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ABSTRACT 

Oil spill has been widely recognized as a major marine environmental issue, 

that could cause a profound and long-term impact on the environment, ecology, and 

socioeconomics. In particular, when the oil spill happens in coastal areas, the spilled 

oil can interact with the suspended sediments to form oil-mineral-aggregates 

(OMA), and its settling and trajectory are crucial for oil spill modelling. We started 

by identifying the most influential variables during OMA formation through a 

statistical method (Screening Design). Time was the most important factor for 

OMA median diameter (D50), followed by temperature and oil/clay ratio. The 

influence of time was highly dependent on the temperature and oil/clay ratio 

applied. We also assembled a high-speed camera and magnifying lens to measure 

the settling velocity of OMA precisely and explored how process variables 

influence the settling velocity. Principal component analysis revealed that 

increasing clay concentration in the water environment significantly promoted 

OMA settling velocity. However, the presence of dispersant and water density 

increment led to settling velocity reduction. The traditional empirical numerical 

modelling for OMA D50 and settling velocity prediction was based on collision-

theory and Stokes’ law, respectively. The empirical predictions were conducted in 

this study, and the R2 of 0.62 and 0.39 were achieved. Machine learning algorithms 

were, for the first time, employed to predict OMA D50 and settling velocity. 

Adaboost algorithm and Gradient Boost Regression algorithm was identified to be 

the most satisfying one for predicting D50 (R
2 of 0.74) and settling velocity (R2 of 

0.61) respectively, which had correspondingly higher R2 than traditional empirical 

numerical modellings. As for the OMA transport, the particle tracking model was 

applied for simulation. The sensitivity of OMA transport to prediction accuracy 

was evaluated, and a high sensitivity was observed. In addition to oil spill modelling, 

the feasibility of using the Finite-Time Lyapunov Exponent (FTLE) to analyze the 

tidal dispersion properties and oil spill trajectory was assessed. The FTLE results 

were compared with a real oil spill in Burrard Inlet in 2015. The results indicated 

that FTLE could reasonably explain the spilled oil’s trajectories, suggesting FTLE 

could be a valuable addition to practical oil spill transport. 
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Chapter 1: Introduction 

1.1 Background 

Despite the critical need to decrease petroleum hydrocarbon consumption, 

oil products remain vital to our society in the near future due to time rerquired to 

transition to alternative energy sources in different sectors, especially the marine 

transportation industry. The production and transportation of oil products carry the 

inherent risk of oil spills resulting from accidents or operational errors [1]. Marine 

oil spills, involving crude oils and other petroleum products, pose a significant 

environmental challenge. According to the International Tanker Owners Pollution 

Federation (ITOPF), approximately 15,000 tons of oil were spilled from tankers 

and oil carriers in 2020 [2]. While the frequency of large spills has progressively 

declined over the past five decades [2], the number of small spills (e.g., the M/V 

Marathassa oil spill in English Bay, BC, in 2015) remains high [3]. Small oil spills 

typically occur due to improper ship operations and received less public attention 

than large oil spill events [4]. Nonetheless, both large and small oil spills are 

considered major forms of marine pollution, often resulting in significant, long-

term impacts on the environment, ecology, and socio-economic in the affected 

areas. Consequently, local authorities and oil companies strive to develop 

comprehensive contingency plans to mitigate the adverse effects of oil spills. 

Precise monitoring of the fate and trajectory of spilled oil is crucial for rapid and 

effective spill response. 
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Oil spill models are computational tools designed to predict the trajectories 

and fate of spilled oil. Despite significant advancements in oil spill model 

development, recent state-of-the-art reviews have identified limitations in existing 

models [5,6]. For instance, processes such as dissolution, vertical mixing, oil 

sedimentation, photo-oxidation, and biodegradation are often neglected in current 

oil spill models [5]. Additionally, the transport algorithms in these models are 

incapable of predicting the fine-scale structure of spills, which could significantly 

affect the spill distribution and subsequent transport [6]. Among these limitations 

in oil spill modelling, this study focuses on addressing the shortcomings related to 

oil sedimentation and oil transport prediction. 

Upon discharge into the water, the majority of oil mass exists as droplets 

[7,8]. Parts of the volatile components evaporate in the initial hours of the spill. 

Volatile components partially evaporate during the initial hours of the spill, leaving 

behind heavier components that can interact with sediments in the water column. 

These interactions form oil-mineral aggregates (OMA) through adsorption or 

incorporation into the sediment phase due to capillarity and surfactant ions [9–12], 

or through direct aggregation resulting from collisions [13–15],  ultimately leading 

to oil sedimentation [16]. Poirier and Thiel (1941) first proposed the potential 

interactions between oil and mineral particles in an aqueous medium, suggesting 

that kaolinite should be the most efficient mineral for oil-mineral interactions. 

However, oil-mineral interactions in natural environments were first observed 

during cleanup operations following the Exxon Valdez spills in 1989, when they 

were postulated as “clay-oil flocculation” [18,19]. Researchers hypothesized that 
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spilled oil could be removed from the water column through the natural cleaning 

and removal process of "clay-oil flocculation" even in low-energy environments 

[18–21]. This hypothesis was confirmed after the Tampa Bay spill in Florida in 

1993 and the Sea Empress Spill in Wales in 1996. Subsequently, the interaction 

between oil and mineral particles was redefined as "oil-mineral aggregation 

(OMA)" because clay-sized minerals (<2 µm) were not considered responsible for 

OMA formation [22,23].  

OMA formation has been documented in various environments and 

numerous oil spills. For example, in 1989, approximately 41 million liters of Alaska 

North Slope crude oil spilled into Prince William Sound, with a portion of the 

spilled oil naturally removed through OMA formation [18–21]. In 2010, over 3.2 

million liters of diluted bitumen transported by the Enbridge Line 6B pipeline were 

released into Michigan's Kalamazoo River, where a large amount of the spilled oil 

(heavy component) interacted with sediments to form OMA along channel margins, 

backwaters, and oxbows [24]. The extensive cleanup and environmental 

remediation efforts cost around 1.2 billion dollars in 2014 [24]. Although majority 

of the spilled oil being collected, the spill continues to have long-term 

environmental impacts. Consequently, understanding the formation, settling, and 

transport of OMA is critical for effective cleanup and long-term assessment of oil 

spills. 

OMA formation is an important process that naturally transports oil from 

one environmental compartment to another, enhancing oil dispersion [20–22]. The 

formation process is affected by many factors, including the oil properties (type, 



4 

 

droplet size, and oil concentration), particle properties (size and shape, its organic 

matter content, density, and concentration), and ambient condition (i.e. mixing 

energy, salinity, and temperature) [25]. While considerable efforts have been made 

to study OMA formation under various conditions, many results are conflicting [26]. 

For example, regarding the effect of salinity on OMA formation, several studies 

have demonstrated a strong impact at low salinity levels (0 - 5 ppt) with no 

significant effect observed with further salinity increases [27–30]. Conversely, 

Guyomarch et al. (1999) found that increasing salinity from 10 to 50 ppt 

significantly affected OMA formation. It is important to note that different OMA 

formation studies employed distinct laboratory procedures, introducing 

considerable variance and uncertainty. Replication of experimental runs has rarely 

been conducted to present experimental error, making the reported data less reliable 

[26]. More importantly, despite the complexity of the OMA formation system, no 

attempt has been made to find out the most influential factors by utilizing statistical 

design & analysis methods. Additionally, the interaction effects between factors 

(e.g., the temperature influence might be dependent on the time used) are highly 

possible to play essential roles during OMA formation [25, 29, 32–34]. 

Unfortunately, these interactions have not been systematically explored [26]. On 

the other hand, The rapid development of machine learning algorithms, extensive 

data mining, and powerful computing resources have advanced scientific research 

and industrial practices in numerous aspects [35–39], which inspired us to evaluate 

the feasibility of applying machine learning algorithms for OMA formation 

prediction. 
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It is also worth mentioning that OMA settling velocity is significant for 

modelling the fate and transport of OMA/spilled oil. However, the literature on 

studying OMA settling velocity remains scarce. The empirical equation for OMA 

settling velocity estimation relies on the traditional Stokes’ Law formula, which 

assumes OMA particles to be spherical under certain assumptions [40, 41]. 

Therefore, using Stokes’ Law to estimate OMA settling velocity is less reliable, 

hindering the accuracy of OMA transport modelling. Thus, exploring an alternative 

method for OMA settling velocity prediction is necessary. Machine learning 

approaches have recently attracted interest in various research fields, including oil 

spill related studies. For instance, Cao et al. (2022) aimed to investigate the effects 

of chemical dispersant and salinity on the biodegradation of spilled oil, and 

employed machine learning method to quantitative predict the strength of causal 

links between dispersant addition, salinity, cell abundance etc., in which the 

positive effect of dispersant addition was suggested, and it was due to the 

enrichment of cell abundance [39]. The ability to handle large datasets and provide 

adequate estimation inspired us to explore the feasibility of using machine learning 

algorithms for OMA settling velocity prediction.  

In addition to the oil sedimentation process resulting from OMA formation, 

improving oil spill trajectory prediction using new techniques is also one of the 

future directions for oil spill modelling, as mentioned in the recent state-of-the-art 

review [5,6]. Oil spill trajectory tracking can be done with various existing models, 

however, following the trajectory of an oil spill or predicting the trajectory with a 

numerical model in coastal areas is not easy. The trajectory is related to the 
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pollutant’s physicochemical properties and depends on tidal currents and dispersion, 

and transporting the pollutants through estuaries and coastal environments is also 

associated with tidal dispersion [42]. Tidal dispersion occurs when the periodic 

tidal oscillations spread a patch of particles due to the spatial variability of the tidal 

currents or the background mean flow. This tidal process scatters or dilutes water 

parcels [43]. Therefore, to accurately predict the trajectory of an oil spill, it’s 

necessary to understand the complex relationship between tidal dispersion and an 

oil spill’s trajectory. 

Tidal dispersion is commonly studied using Lagrangian techniques, drifters, 

and virtual trajectories in a numerical model of ocean flow fields. Over the last two 

decades, researchers have studied tidal dispersion and its impact on particle 

transport in estuaries [44–48]. For instance, researchers tracked surface drifters to 

estimate residence times, dispersion, and trapping in the Salish Sea, and they 

concluded that dispersion was crucial to particle transport and is often far more 

important than mean advection [47]. Furthermore, with computer modelling, it has 

become possible to simulate flow fields with high spatial and temporal resolutions, 

and, as technology improves and computing power increases, modelling has 

become a viable, convenient, and economical option for studying dispersion. 

Several numerical modelling studies on tidal dispersion have been conducted [42, 

49, 50], with one study noting that the scale of a tidal excursion length relative to 

the spacing between major bathymetric and shoreline features was the most 

important effect of the tidal current on tidal dispersion [42].  
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The tidal excursion length is the net horizontal distance a water particle 

travels from slack low water to slack high water, or vice versa [51]. Tidal excursion 

length is a valuable indicator of hydraulic and mixing characteristics of estuaries 

[52], and is usually used to study the movement of pollutants in estuaries over a 

tidal cycle [51, 53–59]. If the tidal excursion were larger than the typical spacing 

of the topographic features, tidal dispersion could significantly contribute to the 

flushing of an estuary. Otherwise, the dispersion might only be local without any 

influence on the overall flushing of the estuary [42].  

In addition to the length of the tidal excursion, the residual current of the 

tide is important to tidal dispersion in an estuary. For instance, Xu and Xue (2011) 

investigated the tidal circulation in Cobscook Bay at different tidal phases and 

found that the magnitude of the residual currents and the tidal excursion could 

estimate the effective dispersion coefficient (the degree of separation of particles 

within the cluster). Xu and Xue found that small residual currents and short tidal 

excursion limited the tidal dispersion and produced small effective dispersion 

coefficients, and large residual currents and long tidal excursion enhanced tidal 

dispersion and produced large effective dispersion coefficients [50].  

Although several advanced methods have been proposed for understanding 

particle transport using Lagrangian particle trajectories in ocean modelling [60–63], 

obtaining the Finite-Time Lyapunov Exponent (FTLE) fields and visualizing the 

FTLE ridges is arguably one of the most powerful tools for investigating spilled oil 

movement in complex flows [6]. Compared to traditional modelling approaches, 

calculating FTLE values does not require having high data accuracy or interpolating 
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the velocity field. Furthermore, FTLE analysis results are not sensitive to data 

errors. The FTLE method was successfully applied to understand the distribution 

of pollutants, including spilled oil. For instance, Mezic et al. (2010) employed 

FTLE to simulate the trajectories of oil spilled in the Gulf of Mexico, and the 

simulation results were consistent with the observations reported by NOAA 

(National Oceanic and Atmospheric Administration) [64].  Unfortunately, there are 

no comprehensive studies using the FTLE method, residual currents, and tidal 

excursion length to track spill trajectories. 

1.2 Research Objectives 

 This research aims to study oil spill transport by examining OMA 

characteristics and tidal dispersion properties. The OMA formation, settling, and 

transport characteristics are investigated through laboratory experiments and 

numerical simulations, while the tidal dispersion properties are analyzed using the 

Finite-Time Lyapunov Exponent (FTLE) method. The specific objectives are as 

follows: 

1) Systematically investigate OMA formation under various conditions to 

identify significant factors and interaction effects; 

2) Precisely measure OMA settling velocity and explore the influence of 

external environmental factors; 

3) Compare the prediction accuracy of traditional numerical modelling and 

machine learning algorithms for determining OMA median diameter and 

settling velocity; 
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4) Evaluate the feasibility of using FTLE analysis as a tool to aid in oil spill 

transport modelling. 

1.3 Thesis Organization 

        Chapter 2 presents a literature review on the oil-mineral-aggregates’ 

formation, settling and modelling, as well as the FTLE related studies. Chapter 3 

provides the details of the materials and methodologies employed. Chapter 4 

identifies the most influential factors for the OMA formation and compares the 

collision theory and machine learning prediction for OMA median diameter. In 

Chapter 5, the settling velocity of OMA is comprehensively quantified, correlated 

with environmental conditions, and estimated using both traditional empirical 

equations and machine learning algorithms. Furthermore, the sensitivity of OMA 

deposition to settling velocity prediction is investigated by conducting particle 

tracking modeling. Chapter 6 presents the details of FTLE analysis in Burrard Inlet, 

Vancouver, which is thoroughly compared with a real oil spill (M/V Marathassa 

oil spill) that occurred in Burrard Inlet. Finally, Chapter 7 provides the overall 

conclusions of this research and the recommendations for future work. 
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Chapter 2: Literature Review 

Copyright permission: 

      A version of this chapter has been published in J. Mar. Sci. Eng., 10(5), 610. 

The copyright has been obtained from the Journal of Marine Science and 

Engineering and co-authors. 

Contribution statement: 

      I was responsible for literature searching, data summarization and analysis, 

table and figure preparation, and manuscript drafting.  

2.1 General Information on Oil Spill  

Once oil is discharged into the water environment, two common 

transformation processes can occur as follows. One is the oil weathering process 

that can significantly change the physicochemical properties of the spilled oil. 

Another one is the oil movement in the water environment that can increase the 

contamination area.  

Oil weathering refers to oil spreading, evaporation, emulsification, and 

natural dispersion, followed by dissolution, photooxidation, biodegradation, and 

sedimentation [65]. Each process happens at different times and varying rates. For 

example, oil evaporation begins immediately when the oil slick first presents on the 

water surface. Oil evaporation is a relatively short process. In contrast, oil 

emulsification is a long process that begins relatively slowly [66]. Furthermore, 

different weathering processes have different impacts on the physicochemical 

properties of the spilled oil. Among these processes, photooxidation and 
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biodegradation are the most critical for modifying the chemical compositions of 

spilled oil [65,67]. Moreover, as evaporation decreases the volume of the spilled 

oil, it also increases the oil’s density [68]. After evaporation, the remaining heavy 

components of a lighter oil can combine with sediments in the water column and 

subsequently sink to the bottom. The oil remaining at the surface naturally disperses 

into the water column [16]. Lastly, oil emulsification depends on the types of oil 

and conditions in the surrounding environment. Emulsification changes the oil’s 

physical properties, such as water content and viscosity [69].  

Knowing how spilled oil moves on the water surface is important to oil spill 

modelling. Spreading is one of the most critical movement processes because 

spreading oil can increase the size of the contaminated area [66]. Furthermore, 

gravity and oil-water interfacial tension can help the spilled oil spread into a slick 

over the water surface [65]. The effects of gravity could gradually diminish over 

time, but the oil would continue to spread under the effects of interfacial tension 

[70]. The spreading rate of spilled oil is closely related to environmental conditions, 

such as tidal streams, water currents, coastlines, and wind speeds, as well as being 

related to oil properties [66,71–73]. For instance, in a confined waterway, it is 

difficult for spilled oil to spread quickly to reach the shoreline [74], but, in the open 

ocean, spilled oil can spread rapidly and widely to cover a large area in a short 

period [66]. Moreover, spilled oil that has lower molecular weight components 

presumably spreads more quickly [66]. Additionally, spreading depends on oil 

weathering. For example, evaporation and dissolution can reduce the area covered 

by the spreading oil [73]. 
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Oil advection at the sea surface and into the water column is another crucial 

movement process and mainly depends on ocean currents, wind, and waves. The 

effects of the wind and currents on spilled oil depend on the spill location and 

hydrographic conditions. 

Various oil spill models have been developed to track the fate and behavior 

of spilled oil. These oil spill models are classified as oil weathering models or 

trajectory/deterministic models. Oil weathering models (OWM) do not consider oil 

transport and only simulate oil weathering processes. For instance, The ADIOS2 

(Automated Data Inquiry for Oil Spills, Silver Spring, MD 20910, USA) oil 

weathering model, which was developed by NOAA, mainly includes the 

weathering processes of evaporation, dispersion, emulsification, spreading, and 

sedimentation. ADIOS can also assess how effective clean-up techniques would 

be [75,76]. The IKU Oil Weathering Model, which was developed by SINTEF, is 

also commonly used. The IKU OWM is also known as SINTEF OWM. SINTEF 

OWM is developed based on small and mesoscale laboratory tests and full-scale 

field experiments [77,78]. SINTEF OWM considers emulsification, natural 

dispersion, and evaporation as its main weathering processes. The model applies a 

pseudo-component method to calculate how much oil is lost to evaporation, and 

Mackay’s equation evaluates the viscosity of the emulsified oil [79,80]. It is also 

worth mentioning that nearly 200 different types of oil have been characterized by 

the SINTEF laboratory in Norway, all of which are included in SINTEF OWM 

[81]. More specialized weathering models, such as the Diluted Bitumen Weathering 

Model (DBWM), have been developed and recently validated against meso-scale 
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experimental data to simulate the weathering of unconventional crude products 

such as diluted bitumen [82].   

Trajectory/deterministic models are grouped as two-dimensional (2D) and 

three-dimensional (3D) models  [83]. A 2D model only simulates the trajectory of 

spilled oil at the water’s surface, whereas a 3D model tracks the spilled oil at the 

surface and in the water column. Various algorithms have been developed for 

trajectory/deterministic models, including Eulerian methods, Lagrangian methods, 

and Eulerian–Lagrangian methods (ELMs). According to state-to-the-art reviews 

[6,83,84], Lagrangian methods are the most popular algorithms for 3D oil spill 

models. For instance, the COSMoS model developed by Environment and Climate 

Change Canada [85] and SPILLCALC developed by Tetra Tech EBA [86] use 

Lagrangian algorithms. Table 2.1 lists examples of 3D models that use Lagrangian 

algorithms. 

Table 2.1 Examples of 3D oil spill models that use a Lagrangian algorithm to 

simulate oil transport. 

Model Developer Reference 

COSMoS 
Environment and Climate Change Canada 

(ECCC) 
[85] 

COZOIL 
Department of the Interior Minerals 

Management Service 
[87] 

GNOME Suite 
National Academies of Sciences, 

Engineering, and Medicine (NOAA) 
[88] 

GULFSPILL KFUPM/RI [89] 

MEDSLIK / 

MEDSLIK-II 

Oceanography Centre of the University of 

Cyprus (OC-UCY) 
[90–92] 

MIKE 21/3 Danish Hydraulic Institute (DHI) [93] 

MOHID 
MARETEC (Marine and Environmental 

Technology Research Center) 
[94] 

MOTHY Météo-France [95] 

OILMAP/SIMAP ASA [96, 97] 



14 

 

Model Developer Reference 

OILTRANS 
The Atlantic Regions’ Coastal Pollution 

Response (ARCOPOL) 
[98] 

OpenDrift / 

OpenOil 
Norwegian Meteorological Institute [99, 100] 

OSCAR SINTEF [101] 

POSEIDON-OSM 
Hellenic Centre for Marine Research 

(HCMR) 
[102, 103] 

SPILLCALC Tetra Tech EBA [86] 

Oil spill models can also be classified based on their purpose. After the 

Deepwater Horizon oil spill, Ainsworth et al. (2021) categorized and summarized 

330 published modelling applications (between 2010 to 2020) developed by the 

Gulf of Mexico Research Initiative (GOMRI), the Natural Resource Damage 

Assessment (NRDA), and other researchers. Ainsworth et al. (2021) classified the 

models by (1) circulation/mixing, (2) abiotic transport (far field), (3) oil fate, (4) 

biotic transport, (5) biological impacts, (6) other plume dynamics, (7) 

turbulence/local mixing, (8) water chemistry, (9) atmosphere, (10) oil spill response 

support, and (11) other [63]. Furthermore, Keramea et al. (2021) summarized 

commonly used models based on model capabilities and purpose. Keramea et al. 

(2021) classified the oil spill models into: (1) surface oil spill models and 

blowout/buoyant plume models, (2) operational response models, (3) deep sea 

blowout/buoyant plume models, and (4) models with spill response and 

environmental impact assessment support. Zhao et al. (2021) evaluated algorithms 

for oil spreading, evaporation, emulsification, dispersion, dissolution, 

biodegradation, and photooxidation. We note that sedimentation (OMA formation 

and transport) is absent in all the 2D and most 3D oil spill models. The 3D models 
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that include sedimentation usually describe it with simple coefficients and do not 

have detailed sedimentation algorithms. 

2.2 Factors Influencing OMA Formation 

When oils were spilled into a marine environment, a significant portion of 

the oil could be dispersed as oil droplets [7, 8]. These oil droplets can interact with 

the suspended sediments in the water column to form oil-mineral-aggregates (OMA) 

as shown in Figure 2.1. 

 

Figure 2.1 Formation of OMA in the nearshore environment adapted from [106]. 

OMA formation is affected by many factors, including oil properties (type, 

droplet size, and concentration), particle properties (size and shape, organic matter 

content, density, and concentration), and ambient conditions such as mixing energy, 

salinity, and temperature [25]. It has been reported that the average aggregate size 

is positively correlated to the oil-particle ratio (g oil/g sediment) [33]. However, 

when only considering sediment concentration, the relationship between particle 

concentration and the average aggregate size fits a Gaussian distribution with the 
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highest average aggregate size of ~1400 µm at a particle concentration of 0.8 g/l 

[33]. Kehlifa et al. (2015) showed that normalized cumulative size distributions of 

OMA are like the size distributions of mineral-free oil droplets formed in seawater.  

In terms of the oil viscosity’s influence on how OMA form, Wood et al. 

(1998) observed that the aggregation rate of OMA is greater as the oil viscosity and 

density decrease. However, Khelifa et al. (2002) indicated that oil viscosity has a 

negligible effect on OMA's maximum and mean sizes. 

The types of clay in the suspended sediment impacts how OMA form. 

Zhang et al. (2010) and Wang et al. (2011) found that the size of an OMA increases 

as the minerals change from hydrophilic to hydrophobic. The OMA’s size increases 

from a few micrometers for a natural kaolin (hydrophilic) to tens of micrometers 

for a modified kaolin (hydrophobic). The change in size occurs because the 

hydrophobicity of minerals promotes the affinity of minerals to oil, which enhances 

the formation of OMA. Khelifa et al. (2005) also stated that the clay type was 

crucial for the OMA’s size, which was even more influential compared to the effect 

of oil type.  

The effect of salinity on how OMA form is controversial. Several studies 

illustrate that low salinity (0–5 ppt) strongly influences OMA formation, and no 

significant effect exists for greater salinity increases [27–30]. For instance, Le-

Floch et al. (2002) reported that the proportion of oil in an OMA increases as the 

salinity increases, but the oil content stabilizes when salinity is greater than ~2 ppt.  

Khelifa et al. (2005) illustrated that the median and maximum size of OMA 

increases significantly as the salinity increases from 0 ppt to 1.2 ppt, but a further 
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increase in salinity to 3.5 ppt decreases the OMA’s size. However, Payne (1989) 

found the opposite result: an OMA forms more quickly with salinities of 15 and 30 

ppt than in freshwater. Furthermore, Guyomarch et al. (1999) reported that the 

OMA formation rate slows as salinity increases from 10 to 50 ppt. Theoretically, 

the effects of salinity on OMA formation occur because of the change in the 

electrical double-layer thickness of the oil and mineral particles. As salinity 

increases, the layer thickness compresses, which reduces surface repulsion and 

increases the inter-particle attraction between the oil and mineral. However, the 

influence of salinity on OMA formation is minimal once the layer thickness is 

below a threshold as the level of salinity in the water rises. Therefore, OMA 

formation eventually peaks and stabilizes as the salinity increases [28]. 

Mixing energy is an important environmental factor that influences the size 

of OMA [32, 108, 111–113]. An adequate mixing energy promotes the interaction 

between dispersed oil droplets and suspended particles so that OMA can form [113]. 

On the other hand, an OMA could break apart if the mixing energy is too aggressive 

[108]. Ji et al. (2021) conducted a series of laboratory experiments to investigate 

the impact of mixing energy on the time it takes for OMA to form. They suggested 

that the collision efficiency between oil and sediments under a higher mixing 

energy rate (200 rpm) is three times higher than under a lower mixing energy rate 

(150 rpm). High mixing energy results in rapidly forming OMA during the first 3 

h, followed by the OMA breaking apart. Ji et al. (2021) found that, after 24 h of 

mixing, only in low energy mixing cases would the dispersed OMA reform because 

there would be more oil droplets on the water’s surface. 
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As a human initiated influence, chemical dispersants are key to OMA 

formation. Page et al. (2000) carried out a series of wave tank experiments to study 

the effectiveness of using dispersants as an oil spill chemical countermeasure in the 

surf zone. Their experiment results indicated that chemically dispersed oil 

associates less intensively with mineral matter than physically dispersed oil [7]. 

Zhang et al. (2010) found that applying chemical dispersants is a dominant factor 

in how OMA form and behave. Several wave tank experiments conducted by Lee 

et al. (2008) indicated that chemical dispersants reduce surface tension between the 

oil and water and stimulate interaction between oil and fine mineral, eventually 

increasing the concentration of OMA. Lee et al. (2008) also indicated that the 

chemical dispersants reduce the size of OMA to a mean diameter of 15–25 µm. 

However, Khelifa et al. (2008) observed that chemical dispersants enhance the 

stickiness of oil to lead to larger OMA, probably due to the surfactant coating the 

oil droplets. Fu et al. (2014) carried out roller table experiments to explore how 

marine oil snow forms when a stereotype oil dispersant (Corexit EC9500A) is 

present. Fu et al. (2014) found that adding the chemical dispersant enhances particle 

aggregation and formation of marine snow. O’Laughlin et al. (2017) claimed that 

dispersants delay flocculation of natural sediments and create a surplus of available 

sediment to interact with oil droplets and potentially form OMA. 

2.3 OMA Settling 

The settling velocity of OMA mainly depends on their composition 

densities. The buoyancy of OMA should cause OMA to rise to the surface if the 

composition is mainly oil; otherwise, the OMA composed primarily of sediment 
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should sink to the benthic layer [14]. A better understanding of OMA settling is 

critical to predicting the fate and transport of OMA. 

Despite its importance, the literature on studying OMA settling and 

trajectory is still rare. There are only a few attempts to study OMA settling and 

transport as shown in Table 2.2. Muschenheim and Lee (2002) investigated the 

amount and rates of OMA formation and settling velocities by using a focused flow 

reactor. They reported that large (100 to 200 µm) OMA have settling velocities 

ranging from 2.2 to 10.4 mm/s. Waterman and Garcia (2015) tested settling 

velocities by using a 1.6 m height Plexiglass settling column and observed that the 

OMA had settling velocities between 1.0 and 11.2 mm/s, with the majority being 

between 1.0 and 3.0 mm/s.  O’Laughlin et al. (2017) conducted experiments to 

measure the variability in particle size and settling velocity of OMA in response to 

sediment concentrations and presence/absence of chemical dispersants. O’Laughlin 

et al. (2017) found that OMA size, settling velocity, and effective particle density 

increase under a higher concentration of suspended sediment (comparing 10 mg/L 

with 50 mg/L), which indicates that high concentration suspension produces large, 

inorganic-derived flocs that settle rapidly. Their results also suggested that 

dispersants inhibit natural sediment flocculation. Ye et al. (2020) conducted 

laboratory experiments to investigate the influence of clay types on OMA structures 

and settling velocities by using the LabSFLOC-2 system and digital microscopy. 

Ye et al. (2020) found that for low stickiness Kaolinite clay, droplet OMA form 

with much smaller settling velocities than the settling velocities of pure Kaolinite 

flocs. Furthermore, Ye et al. (2020) found that high stickiness Bentonite clay, 
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generates flack/solid OMA with settling velocities greater (by 25%) than settling 

velocities of pure Bentonite flocs. 

Table 2.2 Summary of laboratory experiments on the OMA settling velocity. 

References Main objectives/methods Results 

[117] 

To measure OMA settling 

velocities by using a 

focused flow reactor 

Settling velocities ranging from 

2.2 to 10.4 mm/s for 100-200 um 

OMA 

[118] 

Settling velocity tests were 

conducted in a 1.6 m height 

Plexiglass settling column. 

Settling velocities between 1.0-

11.2mm/s, with the majority 

being in the range between 1.0-

3.0mm/s. 

[41] 
Sediment concentration 

influences settling velocity 

The higher concentration of 

suspended sediment (10 vs. 50 

mg/L), the greater settling 

velocity and effective particle 

density  

[40] 

To explore the effect of 

clay type on OMA 

structure and settling 

velocity by using the 

LabSFLOC-2 system and 

digital microscopy 

For low stickiness Kaolinite clay, 

the OMA settling velocity was 

about a factor of two smaller than 

the pure Kaolinite flocs; For high 

stickiness Bentonite clay, the 

OMA settling velocity was 

greater than the pure Bentonite 

flocs 

2.4 Modeling OMA Size Distribution 

 The size of OMA can vary from a few micrometres to hundreds, even 

thousands of micrometres [33, 108, 112, 113]. The range of sizes of OMA 

illustrates the complexity of OMA formation. This complexity encouraged 

scientists to develop sophisticated numerical models to predict how OMA form and 
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subsequently transported. However, modelling OMA formation and transport is 

still at an early stage and the ability of the models to accurately predict either 

process is limited. In most oil spill models, only the ratio of mineral-stabilized oil 

is computed from standard equilibrium partitioning theory (by using a 

dimensionless coefficient), and the concentration of suspended particle matter in 

the water column is just estimated [6]. Therefore, there is still a need to develop 

even more advanced OMA models that can be incorporated into existing oil spill 

models. 

 With regards to modelling OMA formation, the population balance equation, 

based on collision theory between oil droplets and suspended sediment materials, 

is currently widely used [15, 29, 119–122]. The population balance equation for 

particle collision due to Brownian motion was first proposed by Smoluchowski 

(1918) and is listed as Equation (1) in Table 2.3. After Smoluchowski developed 

their equation, other physical mechanisms, such as shear turbulence and differential 

settling, were included in the modelling (Equation (2) in Table 2.3) [124]. Sterling 

et al. (2004) extended the population balance equation to simulate the changes in 

particle size distribution and density due to aggregation (Equations (3) and (4) in 

Table 2.3). Sterling et al. (2004) conducted batch flocculation experiments and 

introduced an algorithm to estimate homogeneous collision efficiency values 

( 𝛼𝐻𝑂𝑀𝑂 ) to account for the effects of particle types on OMA formation. 

Furthermore, Sterling et al. (2004) found that 𝛼𝐻𝑂𝑀𝑂 is greater for clay (0.7) and 

crude oil (0.3) compared to silica (0.01); thus, they classified clay and crude oil as 

cohesive particles and classified silica as a non-cohesive particle. In addition, they 

https://www.mdpi.com/2077-1312/10/5/610#table_body_display_jmse-10-00610-t003
https://www.mdpi.com/2077-1312/10/5/610#table_body_display_jmse-10-00610-t003
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found that heterogeneous collision efficiency values (𝛼𝐻𝐸𝑀𝑂) is similar for oil-clay 

(0.4) and oil-silica (0.3), suggesting that crude oil increases the aggregation of non-

cohesive silica particles [15]. However, the Sterling et al.’s model utilized a looped 

term to represent oil–oil, oil–particle, and particle–particle interactions, mainly 

because the laboratory operations probably could not distinguish between the 

interactions. Moreover, Sterling et al. (2004) did not include an OMA breakup 

process in their model.  

 Same as Sterling et al.’s model, breakup is also neglected in several other 

OMA formation models [119, 122, 125, 126]. For instance, Bandara et al. (2011) 

developed a numerical model by using a three-dimensional (3D) advection-

diffusion equation to simulate oil-sediment interaction (Equation (5) in Table 2.3). 

They used the Lagrangian Parcel (LP) method to reduce their program size and to 

operate more efficiently. Bandara et al.’s simulations showed that up to 65% of 

released oil can be removed from the water column as OMA. When oil droplets and 

sediment particles are smaller than 0.1 mm, more OMA form. Bandara et al. (2021) 

also stated that their lacking knowledge of oil sediment aggregation collision 

efficiencies, sediment aggregation efficiencies, and oil partitioning led to some 

uncertainty in their results, and more laboratory and field experimental work/data 

would further test and improve their model’s adequacy [119]. Zhao et al. (2016) 

developed the A-DROP model, based on the population balance equation, by 

introducing a new formulation of oil-mineral coagulation efficiency (Equation (6) 

in Table 2.3) to account for the coasted areas on the surface of oil droplets, the 

effects of hydrophobicity, and the ratio of particle to droplet size. The Zhao et al. 
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(2016) formulation satisfactorily estimates oil trapping efficiency by incorporating 

the effects of shape and packing on OMA coagulation. They suggested that 

increasing particle concentration in the swash zone quickens oil–particle interaction, 

but the amount of oil trapped in the OMA does not correspond to the increasing 

particle concentration [122]. Recently, Cui et al. (2021) developed an OMA 

formation model, OPAMOD, within the Coupled Ocean-Atmosphere-Wave-and-

Sediment Transport (COAWST) modelling system, by modifying the existing 

population balance equation (Figure 2.2). The authors performed sensitivity tests 

on fractal dimension and collision efficiency by using the OPAMOD model. They 

stated that fractal dimension is important to OMA size distribution because fractal 

dimension influences the effective particle density; however, collision efficiency 

has less impact on the size distribution [125].  

Although the size distribution of OMA is successfully simulated by the 

models that do not include disaggregation, the OMA breakup process is still 

valuable when modelling OMA formation. Khelifa’s group developed a Monte 

Carlo simulation model (involving disaggregation) to predict OMA size 

distribution based on a population balance equation [120, 121, 127]. The Monte 

Carlo method (Equation (7) in Table 2.3) is applied as a probabilistic tool to solve 

the model. The specific event, aggregation or disaggregation, is selected randomly 

at each step during the simulation. The simulation stops once equilibrium is reached. 

Khelifa et al. (2005) suggested that it is appropriate to integrate their new breakage 

model to describe oil droplet formation. The maximum permissible size of the oil 

droplets in their simulation is the key physical input of the model and can be 
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upgraded by integrating an empirical-theoretical model [127]. We note that this 

model predicts the particle size distribution well, but information about oil (mass) 

in OMA, needed for further risk assessment, is unavailable. In addition, the 

conceptual time to run the Khelifa et al. model using the Monte Carlo method is 

unknown. 

In addition to the size distribution of the OMA, other parameters important 

to OMA formation, such as the time scale of formation [128,129], oil trapping 

efficiency [28, 130, 131], and oil sinking rate [132], have been studied and 

predicted. Hill et al. (2002) presented Equation (8) (Table 2.3) to define the time 

required to form stable OMA. They stated that OMA formation can occur over a 

short time scale. Among all their simulations, about 7% of the required times were 

shorter than 30 s, and 10% were longer than a day. In their modelling, when 

sediment concentration was high and droplets were large, the OMA formation time 

was the shortest. Hill et al. (2002) also suggested that their equation is suitable for 

the coastal zone. Ajijolaiya et al. (2006) developed Equation (9) (Table 2.3) to 

describe oil trapping efficiency. They found that trapping efficiency increases with 

improving sediment concentration and decreasing sediment size. Ajijolaiya et al. 

(2006) also stated that maximum trapping efficiency occurs when the range of 

sediment concentrations is near unity. Wang et al. (2019) conducted several 

experiments and developed an empirical equation to calculate oil trapping 

efficiency as a function of sediment concentrations (Equation (10) in Table 2.3). 

Their simulation results indicated that the formation rate of OMA depends on 

sediment concentration, mixing time, salinity, and the use of a chemical dispersant 
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in the water column. Wu et al. (2016) developed a simple approach to estimate the 

sinking rate of spilled diluted bitumen (Equation (11) in Table 2.3). They suggested 

that the sinking rate is impacted by the density of oil, sediment, water, and oil size 

distribution. 

 

Figure 2.2 Schematic of OMA formation model adapted from Cui et al. (2021).  

2.5 OMA Transport Modelling 

The transport of OMA is critically important to oil spill modelling. Some 

models have already been developed to simulate OMA transport 

[14,15,119,126,133–137]. The fate and transport of OMA have been typically 

modeled by implementing the advection-diffusion equation and a random walk 

model. For example, as we noted before, Bandara et al. (2011) used the Lagrangian 

Parcel (LP) method to develop a model based on the 3D advection-diffusion 

equation to predict the fate and transport of OMA. The model simulates six 

processes: advection and diffusion of oil and sediments, dissolution of oil, 

aggregation of sediments, aggregation of oil-sediment particles, oil partitioning, 

and deposition of sediment and OMA. Unfortunately, Bandara et al. (2011) made 
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some assumptions due to their lacking knowledge of oil sediment aggregation 

efficiencies, sediment aggregation efficiencies, and oil partitioning [119].  

Niu and Lee (2013) used a 3D random walk model to simulate the transport 

of OMA under hydrodynamic conditions involving wave-induced velocities, 

random velocities due to turbulence, and a settling velocity due to gravity (Figure 

2.3). In their model, they use a fixed number of particles to represent the OMA at 

the spill site at the beginning of a simulation. Then, the particles move on each 

subsequent time-step, according to Lagrangian motion, while the OMA size 

distribution is artificially defined. [135]. Jones and Garcia (2018) avoided having 

to artificially define the size distribution by combining the random walk model with 

the A-DROP model to simulate the fate and transport of OMA. The Jones and 

Garcia’s model simulates the interactions between oil droplets and sediments 

during their residence time in a river, which informs the user under what conditions 

the oil is more likely to coagulate with suspended sediment. However, Jones and 

Garcia neglected the re-entrainment of settled OMA [126].  

The settling velocity of OMA is one of the most important parameters when 

modelling OMA transport. There are equations that calculate settling velocity [119, 

122, 133, 135, 138]. Winterwerp (1998) developed the most widely used settling 

velocity equation basing it on Stokes’ formula (Eq. (12) in Table 2.4). Winterwerp’s 

equation is suitable for spherical, massive particles in Stokes’s regime (𝑅𝑒 ≤ 1). 

This settling velocity equation integrates a particle tracking model or an advection-

diffusion equation. Integrated model’s simulation results compare favorably with 

laboratory observations [119, 139]. Later, Zhao et al. (2015) improved the 
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Winterwerp’s equation by expanding the applicable flows (1 ≤ 𝑅𝑒 ≤ 104  and 

𝑅𝑒 > 104) as shown in Equation (13) (Table 2.4). Zhao et al.’s predicted settling 

velocity is also consistent with experimental data [122, 140]. Niu et al. (2011) 

developed a simple regression equation (Equation (14) in Table 2.4) to simulate the 

settling velocity relative to OMA diameter. Niu et al. (2011) also provide equations 

to estimate the concentration of the settled OMA and the oil content in each particle 

as shown in Equation (15) in Table 2.4 [135, 141]. However, the Niu et al.’s 

equations are only suitable for specific conditions. 

 

Figure 2.3 Flowchart of the model system adapted from Niu et al. (2011) with 

permission. 
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Table 2.3 A summary of equations relevant to the modelling of oil-mineral-aggregates formation. 

Eq. # Equations Denote References 

1 𝜃 =
𝑑𝑛𝑘
𝑑𝑡

=
1

2
∑ 𝛼𝛽(𝑖, 𝑗)𝑛𝑖𝑛𝑗 − 𝑛𝑘∑𝛼𝛽(𝑖, 𝑘)𝑛𝑖

∞

𝑖=1𝑖+𝑗=𝑘

 

𝛼 is the collision efficiency, 𝛽 is 

the collision frequency, and 𝑛𝑖 , 
𝑛𝑗  are the particle concentrations 

for the particle of size i and j 

respectively. 

[123] 

2 

𝛽 = 𝛽𝐵𝑟 + 𝛽𝑠ℎ + 𝛽𝑑𝑠 

𝛽𝐵𝑟 =
2𝑘𝑇

3𝜇
(
1

𝑑𝑖
+
1

𝑑𝑗
)(𝑑𝑖 + 𝑑𝑗) 

𝛽𝑠ℎ =
𝐺

6
(𝑑𝑖 + 𝑑𝑗)

3 

𝐺 = (
𝜀

𝜇
)
0.5

 

𝛽𝑑𝑠 =
𝜋

4
(𝑑𝑖 + 𝑑𝑗)

2|(𝑈𝑖 − 𝑈𝑗)| 

  

𝛽𝐵𝑟 , 𝛽𝑠ℎ , and 𝛽𝑑𝑠  are the 

collision efficiency due to 

Brownian motion, fluid shear, 

differential sedimentation 

respectively. k is the Boltzman’s 

constant; T is the absolute 

temperature, and 𝜇 is the 

dynamic viscosity of the media, 

𝑑𝑖  and 𝑑𝑗  are the effective 

particle diameters. 𝐺  is the root 

mean square of the velocity 

gradient. 𝜀 is the dissipation rate. 

𝑈𝑖 and 𝑈𝑗 are the settling velocity 

of the two collided entities of size 

𝑑𝑖 and 𝑑𝑗. 

[15, 122, 133] 

 

3 
𝑑𝑛𝑘,𝑞

𝑑𝑡
= 𝐷𝑧

𝜕2𝑛𝑘,𝑞

𝜕𝑍2
− 𝑤𝑘,𝑞

𝜕𝑛𝑘,𝑞

𝜕𝑍
+ 𝜃𝑘,𝑞 

𝑛𝑘,𝑞  is the particle size 

distribution, k is particle volume, 

q is effective density; z is the 

vertical distance; 𝐷𝑧  is the 

vertical dispersion coefficient; 

𝑤𝑘,𝑞 is the settling velocity; 𝜃𝑘,𝑞 

is the interaction term due to 

coagulation. 

[133] 
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Eq. # Equations Denote References 

4 

𝛼𝑜𝑏𝑠(𝑜, 𝑝) = 𝛼𝐻𝑂𝑀𝑂,1(𝑠𝑓1,𝑜)(𝑠𝑓1,𝑝)

− 𝛼𝐻𝑂𝑀𝑂,2(𝑠𝑓2,𝑜)(𝑠𝑓2,𝑝)

− 𝛼𝐻𝐸𝑇,1−2(𝑠𝑓1,𝑜𝑠𝑓2,𝑝 − 𝑠𝑓1,𝑝𝑠𝑓2,𝑜) 

sf1,o, sf2,o, sf1,p, and sf2,p are 

surface fractions of constituent 

particles 1 and 2 in aggregate 

with density o and constituent 

particles 1 and 2 in aggregate 

with density p; 𝛼𝐻𝑂𝑀𝑂,1 , 

𝛼𝐻𝑂𝑀𝑂,2 , and 𝛼𝐻𝐸𝑇  are 

probabilities of successful 

aggregation through contacts of 

floc constituent types 1-1, 2-2, 

and 1-2. 

[15] 

5 
𝜕𝐶𝑖
𝜕𝑡

+
𝜕(𝑢𝑘𝐶𝑖)

𝜕𝑥𝑘
=
𝜕(𝐸𝑘

𝜕𝐶𝑖
𝜕𝑥𝑘

)

𝜕𝑥𝑘
+ 𝑤𝑠𝑖

𝜕𝐶𝑖
𝜕𝑥3

+ 𝑆𝑖,𝐴𝑔𝑔

+ 𝑆𝑖,𝐷𝑒 + 𝑆𝑖,𝐴𝑏𝑠 

For i=1-5; correspond to 5 

species mentioned in 

assumptions; k = 1, 2, 3; 

correspond to directions of x, y, z; 

𝐶𝑖 = volumetric concentration of 

the ith species; 𝑢𝑘  = component 

of current velocity in x, y, and z 

directions; 𝑤𝑠𝑖  is the 

buoyant/settling velocity of the 

ith species; 𝐸𝑘  is the diffusion 

coefficient of kth direction; 

𝑆𝑖,𝐴𝑔𝑔 =
𝜕𝐶𝑖

𝜕𝑡|𝐴𝑔𝑔
 = source/sink 

terms of the ith species due to 

aggregation; 𝑆𝑖,𝐷𝑒 =
𝜕𝐶𝑖

𝜕𝑡|𝐷𝑒
 = sink 

term due to deposition of the ith 

species; and 𝑆𝑖,𝐴𝑏𝑠  = source/sink 

term for the ith species due to 

partitioning.  

[119] 
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Eq. # Equations Denote References 

6 𝛼 (𝑡) = 𝛼𝑠𝑡𝑎 (1 −
∑𝐴𝑝−𝑝𝑟𝑜𝑗  𝑖𝑛 𝑂𝑀𝐴𝑠

𝐹𝑆𝑃 ∑𝐴𝑜
) 

𝛼𝑠𝑡𝑎  is the stability ratio, 𝐴𝑜  is 

the surface area of an oil droplet; 

𝐴𝑝−𝑝𝑟𝑜𝑗 is the projection area of 

particles on the droplet surface 

when an OMA is formed; and 𝐹𝑆𝑃 

is a factor to account for particle 

shape and packing effects on the 

coagulation process. 

[122] 

7 𝑃𝑏𝑟𝑘 = {

0,   𝑛𝑏 = 0
0.5,  𝑛𝑏 = 1  
1,   𝑛𝑏 > 1

 

  𝑛𝑏  is the number of droplets 

larger than the maximum allowed 

𝐷𝑚𝑎𝑥 . A breakage process is 

chosen when two or more 

droplets larger than 𝐷𝑚𝑎𝑥 . 

𝑃𝑎𝑔𝑔 = 1 − 𝑃𝑏𝑟𝑘 . A random 

number rl is selected from a 

uniform distribution between 1 

and 0. A breakage event is 

selected if 𝑃𝑏𝑟𝑘 ≥ rl, otherwise 

an aggregation event is selected. 

[120, 121, 127] 

8 
𝑑𝑁𝑠
𝑑𝑡

= −0.16𝛼𝑜𝑠(𝐷𝑠 + 𝐷𝑜)
3(𝜀/𝑣)

1
2𝑁𝑠𝑁𝑜 

𝐷𝑠 is sediment diameter; 𝐷𝑜 is oil 

droplet diameter; 𝑁𝑠  is OMA 

number concentration. 𝛼𝑜𝑠 is the 

collision efficiency; 𝜀  is the 

dissipation rate; v is the kinematic 

viscosity of water. 

[128] 

9 𝐸 =
𝐸𝑚𝑎𝑥(

𝐶𝑠
𝐶𝑠50

)𝑛

1 + (
𝐶𝑠
𝐶𝑠50

)𝑛
 

𝐸𝑚𝑎𝑥  is the maximum possible 

trapping efficiency, 𝐶𝑠  is the 

mass concentration of sediment, 

𝐶𝑠50  is the sediment 

concentration at 50% trapping 

efficiency, n is the shape of the 

trapping efficiency versus 

[130] 
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Eq. # Equations Denote References 

sediment concentration curve. 

Least-squares fitting of the 

equation to the experiment data 

yield n = 3, and 𝐸𝑚𝑎𝑥 = 85%. 

10 𝐸 =
(𝐾𝑑/10

3) × 𝑆𝑃𝑀

1 + (𝐾𝑑/103) × 𝑆𝑃𝑀
 

E is the oil trapping efficiency; 

𝐾𝑑  is a distribution coefficient; 

SPM is the sediment 

concentration 

[131] 

11 𝑆𝑅 =
𝑉𝑠
𝑉
=
𝑟𝑐
4−𝑠 − 𝑟𝑚𝑖𝑛

4−𝑠

𝑟𝑚𝑎𝑥
4−𝑠 − 𝑟𝑚𝑖𝑛

4−𝑠 × 100% 

SR is the oil sinking ratio, 𝑟𝑐  is 
1
2⁄  of the critical oil droplets 

size, 𝑟𝑚𝑎𝑥  and 𝑟𝑚𝑖𝑛  are the 

maximum and minimum radii of 

the oil droplets, s = 2.3 based on 

laboratory data. 

[132] 

Table 2.4 Equations are used to estimate the settling velocity of oil-mineral-aggregates. 

Eq. # Equations Denote References 

12 
𝑤𝑠 =

(𝜌𝑠 − 𝜌𝑤)𝑔𝐷
2

18𝜇
 

𝑤𝑠 is the settling velocity of OMA, 𝐷 is the diameter of 

OMA, 𝜌𝑤 and 𝜇 is the density and viscosity of the liquid 

respectively, 𝜌𝑠 is the OMA density, and 𝑔 is the gravity.  

[138] 

13 𝑤𝑠 = 𝑒𝐷𝑓 𝑒 and 𝑓 are regression coefficients. [141] 
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14 

𝐶𝑠𝑒𝑡𝑡𝑙𝑒𝑑 =∑
𝑁𝑖 × 𝑃𝑀𝑖

𝐴𝑐𝑒𝑙𝑙

𝑘

𝑖=1

 

𝑃𝑀𝑖 =
𝑀𝑠𝑝𝑖𝑙𝑙𝑒𝑑 × 𝑃𝑠𝑒𝑡𝑡𝑙𝑒𝑑 × 𝑝𝑖

𝑛𝑖
 

𝑉𝑜𝑖𝑙 =
𝜌𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 − 𝜌𝑂𝑀𝐴
𝜌𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 − 𝜌𝑜𝑖𝑙

𝑉𝑂𝑀𝐴 

k is the number of particle size classes, 𝑁𝑖 is the number 

of the 𝑖𝑡ℎ -size class particles in the user specified cell, 

𝐴𝑐𝑒𝑙𝑙 is the area of the cell, and 𝑃𝑀𝑖is the amount of oil 

per particle for the 𝑖𝑡ℎ-class particles. 𝑀𝑠𝑝𝑖𝑙𝑙𝑒𝑑 is the total 

mass of spilled oil, 𝑃𝑠𝑠𝑡𝑡𝑙𝑒𝑑 is the percentage of spilled oil 

that may be transferred to sediment, 𝑛𝑖 is the number of 

particles used in the simulation for class i, and 𝑝𝑖 is the 

fraction of settled oil (in percentage) carried by the 

particle class. 𝑉𝑜𝑖𝑙 is the volume of oil in an OMA of class 

i, 𝑉𝑂𝑀𝐴 is the volume of OMA, 𝜌𝑜𝑖𝑙, 𝜌𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡, and 𝜌𝑂𝑀𝐴 

are the density of oil, sediment, and OMA respectively. 

  

  

[134] 

15 

𝑤𝑠 = √
4𝑔|𝜌𝑠 − 𝜌𝑤|𝐷

3𝐶𝐷𝜌𝑤
 

If  𝑅𝑒 < 1, 𝐶𝐷 =
24

𝑅𝑒
 

If 𝑅𝑒 > 104, 𝐶𝐷 = 0.34 𝑡𝑜 0.4 

𝐶𝐷 is the drag coefficient, 𝑅𝑒 is the Reynold number. [140] 
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2.6 Finite-Time Lyapunov Exponent (FTLE) 

Several advanced methods have been proposed to understand particle 

transport from Lagrangian particle trajectories in realistic ocean model solutions 

[60–63]. However, obtaining Finite-Time Lyapunov Exponent (FTLE) fields and 

visualizing FTLE ridges remains a powerful tool for investigating particle 

movement in complex flows. FTLE was first proposed by Lorenz (1963) based on 

the Lyapunov Exponent. Later, Haller (2001, 2002) used the ridges of the FTLE 

field to derive the Lagrangian Coherent Systems (LCS), representing the 

boundaries between attracting or repelling particles in flows. The scalar FTLE 

values indicate the convergence and divergence rate between neighboring particles 

after a given interval of time at a given location in a time-varying flow field [143]. 

High FTLE values are shown as ridges in the map of the FTLE field and act as the 

mathematical definition of LCS, representing the most kinematically active 

material lines of the flow fields [145, 146], so no flux can cross them. In other 

words, LCS lines represent transport boundaries in the flow field. Therefore, such 

methods not only forecast the trajectory of particles but also predict the structures 

that organize the entire flow, and are important in determining transport 

mechanisms in unsteady flows [147, 148].  

FTLE and LCS have been widely used to understand the unsteady flow 

transport behavior [143,144,149–155]. For instance, Huhn et al. (2012) compared 

the trajectories of surface drifters with LCS lines, aiming to study the horizontal 

Lagrangian surface transport in the Ria de Vigo, an estuary in NW Spain with tidal 

and wind-driven dynamic. They reported that the drifters’ trajectories were in well 
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agreement with the predicted results in two out of four cases [153]. Moreover, 

FTLE ridges computed from the model velocity fields were used to mark transport 

barriers for the drifters, indicating that the FTLE ridges can adequately represent 

the general circulation in the estuary [153].  

FTLE and LCS were also successfully applied to understand the distribution 

and fate of nutrients, pollution, suspended sediments, and other waterborne 

planktonic biotas in coastal oceans [156–158]. For example, Fiorentino et al. (2012) 

used FTLE to understand the influence of tidal mixing on coastal water quality in 

Hobie Beach. The LCS was extracted from the velocity field produced by a coastal 

ocean circulation model and compared with the satellite-tracked drifter [155]. They 

found that the drifter trajectories were in well agreement with the LCSs results 

[155]. They also provided a likely explanation for the high microbial level in Hobie 

Beach based on the LCS analysis [155]. Wu et al. (2017) used the nonlinear 

dynamical system theory to compute the FTLE field, which was then adapted to 

discuss the spatial features of the dispersion rate due to kelp beds in the Hecate 

Strait [157]. The results suggested that the presence of kelp beds significantly 

influenced the spatial structures and FTLE values [157]. The location of FTLE 

ridges was mainly associated with the sizes of kelp beds rather than the surrounding 

islands [157]. Moreover, the magnitude of FTLE in the case of kelp effects was 

lower than that without kelp drag. They concluded that the dispersion rate (high 

FTLE values) was in a reverse relationship to the interiors’ kelp density, but in a 

positive relationship to the edges’ kelp density [157]. Ku and Hwang (2018) studied 

the influence of vertical mixing and stratification on the transport of suspended 
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sediment and aquatic micro-organisms. They compared the FTLE results with the 

conventional Lagrangian particle trajectories and observed that small particles' 

transport and dispersion patterns were strongly related to the FTLE analysis [156]. 

Particles were almost trapped and thus transported slowly in the region of the low 

FELE field [156]. 

Furthermore, FTLE was used to identify the atmospheric transport 

pathways to understand the effects of pollutants on weather, climate, and human 

health by Nolan et al. (2020). Six chemical species, water vapor (H2O), sulfur 

dioxide (SO2), ozone (O3), sulfate (SO4
2-), nitrogen dioxide (NO2), and sodium 

(Na+), were studied [159]. FTLE analysis revealed that the transport pathway of 

water vapor, sulfur dioxide, Ozone, and sulfate was strongly correlated in the 

troposphere. In contrast, the near surface winds mainly influenced the transport 

pathway of nitrogen dioxide [159]. Suara et al. (2020) used FTLE to describe the 

fate of floating material in a coastal tidal embayment, Moreton Bay. The results 

indicated that FTLE was able to unveil the likely pathways for floating transport 

[160]. The flow structure and the location of saddle points varied in different tidal 

phases [160]. The authors also studied the effects of wind on the LCS and suggested 

that wind increased the contraction and expansion rate in the vicinity of the barrier, 

decreased the mixing strength, and changed the particle transport directions [160]. 

Ghosh et al. (2021) utilized FTLT to predict areas of spontaneous material 

accumulation in Moreton Bay. They identified 11 potential areas of spontaneous 

and persistent accumulation of material in Moreton Bay based on the frequency of 

FTLE. The authors compared the FTLE results with the debris collected data and 
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found that the identified areas were consistent with the recorded debris 

accumulation regions [161]. 

2.7 Machine Learning Algorithms 

Machine learning, a subset of artificial intelligence, can construct predictive 

and empirical classification models without making assumptions about the data 

distribution [162]. This method is particularly useful for addressing specific issues 

when the theoretical understanding of a problem is limited, even if a large number 

of observations are available [162]. Machine learning tasks usually be categorized 

as supervised, unsupervised, reinforcement learning, and deep learning [163]. 

Supervised learning is a type of machine learning algorithm that uses labeled data 

to learn the relationship between input-output pairs. These algorithms can handle 

many input variables and a single output variable [164]. Supervised learning is 

performed for two main tasks: classification, which predicts categorical values, and 

regression, which predicts continuous values [163]. Conversely, unsupervised 

learning is a type of machine learning that trains algorithms using unclassified and 

unlabeled data [163]. Without any guidance, it aims to identify patterns, 

similarities, and differences in the data [165]. Unsupervised learning is mainly used 

for clustering, dimensionality reduction, and anomaly detection [163]. 

Reinforcement learning is a slightly differs from supervised and unsupervised 

learning. This method focuses on how software agents can optimize their decision-

making in an environment by taking actions that maximize cumulative rewards over 

time. In this learning paradigm, an agent learns by performing actions, observing 

the consequences, and drawing inferences from the results to maximize a specific 
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notion of cumulative reward [163,165]. Deep learning models have multiple layers 

that enable progressive learning, and they include both supervised and 

unsupervised algorithms [166]. Deep learning utilizes artificial neural networks, 

inspired by the human brain's structure and function. These networks come in 

various forms, such as recurrent, convolutional, and feedforward neural networks 

[163]. 

Machine learning algorithms enable data-driven decision-making that can 

be integrated into modeling systems to address gaps and reduce demands on human 

experts in various research, such as oceanography [167–170], environmental 

monitoring [171–173], and oil spill research [39,162,166,174–182]. One of the 

commonly used types of machine learning in oil spill research is supervised 

learning [180,183–187]. For instance, Liu et al. (2019) employed support vector 

machine incorporated with texture analysis and adaptive thresholding on X-band 

marine radar images to bring about semi-automatic oil spill detection method. They 

indicated that this method enables accurate, consistent, and semi-automatic 

extraction of oil spills without manual threshold setting by testing on radar images 

from a 2010 oil spill accident in Dalian, China [183]. Conceição et al. (2021) 

developed open-source procedures using two random forest classifiers to 

effectively deal with oil spills. The first classifier uses an ocean synthetic aperture 

radar image to categorize biofilm and multi-containing oil, while the second, Radar 

Image Oil Spill Seeker (RIOSS), targets oil spills on maritime surfaces using 

Sentinel-l SAR images. The algorithms were highly accurate and improved by 90% 

with the use of RIOSS [180].  
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Another commonly used machine learning type is deep learning [174, 181, 

182, 188–191]. For example, De Kerf et al. (2020) employed seven convolutional 

neural network segmentation architectures combined with eight different feature 

extractors to find the best combination to detect the oil spill in port environment. 

They indicated that the combination of Mobilenet Feature extractor and fully 

convolutional network architecture achieve the best performance with the mean 

Intersection over Union of 89% [174]. Seydi et al. (2021) a new oil spill detection 

framework based on a multiscale multidimensional residual kernel convolution 

neural network was developed for optical remote sensing imagery. They indicated 

this method has high potential for oil spill detection as more than 95% accuracy 

rate and less than 5% of false alarm rate were achieved when compared with the 

imagery acquired over the Gulf of Mexico [191]. 

Researchers also compare the efficiency of using these two types of 

machine learning algorithms [166,176,192]. For instance, Li et al. (2021) 

investigated the identification of oil spill types using high-resolution hyperspectral 

sensors and four machine learning algorithms, including supervised learning of 

random forest and support vector machine, and deep learning of deep neural 

network and differential pooling deep neural network. These four models were 

compared in terms of prediction accuracy and computational complexity. Results 

suggest that the two deep learning models achieve the most accurate prediction at 

the cost of more computation, while the support vector machine or proposed 

differential pooling deep neural network may be more favorable when training time 

is limited [176]. Mohammadiun et al. (2022) compares various regression-based 
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machine learning techniques, including artificial neural networks, gaussian process 

regression, and support vector regression, to develop decision-support models for 

oil spill response methods selection. Using a small dataset, optimized fuzzy 

decision trees models and gaussian process regression showed the best prediction 

power, and the Bayesian regularization algorithm improved artificial neural 

network performance. These findings can aid in timely and effective oil spill 

response methods selection in challenging Arctic/subarctic conditions [192]. 

Machine learning algorithms such as decision trees, artificial neural 

networks, and support vector machines have shown to be effective in analyzing oil 

spill trajectory on water surface and classifying spilled oil type with high accuracy 

and efficiency. This provides valuable insights and predictions to inform response 

strategies and mitigate environmental impacts. However, the use of machine 

learning algorithms for predicting oil spill weathering processes and oil transport 

in water column is still limited and requires further exploration and investigation. 

2.8 Summary  

 Although several efforts have been made to OMA-related research, there 

still some research gaps to be addressed. First, different studies have employed 

various laboratory methods and many studies lack replication, introducing 

considerable uncertainty in the results. Additionally, there is an absence of 

systematic analysis regarding the important factors and interaction effects using 

statistical methods. Furthermore, most empirical equations for estimating OMA 

size distribution and settling velocity rely heavily on collision-theory and Stokes’ 
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Law, which may not fully capture the complexity of the aggregation and settling 

process. Moreover, the use of machine learning algorithms for predicting oil spill 

weathering processes, such as OMA formation, and oil spill transport in water 

column is still limited and requires further exploration and investigation. As for the 

prediction of oil spill trajectory on water surface, the alternative approaches, such 

as the FTLE method, are required to predict the oil spill trajectory more accurately 

and efficiently. 
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Chapter 3: Materials and Methods 

3.1 OMA Formation Experiments  

 Crude oil from Iran with a density of 799.2 kg/m3 and viscosity of 61.1 cSt 

was used. For the mineral component, kaolinite and montmorillonite are 

widespread in nature and can be found in various environments, such as soils and 

sediments. Their abundance makes them readily available and cost-effective 

options for forming OMA [193]. Either kaolinite with a density of 2788.9 kg/m3 or 

montmorillonite with a density of 2172.5 kg/m3 was used, depending on the 

experimental conditions. Additionally, a chemical dispersant (namely, 

JAFIRSTTM001) was utilized, maintaining a dispersant-to-oil ratio (DOR) of 1:10, 

in compliance with the established experimental parameters. Prior research has 

demonstrated that this specific DOR is conducive to the effective formation of 

OMA [33].  

According to the literature, the formation of OMA could be influenced by 

the following seven factors: salinity, temperature, time, mixing energy, mixing ratio, 

clay type, and the presence/absence of dispersant. The experiments were designed 

using Screening Design in Minitab 19 software, and their levels are provided in 

Table 3.1. The 0℃ was used to simulate the winter water temperatures in most 

coastal area. The water temperatures of 15°C and 30°C were used to simulate the 

summer water temperatures in various coastal environments around the world. The 

15°C temperature is more representative of temperate coastal regions, such as the 

coastal areas of Northern Europe, the northeastern coast of the United States, and 
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the southern coast of Australia [194]. The 30°C temperature is more indicative of 

tropical and subtropical coastal regions, such as the Caribbean, the Gulf of Mexico, 

Southeast Asia, and the northern coast of Australia [194]. Furthermore, concerning 

salinity, 0 ppt was utilized to represent river water, while 17 ppt simulated coastal 

regions near river mouths, estuaries, or areas with substantial freshwater input. A 

salinity of 34 ppt was employed to emulate subtropical and tropical coastal regions. 

The mixing duration of 4 h and 6 h were demonstrated to successfully form OMAs 

in previous studies [32, 34, 195]. As time is a continuous factor, equal spacing 

between levels was implemented when designing the experiment using Screening 

Design; 8 h was selected to investigate the influence of extended time on OMA 

formation. Agitation speeds of 100, 130, and 160 rpm, which were shown to 

successfully form OMAs in prior literature [27, 32, 113] were also employed in this 

study. Oil/clay ratios of 1:2, 1:1, and 2:1 were examined by Sun et al. (2014) and 

Zhang et al. (2019), indicating that varying oil/clay ratios influenced oil trapping 

efficiency. Consequently, this study utilized these three distinct oil/clay ratios to 

determine their impact on OMA formation.  

Each experiment was conducted twice to reduce experimental errors, and 

the detailed experiment runs (18 × 2 runs) were provided in APPENDIX B Table 

S3.1. According to the experiment design, the aqueous solution (100 mL) was 

prepared by adding a certain amount of sea salt, depending on the salinity. 40 mg 

oil and 20 – 80 mg clay (depending on oil/clay ratio) were then loaded into a 250 

mL baffled flask containing the prepared aqueous solution. A temperature-

controllable shaker (Figure S3.1) was utilized to agitate the sample-containing flask 
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and form OMA. The shaking frequency of 100, 130, and 160 rpm (revolutions per 

minute), which can be approximately transferred to 15, 18, and 20 s-1 of share rate 

[197], were selected to form OMA. The frequency of sampling was every 60 min. 

Inverted microscopy (Figure S3.2) was employed to acquire the images to observe 

OMA structures, and the image processing software (ImageJ.exe) was then used to 

obtain the OMA size (area and perimeter). All the OMA samples were directly 

collected from the running experiment in real-time using wide-mouth (> 2mm) 

plastic pipettes to minimize the microscope slides without using a coverslip to 

prevent the samples from being squeezed. OMA samples were observed with a 20 

– 40 times zoom-in screen, and six images for each sample were captured for further 

analysis. An example of the acquired image is shown in Figure S3.3. 

Table 3.1 The level of factors of interest for oil-mineral-aggregate formation. 

Factors Level 

Temperature (°C) 0 15 30 

Salinity (ppt) 0 17 34 

Time (h) 4 6 8 

Agitation (rpm) 100 130 160 

Mixing ratio (oil/sand, w/w) 1:2 1:1 2:1 

Clay type Kaolinite Montmorillonite 

Presence of dispersant Yes No 

3.2 OMA Settling Velocity Measurement 

The pre-formed OMA was subjected to an overnight settling period, 

approximately 16 hours in duration, prior to collection for subsequent settling 
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experiments. This approach was necessitated by the challenges associated with 

collecting and identifying floating and neutrally buoyant OMA under magnified 

observation. The system of settling experiment is illustrated in Figure 3.1. The 

dimension of the settling column is 10×10×50 cm. The high-speed camera with a 

magnifying lens (18 times zoom-in), which can track the steady state particles, was 

positioned at 65 mm above the column base. The hemocytometer was used as the 

reference scale. About 5 L of the prepared aqueous solution was gently added into 

the settling column to prevent excessive bubbles on the inner column surface. Then, 

the settled OMA was collected by a wide mouth (> 2mm) plastic pipette from the 

baffled flask and transferred to the settling column smoothly. The high-speed 

camera acquired 40 pictures per second, and each stream lasted for 8 seconds, 

giving 240 continuous pictures within each stream. 100 – 150 streams were taken 

for each experiment. The acquired streams were then analyzed using the Revealer 

High-speed Video Target Tracking Measurement Software VL (RHSVTTMS-VL) 

to obtain the OMA settling velocity. The diameter of target OMA in streams was 

correspondingly quantified by using ImageJ.exe. The example of OMA settling 

velocity and size measurements are shown in Figure S3.4. 
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Figure 3.1 The scheme of the settling column experiment system. 

3.3 Traditional Empirical Prediction of OMA Settling Velocity 

 The studies on the traditional empirical prediction of OMA’s settling 

velocity were minimal in the literature. Thus, the prediction on the similar and more 

thoroughly studied process, settling of fine-grained suspended flocs, can serve as a 

valuable reference for OMA’s settling velocity prediction. For most floc settling 

velocity formulas, the effective density of particles (OMA in this study) is one of 

the necessary input parameters. Therefore, seven equations were selected to 
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calculate the OMA effective density, as shown in Table 3.2. The calculated density 

then served as an input parameter when employing the flocs settling velocity 

prediction equations (nine equations), as shown in Table 3.3, to estimate the OMA 

settling velocity. Therefore, there are 7 × 9 groups of equations to calculate the 

OMA settling velocity by incorporating the effective density estimation equation. 
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Table 3.2 Empirical effective density prediction formulas. 

# Equations Comments References 

1 𝜌𝑎 − 𝜌𝑤 = 0.0013𝐷𝑎
−0.9 

Da is in cm and the densities in 

g cm−3 
[198] 

2 𝜌𝑎 − 𝜌𝑤 = (𝜌𝑠 − 𝜌𝑤)(
𝐷𝑎
𝑑
)−0.9  [199] 

3 𝜌𝑎 − 𝜌𝑤 =

{
 

 
1     𝑓𝑜𝑟 𝐷𝑎 ≤ 1 𝑢𝑚

∝ 𝐷𝑎
−0.42 𝑓𝑜𝑟 1 ≤ 𝐷𝑎 ≤ 50 𝑢𝑚

      ∝ 𝐷𝑎
−1.3  𝑓𝑜𝑟 50 ≤ 𝐷𝑎 ≤ 1200 𝑢𝑚

0.003  𝑓𝑜𝑟 𝐷𝑎 ≥ 1200 𝑢𝑚

 
Da is in μm and the densities in 

g cm−3 
[200] 

4 𝜌𝑎 − 𝜌𝑤 = (𝜌𝑠 − 𝜌𝑤)(
𝐷𝑎
𝑑
)𝐹−3 F=1.6, 2, 2.4 [201] 

5 𝜌𝑎 − 𝜌𝑤 = 7971𝐷𝑎
−1.19 Da is in μm [202] 

6 

𝜌𝑎 − 𝜌𝑤 = (𝜌𝑠 − 𝜌𝑤)(
𝐷𝑎
𝑑
)3−𝐷𝑓 

𝐷𝑓 = {
−0.0047𝑑 + 3.0183     𝑑 ≤ 50𝑢𝑚 
−0.0007𝑑 + 2.7529      𝑑 > 50𝑢𝑚

 

 [203] 

7 𝜌𝑎 − 𝜌𝑤 = 𝑏𝑑𝑓
𝐷𝑓−3𝑑𝑝

3−𝐷𝑓(𝜌𝑠 − 𝜌𝑤) 
b=0.78; dp=7.5 um; Df=2.33, 

2.61, 2.83 
[204] 
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Table 3.3 Empirical settling velocity prediction equations. 

# Equations Comments References 

1 

𝑤𝑠

=

{
 
 

 
 

𝑣𝐷∗
3

18𝐷
                   𝑓𝑜𝑟 𝐷∗ ≤ 16.187

10𝑣

𝐷
[√1 + 0.01𝐷∗ − 1]    𝑓𝑜𝑟 16.187 < 𝐷∗ ≤ 16187

1.1𝑣𝐷∗
1.5

𝐷
          𝑓𝑜𝑟 𝐷∗ > 16187

 
 [205] 

2 𝑤𝑠 =
𝑣

𝐷
(√10.362 + 1.049𝐷∗3 − 10.36) 𝐷∗ = 𝐷[

∆𝑔

𝑣2
]
1
3 [206] 

3 𝑤𝑠 =
𝑣

𝐷
(√25 + 1.2𝐷∗2 − 5)

1.5 ∆=
𝜌𝑠
𝜌𝑤

− 1 [207] 

4 𝑤𝑠 = 0.004𝑑0.77  [202] 

5 𝑤𝑠 =
𝑣

𝑑
[√
1

4
(
𝐴

𝐵
)
2
𝑚 + (

4

3

𝑑∗3

𝐵
)
1
𝑚 −

1

2
(
𝐴

𝐵
)
1
𝑚]𝑚 

a,b,m=24, 0.4, 2; 24, 1.5, 1; 

26.4,1.27,1; 32,1,1.5 
[208] 

6 𝑤𝑠 =

{
 

 
0.033𝑣

𝐷
(
∆𝑔𝐷3

𝑣2
)0.963           𝑓𝑜𝑟 𝐷∗ ≤ 10 

0.51𝑣

𝐷
(
∆𝑔𝐷3

𝑣2
)0.535           𝑓𝑜𝑟 𝐷∗ > 10

  [209] 

7 𝑤𝑠 =
37.8∆𝐷𝑛 + 3780∆𝐷𝑛

2

0.383 + 10000∆𝑣 + 100∆2𝐷𝑛
  [210] 

8 𝑤𝑠 =
(𝜌𝑎 − 𝜌𝑤) ∗ 𝑔 ∗ 𝐷

2

18 ∗ 𝜌𝑤 ∗ 𝑣 ∗ 𝑓(𝑅𝑒)
 𝑓(𝑅𝑒) =

1

(1 + 0.1875 ∗ 𝑅𝑒)
 [40] 
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𝑅𝑒 =
(𝜌𝑎 − 𝜌𝑤) ∗ 𝑤𝑠 ∗ 𝐷

2

𝜌𝑤 ∗ 𝑣
 

9 𝑤𝑠 =
10𝑣

𝐷
[(1 +

0.01∆𝑔𝐷3

𝑣2
)

0.5

− 1]  [22] 
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3.4 Machine Learning Prediction 

Tree-based machine learning algorithms, Random Forest (RF), Gradient 

Boost Regression (GBR), and Adaptive Boosting (AdaBoost), were employed to 

estimate OMA median diameter and OMA settling velocity in the present work. 

The selection of these algorithms was based on their ability to model non-linear 

relationships between input features and response variables, as well as their 

robustness in handling noise and outliers. Comprehensive explanations of these 

algorithms are provided in Chapter 2, Section 2.7. 

Single task models were developed in the Anaconda3 environment based 

on Python 3.9 using Scikit-learn libraries [211]. The input dataset was randomly 

partitioned into two subsets, with 80% designated for training and 20% for testing, 

using the train_test_split package from Scikit-learn. A grid-search method, 

accompanied by 5-fold cross-validation, was employed to optimize two critical 

hyperparameters: maximal tree depth (max_depth) and tree number (n_estimators). 

The n_estimators parameter was adjusted in increments of 5, ranging from 5 to 200, 

while max_depth was examined in increments of 1, spanning the range of 5 to 50. 

Upon determining the optimal hyperparameters, they were integrated into the 

models, and the dataset was randomly shuffled and divided into five equally sized 

folds. For each fold, the current fold (representing 20% of the original dataset) was 

assigned as the testing set, while the remaining four folds (constituting 80% of the 

original dataset) were designated as the training set. Subsequently, the model was 

trained using the training set, evaluated with the validation set, and the performance 

metric was documented. The final model performance was determined by 
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calculating the average performance metric across all five folds. For a more 

comprehensive explanation of the optimal hyperparameter search process, refer to 

Yu et al. (2023). 

The coefficient of determination (R2) and root means square error (RMSE) 

were employed to assess the models’ prediction accuracy. A higher R2 and lower 

RMSE indicate higher prediction accuracy. The equations for R2 and RMSE 

calculation are provided as follows: 

𝑅2 = 1 −
∑ (𝑦𝑛 − 𝑦�̂�)

2𝑁
𝑛=1

∑ (𝑦𝑛 − �̅�)2
𝑁
𝑛=1

 
(3.1) 

RMSE = √
1

𝑁
(∑ (𝑦𝑛 − 𝑦�̂�)2

𝑁

𝑛=1
) 

(3.2) 

 

where N denotes the number of test samples; 𝑦�̂�  and  𝑦𝑛 is the predicted value and 

corresponding actual value of the nth sample, respectively; �̅� denotes the average of 

actual values. 

The importance of each factor can be quantified by using machine learning 

algorithms (tree-based algorithm in this study). Specifically, the Gini index was 

utilized to represent the purity of tree nodes, in which the larger the Gini index, the 

lower the purity. The variance between the sum of the Gini indexes of split nodes 

and the Gini index of each tree node was denoted as Gini decrease. The Gini 

decrease weighted by sum of the same node in all trees was termed Gini importance, 

ranging from 0 to 1. A larger value indicates the greater importance of the factor. 
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This method was implemented using the feature_importance_ package in the 

Scikit-learn section. 

3.5 Particle Tracking Algorithm 

The particle trajectories were numerically determined by integrating the 

following equation [50]: 

{
 
 

 
 dxi
dt
 = u(xi, yi, t)

dyi
dt
 = v(xi, yi, t)

 (3.3) 

where the i subscript indicates the 𝑖 th particle and denotes the position of the 

particle. (𝑢, 𝑣) represents the instantaneous velocity at the location of the particle 

(𝑥𝑖, 𝑦𝑖), and is interpolated from the FVCOM current data. Particles that adhered 

to the shore/bottom were permanently removed, but their last active positions in the 

water were recorded. Overall, the results of particle trajectories and instantaneous 

velocities were recorded every hour. 

To identify the influence of OMA settling velocity on the deposition of 

OMA in the marine environment, the empirical prediction equation with the highest 

R2 and machine learning algorithm was incorporated into the particle tracking 

model in parallel. Furthermore, the velocities due to turbulence were included in 

this study to consider the effects of the environment. Equation 3.3 can be therefore 

converted to follows: 
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{
  
 

  
 
dxi
dt
 = u(xi, yi, 𝑧i, t) + 𝑢𝑡

dyi
dt
 = v(xi, yi, 𝑧i, t) + 𝑣𝑡

d𝑧i
dt
 = w(xi, yi, 𝑧i, t) + 𝑤𝑡

 (3.4) 

where w  denotes the vertical velocity obtained from the empirical prediction 

equation or machine learning prediction results. The terms 𝑢𝑡, 𝑣𝑡, and 𝑤𝑡 represent 

the velocities resulting from turbulence and can be described as follows: 

𝑢𝑡 = 𝑅
√2𝐾𝐻∆𝑡

∆𝑡
 

𝑣𝑡 = 𝑅
√2𝐾𝐻∆𝑡

∆𝑡
 

𝑤𝑡 = 𝑅
√2𝐾𝑣∆𝑡

∆𝑡
 

 

(3.5) 

where 𝑅 is a normal random number with zero mean and a variance of 1, 𝐾𝐻 and 

𝐾𝑣 are the horizontal and vertical mixing coefficients in the unit of m2 s-1 [213]. 
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Chapter 4: OMA Formation  

4.1 Experimental Design and Acquired Data 

 The OMA formation experimental design and data acquisition was 

described in Chapter 3, Section 3.1. The raw data for each experiment were 

presented in Table 4.1. The raw data of OMA median diameter in the two replicated 

experiments appears to differ. This discrepancy could potentially stem from the 

relatively small sample size (one sample at each time step) and the acquisition of a 

limited number of images (six images) per sample, leading to a decreased number 

of detected OMAs. Nonetheless, a paired t-test conducted in Minitab yielded a p-

value of 0.329, which is greater than the 0.05 significance level. This result suggests 

that there is no statistically significant difference between the means of OMA 

median diameter of the two experiments. Consequently, measurement inaccuracies 

and human errors were not identified as contributing factors in this study. 

4.2 Statistical Analysis 

4.2.1 Significance of Studied Factors 

        Many factors have been reported to affect the median diameter (D50) during 

the OMA formation process. However, the level/significance of their influences has 

not been systematically investigated and compared. We, therefore, covered a wide 

range of factors (temperature, time, salinity, clay type, agitation speed, oil/clay 

weight ratio, and the absence/presence of dispersant) and employed a statistical 

method (Screening Design and Analysis of Variance (ANOVA)) to find out the 
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most influential factors for OMA median diameter (D50). The ANOVA results, 

including significant model terms, were provided in Table 4.2 and Equation 4.1. It 

can be clearly observed that time exhibited the most significant impact on D50, as 

evidenced by its highest F-value (22.48) and lowest p-value (0.000 < 0.05), 

followed by temperature (p-value of 0.014) and oil/clay ratio (p-value of 0.023). 

Clay type was only a marginally significant factor for D50 (0.05 < p-value = 0.069 

< 0.1).  
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Table 4.1 The experiment setting based on Screening Design. 

Standard 

order 

Temperature 

(℃) 

Salinity 

(ppt) 

Agitation 

time (h) 

Clay type Agitation 

speed 

(rpm) 

Oil/clay 

ratio 

Dispersant Median 

diameter 

(µm) 

1 15 34 8 Montmorillonite 160 2：1 Yes 14.59 

2 15 0 4 Kaolinite  100 1：2 No 21.15 

3 30 17 8 Kaolinite  160 1：2 No 29.19 

4 0 17 4 Montmorillonite 100 2：1 Yes 33.13 

5 30 0 6 Kaolinite  160 2：1 Yes 16.89 

6 0 34 6 Montmorillonite 100 1：2 No 42.65 

7 30 34 8 Kaolinite  100 2：1 No 15.52 

8 0 0 4 Montmorillonite 160 1：2 Yes 25.19 

9 30 0 4 Montmorillonite 130 2：1 No 28.13 

10 0 34 8 Kaolinite  130 1：2 Yes 72.03 

11 30 34 4 Kaolinite  100 1：1 Yes 13.58 

12 0 0 8 Montmorillonite 160 1：1 No 72.82 

13 30 34 4 Montmorillonite 160 1：2 No 18.77 

14 0 0 8 Kaolinite  100 2：1 Yes 19.13 

15 30 0 8 Montmorillonite 100 1：2 Yes 31.44 

16 0 34 4 Kaolinite  160 2：1 No 11.40 

17 15 17 6 Kaolinite  130 1：1 No 15.20 

18 15 17 6 Montmorillonite 130 1：1 Yes 86.27 

1 15 34 8 Montmorillonite 160 2：1 Yes 37.16 

2 15 0 4 Kaolinite  100 1：2 No 13.24 

3 30 17 8 Kaolinite  160 1：2 No 33.02 

4 0 17 4 Montmorillonite 100 2：1 Yes 18.58 



 

 

 

5
7
 

Standard 

order 

Temperature 

(℃) 

Salinity 

(ppt) 

Agitation 

time (h) 

Clay type Agitation 

speed 

(rpm) 

Oil/clay 

ratio 

Dispersant Median 

diameter 

(µm) 

5 30 0 6 Kaolinite  160 2：1 Yes 24.40 

6 0 34 6 Montmorillonite 100 1：2 No 28.30 

7 30 34 8 Kaolinite  100 2：1 No 36.59 

8 0 0 4 Montmorillonite 160 1：2 Yes 17.65 

9 30 0 4 Montmorillonite 130 2：1 No 18.93 

10 0 34 8 Kaolinite  130 1：2 Yes 65.93 

11 30 34 4 Kaolinite  100 1：1 Yes 9.99 

12 0 0 8 Montmorillonite 160 1：1 No 53.62 

13 30 34 4 Montmorillonite 160 1：2 No 28.78 

14 0 0 8 Kaolinite  100 2：1 Yes 16.67 

15 30 0 8 Montmorillonite 100 1：2 Yes 28.07 

16 0 34 4 Kaolinite  160 2：1 No 16.82 

17 15 17 6 Kaolinite  130 1：1 No 12.93 

18 15 17 6 Montmorillonite 130 1：1 Yes 39.94 
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Table 4.2 Analysis of variance for oil-mineral aggregate’s median diameter (D50). 

 F-value p-value 

Time 22.48 0.000 

Temperature 6.96 0.014 

Oil/clay ratio 5.77 0.023 

Clay type 3.58 0.069 

Time*Oil/clay ratio 9.64 0.004 

Time*Temperature 6.17 0.020 

Temperature*Oil/clay ratio 4.62 0.041 

        In addition to the p-values of these factors, a linear regression model that 

capture the relationship between significant factors, including interaction effects, 

and response variable (OMA D50) was presented in Equation 4.1. The coefficients 

of the model were estimated using the least squares method. Equation 4.1 is shown 

as following: 

𝐷50 = −32.9 + 0.109𝑥1 + 14.21𝑥2 + 3.42𝑥3 + 0.435𝑥4 −

0.1807𝑥1𝑥2 + 0.01251𝑥1𝑥4 − 0.1356𝑥2𝑥4  

(4.1) 

where 𝑥1, 𝑥2, 𝑥3, and 𝑥4 represent temperature (℃), time (h), clay type (kaolinite 

denotes -1 and montmorillonite denotes +1), and oil/clay ratio (1:2 denotes 25, 1:1 

denotes 50, 2:1 denotes 75), respectively. 

The impact of the identified factors (herein, time, temperature, oil/clay ratio, 

and clay type) on D50 was quantified using Equation 4.1. For each combination of 

factor levels, the response value (D50) was computed, and the mean value was 

employed. The resulting plot is illustrated in Figure 4.1. As shown in Figure 4.1a, 

increasing time from 4 h to 8 h gradually promoted D50 from 19 µm to 38 µm, 
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suggesting prolonged time enhanced the formation of relatively large OMA. This 

was in well agreement with the previously reported results [113,214]. Sun et al. 

(2014) conducted a series of experiments to investigate the effects of time on OMA 

formation and found that the size of OMA increased with prolonged time, and they 

stated that the small oil droplets could incorporate into OMA or coalesce on the 

OMA surface with the increasing time [113]. However, an opposite result was 

observed by Ji et al. (2021) in that the OMA D50 decreased from ~ 45 µm to ~20 

µm when the mixing duration increased from 30 min to 24 h. They claimed that the 

decline of OMA D50 with increasing time was likely because the particles 

continuously fragmented the OMA into smaller ones [111]. More efforts are 

therefore highly recommended to further investigate the influence of mixing time 

on OMA formation.  

Regarding the temperature effect (Figure 4.1b), raising the temperature 

from 0 °C to 30 °C steadily decreased the OMA D50, implying that the formation 

of larger OMA was favored under a low temperature environment. In addition, oil 

viscosity was reduced with the higher temperature, resulting in more dispersed oil 

droplet in the water column to interaction with minerals. The OMA D50 was 

therefore decreased when the temperature was raised. 

Increasing the oil/clay ratio from 1:2 to 2:1 also reduced OMA D50, as 

demonstrated in Figure 4.1c. When the oil/clay ratio increased, OMA size dropped 

because fewer minerals were available to coalesce on the oil droplet surface. 

However, the present result differed from the observation of previously studies 

[33,215,216]. They found that OMA size was positively related to the oil/clay ratio. 
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They stated that the mineral could provide sufficient penetration to fragment the 

OMA into smaller droplets at the high mineral concentration (low oil/clay ratio). 

In Figure 4.1d, it is observed that when montmorillonite participates in 

OMA formation, the resulting OMA D50 (32 µm) is larger compared to that of 

kaolinite (26 µm). This suggests that montmorillonite possesses a higher 

hydrophobicity, enabling better interaction with oil, and consequently, resulting in 

a larger OMA D50. Previous studies have reported similar findings, where the OMA 

size increased from a few micrometers to tens of micrometers as mineral 

hydrophobicity increased [108, 109, 215]. Considering mineral surface properties 

and cation exchange capacity (CEC), montmorillonite exhibits a higher surface 

charge compared to kaolinite, which facilitates the adsorption of oil droplets and 

OMA formation [217]. Moreover, montmorillonite has a high CEC, which enables 

it to adsorb a large amount of organic compounds, including petroleum 

hydrocarbons. This property contributes to the effectiveness of montmorillonite in 

OMA formation [217]. Furthermore, montmorillonite exhibits a greater propensity 

for swelling in aqueous environments compared to kaolinite, which can further 

promote the penetration of non-polar hydrocarbon molecules into the interlayer 

spaces of the clay mineral. This swelling property enhances the clay's capacity to 

adsorb oil and form larger OMA [217]. 



 

61 

 

 

Figure 4.1 The influence of significant factors (a) time, (b) temperature, (c) oil/clay 

ratio and (d) clay type on oil-mineral aggregate’s median diameter.  

4.2.2 Interaction Effects 

        In addition to the individual influence, the two-factor interaction effects were 

evaluated, and the significant interaction effects were presented in Table 4.2. The 

influence of significant interaction effects on D50 was calculated/quantified by the 

linear regression model in Equation 4.1. For each combination of factor levels, the 

response value (D50) was computed, and the mean value was employed. The 

resulting plot is illustrated in Figure 4.2. Although the relationship between factors 

is non-linear, straight lines were obtained as shown in Figure 4.2. The reason is 

probably that the non-linear component (e.g., interaction term) in the regression 

model is not significant or exerts minimal influence on the response variable. In 

such cases, the relationship between the factor and the response can be adequately 

approximated by a linear model within the investigated range. It is crucial to note, 

however, that this observation does not necessarily imply a strictly linear 

relationship between the factor and the response in all scenarios. It merely suggests 
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that, based on the data and the levels selected for the factor in the experimental 

design, the relationship appears linear. The true nature of the relationship may yet 

be non-linear beyond the investigated range or with additional data points. 

Notably, the time impact on D50 was highly dependent on the oil/clay ratio 

employed, as evidenced by the low p-value of 0.004 for time*oil/clay ratio 

interaction in Table 4.2, detail illustrated in Figure 4.2a. When an oil/clay ratio of 

2:1 was employed, increasing formation time from 4 h to 8 h did not largely 

improve D50 (~ 24 µm). However, when the oil/clay ratio was switched to 1:1 or 

1:2, much greater increments were observed (from ~ 20 µm to as high as 48 µm). 

These demonstrated that the effect of time on D50 was highly dependent on the 

oil/clay ratio employed. More specifically, when more clay was presented in OMA 

formation environments, prolonging time can result in a larger OMA D50. 

The influence of time was also highly dependent on the temperature, as 

illustrated in Figure 4.2b and supported by the p-value (0.02) in Table 4.2. When 

the temperature was 0 °C, increasing time from 4 h to 8 h remarkably raised D50 

from 20 µm to 47 µm, but a less profound increment in D50 was observed at 15 °C 

and 30 °C. These results indicated that a longer time at low temperatures favored 

the formation of OMA with larger D50, and the formation time became less 

influential if the temperature was increased.  

Referring to Figure 4.2a and Figure 4.2b, it can be observed that at a 

relatively short mixing time (4 h), variations in the oil/clay ratio or temperature 

appear to have negligible influence on the median size of OMA. This phenomenon 

may be attributed to the insufficient time for OMA to fully develop during the initial 
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mixing period. As a result, the effects of temperature and oil/clay ratio on OMA 

formation are not yet discernible at this stage. With an increase in mixing time, the 

gradual growth in OMA median size can be primarily ascribed to the continuous 

adhesion of free particles onto oil droplets or formed OMA. 

 

Figure 4.2 Illustrates how time interacts with (a) the oil/clay ratio and (b) 

temperature influence on the median diameter of oil-mineral-aggregate.  

 In addition to the mentioned significant factors and interaction effects above, 

various other factors, including salinity, mixing energy, and dispersant addition, 

have been shown to influence the formation of OMA in the OMA-related research 

works [7, 28, 29, 31, 32, 41, 108, 110, 113–116, 215]. For example, Khelifa et al. 

(2005) examined the impact of salinity, clay type, and oil type on OMA formation, 

demonstrating that salinity affects the median size of OMA at low concentrations, 

with a more pronounced influence than either clay type or oil type. Furthermore, 

their study revealed interaction effects between salinity and clay type on OMA 

median size. Contrarily, Payne (1989) and Guyomarch et al. (1999) reported that 
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high salinity values also affect OMA formation. Sun et al. (2010, 2014) posited that 

mixing energy influences OMA formation by parameterizing oil trapping 

efficiency. Additionally, Ji et al. (2021) proposed that interaction effects exist 

between mixing energy and mixing time, impacting the median diameter and oil 

trapping efficiency of OMA. Several researchers have also discovered that 

chemical dispersants either reduced [114] or increase [115] the size of OMA. 

However, these previous findings were not supported by statistical analysis. The 

disparity in the importance of factors between the current study and the existing 

literature could likely be attributed to two primary reasons. Firstly, although the 

impacts of salinity, mixing energy, and dispersant addition on OMA formation have 

been acknowledged in previous studies, these effects appear to be less significant 

in comparison to other factors, such as mixing time, temperature, oil/clay ratio, and 

clay type, given that the present study encompasses a broader type of factors. 

Secondly, the variation in the importance of these factors might also be attributed 

to differences in response variables and the distinct ranges or levels of each factor 

investigated across various studies. 

4.3 Machine Learning Prediction 

4.3.1 Algorithm Selection 

        Whether it is feasible to use machine learning algorithms to predict OMA D50 

has not been explored yet. We herein, for the first time, attempted to estimate OMA 

D50 through machine learning approaches. Three machine learning algorithms were 

evaluated, including RF, GBR and Adaboost, as mentioned in Chapter 3 Section 

3.4. The dataset containing both current work data and literature data [27, 29, 34, 



 

65 

 

113, 218, 219] and the D50 size distribution was illustrated in Figure 4.3. It can be 

seen that most of the OMA D50 were between 3 – 35 µm, and the OMA D50 in the 

range of 35 – 40 µm and 55 – 80 µm was limited. The dataset was used to train the 

machine learning algorithms by feeding randomly selected 80% of the dataset. The 

trained algorithms were then tested by assessing their performances in estimating 

the rest 20% of the dataset.  

The training and testing performances of the studied algorithms are 

presented in Figure 4.4. High training R² values (>0.9) and testing R² values (>0.7) 

were obtained from machine learning predictions, with minor differences in R² and 

RMSE among the three tested algorithms. One potential reason for this minor 

difference is their shared ensemble learning approach. All three algorithms employ 

ensemble methods, combining the predictions of multiple base models, usually 

decision trees, to improve overall model performance. Since they share a common 

foundation, their performance might be similar in certain situations. Another reason 

for the minor differences in performance could be the relatively small dataset size 

used in this study, which comprises only 197 samples. Consequently, it is 

recommended that further research and data collection efforts be undertaken to 

expand the dataset, which may help in identifying the most suitable algorithms for 

OMA median diameter prediction. 

Despite the minor differences in R² and RMSE among the three tested 

algorithms, AdaBoost (Figure 4.4c) exhibited the best performance in predicting 

D50, with the highest R² value (0.97) and a lowest RMSE value (3.48) compared to 

those of RF (Figure 4.4a) and GBR (Figure 4.4b). A similar trend can be observed 
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for testing R² and RMSE values, suggesting that the AdaBoost algorithm (testing 

R² of 0.74 and RMSE of 10.02) also outperforms RF and GBR during the testing 

process. These results indicate that: (1) machine learning algorithms can be feasibly 

applied for OMA D50 prediction, and (2) the predictive performance of AdaBoost 

is better than that of RF and GBR in this study. It is also important to note that 

acquiring more data, particularly for OMA D50 values in the ranges of 35-40 µm 

and 55-80 µm, is necessary to expand the dataset and better train the model for 

more accurate predictions. 

 

Figure 4.3 The size distribution of the dataset from current and literature data [27, 

29, 34, 113, 218, 219].
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Figure 4.4 Prediction plots (training and testing) for oil-mineral-aggregate’s median diameter by using machine learning algorithms (a) 

Random Forest, (b) Gradient Boosting Regression, (c) Ababoost. RMSE denotes root mean square error. 
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4.3.2 Factor Importance Quantification by Machine Learning Algorithm 

        Based upon current work and literature, a variety of OMA formation factors 

were used to estimate OMA D50, including temperature, time, salinity, shaking rate, 

clay concentration, oil concentration, clay type (density), oil type (density), and the 

absence/presence of dispersant. Since Adaboost was recognized as the adequate 

machine learning algorithm for OMA D50 prediction in this study, it was utilized to 

quantify the importance of each factor, as illustrated in Figure 4.5. Clay 

concentration, time, clay type (density) and temperature were suggested as the four 

most important factors for D50, which took greater than 85% of accountability. This 

was actually in well agreement with the results observed in Section 4.2.1, that time, 

temperature, oil/clay ratio (closely related to clay concentration), and clay type 

were all significantly important for D50. Thus, future research on OMA formation 

could emphasize these four factors.     
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Figure 4.5 The factor importance plot derived from the Adaboost algorithm for oil-

mineral-aggregate’s median diameter.  

4.4 Comparison with Collision-Theory-Based Prediction 

        Many efforts have been devoted to investigating how the external environment 

influenced the OMA formation, as discussed in Section 4.2. Also, some attempts 

have been made to predict OMA formation using collision-theory-based numerical 

models. Zhao et al. (2016) advanced the coagulation numerical model by 

developing the A-DROP model. With the aim to generally compare the prediction 

accuracy between the machine learning algorithm (herein Adaboost) and collision-

theory-based numerical model, the A-DROP model was adapted to predict the 

OMA D50 with the input data that has been used to train/test the Adaboost algorithm. 

Several assumptions were made to run the coagulation model based on the OMA 
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formation theory as described by Zhao et al. (2016). First, only the interaction 

between oil-clay and OMA-clay was considered; second, the droplet break-up 

process was neglected; third, the clay diameter of 5 µm was used, and the oil droplet 

diameter was much larger than the clay diameter [122].  

The prediction accuracy of the A-DROP model was illustrated in Figure 4.6. 

An R2 of 0.62 and RMSE of 12.12 were obtained from A-DROP model prediction, 

which was less satisfactory than that of the Adaboost algorithm (testing R2 of 0.74 

and RMSE of 10.02). These comparative results further highlight the promising 

potential of employing machine learning algorithms to predict OMA formation.  

Furthermore, in comparison to machine learning algorithms, traditional 

numerical modeling necessitates the modification of input parameters and setup 

when the oil, mineral, or ambient environment changes for OMA formation. 

Additionally, the setup of mineral or oil size bins heavily relies on the user's 

experience. Traditional empirical prediction also demands an understanding of the 

relationship between physical factors and input parameters. For instance, if salinity 

or temperature changes, the water viscosity value in the A-DROP model should be 

adjusted accordingly. Moreover, not all experiments identify the required 

parameters for traditional OMA size prediction models, occasionally resorting to 

estimated values, which contributes to the low prediction accuracy of traditional 

methods. However, one of the limitations of using machine learning algorithms for 

making predictions is that they can often overlook the underlying theory or 

relationships between features and predictions. This can result in models that are 

highly accurate but may lack interpretability and transparency in their decision-
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making process. Additionally, machine learning predictions typically require a 

larger dataset for model training and increased computational resources, and users 

should carefully and appropriately regularize machine learning algorithms to 

mitigate the risk of overfitting. In summary, although machine learning algorithms 

exhibit certain limitations, they are more eefective and efficient for predicting 

OMA formation when contrasted with traditional collision-theory-based 

predictions. 
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Figure 4.6 The prediction accuracy of the collision-theory-based numerical model 

developed by Zhao et al. (2016).  

4.5 Machine Learning Based Prediction Tool 

        OMA D50 was proved to be adequately predicted by the Adaboost algorithm 

in Section 4.3.1, which also exhibited better prediction performance than the 

collision-theory-based numerical model as presented in Section 4.4.1. We, 

therefore, attempted to develop a machine learning based prediction software that 

incorporated the Adaboost algorithm. The software screenshot was presented in 

Figure 4.7, and OMA D50 can be quicky estimated by inputting the formation 

process variables. Notably, more research efforts are required to expand the dataset 

of OMA D50 and even size distributions, which will train the Adaboost algorithm 
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to become better and thus further improve the prediction accuracy. This open-

sourced prediction software can be easily installed on the user’s computer by 

following instructions.   

 

Figure 4.7 The screenshot of machine learning based prediction software for oil-

mineral-aggregate’s median diameter prediction.  

4.6 Summary 

        With the aim to systematically explore OMA formation and find out the most 

influential factors, Screening Design was employed to investigate seven process 

variables’ impact, including temperature, time, salinity, clay type, agitation speed, 

oil/clay weight ratio, and the absence/presence of dispersant. It was found that time 

exhibited the most profound influence on OMA D50, followed by temperature and 



 

74 

 

oil/clay ratio. Also, the influence of time heavily depended on the temperature and 

oil/clay ratio employed. Prolonging formation time to 8 h at a low temperature of 

0 °C and 1:2 oil/clay ratio led to a greater OMA D50 (~50 µm).  

This study, for the first time, evaluated the feasibility of using machine 

learning algorithms for OMA D50 prediction. Three tree-based machine learning 

algorithms (RF, GBR and Adaboost) were assessed. Adaboost had the most 

satisfactory performance on predicting D50, as evidenced by the high R2 (0.97 for 

training and 0.74 for testing) and low RMSE values. In addition to D50 prediction, 

Adaboost was implemented to quantify the importance of each process variable, 

and the obtained results were in well agreement with that of statistical analysis from 

Screening Design. The machine learning based prediction was then compared with 

the traditional collision-theory-based prediction by using the same dataset, which 

the former was favourable in terms of the prediction accuracy (R2 of 0.74 vs. 0.62).  

Last but not least, an open-sourced machine learning based prediction 

software that incorporated with Adaboost algorithm and can be easily installed in 

the user’s computer was assembled to quickly predict the OMA D50 by simply 

keying the formation process variables, even though more research efforts are still 

required to expand the dataset to train the model better for more accurate prediction. 

Overall, this multi-disciplinary study not only identified the most influential factors 

and their interactions during OMA formation, but also innovatively employed 

machine learning algorithms to predict OMA D50. The results obtained and 

practical tools developed showed promising potential for future more detailed 
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OMA studies (e.g., size distribution) and, ultimately, achieve more accurate and 

smarter tracking of the fate and trajectory of spilled oil.  

4.7 Transition Section 

The influential factors for OMA formation and their interaction effects were 

statistically identified in Chapter 4. D50 of OMA was adequately predicted by using 

machine learning algorithms for the first time, proving to be superior to traditional 

collision-theory-based estimations. However, minimal efforts have been 

contributed to studying OMA's settling. Chapter 5 thus aims to track the settling of 

OMA and precisely measure their velocities, then explore environmental variables' 

influence on OMA settling velocity. Inspired by the excellent performance of 

machine learning algorithms on D50 prediction, the feasibility of using machine 

learning algorithms for OMA settling velocity estimation was evaluated in Chapter 

5 as well.  
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Chapter 5: OMA Settling Velocity and Empirical Equations 

5.1 Experimental Design and Data Acquire 

 The details of the OMA settling velocity experimental setting and data 

acquisition were illustrated in Chapter 3, Section 3.2. 

5.2 Laboratory Tests 

5.2.1 Data Adequacy and Characteristics  

The OMA number distribution and averaged settling velocities were 

provided in Figure 5.1. It can be seen from Figure 5.1a that most OMA (with a 

number of ~2000) had a diameter ranging from 30 – 60 µm, followed by the 

diameter of 60 – 90 µm (~600). This was consistent with the results from [40] that 

most OMA had a diameter between 40 µm and 80 µm when kaolinite was used for 

OMA formation. As for the averaged settling velocity of each size bin, they varied 

from 0.2 mm/s to 3 mm/s, with the majority being between 0.2 to 1 mm/s. It is 

notable that along with the increment of OMA diameter, the averaged settling 

velocity gradually increased as well (Figure 5.1b), indicating the significant 

formation of flake/solid-like OMA that contained high percent of minerals instead 

of oil in the large OMA.  
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Figure 5.1 The characteristics of oil-mineral-aggregate (OMA) based on size bins 

(a) OMA number distribution, (b) averaged settling velocity.  

5.2.2 Correlation Between Studied Factors and Settling Velocity 

        Besides understanding the general characteristics of OMA settling velocity 

data, how the process variables affect the settling velocity was also investigated. 

The variables studied were water density (kg/m3), clay density (kg/m3), clay 

concentration (mg/L) and dispersant addition. Principle Component Analysis (PCA) 

is known to have the capability of handling a large dataset to explore the correlation 

between studied factors and response. Thus, PCA was adapted to correlate process 

variables of interest with OMA settling velocity, as shown in Figure 5.2.  

 It can be clearly observed that settling velocity was in close relation and 

the same direction with clay concentration (both at the right-low corner), suggesting 

that a higher clay concentration could lead to faster settling velocity, presumably 

because the formation of mineral-rich OMA was favored at a high clay 
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concentration. This was in well agreement with the results from O'Laughlin et al. 

(2017) that OMA settling velocity increases under a relatively high concentration 

of clay (comparing 10 mg/L with 50 mg/L). However, the water density 

(proportional to salinity) was separated from settling velocity by both the first and 

second component, locating at the left-high corner and was thus opposed to settling 

velocity (Figure 5.2), indicating the rising water density (high salinity water 

environment) reduced the OMA settling velocity. Although the exploration of the 

salinity effect on OMA settling velocity is limited, several previous works reported 

that salinity was an essential factor that impacts the floc settling velocity. Some 

researchers stated that the floc settling velocity increased with the rising floc 

concentration and salinity [220, 221]. By comparison, other studies illustrated that 

the floc settling velocity could reach its maximum values at a specific concentration 

and salinity. The further increased concentration and salinity would decrease the 

floc settling velocity [222–225]. However, the specific value of concentration and 

salinity is still unknown. 

Clay density stayed with settling velocity on the right side, even though it 

was separated from settling velocity by the second component, implying its positive 

but mild correlation with settling velocity. The settling of OMA is closely related 

to gravity. The higher density of OMA, therefore, led to a greater settling velocity. 

However, the density of OMA not only depends on the clay density, but also relates 

to oil density and the amount of trapping oil. Clay density was, therefore, mildly 

correlated with OMA settling velocity.   
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Regarding the addition of dispersants, it has been observed that although 

both dispersant addition and settling velocity were present in the bottom layer 

(Figure 5.2), they were separated by the first component, indicating a mildly 

negative correlation. This phenomenon could be attributed to the dispersant's ability 

to produce smaller oil droplets, which subsequently mix more readily with water 

and sediment in the water column, thereby increasing the formation of smaller 

OMA and resulting in a relatively lower settling velocity. This hypothesis aligns 

with the findings of Lee et al. (2008) who reported that chemical dispersants could 

reduce OMA size, ultimately decreasing their settling velocity. Contrastingly, some 

researchers have posited that the addition of chemical dispersants could lead to 

larger OMAs due to an enhancement in oil's adhesive properties [115] or a delay in 

the flocculation of natural sediments, thereby increasing the availability of 

sediment to interact with oil droplets [41]. Under these circumstances, larger OMAs 

with a higher mineral composition would form, consequently increasing the settling 

velocity. Nonetheless, as depicted in Figure 5.1, the present study primarily 

observed smaller OMA. Hence, based on the experimental conditions established 

in this investigation, it can be inferred that the introduction of chemical dispersants 

is likely to yield smaller OMA, subsequently leading to reduced settling velocities.   

Overall, we generally concluded that settling velocity was positively 

correlated with clay concentration, followed by clay density. Conversely, it was 

negatively correlated with water density and dispersant addition in this study.  
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Figure 5.2 The loading plot from principal component analysis of acquired settling 

velocity data.  

5.3 Numerical Modelling on OMA Settling Velocity   

5.3.1 Traditional Empirical Approaches  

        The OMA settling velocity data from the current work were combined with 

that from Ye et al. (2022) to assemble a more informative and comprehensive 

dataset, 10637 samples, for prediction. Due to the lack of estimation equations for 

OMA effective density and settling velocity, the traditional empirical equations of 

floc effective density and settling velocity estimation were adapted in this study. 

Seven floc effective density equations and nine floc settling velocity equations were 

employed, resulting in 63 combinations in total. The details of adapted equations 

were provided in Table 3.2 and Table 3.3 in Chapter 3 Section 3.3. They were then 

used to predict the assembled OMA settling velocity data, and the obtained R2 was 

presented in Table 5.1. It can be seen from Table 5.1 that the combined equations 
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from Kranenburg (1994) and Lee et al. (2020) exhibited the best prediction 

performance with an R2 of 0.387, which was illustrated in Figure 5.3 as well. 

Furthermore, the corresponding RMSE results were presented in Table 5.2. The 

lowest RMSE (1.933) was observed for Kranenburg (1994) and Lee et al. (2020) 

combination, again, demonstrating the favourability of using the equation from 

Kranenburg (1994) to calculate OMA density and the equation from Lee et al. (2020) 

for OMA settling velocity estimation based upon the assembled data. Moreover, the 

majority of the remaining combinations produced an R2 value close to zero, which 

can be attributed to the fact that empirical equations are generally developed and 

tailored for specific situations. Consequently, the equations from Kranenburg (1994) 

and Lee et al. (2020) outperformed other combinations when applied to the dataset 

utilized in this study.   
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Table 5.1 The coefficient of determination (R2) from empirical equations for oil-mineral-aggregate’s settling velocity 

prediction. 

Settling 

velocity 

 

Density 

Van 

Rijin, 

1989 

[205] 

Soulsby, 

1997 

[206] 

Cheng, 

1997 

[207] 

Curran 

et al., 

2007 

[202] 

Camenen, 

2007 

[208] 

Sadat-

Helbar 

et al., 

2009 

[209] 

Goldstein 

& Coco, 

2014 

[210] 

Lee et 

al., 

2020 

[226] 

Ye et 

al., 

2020 

[40] 

Tambo & Watanabe, 

1979 [198] 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Hawley, 1982 [199] 0.138 0.088 0.000 0.000 0.000 0.000 0.040 0.082 0.140 

McCave, 1984 

[200] 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Kranenburg, 1994 

[201] 
0.306 0.385 0.369 0.000 0.000 0.298 0.000 0.387 0.230 

Curran et al., 2007 

[202] 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Vahedi & Gorczyca, 

2017 [203] 
0.000 0.000 0.000 0.000 0.054 0.000 0.000 0.000 0.000 

Moruzzi et al., 2020 

[204] 
0.348 0.306 0.198 0.000 0.000 0.098 0.177 0.300 0.351 
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Table 5.2 The root means square error (RMSE) from empirical equations for oil-mineral-aggregate’s settling velocity 

prediction. 

Settling 

velocity 

 

Density 

Van 

Rijin, 

1989 

[205] 

Soulsby, 

1997 

[206] 

Cheng, 

1997 

[207] 

Curran 

et al., 

2007 

[202] 

Camenen, 

2007 

[208] 

Sadat-

Helbar 

et al., 

2009 

[209] 

Goldstein 

& Coco, 

2014 

[210] 

Lee et 

al., 

2020 

[226] 

Ye et al., 

2020 

[40] 

Tambo & Watanabe, 

1979 [198] 

2.605 2.645 2.719 3.024 2.850 2.780 2.618 2.649 2.605 

Hawley, 1982 [199] 2.292 2.358 2.485 3.024 2.816 2.587 2.419 2.365 2.289 

McCave, 1984 

[200] 

3.011 3.012 3.015 3.024 2.965 3.016 3.009 3.013 3.011 

Kranenburg, 1994 

[201] 

2.056 1.937 1.961 3.024 2.754 2.068 2.514 1.933 2.166 

Curran et al., 2007 

[202] 

2.881 2.894 2.919 3.024 2.896 2.939 2.866 2.896 2.881 

Vahedi & Gorczyca, 

2017 [203] 

55.751 26.522 20.030 3.024 2.485 21.454 23.608 25.990 1042.525 

Moruzzi et al., 2020 

[204] 

1.994 2.057 2.211 3.024 2.786 2.345 2.240 2.065 1.989 
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Figure 5.3 The plot of oil-mineral-aggregate’s experimental settling velocity vs. 

theoretically predicted values. R2 denotes the coefficient of determination and 

RMSE denotes the root means square error.  

5.3.2 Machine Learning Prediction 

        Three machine learning algorithms, RF, GBR and Adaboost, as mentioned in 

Chapter 3 Section 3.4, were implemented to predict OMA settling velocity. The 

input variables were consistent with that used for empirical prediction, including 

diameter, water density and clay density. The prediction accuracies of machine 

learning algorithms are illustrated in Figure 5.4. In general, machine learning 

prediction exhibited better performances compared to the empirical prediction, as 

evidenced by their higher R2 (> 0.6) and lower RMSE (<1.6). Among them, GBR’s 
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prediction accuracy (Figure 5.4b) was most satisfying, along with the highest 

training R2 (0.645) and testing R2 (0.614) and the lowest training RMSE (1.469) 

and testing RMSE (1.535). Therefore, GBR was selected as the most satisfactory 

machine learning algorithm for OMA settling velocity prediction in this study, 

which was subsequently employed for OMA trajectory sensitivity analysis in the 

next Chapter.
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Figure 5.4 Prediction plots (training and testing) for oil-mineral-aggregate’s settling velocity by using machine learning algorithms (a) 

Random Forest, (b) Gradient Boosting Regression, and (c) Ababoost. RMSE denotes root mean square error.
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 During the OMA settling velocity prediction, the GBR exhibited the highest 

R2 value; however, the differences in R2 values among the algorithms were 

relatively small and insignificant. Similarly, during the OMA formation prediction, 

the Adaboost algorithm demonstrated the highest R2 but only marginally 

outperformed the other two algorithms. Consequently, when users aim to employ a 

single method for predicting both OMA median diameter and settling velocity, the 

selection of an algorithm should be based on the specific purpose, dataset quality, 

and available computational resources. The three algorithms offer distinct 

advantages: the RF algorithm is best suited for handling missing and noisy data, 

while the Adaboost algorithm requires the least amount of time for model training. 

The GBR algorithm typically delivers the highest prediction accuracy in most 

situations due to its ability to learn from errors. In summary, the choice of algorithm 

should be tailored to the user's objectives, dataset characteristics, and computational 

capabilities to optimize prediction outcomes for OMA median diameter and settling 

velocity. 

5.4 Sensitivity Analysis 

5.4.1 Hypothetical Case Study in A Square field 

The influence of OMA settling velocity on the deposition of OMA in the 

marine environment was investigated. The empirical prediction equation and 

machine learning algorithm with the highest R2 (a combination of Kranenburg 

(1994) and Lee et al. (2020) and GBR algorithm in this study) was incorporated 

into the particle tracking model (Equation 3.4) in parallel. Since the settling velocity 

in the literature equations (Table 3.2 and Table 3.3) were diameter dependent, OMA 
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was grouped by diameter with the interval of 6 µm, and the resultant mean velocity 

was used. 102  classes with size ranging from 14 µm to 626 µm were employed in 

particle tracking based on the experiment and literature data [40]. Particles were 

randomly released in a 2 × 2 km field, then tracked for 48 h driven by a constant 

current of 0.2 m/s. Moreover, two simulations were set up that differ by the current 

direction. The current direction was in the northeast in the first case and changed 

30 degrees every 2 hours in the second case. The water depth was assumed to be 

20 m to simulate the nearshore environment.  

The resulting deposition of OMA is depicted in Figure 5.5 and Figure 5.6. 

It is evident that the OMA distribution is highly sensitive to the prediction accuracy 

of settling velocity, which in turn affects the settling velocity magnitude of OMA. 

Figure 5.5a and Figure 5.6a display the OMA distribution derived from empirical 

equations (R2 of 0.387), while Figure 5.5b and Figure 5.6b illustrate the distribution 

obtained using a machine learning algorithm (R2 of 0.614) for settling velocity 

estimation. Under the specific conditions implemented in this study, reduced 

prediction accuracy resulted in a more dispersed (less concentrated) OMA 

distribution. 

  



 

89 

 

 

Figure 5.5 The distribution of oil-mineral-aggregates when it was randomly 

released in a 2 × 2 km field by using (a) traditional floc equation and (b) machine 

learning algorithm for settling velocities prediction forcing by a constant current 

(0.2 m/s) in the northeast direction. 

 

Figure 5.6 The distribution of oil-mineral-aggregates when it was randomly 

released in a 2 × 2 km field by using (a) traditional floc equation and (b) machine 

learning algorithm for settling velocities prediction forcing by a constant current 

(0.2 m/s) that change 30 degrees of direction every 2 hours.  
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        In order to gain more insights, the sensitivity of different sizes of OMA 

deposition to settling velocity prediction accuracy was explored, as shown in Figure 

5.7. The settling velocity prediction accuracy was influential for the small size 

OMA as illustrated in Figure 5.7a. A lower prediction accuracy resulted in the 

maximal travel distance of ~25 km, which was much longer than ~10 km for the 

counterpart. However, for the medium size OMA (Figure 5.7b) and large size OMA 

(Figure 5.7c), using different prediction methods (varying prediction accuracies) 

did not exhibit a profound impact on the OMA distribution. This result revealed 

that the long OMA travel distance in Figure 5.5a was mainly due to the small size 

of OMA. Overall, from this sensitivity analysis, we found that the extent of OMA 

deposition was sensitive to the prediction accuracy of settling velocity, especially 

for the small size OMA.   
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Figure 5.7 The trajectories of oil-mineral-aggregates with different sizes (a) small 

size, (b) medium size, and (c) large size.  Particles were released at a location 

marked by the black star. 
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5.4.2 Hypothetical Case Study in Burrard Inlet 

In addition to the sensitivity analysis in an ideal environment, the OMA 

distribution simulation in a real location was also conducted. The presence of OMA 

was assumed to occur in anchorage #12 in Burrard Inlet, Vancouver, where the MV 

Marathassa oil spill happened. The city of Vancouver on the southwest coast of 

British Columbia, Canada, centers around Burrard Inlet. At its western end, Burrard 

Inlet connects to the Pacific Ocean via the Strait of Georgia. The inlet is narrow 

and extends about 30 km inland from the Strait of Georgia to the Indian Arm. In 

this study, Burrard Inlet (Figure 5.8) was defined to include the Outer Harbour, 

First Narrows (around 880 m wide), the Inner Harbour (about 8.8 km long; also 

called Vancouver Harbour), Second Narrows (around 330 m wide), and the Central 

Harbour (around 7.8 km long) [227]. The southeast portion of the Outer Harbour is 

an open bay known as English Bay, which has a narrow inlet called False Creek.   

The water depths at First Narrows and Second Narrows are 15 m and 19 m, 

respectively. Tidal currents can be as high as 2 m s-1 when tidal mixing is at its 

greatest at these two Narrows [62,228]. Tidal currents are a major dynamic process 

in Burrard Inlet. Tides enter the Outer Harbour through the Strait of Georgia and 

propagate into the Inner Harbour through First Narrows. The semi-diurnal M2 

component (12.42 h period) and two diurnal components, the diurnal K1 component 

(23.93 h period) and the lunar diurnal O1 component (25.82 h period), dominate the 

tides with a mean tidal range of 3.3 m and a maximum tidal range of about 5 m [63, 

229–231].  
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Figure 5.8 Burrard Inlet is located on the southwest coast of British Columbia and 

connects with the Pacific Ocean via the Strait of Georgia at its western end. Burrard 

Inlet geographically includes the Outer Harbour, First Narrows, Inner Harbour, 

Second Narrows, and Central Harbour. 

 Burrard Inlet holds a high risk of oil spills due to its heavy maritime traffic. 

In addition, OMA is likely to be formed once an oil spill occurs in the area due to 

the high concentration of suspended sediments. Therefore, anchorage #12 in 

Burrard Inlet was selected to evaluate how the OMA settling velocity prediction 

accuracy affects the extent of OMA deposition in Burrard Inlet. The hydrodynamic 

forcing used in this study was generated by the FVCOM [232]. The FVCOM model 

used in this study was validated by Wu et al. (2019). The OMA class setting and 

settling velocity prediction of each group can be found in Section 6.2. Particles 

were released in anchorage #12 and tracked for 48 hours with a time step of 20 min 

following Equation 3.4. The particle positions were recorded every hour. 
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It can be seen from Figure 5.9a (a relatively low settling velocity prediction 

accuracy) that a portion of OMA was transported into the Vancouver harbour 

through the First Narrows, with some ended up on the southern shoreline of 

Vancouver Harbour. Conversely, when employing the highly predictive settling 

velocity derived from the machine learning algorithm (Figure 5.9b), all OMA 

remained in the Outer Harbour, emphasizing the significance of accurate settling 

velocity prediction for OMA trajectory determination. In Figure 5.9a, the OMA 

transported into Vancouver Harbour are likely dominated by smaller OMA. This 

inference is supported by the sensitivity analysis concerning the predicted settling 

velocities of various OMA sizes and their corresponding deposition patterns, which 

revealed that lower prediction accuracy is associated with increased travel distances 

for smaller OMA. Considering the maximum water depth in the Outer Harbour is 

45 m [234] and the current's initial direction was towards the western of the inlet, 

it is expected that OMA with higher settling velocities would settle before being 

transported into Vancouver Harbour. 
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Figure 5.9 The trajectories of oil-mineral-aggregates in a real location (Burrard 

Inlet, Vancouver) by using (a) traditional floc equation and (b) machine learning 

algorithm for settling velocities prediction. Particles were released at black star. 

5.5 Summary 

 Although settling and transport of OMA are extremely important for 

accurate oil spill modelling, limited efforts have been contributed to explore this 

subject. Laboratory setups were constructed in this study to measure the OMA 
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settling velocity by coupling a high-speed camera and magnifying lens. The settling 

velocity of observed OMA varied from 0.2 mm/s to 3 mm/s, with the majority of 

0.2 – 1 mm/s. The principal component analysis was also applied to investigate how 

the process variables affected the OMA settling velocity. It was found that the clay 

concentration in the water environment positively and strongly correlated with 

OMA settling velocity. The dispersant addition and water density increment led to 

the reduction in OMA settling velocity. We also, for the first time, employed 

machine learning algorithms (RF, GBR and Adaboost) to predict the OMA settling 

velocity, and GBR exhibited the best prediction accuracy (testing R2 of 0.614 and 

RMSE of 1.535) among the three tested algorithms. Compared to traditional 

empirical estimation (R2 of 0.387), machine learning prediction had a much higher 

prediction accuracy, implying its promising potential in OMA settling velocity 

prediction. 

 The sensitivity analysis of OMA deposition with different prediction 

accuracies of OMA settling velocity revealed that a lower prediction accuracy led 

to a wider (less concentrated) spread of OMA, which was attributed to the small 

size of OMA. A hypothetical case study in Burrard Inlet, Vancouver, revealed that 

all OMA remained at the Outer Harbour when a highly predictive settling velocity 

model was employed. However, part of OMA could be transported into the 

Vancouver Harbour through the First Narrows, and some ended up on the southern 

shoreline of Vancouver Harbour when a less accurate OMA settling velocity model 

was implemented, which once again suggested the importance of accurate settling 

velocity prediction for OMA deposition. Such a comprehensive study on OMA 
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settling will help to build a solid foundation to track the oil spill in marine 

environments. 

5.6 Transition Section 

The OMA settling velocities were successfully tracked by the assembled 

high-speed camera and magnifying lens in Chapter 5. Clay concentration and 

density were found to be positively related to OMA settling velocity, which was, 

however, negatively influenced by the presence of dispersant and water density 

increment. Once again, machine learning algorithms exhibited better prediction 

performance than traditional empirical floc equations for OMA settling velocity 

estimation. Nevertheless, how OMA transport would respond to using different 

settling velocity models that have varying prediction accuracies remains unknown. 

Particle tracking studies demonstrated the high sensitivity of OMA trajectory to the 

accuracy of settling velocity prediction, in which machine learning algorithms were 

applied to improve the prediction accuracy of OMA settling velocity. In addition to 

machine learning prediction, a few other tools can be employed to aid in oil spill 

modelling. FTLE has received much research interest in understanding how 

nutrients, pollutants, suspended sediments, and waterborne planktonic biota in 

coastal oceans would distribute and evolve. Unfortunately, scarce efforts have been 

made to evaluate the feasibility of using FTLE for the spilled oil’s trajectory 

analysis. Chapter 6 therefore employed FTLE analysis to study the oil spill in 

Burrard Inlet, Vancouver, one of the busiest water areas in Canada.  
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Chapter 6 Applying Finite-Time Lyapunov Exponent to Study the Tidal 

Dispersion Properties in Burrard Inlet 

Copyright permission: 

       This chapter combined with Chapter 8 has been published in the Journal of 

Hazardous Materials 437(8):129404. The copyright has been obtained from 

Elsevier and co-authors. 

Contribution statement: 

      I was responsible for velocity fields data analysis, oil spill model simulation, 

pre- and post-processed results and manuscript drafting.  

6.1 Particle Tracking Algorithm 

 The particle tracking algorithms were described in Equation 3.3 in Chapter 

3 Section 3.5. The results of particle trajectories and instantaneous velocities were 

recorded every five minutes. The positions of particles were used to calculate the 

FTLE values. The magnitude and direction of currents in each grid over 30 days 

were averaged to estimate the residual current by using t-tide toolbox [212]. The 

tidal cycle was assumed to be 26 hours, and the particles (10 in each grid) were 

released every hour to simulate the trajectories, which were further utilized to 

obtain the tidal excursion. The results of 260 runs (26 h × 10 particle) were then 

averaged to create the map of tidal excursion length. 
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6.2 General Descriptions for FTLE 

The FTLE is denoted as ∅𝒕
𝑻(𝒙) for a given location x and time t in a flow 

field. The FTLE is a scalar that measures the separation between particle traces 

which are spatially close to x, over the time interval t to t + T. The FTLE was 

computed following Haller (2001):  

∅t
T(x) =  

ln√max()

|T|
 (6.1) 

where 𝒎𝒂𝒙() represents the maximum eigenvalue of the symmetric matrix , 

and  is the Cauchy-Green deformation tensor represented by:  

 = (
d∅t

T(x)

dx
)′ ×

d∅t
T(x)

dx
 (6.2) 

 The definition of the FTLE allows for positive and negative T. For a positive 

time, the FTLE measures the separation forward in time and yields a repelling LCS. 

For a negative time, the FTLE measures the separation backward in time and yields 

an attracting LCS. To generalize the finite-time classic concept of normally 

hyperbolic invariant manifolds in dynamic systems, d’Ovidio et al. (2004) 

combined the normalized forward and backward FTLE fields to get hyperbolic 

FTLE fields:  

FTLE± =
FTLE+

FTLEmax
+ −

FTLE−

FTLEmax−
 (6.3) 

Because square grid cells were required to calculate the FTLE, a horizontal 

grid with a spacing of 40 m between grid cell centers was defined for the entire 
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inlet at t = 0. Then particle was released in each grid cell. Start times at four different 

phases of the tide (low tide, mid-flood, high tide, and mid-ebb) were chosen for the 

spring and neap tides. The integration time (T) was 26 hours for the forward and 

backward FTLE fields because it covered all the main tidal constituents.  

The LCS lines are estimates of the transport barriers in the modelled flow. 

In this study, the LCS lines were extracted by analyzing the FTLE fields for 

thresholds of 0.5, 0.7, 0.8, and 0.9 [160]. The results showed that the threshold 

equal to 0.8 was suitable for highlighting the LCS in Burrard Inlet. Therefore, any 

FTLE values higher than 80% of the FTLE maximum were defined as the LCS. 

Finally, the LCS lines were compared with observed Lagrangian drifter data that 

were obtained from two Surface Current Tracker (SCT) drifters released at 8:42 

and 9:11 on Nov. 8, 2015. The drifter locations were recorded every two to six 

minutes, and velocities were calculated from those recorded positions. The drifter 

data records were 12 hours and 10 days long for the two- and six-minute recorded 

data, respectively. The SCT design is described in Page et al. (2019). 

6.3 Stochastic Simulation 

A case study of a hypothetical oil spill was conducted, and the potential 

trajectories of the oil spill case were compared with the results of the FTLE analysis. 

The case study involved the same volume and type of spilled oil (2800 L of IFO-

380) as in the MV Marathassa spill [228]. To explore the trajectory of the spilled 

oil, six possible release sites in Burrard Inlet were selected (as shown in Figure 6.1), 

and the trajectories using the Oil Spill Contingency and Response (OSCAR) model 



 

101 

 

with a stochastic approach were followed. Details about the OSCAR model are in 

Reed et al. and Aamo et al. [237–239]. 

The hydrodynamic forcing used for this study was generated with FVCOM. 

FVCOM is a three-dimensional, finite-volume ocean model with an unstructured 

grid. Chen et al. (2003) first developed FVCOM, and researchers from the 

University of Massachusetts, Dartmouth, and Woods Hole Oceanography Institute 

[241–243] upgraded the model. The coastline and bathymetric data were obtained 

from the Canadian Hydrographic Service. The model domain’s horizontal grid 

spacing varied from ~1 m in the Inner Harbour to ~1 km in the open ocean. In the 

vertical direction, 21 sigma levels were used with enhanced resolutions at the 

surface and bottom layers. The model is a barotropic model and runs with a constant 

temperature and salinity. The model was driven by tides along the open boundaries, 

and the tides were derived from the tidal harmonic constants from Foreman et al. 

(2000). The model was validated with observed water elevations and water currents, 

and more detailed information on the model setup and model validation can be 

found in Wu et al. (2019). To clearly demonstrate and isolate the extraordinarily 

complex flow patterns that the tidal currents generate, surface wind forcing was not 

included in this study. 
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Figure 6.1 Six oil release sites in Burrard Inlet: ANC-U, ANC-17, ANC-15, First 

Narrows, ANC-B, and Second Narrows, from west to east of the inlet. 

Stochastic analysis is commonly used to assess the potential risk of an oil 

spill by overlapping a large number (tens to thousands) of individual deterministic 

simulations. In this study, a stochastic approach was employed to simulate the fate 

and behaviour of an oil spill happening between Feb. 5 to Mar. 7, 2017 (30 days) 

using current velocity data from FVCOM. At each of the six hypothetical release 

locations (Figure 6.1), there were 12 simulations with different start times, evenly 

distributed during the 30-day period. For each simulation, the oil was released 

uniformly over the first two hours and was tracked for seven days. The critical 

parameter settings and the longitudes and latitudes of the release sites for the 

stochastic oil spill modelling are summarized in Table 6.1. The stochastic model 

results did not provide the extent of any individual spill event, but the results 
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summarized all the simulations. The summarized information was used to generate 

maps of the probability of contamination throughout the inlet.  

Table 6.1 The key parameters settings and the release site locations for the 

stochastic oil spill modelling. 

Parameter  Setting  

Period of simulation (days) 30 

Number of simulations  12 

Duration of each simulation (days) 7 

Duration of oil release (hrs) 2 

Type of released oil IFO 380 

Amount of release oil (L) 2800 

Release sites  Latitude  Longitude  

ANC15 49.300278 -123.181389  

ANC17 49.332222 -123.231667 

ANC-U 49.295833 -123.253611 

ANC-B 49.301667 -123.079444 

First Narrows 49.315260 -123.138266 

Second Narrows 49.295365 -123.018871 

6.4 FTLE Analysis Results 

In this study, the FTLE results were normalized with the maximum FTLE 

(FTLE/FTLEmax) for the forward and backward fields separately [160]. Then, the 

forward and backward FTLEs were combined to obtain the hyperbolic FTLE field 
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(see Equation (6.3)) [235]. This combined FTLE field provided the potential 

hyperbolic LCS and dominant hyperbolic saddle points, where repelling and 

attracting material lines meet. A hyperbolic LCS is locally the strongest repelling 

or attracting material surface over a finite time interval [246], and the saddle points 

are the main hidden features that dictate the mixing and stirring of tracers in the 

flow field [160]. The hyperbolic FTLE field for a typical spring tide and neap tide 

and the corresponding water levels are presented in Figure 6.2 and Figure 6.3, 

respectively. As mentioned in Section 6.2, the FTLE field highlights the repelling 

(red) material lines and attracting (blue) material lines, indicating the potential 

pathways for material transport by spreading and accumulating, respectively. 

Inferring flow direction from the FTLE fields is not trivial. Near the saddle points, 

the flow along the red lines must be into the saddle point, and the flow along the 

blue lines must be outward. Thus, in the figures (Figure 6.2 and Figure 6.3), flow 

in a particular direction changed color as it followed the red lines into a saddle point 

and the blue lines outwardly.  Regions that did not have an obvious LCS, and were 

more of a random mixture of red, yellow, green, and blue, were regions where the 

flow tended to mix particles rather than transport them long distances. The 

description of the FTLE focuses on the most coherent features.  

The FTLE fields for the low tide release during the spring tide (Figure 6.2a) 

were first interpreted. The most obvious features were the several red LCSs in the 

Outer Harbour and the red material line extending from the eastern end of First 

Narrows, through the narrows, and along the northern edge of the Outer Harbour. 

There was also a blue material line through First Narrows connecting the Inner and 
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Outer harbours. In the Inner Harbour, there were two blue material lines along the 

southern side, a strong red feature to the south of the entrance to Second Narrows, 

and a blue one to the north of the Inner Harbour. Second Narrows did not have any 

obvious LCS features. There were some coherent linear material lines in the Central 

Harbour and into the Indian Arm, but they were not as strong (consistently red or 

blue) as the lines in the Outer Harbour. The hyperbolic saddle points were used to 

infer some of the flow directions. The red material line along the northern side of 

First Narrows was outward towards the Outer Harbour (the ebb tide jet). The red 

material lines that extended from the central part of the Outer Harbour to the eastern 

coastline were directed towards the coast. The northeastward extension, along the 

coast towards First Narrows, expressed the tidal residual flowing towards the 

entrance of First Narrows along the coast.  

The details of the flow structure and the locations of the saddle points varied 

as a function of the release time. However, there were some consistent features 

(Figure 6.2): large coherent structures in the Outer Harbour (the details of the 

patterns varied); red material lines from the center of the Outer Harbour to the 

eastern coastline; and a material line through the First Narrows (weakest for the 

high tide release, Figure 6.2b, when a red coherent structure blocked the western 

end of the narrows). In none of the simulations was there a material line connecting 

the First and Second Narrows. For the mid-flood tide release (Figure 6.2b), the 

material line in First Narrows extended to the southern coastline of the Inner 

Harbour. In addition, the material lines were separated more distinctly in the Outer 

Harbour than in other regions. The fact that material lines in the Inner Harbour and 
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Second Narrows were more tightly packed and less distinct (often looking like a 

random mess of red, yellow, green, and blue), says that there was more mixing and 

less net transport than in the Outer Harbour. 
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Figure 6.2 The normalized hyperbolic FTLE fields for Burrard inlet during spring 

tide for particles released at (a) low tide; (b) mid-flood tide; (c) high tide; (d) mid-

ebb tide. One particle was released at each grid. The time history of the tide is 

shown in the inset. The FTLE+ calculation extends 26 hrs forward of the red dot 

and the FTLE- calculation extends 26 hrs backward in time.  

 As for the neap tide (Figure 6.3), the material lines in the Outer Harbour 

were mostly distributed in the northeast and worked as transport barriers preventing 

the particles from moving into English Bay. The particles were easily transported 
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between the Outer Harbour and Inner Harbour through First Narrows because there 

were clear pathways along the First Narrows. However, the particles that moved 

between the eastern and western Inner Harbour were impeded as evidenced by the 

tightly packed material lines during low tide (Figure 6.3a) and the material lines 

directed north-south for the other tidal phases (Figures 6.3b, 6.3c, and 6.3d)). The 

impeded movement indicated that the particles in the Inner Harbour were hard to 

transport into the Central Harbour and vice versa. Furthermore, two eddies formed 

in different locations in the Outer Harbour when the particles were released during 

the different tidal phases (Figure 6.3). 

Overall, the FTLE results suggest that the dynamics of the western (Outer 

Harbour and First Narrows) and eastern parts of the inlet (Second Narrows and 

Central Harbour) were different. The material lines were distinctly separated in the 

Outer Harbour, and strong mixing and stirring occurred in the eastern inlet. 

Furthermore, for neap and spring tides, water exchanged easily between the Outer 

Harbour and the Inner Harbour through First Narrows, but the water exchange 

between the eastern and western ends of the inlet decreased in the Inner Harbour 

due to the complex FTLE pattern. More detailed versions of Figure 6.2 and Figure 

6.3 are presented in Figure S6.1 in APPENDIX B, and the details are summarized 

in Table S6.1 in APPENDIX B. 
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Figure 6.3 The normalized hyperbolic FTLE fields for Burrard inlet during neap 

tide for particle released at (a) low tide; (b) mid-flood tide; (c) high tide; (d) mid-

ebb tide. Particles were released in each grid cell. The time history of the tide is 

shown in the inset. The FTLE+ calculation extends 26 hrs forward of the red dot 

and the FTLE- calculation extends 26 hrs backward in time. 

The FTLE fields describe the tidal dispersion properties and are useful when 

analyzing horizontal transport. The LCS lines extracted from the FTLE fields are 

relevant to the trajectories of surface drifters. The drifters will not cross LCS lines; 
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instead, they will follow the water bodies that the LCS lines define. In this study, 

by checking NOAA’s tides and currents website 

(https://tidesandcurrents.noaa.gov/), the tidal phase coincided with the time the 

surface drifters were launched was selected. The FTLEs higher than 80% of the 

FTLE maximum were defined as LCSs. The LCSs were compared with the 

experimental Lagrangian drifter data and the results were illustrated in Figure 6.4. 

For the drifter deployed at Second Narrows (Figure 6.4a), the drifter first moved to 

the Inner Harbour following the repelling lines (red), then it moved further to the 

Outer Harbour along the attracting lines (blue). For another drifter deployed in the 

Central Harbour, Figure 6.4b shows that the drifter moved to Second Narrows 

followed the attracting lines (blue), and then moved to the Inner Harbour along the 

repelling lines (red). Therefore, these drifter trajectories were consistently aligned 

with the LCS lines. 

 

https://tidesandcurrents.noaa.gov/
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Figure 6.4 Comparison of drifter data with FTLE ridges. Particles were released in 

each grid cell. Drifters were deployed at (a) Second Narrows and (b) the Central 

Harbour. The black stars indicate the drifter release locations, and the green points 

depict the observed drifter trajectories. The red lines represent the repelling LCSs, 

and the blue lines represent attracting LCSs. The white spaces are where FTLE 

values were lower than or equal to 80% of the FTLE maximum. 

6.5 Tidal Dispersion Properties 

Several observations and simulations demonstrated that particle trajectories 

in coastal areas are very sensitive to their initial release locations and dates 

[49,50,247–250]. FTLE fields, which can be considered sensitivity maps for initial 

conditions over a finite time interval [148], directly address this sensitivity. The 

FTLE analysis showed that the spatial structures of the FTLE fields were sensitive 

to the differences in the strength of the tidal currents during spring and neap tides 

and that the FTLE fields were sensitive to the phases of the tide at the time of the 

particle release. However, there were five consistent features: 1) material lines 

through First Narrows connecting the Outer Harbour to the Inner Harbour; 2)  

material lines connecting First Narrows to the northern side of the Outer Harbour; 
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3) material lines separating the central part of the Outer Harbour from the southern 

shore of the Outer Harbour (including False Creek); 4) no material lines in the Inner 

Harbour connecting First and Second Narrows; and 5) no strong material lines in 

Second Narrow connecting the Inner and Central Harbours. The primary result of 

this study is that First Narrows tends to function as a transport corridor, whereas 

Second Narrows tends to function as a mixing element. These features will be used 

to interpret the oil spill simulations presented in Section 6.6 and Section 6.7.   

The sensitivity of the FTLE patterns to the overall strength of the currents 

(spring/neap cycle) and to the timing of the particle release (phase of the tide) 

indicates that when the asymmetric tidal currents interact with the physical 

structures, the dynamic structure in Burrard Inlet is affected. A metric of 

asymmetric tidal currents is the large residual current where the current is strong. 

Another metric is where the residual currents rapidly change over short distances. 

Also, the areas where the coastline and topography abruptly change are prime sites 

for asymmetric tidal currents. Figure 6.5 shows that residual eddies formed at the 

western end of First Narrows, in the Inner Harbour, and at each end of Second 

Narrows. Specifically, the incoming tides along the southern slope and the outgoing 

tide along the northern slope most likely caused the anti-cyclonic eddy at the 

western end of First Narrows [63,227]. The cyclonic eddy that covered almost the 

entire Inner Harbour was attributed to these features: the ebb tide jet from Second 

Narrows tending to stay on the north side; the tidal dipole propagating from First 

Narrows towards the southern side of the harbour on strong flood tides [63,251–

253]; and the deep water in the center of the Inner Harbour. In addition, the residual 
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currents had small eddies in the southwest corner of the Inner Harbour. Therefore, 

we concluded that the complex topography led to the forming of asymmetric tidal 

currents, which influenced the transport and mixing in Burrard Inlet. 

Water exchange between the Outer Harbour and the Central Harbour 

decreased in the Inner Harbour due to the tightly packed material lines during a 

spring tide (Figure 6.2) and the material lines across the harbour during neap tide 

(Figure 6.3b, 6.3c, 6.3d). The tidal excursion length explains how the FTLE fields 

formed in the Inner Harbour (Figure 6.6). The tidal excursion lengths for the neap 

tide had the same pattern as for the spring tide but had smaller magnitudes (not 

shown). The longest excursions were towards the east in the northeastern Outer 

Harbour (about 9 km, Figure 6.6a) and towards the west in Second Narrows and 

Central Harbour (around 10 km, Figure 6.6b). As mentioned in Section 5.4.2, the 

lengths of the Inner Harbour and the Central Harbour are about 8.8 and 7.8 km, 

respectively. Because the tidal excursion length (10 km) was shorter than the 

topographic scale (combined lengths of the two harbours are>17 km), it was 

difficult for the particles to move directly between the Outer Harbour and the 

Central Harbour. By comparison, the water exchange between the Outer Harbour 

and the Inner Harbour through First Narrows was relatively easy during spring tide 

and neap tide (Figures 6.2 and 6.3). The key to this easy exchange was that the tidal 

excursion in the northeastern Outer Harbour (Figure 6.6a) and the Inner Harbour 

(Figure 6.6b) was greater than the length of the First Narrows.  

The spatial patterns of the tidal residual currents (Figure 6.5) and the tidal 

excursions (Figure 6.6) support the interpretation of the FTLE.  The magnitudes of 
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the residual currents were largest in First Narrows and Second Narrows with the 

maximum residual currents ranging from about 0.37 to 0.43 m s-1 compared to the 

typical value of ~0.1 m s-1. In the Outer Harbour, there was a large area with mean 

eastward tidal excursions (flood tide; Figure 6.6a) ranging from 8 to 10 km (yellow). 

This large area represented water from the Outer Harbour transported into the Inner 

Harbour. There was also an area of a large eastward excursion (8 km) at the entrance 

to Second Narrows, and this large area represented water transporting through 

Second Narrows to the Central Harbour. For the westward excursions, the largest 

values (10 to 12 km, red; Figure 6.6b) were in Second Narrows and represented 

water that could not cross the Inner Harbour to exit First Narrows.  
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Figure 6.5 Residual current vectors for select locations within (a) First Narrows; 

the (b) Inner Harbour; and (c) Second Narrows 

 

 

Figure 6.6 Mean tidal excursions (a) towards the east and (b) towards the west of 

the inlet. 

6.6 The M/V Marathassa Oil Spill 

As a busy port, PMV is at high risk for oil spills. On April 8, 2015, a small 

oil spill occurred in English Bay (Anchorage #12) with at least 2800 litres of oil 
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being released from the cargo vessel, M/V Marathassa [254]. The M/V Marathassa 

oil spill map in Figure 6.7 is adapted from Stormont (2015). The map in Figure 6.7 

represents observations compiled from several sources, including the Shoreline 

Cleanup Assessment Technique (SCAT) [228,256], the National Aerial 

Surveillance Program (NASP) flights [254], and the City of Vancouver, BC [255]. 

Unfortunately, the exact time of the spill is unknown, but by studying the fate and 

trajectories of the spill, Zhong et al. (2018) found that the spill probably started 

between 14:00 and 15:00 (April 8, 2015). The tidal phase at the time was mid-ebb 

during the spring tide (NOAA’s tides and currents website: 

https://tidesandcurrents.noaa.gov/). Therefore, the FTLE result for the mid-ebb tide 

during a spring tide (Figure 6.2d) is relevant.   

 

Figure 6.7 The M/V Marathassa oil spill situation map (Map provided by the City 

of Vancouver, BC and adapted from Stormont (2015). This map shows the 

observed trajectory of the oil spill on the water surface and the contamination on 

https://tidesandcurrents.noaa.gov/
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the shoreline in English Bay and the Inner Harbour from April 8 to April 10, 2015. 

Areas with oil sheen are numbered 1 to 10, and the contaminated shoreline areas 

are labelled A to P. 

 As shown in Figure 6.7, some of the oil beached at the eastern end of the 

Outer Harbour (English Bay Beach and near Siwash Rock), in the Inner Harbour, 

and along the northern shore of the Inner and Outer Harbours. The oil found on 

English Bay Beach and near Siwash Rock was consistent with the FTLE result that 

shows (red) material lines connecting the center of the Outer Harbour with the 

eastern end (Figure 6.2d). The oil observed in the Inner Harbour and along the north 

shore of First Narrows and the Outer Harbour was consistent with the clear blue 

material lines connecting the Outer Harbour to the Inner Harbour through First 

Narrows, with a branch extending northwest along the north shore of the Outer 

Harbour. Furthermore, some of the oil reached the north shore of the Outer Harbour 

and was transported into the Inner Harbour through First Narrows on April 9 and 

April 10, 2015, as evidenced by the FTLE results that have a clear blue material 

line along the First Narrows (Figure 6.2d). Furthermore, there was a red material 

line in the western part of First Narrows that extended towards the northwest and 

connected with the material line at the Outer Harbour’s north shore, suggesting that 

this oil partially moved back to the Outer Harbour’s north shore through First 

Narrows. Some of the oil in the Inner Harbour washed ashore on the southwest 

shore. A material line that connected to the southwest shoreline of the Inner 

Harbour was in the FTLE field (Figure 6.2d). It noted that no oil was observed on 

the shoreline of the southern Outer Harbour, which was consistent with the east-

west orientation of the material lines that transported particles to the eastern end 
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and prevented transport to the south of shorelines. Overall, the FTLE results 

reasonably explained the trajectories of the M/V Marathassa spilled oil. 

6.7 Stochastic Oil Spill Modelling   

To verify the impact of tidal dispersion on particle transport, an oil spill case 

study was carried out. Six oil release sites were selected as shown in Figure 8.4: 

ANC-15, ANC-17, ANC-U, ANC-B, First Narrows, and Second Narrows.  A 

stochastic approach was applied to conduct the spill modelling and hydrodynamic 

data from the FVCOM model were used. The total probability of oil contamination 

is in Figure 6.8. For the ANC-17, it was highly probable that the contaminant would 

move out of Burrard Inlet, with a small probability of crossing First Narrows into 

the Inner Harbour. When oil was released at First Narrows and in the Inner Harbour, 

the oil moved west to the Outer Harbour, but oil released at ANC-U and ANC-15 

were likely to cross First Narrows and move towards the Inner Harbour, with a high 

probability of reaching the north shore of the Outer Harbour. Furthermore, the 

probability of the oil moving through Second Narrows was low in these five cases. 

These results agreed with the FTLE features mentioned in Section 6.5: 1) material 

lines through First Narrows connecting the Outer Harbour to the Inner Harbour; 

and 2) material lines connecting First Narrows to the northern side of the Outer 

Harbour. Moreover, the Second Narrows case showed little oil transporting through 

the First Narrows and into the Outer Harbour (Figure 6.8). This result is supported 

by the FTLE features: 4) no material lines in the Inner Harbour connecting First 

and Second Narrows; and 5) no strong material lines in Second Narrows connecting 

the Inner Harbour and Central Harbour. 
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The oil spill trajectory in the Outer Harbour was like a tail when oil was 

released at ANC-17, First Narrows, and ANC-U. It is also worth mentioning that 

there was no oil in False Creek. These were consistent with the FTLE feature: 3) 

material lines separating the central part of the Outer Harbour from the southern 

shore of the Outer Harbour (including False Creek). Overall, the results show that 

complex transport patterns can result from simple tidal forcing due to the 

importance of tidal dispersion and from the FTLE fields explaining the oil 

distribution in the model simulations.  
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Figure 6.8 The total probability of oil contamination for an oil spill at ANC-17, First Narrows, ANC-U, ANC-15, ANC-B, and Second 

Narrows. Oil released at the black stars. 
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6.8 Summary 

This study combined FTLE values, residual currents, and tidal excursion 

length to explore the influence of tidal dispersion on oil spill transport in Burrard 

Inlet. The FTLE results showed that the spatial structures of the FTLE fields were 

sensitive to the differences in the strength of the tidal currents during spring and 

neap tides, and the FTLE fields were sensitive to the phases of the tide at the time 

of the particle release. However, there were five consistent features: 1) material 

lines through First Narrows connecting the Outer Harbour to the Inner Harbour; 2) 

material lines connecting First Narrows to the northern side of the Outer Harbour; 

3) material lines separating the central part of the Outer Harbour from the southern 

shore of the Outer Harbour (including False Creek); 4) no material lines in the Inner 

Harbour connecting First and Second Narrows; and 5) no strong material lines in 

Second Narrows connecting the Inner and Central Harbour. These features were 

consistency with the residual currents and tidal excursion analysis. Moreover, 

particles adhered to the eastern shore of English Bay during spring tide because 

most material lines in the Outer Harbour connected to the eastern shore.  

To verify the tidal dispersion’s impact on the transport of spilled oil, FTLE 

fields were used to explain the fate of a real oil spill (M/V Marathassa oil spill) that 

occurred in Burrard Inlet in 2015, and proved that the FTLE fields could explain 

the trajectory of this spilled oil. Finally, a stochastic case study of an oil spill in 

Burrard Inlet was conducted. The results of the oil spill modelling agreed well with 

observations from the analysis of the FTLE fields. This agreement suggests that 

computing the FTLE is promising for predicting oil trajectories and contingency 
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planning for when an oil spill occurs. Overall, such a systematic exploration of tidal 

dispersion’s influence on particle/oil spill trajectories is valuable in oil spill 

modelling and ocean protection. 
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Chapter 7: Conclusion  

7.1 Summary and Conclusions 

With the aim to systematically explore OMA formation, settling and 

transport, we firstly utilized Screening Design to investigate seven process 

variables’ impact on OMA D50, including temperature, time, salinity, clay type, 

agitation speed, oil/clay weight ratio, the absence/presence of dispersant. It was 

found that time exhibited the most profound influence on OMA D50, followed by 

temperature and oil/clay ratio. Also, the influence of time heavily depended on the 

temperature and oil/clay ratio employed. Prolonging formation time to 8 h at a low 

temperature of 0 °C and 1:2 oil/clay ratio led to a greater OMA D50 (~50 um). The 

feasibility of using machine learning algorithms for OMA D50 prediction was also 

evaluated. Three tree-based machine learning algorithms (RF, GBR and Adaboost) 

were assessed. Adaboost had the most satisfactory performance on predicting D50, 

as evidenced by the high R2 (0.97 for training and 0.74 for testing) and low RMSE 

values. In addition to D50 prediction, Adaboost was implemented to quantify the 

importance of each process variable, and the obtained results were in well 

agreement with that of statistical analysis from ANOVA analysis. The machine 

learning based prediction was then compared with the traditional collision-theory-

based prediction by using the same dataset, which the former was favourable in 

terms of the prediction accuracy (R2 of 0.74 vs. 0.62). An open-sourced mini 

application software that incorporated with Adaboost algorithm and can be easily 

installed in the user’s computer was assembled to quickly predict the OMA D50 by 
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simply keying the formation process variables, even though more research efforts 

are still required to expand the dataset to train the model better for more accurate 

prediction.  

Identifying significant factors and their interactions that influence OMA 

median size improves our understanding of the significant factors and the complex 

relationships between various factors in OMA formation. This knowledge is crucial 

for guiding future experiments investigating OMA formation. Machine learning 

algorithms offer a convenient and effective means of estimating OMA median size, 

with potential for predicting OMA size distribution through further exploration. By 

employing these efficient methods, oil spill response strategies can be optimized, 

and environmental damage can be minimized by enhancing the accuracy of oil spill 

fate and trajectory predictions. 

Laboratory setups (a high-speed camera coupled with a magnifying lens) 

were then constructed to measure the OMA settling velocity. The settling velocity 

of observed OMA varied from 0.2 mm/s to 3 mm/s. How the process variables 

affected the OMA settling velocity was also investigated by Principal Component 

Analysis (PCA). It was found that the clay concentration in the water environment 

positively and strongly correlated with OMA settling velocity. However, the 

dispersant addition and water density increment led to the reduction in OMA 

settling velocity. We also employed machine learning algorithms (RF, GBR and 

Adaboost) to predict the OMA settling velocity. GBR exhibited the best prediction 

accuracy (testing R2 of 0.614 and RMSE of 1.535) among the three tested 

algorithms. Compared to traditional empirical estimation (R2 of 0.387), machine 
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learning prediction had a much higher prediction accuracy, implying its promising 

potential in OMA settling velocity prediction. The sensitivity analysis of OMA 

transport with different prediction accuracies of OMA settling velocity revealed 

that a lower prediction accuracy led to a wider (less concentrated) spread of OMA, 

which was attributed to the small size of OMA. A hypothetical case particle 

tracking of OMA in Burrard Inlet, Vancouver, showed that all OMA remained at 

the Outer Harbour when a highly predictive settling velocity model was employed. 

However, a portion of OMA could be transported into the Vancouver Harbour 

through the First Narrows, with some ended up on the shoreline of the southern 

Vancouver Harbour when a less accurate OMA settling velocity model was 

implemented, which once again suggested the importance of accurate settling 

velocity prediction for OMA trajectories. Such a comprehensive study on OMA 

settling will help to build a solid foundation to better understand and track the oil 

spill transport in marine environments. 

Understanding the important factors and their impact on OMA settling 

velocity not only guides future research on OMA settling velocity but also aids in 

predicting the behavior and distribution of OMA in the water column. The 

convenience and efficiency of using machine learning algorithms for estimating 

OMA settling velocity contribute to the development of more accurate oil spill 

models. This ultimately empowers decision-makers to optimize oil spill response 

strategies and reduce the environmental impact of oil spills more effectively. 

An emerging technique on tidal dispersion properties analysis and pollutant 

tracking, the FTLE method, was then used as an aid-in tool for oil spill modelling 
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in Burrard Inlet, Vancouver, one of the busiest water areas in Canada. The FTLE 

results showed that the spatial structures of the FTLE fields were sensitive to the 

differences in the strength of the tidal currents during spring and neap tides, and the 

FTLE fields were sensitive to the phases of the tide at the time of the particle release. 

However, there were five consistent features: 1) material lines through First 

Narrows connecting the Outer Harbour to the Inner Harbour; 2) material lines 

connecting First Narrows to the northern side of the Outer Harbour; 3) material 

lines separating the central part of the Outer Harbour from the southern shore of the 

Outer Harbour (including False Creek); 4) no material lines in the Inner Harbour 

connecting First and Second Narrows; and 5) no strong material lines in Second 

Narrows connecting the Inner and Central Harbour. These features were consistent 

with the tidal excursion and the residual currents analysis, providing crucial 

information for predicting pollutant transport in the region. Moreover, particles 

adhered to the eastern shore of English Bay during spring tide because most 

material lines in the Outer Harbour connected to the eastern shore. To verify the 

tidal dispersion’s impact on the transport of spilled oil, FTLE fields were used to 

explain the fate of a real oil spill (M/V Marathassa oil spill) that occurred in Burrard 

Inlet in 2015, and proved that the FTLE fields could explain the trajectory of this 

spilled oil. Finally, a stochastic case study of an oil spill in Burrard Inlet was 

conducted. The results of the oil spill modelling agreed well with observations from 

the analysis of the FTLE fields. This agreement suggests that computing the FTLE 

is promising for predicting oil trajectories and contingency planning for when an 

oil spill occurs.  



 

129 

 

Moreover, as compared to traditional modelling approaches, calculating 

FTLE values does not require high data accuracy or interpolating the velocity field. 

In addition, FTLE analysis results are not sensitive to data errors. The FTLE 

analysis contributes to the mitigation of environmental consequences arising from 

oil spills and the optimization of resource allocation during response initiatives. For 

example, once an oil spill occurs in Burrard Inlet, by giving the initial spill location 

and tidal phase in Burrard Inlet, users can rapidly pinpoint transport barriers and 

discern areas of high sensitivity from the corresponding FTLE map. Then, optimal 

strategies to address oil spills, such as targeted containment, dispersion, or recovery 

efforts, can be rapidly implemented.  

Overall, this study highlights the benefits of combining traditional 

experimental methods with advanced machine learning techniques to understand 

complex processes like OMA formation, settling, and transport. This 

interdisciplinary approach can inspire future research in environmental science and 

other fields to leverage the power of machine learning and other advanced 

computational tools for deeper insights. Moreover, this research has identified areas 

that need further exploration, such as expanding the dataset to improve the machine 

learning model's accuracy and investigating OMA size distribution predictions. By 

identifying these gaps, the study sets the stage for future research to build upon 

these findings and further enhance the prediction and understanding of OMA 

formation and transport. Furthermore, the successful application of the FTLE 

method in Burrard Inlet suggests its potential for use in other geographical areas 

with varying hydrodynamic conditions. Additionally, the method can potentially be 
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extended to track and model the dispersion of other pollutants in water bodies, 

contributing to the broader field of environmental management. 

7.2 Future Work and Recommendations 

1. Influential factors for OMA D50 have been identified through Screening Design, 

a more detailed study by Factorial Design to explore their influences on the OMA 

size distribution more explicitly is recommended. In addition, machine learning 

algorithms have been proven to be superior to traditional collision-theory-based 

prediction for D50, which serves as an inspiring reference for future work on 

estimating the OMA size distribution via machine learning algorithms.  

2. Although the OMA formation and settling have been investigated from different 

perspectives in this study, the OMA oil trapping efficiency was not explored. The 

fast and adequate quantification of trapped oil in OMA is of significant value, 

which will ease and speed up the OMA oil trapping efficiency study. Furthermore, 

the obtained oil trapping efficiency results can be combined with OMA settling 

velocity and subsequently incorporated into the OMA transport modelling. This 

allows the OMA trajectory tracking and provides information on how much and 

where the spilled oils are sunk to the bottom by forming OMA.  

3. Most oil spill modelling software lacks an OMA formation and settling section, 

future works on incorporating these sections (based upon acquired OMA data and 

highly predictive models) into oil spill models are of importance to improve the 

software performances on tracking the fate and trajectory of the spilled oil.   
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4. Tree-based machine learning algorithms showed promising potential in OMA 

formation and settling prediction. However, the predictability of other types of 

machine learning algorithms (e.g., deep learning and neural network) for OMA 

formation and settling need to be evaluated, and further predictability improvement 

might be possible. Also, the LCS line extraction from the FTLE field is still 

challenging. Therefore, using machine learning algorithms to extract the LCS lines 

more efficiently and accurately are also recommended.  

5. Although FTLE is a promising aid-in tool for analyzing the trajectory of spilled 

oil, the current FTLE analysis was only two-dimensional (2D). However, the fate 

and behaviour of oil spills are usually three-dimensional (3D). Therefore, there is a 

strong necessity to develop the 3D FTLE technique.   



 

132 

 

References 

[1] A.K. Mishra, G.S. Kumar, Weathering of Oil Spill: Modeling and Analysis, 

Aquatic Procedia. 4 (2015) 435–442. 

https://doi.org/10.1016/j.aqpro.2015.02.058. 

[2] ITOPF, Oil Tanker Spill Statistics 2021, International Tanker Owners 

Pollution Federation (ITOPF), 2022. 

https://www.itopf.org/fileadmin/uploads/itopf/data/Documents/Company_L

it/Oil_Spill_Stats_2021.pdf. 

[3] M. Fingas, Oil Spill Science and Technology, Gulf Professional Publishing, 

2016. 

[4] A.Y. Ivanov, V.V. Zatyagalova, A GIS approach to mapping oil spills in a 

marine environment, International Journal of Remote Sensing. 29 (2008) 

6297–6313. https://doi.org/10.1080/01431160802175587. 

[5] P. Keramea, K. Spanoudaki, G. Zodiatis, G. Gikas, G. Sylaios, Oil Spill 

Modeling: A Critical Review on Current Trends, Perspectives, and 

Challenges, Journal of Marine Science and Engineering. 9 (2021) 181. 

https://doi.org/10.3390/jmse9020181. 

[6] M.L. Spaulding, State of the art review and future directions in oil spill 

modeling, Marine Pollution Bulletin. 115 (2017) 7–19. 

https://doi.org/10.1016/j.marpolbul.2017.01.001. 

[7] C.A. Page, J.S. Bonner, P.L. Sumner, T.J. McDonald, R.L. Autenrieth, C.B. 

Fuller, Behavior of a chemically-dispersed oil and a whole oil on a near-

shore environment, Water Research. 34 (2000) 2507–2516. 

https://doi.org/10.1016/S0043-1354(99)00398-X. 

[8] Sterling Michael C., J.S. Bonner, C.A. Page, C.B. Fuller, A.N.S. Ernest, R.L. 

Autenrieth, Partitioning of Crude Oil Polycyclic Aromatic Hydrocarbons in 

Aquatic Systems, Environ. Sci. Technol. 37 (2003) 4429–4434. 

https://doi.org/10.1021/es0341034. 

[9] D.K. Button, The influence of clay and bacteria on the concentration of 

dissolved hydrocarbon in saline solution, Geochimica et Cosmochimica Acta. 

40 (1976) 435–440. https://doi.org/10.1016/0016-7037(76)90008-9. 

[10] X. Chao, Shankar N. Jothi, Wang Sam S. Y., Development and Application 

of Oil Spill Model for Singapore Coastal Waters, Journal of Hydraulic 

Engineering. 129 (2003) 495–503. https://doi.org/10.1061/(ASCE)0733-

9429(2003)129:7(495). 



 

133 

 

[11] P.A. Meyers, T.G. Oas, Comparison of associations of different 

hydrocarbons with clay particles in simulated seawater, Environ. Sci. 

Technol. 12 (1978) 934–937. https://doi.org/10.1021/es60144a005. 

[12] Z. Wang, W. Yang, Y. Zhang, Z. Yan, H. Liu, B. Sun, A practical adsorption 

model for the formation of submerged oils under the effect of suspended 

sediments, RSC Advances. 9 (2019) 15785–15790. 

https://doi.org/10.1039/C9RA02775K. 

[13] J.R. Payne, B.E. Kirstein, J.R. Clayton, C. Clary, R. Redding, Integration of 

suspended-particulate matter and oil-transportation study. Final report, 

September 1984-September 1987, Science Applications International Corp., 

San Diego, CA (USA), 1987. https://www.osti.gov/biblio/5818912 

(accessed January 11, 2020). 

[14] M.C. Sterling, J.S. Bonner, A.N.S. Ernest, C.A. Page, R.L. Autenrieth, 

Application of fractal flocculation and vertical transport model to aquatic 

sol–sediment systems, Water Research. 39 (2005) 1818–1830. 

https://doi.org/10.1016/j.watres.2005.02.007. 

[15] Sterling Michael C., J.S. Bonner, C.A. Page, C.B. Fuller, A.N.S. Ernest, R.L. 

Autenrieth, Modeling Crude Oil Droplet−Sediment Aggregation in 

Nearshore Waters, Environ. Sci. Technol. 38 (2004) 4627–4634. 

https://doi.org/10.1021/es035467z. 

[16] A.H. Walker, C. Stern, D. Scholz, E. Nielsen, F. Csulak, R. Gaudiosi, 

Consensus Ecological Risk Assessment of Potential Transportation-related 

Bakken and Dilbit Crude Oil Spills in the Delaware Bay Watershed, USA, 

Journal of Marine Science and Engineering. 4 (2016) 23. 

[17] O.A. Poirier, G.A. Thiel, Deposition of Free Oil by Sediments Settling in Sea 

Water, AAPG Bulletin. 25 (1941) 2170–2180. 

[18] J.R. Bragg, S.H. Yang, J.C. Roffall, Experimental studies of natural 

cleansing of oil residue from rocks in Prince William Sound by wave/tidal 

action: Unpublished Report, Exxon Production Research Co., PO Box. 2189 

(1990). 

[19] H.O. Jahns, J.R. Bragg, L.C. Dash, E.H. Owens, Natural Cleaning of 

Shorelines Following the Exxon Valdez Spill, International Oil Spill 

Conference Proceedings. 1991 (1991) 167–176. 

https://doi.org/10.7901/2169-3358-1991-1-167. 

[20] J.R. Bragg, E.H. Owens, Shoreline Cleansing By Interactions Between Oil 

and Fine Mineral Particles, in: International Oil Spill Conference 

Proceedings, 1995: pp. 219–227. 

https://www.ioscproceedings.org/doi/abs/10.7901/2169-3358-1995-1-219 

(accessed January 21, 2020). 



 

134 

 

[21] J.R. Bragg, S.H. Yang, Clay Oil Flocculation and its Role in Natural 

Cleansing in Prince William Sound Following the Exxon Valdez Oil Spill, 

in: United States, 1995. https://www-astm-

org.ezproxy.library.dal.ca/DIGITAL_LIBRARY/STP/PAGES/STP19864S.

htm (accessed January 21, 2020). 

[22] K. Lee, Oil–Particle Interactions in Aquatic Environments: Influence on the 

Transport, Fate, Effect and Remediation of Oil Spills, Spill Science & 

Technology Bulletin. 8 (2002) 3–8. https://doi.org/10.1016/S1353-

2561(03)00006-9. 

[23] K. Lee, P. Stoffyn-Egli, P.A. Wood, T. Lunel, Formation and structure of 

oil-mineral fines aggregates in coastal environments, (1998). 

https://www.osti.gov/etdeweb/biblio/633775 (accessed October 29, 2021). 

[24] R.H. Dollhopf, F.A. Fitzpatrick, J.W. Kimble1, D.M. Capone, T.P. Graan, 

R.B. Zelt, R. Johnson, Response to Heavy, Non-Floating Oil Spilled in a 

Great Lakes River Environment: A Multiple-Lines-Of-Evidence Approach 

for Submerged Oil Assessment and Recovery, International Oil Spill 

Conference Proceedings. 2014 (2014) 434–448. 

https://doi.org/10.7901/2169-3358-2014.1.434. 

[25] Y. Gong, X. Zhao, Z. Cai, S.E. O’Reilly, X. Hao, D. Zhao, A review of oil, 

dispersed oil and sediment interactions in the aquatic environment: Influence 

on the fate, transport and remediation of oil spills, Marine Pollution Bulletin. 

79 (2014) 16–33. https://doi.org/10.1016/j.marpolbul.2013.12.024. 

[26] X. Zhong, H. Niu, P. Li, Y. Wu, L. Liu, An Overview of Oil-Mineral-

Aggregate Formation, Settling, and Transport Processes in Marine Oil Spill 

Models, Journal of Marine Science and Engineering. 10 (2022) 610. 

https://doi.org/10.3390/jmse10050610. 

[27] A. Khelifa, P. Stoffyn-Egli, P.S. Hill, K. Lee, Characteristics of Oil Droplets 

Stabilized by Mineral Particles: The Effect of Salinity, International Oil Spill 

Conference Proceedings. 2003 (2003) 963–970. 

https://doi.org/10.7901/2169-3358-2003-1-963. 

[28] S. Le-Floch, J. Guyomarch, F.-X. Merlin, P. Stoffyn-Egli, J. Dixon, K. Lee, 

The Influence of Salinity on Oil–Mineral Aggregate Formation, Spill 

Science & Technology Bulletin. 8 (2002) 65–71. 

https://doi.org/10.1016/S1353-2561(02)00124-X. 

[29] A. Khelifa, P. Stoffyn-Egli, P.S. Hill, K. Lee, Effects of salinity and clay 

type on oil–mineral aggregation, Marine Environmental Research. 59 (2005) 

235–254. https://doi.org/10.1016/j.marenvres.2004.05.003. 

[30] D. Kerebel, Study of the influence of salinity on the flocculation oil-clay, 

Centre de Documentation de Recherche et d’expérimentations Sur Les 



 

135 

 

Pollutions Accidentelles Des Eaux (Cèdre). Final Report (in French), 20p & 

Annexes. (1997). 

[31] J. Guyomarch, F.-X. Merlin, P. Bernanose, Oil interaction with mineral fines 

and chemical dispersion: behaviour of the dispersed oil in coastal or estuarine 

conditions, in: ARCTIC AND MARINE OILSPILL PROGRAM 

TECHNICAL SEMINAR, MINISTRY OF SUPPLY AND SERVICES, 

CANADA, 1999: pp. 137–150. 

[32] J. Sun, A. Khelifa, X. Zheng, Z. Wang, L.L. So, S. Wong, C. Yang, B. 

Fieldhouse, A laboratory study on the kinetics of the formation of oil-

suspended particulate matter aggregates using the NIST-1941b sediment, 

Marine Pollution Bulletin. 60 (2010) 1701–1707. 

https://doi.org/10.1016/j.marpolbul.2010.06.044. 

[33] J. Guyomarch, S. Le Floch, F.-X. Merlin, Effect of Suspended Mineral Load, 

Water Salinity and Oil Type on the Size of Oil–Mineral Aggregates in the 

Presence of Chemical Dispersant, Spill Science & Technology Bulletin. 8 

(2002) 95–100. https://doi.org/10.1016/S1353-2561(02)00118-4. 

[34] A. Khelifa, P. Stoffyn-Egli, P.S. Hill, K. Lee, Characteristics of Oil Droplets 

Stabilized by Mineral Particles: Effects of Oil Type and Temperature, Spill 

Science & Technology Bulletin. 8 (2002) 19–30. 

https://doi.org/10.1016/S1353-2561(02)00117-2. 

[35] N. Nazemzadeh, A.A. Malanca, R.F. Nielsen, K.V. Gernaey, M.P. 

Andersson, S.S. Mansouri, Integration of first-principle models and machine 

learning in a modeling framework: An application to flocculation, Chemical 

Engineering Science. 245 (2021) 116864. 

https://doi.org/10.1016/j.ces.2021.116864. 

[36] Y. Qin, H. Jia, W. Liu, N. Lu, H.H. Ngo, J. Wang, Application of in-situ 

micro laser transmission on real-time monitoring of flocculation process, 

Journal of Water Process Engineering. 51 (2023) 103364. 

https://doi.org/10.1016/j.jwpe.2022.103364. 

[37] Y.-K. Kim, K.-S. Na, Application of machine learning classification for 

structural brain MRI in mood disorders: Critical review from a clinical 

perspective, Progress in Neuro-Psychopharmacology and Biological 

Psychiatry. 80 (2018) 71–80. https://doi.org/10.1016/j.pnpbp.2017.06.024. 

[38] A.E. Maxwell, T.A. Warner, F. Fang, Implementation of machine-learning 

classification in remote sensing: an applied review, International Journal of 

Remote Sensing. 39 (2018) 2784–2817. 

https://doi.org/10.1080/01431161.2018.1433343. 

[39] Y. Cao, Q. Kang, B. Zhang, Z. Zhu, G. Dong, Q. Cai, K. Lee, B. Chen, 

Machine learning-aided causal inference for unraveling chemical dispersant 



 

136 

 

and salinity effects on crude oil biodegradation, Bioresource Technology. 

345 (2022) 126468. https://doi.org/10.1016/j.biortech.2021.126468. 

[40] L. Ye, A.J. Manning, T.-J. Hsu, Oil-mineral flocculation and settling velocity 

in saline water, Water Research. 173 (2020) 115569. 

[41] C.M. O’Laughlin, B.A. Law, V.S. Zions, T.L. King, B. Robinson, Y. Wu, 

Settling of dilbit-derived oil-mineral aggregates (OMAs) & transport 

parameters for oil spill modelling, Marine Pollution Bulletin. 124 (2017) 

292–302. https://doi.org/10.1016/j.marpolbul.2017.07.042. 

[42] W.R. Geyer, R.P. Signell, A reassessment of the role of tidal dispersion in 

estuaries and bays, Estuaries. 15 (1992) 97–108. 

https://doi.org/10.2307/1352684. 

[43] U.S. Army Corps of Engineers, Coastal Engineering Manual - Part II, 2012. 

[44] A.J.F. Hoitink, Physics of coral reef systems in a shallow tidal embayment, 

Utrecht University Repository, 2003. 

http://dspace.library.uu.nl/handle/1874/567 (accessed February 4, 2020). 

[45] S.K. Maity, R. Maiti, Tidal impact leading to sedimentation at lower reach 

of Rupnarayan River, West Bengal, India, IJMS Vol.45(10) [October 2016]. 

(2016). http://nopr.niscair.res.in/handle/123456789/35730 (accessed 

February 4, 2020). 

[46] J.C. Ohlmann, M.J. Molemaker, B. Baschek, B. Holt, G. Marmorino, G. 

Smith, Drifter observations of submesoscale flow kinematics in the coastal 

ocean, Geophysical Research Letters. 44 (2017) 330–337. 

https://doi.org/10.1002/2016GL071537. 

[47] R. Pawlowicz, C. Hannah, A. Rosenberger, Lagrangian observations of 

estuarine residence times, dispersion, and trapping in the Salish Sea, 

Estuarine, Coastal and Shelf Science. 225 (2019) 106246. 

https://doi.org/10.1016/j.ecss.2019.106246. 

[48] R.F. Rhodes, Effect of Salinity on Current Velocities, US Corps of Engineers, 

Committees Tidal Hydraulics. 94 (1950). 

[49] R.P. Signell, B. Butman, Modeling tidal exchange and dispersion in Boston 

Harbor, Journal of Geophysical Research: Oceans. 97 (1992) 15591–15606. 

https://doi.org/10.1029/92JC01429. 

[50] D. Xu, H. Xue, A numerical study of horizontal dispersion in a macro tidal 

basin, Ocean Dynamics. 61 (2011) 623–637. 

https://doi.org/10.1007/s10236-010-0371-6. 



 

137 

 

[51] Z.-G. Ji, Hydrodynamics and water quality: modeling rivers, lakes, and 

estuaries, John Wiley & Sons, 2017. 

[52] H.H. Savenije, Salinity and Tides in Alluvial Estuaries, Elsevier, 2006. 

https://books.google.ca/books?hl=en&lr=&id=7vC3LYKD7RIC&oi=fnd&

pg=PR3&ots=6e9uoMsUU5&sig=g-

hIKn68gJRI4EiYKN9993In2Jo&redir_esc=y#v=onepage&q&f=false 

(accessed February 5, 2020). 

[53] G.P. Schramkowski, H.M. Schuttelaars, H.E. de Swart, Non-linear channel–

shoal dynamics in long tidal embayments, Ocean Dynamics. 54 (2004) 399–

407. https://doi.org/10.1007/s10236-003-0063-6. 

[54] G.P. Schramkowski, H.M. Schuttelaars, H.E. de Swart, The effect of 

geometry and bottom friction on local bed forms in a tidal embayment, 

Continental Shelf Research. 22 (2002) 1821–1833. 

https://doi.org/10.1016/S0278-4343(02)00040-7. 

[55] L.V. Lucas, J.R. Koseff, S.G. Monismith, J.E. Cloern, J.K. Thompson, 

Processes governing phytoplankton blooms in estuaries. II: The role of 

horizontal transport, Marine Ecology Progress Series. 187 (1999) 17–30. 

https://doi.org/10.3354/meps187017. 

[56] F.W.L. Kho, P.L. Law, S.H. Lai, Y.W. Oon, L.H. Ngu, H.S. Ting, 

Quantitative dam break analysis on a reservoir earth dam, Int. J. Environ. Sci. 

Technol. 6 (2009) 203–210. https://doi.org/10.1007/BF03327623. 

[57] A. Hibma, H.J. de Vriend, M.J.F. Stive, Numerical modelling of shoal 

pattern formation in well-mixed elongated estuaries, Estuarine, Coastal and 

Shelf Science. 57 (2003) 981–991. https://doi.org/10.1016/S0272-

7714(03)00004-0. 

[58] M.J. Barrett, Predicting the effect of pollution in estuaries, Proc. R. Soc. 

Lond. B. 180 (1972) 511–520. https://doi.org/10.1098/rspb.1972.0035. 

[59] A. Valle-Levinson, Some basic hydrodynamic concepts to be considered for 

coastal aquaculture, in: Site Selection and Carrying Capacities for Inland and 

Coastal Aquaculture, 2013: p. 147. 

[60] B. De Young, S. Pond, The internal tide and resonance in Indian Arm, British 

Columbia, Journal of Geophysical Research: Oceans. 92 (1987) 5191–5207. 

https://doi.org/10.1029/JC092iC05p05191. 

[61] M.W. Stacey, R. Pieters, S. Pond, The Simulation of Deep Water Exchange 

in a Fjord: Indian Arm, British Columbia, Canada, J. Phys. Oceanogr. 32 

(2002) 2753–2765. https://doi.org/10.1175/1520-

0485(2002)032<2753:TSODWE>2.0.CO;2. 



 

138 

 

[62] M.W. Stacey, S. Pond, Dependence of Currents and Density on the Spring–

Neap Cycle and the Diurnal Inequality in Burrard Inlet, British Columbia: 

Simulations and Observations, J. Phys. Oceanogr. 33 (2003) 2366–2374. 

https://doi.org/10.1175/1520-0485(2003)033<2366:DOCADO>2.0.CO;2. 

[63] Y. Wu, C. Hannah, M. O’Flaherty-Sproul, P. MacAulay, S. Shan, A 

modeling study on tides in the Port of Vancouver, Coastal Environmental 

Changes under Increasing Anthropogenic Impacts. 2 (2019) 101–125. 

https://doi.org/10.1139/anc-2018-0008@anc-cec.issue01. 

[64] I. Mezić, S. Loire, V.A. Fonoberov, P. Hogan, A new mixing diagnostic and 

Gulf oil spill movement, Science. 330 (2010) 486–489. 

[65] M. Fingas, Chapter 8 - Introduction to Spill Modeling, in: M. Fingas (Ed.), 

Oil Spill Science and Technology, Gulf Professional Publishing, Boston, 

2011: pp. 187–200. https://doi.org/10.1016/B978-1-85617-943-0.10008-5. 

[66] K. Lee, M. Boufadel, B. Chen, J. Foght, P. Hodson, S. Swanson, A. Venosa, 

Expert Panel Report on the Behaviour and Environmental Impacts of Crude 

Oil Released into Aqueous Environments, Royal Society of Canada, Ottawa, 

2015. 

[67] T.K. Dutta, S. Harayama, Fate of Crude Oil by the Combination of 

Photooxidation and Biodegradation, Environ. Sci. Technol. 34 (2000) 1500–

1505. https://doi.org/10.1021/es991063o. 

[68] M. Fingas, The evaporation of oil spills, in: ARCTIC AND MARINE 

OILSPILL PROGRAM TECHNICAL SEMINAR, MINISTRY OF 

SUPPLY AND SERVICES, CANADA, 1995: pp. 43–60. 

[69] M. Fingas, Chapter 10 - Models for Water-in-Oil Emulsion Formation, in: 

M. Fingas (Ed.), Oil Spill Science and Technology, Gulf Professional 

Publishing, Boston, 2011: pp. 243–273. https://doi.org/10.1016/B978-1-

85617-943-0.10010-3. 

[70] J.A. Fay, The Spread of Oil Slicks on a Calm Sea, in: D.P. Hoult (Ed.), Oil 

on the Sea: Proceedings of a Symposium on the Scientific and Engineering 

Aspects of Oil Pollution of the Sea, Sponsored by Massachusetts Institute of 

Technology and Woods Hole Oceanographic Institution and Held at 

Cambridge, Massachusetts, May 16, 1969, Springer US, Boston, MA, 1969: 

pp. 53–63. https://doi.org/10.1007/978-1-4684-9019-0_5. 

[71] W.A. Dew, A. Hontela, S.B. Rood, G.G. Pyle, Biological effects and toxicity 

of diluted bitumen and its constituents in freshwater systems, Journal of 

Applied Toxicology. 35 (2015) 1219–1227. 

[72] W.J. Lehr, Review of modeling procedures for oil spill weathering behavior, 

Advances in Ecological Sciences. 9 (2001) 51–90. 



 

139 

 

[73] S.-D. Wang, Y.-M. Shen, Y.-K. Guo, J. Tang, Three-dimensional numerical 

simulation for transport of oil spills in seas, Ocean Engineering. 35 (2008) 

503–510. 

[74] J. Michel, N. Rutherford, Impacts, recovery rates, and treatment options for 

spilled oil in marshes, Marine Pollution Bulletin. 82 (2014) 19–25. 

https://doi.org/10.1016/j.marpolbul.2014.03.030. 

[75] W. Lehr, R. Jones, M. Evans, D. Simecek-Beatty, R. Overstreet, Revisions 

of the ADIOS oil spill model, Environmental Modelling & Software. 17 

(2002) 189–197. https://doi.org/10.1016/S1364-8152(01)00064-0. 

[76] W.J. Lehr, R. Overstreet, R. Jones, G. Watabayashi, ADIOS-automated data 

inquiry for oil spills, (1992). 

http://inis.iaea.org/Search/search.aspx?orig_q=RN:25009588 (accessed 

November 23, 2018). 

[77] P.S. Daling, O.M. Aamo, A. Lewis, T. Strøm-Kristiansen, Sintef/iku oil-

weathering model: predicting oils’ properties at sea, International Oil Spill 

Conference Proceedings. 1997 (1997) 297–307. 

https://doi.org/10.7901/2169-3358-1997-1-297. 

[78] M. Reed, P. Daling, A. Lewis, M.K. Ditlevsen, B. Brørs, J. Clark, D. Aurand, 

Modelling of dispersant application to oil spills in shallow coastal waters, 

Environmental Modelling & Software. 19 (2004) 681–690. 

https://doi.org/10.1016/j.envsoft.2003.08.014. 

[79] D. Mackay, I. Buist, R. Mascarenhas, S. Paterson, Oil spill processes and 

models, Environment Canada Manuscript Report No. EE-8, Ottawa, Ontario. 

(1980). 

[80] D. Mackay, S. Paterson, K. Trudel, A mathematical model of oil spill 

behaviour, Environment Canada, Environmental Protection Service, 

Environmental Impact Control Directorate, Environmental Emergency 

Branch, Research and Development Division, 1980. 

[81] O.M. Aamo, M. Reed, P.S. Daling, A laboratory-based weathering model: 

PC version for coupling to transport models, (1993). 

http://inis.iaea.org/Search/search.aspx?orig_q=RN:25063976 (accessed 

November 23, 2018). 

[82] P. Li, H. Niu, S. Li, T.L. King, S. Zou, X. Chen, Z. Lu, DBWM: A Diluted 

Bitumen Weathering Model, Marine Pollution Bulletin. (2022) Accepted. 

[83] M. Reed, Ø. Johansen, P.J. Brandvik, P. Daling, A. Lewis, R. Fiocco, D. 

Mackay, R. Prentki, Oil Spill Modeling towards the Close of the 20th 

Century: Overview of the State of the Art, Spill Science & Technology 

Bulletin. 5 (1999) 3–16. https://doi.org/10.1016/S1353-2561(98)00029-2. 



 

140 

 

[84] American Society of Civil Engineers (ASCE), State-of-the-Art Review of 

Modeling Transport and Fate of Oil Spills, Journal of Hydraulic Engineering. 

122 (1996) 594–609. https://doi.org/10.1061/(ASCE)0733-

9429(1996)122:11(594). 

[85] G. Marcotte, P. Bourgouin, G. Mercier, J.P. Gauthier, P. Pellerin, G. Smith, 

C.W. Brown, Canadian oil spill modelling suite: An overview., in: Halifax, 

NS, Canada, 2016: pp. 1026–1034. 

[86] Tetra Tech., SPILLCALC Oil and Contaminant Spill Model, (n.d.). 

http://www.tetratech.com/en/projects/spillcalc-oil-and-contaminant-spill-

model (accessed September 10, 2018). 

[87] M. Reed, E. Gundlach, T. Kana, A coastal zone oil spill model: Development 

and sensitivity studies, Oil and Chemical Pollution. 5 (1989) 411–449. 

https://doi.org/10.1016/S0269-8579(89)80019-X. 

[88] NOAA, GNOME Suite for Oil Spill Modeling, Office of Response and 

Restoration. (2019). https://response.restoration.noaa.gov/oil-and-chemical-

spills/oil-spills/response-tools/gnome-suite-oil-spill-modeling.html 

(accessed January 29, 2022). 

[89] A.H. Al-Rabeh, R.W. Lardner, N. Gunay, Gulfspill Version 2.0: a software 

package for oil spills in the Arabian Gulf, Environmental Modelling & 

Software. 15 (2000) 425–442. https://doi.org/10.1016/S1364-

8152(00)00013-X. 

[90] R. Lardner, G. Zodiatis, D. Hayes, N. Pinardi, Application of the MEDSLIK 

oil spill model to the Lebanese spill of July 2006, European Group of Experts 

on Satellite Monitoring of Sea Based Oil Pollution, European Communities 

ISSN. (2006) 1018–5593. 

[91] R.W. Lardner, G. Zodiatis, L. Loizides, A. Demetropoulos, An operational 

oil spill model for the Levantine Basin (Eastern Mediterranean Sea), (1999). 

http://inis.iaea.org/Search/search.aspx?orig_q=RN:30046843 (accessed 

November 23, 2018). 

[92] M. De Dominicis, N. Pinardi, G. Zodiatis, R. Archetti, MEDSLIK-II, a 

Lagrangian marine surface oil spill model for short-term forecasting – Part 

2: Numerical simulations and validations, Geoscientific Model Development. 

6 (2013) 1871–1888. https://doi.org/10.5194/gmd-6-1871-2013. 

[93] Danish Hydraulic Institute (DHI)., DHI Oil Spill Model - Scientific 

Description, (2017). 

http://manuals.mikepoweredbydhi.help/2017/General/DHI_OilSpill_Model

.pdf. 



 

141 

 

[94] P. Carracedo, S. Torres-López, M. Barreiro, P. Montero, C.F. Balseiro, E. 

Penabad, P.C. Leitao, V. Pérez-Muñuzuri, Improvement of pollutant drift 

forecast system applied to the Prestige oil spills in Galicia Coast (NW of 

Spain): Development of an operational system, Marine Pollution Bulletin. 

53 (2006) 350–360. https://doi.org/10.1016/j.marpolbul.2005.11.014. 

[95] P. Daniel, F. Marty, P. Josse, C. Skandrani, R. Benshila, Improvement of 

Drift Calculation in Mothy Operational Oil Spill Prediction System, 

International Oil Spill Conference Proceedings. 2003 (2003) 1067–1072. 

https://doi.org/10.7901/2169-3358-2003-1-1067. 

[96] M.L. Spaulding, V.S. Kolluru, E. Anderson, E. Howlett, Application of 

three-dimensional oil spill model (WOSM/OILMAP) to Hindcast the Braer 

spill, Spill Science & Technology Bulletin. 1 (1994) 23–35. 

https://doi.org/10.1016/1353-2561(94)90005-1. 

[97] M.C. Garcia, M.A. Sanz-Bobi, J. del Pico, SIMAP: Intelligent System for 

Predictive Maintenance: Application to the health condition monitoring of a 

windturbine gearbox, Computers in Industry. 57 (2006) 552–568. 

https://doi.org/10.1016/j.compind.2006.02.011. 

[98] A. Berry, T. Dabrowski, K. Lyons, The oil spill model OILTRANS and its 

application to the Celtic Sea, Marine Pollution Bulletin. 64 (2012) 2489–

2501. https://doi.org/10.1016/j.marpolbul.2012.07.036. 

[99] K.-F. Dagestad, J. Röhrs, Ø. Breivik, B. Ådlandsvik, OpenDrift v1.0: a 

generic framework for trajectory modelling, Geoscientific Model 

Development. 11 (2018) 1405–1420. https://doi.org/10.5194/gmd-11-1405-

2018. 

[100] J. Röhrs, K.-F. Dagestad, H. Asbjørnsen, T. Nordam, J. Skancke, C.E. Jones, 

C. Brekke, The effect of vertical mixing on the horizontal drift of oil spills, 

Ocean Science. 14 (2018) 1581–1601. https://doi.org/10.5194/os-14-1581-

2018. 

[101] M. Reed, O.M. Aamo, P.S. Daling, Quantitative analysis of alternate oil spill 

response strategies using OSCAR, Spill Science & Technology Bulletin. 2 

(1995) 67–74. https://doi.org/10.1016/1353-2561(95)00020-5. 

[102] P. Annika, T. George, P. George, N. Konstantinos, D. Costas, C. Koutitas, 

The Poseidon Operational Tool for the Prediction of Floating Pollutant 

Transport, Marine Pollution Bulletin. 43 (2001) 270–278. 

https://doi.org/10.1016/S0025-326X(01)00080-7. 

[103] K. Nittis, L. Perivoliotis, G. Korres, C. Tziavos, I. Thanos, Operational 

monitoring and forecasting for marine environmental applications in the 

Aegean Sea, Environmental Modelling & Software. 21 (2006) 243–257. 

https://doi.org/10.1016/j.envsoft.2004.04.023. 



 

142 

 

[104] C.H. Ainsworth, E.P. Chassignet, D. French-McCay, C.J. Beegle-Krause, I. 

Berenshtein, J. Englehardt, T. Fiddaman, H. Huang, M. Huettel, D. Justic, 

V.H. Kourafalou, Y. Liu, C. Mauritzen, S. Murawski, S. Morey, T. 

Özgökmen, C.B. Paris, J. Ruzicka, S. Saul, J. Shepherd, S. Socolofsky, H. 

Solo Gabriele, T. Sutton, R.H. Weisberg, C. Wilson, L. Zheng, Y. Zheng, 

Ten years of modeling the Deepwater Horizon oil spill, Environmental 

Modelling & Software. 142 (2021) 105070. 

https://doi.org/10.1016/j.envsoft.2021.105070. 

[105] L. Zhao, T. Nedwed, D. Mitchell, Review of the Science behind Oil Spill 

Fate Models: Are Updates Needed?, International Oil Spill Conference 

Proceedings. 2021 (2021) 687874. https://doi.org/10.7901/2169-3358-

2021.1.687874. 

[106] S.A. Gustitus, T.P. Clement, Formation, Fate, and Impacts of Microscopic 

and Macroscopic Oil-Sediment Residues in Nearshore Marine Environments: 

A Critical Review, Reviews of Geophysics. 55 (2017) 1130–1157. 

https://doi.org/10.1002/2017RG000572. 

[107] P.A. Wood, T. Lunel, F. Daniel, R. Swannell, K. Lee, P. Stoffyn-Egli, 

Influence of oil and mineral characteristics on oil-mineral interaction, (1998). 

http://inis.iaea.org/Search/search.aspx?orig_q=RN:29050809 (accessed 

January 14, 2020). 

[108] H. Zhang, M. Khatibi, Y. Zheng, K. Lee, Z. Li, J.V. Mullin, Investigation of 

OMA formation and the effect of minerals, Marine Pollution Bulletin. 60 

(2010) 1433–1441. https://doi.org/10.1016/j.marpolbul.2010.05.014. 

[109] W. Wang, Y. Zheng, Z. Li, K. Lee, PIV investigation of oil–mineral 

interaction for an oil spill application, Chemical Engineering Journal. 170 

(2011) 241–249. https://doi.org/10.1016/j.cej.2011.03.062. 

[110] J.R. Payne, Oil-ice Sediment Interactions During Freeze-up and Break-up, 

US Department of Commerce, National Oceanic and Atmospheric 

Administration …, 1989. 

[111] W. Ji, M. Boufadel, L. Zhao, B. Robinson, T. King, C. An, B. (Helen) Zhang, 

K. Lee, Formation of oil-particle aggregates: Impacts of mixing energy and 

duration, Science of The Total Environment. 795 (2021) 148781. 

https://doi.org/10.1016/j.scitotenv.2021.148781. 

[112] X. Ma, A. Cogswell, Z. Li, K. Lee, Particle size analysis of dispersed oil and 

oil‐mineral aggregates with an automated ultraviolet epi‐fluorescence 

microscopy system, Environmental Technology. 29 (2008) 739–748. 

https://doi.org/10.1080/09593330801987111. 

[113] J. Sun, A. Khelifa, C. Zhao, D. Zhao, Z. Wang, Laboratory investigation of 

oil–suspended particulate matter aggregation under different mixing 



 

143 

 

conditions, Science of The Total Environment. 473–474 (2014) 742–749. 

https://doi.org/10.1016/j.scitotenv.2013.12.078. 

[114] K. Lee, Z. Li, T. King, P. Kepkay, M.C. Boufadel, A.D. Venosa, Wave Tank 

Studies on Formation and Transport of OMA from the Chemically Dispersed 

Oil, in: W.F. Davidson, K. Lee, A. Cogswell (Eds.), Oil Spill Response: A 

Global Perspective, Springer Netherlands, Dordrecht, 2008: pp. 159–177. 

https://doi.org/10.1007/978-1-4020-8565-9_20. 

[115] A. Khelifa, M. Fingas, C. Brown, Effects of dispersants on oil-SPM 

aggregation and fate in US coastal waters, Final Report Grant Number: 

NA04NOS4190063. (2008). 

[116] J. Fu, Y. Gong, X. Zhao, S.E. O’Reilly, D. Zhao, Effects of Oil and 

Dispersant on Formation of Marine Oil Snow and Transport of Oil 

Hydrocarbons, Environ. Sci. Technol. 48 (2014) 14392–14399. 

https://doi.org/10.1021/es5042157. 

[117] D.K. Muschenheim, K. Lee, Removal of Oil from the Sea Surface through 

Particulate Interactions: Review and Prospectus, Spill Science & 

Technology Bulletin. 8 (2002) 9–18. https://doi.org/10.1016/S1353-

2561(02)00129-9. 

[118] D.M. Waterman, M.H. Garcia, Laboratory tests of oil-particle interactions in 

a freshwater riverine environment with cold lake blend weathered bitumen, 

Ven Te Chow Hydrosystems Laboratory, University of Illinois. (2015). 

[119] U.C. Bandara, P.D. Yapa, H. Xie, Fate and transport of oil in sediment laden 

marine waters, Journal of Hydro-Environment Research. 5 (2011) 145–156. 

https://doi.org/10.1016/j.jher.2011.03.002. 

[120] A. Khelifa, K. Lee, P.S. Hill, Prediction of oil droplet size distribution in 

agitated aquatic environments, in: Canada, 2004. 

https://www.osti.gov/etdeweb/biblio/20485447 (accessed January 14, 2020). 

[121] A. Khelifa, K. Lee, P.S. Hill, L.O. Ajijolaiya, Modelling the effect of 

sediment size on OMA formation, in: Canada, 2004. 

http://inis.iaea.org/Search/search.aspx?orig_q=RN:35072650 (accessed 

January 14, 2020). 

[122] L. Zhao, M.C. Boufadel, X. Geng, K. Lee, T. King, B. Robinson, F. 

Fitzpatrick, A-DROP: A predictive model for the formation of oil particle 

aggregates (OPAs), Marine Pollution Bulletin. 106 (2016) 245–259. 

https://doi.org/10.1016/j.marpolbul.2016.02.057. 

[123] M. v. Smoluchowski, Versuch einer mathematischen Theorie der 

Koagulationskinetik kolloider Lösungen, Zeitschrift Für Physikalische 

Chemie. 92U (1918) 129–168. https://doi.org/10.1515/zpch-1918-9209. 



 

144 

 

[124] H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation, 

Springer Netherlands, 1980. 

[125] L. Cui, C.K. Harris, D.R.N. Tarpley, Formation of Oil-Particle-Aggregates: 

Numerical Model Formulation and Calibration, Frontiers in Marine Science. 

8 (2021). https://www.frontiersin.org/article/10.3389/fmars.2021.629476 

(accessed January 19, 2022). 

[126] L. Jones, M.H. Garcia, Development of a Rapid Response Riverine Oil–

Particle Aggregate Formation, Transport, and Fate Model, Journal of 

Environmental Engineering. 144 (2018) 04018125. 

https://doi.org/10.1061/(ASCE)EE.1943-7870.0001470. 

[127] A. Khelifa, P.S. Hill, K. Lee, Assessment of minimum sediment 

concentration for OMA formation using a Monte Carlo model, in: M. Al-

Azab, W. El-Shorbagy (Eds.), Developments in Earth and Environmental 

Sciences, Elsevier, 2005: pp. 93–104. https://doi.org/10.1016/S1571-

9197(05)80031-X. 

[128] P.S. Hill, A. Khelifa, K. Lee, Time Scale for Oil Droplet Stabilization by 

Mineral Particles in Turbulent Suspensions, Spill Science & Technology 

Bulletin. 8 (2002) 73–81. https://doi.org/10.1016/S1353-2561(03)00008-2. 

[129] Z. Wang, W. Yang, Y. Zhang, Z. Yan, H. Liu, B. Sun, A practical adsorption 

model for the formation of submerged oils under the effect of suspended 

sediments, RSC Advances. 9 (2019) 15785–15790. 

https://doi.org/10.1039/C9RA02775K. 

[130] L.O. Ajijolaiya, P.S. Hill, A. Khelifa, R.M. Islam, K. Lee, Laboratory 

investigation of the effects of mineral size and concentration on the 

formation of oil–mineral aggregates, Marine Pollution Bulletin. 52 (2006) 

920–927. https://doi.org/10.1016/j.marpolbul.2005.12.006. 

[131] Z. Wang, Z. Yanqiu, Y. Zhiyu, S. Bing, L. Hui, Adsorption model of oil 

droplets interacting with suspended particulate materials in marine coastal 

environments, Continental Shelf Research. 173 (2019) 87–92. 

https://doi.org/10.1016/j.csr.2018.12.010. 

[132] Y. Wu, C. Hannah, B. Law, T. King, B. Robinson, An estimate of the sinking 

rate of spilled diluted bitumen in sediment-laden coastal waters, in: 

Proceedings of the 39th AMOP Technical Seminar, Environment and 

Climate Change Canada, Ottawa, ON, Canada, 2016: pp. 331–347. 

[133] A.N. Ernest, J.S. Bonner, R.L. Autenrieth, Determination of Particle 

Collision Efficiencies for Flocculent Transport Models, Journal of 

Environmental Engineering. 121 (1995) 320–329. 

https://doi.org/10.1061/(ASCE)0733-9372(1995)121:4(320). 



 

145 

 

[134] H. Niu, Z. Li, K. Lee, P. Kepkay, J.V. Mullin, Modelling the Transport of 

Oil–Mineral-Aggregates (OMAs) in the Marine Environment and 

Assessment of Their Potential Risks, Environ Model Assess. 16 (2011) 61–

75. https://doi.org/10.1007/s10666-010-9228-0. 

[135] H. Niu, K. Lee, Study of the dispersion/settling of oil-mineral-aggregates 

using particle tracking model and assessment of their potential risks, 

International Journal of Environment and Pollution. 52 (2013) 32–51. 

https://doi.org/10.1504/IJEP.2013.056356. 

[136] B. Ouartassi, B. Doyon, M. Heniche, Numerical Prediction of Oil Mineral 

Aggregates Dispersion in the Estuary Of ST-Lawrence River, J. Phys.: Conf. 

Ser. 1743 (2021) 012033. https://doi.org/10.1088/1742-6596/1743/1/012033. 

[137] Z. Zhu, D.M. Waterman, M.H. Garcia, Modeling the transport of oil–particle 

aggregates resulting from an oil spill in a freshwater environment, Environ 

Fluid Mech. 18 (2018) 967–984. https://doi.org/10.1007/s10652-018-9581-

0. 

[138] J.C. Winterwerp, A simple model for turbulence induced flocculation of 

cohesive sediment, Journal of Hydraulic Research. 36 (1998) 309–326. 

https://doi.org/10.1080/00221689809498621. 

[139] Y. Li, Q. Yu, S. Gao, B.W. Flemming, Settling velocity and drag coefficient 

of platy shell fragments, Sedimentology. 67 (2020) 2095–2110. 

https://doi.org/10.1111/sed.12696. 

[140] L. Zhao, M.C. Boufadel, E. Adams, S.A. Socolofsky, T. King, K. Lee, T. 

Nedwed, Simulation of scenarios of oil droplet formation from the 

Deepwater Horizon blowout, Marine Pollution Bulletin. 101 (2015) 304–319. 

https://doi.org/10.1016/j.marpolbul.2015.10.068. 

[141] H. Niu, Z. Li, K. Lee, P. Kepkay, J. Mullin, A Method for Assessing 

Environmental Risks of Oil-Mineral-Aggregate to Benthic Organisms, 

Human and Ecological Risk Assessment: An International Journal. 16 (2010) 

762–782. https://doi.org/10.1080/10807039.2010.501240. 

[142] E.N. Lorenz, Deterministic Nonperiodic Flow, J. Atmos. Sci. 20 (1963) 130–

141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. 

[143] G. Haller, Distinguished material surfaces and coherent structures in three-

dimensional fluid flows, Physica D: Nonlinear Phenomena. 149 (2001) 248–

277. https://doi.org/10.1016/S0167-2789(00)00199-8. 

[144] G. Haller, Lagrangian coherent structures from approximate velocity data, 

Physics of Fluids. 14 (2002) 1851–1861. https://doi.org/10.1063/1.1477449. 



 

146 

 

[145] M.R. Allshouse, T. Peacock, Refining and classifying finite-time Lyapunov 

exponent ridges, ArXiv:1506.07027 [Physics]. (2015). 

http://arxiv.org/abs/1506.07027 (accessed March 12, 2020). 

[146] S.C. Shadden, F. Lekien, J.E. Marsden, Definition and properties of 

Lagrangian coherent structures from finite-time Lyapunov exponents in two-

dimensional aperiodic flows, Physica D: Nonlinear Phenomena. 212 (2005) 

271–304. https://doi.org/10.1016/j.physd.2005.10.007. 

[147] S.L. Brunton, C.W. Rowley, Fast computation of finite-time Lyapunov 

exponent fields for unsteady flows, Chaos. 20 (2010) 017503. 

https://doi.org/10.1063/1.3270044. 

[148] X. Morel, M.A. Lucas, F.D. Santos, A Lagrangian study of the Brazil-

Malvinas confluence: Lagrangian coherent structures and several lyapunov 

exponents, Journal of Operational Oceanography. 7 (2014) 13–23. 

https://doi.org/10.1080/1755876X.2014.11020155. 

[149] K. Burger, P. Kondratieva, J. Kruger, R. Westermann, Importance-Driven 

Particle Techniques for Flow Visualization, in: 2008 IEEE Pacific 

Visualization Symposium, 2008: pp. 71–78. 

https://doi.org/10.1109/PACIFICVIS.2008.4475461. 

[150] F. Ferstl, K. Burger, H. Theisel, R. Westermann, Interactive Separating 

Streak Surfaces, IEEE Transactions on Visualization and Computer 

Graphics. 16 (2010) 1569–1577. https://doi.org/10.1109/TVCG.2010.169. 

[151] D. Lipinski, K. Mohseni, A ridge tracking algorithm and error estimate for 

efficient computation of Lagrangian coherent structures, Chaos. 20 (2010) 

017504. https://doi.org/10.1063/1.3270049. 

[152] F. Sadlo, A. Rigazzi, R. Peikert, Time-Dependent Visualization of 

Lagrangian Coherent Structures by Grid Advection, in: V. Pascucci, X. 

Tricoche, H. Hagen, J. Tierny (Eds.), Topological Methods in Data Analysis 

and Visualization: Theory, Algorithms, and Applications, Springer Berlin 

Heidelberg, Berlin, Heidelberg, 2011: pp. 151–165. 

https://doi.org/10.1007/978-3-642-15014-2_13. 

[153] F. Huhn, A. von Kameke, S. Allen-Perkins, P. Montero, A. Venancio, V. 

Pérez-Muñuzuri, Horizontal Lagrangian transport in a tidal-driven estuary—

Transport barriers attached to prominent coastal boundaries, Continental 

Shelf Research. 39–40 (2012) 1–13. 

https://doi.org/10.1016/j.csr.2012.03.005. 

[154] S. Orre, B. Gjevik, J.H. LaCasce, Characterizing chaotic dispersion in a 

coastal tidal model, Continental Shelf Research. 26 (2006) 1360–1374. 

https://doi.org/10.1016/j.csr.2005.11.015. 



 

147 

 

[155] L.A. Fiorentino, M.J. Olascoaga, A. Reniers, Z. Feng, F.J. Beron-Vera, J.H. 

MacMahan, Using Lagrangian Coherent Structures to understand coastal 

water quality, Continental Shelf Research. 47 (2012) 145–149. 

https://doi.org/10.1016/j.csr.2012.07.009. 

[156] H. Ku, J.H. Hwang, The Lagrangian Coherent Structure and the Sediment 

Particle Behavior in the Lock Exchange Stratified Flows, Journal of Coastal 

Research. (2018) 976–980. https://doi.org/10.2112/SI85-196.1. 

[157] Y. Wu, C.G. Hannah, M. O’Flaherty-Sproul, P. Thupaki, Representing kelp 

forests in a tidal circulation model, Journal of Marine Systems. 169 (2017) 

73–86. https://doi.org/10.1016/j.jmarsys.2016.12.007. 

[158] M.J. Olascoaga, G. Haller, Forecasting sudden changes in environmental 

pollution patterns, PNAS. 109 (2012) 4738–4743. 

https://doi.org/10.1073/pnas.1118574109. 

[159] P.J. Nolan, H. Foroutan, S.D. Ross, Pollution Transport Patterns Obtained 

Through Generalized Lagrangian Coherent Structures, Atmosphere. 11 

(2020) 168. https://doi.org/10.3390/atmos11020168. 

[160] K. Suara, M. Khanarmuei, A. Ghosh, Y. Yu, H. Zhang, T. Soomere, R.J. 

Brown, Material and debris transport patterns in Moreton Bay, Australia: 

The influence of Lagrangian coherent structures, Science of The Total 

Environment. 721 (2020) 137715. 

https://doi.org/10.1016/j.scitotenv.2020.137715. 

[161] A. Ghosh, K. Suara, S.W. McCue, Y. Yu, T. Soomere, R.J. Brown, 

Persistency of debris accumulation in tidal estuaries using Lagrangian 

coherent structures, Science of The Total Environment. 781 (2021) 146808. 

[162] R. Al-Ruzouq, M.B.A. Gibril, A. Shanableh, A. Kais, O. Hamed, S. Al-

Mansoori, M.A. Khalil, Sensors, Features, and Machine Learning for Oil 

Spill Detection and Monitoring: A Review, Remote Sensing. 12 (2020) 3338. 

https://doi.org/10.3390/rs12203338. 

[163] H. Ahmad, MACHINE LEARNING APPLICATIONS IN 

OCEANOGRAPHY, Aquat Res. (2019) 161–169. 

https://doi.org/10.3153/AR19014. 

[164] A. Dogan, D. Birant, Machine learning and data mining in manufacturing, 

Expert Systems with Applications. 166 (2021) 114060. 

https://doi.org/10.1016/j.eswa.2020.114060. 

[165] B. Mahesh, Machine Learning Algorithms -A Review, 2019. 

https://doi.org/10.21275/ART20203995. 



 

148 

 

[166] S. Temitope Yekeen, A.-L. Balogun, Advances in Remote Sensing 

Technology, Machine Learning and Deep Learning for Marine Oil Spill 

Detection, Prediction and Vulnerability Assessment, Remote Sensing. 12 

(2020) 3416. https://doi.org/10.3390/rs12203416. 

[167] T. Bolton, L. Zanna, Applications of Deep Learning to Ocean Data Inference 

and Subgrid Parameterization, Journal of Advances in Modeling Earth 

Systems. 11 (2019) 376–399. https://doi.org/10.1029/2018MS001472. 

[168] S.C. James, Y. Zhang, F. O’Donncha, A machine learning framework to 

forecast wave conditions, Coastal Engineering. 137 (2018) 1–10. 

https://doi.org/10.1016/j.coastaleng.2018.03.004. 

[169] P.M.R. Bento, J.A.N. Pombo, R.P.G. Mendes, M.R.A. Calado, S.J.P.S. 

Mariano, Ocean wave energy forecasting using optimised deep learning 

neural networks, Ocean Engineering. 219 (2021) 108372. 

https://doi.org/10.1016/j.oceaneng.2020.108372. 

[170] R. Lou, Z. Lv, S. Dang, T. Su, X. Li, Application of machine learning in 

ocean data, Multimedia Systems. (2021). https://doi.org/10.1007/s00530-

020-00733-x. 

[171] B. Azari, K. Hasan, J. Pierce, S. Ebrahimi, Evaluation of Machine Learning 

Methods Application in Temperature Prediction, COMPUTATIONAL 

RESEARCH PROGRESS IN APPLIED SCIENCE & ENGINEERING. 8 

(2022) 1–12. https://doi.org/10.52547/crpase.8.1.2747. 

[172] H. Shen, Y. Jiang, T. Li, Q. Cheng, C. Zeng, L. Zhang, Deep learning-based 

air temperature mapping by fusing remote sensing, station, simulation and 

socioeconomic data, Remote Sensing of Environment. 240 (2020) 111692. 

https://doi.org/10.1016/j.rse.2020.111692. 

[173] G. Yang, H. Lee, G. Lee, A Hybrid Deep Learning Model to Forecast 

Particulate Matter Concentration Levels in Seoul, South Korea, Atmosphere. 

11 (2020) 348. https://doi.org/10.3390/atmos11040348. 

[174] T. De Kerf, J. Gladines, S. Sels, S. Vanlanduit, Oil Spill Detection Using 

Machine Learning and Infrared Images, Remote Sensing. 12 (2020) 4090. 

https://doi.org/10.3390/rs12244090. 

[175] A.A. Huby, R. Sagban, R. Alubady, Oil Spill Detection based on Machine 

Learning and Deep Learning: A Review, in: 2022 5th International 

Conference on Engineering Technology and Its Applications (IICETA), 

2022: pp. 85–90. https://doi.org/10.1109/IICETA54559.2022.9888651. 

[176] Y. Li, Q. Yu, M. Xie, Z. Zhang, Z. Ma, K. Cao, Identifying Oil Spill Types 

Based on Remotely Sensed Reflectance Spectra and Multiple Machine 

Learning Algorithms, IEEE Journal of Selected Topics in Applied Earth 



 

149 

 

Observations and Remote Sensing. 14 (2021) 9071–9078. 

https://doi.org/10.1109/JSTARS.2021.3109951. 

[177] F. Löw, K. Stieglitz, O. Diemar, Terrestrial oil spill mapping using satellite 

earth observation and machine learning: A case study in South Sudan, 

Journal of Environmental Management. 298 (2021) 113424. 

https://doi.org/10.1016/j.jenvman.2021.113424. 

[178] M.S. Ozigis, J.D. Kaduk, C.H. Jarvis, Mapping terrestrial oil spill impact 

using machine learning random forest and Landsat 8 OLI imagery: a case 

site within the Niger Delta region of Nigeria, Environ Sci Pollut Res. 26 

(2019) 3621–3635. https://doi.org/10.1007/s11356-018-3824-y. 

[179] X. Wu, Q. Zhou, L. Mu, X. Hu, Machine learning in the identification, 

prediction and exploration of environmental toxicology: Challenges and 

perspectives, Journal of Hazardous Materials. 438 (2022) 129487. 

https://doi.org/10.1016/j.jhazmat.2022.129487. 

[180] M.R.A. Conceição, L.F.F. de Mendonça, C.A.D. Lentini, A.T. da Cunha 

Lima, J.M. Lopes, R.N. de Vasconcelos, M.B. Gouveia, M.J. Porsani, SAR 

Oil Spill Detection System through Random Forest Classifiers, Remote 

Sensing. 13 (2021) 2044. https://doi.org/10.3390/rs13112044. 

[181] M. Shaban, R. Salim, H. Abu Khalifeh, A. Khelifi, A. Shalaby, S. El-Mashad, 

A. Mahmoud, M. Ghazal, A. El-Baz, A Deep-Learning Framework for the 

Detection of Oil Spills from SAR Data, Sensors. 21 (2021) 2351. 

https://doi.org/10.3390/s21072351. 

[182] Y. Fan, X. Rui, G. Zhang, T. Yu, X. Xu, S. Poslad, Feature Merged Network 

for Oil Spill Detection Using SAR Images, Remote Sensing. 13 (2021) 3174. 

https://doi.org/10.3390/rs13163174. 

[183] P. Liu, Y. Li, B. Liu, P. Chen, J. Xu, Semi-Automatic Oil Spill Detection on 

X-Band Marine Radar Images Using Texture Analysis, Machine Learning, 

and Adaptive Thresholding, Remote Sensing. 11 (2019) 756. 

https://doi.org/10.3390/rs11070756. 

[184] S. Tong, X. Liu, Q. Chen, Z. Zhang, G. Xie, Multi-Feature Based Ocean Oil 

Spill Detection for Polarimetric SAR Data Using Random Forest and the 

Self-Similarity Parameter, Remote Sensing. 11 (2019) 451. 

https://doi.org/10.3390/rs11040451. 

[185] S. Magrì, T. Vairo, A. Reverberi, B. Fabiano, Oil Spill Identification and 

Monitoring from Sentinel-1 Sar Satellite Earth Observations: a Machine 

Learning Approach, Chemical Engineering Transactions. 86 (2021) 379–384. 

https://doi.org/10.3303/CET2186064. 



 

150 

 

[186] R. Trujillo-Acatitla, J. Tuxpan-Vargas, C. Ovando-Vázquez, Oil spills: 

Detection and concentration estimation in satellite imagery, a machine 

learning approach, Marine Pollution Bulletin. 184 (2022) 114132. 

https://doi.org/10.1016/j.marpolbul.2022.114132. 

[187] C.B. Maroun, G. Daou, B. Hammoud, B. Hammoud, Machine Learning 

Using Support Vector Regression in Radar Remote Sensing for Oil-Spill 

Thickness Estimation, in: 2021 18th European Radar Conference (EuRAD), 

2022: pp. 221–224. https://doi.org/10.23919/EuRAD50154.2022.9784478. 

[188] L. Corucci, F. Nardelli, M. Cococcioni, Oil spill classification from multi-

spectral satellite images: exploring different machine learning techniques, in: 

Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2010, SPIE, 

2010: pp. 73–87. https://doi.org/10.1117/12.864556. 

[189] Y. Xiong, H. Zhou, Oil spills identification in SAR image based on 

Convolutional Neural Network, in: 2019 14th International Conference on 

Computer Science & Education (ICCSE), 2019: pp. 667–670. 

https://doi.org/10.1109/ICCSE.2019.8845383. 

[190] K. Zeng, Y. Wang, A Deep Convolutional Neural Network for Oil Spill 

Detection from Spaceborne SAR Images, Remote Sensing. 12 (2020) 1015. 

https://doi.org/10.3390/rs12061015. 

[191] S.T. Seydi, M. Hasanlou, M. Amani, W. Huang, Oil Spill Detection Based 

on Multiscale Multidimensional Residual CNN for Optical Remote Sensing 

Imagery, IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing. 14 (2021) 10941–10952. 

https://doi.org/10.1109/JSTARS.2021.3123163. 

[192] S. Mohammadiun, G. Hu, A.A. Gharahbagh, J. Li, K. Hewage, R. Sadiq, 

Evaluation of machine learning techniques to select marine oil spill response 

methods under small-sized dataset conditions, Journal of Hazardous 

Materials. 436 (2022) 129282. 

https://doi.org/10.1016/j.jhazmat.2022.129282. 

[193] H.H. Murray, Traditional and new applications for kaolin, smectite, and 

palygorskite: a general overview, Applied Clay Science. 17 (2000) 207–221. 

https://doi.org/10.1016/S0169-1317(00)00016-8. 

[194] SeaTemperature.org, World Water Temperature & | Sea Temperatures, (n.d.). 

https://www.seatemperature.org/ (accessed April 20, 2023). 

[195] Y. Yu, Z. Qi, D. Xiong, W. Li, X. Yu, R. Sun, Experimental investigations 

on the vertical distribution and properties of oil-mineral aggregates (OMAs) 

formed by different clay minerals, Journal of Environmental Management. 

311 (2022) 114844. https://doi.org/10.1016/j.jenvman.2022.114844. 



 

151 

 

[196] W. Zhang, X. Yu, J. Zhang, Y. Wang, Study of oil-particle-aggregation by 

digital inline holograph, Geosci J. 23 (2019) 461–469. 

https://doi.org/10.1007/s12303-018-0041-0. 

[197] M.C. Sterling, J.S. Bonner, A.N.S. Ernest, C.A. Page, R.L. Autenrieth, 

Characterizing aquatic sediment–oil aggregates using in situ instruments, 

Marine Pollution Bulletin. 48 (2004) 533–542. 

https://doi.org/10.1016/j.marpolbul.2003.10.005. 

[198] N. Tambo, Y. Watanabe, Physical characteristics of flocs—I. The floc 

density function and aluminium floc, Water Research. 13 (1979) 409–419. 

https://doi.org/10.1016/0043-1354(79)90033-2. 

[199] N. Hawley, Settling velocity distribution of natural aggregates, Journal of 

Geophysical Research: Oceans. 87 (1982) 9489–9498. 

https://doi.org/10.1029/JC087iC12p09489. 

[200] I.N. McCave, Size spectra and aggregation of suspended particles in the deep 

ocean, Deep Sea Research Part A. Oceanographic Research Papers. 31 (1984) 

329–352. https://doi.org/10.1016/0198-0149(84)90088-8. 

[201] C. Kranenburg, The Fractal Structure of Cohesive Sediment Aggregates, 

Estuarine, Coastal and Shelf Science. 39 (1994) 451–460. 

https://doi.org/10.1006/ecss.1994.1075. 

[202] K.J. Curran, P.S. Hill, T.G. Milligan, O.A. Mikkelsen, B.A. Law, X. Durrieu 

de Madron, F. Bourrin, Settling velocity, effective density, and mass 

composition of suspended sediment in a coastal bottom boundary layer, Gulf 

of Lions, France, Continental Shelf Research. 27 (2007) 1408–1421. 

https://doi.org/10.1016/j.csr.2007.01.014. 

[203] A. Vahedi, B. Gorczyca, Predicting the settling velocity of flocs formed in 

water treatment using multiple fractal dimensions, Water Research. 46 (2012) 

4188–4194. https://doi.org/10.1016/j.watres.2012.04.031. 

[204] R.B. Moruzzi, J. Bridgeman, P.A.G. Silva, A combined experimental and 

numerical approach to the assessment of floc settling velocity using fractal 

geometry, Water Science and Technology. 81 (2020) 915–924. 

https://doi.org/10.2166/wst.2020.171. 

[205] L.C. Van Rijn, Handbook: Sediment transport by currents and waves, Rep, 

H461, Delft Hydraul., Delft, Netherlands. (1989). 

[206] R.L. Soulsby, Dynamics of marine sands: a manual for practical applications, 

Oceanographic Literature Review. 9 (1997) 947. 

[207] N.-S. Cheng, Simplified settling velocity formula for sediment particle, 

Journal of Hydraulic Engineering. 123 (1997) 149–152. 



 

152 

 

[208] B. Camenen, Simple and general formula for the settling velocity of particles, 

Journal of Hydraulic Engineering. 133 (2007) 229–233. 

[209] S.M. Sadat-Helbar, E. Amiri-Tokaldany, Irrigation, Fall Velocity of 

Sediment Particles, in: 2009. https://www.semanticscholar.org/paper/Fall-

Velocity-of-Sediment-Particles-Sadat-Helbar-Amiri-

Tokaldany/91ff8837fb11402e755f88d5bb294382ed7925e7 (accessed 

January 10, 2023). 

[210] E.B. Goldstein, G. Coco, A machine learning approach for the prediction of 

settling velocity, Water Resources Research. 50 (2014) 3595–3601. 

https://doi.org/10.1002/2013WR015116. 

[211] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 

D. Cournapeau, Scikit-learn: Machine Learning in Python, Journal of 

Machine Learning Research. 12 (2011) 2825–2830. 

[212] J. Yu, X. Zhong, Z. Huang, X. Lin, H. Weng, D. Ye, Q. (Sophia) He, J. Yang, 

Mining the synergistic effect in hydrothermal co-liquefaction of real 

feedstocks through machine learning approaches, Fuel. 334 (2023) 126715. 

https://doi.org/10.1016/j.fuel.2022.126715. 

[213] M. Reed, B. Hetland, DREAM: A dose-related exposure assessment model 

technical description of physical-chemical fates components, in: SPE 

International Conference on Health, Safety and Environment in Oil and Gas 

Exploration and Production, Society of Petroleum Engineers, 2002. 

[214] G.A.L. Delvigne, C.E. Sweeney, Natural dispersion of oil, Oil and Chemical 

Pollution. 4 (1988) 281–310. https://doi.org/10.1016/S0269-

8579(88)80003-0. 

[215] W. Ji, M. Boufadel, L. Zhao, B. Robinson, T. King, K. Lee, Formation of 

oil-particle aggregates: Particle penetration and impact of particle properties 

and particle-to-oil concentration ratios, Science of The Total Environment. 

760 (2021) 144047. https://doi.org/10.1016/j.scitotenv.2020.144047. 

[216] L. Zhao, M.C. Boufadel, J. Katz, G. Haspel, K. Lee, T. King, B. Robinson, 

A New Mechanism of Sediment Attachment to Oil in Turbulent Flows: 

Projectile Particles, Environ. Sci. Technol. 51 (2017) 11020–11028. 

https://doi.org/10.1021/acs.est.7b02032. 

[217] P. Stoffyn-Egli, K. Lee, Formation and Characterization of Oil–Mineral 

Aggregates, Spill Science & Technology Bulletin. 8 (2002) 31–44. 

https://doi.org/10.1016/S1353-2561(02)00128-7. 

[218] R. Jézéquel, J. Receveur, T. Nedwed, S. Le Floch, Evaluation of the ability 

of calcite, bentonite and barite to enhance oil dispersion under arctic 



 

153 

 

conditions, Marine Pollution Bulletin. 127 (2018) 626–636. 

https://doi.org/10.1016/j.marpolbul.2017.12.034. 

[219] W. Wang, Y. Zheng, K. Lee, Chemical dispersion of oil with mineral fines 

in a low temperature environment, Marine Pollution Bulletin. 72 (2013) 205–

212. https://doi.org/10.1016/j.marpolbul.2013.03.042. 

[220] Y. Ou, R. Li, R. Liang, Experimental Study on the Impact of NaCl 

Concentration on the Flocculating Settling of Fine Sediment in Static Water, 

Procedia Engineering. 154 (2016) 529–535. 

https://doi.org/10.1016/j.proeng.2016.07.548. 

[221] L.I. Portela, S. Ramos, A.T. Teixeira, Effect of salinity on the settling 

velocity of fine sediments of a harbour basin, Coas. 65 (2013) 1188–1193. 

https://doi.org/10.2112/SI65-201.1. 

[222] S. Al Ani, K.R. Dyer, D.A. Huntley, Measurement of the influence of salinity 

on floc density and strength, Geo-Marine Letters. 11 (1991) 154–158. 

https://doi.org/10.1007/BF02431002. 

[223] A.J. Manning, W.J. Langston, P.J.C. Jonas, A review of sediment dynamics 

in the Severn Estuary: Influence of flocculation, Marine Pollution Bulletin. 

61 (2010) 37–51. https://doi.org/10.1016/j.marpolbul.2009.12.012. 

[224] A.J. Mehta, E.J. Hayter, W.R. Parker, R.B. Krone, A.M. Teeter, Cohesive 

Sediment Transport. I: Process Description, Journal of Hydraulic 

Engineering. 115 (1989) 1076–1093. https://doi.org/10.1061/(ASCE)0733-

9429(1989)115:8(1076). 

[225] J. Yang, L. Tang, Y. She, J. Sun, Laboratory measurements of the fall 

velocity of fine sediment in an estuarine environment, International Journal 

of Sediment Research. 35 (2020) 217–226. 

https://doi.org/10.1016/j.ijsrc.2019.08.003. 

[226] U.-J. Lee, K.-S. Hyeong, H.-Y. Cho, Estimation of Settling Velocity and 

Floc Distribution through Simple Particles Sedimentation Experiments, 

Journal of Marine Science and Engineering. 8 (2020) 500. 

https://doi.org/10.3390/jmse8070500. 

[227] S.A. Ryan, G.D. Wohlgeschaffen, N. Jahan, H. Niu, A.C. Ortmann, T.N. 

Brown, T.L. King, J. Clyburne, Canada, Department of Fisheries and Oceans, 

G. and E.R. (Canada) Centre for Offshore Oil, Dalhousie University, 

Department of Engineering, N.S.) Saint Mary’s University (Halifax, 

Department of Chemistry, State of knowledge on fate and behaviour of ship-

source petroleum product spills, 2019. http://epe.lac-

bac.gc.ca/100/201/301/weekly_acquisitions_list-ef/2019/19-

28/publications.gc.ca/collections/collection_2019/mpo-dfo/Fs97-4-3176-

eng.pdf (accessed August 31, 2021). 



 

154 

 

[228] Hemmera Envirochem Inc., M/V Marathassa Fuel Spill Environmental 

Impact Assessment, 2015. http://www.ccg-

gcc.gc.ca/folios/00025/docs/Marathassa-Hemmera.pdf (accessed July 9, 

2018). 

[229] D.R. Haggarty, An evaluation of fish habitat in Burrard Inlet, British 

Columbia, University of British Columbia, 2001. 

https://doi.org/10.14288/1.0074846. 

[230] D. Sutherland, Water Quality Objectives Attainment Monitoring in Burrard 

Inlet in 2002, Ministry of Water, Land and Air Protection, Environmental 

Quality Section., 2004. 

[231] J. Stone, K. Piscitelli, K. Demes, S. Chang, M. Quayle, D. Withers, 

Economic and biophysical impacts of oil tanker spills relevant to Vancouver, 

Canada: a literature review. Prepared for Vancouver Economic Commission, 

2013. https://www.vancouvereconomic.com/wp-

content/uploads/2015/04/VEC-Report-Impacts-of-Oil-Tanker-Spills-

Relevant-to-Vancouver.pdf. 

[232] C. Chen, H. Liu, R.C. Beardsley, An Unstructured Grid, Finite-Volume, 

Three-Dimensional, Primitive Equations Ocean Model: Application to 

Coastal Ocean and Estuaries, J. Atmos. Oceanic Technol. 20 (2003) 159–

186. https://doi.org/10.1175/1520-

0426(2003)020<0159:AUGFVT>2.0.CO;2. 

[233] Y. Wu, C. Hannah, M. O’Flaherty-Sproul, P. MacAulay, S. Shan, A 

modeling study on tides in the Port of Vancouver, Anthropocene Coasts. 2 

(2019) 101–125. 

[234] C.D. Levings, S. Samis, Section II site description and oceanography., North 

Pacific Marine Science Organization, Sidney, BC, 2001. 

http://aquaticcommons.org/1313/1/Sci_Rep_16.pdf#page=23. 

[235] F. d’Ovidio, V. Fernández, E. Hernández‐García, C. López, Mixing 

structures in the Mediterranean Sea from finite-size Lyapunov exponents, 

Geophysical Research Letters. 31 (2004). 

https://doi.org/10.1029/2004GL020328. 

[236] S. Page, Canada, Department of Fisheries and Oceans, Surface circulation 

tracking drifter data for the Kitimat Fjord system in northern British 

Columbia and adjacent continental shelf for April, 2014 to July, 2016, 2019. 

http://epe.lac-bac.gc.ca/100/201/301/weekly_acquisitions_list-ef/2019/19-

24/publications.gc.ca/collections/collection_2019/mpo-dfo/Fs97-16-206-

eng.pdf (accessed September 11, 2021). 

[237] O.M. Aamo, M. Reed, A. Lewis, Regional contingency planning using the 

OSCAR oil spill contingency and response model, in: ARCTIC AND 



 

155 

 

MARINE OILSPILL PROGRAM TECHNICAL SEMINAR, MINISTRY 

OF SUPPLY AND SERVICES, CANADA, 1997: pp. 289–308. 

[238] M. Reed, O.M. Aamo, K. Downing, Calibration and testing of IKU’s oil spill 

contingency and response (OSCAR) model system, in: International Nuclear 

Information System, 1996: pp. 689–726. 

[239] M. Reed, P.S. Daling, O.G. Brakstad, I. Singsaas, L.-G. Faksness, B. Hetland, 

N. Ekrol, OSCAR2000 : a multi-component 3-dimensional oil spill 

contingency and response model, (2000). 

http://inis.iaea.org/Search/search.aspx?orig_q=RN:31063064 (accessed 

September 14, 2018). 

[240] C. Chen, H. Liu, R.C. Beardsley, An unstructured grid, finite-volume, three-

dimensional, primitive equations ocean model: application to coastal ocean 

and estuaries, Journal of Atmospheric and Oceanic Technology. 20 (2003) 

159–186. 

[241] C. Chen, R.C. Beardsley, G. Cowles, An unstructured grid, finite-volume 

coastal ocean model: FVCOM user manual, Sea Grant College Program, 

Massachusetts Institute of Technology., 2012. 

[242] C. Chen, H. Huang, R.C. Beardsley, H. Liu, Q. Xu, G. Cowles, A finite 

volume numerical approach for coastal ocean circulation studies: 

Comparisons with finite difference models, Journal of Geophysical Research: 

Oceans. 112 (2007). https://doi.org/10.1029/2006JC003485. 

[243] H. Huang, C. Chen, G.W. Cowles, C.D. Winant, R.C. Beardsley, K.S. 

Hedstrom, D.B. Haidvogel, FVCOM validation experiments: Comparisons 

with ROMS for three idealized barotropic test problems, Journal of 

Geophysical Research: Oceans. 113 (2008). 

https://doi.org/10.1029/2007JC004557. 

[244] M.G.G. Foreman, W.R. Crawford, J.Y. Cherniawsky, R.F. Henry, M.R. 

Tarbotton, A high-resolution assimilating tidal model for the northeast 

Pacific Ocean, Journal of Geophysical Research: Oceans. 105 (2000) 28629–

28651. https://doi.org/10.1029/1999JC000122. 

[245] X. Zhong, H. Niu, Y. Wu, C. Hannah, S. Li, T. King, A Modeling Study on 

the Oil Spill of M/V Marathassa in Vancouver Harbour, Journal of Marine 

Science and Engineering. 6 (2018) 106. 

https://doi.org/10.3390/jmse6030106. 

[246] G. Haller, A variational theory of hyperbolic Lagrangian Coherent Structures, 

Physica D: Nonlinear Phenomena. 240 (2011) 574–598. 

https://doi.org/10.1016/j.physd.2010.11.010. 



 

156 

 

[247] F.J. Beron-Vera, M.J. Olascoaga, An Assessment of the Importance of 

Chaotic Stirring and Turbulent Mixing on the West Florida Shelf, J Phys 

Oceanogr. 39 (2009) 1743–1755. 

[248] D.A. Brooks, M.W. Baca, Y.-T. Lo, Tidal Circulation and Residence Time 

in a Macrotidal Estuary: Cobscook Bay, Maine, Estuarine, Coastal and Shelf 

Science. 49 (1999) 647–665. https://doi.org/10.1006/ecss.1999.0544. 

[249] R.T. Cheng, V. Casulli, On Lagrangian residual currents with applications in 

south San Francisco Bay, California, Water Resources Research. 18 (1982) 

1652–1662. https://doi.org/10.1029/WR018i006p01652. 

[250] Xu Danya, Xue Huijie, Greenberg David A., A Numerical Study of the 

Circulation and Drifter Trajectories in Cobscook Bay, Estuarine and Coastal 

Modeling (2005). (2006). https://doi.org/10.1061/40876(209)11. 

[251] T. Fujiwara, H. Nakata, K. Nakatsuji, Tidal-jet and vortex-pair driving of the 

residual circulation in a tidal estuary, Continental Shelf Research. 14 (1994) 

1025–1038. https://doi.org/10.1016/0278-4343(94)90062-0. 

[252] N. Imasato, What is Tide-Induced Residual Current?, J. Phys. Oceanogr. 13 

(1983) 1307–1317. https://doi.org/10.1175/1520-

0485(1983)013<1307:WITIRC>2.0.CO;2. 

[253] K.T. Tee, Tide-Induced Residual Current—Verification of a Numerical 

Model, J. Phys. Oceanogr. 7 (1977) 396–402. https://doi.org/10.1175/1520-

0485(1977)007<0396:TIRCOA>2.0.CO;2. 

[254] J. Butler, Independent Review of the M/V Marathassa Fuel Oil Spill 

Environmental Response Operation, Prepared for the Canadian Coast Guard, 

2015. http://www.ccg-gcc.gc.ca/independent-review-Marathassa-oil-spill-

ER-operation (accessed July 18, 2018). 

[255] K. Stormont, Stanley Park Ecological Society, After the oil spill: Stanley 

Park in the Wake of the English Bay Oil Spill, (2015). 

http://www.webcitation.org/70oOgbAj7 (accessed July 18, 2018). 

[256] DFO, Technical review of the M/V Marathassa fuel spill environmental 

impact assessment report, DFO, Canada, 2017. https://www.dfo-

mpo.gc.ca/csas-sccs/Publications/ScR-RS/2017/2017_006-eng.html 

(accessed January 22, 2022). 



 

157 

 

APPENDIX A 

Copyright Permission for paper “An Overview of Oil-Mineral-Aggregate 

Formation, Settling, and Transport Processes in Marine Oil Spill Models”: 

 

 



 

158 

 

 

 



 

159 

 

Journal of Marine Science and Engineering is an Open Access publication 

distributed under the terms and conditions of the Creative Commons by 

Attribution (CC-BY) license (http://creativecommons.org/license/by/4.0/) which 

permits unrestricted use, distribution, and reproduction in any medium.  

Copyright Permission for paper “Applying Finite-time Lyapunov Exponent to 

Study the Tidal Dispersion on Oil Spill Trajectory in Burrard Inlet”: 

 

 

http://creativecommons.org/license/by/4.0/


 

160 

 

 

 

Authors may include their articles, either in full or in part, in a thesis or 

dissertation for non-commercial purposes, as per Elsevier's copyright and 

permissions policy. 



 

 

 

1
6
1
 

APPENDIX B 

Table S3.1. The OMA formation experiments setting based on Screening Design. 

Standard 

order 

Temperature 

(℃) 

Salinity 

(ppt) 

Agitation 

time (h) 

Clay type Agitation 

speed (rpm) 

Oil/clay 

ratio 

Dispersant 

1 15 34 8 Montmorillonite 160 2：1 Yes 

2 15 0 4 Kaolinite  100 1：2 No 

3 30 17 8 Kaolinite  160 1：2 No 

4 0 17 4 Montmorillonite 100 2：1 Yes 

5 30 0 6 Kaolinite  160 2：1 Yes 

6 0 34 6 Montmorillonite 100 1：2 No 

7 30 34 8 Kaolinite  100 2：1 No 

8 0 0 4 Montmorillonite 160 1：2 Yes 

9 30 0 4 Montmorillonite 130 2：1 No 

10 0 34 8 Kaolinite  130 1：2 Yes 

11 30 34 4 Kaolinite  100 1：1 Yes 

12 0 0 8 Montmorillonite 160 1：1 No 

13 30 34 4 Montmorillonite 160 1：2 No 

14 0 0 8 Kaolinite  100 2：1 Yes 

15 30 0 8 Montmorillonite 100 1：2 Yes 

16 0 34 4 Kaolinite  160 2：1 No 

17 15 17 6 Kaolinite  130 1：1 No 

18 15 17 6 Montmorillonite 130 1：1 Yes 

1 15 34 8 Montmorillonite 160 2：1 Yes 

2 15 0 4 Kaolinite  100 1：2 No 

3 30 17 8 Kaolinite  160 1：2 No 

4 0 17 4 Montmorillonite 100 2：1 Yes 
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Standard 

order 

Temperature 

(℃) 

Salinity 

(ppt) 

Agitation 

time (h) 

Clay type Agitation 

speed (rpm) 

Oil/clay 

ratio 

Dispersant 

5 30 0 6 Kaolinite  160 2：1 Yes 

6 0 34 6 Montmorillonite 100 1：2 No 

7 30 34 8 Kaolinite  100 2：1 No 

8 0 0 4 Montmorillonite 160 1：2 Yes 

9 30 0 4 Montmorillonite 130 2：1 No 

10 0 34 8 Kaolinite  130 1：2 Yes 

11 30 34 4 Kaolinite  100 1：1 Yes 

12 0 0 8 Montmorillonite 160 1：1 No 

13 30 34 4 Montmorillonite 160 1：2 No 

14 0 0 8 Kaolinite  100 2：1 Yes 

15 30 0 8 Montmorillonite 100 1：2 Yes 

16 0 34 4 Kaolinite  160 2：1 No 

17 15 17 6 Kaolinite  130 1：1 No 

18 15 17 6 Montmorillonite 130 1：1 Yes 
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Figure S3.1 The temperature-controllable shaker. 

 

Figure S3.2 The inverted microscopy. 
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Figure S3.3 Example image of oil-mineral-aggregates acquired using inverted microscopy. 
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Figure S3.4 The example of OMA settling velocity and size measurements using RHSVTTMS-

VL and ImageJ.exe. 

 

Figure S6.1. Selected locations for comparing the FTLE fields.  
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Table S6.1 A summary of Figure 6.2 and Figure 6.3. 

Location A B C D E F 

Spring tide 

Low tide 

No 

observed 

material 

line 

Tightly packed 

material lines 

A clear 

material line 

A large cyclonic 

eddy; material 

lines were 

distinctly 

separated 

Observed 

material lines 

Observed 

material 

lines 

Mid-flood 

No 

observed 

material 

lines 

Tightly packed 

material lines in 

the middle with 

some material 

lines around the 

edges 

Several clear 

material lines 

A large cyclonic 

eddy; material 

lines were 

distinctly 

separated 

Observed 

material lines 

and saddle 

points 

Observed 

material 

lines 

High tide 

Observed 

material 

lines 

Several material 

lines around the 

outer edges 

A material 

line along the 

north shore of 

First Narrows 

Two cyclonic 

eddies; material 

lines were 

distinctly 

separated 

No observed 

material line 

Observed 

material 

lines 

Mid-ebb 

No 

observed 

material 

line 

Several material 

lines 

Two clear 

material lines 

Several eddies; 

material lines 

were distinctly 

separated 

Observed 

material lines 

and saddle 

points 

Observed 

material 

lines 

Neap tide 

Low tide 

Observed 

material 

line 

Tightly packed 

material lines 

Two clear 

material lines 

Several eddies; 

material lines 

were distinctly 

separated 

Observed 

material lines 

No 

observed 

material 

line 

Mid-flood 

Several 

material 

lines 

Tightly packed 

material lines in 

the middle with 

A clear 

material line 

Several eddies; 

material lines 

Observed 

material lines 

No 

observed 



 

 

 

1
6
7
 

Location A B C D E F 

some material 

lines around the 

edges 

were distinctly 

separated 

and saddle 

points 

material 

line 

High tide 

Observed 

material 

line 

Several material 

lines in the 

north-south 

direction 

A clear 

material line 

Two eddies; 

material lines 

were distinctly 

separated 

Observed 

material lines 

and saddle 

points 

No 

observed 

material 

line 

Mid-ebb 

No 

observed 

material 

line 

A few clear 

material lines 

Two clear 

material lines 

Several eddies; 

material lines 

were distinctly 

separated 

Observed 

material lines 

and saddle 

points 

No 

observed 

material 

line 

Notes on the meaning of the phrases used in Table S6.1: 1) No observed material lines mean the FTLE field is almost a 

random collection of red, yellow, green, and blue. 2) Tightly packed material lines mean there are linear structures that 

are thin and broken apart. 3) Distinctly separated material lines mean that the water body is readily divided based on 

physical property. 4) Clear material lines are thick and continuous for substantial distances; for example, the red line in 

First Narrows in Figure 6.2a and the blue line in First Narrows in Figure 6.2d. 


