts335 and acid-base co-crystal systems.247 Hybrid functionals typically pro-

vide better performance than GGAs for non-covalent interactions in finite molecular sys-

tems,75,349,355–357 particularly in cases with significant delocalization error, and we see

similar improvement for solids based on lattice energies of small-molecule crystals.245,383

To avoid the limitations of planewave basis sets, we turn to numerical atom-centered

orbitals (NAOs). NAOs of finite extent are a highly promising alternative since they allow

elimination of integrals involving distant atomic centers in DFT calculations, resulting in

formal linear scaling for large systems.65 In particular, the Fritz Haber Institute ab initio

materials simulation (FHI-aims) package64,68,353 is a very robust NAO code that, thanks

to its design, has minimal basis-set incompleteness. Implementation in FHI-aims has al-

lowed application of the many-body dispersion (MBD) method,36,37 paired with hybrid

DFT, to molecular crystal benchmarks and CSP studies.338,340–344 Moreover, we recently

implemented our exchange-hole dipole moment (XDM) dispersion model in FHI-aims and

showed that, when paired with selected hybrid functionals, it provides unprecedented
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accuracy for evaluation of molecular-crystal lattice energies.383

In this article we assess the performance of XDM paired with hybrid functionals and

the light NAO basis set for the energy ranking step of CSP. Specifically, we consider the

26 compounds that formed the first 6 CSP blind tests, shown in Figure 7.1.82–87 Of the

submitted putative crystal structures, the experimental polymorph is consistently ranked

among the 10 most-stable unique candidates. Use of a hybrid functional with 50% exact-

exchange mixing is shown to significantly improve on GGA results for challenging crystal

energy landscapes where delocalization error in GGA functionals is known to adversely

impact the ranking.

7.2 THEORY AND COMPUTATIONAL METHODS

7.2.1 THE XDM DISPERSION CORRECTION

XDM10,63 is a post-self-consistent correction to the energy computed with some base den-

sity functional approximation (DFA):

E = EDFA + EXDM. (7.1)

The XDM dispersion energy itself is expressed as a sum over all pairs of atoms, i and j, in

the system

EXDM = −1

2

∑︂
n=6,8,10

∑︂
ij

Cn,ij

Rn
ij +Rn

vdW,ij

, (7.2)

where Rij is the internuclear distance. In a solid, the sum runs over all surrounding unit

cells. Here, C6, C8, and C10 are termed the atomic dispersion coefficients, which are func-

tions of the self-consistent electron density, its gradient and Laplacian, the kinetic-energy

density, and Hirshfeld partitioning weights. As a result of their density and derivative

dependence, the dispersion coefficients are highly responsive to changes in the chemical

environment of an atom due to charge transfer, coordination, hydrogen bonding, and even

weaker van der Waals interactions with distant atoms.21

The RvdW,ij in Eqn. 7.2 is the sum of effective van der Waals radii of atoms i and j,

which is defined using an average of three possible ratios of the dispersion coefficients

and involves two empirical fit parameters, a1 and a2:

RvdW,ij =
a1
3

[︄(︃
C8,ij

C6,ij

)︃ 1
2

+

(︃
C10,ij

C8,ij

)︃ 1
2

+

(︃
C10,ij

C6,ij

)︃ 1
4

]︄
+ a2. (7.3)
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The a1 and a2 parameters are fit once for each choice of density functional and basis

set by minimising the root-mean-square percent error in computed binding energies of

49 molecular dimers.75,131 After this, the parameters are kept fixed and are transferable

to all elements of the periodic table, as well as between finite (molecular) and periodic-

boundary (solid-state) calculations.383

7.2.2 EXCHANGE-CORRELATION FUNCTIONALS

All density-functional dispersion corrections must be paired with a base DFA. In this work,

we consider three DFA exchange-correlation functionals of the general form

EXC = (1− aX)E
B86b
X + aXE

HF
X + EPBE

C , (7.4)

which combine the B86b8 exchange functional with PBE9 correlation. B86b is our ex-

change functional of choice for molecular crystals due to its high accuracy for describ-

ing non-bonded repulsion.93,94,131,171,348 The parameter aX controls the extent of exact-

exchange mixing, and we will consider values of 0, 0.25, and 0.50, which correspond to

the B86bPBE GGA, and the B86bPBE-25X and B86bPBE-50X hybrid functionals, respec-

tively.245,383

7.2.3 COMPUTATIONAL METHODS

All calculations in this work were carried out with the FHI-aims program (version 210513).

The XDM method and the B86bPBE, B86bPBE-25X, and B86bPBE-50X functionals were all

implemented in a copy of the code,383 and these methods are now available in the distri-

bution version of the software. For compounds from the first to fifth blind tests (I to XXI),

the starting structures were the equilibrium B86bPBE-XDM structures obtained in our pre-

vious studies,335,336 which in turn were obtained from the Supplementary Information of

the corresponding blind test articles, including the reference experimental structures.82–86

For the sixth blind test compounds (XXII to XXVI), in addition to the top three structures

submitted by the various participant groups,87 we considered the 100 structures submit-

ted by Neumann’s group87 as well as the all structures in the POLY59 set compiled by

Brandenburg and Grimme.334 The numbers of candidate structures considered for each

compound is given in the ESI of Ref. 384. All atomic positions and lattice vectors in all

molecular crystals were fully optimised with B86bPBE-XDM. Subsequent single-point en-

ergy calculations were performed with the B86bPBE-25X and B86bPBE-50X hybrids, again

paired with XDM. While geometry optimizations are possible with the hybrid functionals,
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we do not expect this to lead to improved accuracy based on our previous work,383 so we

consider only GGA geometries to reduce the computational expense.

Calculations used the “light” (double-ζ) NAO basis sets for computational efficiency,

along with the dense integration grids (including Lebedev meshes up to 434 angular grid

points) that are used by default in conjunction with the tight settings. The k-point grids

were chosen to have dimensions n1 × n2 × n3 such that

ni = int [max (1, Rk|bi|+ 0.5)] , (7.5)

where |bi| is the magnitude of the corresponding reciprocal lattice vector and the length

parameter, Rk, was set to 50 Bohr. The XDM damping parameters were taken from Ref.

383 and are a1 = 0.8219, a2 = 1.2069 Å for B86bPBE, a1 = 0.5235, a2 = 2.1995 Å for

B86bPBE-25X, and a1 = 0.0831, a2 = 3.7362 Å for B86bPBE-50X.

7.3 RESULTS AND DISCUSSION

7.3.1 SUMMARY OF POLYMORPH RANKING

Results of the energy ranking of putative crystal structures for the 26 compounds con-

stituting the first 6 CSP blind tests are summarized in Table 7.1. The B86bPBE-XDM re-

sults are similar to those from previous planewave calculations performed with the same

methodology,335,336 confirming the minimal effects of basis-set incompleteness in these

NAO calculations. Overall, the GGA and B86bPBE-25X-XDM hybrid identify an exper-

imental polymorph as the minimum-energy structure in 17/26 cases, and this fraction

increases to 18/26 cases with the B86bPBE-50X-XDM hybrid functional.

Notably, with the 50% hybrid, an experimental polymorph is ranked second in another

6/26 cases. In 3 of these, the experimental form is nearly degenerate with the minimum-

energy candidate, while it lies 1.2 kJ/mol or less above the minimum otherwise. For

compound V, the experimental structure is ranked 4th in energy, but still lies within 1.5

kJ/mol of the minimum. These are all sufficiently small energy differences that thermal

free-energy contributions (which are generally <2 kJ/mol)385,386 may be sufficient to

reverse the ordering. However, evaluating the thermal corrections requires very computa-

tionally expensive phonon calculations, which is beyond the scope of the present work.

7.3.2 COMPOUND XX
All three functionals considered perform consistently poorly for the large, flexible com-

pound XX (benzyl-(4-(4-methyl-5-(p-tolyl-sulfonyl)-1,3-thiazol-2-yl)phenyl)carbamate) from
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Table 7.1: Ranking of the most stable experimental polymorph on crystal energy
landscapes computed with the B86bPBE-XDM (GGA), B86bPBE-25X-XDM (25X),
and B86bPBE-50X-XDM (50X) functionals. Also shown is the energy (∆E, in
kJ/mol) of that experimental polymorph relative to the most stable candidate
structure on each landscape.

Compound GGA 25X 50X
Rank ∆E Rank ∆E Rank ∆E

I 1a 0.0 1b 0.0 1b 0.0
II 4 1.1 2 0.7 2 0.5
III 1 0.0 1 0.0 1 0.0
IV 1 0.0 1 0.0 1 0.0
V 4 1.9 4 1.9 4 1.5
VI 1 0.0 1 0.0 1 0.0
VII 1 0.0 1 0.0 1 0.0
VIII 1 0.0 1 0.0 1 0.0
IX 1 0.0 1 0.0 1 0.0
X 2 0.9 2 0.4 1 0.0
XI 1 0.0 1 0.0 1 0.0
XII 1 0.0 1 0.0 1 0.0
XIII 1 0.0 1 0.0 1 0.0
XIV 1 0.0 1 0.0 1 0.0
XV 2 0.3 2 0.8 2 1.2
XVI 1 0.0 1 0.0 1 0.0
XVII 1 0.0 1 0.0 1 0.0
XVIII 1 0.0 1 0.0 1 0.0
XIX 6 4.3 4 2.2 2 0.1
XX 4 6.7 4 6.5 6 6.7
XXI 1 0.0 1 0.0 1 0.0
XXII 9 2.7 3 0.4 2 0.1
XXIII 3c 0.8 2c 0.0 2c 0.0
XXIV 8 2.0 3 0.7 2 0.4
XXV 1 0.0 1 0.0 1 0.0
XXVI 1 0.0 1 0.0 1 0.0

apolymorph 1, bpolymorph 2, cpolymorph c

the 5th blind test, the structure of which is shown in Figure 7.1. Here, the minimum-

energy structure is predicted to be more stable than the isolated experimental form by

6.5-6.7 kJ/mol.

One potential source of error for application of DFT to flexible molecules is the confor-

mational energy350,351 and examination of the structures shows that the DFA-predicted

minimum has a different molecular conformation than the experimental form. However,
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we expect conformational changes to be much better described by hybrid functionals than

with GGAs. Additionally, since the conjugated central portion of the molecule must remain

planar, the conformational differences primarily involve a 180◦ degree twist of the amide

group. This conformational change should be well described by DFT and not responsible

for a large energy reordering of the putative crystal structures.

An alternative explanation for the relatively high energy of the experimental structure

may be that the crystallisation is controlled by the rugosity.387 This refers to the rough-

ness of a cleaved crystal surface – crystals with a smooth cleavage plane should be more

likely to form than those with a rough surface. We examined the rugosity of the putative

crystal structures for compound XX using the CSD-Particle suite of tools within the Mer-

cury program388 (2022.2.0) and the resulting crystal rugosity-energy landscape is shown

in Figure 7.2. While the minimum-energy crystal structure is found to have a higher ru-

gosity than the experimental form, several other low-energy candidates also have lower

rugosities, so this does not reconcile theory and experiment.

−5

 0

 5

 10

 15

 20

 1.5  2  2.5

∆
E

 (
k
J
/m

o
l 
p

e
r 

m
o

le
c
u

le
)

Rugosity

GGA

 1.5  2  2.5

Rugosity

25X

 1.5  2  2.5

−5

 0

 5

 10

 15

 20

∆
E

 (
k
J
/m

o
l 
p

e
r 

m
o

le
c
u

le
)

Rugosity

50X

Figure 7.2: Computed crystal rugosity-energy landscapes for compound XX, using
the rugosity as the ordinate. Results are shown for full geometry relaxations using
B86bPBE-XDM (left), as well as single-point energy calculations with B86bPBE-
25X-XDM (middle) and B86bPBE-50X-XDM (right). The energy range is truncated
to focus on the low-energy candidates and the experimental form is circled.

A final potential source of error in the DFT ranking is the neglect of thermal free-energy

corrections. It is notable that the experimental crystal structure of compound XX was

successfully predicted by two participating groups389 in the 5th CSP blind test,86 both of

whom used the DMACRYS force field390 with an empirical exp-6 repulsion-dispersion term.

It is possible that the force field partly captures effects of thermal expansion on the crystal

structure through its empirical parameterization. The 4.4-6.7 kJ/mol energy differences

between the low-energy and experimental forms obtained with DFT are much larger than
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the contributions from thermal effects seen for small, rigid molecules (<2 kJ/mol).385,386

However, it would be expected that the magnitude of the thermal free-energy corrections

would increase with the number of rotatable bonds, leading to much larger contributions

for compound XX (and XXIII), relative to the other members of the blind test set. Indeed,

for compound XXIII, Hoja and Tkatchenko342 noted that inclusion of the vibrational free

energy correction could alter the relative stabilities by as much as 8.4 kJ/mol. Thus, one

potential reason that compound XX is an outlier for DFT is a much larger contribution

from thermal effects than what is seen for rigid molecules.

7.3.3 EFFECTS OF DELOCALIZATION ERROR ON LANDSCAPES

To highlight the improved performance of hybrid functionals based on B86bPBE-XDM over

the parent GGA for CSP, we focus on four challenging crystal energy landscapes. The first

two are for compounds X (2-acetamido-4,5-dinitrotoluene)84 and XIX (1,8-naphthyridinium

fumarate),86 where the delocalization error inherent in GGA functionals has been previ-

ously shown to adversely affect the predicted landscapes.335,336,350 This results in one or

more candidate structures being predicted to lie lower in energy than the known poly-

morph, as shown in Figure 7.3.

The crystal energy landscape of compound X has been extensively investigated by both

ourselves336 and by Beran and coworkers.350 Here, there are two competing low-energy

structures. The experimental form has the acetamide group twisted somewhat out of plane

to maximise intermolecular hydrogen bonding. Conversely, GGA functionals favour a com-

peting structure in which the acetamide group lies in plane to maximise conjugation. The

energy ordering can be corrected by evaluating the conformational energy change of the

isolated molecule using a correlated-wavefunction theory, such as MP2D.350 Conversely,

compound XIX is an organic salt with rigid molecular components. Salts are problematic

for GGA functionals, which are known to give large errors for polarization and charge

transfer.206,208,236,247,252,349 Here, GGA functionals favour the structure with the most co-

operative H-bonding network.335

The other two landscapes highlighted in Fig. 7.3 are for compounds XXII (tricyano-1,4-

dithiino[c]-isothiazole) and XXIV (chloride salt hydrate of (Z)-3-((diaminomethyl)thio)acrylic

acid) from the 6th CSP blind test.87 Like compound XIX, compound XXIV is also an organic

salt, so we again expect significant delocalization error. Examination of the minimum-

energy GGA structure shows an unusual arrangement in which the H atom of the carboxlic

acid moiety points away from the sp2 oxygen to form a hydrogen bond to the chloride (see

Fig. 7.4). It is likely that the strength of this ionic H-bond is overestimated by the GGA
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Figure 7.3: Computed crystal energy landscapes for compounds X, XIX, XXII, and
XXIV (top to bottom). Results are shown for full geometry relaxations using
B86bPBE-XDM (left), as well as single-point energy calculations with B86bPBE-
25X-XDM (middle) and B86bPBE-50X-XDM (right). The energy ranges are trun-
cated to focus on the low-energy candidates and the experimental forms are cir-
cled.
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Figure 7.4: The experimental (left) and the DFT-predicted minimum-energy
(right) crystal structures for compound XXIV, chloride salt hydrate of (Z)-3-
((diaminomethyl)thio)acrylic acid, viewed in the yz plane. C: grey, H: white, N:
blue, O: red, S: yellow, Cl: green.

functional. Finally, it is not immediately obvious how delocalization error would affect

the crystal energy landscape of compound XXII. Examination of the minimum-energy GGA

and experimental crystal structures reveals that, while the experimental structure has the

molecules stacked in dimers, the GGA minimum has all the molecules aligned along the c

axis (see Fig. 7.5). It is possible that this results in excessive polarization at the GGA level,

overestimating the electrostatic stabilization.

Hybrid functionals, particular those with near 50% exact-exchange mixing, are known

to reduce delocalization error. As such we expect B86bPBE-50-XDM to significantly im-

prove the crystal energy landscapes in cases where this error plays a role. The hybrid

results shown in Figure 7.3 confirm this to be the case. B86bPBE-50-XDM predicts the

experimental form of compound X to be lowest in energy. Moreover, it almost entirely cor-

rects the energy ranking for compound XXII and both organic salts, with the most-stable

candidate structures now nearly degenerate with the experimental forms.
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Figure 7.5: The experimental (left) and the DFT-predicted minimum-energy
(right) crystal structures for compound XXII, tricyano1,4-dithiino[c]-isothiazole,
viewed in the ac plane. C: grey, H: white, N: blue, S: yellow.

7.4 SUMMARY

In this work, we applied a recent NAO implementation of the XDM dispersion model to

rank the submitted structures for the first 6 CSP blind tests. Unlike planewave basis sets,

NAOs allow efficient use of hybrid DFT, so the B86bPBE GGA and two related hybrid func-

tionals with 25% and 50% exact exchange mixing were considered. Pairing XDM with the

B86bPBE-50X hybrid was found to rank an isolated experimental polymorph as the most

stable structure for 18/26 compounds considered, and as the second most-stable structure

for another 6/26. In 7 cases, the DFT minimum and the experimental form were separated

by 1.5 kJ/mol or less, meaning that thermal free-energy corrections from the phonons may

be sufficient to reverse the ranking. The only clear failure of hybrid DFT occurred for com-

pound XX, where the experimental structure lies 6.7 kJ/mol above the DFT minimum,

where the larger number of rotatable bonds may magnify the importance of thermal ef-

fects. Finally, B86bPBE-50X-XDM was found to provide excellent performance for several

challenging crystal energy landscapes where GGA calculations suffer from delocalization

error. This includes both cases where the error affects intramolecular conformational

energies, and intermolecular charge transfer, making it a more general approach than

monomer energy corrections. Overall, the FHI-aims implementation of XDM-corrected

hybrid functionals provides an unprecedented combination of accuracy and efficiency for

DFT-based modelling of molecular crystals that should facilitate high-throughput use of

first-principles CSP.
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CHAPTER 8

ASSESSMENT OF XDM-CORRECTED

DENSITY FUNCTIONALS FOR THE

ENERGY RANKING STAGE OF THE 7TH

CSP BLIND TEST

8.1 INTRODUCTION

First-principles molecular crystal structure prediction (CSP) is a grand challenge in the

field of computational chemistry and is fruitful ground for ongoing method development.

To assess the performance of various methods for both the structure generation and en-

ergy ranking stages of CSP, the Cambridge Crystallographic Data Centre (CCDC) regularly

holds blind test competitions. Solved but unpublished crystals structures for a small set of

compounds are held in reserve by the CCDC and participants have a set period of time to

submit predicted crystal structures given only the compounds’ chemical diagrams. There

have been 6 previous blind tests to date,82–87 with the 7th held from 2020-2022 and the

results as yet unpublished. This most recent blind test was separated into two phases,

with the first focusing on structure generation and the second on energy ranking. In the

second phase, lists of either 100 or 500 putative crystal structures were provided by the

CCDC for each of 5 compounds, the chemical diagrams of which are shown in Figure 8.1.

In 5th86 and 6th87 blind tests, dispersion-corrected density-functional theory (DFT)

was shown to provide large improvements in energy ranking of candidate crystal struc-

tures compared to classical force-field methods. While the Neumann group was the first

to use DFT in the 5th blind test with their own empirical dispersion correction, the more
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Figure 8.1: The 5 compounds considered for the energy-ranking phase of the 7th
CSP blind test.

popular D331,32 and MBD36,37 dispersion corrections were used in submissions to the fol-

lowing competition. Quite recently, we additionally assessed the performance of our XDM

dispersion correction10,383 for the compounds appearing in all six previous blind tests.384

While delocalization error has been shown to adversely affect the energy ranking pro-

vided with generalized gradient approximation (GGA) functionals for some compounds,

XDM-corrected hybrid functionals yielded improved performance.384

The present work reports on the performance of several XDM-corrected density func-

tionals for the energy ranking phase of the 7th CSP blind test. Overall, our methodology

was able to rank the most stable experimentally isolated polymorph as the lowest in en-

ergy for two of the five compounds considered (XXVIII and XXXIII), and second lowest for
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one additional compound (XXVII). The additional two cases (XXXI and XXXII) are large or-

ganic molecules involving a number of rotatable bonds, for which the isolated polymorphs

were ranked surprisingly high energetically.

8.2 COMPUTATIONAL METHODS

The CCDC provided lists of candidate structures to each of the participating teams,391

including the atomic positions and unit-cell dimensions, in .cif format. The numbers of

candidates provided were 100 each for compounds XXVII and XXXI and 500 each for

compounds XXVIII, XXXII, and XXXIII. These lists were selected to include at least one

structure representative of each polymorph identified from single-crystal x-ray diffraction

(XRD).

All calculations used an in-house modified version of FHI-aims64 version 210513. Ge-

ometry optimisations of all provided candidate crystal structures were performed using

the B86bPBE functional8,9 with the XDM dispersion correction,383 the “light” basis set,

and a “dense” integration grid, with a relaxation convergence threshold of 0.025 eV/Å.

For all structures within 1.5 kcal/mol per molecule of the minimum, further geometry op-

timisation was performed with a tighter relaxation threshold of 0.005 eV/Å. Subsequent

single-point energy calculations were then performed on all optimised structures using ei-

ther the hybrid B86bPBE-25X or B86bPBE-50X functionals with XDM dispersion, with the

damping function parameters matching those reported in Ref. 383. For compound XXVIII,

all calculations were run for a ferromagnetic configuration with one unpaired electron per

copper atom.

For the blind test submission, we selected results from the B86bPBE-25X functional

for compounds XXVII and XXVIII, and results from B86bPBE-50X for the remaining three

compounds, as we expected them to be potentially more susceptible to delocalization

error. In particular, we thought this error might affect the relative conformational energies

for the flexible molecules, and delocalization error was previously found to lead to poor

energy ranking for an organic salt (compound XIX in the 5th blind test).384

8.3 RESULTS AND DISCUSSION

At the conclusion of the blind test, the CCDC shared the experimental crystal structures

and the identities of the matching structures within the lists of candidates provided.391
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This allowed us to assess the quality of our predicted crystal energy landscapes. A sum-

mary of our computational results is presented in Table 8.1, which shows the ranking of

the experimental polymorphs obtained with each functional considered, as well as their

relative energies above the minimum on each landscape.

Table 8.1: Summary of computational results for the 7th CSP blind test. For each
compound, we show the energetic rank of all isolated polymorphs and their rela-
tive energies (∆E in kJ/mol per formula unit) above the minimum on the corre-
sponding crystal energy landscape for each of the three density functionals consid-
ered. LT: low temperature; Maj and Min indicate the major and minor components
of a disordered structure.

Compound Form
GGA 25X 50X

Rank ∆E Rank ∆E Rank ∆E
XXVII LT 2 1.9 2 1.5 2 1.3
XXVIII – 1 0.0 1 0.0 1 0.0

XXXI

AMaj 4 1.5 7 2.8 8 4.3
AMin 10 3.0 10 4.3 12 5.6
B 14 4.6 16 5.6 18 6.2
C 76 10.7 69 11.6 61 12.2

XXXII
AMaj 25 7.2 26 9.2 32 11.6
B 29 7.7 34 9.7 37 12.2

XXXIII
A 6 4.5 5 4.5 5 5.3
B 1 0.0 1 0.0 1 0.0

We begin with discussion of compounds XXVII, XXVIII, and XXXIII, for which the pre-

dicted landscapes are shown in Figure 8.2. For compound XXVII, there was some ambi-

guity in determining the conformations of the isopropyl groups in the experimental struc-

ture due to their ability to rotate freely at room temperature. As a result, two candidates

within the provided list of 100 structures corresponded to the same polymorph as the

low-temperature experimental form. Upon geometry optimisation, both these candidates

converged to an identical structure, yielding equal energies within the convergence cri-

teria of the optimisation. This candidate is the 2nd-ranked structure on our landscape,

independent of functional. It also lies < 2 kJ/mol above the minimum and it is likely that

thermal-free energy corrections could alter the ordering, particularly since there could be

considerable entropy differences between polymorphs depending on the mobilities of the

isopropyl groups. For compound XXVIII, a single polymorph was identified experimen-

tally. Here, all there functionals performed extremely well and each predicted the match

to the experimental structure to be the minimum energy form. For compound XXXIII, two

polymorphs were identified experimentally, with form B being the more stable.391 While
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Figure 8.2: Computed crystal energy landscapes for compounds XXVII, XXVIII,
and XXXIII from the 7th CSP blind test, where DFT performs well. The blue circles
indicate the structure that is the best match to the experimental polymorph. For
compound XXXIII, a second, less-stable polymorph (form A) was isolated and that
structure is indicated by the green circles.

we had expected that delocalization error may significantly affect the crystal energy land-

scapes for this compound, similar to compound XIX from the 5th blind test,384 we instead

found that all three functionals considered again consistently predicted form B to be the

lowest-energy structure on each landscape. Form A was either the 5th or 6th ranked

structure, depending on functional, lying ca. 5 kJ/mol in energy above form B. Thus, our

XDM-corrected functionals all performed well, consistently generating reasonable crystal

energy landscapes for these three compounds.
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The good performance seen so far can be contrasted with the results for the flexible

molecules, compounds XXXI and XXXII. The computed crystal energy landscapes for these

two compounds are shown in Figure 8.3. As both problematic compounds contain fluorine,

it is possible that the light basis set used here is not able to provide a sufficiently accurate

description of fluorine and the effect of using the tight basis set for this element should be

investigated in future work.

For compound XXXI, three polymorphs were found experimentally. Of these, form B

was found to be the most stable, while form A was found to be disordered with major

and minor components and was the next most stable. Finally, a less stable and very low-

density form C was identified, possessing large crystal voids and was likely formed from

solvent evaporation from a solvate. As expected, form C was found to be a very high

energy structure, ranked 61-76 on the computed crystal energy landscapes and similar

results have been seen for analogous low-density structures obtained from solvates.392,393

It is notable that our DFT calculations reversed the energy ordering of the other two

experimental forms, predicting both major and minor components of form A to be more

stable than form B. Additionally, form B and both the major and minor components of

form A are all surprisingly high energy structures for isolable polymorphs, lying 1-6 kJ/mol

above the DFT-predicted minimum, depending on functional. The specific energy rankings

of each experimental form, with each functional, are summarised in Table 8.1. The GGA

was found to give the best energy ordering for compound XXXI, providing lower rankings

for forms A and B than seen with the hybrid functionals.

The high relative energies obtained for the experimental polymorphs for compound

XXXI are reminiscent of what was seen previously for compound XX in the 6th blind

test.384 Since compound XXXI is a flexible molecule with three rotatable bonds, it is possi-

ble that the thermal free energy corrections are significantly larger342 than the 0-2 kJ/mol

typically seen for small, rigid molecules,380,385,386 and are sufficient to alter the ranking.

However, it should be noted that the individual molecules in Form B, the major component

of Form A, and the predicted minimum-energy structures all have the same conformation,

making this possibility less likely. For form A, the additional entropy contribution from

the disorder arising from the major and minor components may also provide significant

stability, although this does not explain the greater stability of form B seen experimentally.

It is also possible that rugosity387 or other kinetic effects may explain why the DFT pre-

dicted minimum-energy structure was not observed experimentally and perhaps it could

be isolated under different crystallisation conditions.

104



 0

 5

 10

 15

 20

 1.28  1.36  1.44  1.52

∆
E

 (
k
J
/m

o
l 
p
e
r 

m
o
le

c
u
le

)

Density (g/cm
3
)

GGA

XXXI

 1.28  1.36  1.44  1.52

Density (g/cm
3
)

25X

 1.28  1.36  1.44  1.52

 0

 5

 10

 15

 20

∆
E

 (
k
J
/m

o
l 
p
e
r 

m
o
le

c
u
le

)

Density (g/cm
3
)

50X

 0

 5

 10

 15

 20

 1.36  1.4  1.44  1.48

∆
E

 (
k
J
/m

o
l 
p
e
r 

m
o
le

c
u
le

)

Density (g/cm
3
)

XXXII

GGA

 1.36  1.4  1.44  1.48

Density (g/cm
3
)

25X

 1.36  1.4  1.44  1.48

 0

 5

 10

 15

 20

∆
E

 (
k
J
/m

o
l 
p
e
r 

m
o
le

c
u
le

)

Density (g/cm
3
)

50X

Figure 8.3: Computed crystal energy landscapes for the two flexible molecules,
XXXI and XXXII, from the 7th CSP blind test, where DFT performs poorly. The
blue circles indicate the structure that is the best match to the most stable ex-
perimental polymorph, form B, while the green circles indicate the structure of a
second, less-stable polymorph, form A (major and minor components are shown
for compound XXXI). For compound XXXI, an additional low-density form with
large crystal voids, indicated by the red circles, was identified after removal of
solvent from a solvate structure.

Finally, for compound XXXII, the computed crystal energy landscapes are also shown

in Figure 8.3. This molecule is extremely flexible, with four rotatable bonds. Multiple

polymorphs were observed experimentally, with single-crystal x-ray structures being ob-

tained for two forms, and several other forms only able to be characterised via powder

x-ray diffraction.391 Of the two characterised polymorphs, form B was found to be the

more stable. Form A was again disordered, and composed of both major and minor com-

ponents, although only the major component was represented in the set of 500 supplied

candidate structures. Our XDM-corrected methods were found to perform quite poorly

for this compound, predicting the experimental polymorphs to lie quite high in energy,

from 7-12 kJ/mol above the minimum depending on the functional. Again, somewhat

surprisingly, the best performance was obtained with the XDM-corrected GGA functional,

which predicts the two experimental forms to lie 7-8 kJ/mol higher in energy than the
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minimum. This energy range is fairly comparable to the result obtain previously for the

similarly large and flexible compound XX.384 It is likely that neglect of vibrational effects

is at least partly responsible for the poor energy ranking, since both experimental poly-

morphs have different conformations from the minimum-energy structures identified with

DFT. However, it is possible that both of these forms are meta-stable and one or more

of the experimental structures that could only be characterised by PXRD is actually more

stable. It would be very interesting to determine if any of the low-energy DFT structures

match the experimental powder patterns and this will be the subject of future work once

these powder diffractograms are released by the CCDC.

8.4 SUMMARY

This chapter presented the results from the energy ranking phase of the 7th CSP blind test.

This work relied on the application of the XDM dispersion model using FHI-aims to rank

the putative crystal structures provided by the CCDC to the investigators, as we could not

have completed all the calculations within the allotted time with our available resources

using planewave DFT. The functionals considered were the B86bPBE based GGA and its

hybrid counterparts with 25% and 50% exact exchange mixing. For compounds XXVII,

and XXVIII, all functionals considered performed equally well, ranking the experimental

structure as the lowest in energy in the case of XXVIII, and the second lowest (and within 2

kJ/mol of the minimum) for XXVII. For compound XXXIII, there were two experimentally

isolated polymorphs, where form B was found to be the more stable. The crystal energy

landscape for this compound was expected to exhibit significant delocalization error with

the GGA; however, as all functionals ranked form B as the minimum-energy structure, this

was not observed to be the case. Form A of compound XXXIII was found be less stable

than form B by ca. 5 kJ/mol.

The high accuracy seen for compounds XXVII, XXVIII, and XXXIII was unfortunately not

observed for compounds XXXI and XXXII. Compound XXXI was reported to have 3 experi-

mentally isolable polymorphs. DFT predicted surprisingly high energy structures for form

B and both major and minor components of the disordered form A and, when compared

with the experimental stabilities, the ranking between the forms B and A was found to

be reversed. Additionally, the GGA was found to provide lower relative energies for the

known polymorphs compared to the hybrid functionals. For compound XXXII, a much

larger molecule with 4 rotatable bonds, multiple polymorphs were observed experimen-

tally but only two single-crystal XRD structures could be obtained. The XDM-corrected
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methods performed quite poorly for this compound, with the two characterised experi-

mental polymorphs found to lie quite high in energy (7-12 kJ/mol from the DFT predicted

minima), with the GGA functional again outperforming the hybrids. A possible source

of error is the neglect of vibrational and anharmonic effects as the higher flexibility of

these two molecules, and their abilities to adopt different conformations, could poten-

tially lead to large thermal free-energy corrections. Another source of error may be the

use of an insufficiently large basis set for fluorine. It is also possible that one or more of

the low-energy structures predicted from DFT results would match other polymorphs that

were unable to be characterised via single-crystal methods. Overall, the XDM-based/DFT

methods performed better on the smaller more rigid molecules and failed drastically for

compounds that showed a high number of rotatable bonds, in line with the results from

the previous Chapter 7 in this thesis.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 CONCLUSIONS

The work presented in this thesis aimed to showcase a new implementation of the XDM

dispersion model within the FHI-aims code. We began with a discussion of the theory that

is used within this document: the underpinnings of DFT, periodic boundary conditions,

various types of basis sets, the XDM model itself, and alternative and competing post-SCF

dispersion models. We then discussed what goes into the accurate selection and pairing

of a density functional with a dispersion correction, as not all functionals are created

equal. Next, we applied XDM and planewave/PAW DFT to the modelling of a surface-

based experimental catalytic system through the use of the Quantum ESPRESSO code.

Highly accurate calculations can be achieved through this approach, but we are strongly

limited in terms of system size by the high computational cost. The shortcomings of the

planewave/PAW-based approach led to an investigation of alternative methods for solid-

state DFT and lead to the decision to use the FHI-aims code, which employs NAO basis

sets of finite extent. This was proposed to be a good platform for implementation of XDM

as the use of NAOs would allow for the application of XDM to larger and more complex

systems, particularly with hybrid functionals. Once XDM was implemented within FHI-

aims, it was benchmarked using a suite of common data sets for post-SCF dispersion

corrections and was determined to be one of the most accurate methods available for

predicting lattice energies of molecular crystals. The FHI-aims implementation of XDM

was then applied to a series of compounds, including pharmaceutical analogues, that have

made up the previous 6 blind tests of crystal structure prediction (CSP) organised by the

Cambridge Crystallographic Data Centre (CCDC). This work illustrated the importance of

using a functional/dispersion correction pair that minimises delocalization error, and is as

108



efficient as possible.

Despite the importance of dispersion to the correct and full understanding of chemical

processes, it has not been trivial to include dispersion physics within quantum chemical

simulations. This is due to the fact that dispersion physics is missing from mean-field

electronic structure methods, such as Hartree-Fock and most density functionals. Much

work has been done over the last 20 years in an effort to remedy this through the devel-

opment of dispersion models, such as the D2 and TS methods, that provide simplified and

general prescriptions to obtain the leading order C6 term. A drawback of these methods

is that they have, at best, only minimal dependence of the dispersion coefficients on the

chemical environment. More complex methods have since been developed, such as the

D3 and D4 methods, XDM, and MBD, each of which is of the post-SCF variety of disper-

sion corrections, where the dispersion coefficients have more sophisticated environment

dependence. However, as discussed in Chapter 3, the dispersion correction alone does

not give the complete picture when attempting to obtain higher accuracy from DFT-based

calculations. When using modern dispersion corrections, particularly XDM, the choice of

base density functional should be held to three key points: the functional should be dis-

persionless, numerically stable, and have minimal delocalization error. For pairing with

XDM, the choice of a dispersionless functional is made to prevent a kind of double count-

ing of dispersion at short range. This means that the treatment of non-bonded repulsion is

left entirely to the base functional and dispersion effects to the correction. It can be seen

within Chapter 3, and in the rest of this thesis, that this division of labour is key to ob-

taining the highest accuracy when pairing XDM with particular density functionals. Next,

there are both practical and scientific implications for the numerical sensitivity constraint.

Functionals that do not adhere to the constraint of numerical sensitivity are meta-GGAs

where one or more of the τ -dependent terms show divergence at the bond critical points

of van der Waals dimers. Here, using the very large integration grids required to obtain a

smooth potential results in a significantly increased computational cost relative to GGAs,

with no gains in overall accuracy. The final constraint, which is also a key motivation for

the work described in the later chapters within this thesis, is the selection of a functional

that minimises delocalization error. Until recently, a user would be restricted to GGA func-

tionals (which have significant inherent delocalization error) for most solid-state systems,

due to the prohibitive cost of evaluating the exact exchange energy with planewave-based

codes. This prevented the application of XDM-corrected DFT to study certain classes of

chemical problems with any expectation of reliability. The conclusions within Chapter 3
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were fundamental to all of the method choices that were made for the work that followed

in this thesis.

The computational modeling of STM images is a powerful tool for the understand-

ing of atomic-level features for surface chemistry, as the explicit assignment of the im-

ages to the exact chemical species is difficult experimentally. The work present within

Chapter 4 employed the B86bPBE functional with the XDM dispersion correction using a

planewave/projector augmented-wave (PAW) method that, up until the work presented

within this thesis, was the standard platform for applying XDM to solid-state systems. The

resultant computational STM images were then compared to the experimental results ob-

tained by Burke and colleagues. Dispersion largely determines the optimal geometry, as

well as the relative stabilities, for adsorbates on a surface. The geometry, in turn, affects

the appearance of the theoretical STM plots. Although conclusions could be drawn from

this work to unambiguously assign chemical structures to the observed STM data, a key

caveat of the method used was the requirement to truncate the modeled system to just

the active site, to make the calculations tractable. Even with this truncation, the size of

the unit cell used within Chapter 4 approached the limit of what was possible with the

compute resources available at the time of publication. This led to the exploration of

alternative methods which might improve the efficiency of solid-state calculations with

XDM-corrected DFT without a marked reduction in accuracy.

The issues of delocalization error and limitations on unit-cell size lead to the search for

alternative programs in which XDM could be implemented to allow for the investigation of

larger and more complex systems than possible with planewave DFT. The selection of the

FHI-aims code was made due to its use of NAOs of finite extent, which led to the ability

to perform routine calculations on significantly larger unit cells, and to pivot to the use of

hybrid density functionals. The implementation of XDM within FHI-aims was detailed in

Chapter 5, along with the results of preliminary tests, comparing both the exchange-hole

dipole moments and the homoatomic C6 dispersion coefficients with results from previous

implementations in NUMOL, Quantum ESPRESSO, and Gaussian/postg. As XDM contains

two parameters that go into the damping function that are functional and basis set depen-

dent, Chapter 6 presents optimal damping parameters for a set of common functionals,

including hybrids. Following the determination of the damping parameters, a common

set of benchmark calculations were undertaken and XDM was compared against two com-

peting post-SCF dispersion methods, TS and XDM. The XDM-corrected hybrid functionals

presented within Chapter 6 provided the lowest mean absolute errors for molecular crystal
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lattice energies across all combinations of functionals and dispersion methods considered

both by ourselves and within the broader literature.

Accurate and efficient computation of relative energies of molecular crystal polymorphs

is a problem of central importance for solid-state pharmaceuticals. DFT has emerged as

the preeminent tool within crystal structure prediction, but previous implementations of

these methods have been hindered by poor scaling and delocalization error, as detailed

in this work. Within Chapter 7, XDM-corrected functionals implemented within FHI-aims

were shown to provide an accurate and efficient route of candidate crystal structures for

CSP. However, we saw that GGA calculations alone are not enough for the full description

of all molecular polymorphs, and the use of hybrid functionals was shown to be key for

some classes of compounds, such as organic salts, that suffer from delocalization error.

Finally, the implementation of XDM within FHI-aims was critical to the timely completion

of the calculations required for participation in the CCDC 7th Blind Test, as detailed in

Chapter 8. For compounds XXVII, XXVIII, and XXXIII, our XDM-corrected DFT methods

performed extremely well, predicting the most stable experimental polymorph to be the

lowest or second-lowest energy structure of the provided candidates. For compounds XXXI

and XXXII, the XDM-corrected functionals did not fair as well, perhaps due to thermal free-

energy corrections or kinetic effects being more significant for highly flexible molecules.

Notably, delocalization error did not appear to be a major contributor to any of the crystal

energy landscapes.

In summary, the implementation of XDM within FHI-aims has been shown to set new

standards for both accuracy and efficiency for DFT calculations on molecular crystals and

has unlocked the ability to address some of the shortcomings of GGA functionals for use

in CSP. Going forward, it will facilitate high-throughput computational studies of a wide

range of new and exciting chemical systems, some of which will be detailed in Section 9.2.

9.2 FUTURE WORK

There are a wide array of projects still to complete within the scope of this work since

the implementation of FHI-aims enables routine XDM-corrected DFT calculations to be

performed on larger and more complex systems. One such area where the efficiency

and accuracy of FHI-aims will be useful is for the investigation of the errors seen within

Chapter 7 and 8 for compounds XX, XXXI, and XXXII in the 6th87 and 7th blind tests of

molecular crystal structure predictions. While we conjectured that these errors are likely

due to neglect of thermal effects, this can be directly probed by FHI-aims through the
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calculation of the phonons and resulting thermal free-energy corrections for the respective

compounds, which would be prohibitively costly with plane-wave DFT.

Another potential application of the FHI-aims XDM implementation is the study of

transition-metal dichalcogenide (TMDC) heterojunctions. TMDCs are 2D layered mate-

rials with the general chemical formula MX2, where M is a transition metal, such as Mo

or W, and X is a chalocogen (group 16).394 An extremely common example of a TMDC

is MoS2, which has a trigonal prismatic 2H hexagonal structure. TMDCs are isostructural

analogs of graphene, where the 2D layers are bound by weak van der Waals interactions,

while the metal atoms are sandwiched between two chalcogenide layers through strong

covalent bonding.394 As a result, charge transport in TMDCs occurs efficiently in-plane

through the single layers, while there exists a tunneling barrier for charge transport be-

tween layers due to the weak van der Waals interactions and large interlayer spacing.395

TMDCs are semiconductors and have been proposed to have applications in electronics,

batteries, and as catalysts. Focusing on electronics applications, TMDCs are proposed to be

the future of classical computing, with the aim of replacing Si within computing devices

and extending Moore’s law.396–399 However, there exist barriers to their wide adoption

in the form of high contact resistance between the TMDC material and required metal

contact, common within transistors.400–403 Computational work in this space has primar-

ily used density-functional methods such as PBE-D2 and the LSDA.403–405 DFT studies of

TMDC-metal interfaces can be computationally expensive due to the need for large unit

cells in order to ensure commensurate lattices. Previous studies of metal-graphite inter-

faces have already employed unit cells that are on the order of 100s of atoms.271,406,407 As

we have shown in Fig. ??, this is already in the regime where significant time savings can

be achieved with NAO basis sets as opposed to plane waves. Additionally, the XDM correc-

tion has been shown to provide improved accuracy relative to other post-SCF dispersion

corrections both for properties of bulk TMDCs16 and for graphene-metal interfaces.406

Another potential application of the work within this thesis is the computational model-

ing of crystal growth, important to understanding the origins of the chiral selectivity found

within all living things.408–410 Previous work considered hydroxylated α-quartz as a seed

crystal, present within the early earth, that may have caused an enrichment of D or L

amino acids within the local environment.408–414 This work was limited to the placement

of single amino acid residues on the hydroxylated α-quartz surface and, although an im-

portant first step, is far too simplistic to draw conclusions regarding crystal growth.413–415

Quantum mechanical study of these systems is key due to the minute adsorption-energy
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differences between enantiomers, which might not be resolved through alternative meth-

ods. Much like the TMDC heterojunctions mentioned above, explicit modeling of the

interface between an enantiopure amino acid crystal and a hydroxylated α-quartz surface

will require large unit cells to ensure commensurate lattices. The FHI-aims XDM imple-

mentation will provide the accuracy and speed needed to model such interfaces and will

allow more in-depth study of crystal growth of amino acids and other biological precursor

molecules on chiral substrates than might otherwise be intractable. The computational

work could then be combined with experiments to draw conclusions about the emergence

of preferential chirality in early life on earth and possible life on other planets.

Another piece of future work is the implementation of XDM into other electronic struc-

ture packages, allowing for a wider array of users to access the method. One example

is the Amsterdam Density Functional (ADF) code that, like many other DFT codes, has a

wide user base with interests in a range of chemistry and material science applications.

One of ADF’s headline features is energy decomposition analysis (EDA),416,417 which is a

quantitative analysis method used to partition the energy for a chemical bonding interac-

tion obtained from electronic structure calculations into chemically intuitive components.

EDA is a widely used tool for the investigation of bonding in inorganic and organometallic

compounds and provides a quantitative picture for the traditional understanding of chemi-

cal bonding, providing a bridge between synthetic chemistry and the quantum mechanical

world. Within EDA, the bond energy can be represented as

∆Ebond = ∆Estrain +∆Eint, (9.1)

where the ∆Estrain is the strain energy involved in the deformation of the geometry into the

pro-molecule and ∆Eint is the bonding interaction energy between fragments represented

by

∆Eint = Velestat +∆EPauli +∆Eorb +∆Edisp. (9.2)

Velestat represents the electrostatic attraction, ∆EPauli is the Pauli repulsion energy, ∆Eorb

represents the stabilising orbital interactions or mixing and charge transfer between frag-

ments, and ∆Edisp is the dispersion energy.220,417 EDA relies on the accurate treatment of

the geometry of compounds, which in turn relies on the accurate treatment of dispersion

interactions, and these are also a key component of the interaction energy. The inclusion

of XDM within ADF will allow for a new tool for users to apply XDM within EDA for molec-

ular systems and will also allow direct comparison with the new Grimme-D4 correction
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within the code base.

Although DFT is a widely used and a broadly successful tool for the modeling of mat-

ter, it still has a major outstanding challenge facing it today in the form of delocalization

error,349 as discussed within this work. Delocalization error has been categorised broadly

within the literature and given many different names, but ultimately all are different mani-

festations of the same issue.175,202,204,349,418,419 It can be seen in even some of the simplest

chemical systems, such as the H+
2 molecular ion near its dissociation limit.232,233,420–423

Here, the molecule is greatly over-stabilized due to the highly delocalized nature of the

single electron, shared equally between the two hydrogen atoms. Other examples in-

clude systems with extended conjugation225–227,229,350,424–428 and charge-transfer com-

plexes.206,208–210 Delocalization error comes about due to the inherently local nature of

the construction of practical DFT methods, which are unable to “see” beyond the local

environment. Delocalization error can go from being a small nuisance to giving entirely

incorrect results that make drawing reasonable conclusions from DFT impossible. There

are prescriptions for fixing this issue through the inclusion of a portion of the exact ex-

change energy calculated from Hartree-Fock theory.1 However, depending on the system,

it may require anywhere from 0-100% exact exchange for high accuracy and, in some

cases, any answer you wish for a particular property may be obtained based on the amount

of exact exchange included in the calculation.247 This has led to the proliferation of large

numbers of DFT methods targeted for specific applications and having no single “one size

fits all” choice that is consistently reliable for all classes of chemical systems.1,2,349,429–434

In order for DFT to continue to make materials predictions and be used beyond well-

understood chemistries, a more general method that does not rely on empirical fitting is

needed. One promising alternative is the B05 method, developed by Axel Becke.233,435

It is non-empirical in design and is exact for any one-electron system, such as the afore-

mentioned H+
2 example. However, due to the complexity of B05, this method has not

been widely adopted and is not generally available in computational codes beyond the

specialised software used for its development. As a result, the B05 functional has never

been applied to large molecules or to solid-state systems. The efficiency seen within FHI-

aims for HF-based exact exchange provides an ideal platform for the implementation of

B05 and this would be a major boost to the computational tools available for solid-state

applications.

Finally, within the scope of improving XDM, work can be done to address shortcomings

in the way the atomic forces and stress tensor are calculated. XDM currently relies on
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an approximation made in the analytical formula used to calculate the dispersion con-

tribution to the forces and stresses, where the dispersion coefficients are taken to be con-

stants, independent of the atomic positions. For traditional geometry optimisation of finite

molecules and molecular crystals, this has been shown not to have detrimental effects on

the overall accuracy of the XDM model, although errors have been observed for inorganic

solids.348 However, for ab initio molecular dynamics, this force-energy inconsistency is

posited to be the source of a potential energy leak within the simulations, rendering XDM

useless for this application in its current state. A full rigorous analytical definition of the

XDM force and stress equations, allowing for the dispersion coefficients to evolve with the

atom positions, is therefore necessary before any dynamics work can be undertaken with

confidence. Addressing this shortcoming within XDM would push it to the forefront of dis-

persion corrections, allowing XDM to cover the greatest chemical space with the highest

accuracy compared to competing methods.
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