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Abstract

In artificial intelligence, common sense refers to simple acts of verbal reasoning. The

Winograd Schema Challenge (WSC), an important test of common sense, was recently

defeated by transformer-based language models. We investigate the implications of

that defeat: have language models achieved common sense, or is the challenge flawed?

That is, we consider the problem of reevaluating verbal reasoning in language models.

We evaluate the accuracy and consistency on Winograd schemas of three important

pretrained models: GPT-2, RoBERTa, and T5. We generalize the Winograd schema

to a larger class of problems, called adversarial schemas, and propose an evaluation

protocol for them that incorporates consistency. We create a new test of common-

sense verbal reasoning made up of our adversarial schemas. Each model performs

significantly worse on our test than on WSC, and no model exhibits high consistency.

We find no convincing evidence of verbal reasoning by language models.
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Chapter 1

Introduction

In this chapter, we introduce and motivate our research problem, describe our main

objectives and contributions, and provide an outline of the chapters to follow.

In Section 1.1, we motivate our research problem with a brief review of selected

topics in natural language processing, machine learning, and artificial intelligence,

particularly language models for common-sense reasoning, culminating in the defeat

of the Winograd Schema Challenge, a common-sense reasoning test, by pretrained

transformer-based neural network language models. In Section 1.2, we describe our

research problem in light of that background, including a summary of our objectives

and contributions. In Section 1.3, we outline the rest of the thesis.

1.1 Motivation

The purpose of this section is to motivate our research problem with a brief, almost

minimal review of relevant topics, assuming no familiarity on the part of the reader.

Those topics and their dependencies are shown in Figure 1.1.

Chapter 2 does provide more information on some of these topics, particularly the

Winograd Schema Challenge, but the interested reader should consult the literature

for general information on natural language processing, machine learning, and neural

networks. We will suggest some easily accessible sources.

1.1.1 Natural Language Processing

In computer science, the field of natural language processing (NLP) is concerned

with computer processing of natural language data, typically consisting of written

or spoken utterances by human beings. Applications of NLP include spell checking,

text-to-speech, machine translation, information retrieval, question answering, and

common-sense reasoning, the last of which is discussed in Section 1.1.3.

1
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Figure 1.1: Background topics covered in Section 1.1.

For an introduction to NLP as of 2008, the reader may consult Jurafsky and

Martin [38], although the field has made rapid advances since that time in specific

areas relevant to our research. For example, transformer-based language models,

which we will discuss in Section 1.1.2, were introduced as recently as 2017.

In natural language processing, a statistical language model, or language model for

short, is a way of assigning a numerical score to a finite sequence of tokens from some

finite alphabet. Typically, the tokens represent words or parts of words, along with

punctuation symbols, drawn from a natural-language corpus. The score assigned to a

sequence of tokens is typically taken to represent the “probability” of that sequence

of words and punctuation occurring, although no such probability is defined: for one

thing, there is no sample space. We can say that a better-scoring sequence is preferred

by the model as more likely or plausible, based on the corpus.

Some language models can assign a score to part of a sequence conditional on

another part. One important example is scoring the last token in a sequence, say

σn+1, given the preceding tokens, say σ1 · · · σn. This may be used to predict the

token most likely to follow or complete a given prefix. Hence, conditional scoring can

be used to perform sentence completion and other fill-in-the-blank tasks.
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1.1.2 Machine Learning

A large class of problems in science, engineering, and other quantitative fields can

be interpreted, at a high level of abstraction, as the construction of a mathematical

model capable of predicting or explaining the behaviour of a complex system. That

system is known to us deductively, through general laws that govern many systems,

and inductively, through particular sets of data collected from the system in question.

Machine learning may be defined as the study and use of algorithms that either

build a model from a set of data or incorporate new data into an existing model

with the goal of improving that model’s predictive performance or explanatory value.

Although the field is relatively new, its literature is vast and rapidly expanding; for

a general introduction, the reader may consult Hastie et al. [29] or Murphy [65].

An artificial neural network, or neural network for short, is a type of model often

used in machine learning. The model is made up of processing units called neurons

that are connected to one another. The process of improving a neural network’s

predictive performance on a dataset is called training the network on the data. For

a general introduction to neural networks, the reader may consult Zhang et al. [107].

The encoder-decoder architecture was introduced in 2014 [7, 91]. It was designed

for neural networks that process sequential data, where the input is in the form of

a sequence, and in particular for sequence-to-sequence modelling, where the output

is also in the form of a sequence. Sentence completion is an example of sequence-to-

sequence modelling. It is possible to build encoder-only and decoder-only models.

The transformer architecture was introduced in 2017 [100]. It optimizes the

encoder-decoder architecture by adding an attention mechanism that can selectively

focus on particular portions of the input sequence.

Some neural networks are language models (Section 1.1.1). A neural network

language model is said to be pretrained if it has been trained on a large natural-

language corpus, such as English-language Wikipedia articles, to perform a general

NLP task, such as sentence completion. In practice, such a model is often finetuned

later, i.e., trained on other data to perform a more specific downstream task.

This thesis investigates the performance of specific pretrained transformer-based

neural network language models: GPT-2 [76], RoBERTa [57], and T5 [79]. Each of

those models, at some point, achieved state-of-the-art performance on the Winograd
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Schema Challenge, a verbal test of common-sense knowledge and reasoning.

1.1.3 Common-Sense Reasoning

Whatever its ordinary meaning, common sense is a term of art in the field of artificial

intelligence (AI), where it often appears in the form of common-sense reasoning, a

way of figuring things out, and common-sense knowledge, a catalogue of facts. For

the purposes of this thesis, all three terms are interchangeable.

As early as 1959, John McCarthy, one of the founders of AI, proposed a project

of simulating “certain elementary verbal reasoning processes so simple that they can

be carried out by any non-feeble-minded human,” in order to produce a “program for

solving problems by manipulating sentences in formal languages” [60]. He described

the goal of his project as “programs with common sense” (the title of the paper).

So, right from the start of the field, common sense was identified with acts of

verbal reasoning: manipulating expressions in a natural or formal language. Natural

languages were for human beings, formal languages for machines. The goal was either

to simulate the processes by which human beings actually perform those acts of verbal

reasoning, or at least to reproduce the end result of those processes by outputting a

correct solution to some problem or a valid consequence of some premises.

For McCarthy, at least in 1959, programs with common sense would read and write

in formal languages, not natural ones.1 However, as early as 1970, Terry Winograd

recognized important common-sense aspects of natural language processing [103]:

If we really want computers to understand us, . . . they need to have all

sorts of knowledge about the subject they are discussing, and they have

to use reasoning to combine facts in the right way. . . .

Winograd included one particularly influential example of a pair of interpretation

problems where “a knowledge of the meanings of words is not enough.” Here, we have

annotated a substantially equivalent example from his 1972 follow-up paper [104],

1As McCarthy [61] wrote thirty years later: “If a computer is to store facts about the world
and reason with them, it needs a precise language. . . . Therefore, it was natural to try to use
mathematical logical languages to express what an intelligent computer program knows. . . .”
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because this version is more often cited in the literature:

a. The city councilmen refused the demonstrators a permit because

they {feared violence}.

b. The city councilmen refused the demonstrators a permit because

they {advocated revolution}.

(1.1)

There are several notable features. First, the sentences differ only by a key phrase

(in braces). Second, each sentence includes a grammatically ambiguous pronoun (in

bold). Finally, in order to determine which of two referents (underlined) is more

likely, which depends on the choice of key phrase, a program “has to have more than

the meanings of words. It has to have. . . information and reasoning power” [103].

That example inspired a test of common-sense knowledge and reasoning.

1.1.4 The Winograd Schema Challenge

In 2011, Hector J. Levesque introduced the Winograd Schema Challenge (WSC) based

on Winograd’s example (1.1) as a test of common-sense reasoning and an alternative

to the famous Turing test of artificial intelligence [52]. In the following, we will refer

to the revised and expanded 2012 version of that paper: Levesque et al. [53].

The form of the challenge is a multiple-choice test of verbal reasoning in the

English language. To pass the test means to achieve “human” or at least “near

human” accuracy. At the time, this was “far beyond the current state of the art.”

By design, WSC “appeals to world knowledge and default reasoning abilities,” i.e.,

common sense as defined in Section 1.1.3. “In order to pass the [Winograd Schema]

Challenge, a system will need to have commonsense knowledge about space, time,

physical reasoning, emotions, social constructs, and a wide variety of other domains,”

as well as “procedures to reason with that knowledge” or bring it to bear.

After its introduction, “the challenge became a focal point of research for both

the commonsense reasoning and natural language processing communities” [46].

A dataset for WSC, or Winograd dataset, is a specific set of Winograd schemas

that define the test questions [53]. Each schema includes a sentence with a placeholder

and an ambiguous pronoun. For example, with our annotations:

The trophy doesn’t fit into the suitcase because it is too {[blank]}. (1.2)
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A schema also provides two key words that can replace the placeholder, yielding

alternative sentences. In this example, the key words “large” and “small” yield:

a. The trophy doesn’t fit into the suitcase because it is too {large}.

b. The trophy doesn’t fit into the suitcase because it is too {small}.
(1.3)

The interpretation of the pronoun must depend on the choice of key word: in this

example, the first key word, “large,” makes “the trophy” overwhelmingly more likely

as the referent, and the second key word, “small,” similarly favours “the suitcase.”

The point is that each of the schema’s alternative sentences, which differ only by

a key word, presents a problem to solve: to identify the more likely referent of the

ambiguous pronoun, given two answer options that appear in the sentence.

a. The trophy doesn’t fit into the suitcase because it is too large.

What is too large? (i) the trophy ✓ (ii) the suitcase

b. The trophy doesn’t fit into the suitcase because it is too small.

What is too small? (i) the trophy (ii) the suitcase ✓

(1.4)

There are several important Winograd datasets in the literature, of which the

most important for our purposes is WSC273 from 2013 [17]. Due to its popularity and

precedence, WSC273 is often referred to simply as “the Winograd Schema Challenge.”

1.1.5 Defeat of the Winograd Schema Challenge

In 2018, Trinh and Le [97, 98] described “a simple method” for implementing common-

sense reasoning by language models that we call stochastic fill-in-the-blank.

Suppose we are given the Winograd problem (1.4a). We need to determine the

more likely intended referent of the pronoun “it” from among “the trophy” and “the

suitcase.” We can try substituting each answer option for the ambiguous pronoun:

The trophy doesn’t fit into the suitcase because the trophy is too large.

The trophy doesn’t fit into the suitcase because the suitcase is too large.
(1.5)

Having made the substitutions, we use a language model to assign each of the

above sentences a score representing its relative likelihood. Whichever candidate

yields a better-scoring sentence is taken to be the correct answer to the problem.
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The method of stochastic fill-in-the-blank uses a language model as an oracle or

black box, and the accuracy of the method depends on the choice of language model.

By 2021, the reported accuracy of the best-performing finetuned transformer-based

language models, if not also the pretrained ones, was sufficiently close to the untrained

human baseline on the most popular Winograd datasets that Kocijan et al. [47] could

announce “the defeat of the Winograd Schema Challenge” itself.

1.2 Research Problem and Objectives

The purpose of our research is to investigate the implications of the reported defeat

of the Winograd Schema Challenge. To be precise, if a model achieves human-like

accuracy on WSC, there are two possibilities. The first is that the model has achieved

common sense, because it passes the challenge. The second is that the challenge is

flawed, because the model passes it without having achieved common sense.

The problem is to decide experimentally which of those possibilities is more likely.

We identified two approaches, both of which are supported by the literature, and both

of which amount to reevaluating the common-sense reasoning capabilities of notable

high-accuracy language models. First, we apply to the models a new evaluation

protocol that is more probing than a simple accuracy score. Second, we apply the

models to a new test of common-sense verbal reasoning that differs from WSC.

For the first approach, we acknowledge that a number of language models have

achieved reasonably high accuracy on WSC273 and other popular datasets. However,

reason is general and generalizable, so a model with the ability to reason should

exhibit high consistency as well: it should answer similar questions in similar ways.

Other authors have proposed evaluation protocols featuring a consistency metric

with respect to various inessential alterations or perturbations of the dataset. We

extended their work by systematically perturbing WSC273 in several new ways and

measuring the consistency of three high-accuracy models. In the process, we cleaned

up the dataset to create what we call WSC266. Due to its standardized format,

WSC266 is considerably easier to systematically perturb than the original dataset.

We also introduce new scoring methods, meaning specific implementations of

stochastic fill-in-the-blank, some of which are more accurate than published methods.

For the second approach, it is clear that the Winograd Schema Challenge does
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not and cannot test every aspect of common-sense verbal reasoning or even every

aspect of pronoun disambiguation by common-sense verbal reasoning in the English

language. Again, reason is general and generalizable, so a model with the ability to

reason should exhibit consistency across challenges as well as within them.

Other authors have proposed alternatives to WSC. We created our own test of

common-sense verbal reasoning in the English language, which we call Reid250. In

the process, we generalized the Winograd schema to what we call the adversarial

schema, which preserves the key word feature that, in our view, is essential to WSC.

The new schema is easier to create, it can test a broader range of common-sense

content, and it is equally amenable to solution by stochastic fill-in-the-blank.

Because both of our approaches involve reevaluating the performance of language

models, we also developed a new evaluation protocol for Winograd schemas and for

adversarial schemas generally, incorporating, from other authors, not only consistency

but also a special control baseline and the effects of the model’s tokenization.

Our objectives, collected from both of our approaches to the problem, were as

follows: (1a) to clean up the dataset WSC273; (1b) to systematically perturb the

clean dataset; (1c) to reevaluate three language models on the clean dataset using

a consistency-based evaluation protocol; (2a) to generalize the Winograd schema as

a family of problems in natural language processing; (2b) to create a new test of

common-sense reasoning out of our new schemas; and (2c) to evaluate the same

models on the new dataset, again using a consistency-based evaluation protocol.

Our contributions are a cleaner Winograd dataset in a standardized format; two

perturbations of that dataset suitable for measuring consistency; a generalization of

the Winograd schema; a new test of common-sense reasoning; performance metrics

and evaluation protocols for Winograd and adversarial schemas; and new results on

common-sense reasoning in notable pretrained transformer-based language models,

including the best scoring methods or implementations of stochastic fill-in-the-blank.

1.3 Outline

For the reader’s convenience, we include a chapter-by-chapter outline of the rest of

the thesis. Each chapter begins with a section-by-section outline.

Here in Chapter 1, we have introduced and motivated our research problem and
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described our main objectives and contributions. In Chapter 2, we review important

background material and related work. In Chapter 3, we explain our methodology:

how we approached the research problem. In Chapter 4, we describe our experiments

and present our results. In Chapter 5, we review our results and contributions and

discuss the limitations, generalizations, and possible future directions of our research.



Chapter 2

Background and Related Work

In Chapter 1, we introduced and motivated our research problem and described our

main objectives and contributions. For context, we included a brief review of selected

topics in natural language processing, machine learning, and artificial intelligence.

In this chapter, we review important background material and related work in

more detail, expanding on some of the topics introduced in Chapter 1.

Section 2.1 discusses pretrained transformer-based language models in general.

Section 2.2 describes the three models we studied: GPT-2, RoBERTa, and T5.

Section 2.3 is an overview of the Winograd Schema Challenge (WSC). Section 2.4

lists the basic properties of a Winograd schema, and Section 2.5 adds an additional,

adversarial constraint on those schemas, with discussion.

Section 2.6 considers WSC in the context of natural language processing, and

Section 2.7 describes important testing and training datasets for WSC.

Section 2.8 explains how WSC has been approached and defeated using language

models. Section 2.9 discusses evaluation protocols for language models on WSC.

2.1 Pretrained Transformer-Based Language Models

We defined natural language processing (NLP) and language models in Section 1.1.1.

This section expands on material introduced in Section 1.1.2, on machine learning.

2.1.1 Neural Networks

We defined machine learning as the study and use of algorithms that either build a

model from a set of data or incorporate new data into an existing model with the

goal of improving that model’s predictive performance or explanatory value. If each

data point is labelled with the corresponding behaviour of the system, which is the

intended prediction of the model, then we are conducting supervised learning.

10
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Machine learning in general often makes use of numerical optimization methods.

In particular, supervised learning can be seen as a process of iterated optimization:

we define a loss function to measure how much the outputs of the model differ from

the given labels, then improve the model by minimizing that objective function.

A neural network is made up of processing units called neurons that are connected

to one another. Typically, a neuron receives input from a set of neurons, performs

a calculation on its inputs, and sends the resulting value as output to another set of

neurons. Special input neurons instead receive one feature each from the data and

output it unchanged. Designated output neurons report their output as a predicted

label, and together make up the model’s output.

Often, the number of neurons in a network, their positions, and how they connect

to one another are fixed. What changes when we improve the model through machine

learning is the set of parameters that the neurons use to calculate their outputs.

Typically, a neuron calculates the weighted sum of its inputs, subtracts a term called

a bias, and finally applies an activation function (e.g., tanh). Hence, the parameters

of the model are the weights of the connections and the biases of the neurons.

Some neural networks, including the language models we studied (Section 2.2),

have hundreds of millions or even billions of parameters.

The process of improving a neural network’s predictive performance by changing

its parameters so as to minimize a loss function over some dataset is called training

the network on the data; it is a special case of supervised learning.

The neurons in a network are often arranged in a series of layers, which helps to

describe and control how signals propagate through the network. Between the input

layer that takes the model’s input and the output layer that gives the model’s output

may be one or more hidden layers whose values are not reported to the user.

In a feed-forward neural network, a neuron only ever sends its output to neurons

in higher layers, so there are no cycles; a deep learning network is a feed-forward

neural network with more than one hidden layer. In general, a neural network with

cycles is called recurrent. However, in the context of NLP, the term recurrent neural

network is often used to mean one particular type of neural network with cycles that

is used for processing sequential data, a topic to which we now turn.
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2.1.2 Transformer Architecture

The encoder-decoder architecture for deep learning networks was introduced in 2014

and can be attributed to both Sutskever et al. [91] and Cho et al. [7], both of whose

work is closely related to Kalchbrenner and Blunsom [39]. The architecture was

designed for processing sequential data, and in particular for sequence-to-sequence

modelling; for example, predicting the words that follow an incomplete sentence.

Suppose we have a sequence of items σ1 · · · σn. An encoder is a type of neural

network that performs a calculation on σ1 (the first item) to produce an output-in-

progress τ1, then performs a calculation on τ1 and σ2 (the next item) to produce an

updated output-in-progress τ2, and so on, until it has processed the entire sequence.

Because of this iterative process, where the output of one iteration becomes the

input of the next iteration, encoders are recurrent neural networks; indeed, in some

sources, the term recurrent neural network is synonymous with this architecture.

Once the encoder has processed the entire input sequence, the complete state of

the encoder network, i.e., the current value of each neuron (and not just the output

neurons), is passed as input to the decoder, which is another neural network. The

decoder network is trained to output the next item in the sequence, given this state.

The transformer architecture due to Vaswani et al. [100] optimizes the encoder-

decoder architecture: instead of passing the complete state of the encoder network to

the decoder, we selectively pay attention to different parts of the input sequence.

It is possible to build encoder-only and decoder-only transformer models. Decoder-

only models, including GPT-2, are sometimes called auto-regressive. Encoder-only

models, including RoBERTa and other BERT-based models, are sometimes called

auto-encoding. Finally, encoder-decoder models, including T5, are sometimes called

sequence-to-sequence. Those three specific models will be discussed in Section 2.2.

2.1.3 Pretraining, Finetuning, and Task Demonstrations

A neural network language model is said to be pretrained if it has been trained

on a large natural-language corpus, such as English-language Wikipedia articles, to

perform a general NLP task, such as next word prediction or sentence completion.

Often, the corpus or pretraining dataset effectively labels itself: in next word

prediction, for example, a partial sequence of words from the corpus can be labelled
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automatically with the next word in the sequence. Such a dataset is often called

unsupervised, and the training process, which is always a case of supervised learning,

is often called unsupervised pretraining [5, 20, 74, 76, 79, etc.]. To avoid any ambiguity,

we will refer to such a dataset or training process as self-supervised.

A pretrained model is often further trained on another dataset for a more specific

application, such as solving Winograd problems. The follow-up training process is

called finetuning, and the more specific application is said to be a downstream task.

The two-stage process of pretraining and finetuning is called transfer learning [79].

When we actually run a neural network language model, finetuned or not, on a

dataset, we can enhance each data point with one or more demonstrations of the task

to be performed [5]. For example, we can prepend a Winograd problem, which is just

a string, with a different Winograd problem and its label, the correct answer. This is

called few-shot learning ; with only one demonstration, it is called one-shot learning.

We can also enhance each data point, not with specific demonstrations, but with a

general description of the task in natural language; this is called zero-shot learning.

We will refer to the use of unenhanced data as demonstration-free learning.

The method of stochastic fill-in-the-blank (Section 1.1.5) does not call for the

enhancement of the input by any demonstration or description of the task. For

that reason, we restrict our attention to demonstration-free learning, with one partial

exception: for the T5 model, we consider enhancing the input by prepending a special

Winograd task prefix, because the model was trained with one (Section 2.2.3).

Unless otherwise noted, all cited results use demonstration-free learning.

2.2 Notable Transformer Models

Table 2.1 shows some notable pretrained transformer-based language models, all of

which are publicly available except for GPT-3.1 Where applicable, we report the date

of the earliest online draft, which may not be the paper’s final publication date.

We will use GPT-2, RoBERTa, and T5 in our experiments in Chapter 4, so we

include a brief discussion of each model from the standpoint of a user.

Apart from being pretrained transformer-based neural network language models,

1We have not included the newly released GPT-4 model because no details are available on it,
except that it is a pretrained “Transformer-based” or “Transformer-style” model [70].



14

Model Source Date Architecture
GPT Radford et al. [74] 2018-06 decoder only

BERT Devlin et al. [19, 20] 2018-10 encoder only
GPT-2 Radford et al. [76] 2019-02 decoder only

RoBERTa Liu et al. [57] 2019-07 encoder only
T5 Raffel et al. [78, 79] 2019-10 encoder-decoder

GPT-3 Brown et al. [5, 6] 2020-05 decoder only

Table 2.1: Notable pretrained transformer-based language models.

the models in question have some points in common. First, they come in different

sizes. In each case, we used the largest model, which achieves the best performance

using the most parameters: GPT-2, size xl, 1.6 billion parameters; RoBERTa, size

large, 355 million parameters; and T5, size 11b, 11 billion parameters.

Second, each model deals, not with words from the dictionary, but with short

strings called tokens : it has a fixed vocabulary, which is a set of those strings. The

model splits a given text into a sequence of tokens before processing it further; this

is called tokenizing the string, and it is sensitive to whitespace and capitalization.

Third, each model has been applied to the Winograd Schema Challenge, which we

discussed in Section 1.1.4. Indeed, each model, at some time, achieved state-of-the-art

accuracy on the challenge; we will discuss this point again in Section 2.8.

2.2.1 GPT-2

The first model we consider is GPT-2 from February 2019 [76], an updated version

of GPT from June 2018 [74]. According to its creators, “GPT-2 is trained with a

simple objective: predict the next word, given all of the previous words within some

text” [75]. Evidently, this is a case of self-supervised training.

As we mentioned above, the model actually deals with tokens, not words, with a

fixed vocabulary V = {tm : 0 ≤ m < M} of M = 50257 tokens [32].

The training dataset is called WebText. The authors describe it as “a new web

scrape” that “emphasizes document quality,” excludes content from Wikipedia, and

consists of “slightly over 8 million documents for a total of 40 GB of text” [76]. As

we said, the model was trained on the task of predicting the next token in a text.

As input, the model takes a sequence σ = σ1σ2 · · · σn of n > 1 tokens from the
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vocabulary. It returns a table of values

{pi,m : 1 ≤ i < n, 0 ≤ m < M}, (2.1)

where pi,m is taken to represent the probability2 of observing the token tm in position

i + 1 given that we observe the tokens σ1 · · · σi in the previous positions.

More precisely, the model returns the log-odds or logit of that probability:

logit(p) = log

(︃
p

1 − p

)︃
, 0 < p < 1. (2.2)

It is easy to calculate the corresponding probabilities from a table of logits.

In particular, for i = 1, . . . , n − 1, we get the probability p∗i of observing σi+1

given σ1 · · · σi. To obtain the loss reported by the model on input σ, i.e., the value of

the objective function to be minimized, we take the mean of log p∗i over all predicted

tokens, i = 1, . . . , n − 1, then multiply by −1, so a higher probability produces a

lower (positive) loss. As the authors put it, “results on language modelling datasets

are commonly reported in a quantity which is a scaled or exponentiated version of

the average negative log probability per canonical prediction unit” [76].

More generally, by chaining together conditional probabilities, we can calculate,

e.g., the probability of observing σ6σ7σ8 after σ1 · · · σ5. However, the model does not

tell us the probability of any one token, say σ1, occurring on its own.

We can say more about the vocabulary. It was extracted from the training dataset

through a process called byte pair encoding [89]. The result is neither minimal nor

prefix-free: “t” is a token, and “h” is as well, but “th” and “ht” are also tokens. It is

case-sensitive: “Th” and “TH” are included as separate tokens. It is not a complete

list of strings up to a certain length: “tH” and “Ht” are not included.

The vocabulary is notably sensitive to preceding whitespace: “ t” (with a space)

is a token, for example, as are “ th,” “ the,” “ The,” and many more. However, “ ht”

is not a token, so the vocabulary is not closed under prepending a space. About 33000

tokens start with a space, out of a total of about 50000 tokens: well over half. The

idea is that, for example, “The” at the start of a document, with no preceding space,

is treated differently by the model from “ The” in the middle of a document.

The last token is a special end-of-text token to mark the end of a document.

2Strictly speaking, as we said in Section 1.1.1, no such probability is defined.
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2.2.2 RoBERTa

The next model is RoBERTa from July 2019 [57], which uses the same architecture as

the BERT model from October 2018 [19, 20], but optimizes the pretraining process.

We will begin with BERT, which was trained on two tasks: masked language

modelling and next segment prediction, both of which are self-supervised.

For masked language modelling, we take a document from the training dataset,

replace some of the tokens at random with a special masking token not found in

the dataset, and train the model to predict the original tokens. Unlike next token

prediction, which is the training objective of GPT-2 (Section 2.2.1) and proceeds

through a text from left to right, masked language modelling is “bidirectional,” as it

looks for “context” on both sides of a masked token within a text.

Next segment prediction is a very different task. Given a segment of text from

a document, plus another segment of text, the objective is to predict whether the

second segment follows the first segment or was taken from another document.3

RoBERTa optimizes the BERT pretraining process: it was still trained on masked

language modelling, but the authors removed next segment prediction as an objective.

Simply put, this choice “slightly improves downstream task performance” [57].

RoBERTa has a fixed vocabulary V = {tm : 0 ≤ m < M} of M = 50265

tokens [33], which is very similar to the vocabulary of GPT-2.

The training dataset is made up of several smaller datasets, including “an open-

source recreation of the WebText corpus” on which GPT-2 was trained [57].

The model takes a sequence σ = σ1σ2 · · · σn of n > 1 tokens, where the masking

token occurs N ≥ 1 times at indices i1 < · · · < iN . It returns a table of values

{pk,m : 1 ≤ k ≤ N, 0 ≤ m < M}, (2.3)

where pk,m is taken to represent the probability of observing the token tm in the

masked position ik given that we observe the other tokens, σi, i ̸= ik, in their positions.

Note that the other masked tokens, σij , j ̸= k, are still masked.

In particular, suppose we have candidate tokens τ1, . . . , τN to fill in the masked

positions. For k = 1, . . . , N , we get the probability p◦k of observing τk in position ik

3In the literature, next segment prediction is often called “next sentence prediction,” although,
e.g., in BERT pretraining the segments “can each contain multiple natural sentences” [57].
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given σi, i ̸= ik. To obtain the loss reported by the model, we take the mean of log p◦k

over all candidate tokens, i = 1, . . . , N , then multiply by −1.

Before tokenizing any string, RoBERTa places it between a special beginning-of-

string token and a special end-of-string token.

Again, the vocabulary was extracted from the training dataset through byte pair

encoding. The result is neither minimal nor prefix-free. It is case-sensitive. It is

not a complete list of strings up to a certain length. It is sensitive to preceding

whitespace, which is represented by a special, more visible character; it is not closed

under prepending a space. Well over half the tokens start with a space. Apart from

the use of a replacement whitespace character, all of this is consistent with GPT-2.

RoBERTa’s vocabulary includes numerous special tokens. Most importantly, t50264

is the special masking token used in evaluation as described above.

2.2.3 T5

The final model is T5 from May 2020 [78, 79]. Its creators take a “unified approach

to transfer learning” by training it on a mixture of tasks, each of which is cast as a

“text-to-text” problem, i.e., “taking text as input and producing new text as output.”

The model’s self-supervised training includes masked language modelling similar

to RoBERTa. Its supervised training tasks include sentence completion, question

answering, natural language inference (Section 2.6.1), and coreference resolution in

the form of the Winograd Schema Challenge. Some of the tasks, e.g., summarization,

are generative; others, e.g., natural language inference, are classification tasks.

To convert each task into the same form, the authors use task prefixes. Consider,

for example, the task of translating English into German. The authors assign it the

task prefix “translate English to German.” Given “translate English to German:

That is good,” the model is trained to predict the German translation “Das ist gut.”

T5 has a fixed vocabulary V = {tm : 0 ≤ m < M} of M = 32100 tokens [34],

which includes several masking tokens.

The training dataset is made up of several task-specific datasets as well as a large

self-supervised dataset for masked language modelling. The self-supervised dataset,

“consisting of hundreds of gigabytes of clean English text scraped from the web,”

is called the Colossal Clean Crawled Corpus. The task-specific datasets include two
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Winograd datasets: DPR and WNLI-2 (Sections 2.7.2 and 2.7.3 respectively).

Our interest is in masked language modelling. The model takes a sequence σ =

σ1σ2 · · · σn of n > 1 tokens, where we can assume that masking tokens T1, . . . , TN

occur at non-consecutive indices i1 < · · · < iN for some N ≥ 1. Unlike RoBERTa,

where a masking token always represents a single token to predict, the masking tokens

in T5 stand for a span of one or more tokens to be predicted together.

The model also takes a label: a sequence τ = τ1τ2 · · · τm of m > 1 tokens, where

the masking tokens T1, . . . , TN , TN+1 occur. The idea is that the first masking token

occurs first, τ1 = T1, and the extra masking token occurs last, τm = TN+1. In the

label sequence τ , we interpret the span of tokens between Tk and Tk+1 as a candidate

to replace Tk in the input sequence σ, for 1 ≤ k ≤ N . The model returns

{p◦j : 1 ≤ j ≤ m}, (2.4)

where p◦j is taken to represent the probability of producing τj in position j given σ as

input. Note that the masking tokens T1, . . . , TN , TN+1 are predicted as well.

To obtain the model’s loss, we take the mean of log p◦j over all masked spans,

j = 1, . . . ,m, then multiply by −1: another “average negative log probability” [76].

Before tokenizing any string, T5 appends a special end-of-string token.

The vocabulary was extracted from the training dataset through a system called

SentencePiece [48]. The result is neither minimal nor prefix-free. It is case-sensitive.

It is not a complete list of strings up to a certain length. It is sensitive to preceding

whitespace, which is represented by a special, more visible character; it is not closed

under prepending a space. Well over half the tokens start with a space. Apart from

the use of SentencePiece, all of this is consistent with RoBERTa.

T5’s vocabulary includes one hundred unique masking tokens.

2.3 Overview of the Winograd Schema Challenge

We saw in Section 1.1.3 that Terry Winograd recognized important common-sense

aspects of natural language processing as early as 1970 [103], when he introduced a
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version of this influential example of a pair of interpretation problems [104]:

a. The city councilmen refused the demonstrators a permit because

they {feared violence}.

b. The city councilmen refused the demonstrators a permit because

they {advocated revolution}.

(2.5)

Sentences (2.5a) and (2.5b) differ only by a key phrase (in braces). Each sentence

includes a grammatically ambiguous pronoun (in bold). In order to decide which of

two referents (underlined) is more likely, which depends on the choice of key phrase,

a program, Winograd [103] argued, requires “information and reasoning power.”

We saw in Section 1.1.4 that Levesque [52] introduced the Winograd Schema

Challenge (WSC) based on Winograd’s example (2.5) as an alternative to the Turing

Test. Again, we will refer to the revised and expanded version of that paper [53].

The form of the challenge is a multiple-choice test of verbal reasoning in the

English language. Each problem has two answer options, exactly one of which is

correct, so we expect to achieve an accuracy of 50% by guessing at random. The first

answer is the correct one in about as many problems as the second answer is, so we

expect to achieve about the same 50% accuracy by always choosing the first answer.

To pass the challenge is to achieve “human” or at least “near human” accuracy,

which we expect to be close to 100% because the problems are designed so that

the correct answers are “obvious to the human reader” [53]. We will discuss human

performance in Section 2.5.1. In any case, at the time of the challenge’s introduction,

human-like performance was “far beyond the current state of the art.”

What would it mean to pass the test? WSC “appeals to world knowledge and

default reasoning abilities,” i.e., common sense (Section 1.1.3). “The claim is that

doing better than guessing requires subjects to figure out what is going on.”

You need to have background knowledge that is not expressed in the words

of the [problem statement] to be able to sort out what is going on. . . .

And it is precisely bringing this background knowledge to bear that we

informally call thinking. [Emphasis in original.]

In short, Levesque et al. [53] “believe that in order to pass the [Winograd Schema]

Challenge, a system will need to have commonsense knowledge about space, time,
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physical reasoning, emotions, social constructs, and a wide variety of other domains,”

as well as “procedures to reason with that knowledge” or bring it to bear.

The authors refer to the common-sense project involving formal languages started

by John McCarthy as “the knowledge-based approach” (emphasis in original) to AI,

or at least to passing a challenge like WSC, and they “believe it remains the most

likely path to success.” However, they expect and allow for “different approaches” to

the challenge, particularly statistical NLP, including language models [53]:

Statistical approaches toward natural language processing. . . have become

increasingly popular since the 1990s. . . . The successes of the last several

decades in such NLP tasks as text summarization and question-answering

have been based on statistical NLP.

These successes. . . generally do not extend to the type of deep reasoning

that we believe is required to solve the [Winograd Schema Challenge]. But

if statistical approaches over large corpora. . . work better, so be it.

After its introduction, “the challenge attracted a fair amount of favorable interest

from both the research community and the popular science press” [47], and “in the

years following its publication, the challenge became a focal point of research for both

the commonsense reasoning and natural language processing communities” [46].

So what exactly is in the Winograd Schema Challenge?

2.4 The Winograd Schema: Basic Properties

A dataset for WSC, or Winograd dataset, consists of a number of Winograd schemas,

or schemas for short until we introduce other types of schema in Chapter 3. A schema

generates a pair of pronoun disambiguation problems, and the problems make up the

challenge. We will discuss particular Winograd datasets in Section 2.7.

A Winograd schema has the following properties [53]:

1. The schema includes a sentence with a placeholder, { }. For example:

The trophy doesn’t fit into the suitcase because it is too { }. (2.6)

2. The schema identifies two candidates, which are noun phrases that appear in the

sentence. In this example, the candidates are “the trophy” and “the suitcase.”



21

3. The schema identifies a target, which is a pronoun that appears in the sentence

and, by its person, number, and gender, could refer to either candidate. In this

example, the target is “it” (third person, singular, neuter).

4. The schema provides two key words that can replace the placeholder, yielding

alternative sentences. In this example, the key words “large” and “small” yield:

a. The trophy doesn’t fit into the suitcase because it is too large.

b. The trophy doesn’t fit into the suitcase because it is too small.
(2.7)

5. The interpretation of the ambiguous pronoun depends on the choice of key word:

the first key word makes the first candidate overwhelmingly more likely as the

referent, and the second key word similarly favours the second candidate.

Annotating the above example with all the relevant information, we can write the

complete Winograd schema as follows:

The trophy doesn’t fit into the suitcase because it is too {large, small}. (2.8)

The point is that each of the schema’s alternative sentences, which differ only by

a key word, presents a problem to solve: to identify the more likely intended referent

of the ambiguous pronoun, given the two candidates as answer options.

a. The trophy doesn’t fit into the suitcase because it is too large.

What is too large? (i) the trophy ✓ (ii) the suitcase

b. The trophy doesn’t fit into the suitcase because it is too small.

What is too small? (i) the trophy (ii) the suitcase ✓

(2.9)

We have formatted the problems as human-readable multiple-choice questions with

two natural-language answer options, in the style of Levesque et al. [53].

Thus, a pair of key words yields a pair of problems, almost identical in form,

with the same set of answer options. That symmetry is an important feature and

justification of the Winograd schema. We will return to this point in Section 2.5.3.

The five properties listed above are necessary but not sufficient: a Winograd

schema is supposed to satisfy an additional constraint, to which we now turn.
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2.5 An Adversarial Constraint on the Winograd Schema

Winograd schemas are also supposed to satisfy an adversarial constraint, and we have

placed it here, in a separate section, for two reasons. First, unlike the properties in

Section 2.4, which are fairly straightforward, the following constraint is complex and

even ambiguous, which necessitates a somewhat lengthy discussion. Second, as we

will see in Section 2.7, datasets for the Winograd Schema Challenge in practice either

fail to perfectly satisfy the additional constraint or intentionally relax it.

Levesque et al. [53] put the constraint succinctly: a Winograd schema must be

“designed so that the correct answer is obvious to the human reader, but cannot easily

be found using selectional restrictions or statistical techniques over text corpora.”

There are three elements to this explicitly adversarial constraint, and we will

discuss each of them below: obvious answers in Section 2.5.1, selectional restrictions

in Section 2.5.2, and statistical techniques in Section 2.5.3.

2.5.1 Untrained Subjects and Intelligence Tests

First, the answer to a Winograd problem must be “obvious to the human reader,”

so that the problem is answerable “immediately” by an “untrained subject” [53]. We

already knew that WSC is a test of verbal reasoning in the English language, which

makes it an intelligence test, at least for English speakers; now we know that it is a

relatively easy one, and human-like performance is close to 100% accuracy.

In that respect, the authors are broadly consistent with the literature on common

sense in AI: they ask that the problems be easy, but not arbitrarily easy. We saw

that McCarthy [60] cites the verbal reasoning processes of “any non-feeble-minded

human.” Davis [11] refers to knowledge “possessed by every schoolchild.”

Similarly, Levesque et al. [53] suggest “your Aunt Edna” as an appropriate test

subject. Still, the sample problems they present admittedly “differ on the background

knowledge assumed,” with some, including (2.9), being suitable for “anyone” ten and

up, and others, including (2.5), being “more ‘university-level’ ” in difficulty.

Intelligence tests, i.e., standardized formal tests of human mental ability featuring

questions of varying difficulty, have been used to evaluate common sense in computer

systems. Ohlsson et al. [68] evaluate one such system—not based on a language
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model or a neural network—using a test designed to measure verbal reasoning in

young children. Now, Ohlsson et al. [69] argue that WSC, by comparison, does not

qualify as an intelligence test “because the questions are designed so that any normally

competent speaker of English can easily answer them correctly.” On the other hand,

their own test includes questions like “What is a house?” Arguably, WSC is indeed

an English-language verbal intelligence test, albeit not a carefully calibrated one.

Table 2.2 shows human performance on Winograd datasets, with notes to follow.4

Dataset Source Accuracy
quasi-WSC285 Bender [3] 0.921
quasi-WSC285 Rudinger et al. [82] 0.865

WSC273 Sakaguchi et al. [85] 0.965
DPR/WSCR Sakaguchi et al. [85] 0.952

WNLI Nangia and Bowman [66] 0.959
WinoGrande Sakaguchi et al. [85] 0.940

Table 2.2: Human performance on the Winograd Schema Challenge.

The sources all employ crowd workers but otherwise differ in their methodology,

which is less than detailed; e.g., only Bender [3] reports the number of subjects (407).

That paper administers a random sample of problems, 36 on average, presumably

from a 2015 version of WSC285; Rudinger et al. [82] presumably use a 2018 version

but give no details. We can defer descriptions of the datasets until Section 2.7, because

for now it is enough to note that accuracies over 90% are evidently typical, and that

the first element of the adversarial constraint can be made reasonably precise.

Incidentally, it is also possible to make a Winograd schema arbitrarily difficult:

Cozman and Munhoz [8] encode the digits of a non-computable real number, among

other things, as pronoun disambiguation problems. We will not pursue this here.

2.5.2 Selectional Restrictions

The second element of the adversarial constraint is that a Winograd schema “should

not be solvable by. . . selectional restrictions” [53]. From linguistics, a selectional

restriction is a semantic restriction on how a word can be used in a sentence.

4Not included: Davis et al. [16] record 92–93% accuracy on 89 unpublished Winograd schemas.
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The authors offer this example of an inappropriate schema:

The women stopped taking the pills because they were

{pregnant, carcinogenic}.
(2.10)

They argue that because pills cannot be pregnant and women cannot be carcinogenic,

a pair of selectional restrictions, both problems can be solved from the candidates and

the key word alone, “ignoring the sentence completely.”

The second element of the constraint can be made reasonably precise if we assume

that the designers of Winograd Schema Challenge datasets are fluent speakers of

English who can agree on what qualifies as a selectional restriction.

Levesque et al. [53] note that “selectional restrictions. . . might be learned by

sampling a large enough corpus.” That leads us to the final element of the constraint.

2.5.3 Associativity and Spurious Correlations

The third and final element of the adversarial constraint is that a Winograd schema

“should be Google-proof; that is, there should be no obvious statistical test over text

corpora that will reliably disambiguate [the target pronoun] correctly” [53].

The key word feature is a major ingredient in fulfilling that element:

With [the key word feature], we can see that clever tricks involving word

order or other features of words or groups of words will not work. Contexts

where [one key word] can appear are statistically quite similar to those

where [the other key word] can appear, and yet the answer must change.

This helps make the test Google-proof : having access to a large corpus of

English text would likely not help much. . . . [Emphasis in original.]

So the key word feature is adversarial by design: it represents an attack on one

approach to common-sense tasks, namely statistical NLP.

The authors clearly expect the built-in adversarial feature to make the test more

robust, and their reasoning seems valid in general. For example, regarding a different

test of verbal reasoning in natural language, Niven and Kao [67] create adversarial

versions of the problems and are thereby able to show that one transformer-based

model’s near-human accuracy “can be entirely accounted for in terms of exploiting

spurious statistical cues.” We will discuss spurious correlations in more detail below.
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However, by itself, the key word feature may not be enough to defeat even obvious

statistical tests. We have already seen that a selectional restriction can violate the

constraint, as in (2.10). Levesque et al. [53] offer another example:

The race car zoomed by the school bus because it was going so

{fast, slow}.
(2.11)

The authors argue that, in text corpora, “fast” is much more closely associated with

“race car” than with “school bus.” They suggest replacing “race car” with “delivery

truck,” and the revised version appears in the WSC273 dataset (Section 2.7.1).

Recall that the correct answer to a Winograd schema problem depends on the

choice of key word. To the extent that the key word, possibly in the context of the

sentence, is more strongly associated with the correct answer than with the incorrect

answer, however we choose to quantify that association, we call the problem, or the

schema that contains it, associative, a term due to Trichelair et al. [95]. The third

element of the adversarial constraint attempts to exclude associative schemas.

It is not immediately obvious how to quantify the strength of word associations.

The term “Google-proof” does suggest a method, of course, and indeed Levesque

et al. [53] attempt to identify associative schemas by performing “experiments with

searches using Google’s count of result pages,” while freely acknowledging that search

engine result counts are “notoriously unreliable.” Despite that unreliability [51], one

might expect a modern search engine to reliably solve an example like (2.11).

The type of association exemplified by (2.11) might be called genuine, for lack

of a better term. Race cars are, in fact, capable of great speed when compared to

other land vehicles, including school buses. Therefore, we expect a sufficiently large

and representative natural-language corpus to exhibit a relatively high correlation

between “race car” and “fast.” Therefore, we expect a model trained on such a

corpus to achieve better than random accuracy on such a problem without necessarily

figuring out anything about the relationship between “going fast” and “zooming by.”

Therefore, we should exclude such a schema from a test of common sense.

On the other hand, it is not necessarily the case that we should exclude a schema

simply because a model solves it. The constraint refers to an “obvious statistical

test” that solves the problem; a solution that can “easily be found using. . . statistical

techniques” (my emphasis). Arguably, a neural network language model with billions
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of parameters is not easily trained, and its inner workings are by no means obvious.

Now suppose such a model achieves human-like accuracy on a Winograd dataset

that we have checked for associativity. There would be three possible conclusions.

First, the model has achieved common sense, because it passes the Winograd Schema

Challenge. Second, the Winograd Schema Challenge is flawed, because the model

passes it without exhibiting common sense, which we might demonstrate using a

different evaluation protocol or a different type of challenge (both of which we will

discuss later). Third, the particular problem set we used must be associative in some

way that we failed to detect, and therefore not a true Winograd Schema Challenge,

because, after all, such a model merely applies statistical tests and techniques. We

would really like to exclude the third option as a case of moving the goalposts.

This is essentially the problem of detecting what the literature calls a spurious

correlation. Spurious correlations can arise in any model that has been trained on a

specific dataset: they are “prediction rules that work for the majority” of problems

in that dataset “but do not hold in general” [99]. Spurious correlations “can be

learned during pretraining or fine-tuning” and, in any case, “may result in successful

predictions that do not reflect commonsense reasoning skills” [23].

For example, suppose we crowdsource a training dataset for some NLP task. If the

crowd workers generate problems by following a specific protocol, that protocol may

introduce annotation artifacts to the dataset: “specific linguistic phenomena” that

are “highly correlated” with specific labels in that dataset but not in general [27]. A

model trained on such a dataset is likely to exhibit spurious correlations.

Elazar et al. [23] attempt to detect and account for spurious correlations. Suppose

we have a dataset for the Winograd Schema Challenge. The authors propose two

control baselines : systematic modifications of the dataset on which a model that is

free from spurious correlations is “likely to achieve random performance.” Therefore,

to the extent that a model performs better than random guessing on the baselines,

that model is likely to be exploiting associativity in the dataset. For example, the

baseline version of (2.11) is likely to be quite solvable. Conversely, if the model

performs no better than random guessing on the baselines, we may be able to exclude

associativity as an explanation for the model’s success on the original dataset.

We will discuss control baselines in more detail in Section 2.9.4.
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There are other ways of accounting for associativity. Sakaguchi et al. [85] attempt

to filter annotation artifacts from WinoGrande (Section 2.7.5). They compare their

approach to filtering based on pointwise mutual information, a measure of association

used by, e.g., Abdou et al. [1] to detect associativity in Winograd datasets.

Filtering annotation artifacts from a dataset is a special case of what Schwartz and

Stanovsky [88] call balancing : modifying the training data “to prevent models from

learning spurious correlations.” They argue that, in general, “too much balancing can

prevent models from learning valuable knowledge,” and, for common-sense reasoning

in particular, balancing is actually an “undesired” solution (emphasis in original).

Without necessarily accepting their conclusion of a “lost battle against spurious

correlations,” we have decided not to pursue filtering or other forms of balancing.

With at least one way of accounting for associativity, namely control baselines,

the final element of the adversarial constraint can be made reasonably precise.

2.6 The Winograd Schema as Natural Language Processing

With the addition of an adversarial constraint (Section 2.5) to the basic properties

listed in Section 2.4, the definition of the Winograd schema is complete. So how does

the schema compare to other types of problem in natural language processing?

2.6.1 Coreference Resolution and Related Tasks

Clearly, the task of automatically solving Winograd schema problems belongs to NLP.

Figure 2.1 shows how the Winograd schema is related to some other important NLP

tasks and problem types. That figure will be updated in Section 3.5.1 (Figure 3.1).

Winograd schemas are based on pronoun disambiguation: determining the referent

of an ambiguous pronoun. The trophy-suitcase problem (2.9b) is a simple example

of pronoun disambiguation, which we reproduce here for convenience:

The trophy doesn’t fit into the suitcase because it is too small.

What is too small? (i) the trophy (ii) the suitcase ✓
(2.12)

Of course, not every pronoun disambiguation problem belongs to a Winograd schema:

for one thing, there must be a key word. Of all the NLP tasks and problem types in

this section, only the Winograd schema has such an adversarial feature built in.
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Figure 2.1: Winograd schemas as natural language processing. Solid lines point to
more specific tasks; dashed lines indicate possible one-way recasting.

Pronoun disambiguation is a subset of coreference resolution: determining the

referent of an expression, which may or may not be a pronoun. For example, this

adaptation of (2.12) does not involve pronoun disambiguation and in particular does

not belong to any Winograd schema, but it is still a case of coreference resolution:

The trophy doesn’t fit into the suitcase because the container is the

wrong size. What is the container? (i) the trophy (ii) the suitcase ✓
(2.13)

Another NLP task, which is rather different from coreference resolution, is textual

entailment [9] or natural language inference (NLI) [4]: to determine whether one

statement logically, or at least plausibly, implies another statement, contradicts it, or

neither. For example, the Recognizing Textual Entailment challenge (RTE) conforms

to this task [10]. WSC was originally described as a “variant” of RTE [53].

Wang et al. [101] recast Winograd schema problems as textual entailment; the

result is the Winograd Natural Language Inference dataset (WNLI), which we will

revisit in Section 2.7.3. For example, the pronoun disambiguation problem (2.12) can
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be recast as two separate natural language inference problems. Here is one:

P. The trophy doesn’t fit into the suitcase because it is too small.

Q. The trophy doesn’t fit into the suitcase because the trophy is

too small. Does P imply Q? (i) true (ii) false ✓

(2.14)

The other problem substitutes the suitcase, and the correct answer is “true.”

Indeed, (2.14) shows that coreference resolution in general can be recast as natural

language inference, although it is not at all clear that we ought to do so: Kocijan

et al. [44] convert WNLI back into pronoun disambiguation form before tackling it

with stochastic fill-in-the-blank, and in T5 pretraining, Raffel et al. [79] convert WNLI

into a text-to-text format where the text to be predicted is the referent.

Speaking of filling in the blank, a cloze test [92] is another type of NLP problem:

basically, any fill-in-the-blank question.5 An example, based once again on (2.12):

The trophy doesn’t fit into the suitcase because it, ⟨ ⟩, is too small.

What is missing? (i) the trophy (ii) the suitcase ✓
(2.15)

If the pronoun is not considered to be meaningful or informative in the context of the

entire problem, including the given answer options, then we can drop it:

The trophy doesn’t fit into the suitcase because ⟨ ⟩ is too small.

What is missing? (i) the trophy (ii) the suitcase ✓
(2.16)

In any case, (2.15) shows that coreference resolution problems in general, and

Winograd schemas in particular, can be recast as cloze tests. Indeed, that is the

premise of applying to Winograd schemas the method of Trinh and Le [98] that we

call stochastic fill-in-the-blank: that method (Section 1.1.5) applies straightforwardly

to any cloze test and therefore to any other problem that can be recast as a cloze

test. We will revisit the method of stochastic fill-in-the-blank in Section 2.8.1.

There are many other important tasks in NLP, and some are related to common-

sense reasoning. For example, the adversarial problems of Niven and Kao [67] that we

mentioned in Section 2.5.3 belong to reasoning comprehension [28], which is closely

related to textual entailment. But that is outside the scope of our research.

5The cloze test as a problem type should not be confused with the Story Cloze Test [64], a reading
comprehension dataset that has more in common with textual entailment.
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2.6.2 Winograd Problems in Datasets

In previous sections, we mentioned a few datasets related to the Winograd Schema

Challenge, including WSC273, WinoGrande, and WNLI, without defining them. In

Section 2.7, we will discuss Winograd datasets in detail. Before we do, we should

add a word to differentiate problems, which we have been presenting in the form of

human-readable questions, and data points, which may not take that form.

Each of (2.12), (2.13), (2.15), and (2.16) is a problem suitable for NLP that takes

the form of a human-readable multiple-choice question with two natural-language

answer options. On the other hand, (2.14) takes the form of a true-or-false question,

one of a pair into which (2.12) was recast in a way similar to Wang et al. [101].

Test sets for the Winograd Schema Challenge sometimes do consist of human-

readable questions with natural-language answer options. Training datasets for the

challenge, on the other hand, typically take a different form.

For some training datasets, a pronoun disambiguation problem is converted into

two pairs of plain-text statements. Each pair is treated as a true-or-false problem:

does the first statement imply the second? This conversion is accomplished in the

same way that (2.12) became (2.14). To highlight the new format:

i. The trophy doesn’t fit into the suitcase because it is too small.

The trophy is too small. Label: 0 (false)

ii. The trophy doesn’t fit into the suitcase because it is too small.

The suitcase is too small. Label: 1 (true)

(2.17)

Thus, a problem generates two data points. Since a Winograd schema already

generates two problems because of the key word, a schema may actually be represented

in a dataset by as many as four distinct data points.

We now turn to some actual Winograd datasets.

2.7 Notable Winograd Datasets

We know that a testing dataset or test set for the Winograd Schema Challenge consists

of a number of data points, derived from pronoun disambiguation problems, derived

from Winograd schemas (Sections 2.4 and 2.6.2). We also know that training precedes
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deployment (Section 2.1.3): before taking on a Winograd Schema Challenge, a model

is either trained on a dataset that involves pronoun disambiguation, or pretrained for

a general NLP task on some large natural-language corpus and possibly finetuned for

pronoun disambiguation. Table 2.3 shows some notable testing and training datasets.

The most important of these for our purposes is WSC273.

Dataset Source Testing Training Validation
WSC285 Davis [12] 285 – –
WSC273a Davis [12] 273 – –

DPR/WSCR Rahman and Ng [80] 564 1322 –
WNLIb Wang et al. [101] 146 635 71

WSC/WNLI-2b Wang et al. [102] 146 554 104
MaskedWiki Kocijan et al. [44] – 2.4M –
WikiCREM Kocijan et al. [43] – 2.4M –
WinoGrande Sakaguchi et al. [85] 1767 41K 1267

Table 2.3: Notable datasets for the Winograd Schema Challenge. (a) WSC273 is a
subset of WSC285. (b) WNLI and WNLI-2 each consist of true-or-false problems,
a pair of which is equivalent to a problem from any other dataset (Section 2.6.2);
moreover, the test sets for WNLI and WNLI-2 are identical except for formatting.

Also worth mentioning are Morgenstern et al. [63]’s 2016 Pronoun Disambiguation

Problem dataset (PDP), Emami et al. [25]’s 2019 KnowRef coreference corpus, and

Emami et al. [26]’s updated 2020 KnowRef-60k corpus. None of them use a key word

adversarial feature, and they are outside the scope of our research.

Below, we include a brief history and discussion of the datasets in Table 2.3.

2.7.1 WSC285 and WSC273

In 2011, Levesque [52] presented twelve examples of Winograd schemas in the main

text, three of which deliberately violate the adversarial constraint (Section 2.5) and

two of which are improved versions of inappropriate schemas. The paper also includes

an appendix with ten more examples, for a total of 19 valid schemas and 38 problems.

From 2011 to 2013 [12], Davis et al. [17] added more examples, building up a

collection of 142 Winograd schemas and 285 problems called WSC285 ; part of that

collection-in-progress was included in Levesque et al. [53]. Some sources report results

only on the first 136 schemas and 273 problems, leading later authors to make the

same restriction for the sake of consistency: the reduced dataset is called WSC273.
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Due to its popularity and precedence, WSC273 is often referred to simply as “the

Winograd Schema Challenge.” Although it is an influential test of common sense, it

is still only one test, with only 273 problems. According to Trichelair et al. [96], “the

main drawback of the Winograd Schema Challenge [meaning WSC273] is its limited

size and the absence of training and validation sets for hyper-parameter tuning.”

Unfortunately, generating new Winograd schemas is highly non-trivial: inventing

a scenario involving two parties with a pronoun whose interpretation depends on the

choice of key word is an exercise in creative writing. Kocijan et al. [47] note that

“manually creating a large, diverse collection of high-quality Winograd schemas is

inherently difficult.” Ruan et al. [81] also mention how difficult it is “to acquire high-

quality samples for common-sense reasoning under [WSC] settings.” And Trichelair

et al. [95] state that “it is difficult and expensive to acquire high-quality datasets for

specialized inference tasks” in general, and for WSC in particular.

Illustrating that difficulty, it was later discovered that some of the schemas in

WSC273 violate the adversarial constraint (Section 2.5): Trichelair et al. [95], using

three human annotators, identify 37 associative problems [93]. For example:

In the storm, the tree fell down and crashed through the roof

of my house. Now, I have to get it {removed, repaired}.
(2.18)

Repairing a roof is more likely than repairing a tree.

Because the authors use human annotators, any link they report between key

words and candidates is expected to be a genuine association (Section 2.5.3). But a

model can also learn spurious correlations. Elazar et al. [23], using their method of

control baselines (Section 2.9.4), find that one model with high accuracy on WSC273,

namely Sakaguchi et al. [85], performs significantly better than random guessing on

both baselines, even after removing those 37 associative problems [23]:

These results indicate that [WSC273] contains many artifacts (over 15

points above random performance), and even after the manual filtering of

Trichelair et al. [95] some statistical correlations remain.

Trichelair et al. [95] also note that the problem statements in WSC273 display

“predictable structure” or “distinctive regularities” that a computer system “can

leverage. . . in various ways.” For example, “for a high number of instances, the [key



33

word] is the last word, or nearly the last word.” Also, “many [WSC273] instances

are composed of two clauses connected by a causal discourse connective like because”

(emphasis in original). A system that is “exploiting these structural regularities” may

“become brittle to perturbations that would not affect the judgment of a human.”

There are other issues with WSC273, which we will discuss in Section 3.3.

2.7.2 DPR/WSCR

In 2012, Rahman and Ng [80] published a collection of 943 Winograd-like schemas

or 1886 problems, written by thirty undergraduate students: the Definite Pronoun

Resolution dataset (DPR), also known as WSCR [71]. Exact or almost exact copies

of three schemas from DPR appear, with attribution, in WSC273 [12].

Rahman and Ng [80] describe DPR as a “relaxed version” of WSC, because they

allow associative schemas (Section 2.5.3) by relaxing the adversarial constraint. For

example, the following schema from the DPR training set is highly associative:

Lions eat zebras because they are {predators, meaty}. (2.19)

The word “predators” is more closely associated with “lions” than with “zebras.”

Besides a relaxed constraint on associativity, Opitz and Frank [71] note DPR’s

“notably. . . lower quality” overall when compared to WSC273. In particular, DPR

“contains sentences with no straightforward resolution.” For example:

The bus driver yelled at a kid after she {drove her vehicle}.

Who is she? (i) the bus driver ✓? (ii) a kid
(2.20)

Moreover, although we know that WSC273 problems already display predictable

structure, DPR problems are even “less diverse as all consist of exactly one sentence

and in every sentence we find at least one discourse connector or a comma connecting

a main clause with the [candidates] to a sub-clause that contains the pronoun.”

2.7.3 WNLI and WSC/WNLI-2

We saw in Section 2.6.1 that Wang et al. [101] recast Winograd schema problems as

textual entailment, more often called natural language inference (NLI), producing the

Winograd Natural Language Inference dataset (WNLI), which is part of the popular

General Language Understanding Evaluation benchmark (GLUE) from 2018.
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Which specific problems were converted to create WNLI? The test set consists of

146 data points generated from new Winograd-like pronoun disambiguation problems

“derived from fiction books” and “shared privately” by the creators of WSC285 [101].

Again, these are true-or-false problems, a pair of which is equivalent to a Winograd

problem. The training and validation sets, numbering 635 and 71 respectively, each

contain a mixture of new problems, as in the test set, and problems recycled from

WSC285. Indeed, between the training and validation sets, WNLI recycles every

schema from WSC285 except the last one; in particular, it recycles all of WSC273.

Recycled problems make up about 80% of the training and validation sets combined.

Some data points in the WNLI test set belong, in sets of four, to Winograd

schemas with a key word; others do not. There are obvious spelling mistakes in the

test set; e.g., in various problems, the name “Hermione” is spelled both correctly and

as “Hermoine,” “tucked” is spelled both correctly and as “tucker,” and so on.

Historically, published models that perform well on WSC273 and report results

on both datasets perform even better on WNLI [47], making it an easier challenge.

We will discuss the performance of models on Winograd datasets in Section 2.8.4.

The updated SuperGLUE benchmark from 2019 also includes a Winograd dataset

in the form of natural language inference problems [102]. That dataset is called

“WSC,” but, to avoid ambiguity, we will refer to it as WNLI-2 instead.

The test set for WNLI-2 is just the test set for WNLI in a different format. On

the other hand, the training and validation sets for WNLI-2, numbering 554 and 104

respectively, differ from their counterparts in WNLI, but they each still contain a

mixture of new problems and problems recycled from WSC285. Between the training

and validation sets, WNLI-2 recycles about half of WSC285 and WSC273. Recycled

problems make up about 40% of the training and validation sets combined.

2.7.4 MaskedWiki and WikiCREM

In 2019, Kocijan et al. [44] observed that passing the Winograd Schema Challenge

remained “difficult. . . not only because of the commonsense reasoning challenge, but

also due to the small existing datasets making it difficult to train neural networks

directly on the task.” Kocijan et al. [43], from the same year, attributed the scarcity

of “large-scale training sets” to the cost of “manually labelling data.” Both papers
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then attempt to “address the lack of large training sets for pronoun disambiguation

by introducing a large [self-supervised] dataset that can be easily extended” [43].

For each dataset, the authors take sentences from English-language Wikipedia

articles and systematically convert them into fill-in-the-blank questions, or cloze tests,

inspired by pronoun disambiguation (Section 2.6.2). None of the problems include

the key word feature of a Winograd schema, and many of them cannot be recast as

pronoun disambiguation. The resulting datasets are MaskedWiki [44] and Wikipedia

Co-REferences Masked (WikiCREM) [43], each with about 2.4 million problems.

MaskedWiki takes a sentence containing multiple occurrences of the same noun,

according to an automatic part-of-speech tagger; replaces the second occurrence of

that noun with a special token; and for each other noun in the sentence, creates a

problem where that other noun is offered as a possible answer. For example [41]:

This time less damage was done, and the ⟨ ⟩ mainly occurred around

the lower right hand ring post. What is missing? (i) damage ✓ (ii) time
(2.21)

We can create another version of the problem with “post” as the incorrect answer.

It is unlikely that two versions of a given problem appear in the final dataset, as it

consists of 2.4 million problems selected at random from an initial set of 130 million.

By inspection of a random sample of 200 problems, the authors find that 8.5%

are “unsolvable,” as the correct answer “cannot be unambiguously selected with the

given context;” 45% are “hard,” as “the answer is not trivial to figure out;” 45.5% are

“easy,” as “the alternative sentence is grammatically incorrect or is very visibly an

inferior choice;” and 1% are “noise,” as “the example is a result of a parsing error.”

Additionally, based on a sample of 100 problems, Kocijan et al. [43] estimate

that only 7% of MaskedWiki problems can be recast as pronoun disambiguation by

replacing the special token with a pronoun: in the other cases, that method does not

produce “a natural-sounding and grammatically correct sentence.”

WikiCREM, on the other hand, takes a sentence with more than one “personal

name,” according to an automated tagger, such that one name is repeated; replaces a

later occurrence of the repeated name with a special token; and for each other name,
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creates a problem where that other name is a possible answer. For example [42]:

With Otto she had three sons, Peter I, Amadeus II, and ⟨ ⟩.

What is missing? (i) Otto ✓ (ii) Peter I (2.22)

In this spurious example, a son shares his father’s name.

Based on a random sample of 100 problems, the authors estimate that 18% are

“unsolvable,” compared to MaskedWiki’s 8.5% unsolvable and 1% noise. However,

they also find that 63% of the problems in WikiCREM can be recast as pronoun

disambiguation (as above), compared to 7% for MaskedWiki.

By inspection, we find numerous defects in both MaskedWiki and WikiCREM. For

example, in the former, unreadable byte sequences, which may be encoding artifacts,

appear in several problem statements and are even offered as correct answers. And in

the latter, several problem statements are sentence fragments ending in “U.” because

the common abbreviations “U.S.” and “U.S.A.” were parsed incorrectly.

2.7.5 WinoGrande

In 2019, and in light of recent progress on WSC273 by language models, Sakaguchi

et al. [83, 85] questioned whether such models had actually achieved common sense,

a topic we will discuss in Section 2.8.4. The authors argued that, in order to measure

“the true capabilities of machine commonsense,” we need larger datasets that are free

from “unwanted biases” or annotation artifacts (Section 2.5.3). Accordingly, they

introduced a crowdsourced dataset called WinoGrande, as well as a bias reduction

algorithm called AfLite, which they used to filter WinoGrande.

According to the authors, crowd workers wrote pairs of sentences “that meet the

requirements for WSC [pronoun disambiguation] problems.” Each pair of sentences

was then validated by a team of three crowd workers in “a rigorous process” to ensure

that “the two answer options are unambiguous” and “the question cannot be answered

simply by word association.” Each sentence was then “formatted as a fill-in-the-blank

problem,” much like MaskedWiki and WikiCREM (Section 2.7.4). The authors also

note that “unlike the original WSC [meaning WSC273] problems that were composed

by just a few linguistics experts, . . . the language used in WinoGrande reflects the

more diverse and noisy language used by crowds.” Finally, a bias reduction algorithm
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was applied to filter out problems that potentially exhibit annotation artifacts.

The end result is a filtered test set of 1767 problems, a filtered validation set of

1267 problems, a filtered training set of 9248 problems, and an unfiltered training

set of 40938 problems. Many of the problems in the filtered dataset do not occur

in pairs, their counterparts having been filtered out, but all the problems in the

unfiltered dataset occur in pairs. WinoGrande has become the standard WSC test

for models: Kocijan et al. [47] report that “the majority of the papers published after

the release of WinoGrande only evaluated their work on that dataset.”

Those authors also note that “many of the sentences in the filtered WinoGrande

corpus do not fit the criteria laid out in the WSC, and therefore are not actually

Winograd schemas” [47]: some problems are associative, some “contain the answer

directly in the sentence,” and some are “genuinely hard to understand.” Emami

et al. [26] further argue that the sentences in WinoGrande, like WSC273 and DPR

(Sections 2.7.1 and 2.7.2), display “predictable structure”: as usual, “instances are

often composed only of two clauses connected by a single causal discourse connective.”

For the bias reduction algorithm, Sakaguchi et al. [85] begin by finetuning a model,

specifically RoBERTa, on a sample of 6000 WinoGrande-type problems, which were

removed from the final dataset. The authors compute the embedding in the model

of each remaining WinoGrande problem: how the finetuned model represents that

input as a vector. Finally, they train simple logistic regression classifier models on

random subsets of embeddings; if the simple models are able to predict the correct

answer from RoBERTa’s embedding, the authors discard the problem. In this way,

the algorithm “generalizes human-detectable biases based on word occurrences to

machine-detectable biases based on embedding occurrences.”

As we stated at the end of Section 2.5.3, we will not pursue filtering here.

2.8 Language Models versus the Winograd Schema Challenge

This section expands on material introduced in Section 1.1.5.

2.8.1 A Simple Method: Stochastic Fill-in-the-Blank

We saw in Section 2.6.1 that coreference resolution problems in general, and Winograd

schemas in particular, can be recast as cloze tests (fill-in-the-blank questions), which
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is the premise of applying to Winograd datasets the following method.

In 2018, Trinh and Le [97, 98] presented “a simple method,” or a family of simple

methods, for implementing “commonsense reasoning,” and specifically for taking on

the Winograd Schema Challenge, with an arbitrary language model. The method is

very widely cited in the literature on WSC [1, 23, 25, 43, 44, 76, 81, 85, 95, 96, etc.].

We will refer to it as stochastic fill-in-the-blank (our own term).

How does the method work? Suppose we are given the trophy-suitcase problem

from (2.9b) or equivalently (2.12). We need to determine the more likely intended

referent of the pronoun “it” from among “the trophy” and “the suitcase.” We can

try substituting each answer option for the ambiguous pronoun:

The trophy doesn’t fit into the suitcase because the trophy is too small.

The trophy doesn’t fit into the suitcase because the suitcase is too small.
(2.23)

Those substitutions can be performed automatically, provided the schema marks the

location of the target pronoun in the problem statement.

Having made the substitutions, we use a language model to assign each of the

sentences from (2.23) a score representing its relative likelihood. Whichever candidate

yields a better-scoring sentence is taken to be the correct answer to the problem.

Evidently, stochastic fill-in-the-blank applies straightforwardly to any cloze test

and therefore to any other problem that can be recast as a cloze test.

The reason we call this a family of methods is that for any given language model,

there may be more than one way to assign scores to sentences: Trinh and Le [98]

describe “full scoring,” “normalized full scoring,” and “partial scoring.” We will

return to this point in Section 3.1 when we implement the method for three models.

There is one other important detail to mention, and it concerns the length of the

substituted answers: Trinh and Le [98] assume that each answer is a single word.

That is not always the case for Winograd datasets, including WSC273, as we will see

in Section 3.3.5. In the example above, the substituted answers, “the trophy” and

“the suitcase,” have two words each, and the authors are able to reduce them to one

word each by fixing “the,” which they have in common. However, this method does

not work in general, and even when it does work, a model may convert a single word

into multiple tokens (Section 2.2). We will address this point in Section 3.1 as well.

Elazar et al. [23] argue that the method of stochastic fill-in-the-blank is inherently
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“problematic” for a masked language model, such as RoBERTa (Section 2.2.2), if the

model converts the substituted answers into different numbers of tokens: for example,

if “trophy” is a single token but “suitcase” gets split into two. We will discuss their

argument and how we addressed that issue in Section 2.9.3.

In any case, the method of stochastic fill-in-the-blank essentially uses a language

model as an oracle or black box, and its accuracy depends on that model.

2.8.2 Stochastic Fill-in-the-Blank with the GPT Series

We described the GPT-2 model and its output in Section 2.2.1. Unlike masked

language modelling (e.g., RoBERTa, T5), which seems ideal for stochastic fill-in-the-

blank, the GPT series’ next token prediction must be adapted to that method.

Radford et al. [74] had already taken on a Winograd Schema Challenge dataset,

namely DPR (Section 2.7.2), with the first GPT model. The authors implement a

version of stochastic fill-in-the-blank, possibly independently of Trinh and Le [97, 98],

whose first draft was published four days earlier. Radford et al. [74] write:

We replace the definite pronoun with the two [candidates] and predict the

resolution [such] that the generative model assigns higher average token

log-probability to the rest of the sequence after the substitution.

Presumably, the authors implemented what Trinh and Le [98] call partial scoring:

restricting their attention to the part of the sequence that follows the substituted

tokens. After all, GPT models are trained to “predict the next word, given all of the

previous words” [75], not to predict a previous word given a later word.

In any case, Radford et al. [74] report an accuracy of (we estimate from Figure 2

in that paper) around 55% of the way from “a random guess baseline” (0.5) to “the

current state-of-the-art with a single model.” The state-of-the-art on DPR in 2018

appears to have been 0.764 [72], in which case GPT achieved roughly 0.65.

Moving on to GPT-2, Radford et al. [76] do cite Trinh and Le [98], and state

that “we follow their problem formulation.” The authors report accuracies “with

both full and partial scoring” on “the Winograd Schema Challenge,” a dataset said

to contain “273 examples,” which is presumably WSC273 (Section 2.7.1). Partial

scoring achieves an accuracy of 0.707, which was at the time a new state-of-the-art;

full scoring (we estimate from Figure 3 in that paper) achieves around 0.66.
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Radford et al. [76] do not describe any preprocessing of the WSC273 dataset, and

they give no details of their implementation of either full or partial scoring.

As for GPT-3, Brown et al. [6] use “the same ‘partial evaluation’ method” as

Radford et al. [76], which again is presumably partial scoring. They achieve an

accuracy of 0.883 on WSC273 with zero-shot learning, where “the model is only

given a natural language instruction describing the task.”

We will implement stochastic fill-in-the-blank with GPT-2 in Section 3.1.1.

2.8.3 T5 Pretraining and the Winograd Schema Challenge

We noted in Section 2.2.3 that T5 was trained in part on Winograd training sets,

namely DPR and WNLI-2 (Sections 2.7.2 and 2.7.3). Six problems from WSC273 are

originally from the DPR training set, and, more importantly, about half of WSC273

appears in the WNLI-2 training set, making up about 40% of that dataset.

For that reason, it may seem problematic to evaluate T5 on WSC273. But T5

was trained to solve Winograd problems, not as cloze tests with masked language

modelling (Section 2.2.3) and stochastic fill-in-the-blank (Section 2.8.1), but as text-

to-text problems with a special task prefix and the target pronoun highlighted [79]:

“wsc: The trophy doesn’t fit into the suitcase because ∗it∗ is too small.”

Label: “the suitcase”
(2.24)

It is an empirical question whether or to what extent T5 generalizes to stochastic

fill-in-the-blank, and we will address that in Chapter 4.

More generally, there may be other ways of taking on the Winograd Schema

Challenge with any given language model. However, our interest is in common-sense

reasoning by stochastic fill-in-the-blank, so we will not pursue this here.

2.8.4 Progress on the Winograd Schema Challenge

We noted in Section 2.3 that to pass the Winograd Schema Challenge is to achieve

near-human accuracy, and we saw in Section 2.5.1 (Table 2.2) that human accuracy

can be bounded below at 90%. Here, as usual in the literature, the accuracy on a

test simply refers to the share of problems that were answered correctly.
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Table 2.4 shows recent progress on WSC by language models applying the method

of stochastic fill-in-the-blank. Our focus is on the models discussed in Section 2.2,

the most popular datasets from Section 2.7, and notable papers we have cited.

For reference, we have also included Emami et al. [24]’s automated framework for

information retrieval (IR), which may be the first reported system with better than

random accuracy on WSC273. Where applicable, we report the date of the earliest

online draft. We indicate any reported finetuning of the model or enhancement of

the dataset; otherwise, the result uses a pretrained model and demonstration-free

learning. Refer to Table 2.1 for models and Table 2.3 for datasets. Since the test sets

for WNLI and WNLI-2 are the same up to formatting, we treat them as equivalent.

Date Source Model WSC273 WNLI WinoG.
2018-06 Emami et al. [24] IR 0.542 – –
2018-06 Trinh and Le [97, 98] custom 0.626 – –
2019-02 Radford et al. [76] GPT-2 0.707 – –
2019-04 Ruan et al. [81] BERTd 0.711 – –
2019-05 Kocijan et al. [44, 45] BERTd, m 0.725 0.747 –
2019-07 Liu et al. [57] RoBERTai – 0.890 –
2019-07 He et al. [30, 31] BERT-basedd 0.751 0.836 –
2019-08 Ye et al. [106] BERTd, n 0.755 0.836 –
2019-09 Lan et al. [49, 50] BERT-basedi – 0.918 –
2019-10 Raffel et al. [78, 79] T5d, ii – 0.945 –
2019-11 Sakaguchi et al. [84, 85] RoBERTaw 0.901 0.856 0.791
2020-03 Lin et al. [55] T5w – – 0.846
2020-05 Brown et al. [5, 6] GPT-3z 0.883 0.654 0.702
2020-10 Khashabi et al. [40] T5w, q – – 0.903
2021-03 Lourie et al. [58, 59] T5w, r – – 0.913

Table 2.4: Progress on the Winograd Schema Challenge. “WinoG.” is WinoGrande.
“WNLI” includes WNLI-2. Boldface indicates a new single-model state-of-the-art.
The finetuning datasets are: DPR (d), WNLI (i), WNLI-2 (ii), MaskedWiki (m),
WinoGrande (w), ConceptNet [90] (n), RAINBOW [58] (r), and a collection of
question-answering datasets [40] (q). GPT-3 applied zero-shot learning (z).

As for the three models we studied: at one time, GPT-2 was the state-of-the-art

on WSC273; at various times, RoBERTa was the state-of-the-art on WSC273 and on

WNLI, as well as the first reported accuracy on WinoGrande; T5 is the state-of-the-

art on both WNLI and WinoGrande, the latter having superseded WSC273.

By 2021, the accuracy of finetuned transformer-based models was sufficiently close
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to the untrained human baseline on the WSC273 and WinoGrande datasets that

Kocijan et al. [47] could report “the defeat of the Winograd Schema Challenge” itself.

Recall that our goal is to investigate the implications of that defeat (Section 1.2).

In Section 2.5.3, we argued that if a model achieves human-like accuracy on a

Winograd dataset that satisfies the adversarial constraint, there are two possibilities.

First, the model has achieved common sense, because it passes the Winograd Schema

Challenge. Second, the Winograd Schema Challenge is flawed, because the model

passes it without exhibiting common sense, which we might demonstrate using a

different evaluation protocol or a different type of challenge.

The consensus in the literature appears to be that WSC is flawed and that we

need new evaluation protocols and new challenges. For the rest of this section, we

will review some of the relevant literature in light of the timeline in Table 2.4.

When the state-of-the-art on WSC273 was only 0.637 by Trinh and Le [97] with an

ensemble of custom language models, Trichelair et al. [95] argued that “performing at

a state-of-the-art level” on that dataset “does not necessarily imply strong common-

sense reasoning” because models should also be consistent (Section 2.9.1).

While finetuned BERT-based models, including RoBERTa, were improving the

state-of-the-art to 0.751 on WSC273 and 0.890 on the natural language inference

test WNLI, McCoy et al. [62] argued that “targeted, challenging datasets. . . are

important for determining whether models,” including BERT, “are learning what

they are intended to learn” from NLI tasks or just “right for the wrong reasons.”

After achieving 0.901 accuracy on WSC273 by finetuning RoBERTa on their new

WinoGrande training set, and in light of that result, Sakaguchi et al. [85] argued that

“we are likely to be overestimating the true capabilities of machine commonsense”

across a variety of benchmarks, and that “we now need AI algorithms to compose

challenges that are hard enough for AI, which requires dynamic datasets that evolve

together with the evolving state-of-the-art” (emphasis in original).

After finetuning T5 on WinoGrande to achieve a state-of-the-art accuracy of 0.846

on that still very recent test set, Lin et al. [55] argued that recent progress on WSC

with RoBERTa and T5 “leaves us with two possible explanations: despite careful

controls, the WinoGrande challenge still contains incidental biases that these more

sophisticated models can exploit, or. . . we are genuinely making at least some progress
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in commonsense reasoning” (emphasis in original); and that the latter possibility

“challenges the notion that commonsense knowledge is (mostly) tacit.”

At around the same time, Kocijan et al. [46] argued that models that have passed

WSC “have not demonstrated either the ability to perform other natural language

understanding tasks, or common sense.” Therefore, “the commonsense reasoning and

the natural language understanding communities require new tests, more probing than

the Winograd Schema Challenge, but still easy to administer and evaluate.”

When Brown et al. [6] achieved 0.883 accuracy on WSC273 without finetuning,

the authors noted that the model’s training data had in fact been “contaminated” by

as many as 132 of 273 test questions, but that the model performs almost as well on

“a ‘clean’ version which removes all potentially leaked examples.” Still, any confirmed

leak of a Winograd test set into a language model’s training corpus is concerning.

While T5 models finetuned on WinoGrande and other data were improving the

state-of-the-art on WinoGrande to 0.913, so that WSC273, WNLI, and WinoGrande

were each above 90% accuracy, Elazar et al. [23] argued that “the apparent progress

on [WSC] may not necessarily reflect progress in commonsense reasoning.” They

identified three possible explanations for that progress that have nothing to do with

common sense, including “lax evaluation criteria,” associativity and artifacts in the

test sets, and “leakage” from supervised finetuning on specialized training sets.

Finally, in light of all the progress cited above, Kocijan et al. [47] argued that WSC

is not “an adequate test of commonsense reasoning abilities.” Although the challenge

“as originally formulated has largely been overcome,” common-sense knowledge and

reasoning “still stands as one of the major challenges facing AI.”

The fact that large language models with one hundred billion parameters

trained on half a trillion words can learn enough linguistic patterns that

they can disambiguate the pronouns in the “trophy” sentence does not

solve the larger problem reliably; it is not even guaranteed to be progress

toward reliably solving the larger problem.

In short, pretrained transformer-based language models have been able to defeat

WSC using what Levesque et al. [53] call “clever tricks involving word order or other

features of words or groups of words” gleaned from some “large corpus of English

text,” as opposed to the desired “world knowledge and default reasoning abilities.”
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We mentioned new evaluation protocols for WSC, a topic to which we now turn.

2.9 Evaluating Models on Winograd Datasets

We mentioned in Section 2.8.4 that for models taking on a Winograd dataset, the

basic performance metric is accuracy: quite simply, the share of problems answered

correctly. The corresponding evaluation protocol is simply to measure accuracy.

Different performance metrics and evaluation protocols have been proposed for the

Winograd Schema Challenge, not to mention other tests of common-sense knowledge

and reasoning and even more general tasks in natural language processing.

2.9.1 Switchable Consistency

In the context of NLP, Elazar et al. [22] define consistency as “the ability to make

consistent decisions in semantically equivalent contexts, reflecting a systematic ability

to generalize in the face of language variability.” Put another way, a model should

provide the same answer to questions that require substantially the same reasoning,

regardless of paraphrase or other inessential alteration. The type of consistency most

relevant to WSC is “making consistent assignments in coreference resolution.”

We will revisit the concept of consistency in reasoning in Section 2.9.5. For now,

Trichelair et al. [95] have proposed a new evaluation protocol for the Winograd Schema

Challenge based on a performance metric that we call switchable consistency.

A problem is said to be switchable if exchanging the candidates “does not obscure

the sentence or affect the rationale to make the resolution decision,” and moreover

“the correct answer changes as well.” This problem from WSC273 is switchable:

Paul tried to call George on the phone, but he wasn’t {successful}. (2.25)

That is, exchanging the candidates yields an equally valid new problem:

George tried to call Paul on the phone, but he wasn’t {successful}. (2.26)

Typically, problems where both candidates are personal names are switchable.

This problem from WSC273 is also switchable, despite having no names at all:

I poured water from the bottle into the cup until it was {empty}. (2.27)
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On the other hand, the trophy-suitcase problems (2.8) are not switchable: one

does not put suitcases into trophies, so this would obscure the sentence.

Using a team of three human annotators, Trichelair et al. [95] identify a total of

131 switchable problems in 65 schemas from WSC273 [94].

As for the performance metric, the authors define the consistency score of a model

on WSC273 as “the percentage of predictions” by the model “that change (correctly)

after candidates in the switchable subset are switched.” Again, by definition, the

answer to a switchable problem changes when the candidates are exchanged.

According to the new evaluation protocol, we measure a model’s accuracy on the

switchable subset of WSC273 both before and after transforming the problems by

switching the candidates, and also “compute the corresponding consistency score.”

Their protocol also measures a model’s accuracy on the associative subset of

WSC273 identified by the same authors (Section 2.7.1). They argue that associative

accuracy is informative because “a model can be tailored to use statistical information

about the entities themselves but perform poorly when this cannot be exploited.”

A switchable problem cannot be associative (Section 2.5.3); that is, a candidate

cannot be associated with the key word. Trichelair et al. [95] argue more generally

that their evaluation protocol can help account for spurious correlations:

A system that relies on the entity itself to make a prediction produces the

same answer when the candidates are switched, even though it should not.

Thus, a system that correctly resolves both the original and the switched

sentence can be said more certainly to reason about the full sentence,

instead of exploiting a statistical quirk of the participant entities.

The authors had a clear motivation to invent a new evaluation protocol for the

Winograd Schema Challenge: the accuracies of state-of-the-art models at the time

could be explained by chance, the null hypothesis. That is, one could argue that any

given reported performance was not statistically significant:

If one were to choose from a set of 10 random, binary classifiers, the best

based on its performance on [WSC273], there is more than a 1-in-3 chance

of scoring above 55% accuracy with this chosen classifier. As a result,

achieving above random accuracy. . . does not necessarily correspond to

capturing common sense; it could be the result of a lucky draw.
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Today, statistical significance is less of a concern: we saw in Section 2.8.4 that

language models have achieved accuracies over 90% on both WSC273 and the much

larger WinoGrande test set (Table 2.4). We will discuss statistical significance in the

context of evaluating model accuracy on Winograd datasets in Section 3.8.

Performance metrics based on various definitions of consistency remain a popular

tool for reevaluating the performance of high-accuracy models. Emami et al. [25]

appear to use the same definition as Trichelair et al. [95]: “We define the consistency

score as the percentage of predictions that change from the original instances to the

switched instances” (emphasis in original). It is easy to generalize the consistency

score to transformations other than switching: Abdou et al. [1] use a comparable

definition for consistency, which they call “stability,” under various transformations,

and Zhou et al. [109] also use a comparable definition for consistency under various

transformations, which they call “dual test samples,” including switching (“swap”).

Measuring associative accuracy remains somewhat popular as well [1, 23, 81].

We will discuss the associative and switchable subsets again in Sections 3.4.1

and 3.4.2 respectively, and consistency again in Sections 3.7.2 and 3.7.3.

2.9.2 Group Scoring Metrics

Abdou et al. [1] introduce an evaluation protocol that, in addition to using consistency

under various transformations (Section 2.9.1), also uses another performance metric:

what they call “pair accuracy” and we call schema accuracy. We may refer to the

usual accuracy metric as problem accuracy to distinguish it from schema accuracy.

Under schema accuracy, each Winograd schema, or pair of problems, “is treated

as a single instance.” That is, schema accuracy is “the number of pairs for which both

examples in the pair are correctly answered divided by the total number of pairs.”

Abdou et al. [1] argue that “this is an appropriate standard of evaluation” because,

as we know, “WSC examples are constructed as minimally contrastive pairs.”

It is reasonable to suppose that for an answerer which truly “understands,”

being able to link the concepts [of the first key word and first candidate]

in one of the resolutions is closely related and complementary to linking

the concepts [of the second key word and second candidate] in the other.



47

It follows that a “large gap between [schema] accuracy and [problem] accuracy raises

some doubts about the performance” of a model.

Ruan et al. [81] introduce another performance metric involving pairs of problems.

Like the consistency metric, it is based on switching but can easily be generalized to

other transformations. The authors define consistent accuracy as “the number of

correctly answered pairs (i.e., correctly answered WSC sentences both before and

after a switch) divided by the total number of switchable sentences.”

Elazar et al. [22] generalize consistent accuracy to multiple transformations: to

each problem, we associate a group consisting of its transformations; the consistent

accuracy of a model is the share of groups of problems such that the model solves

every problem in the group correctly. The authors note that this “combines the

requirements” of consistency and accuracy but is “much stricter” than either one.

Elazar et al. [23] generalize schema accuracy and consistent accuracy to what they

call “group scoring” and we call worst-member accuracy. Suppose we have a set of

groups of problems; for example, a schema defines a group of problems, and, as we

just explained, a transformation like switching does too. Further suppose we have a

way of assigning a score to each problem; for example, we can assign a problem a

score of 1 if a given model solves it and 0 otherwise. Under worst-member accuracy,

each group is assigned the score of its lowest-scoring problem.

The authors argue that their metric is not only stricter but also “more robust,”

and that it not only “lowers the probability of random [correct] predictions” but also

counters “the use of shallow heuristics.” Moreover, they claim, a single low-scoring

problem in a group “makes the success on other examples suspicious.” However, they

acknowledge that worst-member accuracy “does not solve the problem of artifacts”

in “cases where all examples in a group can be solved based on [the same] artifact.”

By group scoring we mean any performance metric based on groups of problems.

It can involve groups within a single dataset, across multiple datasets, or both within

and across datasets, assuming we conceive of transformations as mappings from one

dataset to another. Figure 2.2 illustrates the three types of group scoring.

Consistency is a group scoring metric across datasets. Schema accuracy is a group

scoring metric within a dataset. Consistent accuracy is a group scoring metric across

datasets. Worst-member accuracy, which generalizes schema accuracy and consistent
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Figure 2.2: Three types of group scoring metric.

accuracy, is a group scoring metric that can be of any type.

We will discuss group scoring again in Sections 3.7.1 and 3.7.2.

2.9.3 Inverted Schemas

As we mentioned in Section 2.8.1, Elazar et al. [23] argue that the method of stochastic

fill-in-the-blank is inherently “problematic” for a masked language model, such as

RoBERTa, if the model converts the answer options into token sequences of different

length: what we call disparate answer tokenization for short.

When the answer option token sequences for a problem are equal in length, we say

that the problem has equal-length answers. In Chapter 4, we will often distinguish

between results on the set of all problems from a given dataset, i.e., problems with

any-length answers, and results on the subset of problems with equal-length answers.

For example, in the trophy-suitcase schema (2.8), suppose “trophy” is represented

by a single token and “suitcase” by two tokens.6 Elazar et al. [23] argue:

In this scenario, the [masked language model] will see a single mask in

one case (and estimate the probability of trophy), but in the other case,

it will see two masks (assigning the suit and case probabilities). Since

the model has access to the number of tokens it has to complete, the

6This does not actually occur with GPT-2, RoBERTa, or T5: each admits the token “ suitcase.”
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comparison between these two options is flawed. [Emphasis in original.]

Note that the T5 model does not work in exactly this way: as we mentioned in

Section 2.2.3, unlike BERT-based models, where a masking token represents a single

token, for T5, a masking token stands for a span of one or more tokens.

Even for BERT-based models, it is not clear that disparate answer tokenization

is actually “problematic” [23] for stochastic fill-in-the-blank. Of course a model “has

access to” the lengths of the answer options in a multiple-choice problem. Even if

it is “primed towards a certain answer” by the lengths, it is an empirical question

whether or not this affects accuracy, which we will address in Chapter 4.

In any case, Elazar et al. [23] propose an extraordinary and drastic solution to

disparate answer tokenization. First, they consider restricting Winograd datasets to

problems where each answer option is represented by a single token, but note that

this would “result in filtering a great portion of the data.” So, they instead direct

their attention to the key word and fundamentally transform each schema as follows.

Consider the classic trophy-suitcase schema (2.8) and its problems (2.9), which

we reproduce here, with our annotations, for convenience:

a. The trophy doesn’t fit into the suitcase because it is too {large}.

What is too large? (i) the trophy ✓ (ii) the suitcase

b. The trophy doesn’t fit into the suitcase because it is too {small}.

What is too small? (i) the trophy (ii) the suitcase ✓

(2.28)

Elazar et al. [23] propose inverting the schema (our term) by exchanging the roles

of the key words and the candidates, so that the resulting problem statements differ

only by a candidate, and the answer options are the original key words. This process

produces two new cloze tests (fill-in-the-blank problems). In our example:

a. The trophy doesn’t fit into the suitcase because {the trophy} is

too ⟨ ⟩. What is missing? (i) large ✓ (ii) small

b. The trophy doesn’t fit into the suitcase because {the suitcase} is

too ⟨ ⟩. What is missing? (i) large (ii) small ✓

(2.29)

To emphasize the exchanged roles, we may refer to this presentation of a schema as

its solution by key, as opposed to the usual solution by answer.
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We offer a few general remarks on inversion. First, the resulting problems do not

belong to any Winograd schema: they are not pronoun disambiguation problems, nor

can they be recast as such in any obvious way. Although the candidates of (2.28)

have become the key words of (2.29), the key words of (2.28), which have become the

answers of (2.29), generally do not occur in the problem statement as candidates.

Second, inversion acts only on schemas, not on individual problems: there is no

way to meaningfully associate, e.g., (2.28a) with either (2.29a) or (2.29b). Indeed,

both problems from (2.29) include an answer, “small,” that is nowhere in (2.28a).

As for the argument in Elazar et al. [23], there are a few more points to note. First,

inversion does not completely alleviate the supposed problem of disparate answer

tokenization: the authors report that “occasionally” a key word “gets tokenized into

multiple tokens” anyway, and they have to discard those problems.

Second, it is not clear how inversion affects the accuracy of language models,

masked or otherwise. The authors perform some experiments and report “higher

performance” by RoBERTa on an inverted WSC273 after finetuning on an inverted

WinoGrande, compared to normal WSC273 after finetuning on normal WinoGrande.

Again, this is an empirical question, which we will address in Chapter 4.

Third, it is not clear why inversion should result in a more appropriate test of

common-sense reasoning. The authors note that the inverted pseudo-schema “is not

faithful to the original [Winograd schema], and tests a different mechanism.” They

do not report the consistency of their models with respect to inversion.

Fourth, the authors seem to imply that every Winograd schema is invertible in

this way. We will discuss this topic again in Section 3.4.3.

2.9.4 Control Baselines for Associativity

Recall, from Section 2.5.3, that Elazar et al. [23] propose, for any Winograd dataset,

two systematic modifications on which a model that is free from spurious correlations

is “likely to achieve random performance.” To the extent that a model performs

better than random guessing on these transformed control baselines, that model is

likely to exhibit spurious correlations from associativity and artifacts in the dataset.

We will restrict our attention to the first baseline, as it is the more precise and

generalizable of the two. For the no-candidate baseline, we remove the candidates
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from every problem. For example, the beloved trophy-suitcase schema (2.8) becomes

the following more-or-less unsolvable pseudo-schema with the same answers (sic):

Doesn’t fit into because it is too {large, small}.

That is, we expect such a pseudo-schema not to be solvable at a rate very much better

than chance by the intended method of common-sense knowledge and reasoning.

Granted, “doesn’t fit” and “too small” might suggest “the suitcase,” as it is more

container-like: perhaps this example is slightly associative after all.

On the other hand, the notoriously associative schema (2.11) becomes (sic):

Zoomed by because it was going so {fast, slow}.

Surely we would not be surprised if a language model achieved better than random

accuracy when the key word is “fast” (in which case the answer is “the race car”).

2.9.5 Transformations and Perturbations

We described transformations, i.e., mappings from one dataset to another, in each

of Sections 2.9.1 through 2.9.4. We can think of switching, inversion, and the no-

candidate baseline as different transformations of a Winograd dataset or a subset

thereof. The result of applying a transformation is a new dataset called a perturbation.

Switching and removing candidates act on individual problems; inversion, as we

have seen (Section 2.9.3), acts only on schemas. Figure 2.3 illustrates the concept.

Figure 2.3: Three transformations: switching, inversion, no candidates.

The discussion of consistency at the start of Section 2.9.1 referred to “semantically

equivalent contexts” [22] and questions that require substantially the same reasoning.
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We will say more about this topic in Section 3.5.1, but for now, we define the content

of a Winograd schema as the way in which a respondent is intended to solve it: some

area of general knowledge or form of default reasoning underlying its problems.

To the extent that a transformation preserves the content of schemas, we call

it content-preserving, and we call the perturbation substantially equivalent to the

original dataset. To the extent that a model is consistent, we should expect it to

achieve similar accuracies on the original dataset and any substantially equivalent

perturbation, as well as a high consistency score between them.

When Trichelair et al. [95] measure the switchable consistency of language models

on WSC273, the transformation is clearly designed to be content-preserving. When

Abdou et al. [1] test pretrained models for “robustness. . . to semantic, syntactic,

and lexical variation” on WSC285, each of their “variations and perturbations,” e.g.,

changing from past tense to present tense, is designed to be substantially equivalent

to the original dataset. When Zhou et al. [109] measure the consistency of pretrained

models on WS273, each of their “dual test samples” is designed to “test the same

commonsense knowledge” as the original dataset. When Elazar et al. [22] measure the

consistency of pretrained models on cloze tests of factual knowledge, their “meaning-

preserving alternations” are also designed to preserve the content of the cloze test.

Although Elazar et al. [23] note that the inverted perturbation “tests a different

mechanism,” we might reasonably expect a model with common-sense knowledge and

reasoning to exhibit high consistency with respect to inversion. On the other hand,

the no-candidate perturbation is surely not substantially equivalent, and we do not

expect high consistency on any dataset with appropriately low associativity.

Measuring the accuracy and consistency of a model under transformations such

as switching and inversion could be seen as a form of adversarial evaluation protocol.

Such protocols “usually focus on a specific trained model, starting from an example

that the model classifies correctly, and perturbing it in ways that, under the normative

definition of the task, should not affect the [prediction]” [56].

We will discuss transformations and perturbations again in Section 3.7.2, and

incorporate schema-based group scoring metrics into that discussion in Section 3.7.3.
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2.9.6 Finetuning and Evaluation

In the literature, pretrained language models that are applied to Winograd test sets,

with the notable exception of the GPT series [5, 74, 76], are typically finetuned on

Winograd training sets and possibly other data (e.g., Table 2.4 in Section 2.8.4).

Still, pretrained language models other than the GPT series have certainly been

applied without finetuning: as knowledge bases [73], for example.

The literature on consistency in language models sometimes focuses on pretrained

models [22, 109], but it also uses finetuning where appropriate [1, 23].

Elazar et al. [22] argue that “it is important to measure and improve consistency”

in pretrained models because much of what they learn “propagates” to every finetuned

model. Along the same lines, Li et al. [54] argue that it may be appropriate to

“focus on” pretrained models in part because “any deficiencies in their commonsense

understanding can. . . adversely manifest in downstream applications.”

To achieve maximal accuracy on a particular test set, finetuning may be the

best approach. To measure consistency, to detect and account for associativity and

artifacts in a dataset, or indeed to evaluate common-sense reasoning in pretrained

language models, it may not be. Moreover, whether or not finetuning is appropriate

in general, finetuning for WSC on specialized Winograd datasets is questionable.

Linzen [56] criticizes the dominant pretraining-finetuning-evaluating “paradigm”

in several ways, arguing in particular that “we should not fine-tune our models on the

evaluation benchmark,” and that test sets “should be derived [from] expert-created

controlled data sets,” not “samples from the same distribution as the fine-tuning set.”

Similarly, as we said in Section 2.8.4, McCoy et al. [62] argue that “targeted,

challenging datasets. . . are important for determining whether models are learning

what they are intended to learn” from NLI tasks, or just “right for the wrong reasons.”

Kocijan et al. [47] note that “there is no point in training an AI program to solve

Winograd schemas specifically,” as “the point of the Winograd Schema Challenge is to

test programs that claim to have solved the problem of pronoun reference resolution.”

As the title of this thesis indicates, we decided not to finetune the pretrained

language models under consideration. With that decision, our review of background

material and related work is complete, and we can move on to methodology.
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Methodology

In Chapter 2, we reviewed the necessary background material and related work on

pretrained language models and the Winograd Schema Challenge.

In this chapter, we explain how we approached our research problem and achieved

our main objectives, which we stated in Section 1.2. In short, our goal is to investigate

the implications of the defeat of the Winograd Schema Challenge. Have language

models achieved common sense, or is the challenge flawed in some way? How can we

tell? We identified two approaches: to apply to the models a new evaluation protocol

based in part on consistency under perturbations, and to apply the models to a new

test of common-sense reasoning based on a generalization of the Winograd schema.

In Section 3.1, we implement stochastic fill-in-the-blank for three language models

so we can evaluate their common-sense reasoning capabilities on various datasets. In

Section 3.2, we describe our preprocessing of WSC273. In Section 3.3, we explain

how we modified that dataset to create WSC266, whose schemas all have the same

standard format, which makes it easier to systematically perturb the dataset, and in

Section 3.4, we describe some important perturbations of the modified dataset.

In Section 3.5, we define adversarial schemas, which generalize Winograd schemas.

In Section 3.6, we describe a new test of common-sense reasoning based on adversarial

schemas, and in Section 3.7 we discuss evaluation protocols for adversarial schemas.

Finally, in Section 3.8, we end on a brief discussion of statistical significance in

the context of evaluating language models on adversarial and Winograd datasets.

3.1 Implementing Stochastic Fill-in-the-Blank

In Section 2.8.1, we described stochastic fill-in-the-blank, a family of methods for

implementing common-sense reasoning by language models. The idea is to use the

language model as an oracle or black box, but the details of the implementation

depend, in general, on how the model delivers its answers.

54
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In Section 2.2, we described the basic capabilities of three language models. Here,

we explain how we implemented stochastic fill-in-the-blank for each of them.

3.1.1 Implementation by GPT-2

We described the GPT-2 model from the standpoint of a user in Section 2.2.1, and

the literature on its relevant language-modelling capabilities in Section 2.8.2.

Suppose we are given the problem from (2.9b) = (2.12). Our goal is to assign, to

each of the following sentences, a score representing its relative likelihood:

The trophy doesn’t fit into the suitcase because the trophy is too small.

The trophy doesn’t fit into the suitcase because the suitcase is too small.
(3.1)

Note that our annotations, e.g., italics, are never part of the model’s input.

Consider the first sentence from (3.1). GPT-2 converts the string into a sequence

of 15 tokens, where the substituted answer, “the trophy,” appears at indices 10–11:

σ = σ1σ2 · · · (σ10σ11)σ12σ13σ14σ15

= t464t16383 · · · (t262t16383)t318t1165t1402t13

= ⟨The, trophy, . . . , the, trophy, is, too, small, .⟩

(3.2)

Note that “The” (capitalized) and “ the” (with a space) are tokenized differently.

From the output of the model on σ, specifically the table of logits it provides, we

can calculate (as in Section 2.2.1) the following conditional probability1:

ppartial = P(σ12 · · · σ15 = t318 · · · t13 | σ1 · · · σ11 = t464 · · · t16383). (3.3)

That implements partial scoring [98]. We can also calculate

p2+ = P(σ2 · · · σ15 = t16383 · · · t13 | σ1 = t464). (3.4)

If we had p1 = P(σ1 = t464), then multiplying that by p2+ would yield

pfull = p1p2+, (3.5)

the probability of the complete sentence, as required by full scoring [98]. But the

probability of any single token occurring on its own is not provided by GPT-2.

1Once again, strictly speaking, no such probability is defined.
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Of course, we only really need to determine which scores higher, x or y, and both

sentences start with the same token: multiplying two conditional probabilities of the

form (3.4) by the same positive number does not change which is higher.

On the other hand, it is possible, in general, for the first word in a problem

statement to be the target pronoun, in which case the sentences to compare might

differ in the first index. Then we would need the probability of the first token to apply

full scoring. We also need that probability to apply normalized full scoring [98].

The obvious solution is to estimate the probability of each token using that token’s

frequency in the original training dataset for GPT-2, which is called WebText and

consists of about eight million “documents” [76] (Section 2.2.1). However, WebText

has never been released in its entirety, which is why, for example, Liu et al. [57] had to

train their model, RoBERTa, on “an open-source recreation of the WebText corpus,”

among other training datasets (Section 2.2.2). Fortunately, Radford et al. [77] have

released a large subset of WebText consisting of 250 thousand documents.

We calculated the frequency of each token in the subset, after appending to each

document the model’s special end-of-text token, t50256. That token was reportedly

appended in the same way during GPT-2’s original training [2].

With an estimate of the probability of each token, we are able to apply, not only

partial scoring, but full scoring, even when the token sequences to be compared differ

in the first index, and normalized full scoring, about which we have more to say.

For normalized full scoring, we are supposed to divide the full score (3.5) by the

frequency, or equivalently the probability, of the substituted “word” [98]. That is, as

we explained in Section 2.8.1, Trinh and Le [98] assume that each answer is a single

word, which is not always the case for WSC273 (Section 3.3.5). The authors are able

to reduce “the trophy” and “the suitcase” to one word each by fixing the word “the,”

which they have in common, but this method does not work in general, and even

when it does work, GPT-2 may convert a single word into multiple tokens.

To continue our example, “the trophy” appears at indices 10–11 as two tokens:

t262t16383. To implement normalized full scoring, we divide the full score by an estimate

of the probability of the entire answer outside the context of the problem:

pnorm = P(σ2 = t16383 | σ1 = t262) · P(σ1 = t262), (3.6)

where, as above, the conditional probability is provided by the model and the other
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factor is estimated using the frequency of t262. That is, we define

pfull norm = pfull/pnorm = p1p2+/pnorm. (3.7)

This method is obvious, but we have not seen it described in the literature.

Recall p2+ (3.4), which is conditional on σ1. The model’s loss on σ is given by

vloss = − log p2+/(|σ| − 1) for |σ| > 1, (3.8)

which is “the average negative log probability per canonical prediction unit” [76]. A

lower-scoring sequence is preferred by the model as more likely or plausible.

For the sake of consistency, and without affecting the results of stochastic fill-in-

the-blank, we define the partial score of σ, not as ppartial (3.3), but as

vpartial = − log ppartial. (3.9)

We define the full score of σ, not as pfull (3.5), but as

vfull = − log pfull = −(log p1 + log p2+). (3.10)

We define the normalized full score of σ, not as pfull norm (3.7), but as

vfull norm = − log pfull norm = −(log pfull − log pnorm). (3.11)

In all cases, a lower-scoring sequence is preferred by the model.

We can extend the scoring methods from Trinh and Le [98] in a few ways. First,

inspired by the loss function (3.8), which is a mean, we can divide the full score by

the number of tokens it predicts, namely |σ|, to get the mean full score,

vmean full = vfull/|σ|. (3.12)

Next, let ˆ︁σ denote the suffix of σ after the last token of the substituted answer. We

can divide the partial score by the number of tokens it predicts, namely |ˆ︁σ|, to get

the mean partial score,

vmean partial = vpartial/|ˆ︁σ|. (3.13)

Finally, and somewhat questionably, let ˜︁σ denote the subsequence of σ that excludes

the substituted answer. We can divide the normalized full score by |˜︁σ|, calling that

the number of token it predicts, to get the mean normalized full score,

vmean full norm = vfull norm/|˜︁σ|. (3.14)
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That is, we consider only the non-answer tokens to be predicted under this scoring

method, since we normalized away all the answer tokens.

If we choose not to estimate the probability p1 of the first token, we get, instead

of the full score, the all-but-first score,

vall but first = − log p2+ for |σ| > 1. (3.15)

In light of this, we can refer to the loss (3.8) as the mean all-but-first score.

Unless the problem statement happens to start with the target pronoun, full

scoring and all-but-first scoring will favour the same answer option, and mean full

scoring and loss or mean all-but-first scoring will favour the same answer option.

Trinh and Le [98] found that partial scoring “outperforms” both full scoring and

normalized full scoring “by a large margin” for their custom language model on

WSC273. Similarly, Radford et al. [76] found that partial scoring is more accurate

than full scoring for GPT-2 on WSC273. We would like to replicate their results, but

we also have reason to believe that partial scoring is inappropriate for some Winograd

schemas. Consider the following schema from WSC273:

The path to the lake was blocked, so we couldn’t {use, reach} it. (3.16)

There is only one token after the substituted answer: a period, t13. Therefore, partial

scoring would ask the model to estimate the likelihood of a period, conditional on the

rest of the sentence. This phenomenon occurs in 20 out of 273 problems.

To address this potential issue, in WSC273 or any other dataset, we propose

what we call smart scoring, under which we switch from partial to full scoring if the

target pronoun occurs toward the end of the problem statement, which can be verified

algorithmically. To be precise, under smart scoring at limit n for some n ≥ 0, we

apply partial scoring unless the target pronoun is followed by at most n tokens, in

which case we apply full scoring. Every problem statement ends in punctuation, so a

limit of 0 is irrelevant. The canonical example is smart scoring at a limit of 1.

Since we have mean versions of both full and partial scoring, (3.12) and (3.13)

respectively, we also have a notion of mean smart scoring at any limit.

To sum up, with GPT-2, we can implement full scoring, normalized full scoring,

partial scoring, all-but-first scoring, and smart scoring at any limit, as well as the

means of all of the above, with the model’s loss being mean all-but-first scoring.
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Of course, it is an empirical question whether or not any of these innovations are

worthwhile, and we will address that in Chapter 4.

3.1.2 Implementation by RoBERTa

We described the RoBERTa model from the standpoint of a user in Section 2.2.2.

We mentioned in Section 2.8.2 that RoBERTa’s pretraining objective, masked

language modelling, seems ideal for stochastic fill-in-the-blank, and we can use loss-

based scoring without modification. Recall, though, that a masking token always

represents one token to predict: as Elazar et al. [23] note, and as we discussed in

Section 2.9.3, “the model has access to the number of tokens it has to complete.”

Suppose we are again given the problem from (2.9b) = (2.12). Consider the first

sentence from (3.1). RoBERTa can tokenize the following string:

The trophy doesn’t fit into the suitcase because [mask] [mask] is too small. (3.17)

Here, we have replaced the target pronoun “ it,” which is represented by one token,

by as many copies of the masking token as there are tokens in “ the trophy,” which

happens to be two. The model will assign a score to “ the trophy,” or rather to its

sequence of tokens, as the predicted label for the input σ.

To be precise, if i1, i2 are the positions of the masking tokens in σ1 and “ the

trophy” tokenizes as τ1τ2, then for k = 1, 2, we get the probability p◦k of observing τk

in position ik given all the other tokens from σ, including one other masking token.

The loss reported by the model is given by the negative mean

− (log p◦1 + log p◦2)/2. (3.18)

Similarly, the model will tokenize a version y of the problem statement with enough

masking tokens to accommodate “ the suitcase,” which happens to be two again.

Then we can compare the scores assigned by the model to the answers.

In general, we have a sequence σ representing a masked problem statement, where

the masking token occurs at indices i1 < · · · < iN . We also have a sequence τ

representing an answer, where |τ | = N . For k = 1, . . . , N , we get the probability p◦k

of observing τk in position ik given σi, i ̸= ik. The model’s loss on σ is given by

vloss = −(log p◦1 + · · · + log p◦N)/N. (3.19)
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Again, a lower-scoring sequence is preferred by the model.

In imitation of the various scoring methods for GPT-2 (Section 3.1.1), which have

mean and non-mean versions, we define the multi-mask score of σ as

vmulti-mask = −(log p◦1 + · · · + log p◦N). (3.20)

In light of this, we can refer to the loss (3.19) as the mean multi-mask score.

Other scoring methods effectively repurpose a masked language model to assign

probabilities to sentences in a way that is similar to GPT-2 but bidirectional. First,

Salazar et al. [86, 87] propose “pseudo-log-likelihood scores.” Unfortunately, that

term actually describes every scoring method in this thesis, for every model, so we

will use the term single-mask statement score instead, or statement score for short.

Take the first sentence from (3.1) as written, without masking:

The trophy doesn’t fit into the suitcase because the trophy is too small. (3.21)

Suppose it tokenizes as σ = σ1 · · · σn. For i = 1, . . . , n, we replace σi by a masking

token and have the model provide the probability p∗i of observing σi in position i

given every other σj, j ̸= i. The (single-mask) statement score is given by

vstatement = −(log p∗1 + · · · + log p∗n). (3.22)

Second, Zhou et al. [108, 109], apparently independently of Salazar et al. [86, 87],

propose an unnamed “score” that we will call the mean statement score:

vmean statement = vstatement/n. (3.23)

We mentioned in Section 2.2.2 that, before tokenizing any string, RoBERTa places

it between special beginning-of-string and end-of-string tokens. The special tokens do

not contribute to the statement score, since the model assigned them log-probability

zero (probability one) in every experiment we ran. However, they do contribute to

the total number of tokens n, which affects mean statement scoring. Discounting the

special tokens did not seem to improve accuracy, so we kept them in.

Statement scoring requires as many model evaluations per sentence as there are

tokens in the sentence. We propose a less expensive version of the statement score,

which we will call the single-mask answer score, or answer score for short.
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Again, suppose (3.21) tokenizes as σ = σ1 · · · σn. Suppose the answer option, in

this case “the trophy,” occurs at indices i1, . . . , iN . For k = 1, . . . , N , we replace σik

by a masking token and have the model provide the probability p∗ik of observing σik

in position ik given σj, j ̸= ik. The (single-mask) answer score is given by

vmasked answer = −(log p∗i1 + · · · + log p∗iN ). (3.24)

That is, we only mask answer tokens, summing over i1, . . . , iN instead of 1, . . . , n.

Of course, the mean answer score is given by

vmean masked answer = vmasked answer/N. (3.25)

To sum up, with RoBERTa, we can implement multi-mask scoring, (single-mask)

statement scoring, and (single-mask) answer scoring, as well as the means of all of

the above, with the model’s loss being mean multi-mask scoring.

Again, it is an empirical question whether or not any of these scoring methods are

accurate or even appropriate, and we will address that in Chapter 4.

3.1.3 Implementation by T5

We described the T5 model from the standpoint of a user in Section 2.2.3.

Again, T5’s pretraining objective, masked language modelling, seems ideal for

stochastic fill-in-the-blank, and we can use loss-based scoring without modification.

For T5, unlike RoBERTa, a masking token stands for a span of one or more tokens.

Once again, take the problem from (2.9b) = (2.12) and the sentences from (3.1).

To prepare the model’s input, we replace the target pronoun by a single masking

token. We can also, optionally, prepend a special task prefix for Winograd problems.

That is, we tokenize, say as σ = σ1 · · · σn, either s or “wsc: ” + s, where

s = “The trophy doesn’t fit into the suitcase because [mask1] is too small.” (3.26)

To prepare the model’s labels, we tokenize “[mask1] the trophy [mask2]” and

“[mask1] the suitcase [mask2].” That is, each answer gets sandwiched between a pair

of distinct masking tokens. Consider the tokenized first label, say τ = τ1 · · · τm.

For j = 1, . . . ,m, we get the probability p◦j of producing τj in position j given σ

as input. We mentioned in Section 2.2.3 that the two masking tokens are predicted
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as well. Also, before tokenizing any string, T5 appends a special end-of-string token.

Unlike with RoBERTa, the end-of-string token does contribute to the masked score:

T5 typically assigns it a low probability, at least in the experiments we ran.

The loss reported by the model for σ and τ is given by the negative mean

vloss = −(log p◦1 + · · · + log p◦m)/m. (3.27)

As always, a lower-scoring sequence is preferred by the model.

In imitation of the scoring methods for GPT-2 (Section 3.1.1) and RoBERTa

(Section 3.1.2), we define the masked score as

vmasked = −(log p◦1 + · · · + log p◦m). (3.28)

In light of this, we can refer to the loss (3.27) as the mean masked score.

Masked scoring admits other boolean parameters apart from taking or not taking

the mean over all predicted tokens. First, as stated above, we can apply or not apply a

task prefix. Second, we can count or not count the end-of-string token (EOS) toward

the sum of log probabilities and the number m of predicted tokens. That is,

vmasked(mean/no mean, task/no task, EOS/no EOS) (3.29)

is a parametrized masked score, with vloss = vmasked(mean, ·, EOS).

We include the task prefix parameter because, of course, the model was trained

with one. We include the end-of-string parameter because T5 assigns that token

such a low probability in our experiments that it can profoundly affect the loss. For

example, if EOS dominates the sum (3.28) and we take the mean, then a longer

sequence will always be preferred: dividing by a larger number yields a lower score.

Once again, we will evaluate masked scoring parameters empirically in Chapter 4.

3.2 Preprocessing WSC273

We have described the manually constructed test set WSC273 (Section 2.7.1) as the

most important Winograd dataset for our purposes. Certainly it is the most studied

Winograd dataset in the literature, despite the recent dominance of the WinoGrande

test set among reported results (e.g., Table 2.4 in Section 2.8.4). Indeed, WSC273 is

often referred to simply as “the Winograd Schema Challenge.”
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Granted, WSC273 is flawed, but so is every other Winograd dataset (Section 2.7).

At least WSC273 is amenable to manual review due to its small size, and we will carry

out such a review in detail in Section 3.3. To put it simply, if the leading datasets

are WSC273 and WinoGrande, we choose the manually constructed test set over the

crowdsourced one for the former’s manageable size and better-written problems.

Our intention was to use WSC273 exactly as it appears in the original XML-

formatted file published by Davis [14]. However, in order to properly apply the

method of stochastic fill-in-the-blank as described in Section 3.1, the dataset does

require some preprocessing, which could affect accuracy. Typically, papers that report

results on WSC273 do not explain whether or how the dataset was preprocessed, but

our own methods are given here for completeness. In the following, we will identify

any problem from WSC273 by its index, from 1 to 273, in the original file.

Table 3.1 summarizes our preprocessing of WSC273 that can affect tokenization

and therefore stochastic fill-in-the-blank, with discussion to follow.

Type of Preprocessing No. Schemas No. Problems
remove exterior whitespace 136 273

detect punctuation after pronoun 9 18
remove interior line breaks 32 64

remove interior double spaces 2 4
make answers lowercase 50 100
make answers possessive 13 26

Table 3.1: Preprocessing the WSC273 dataset of 136 schemas and 273 problems.

Each problem includes the following strings: the problem statement before the

target pronoun, s0, and after the target pronoun, s1, and the target pronoun itself,

p. The problem also includes answer strings sA and sB, as well as the identity of the

correct answer. For example, s0 lies between a pair of special XML tags.

By whitespace we mean spaces and line breaks. The problems use whitespace very

inconsistently. For example, s0 or s1 may start or end with a line break, a space, both,

or neither; and p may start or end with one space, two spaces, or no spaces, and its

whitespace is not always consistent with the whitespace around s0 and s1.

Since whitespace can affect the tokenizers we used (Section 2.2), we have removed

the exterior whitespace from every string. Of course, if we want to reconstruct the

problem statement, we need to separate the pronoun p from s0 and s1 with spaces,
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except in some problems (e.g., 41), where s2 starts with punctuation, e.g., a period.

Not counting exterior whitespace, some problems (e.g., 121) contain line breaks,

and some (e.g., 115) contain double spaces. We have removed all of these.

The problems capitalize inconsistently, which could affect the tokenizers we used.

Based on the position of the pronoun, e.g., following a period, some problems (e.g.,

53) should capitalize their answers so that they can be properly substituted for the

pronoun, and those problems do so. However, other problems (e.g., 1) incorrectly

capitalize one or both of their answers, which should be made lowercase.

Finally, some problems (e.g., 209) have a possessive target pronoun, specifically

“his” or “her.” Of course, the latter is not necessarily possessive in general, but it

happens to always be possessive in WSC273. For those problems, the answers should

also be possessive (e.g., “Emma’s” rather than “Emma” in 209) so that they can be

properly substituted for the pronoun. None of those answers are in that form, and

we change them accordingly; of course, this will affect how an answer is tokenized.

3.3 Creating WSC266 from WSC273

The preprocessing described in Section 3.2 is enough to properly apply stochastic

fill-in-the-blank to WSC273. However, the schemas still do not all have exactly the

same format, which makes it difficult to systematically perturb the dataset.

For example, we know that a Winograd dataset, by definition, consists of a number

of schemas and twice as many multiple-choice problems: every schema has two key

words and one problem for each. WSC273 consists of 136 schemas and 273 problems.

Note that 273 is not divisible by two. Indeed, one schema, or quasi-schema, has three

problems. This affects the definitions of schema accuracy and other group scoring

metrics (Section 2.9.2) and makes it impossible to invert (Section 2.9.3).

That is, for various reasons, not all the problems in WSC273 fall into Winograd

schemas as defined by Levesque et al. [53], though we call them schemas anyway.

We checked every problem in WSC273, making changes where appropriate: the

result is a dataset that we call WSC266, consisting of 133 schemas—true ones—and

266 problems. Removing three schemas and one additional problem accounts for the

seven fewer problems. Table 3.2 summarizes the issues we identified, with sections to

follow. We will identify any problem from WSC266 by its index in WSC273.



65

Issue with Schema Section No. Schemas Change
extra problems 3.3.1 1 remove problem

candidates in key words 3.3.2 2 remove schema
missing candidates 3.3.3 1 remove schema
nested candidates 3.3.4 2 insert candidate

key words are not words 3.3.5 25 none (allow)
answer appearances 3.3.6 59 none (allow)

missing answer articles 3.3.7 2 change answer
spelling and grammar 3.3.8 6 correct problem

Table 3.2: Issues with WSC273 and changes made in WSC266.

First, though, it is worth noting that the original XML file for WSC273 does not

explicitly identify schemas, key words, or candidates [14]. Fortunately, the dataset is

small, which makes it amenable to manual review and analysis. Otherwise, to identify

schemas, we would have to systematically compare sets of consecutive problems for

similarities; to identify key words, we would have to systematically compare problem

pairs from each schema for disparities; and to identify candidates, we would have to

systematically perform coreference resolution (as discussed in Section 3.3.6).

For convenience, in the process of making WSC266, we identified the schemas and

all the relevant elements of each problem, and we stored all of that information in a

database management system we built for Winograd schemas.

3.3.1 Extra Problems

One schema has three problem statements [23]:

253. George got free tickets to the play, but he gave them to Eric,

{even though} he was particularly eager to see it.

254. George got free tickets to the play, but he gave them to Eric,

{because} he was {particularly eager}∗ to see it.

255. George got free tickets to the play, but he gave them to Eric,

because he was {not particularly eager}∗ to see it.

(3.30)

If we intend to follow the original concept of the Winograd Schema Challenge [53],

schemas with more than two problems are inappropriate: there are now two pairs of

key words, denoted above by { } and { }∗, and two out of three problems have the
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same correct answer. That is, this seemingly minor issue completely changes the

structure of a Winograd schema. We removed problem 255, leaving the other two.

3.3.2 Candidates in Key Words

In two schemas, the key word is or contains one of the candidates. As a result, the

multiple-choice answer options differ between problems. For example:

266. I put {the butterfly wing} on the table and it broke.

267. I put {the heavy book} on the table and it broke.
(3.31)

In the first problem, the candidates and answers are “the butterfly wing” and “the

table,” whereas in the second they are “the heavy book” and “the table.”

Any such schema is disallowed by the definition. Moreover, the different answer

options make the problems less comparable: is the butterfly wing as much more

breakable by the table (compared to the reverse) as the table is by the book?

This phenomenon occurs twice in WSC273: the other pair of problems is 173,

174 [1]. For the sake of simplicity and consistency, we removed both schemas.

3.3.3 Missing Candidates

In one schema, one of the answers does not appear in the sentence, syntactically

speaking. The answers to problems 247 and 248 are given as “Pam’s parents” and

“Pam and Paul,” but the latter noun phrase nowhere to be found:

Pam’s parents came home and found her having sex with her

boyfriend, Paul. They were {furious, embarrassed} about it.
(3.32)

This oddity can make it more difficult to systematically perturb schemas; e.g., by

changing the candidates. For the sake of simplicity, we removed the schema.

Granted, we could have rewritten the problems so they include the phrase “Pam

and Paul,” but it is not totally clear that the new problems would be substantially

equivalent to the old ones: as written, the missing candidate can be assembled from

other words in the problem, which might be part of the problem-solving process.
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3.3.4 Nested Candidates

In problems 51 and 52, one candidate appears only inside the other candidate:

Joe’s uncle can still beat him at tennis, even though he is 30 years

{younger, older}.
(3.33)

Again, this oddity can make it more difficult to systematically perturb schemas. Here,

though, an easy fix exists: we replaced “him” with “Joe,” and made that the second

candidate. The new problems appear to be substantially equivalent to the old ones.

Problems 209 and 210 also feature a nested candidate:

Emma’s mother had died long ago, and her {education had been

managed, place had been taken} by an excellent woman as governess.
(3.34)

We replaced “died” with “left Emma,” and made that occurrence of “Emma” the

second candidate. Again, the new problems appear to be substantially equivalent.

3.3.5 Key Words Are Not Words

Since, as we mentioned above, WSC273 does not explicitly identify key words, we

have to compare sets of two or three consecutive similar problems and figure out how

they differ. They do not always differ by one word. For example:

203. John hired { } Bill to take care of him.

204. John hired {himself out to} Bill to take care of him.
(3.35)

We have annotated the minimal “key words” by which the problem statements differ:

one of them is no word at all, an empty list; and the other is a list of three words. Of

course, we could add “hired” on the left to both of them, in which case they are no

longer minimal, one of them is a word, and the other is a list of four words.

Suppose we always choose the minimal word lists by which problem statements in

the same schema differ. In twenty cases, at least one of those “key words” is a list of

two or more words; in four cases, it is a list of three or more; in one case (209, 210),

it is a list of four. In seven cases, one of the “key words” is an empty list. As for the

intersection of those sets, in two cases, including (3.30) above, we have a list of two

or more words as well as an empty list (the other case being 264, 265).
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We allowed key phrases, by which we mean lists of words and punctuation symbols

with any number of elements, by which two Winograd problem statements differ.

As minor as this issue may seem, allowing key phrases changes the definition of

a Winograd schema from Section 2.4. For the record, Levesque et al. [53] typically

refer to “a word” or “the special word” (singular), although they do once mention

“sentences that differ only in one or two words,” and some of the examples in their

appendix use lists of as many as three words. Trinh and Le [98] refer to “a special

word” or “the keyword,” and they even introduce a method to detect its (single)

position. Trichelair et al. [95] refer to the position of “the ‘special’ word” or “the

hinge word.” Elazar et al. [23] refer to “a special word,” “the word that is different

between the twin sentences,” although they concede that “occasionally, there is more

than one special word.” On the other hand, Abdou et al. [1] refer to “the special

discriminatory segment,” which is a more accurate description.

As we pointed out in Section 2.5.3, the key word feature is a major ingredient

in the Winograd schema as a test of common-sense reasoning. Levesque et al. [53]

argue that “contexts where [one key word] can appear are statistically quite similar

to those where [the other key word] can appear.” That statement arguably becomes

less plausible, in general, when we replace “key word” with “key phrase”: there are

just a lot of ways to try to fit a given list of words into different contexts. This is

especially true because a Winograd schema does not require its key phrases to be

phrases of the same type, or indeed phrases (i.e., grammatical units) at all.

In (3.35), for example, the minimal key phrases are (a) nothing, and (b) {himself

out to}. The latter is a reflexive direct object for a verb, plus an adverb modifying

the verb, plus a preposition missing its own direct object, which, if it were present,

would be the verb’s indirect object: that is a fairly specific puzzle piece to fit into

a context. On the other hand, {hired} and {hired himself out to} are much more

similar phrases—but we have no precise criterion for extending key phrases.

3.3.6 Answer Appearances

In 59 schemas, at least one answer, representing a candidate, does not exactly match

the corresponding candidate that actually appears in the problem statement as a

noun phrase, even if we ignore differences in capitalization. For example, the actual
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trophy-suitcase schema from WSC273, unlike (2.8), modifies the suitcase (3):

The trophy doesn’t fit into the brown suitcase because it is too {large}.

Answers: the trophy, the suitcase∗
(3.36)

The modifier “brown” does not appear in the second answer: we need to recognize

that “the suitcase” refers to “the brown suitcase,” which is not particularly difficult

for English-speaking respondents. We also need to locate an implicit drawing (27):

Sam’s drawing was hung just above Tina’s and it did look much better

with another one {below} it. Answers: Sam’s drawing, Tina’s drawing∗
(3.37)

Here, the present participle “juggling” becomes the noun “juggler” (109):

John was jogging through the park when he saw a man juggling

watermelons. He was very {impressed}. Answers: John, the juggler∗
(3.38)

Sometimes, indefinite articles become definite articles, as is common in English (61):

There is a pillar between me and the stage, and I can’t see {around} it.

Answers: the pillar∗, the stage
(3.39)

We can accept that the answers do not always exactly match their appearance

in the problem statement. In general, this adds to a problem’s difficulty, because it

may not be trivial to match an answer to a candidate. Indeed, the task in question

is coreference resolution (Section 2.6.1), which generalizes pronoun disambiguation.

The answer-candidate coreference resolution problems happen to be very easy,

in almost every case, for a human respondent equipped with common sense and a

reasonable degree of English fluency, but they cannot strictly be called trivial in the

way that matching “the trophy” to “The trophy” (capitalized) is trivial.

We will return to this point briefly in Section 3.5.1.

3.3.7 Missing Answer Articles

We did change the answers of two problem pairs: specifically, by adding articles. The

answers to problems 258 and 259 are given as “lemons” and “lemon trees,” but they

should be “the lemons” and “the lemon trees”:

I tried to paint a picture of an orchard, with lemons in the lemon trees,

but they came out looking more like {light bulbs, telephone poles}.
(3.40)
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The same is true of the answer “coats” in problems 147 and 148.

3.3.8 Spelling and Grammar Mistakes

The word “received” is misspelled in problem 5, where it is the key word. The term

“Game Boy” is misspelled in problems 229 and 230. The word “Kamchatka,” a

Russian peninsula, is misspelled in problems 171 and 172, where it is a candidate,

though it is spelled correctly as an answer option [1]. We corrected all of the above.

Three problems (217, 243, 245) are missing final punctuation; in each case, the

other problem in the schema ends in a period. We added a period to each of those

problem statements to make them grammatical.

3.4 Subsets and Perturbations of WSC266

In Section 2.9.5, we mentioned several subsets and perturbations of WSC273. All of

them, and a few others, apply at least as well to the standardized WSC266. And

our database management system for that standard format (Section 3.3) makes it

significantly easier to systematically perturb schemas.

3.4.1 Associative Subset

We mentioned in Section 2.7.1 that Trichelair et al. [95] have identified 37 associative

problems in 26 schemas from WSC273 [93].

We consider a schema to be associative if either of its problems is associative.

One of the associative schemas (266, 267) was removed from WSC266 because the

key phrase contains one of the candidates (Section 3.3.2). That leaves WSC266 with

25 human-detected associative schemas comprising 50 problems.

When we present our results in Chapter 4, we will report separate values for the

associative and non-associative subsets of WSC266 where appropriate, despite the

small size of the former, which will affect statistical significance (Section 3.8).

3.4.2 Switchable Subset

In Section 2.9.1, we discussed Trichelair et al. [95]’s switchable subset of WSC273 and

the corresponding perturbation: 65 schemas comprising 131 problems [94].
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We identified a very slightly different switchable subset of WSC266: 70 schemas

comprising 140 problems. Table 3.3 summarizes how our switchable subset and the

corresponding perturbation differ from those of Trichelair et al. [95], apart from and

in addition to how WSC266 differs from WSC273 in general (Table 3.2). Removing

two schemas and adding seven accounts for the change in size.

Issue with Switchable Schema No. Schemas Change
correct answer does not change 2 remove schema
candidates broken by switching 3 correct schema
switched schema uncapitalized 118 correct schema

switchable but not included 7 add schema

Table 3.3: Issues with switchable subset of WSC273 and changes made for WSC266.

For example, problem 96 from the switchable subset of WSC273 [95] is not actually

switchable, because the correct answer does not change:

I saw Jim yelling at some guy in a military uniform with a huge red

beard. I don’t know {who} he was, but he looked very unhappy.
(3.41)

We know “Jim” (by name, on sight), not “some guy.” Therefore, regardless of who

was yelling or looking very unhappy, we don’t know who some guy was. For the same

reason, problems 161 and 162 are not actually switchable. We removed those schemas

from the switchable subset of WSC266.

In some schemas, at least one candidate appears to have been broken by switching.

Clearly, in problem 108, the candidates are “a man” and “John”:

John was doing research in the library when he heard a man

humming and whistling. He was very {annoying}.
(3.42)

However, Trichelair et al. [95] switch it as follows:

Man [sic] was doing research in the library when he heard a john [sic]

humming and whistling. He was very {annoying}.
(3.43)

The answers to problems 207 and 208 are given as “Goodman” and “Xenophanes,”

and we assume the candidates are as follows:

Sam Goodman’s biography of the Spartan general Xenophanes conveys

a vivid sense of the difficulties he faced in his {research, childhood}.
(3.44)
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However, Trichelair et al. [95] offer the switched candidates “Sam [X]enophanes” and

“the [S]partan general [G]oodman,” presumably by switching the answers, which are

substrings of the candidates. We think this may obscure the meaning.

Finally, the candidates in problems 15 and 16 are switched inconsistently:

The man couldn’t lift his son because he was so {weak, heavy}. (3.45)

We used “his son” and “the man,” as given, whereas Trichelair et al. [95] use:

The son couldn’t lift the man because he was so {weak}.

The son couldn’t lift his man because he was so {heavy}.
(3.46)

90% of Trichelair et al. [95]’s switched problems are not capitalized correctly:

typically, only the first word is capitalized, regardless of proper nouns or punctuation.

This can affect tokenization (Section 2.2), so we corrected this too.

Some schemas that were excluded from the switchable subset of WSC273 by

Trichelair et al. [95] nevertheless seem switchable. For example, 127 and 128:

Sara borrowed the book from the library because she needs it for an article

she is working on. She {reads, writes} it when she gets home from work.
(3.47)

Borrowing an article from a library doesn’t seem obscure enough to exclude (e.g.,

Dalhousie University allows it). Similarly, 141 and 142:

We went to the lake, because a shark had been seen at the ocean

beach, so it was a {safer, dangerous} place to swim.
(3.48)

Similarly, a shark at a lake doesn’t seem obscure enough to exclude.

There is no point leaving out those schemas just to stay consistent with Trichelair

et al. [95], as the switchable subsets differ anyway, so we mark them as switchable.

We can concede that foxes attack chickens, but not vice versa (155–158), although

there is a news report from 2019 claiming just such an occurrence. We can concede

that fish eat worms, but not vice versa (97, 98), although we read on Wikipedia that

something called a Bobbit worm can and does. We can even concede that although

dogs chase cats, which run up trees, either cats do not chase dogs or dogs do not run

up trees (101, 102). Like Trichelair et al. [95], we exclude these schemas.
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Other schemas are more debatable. Trichelair et al. [95] switch 231 and 232:

The man lifted the boy onto his {shoulders, bunk bed}. (3.49)

If a boy can lift a man onto the boy’s shoulders (say, as a show of strength) or onto

the man’s bunk bed (say, in an army barracks), then we can switch 85 and 86:

If the con artist has [sic] succeeded in fooling Sam, he would have

{gotten, lost} a lot of money.
(3.50)

We can switch 93 and 94 as well:

Alice tried frantically to stop her daughter from {chatting, barking} at

the party, leaving us to wonder why she was behaving so strangely.
(3.51)

Arguably, the switched problems would read a little better with a new candidate,

“Alice’s daughter,” rather than “her daughter,” but we kept the original candidates

(and that one appears as “Alice’s daughter” in the answer option anyway).

In the two debatable schemas above, and in three others like them, comprising

problems 145, 146, and 167–170, switching the candidates seems to preserve “the

rationale to make the resolution decision,” and it doesn’t appreciably “obscure the

sentence,” as Trichelair et al. [95] put it: the underlying logic is the same, although

the specific factual circumstances may be slightly unusual. Therefore, we included a

total of seven additional schemas in the switchable subset of WSC266.

3.4.3 Inverting the Winograd Schema

We discussed the inverted perturbation of WSC273 in Section 2.9.3.

We observed that the problems that result from inverting a Winograd schema, i.e.,

from exchanging the roles of the key phrases and the candidates, do not belong to any

Winograd schema: they are not pronoun disambiguation problems. Nevertheless, the

inverted problems do form a pair of cloze tests with their own key phrases, namely

the candidates of the original schema.

It may appear that every Winograd schema is invertible. However, it is not

necessarily true of an inverted Winograd schema that each key phrase actually makes

a different answer far more likely, which is a basic property of the schema (Section 2.4).
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To illustrate this unusual possibility, we present an original Winograd schema,

though we do not claim it is a very good one for testing common sense:

a. The 2022 turkey cook-off chose a winner. It was {fair}.

What was fair? (i) the cook-off ✓ (ii) the winner

b. The 2022 turkey cook-off chose a winner. It was {Julius Caesar}.

What was Julius Caesar? (i) the cook-off (ii) the winner ✓

(3.52)

This seems to satisfy the basic properties of a Winograd schema: if anything was fair,

it seems more likely that it was the competition than the winner; if Julius Caesar was

involved, it seems more likely that he was the winner than the competition.

Inverting (3.52) yields, as usual, two cloze tests, but note the answers:

a. The 2022 turkey cook-off chose a winner. {The cook-off} was ⟨ ⟩.

What is missing? (i) fair ✓ (ii) Julius Caesar

b. The 2022 turkey cook-off chose a winner. {The winner} was ⟨ ⟩.

What is missing? (i) fair ✓! (ii) Julius Caesar

(3.53)

If the winner was anything, it seems more likely that the winner was fair—fair-haired

or fair to his competitors—than that the winner was a Roman general who wasn’t

alive in 2022 and wouldn’t know how to cook New World poultry in any case.

The problem with inverting (3.52) is that although the first key phrase makes the

first candidate far more likely, and although the second key phrase makes the second

candidate far more likely, the second candidate does not make the second key phrase

far more likely, because that key phrase is inherently implausible. We simply forced

it into the problem statement of (3.52b), asserting: “It was Julius Caesar.”

Let C1 represent the first candidate appearing in the problem statement and C2

the second candidate appearing there. Let K1 represent the first key phrase appearing

in the problem statement and K2 the second key phrase appearing there. Assume all

of those events have positive probability. Then a Winograd schema requires that

(a) P (C1|K1) ≫ P (C2|K1) and (b) P (C2|K2) ≫ P (C1|K2). (3.54)

That is, each key phrase makes a different candidate far more likely. Now, we would

like to assert, of the inverted schema, the corresponding inequalities:

(a) P (K1|C1) ≫ P (K2|C1) and (b) P (K2|C2) ≫ P (K1|C2). (3.55)
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Exchanging conditional probabilities is covered by Bayes’ theorem, which states that

P (A|B) = P (B|A)P (A)/P (B) for P (B) > 0. (3.56)

Unfortunately, (3.54) does not imply (3.55). Indeed, we can choose the factors in

Bayes’ theorem to satisfy (3.54) but violate, e.g., (3.55b), as we did in (3.52).

Basically, P (K2), the probability of Julius Caesar showing up at a 2022 turkey

cook-off, is very low. It is so low that when we apply Bayes’ theorem and write

P (K2|C2) = P (C2|K2)P (K2)/P (C2), (3.57)

the vanishingly small factor P (K2) on the right-hand side makes P (K2|C2) very small,

which violates (3.55b). This is despite the fact that P (C2|K2), which also appears on

the right-hand side of (3.57), must be a relatively large probability by (3.54b).

Therefore, in theory, the cloze tests from an inverted Winograd schema may not

admit definitive answers, and their answers may not depend on the new key phrases.

However, it happens that every schema from WSC266 has a reasonably well behaved

inversion, so we can measure each model’s invertible consistency on that dataset.

We will discuss inversion once more in Section 3.5.5.

3.4.4 New Perturbations: Adjectival and Unbalanced

Here, we introduce new subsets and perturbations of WSC266, suitable for comparing

accuracies and calculating consistency scores, that we have not seen described in the

literature (Section 2.9.5). This is a little easier to do with the standardized format of

WSC266, where, e.g., the answer options never differ within a schema (Section 3.3.2).

Recall that the switched perturbation (Section 3.4.2) affects only the candidates

and, consequently, the answers, leaving the rest of the problem statement unchanged.

Our own perturbations similarly affect only the candidates and answers.

First, we introduce the symmetrical subset and the adjectival perturbation. Recall

that the trophy-suitcase schema (2.8) was not switchable because one does not put

suitcases into trophies. However, there is nothing implausible about this version:

The red box doesn’t fit into the blue box because it is too {large, small}. (3.58)

Suppose we replace the candidates in a Winograd schema with noun phrases that

differ only by an adjective. If the result is still a Winograd schema that makes sense
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and admits definitive answers, we call the schema symmetrical and the new version

an adjectival schema. That is, symmetrical schemas admit adjectival perturbations.

We expect every switchable schema from WSC266 to be symmetrical; on the other

hand, as we just saw, there are symmetrical schemas that are not switchable.

We identified 87 symmetrical schemas in WSC266 (compared to 70 switchable

schemas) by constructing adjectival versions of them. That is, the symmetrical subset

and the adjectival perturbation contain 174 problems each. The switchable schemas

are indeed a proper subset of the symmetrical schemas.

The switched and adjectival perturbations are fairly similar. As we have seen,

the switchable schemas represent about 80% of the symmetrical schemas. Moreover,

the logic of the perturbations is similar: in both, the candidates are considered to be

interchangeable. It is an empirical question whether models perform comparably well

on these perturbations, and we will address that question in Chapter 4.

Next, we introduce the unbalanced perturbation. Elazar et al. [23] proposed the

inverted perturbation as a solution to disparate answer tokenization, in which a model

converts the answers into different numbers of tokens (Section 2.9.3). Suppose we

want to put a practical upper bound on this phenomenon’s effect on accuracy.

Under the unbalanced perturbation, we replace one of the candidates with a more

complex and implausible version: more words, words that are more improbable, or

both. By convention, we always replace the second candidate. Of course, the result

needs to still be a Winograd schema that makes sense and admits definitive answers.

For example, the trophy-suitcase schema (2.8) might become:

The trophy doesn’t fit into the oblong burgundy alligator-hide suitcase

because it is too {large, small}.
(3.59)

The new answers to the schema are exactly the new candidates, up to an article: we

are mostly spared from having to match answers to candidates (Section 3.3.6).

Every schema in WSC266 has an unbalanced version—infinitely many unbalanced

versions, in fact—so our unbalanced perturbation has 266 problems.

The unbalanced perturbation is quite different in concept from either the switched

or adjectival perturbation. Again, we will attempt to quantify that in Chapter 4.
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3.5 Adversarial Schemas

In light of how we standardized the Winograd Schema Challenge, in the form of

WSC273, in Section 3.3, we are now prepared to generalize the Winograd schema.

3.5.1 Beyond the Winograd Schema

We know that the Winograd Schema Challenge has been defeated (Section 2.8.4).

The consensus in the literature appears to be that the test is flawed and that we need

new common-sense reasoning challenges, although there is no consensus on the type of

challenge. Kocijan et al. [46] argue generally that “the commonsense reasoning and

the natural language understanding communities require new tests, more probing

than the Winograd Schema Challenge, but still easy to administer and evaluate.”

According to Sakaguchi et al. [85], “we now need AI algorithms to compose challenges

that are hard enough for AI, which requires dynamic datasets that evolve together

with the evolving state-of-the-art” (emphasis in original). On the other hand, McCoy

et al. [62] suggest “targeted, challenging datasets,” and Linzen [56] calls for “expert-

created controlled data sets,” in various areas of natural language understanding.

We can add our own short wish list of test attributes: ease of generation and ease

of perturbation. We know from Section 2.7 that generating new Winograd schemas is

highly non-trivial; e.g., as Kocijan et al. [47] put it, “manually creating a large, diverse

collection of high-quality Winograd schemas is inherently difficult.” And we know

from Section 2.9 that systematically perturbing schemas is important for evaluating

model consistency; e.g., as Trichelair et al. [95] put it, “a system that correctly resolves

both the original and the [perturbed] sentence can be said more certainly to reason

about the full sentence, instead of exploiting a statistical quirk” of the problem.

Generally, if we want to move away from the Winograd Schema Challenge, we

should start with a clear picture of where we are and what direction we want to go.

WSC treats common-sense reasoning as natural language processing (Figure 1.1), and

we certainly want to remain in the field of NLP while we measure common sense.

Now, Figure 2.1, which shows how the Winograd schema is related to some other

important NLP tasks and problem types, does not include a heading for common

sense. In NLP, the Winograd schema is a pronoun disambiguation problem that
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happens to have a built-in adversarial feature in the form of a key phrase. Pronoun

disambiguation, and coreference resolution in general, may partake of common-sense

knowledge and reasoning [53, 104], but tests of common sense are by no means bound

to remain in that region. The adversarial feature still seems promising, though.

As far as the method of stochastic fill-in-the-blank is concerned (Section 2.8.1),

the Winograd schema’s defining feature is that it can be recast as a cloze test. Since

we intend to keep applying that method, we should keep that property.

At this point, it may be useful to distinguish between three high-level aspects of

a Winograd schema: what we call task, content, and format.

The task is what a schema asks a respondent to do. Again, by design, the task

of any Winograd schema is pronoun disambiguation, a special case of coreference

resolution. However, as we saw in Section 3.3.6, general coreference resolution is

already implicitly part of the task of many schemas, where at least one answer does

not exactly match the corresponding candidate. It is not trivial to determine that

“the suitcase” refers to “the brown suitcase” in (3.36), that “Tina’s” refers to “Tina’s

drawing” in (3.37), that “the juggler” refers to “a man juggling watermelons,” with

no words in common, in (3.38), or even that “the pillar” refers to “a pillar” in (3.39).

Our generalization will not use the same task as the Winograd schema.

The content of a schema is how a respondent is intended to complete its task: some

particular subset of common sense—an area of general knowledge, a form of default

reasoning—that underlies its questions. Any schema can be “solved” by guessing at

random, by always choosing the first answer, or indeed by plugging it into a language

model, but the intended method is to apply a certain pattern of facts and logic.

Naturally, the content varies from schema to schema. For example, the content of

the trophy-suitcase schema (3.36) can be described as the implication of relative size

by a spatial relationship of containment, whereas the content of the orchard-painting

schema (3.40) is the broad similarity of the shapes of pairs of ordinary objects.

We will discuss the content of common-sense reasoning tests in a bit more detail in

Section 3.6.1 when we actually build a test out of our generalized schemas. For now,

it is enough to note that the content of WSC273 is broadly faithful to the concept of

common-sense reasoning, so our generalization should use similar content.

The format of a schema is the way in which the task and content are presented to
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the respondent. With the changes described in Section 3.3, every Winograd schema in

WSC266 shares the same format: the placeholder, the candidates, the target pronoun,

the key phrases; the requirements that the pronoun be ambiguous and that swapping

key phrases also swap correct answers; and so on (Sections 2.4 and 2.5).

Not every part of the format can be verified or enforced algorithmically. The

format requires that any choice of key phrase make one answer overwhelmingly more

plausible or likely as the referent; to verify this requirement is to solve the problem.

Similarly, to verify that a pronoun is ambiguous is to determine whether or not a given

string admits two or more possible referents, which is another problem in common-

sense verbal reasoning. To determine whether or not the answers actually appear in

the sentence as candidates is difficult to automate for the same reason (Section 3.3.6).

Even to check that a sentence is grammatical is, in general, beyond our means. And

verifying or enforcing the format algorithmically becomes drastically more difficult

when we include the more complex and empirically-based criteria from Section 2.5.

The format of our generalization should be as precise as that of the Winograd

schema; it does not need to be verified or enforced algorithmically, as this appears to

be unrealistic; and it should have an adversarial feature similar to the key phrase.

To sum up, our goal is (i) a precisely defined test of verbal reasoning, with (ii) a

built-in adversarial feature like a key phrase, (iii) amenable to the method of stochastic

fill-in-the-blank, (iv) testing common-sense content similar to that of WSC266, and

easier than a Winograd schema to (v) generate and (vi) systematically perturb.

Our generalization, presented in the following sections, is called the adversarial

schema. Like the Winograd schema, it can be recast as a cloze test. An adversarial

schema is either a substitution schema, which itself generalizes the Winograd schema,

or a transposition schema, which does not. Figure 3.1 updates Figure 2.1 accordingly.

Naturally, we extended our database management system for Winograd schemas

(Section 3.3) so it could store adversarial schemas too.

3.5.2 The Substitution Schema

A substitution schema has the following properties (compare Section 2.4):

1. The schema includes a sentence with two placeholders: a key placeholder, { },

and an answer placeholder, ⟨ ⟩.
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Figure 3.1: Adversarial schemas as natural language processing. Solid lines point to
more specific tasks; dashed lines indicate one-way recasting.

2. The schema provides two key phrases that can replace the key placeholder and

two answers that can replace the answer placeholder.

3. Replacing the key placeholder with the first key phrase makes the first answer

far more likely as a substitution for the answer placeholder. Similarly, the

second key phrase strongly favours the second answer.

Just like the Winograd schema, the point is that each key phrase yields a cloze

test: to identify the more likely answer to substitute. Thus, the method of stochastic

fill-in-the-blank can be applied without change to substitution schemas.

The following are examples of substitution schemas. For brevity, we write both key

phrases inside the key placeholder and both answers inside the answer placeholder:

a. {three, five} objects are ⟨less, more⟩ numerous than four objects

b. a car ⟨can, cannot⟩ overtake a {slower, faster} car

c. ⟨all, not all⟩ deserts are {arid, sandy}

(3.60)
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(The missing capital letters and periods will be explained in Section 3.5.6.)

Every Winograd schema can be trivially recast as a substitution schema: the

original key phrases are still the key phrases, the original answers are still the answers,

and the target pronoun is simply replaced by an answer placeholder.

Not every substitution schema is a Winograd schema, however. None of the

examples in (3.60) are pronoun disambiguation problems, nor can they be recast as

such in any obvious way. So, to summarize the generalizations we have made: instead

of an ambiguous pronoun, we have a generic answer placeholder; and we do not require

the answers to appear anywhere in the problem statement as candidates.

We can fairly easily add to the list of examples in (3.60):

a. four objects are ⟨more, less⟩ numerous than {three, five} objects

b. a car ⟨cannot, can⟩ be overtaken by a {slower, faster} car

c. ⟨no, some⟩ deserts are not {arid, sandy}

(3.61)

Obviously, in (3.61a), we moved the keys to the end of the sentence; in (3.61b), we put

the verb in the passive voice; in (3.61c), we negated the keys. The keys themselves

are the same in all cases. The answers are in reversed order but otherwise the same,

except in (3.61c), where we swapped the quantifiers from universal to existential.

Here are some more easily generated schemas based on (3.60):

a. {sixteen, eighteen} cats are ⟨less, more⟩ numerous than seventeen mice

b. a hovercraft ⟨can, cannot⟩ overtake a {slower, faster} hovercraft

c. ⟨all, not all⟩ bananas are {fruit, yellow}

(3.62)

3.5.3 The Transposition Schema

On second thought, there is something slightly unsatisfactory about (3.62c): it isn’t a

bad schema, by any means, but the content differs significantly between the problems.

That is, we conceive of fruit as a set or category of which bananas form a subset; but

we conceive of yellow as an attribute or property of which bananas may or may not

partake—not as the set of all yellow things, which may overlap with bananas.

A version of the schema with more consistent content might be:

⟨all, not all⟩ bananas are {fruit, plantains} (3.63)
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Or we could try something like:

⟨all, not all⟩ {bananas are fruit, fruit are bananas} (3.64)

It may not be in the spirit of a key phrase to allow (3.64). In any case, it only works

because the answer placeholder happens to lie outside what we chose as key phrases.

The above discussion motivates us to add another type of schema, which is disjoint

from the substitution schema (and therefore from the Winograd schema).

A transposition schema has the following properties (compare Section 3.5.2):

1. The schema includes a sentence with three placeholders: two key placeholders,

{ }, and an answer placeholder, ⟨ ⟩.

2. The schema provides two key phrases that can replace either key placeholder

and two answers that can replace the answer placeholder.

3. Replacing the first and second key placeholders with the first and second key

phrases, in that order, makes the first answer far more likely as a substitution

for the answer placeholder. Similarly, the opposite order of the key phrases

strongly favours the second answer.

Each ordering of the key phrases yields a cloze test, and the method of stochastic

fill-in-the-blank can again be applied without change to substitution schemas.

The following are examples of transposition schemas. For clarity, we write both

key phrases inside each key placeholder, but in opposite orders:

a. the ⟨larval, adult⟩ form of a {butterfly or moth, caterpillar} is

a {caterpillar, butterfly or moth}

b. {cats, mice} ⟨do, do not⟩ hunt {mice, cats}

c. ⟨all, not all⟩ {bananas, fruit} are {fruit, bananas}

(3.65)

Evidently, (3.65c) is equivalent to (3.64), without the awkwardly complex key phrases.

(3.65a) is a similar example in that it could also be achieved somewhat awkwardly

with a substitution schema, because the answer placeholder again happens to lie

outside the key phrases. However, (3.65b) has no directly corresponding substitution

schema, because the answer placeholder has to lie between the key placeholders.
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Substitution schemas and transposition schemas form disjoint sets: count the key

placeholders. In particular, no Winograd schema is a transposition schema: there is

no place for a second key phrase in a standard pronoun disambiguation problem.

We can fairly easily add to (3.65) in the style of (3.61):

a. a {butterfly or moth, caterpillar} is the ⟨adult, larval⟩ form of

a {caterpillar, butterfly or moth}

b. {cats, mice} ⟨do not, do⟩ get hunted by {mice, cats}

c. ⟨no, some⟩ {bananas, fruit} are not {fruit, bananas}

(3.66)

Obviously, in (3.66a), we moved the first key to the start of the sentence; in (3.66b),

we put the verb in the passive voice; in (3.66c), we negated the second key. The

keys themselves are the same and in the same order in all cases. The answers are

in reversed order but otherwise the same, except in (3.66c), where we swapped the

quantifiers from universal to existential. All of the above is similar to (3.61).

Here are some more easily generated schemas based on (3.65) in the style of (3.62):

a. the ⟨juvenile, adult⟩ form of a {ferret, kit} is a {kit, ferret}

b. {shrikes, bees} ⟨do, do not⟩ hunt {bees, shrikes}

c. ⟨all, not all⟩ {chestnuts, nuts} are {nuts, chestnuts}

(3.67)

Note that if a dataset includes the transposition schema (3.65c) regarding banana

inclusion, it should probably not also include either substitution schema (3.62c) or

(3.63) regarding banana classification, because they all share a problem:

⟨all, not all⟩ bananas are fruit (3.68)

To avoid overlap, (3.62c) and (3.63) can be replaced by, respectively:

a. ⟨all, not all⟩ radishes are {vegetables, red}

b. ⟨all, not all⟩ oranges are {fruit, mandarins}
(3.69)

3.5.4 The Adversarial Schema

An adversarial schema is either a substitution schema or a transposition schema

(Sections 3.5.2 and 3.5.3 and Figure 3.1). We motivated its design in Section 3.5.1.
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Adversarial schemas make use of a built-in adversarial feature (hence the name)

in the form of a key phrase or a pair of key phrases. They are amenable to solution

by stochastic fill-in-the-blank. All Winograd schemas are substitution schemas and

therefore adversarial schemas. Arguably, adversarial schemas are easier to generate

than Winograd schemas in general, being less of an exercise in creative writing.

The task of an adversarial schema is, in general, multiple-choice fill-in-the-blank

question answering. The content varies from schema to schema, but it can certainly

replicate the content of any Winograd schema. The two types of adversarial schema,

substitution and transposition, have slightly different but equally precise formats.

We were motivated to introduce the transposition schema in order to express

the content of certain substitution schemas in a more natural or elegant way, but the

transposition schema can also help us avoid associativity (Section 2.5.3). For example,

each of the following schemas tests content very similar to (3.37) from WSC266. The

first is a substitution schema and the second a transposition schema:

a. if a drawing is {above, below} a painting, the drawing is

⟨higher, lower⟩ than the painting

b. if a {drawing, painting} is above a {painting, drawing},

the drawing is ⟨higher, lower⟩ than the painting

(3.70)

To the extent that “above” is more strongly associated with “higher” in a corpus,

or “below” with “lower,” (3.70a) is associative. A model that simply matches words

accordingly will perform well on that and similar schemas. Of course, that would be

a spurious correlation: in general, the word “above” does not imply that anything

in particular is “higher” than anything else, as we can see from (3.70b). Indeed, we

expect a model that simply matches words to perform no better than chance on that

and similar schemas, which is the point of a key phrase in general.

As a standalone schema, (3.70b) is to be preferred over (3.70a). On the other

hand, suppose we perturb (3.70a) as follows, and include both versions in a dataset:

if a drawing is {above, below} a painting, the painting is

⟨lower, higher⟩ than the drawing
(3.71)

A model that simply matches words is expected to perform no better than chance on

the four problems from (3.70a) and (3.71) combined. This may be a countermeasure
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to associativity. However, in general, the unit of our new test of common-sense

reasoning (Section 3.6) will be the adversarial schema, not a pair of schemas specially

designed to counteract associativity, so we will not pursue this further.

There is a major difference between substitution and transposition schemas that

pertains to inversion, which we will discuss in the next section.

3.5.5 Inverting the Adversarial Schema

Recall that a Winograd schema is inverted by exchanging the roles of the key phrases

and candidates (Section 2.9.3). Inversion generalizes to substitution schemas: we

exchange the roles of the keys and answers. For example, (3.60c) becomes:

{all, not all} deserts are ⟨arid, sandy⟩ (3.72)

The result is a new substitution schema. The only difference from the original schema

is that the key placeholder { } and the answer placeholder ⟨ ⟩ have swapped places.

Recall that it is not necessarily true of an inverted Winograd schema that each key

phrase makes a different answer far more likely (Section 3.4.3). The same holds of an

adversarial schema: we need to check that the inverted schema still admits definitive

answers, which in the case of (3.72) it surely does.

In short, not every substitution schema is invertible, but if a substitution schema is

invertible, its inversion is another substitution schema. Clearly, inverting the inverted

schema gets us back to the original schema. Every Winograd schema can be treated

as a substitution schema; as we know, not every Winograd schema is invertible, but

if a Winograd schema is invertible, its inversion is never a Winograd schema.

Transposition schemas are not invertible in the same way as substitution schemas:

the result of applying an equivalent operation will not be a transposition schema,

because there are two key placeholders to swap with only one answer placeholder.

For example, the following inversion of (3.65b) requires the respondent to answer

with an ordered pair, as “cats/mice” or “mice/cats”:

⟨cats, mice⟩ {do, do not} hunt ⟨mice, cats⟩ (3.73)

Although (3.73) is not an adversarial schema, it is still amenable to solution by

stochastic fill-in-the-blank in the obvious way, albeit with two blanks. Therefore, if
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the result of inverting a transposition schema still admits definitive answers, we are

willing to include it in an inverted perturbation of an adversarial dataset.

Figure 3.2 illustrates the concept of inverting adversarial schemas.

Figure 3.2: Inverting adversarial schemas, including Winograd schemas.

To sum up, given an adversarial schema, we can fix a key phrase (or an ordering

of key phrases, for a transposition schema), thereby defining a problem, then select

an answer to solve it. Given an invertible adversarial schema, we can fix an answer,

thereby defining a problem, then select a key phrase (or an ordering of key phrases)

to solve it. Table 3.4 shows the two modes of solution for adversarial schemas. What

we call solution by key is the same as solution by answer of an inverted schema.

Define Problem Guess Solution Applicable Schemas
fix key phrase by answer any

fix answer by key invertible

Table 3.4: Modes of solution for adversarial schemas.

3.5.6 Adversarial Schema Dyads

Any schema that is grammatically similar to the ones in (3.60) and (3.65) can be

converted systematically into a pair of schemas by substituting it into what we call a

boolean wrapper, meaning an expression of one of these forms or similar:

a. It is ∥true, false∥ that [original schema].

b. That [original schema] is ∥true, false∥.
(3.74)

Each choice from ∥true, false∥ yields a schema with different answers. For example,
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the substitution schema (3.60c) can become the following pair of schemas:

i. It is true that ⟨all, not all⟩ deserts are {arid, sandy}.

ii. It is false that ⟨not all, all⟩ deserts are {arid, sandy}.
(3.75)

Similarly, the transposition schema (3.65b) can become:

i. It is true that {cats, mice} ⟨do, do not⟩ hunt {mice, cats}.

ii. It is false that {cats, mice} ⟨do not, do⟩ hunt {mice, cats}.
(3.76)

Note that in (3.75ii) and (3.76ii), the order of the answers has been reversed.

We call a pair of schemas of the form (3.75) or (3.76) an adversarial dyad, a schema

dyad, or just a dyad for short. Each dyad generates four problems sharing the same

set of two answers. Imitating (3.74), we can write a dyad more compactly:

It is ∥true, false∥ that ⟨all, not all⟩ deserts are {arid, sandy}.

It is ∥true, false∥ that {cats, mice} ⟨do not, do⟩ hunt {mice, cats}.
(3.77)

In order, we (i) fix a truth value, which defines a schema, (ii) fix a key phrase, which

defines a problem; and (iii) guess an answer, which solves the problem.

A dyad is said to be invertible if each of its schemas is invertible.

In (3.74), we made boolean wrappers out of the pair ∥true, false∥. We call this the

truth pair for both the wrapper and the dyad, and its elements the truth values. There

are many alternative options for the truth pair, such as ∥generally true, not generally

true∥, ∥probable, improbable∥, and ∥plausible, implausible∥. All of those examples

can be said to soften the original dyad, as they effectively allow for exceptions to the

rule; e.g., the favoured answer need only hold “generally” or “probably.”

We can apply the method of stochastic fill-in-the-blank to adversarial dyads with-

out change: after all, they are merely pairs of adversarial schemas.

If we systematically apply a boolean wrapper and a truth pair to an adversarial

dataset to generate dyads, we get a dyadic version of the dataset. We can think of each

dyadic version—each choice of boolean wrapper and truth pair—as a perturbation.

Recall, from Table 3.4, the modes of solution for adversarial schemas. Adversarial

dyads permit three modes of solution: by answer, by key, and by boolean. That

is, given an invertible dyad, we can fix any one of the following, thereby defining a
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schema: a truth value, a key phrase, or an answer. Then we can fix any one of the

other two, thereby defining a problem with two answer options.

Table 3.5 shows the three modes of solution for adversarial dyads.

Define Schema Define Problem Guess Solution Applicable Dyads
fix truth value fix key phrase

by answer any
fix key phrase fix truth value
fix truth value fix answer

by key invertible
fix answer fix truth value

fix key phrase fix answer
by boolean any

fix answer fix key phrase

Table 3.5: Modes of solution for adversarial dyads. Recall Table 3.4.

Whether we fix a truth value and then a key phrase, or vice versa, we get the

same problem in the end. However, the order does affect the schema we produce. For

example, in (3.75), if we fix ∥true∥ and then a key phrase, we get the schema

It is true that ⟨all, not all⟩ deserts are {arid, sandy}. (3.78)

But if we fix {arid} and then a truth value, we get the schema

It is ∥true, false∥ that ⟨all, not all⟩ deserts are arid. (3.79)

Suppose we wanted to compare solution by answer and solution by key on the same

dataset using a schema-based metric like the ones we will introduce in Section 3.7.3.

(3.78) can be solved by answer or by key, so it is an appropriate way to make a

schema from a dyad for that comparison. (3.79), on the other hand, cannot be solved

by key—its key is fixed—so it is not an appropriate schema for that comparison; it

would be appropriate for comparing solution by answer and solution by boolean.

We will not explicitly address this point again, but the reader should assume that

whenever we deal with adversarial dyads, we are distributing problems into schemas

in an appropriate way for whatever comparison we are making.

3.6 A New Test of Common-Sense Reasoning

In Section 3.5, we introduced the adversarial schema. In this section, we construct a

test of common-sense reasoning made up of those schemas.
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3.6.1 Common-Sense Content

We introduced common-sense knowledge and reasoning as a term of art in the field of

AI in Section 1.1.3, mentioning early work by McCarthy [60] and Winograd [103, 104].

For example, Winograd [103] argued that “if we really want computers to understand

us, . . . they need to have all sorts of knowledge about the subject they are discussing”

(my emphasis). Here, we review more of the literature to make sure our new challenge,

presented in the next section, is testing appropriate content (Section 3.5.1).

For McCarthy [61], common sense “includes the basic facts about events (including

actions) and their effects, facts about knowledge and how it is obtained, facts about

beliefs and desires,” and “the basic facts about material objects and their properties.”

Levesque et al. [53] refer to “commonsense knowledge about space, time, physical

reasoning, emotions, social constructs, and a wide variety of other domains.”

According to Davis [11], common-sense verbal reasoning requires and encompasses

specific “relevant knowledge” from “domains” or conceptual categories that include

“quantity, space, time, physics, goals, plans, needs, and communication.”

Davis [13] presents common-sense problems in natural language understanding

that “draw on basic concepts and presume knowledge of basic facts from a variety

of familiar domains,” including “physics” and “social institutions,” e.g., respectively,

“a river can change course” and “a museum can own a painting.” Other examples of

domains include the relations of parts and inclusion, e.g., respectively, “the Battle of

Gettysburg was part of the Civil War” and “ ‘Moby Dick’ is a book.”

In “a sampling of commonsense reasoning problems,” Davis and Morgenstern [15]

include “the egg-cracking domain,” in which “the problem. . . is to characterize the

correct procedure of cracking an egg and transferring its contents to a bowl.”

The problem itself is quite a complex one, since cracking an egg involves

reasoning about so many domains of physical reasoning: containment and

parts, materials, collisions, liquids, and vessels.

In truth, the literature gives common-sense content a practically unlimited scope.

For example, Davis [11] argues that “the kinds of reasoning involved in common sense

include, in simple form, most if not all of the kinds of reasoning that are consciously

usable by human intelligence,” and they apply to “most types of intelligent activities,
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such as. . . planning, learning, high-level vision, and expert-level reasoning.”

It is one thing to test a program’s ability to simulate verbal reasoning, and quite

another to test its ability to plan or learn in general, let alone its capacity for carrying

out general human-like intelligence. Suffice it to say that, by this definition, no

language model can exhibit common sense, even if we exclude “high-level vision.”

The content of published Winograd schemas may be quite broad, though perhaps

not as broad as human reason. For example, we said in Section 3.5.1 that the content

of the trophy-suitcase schema (3.36) can be described as the implication of relative

size by a spatial relationship of containment, but of course we need to know English

grammar first. The content of the orchard-painting schema (3.40) was described as

the broad similarity of the shapes of pairs of ordinary objects, but of course we need

to understand the intended and attempted matching of a painting to real life.

We should add a word on the difficulty of the test (Section 2.5.1). McCarthy [60]’s

“programs with common sense” would simulate the verbal reasoning processes of “any

non-feeble-minded human,” making it sound easy, but Winograd [104] notes that

language itself “is one of the most complex and unique of human activities,” which

puts a daunting lower bound on the difficulty of any such test.

Levesque et al. [53] require that the answer to a test question be “obvious to

the human reader,” so the problem is answerable “immediately” by an “untrained

subject.” However, the sample questions they present “differ on the background

knowledge assumed,” with some being “more ‘university-level’ ” in difficulty.

Davis [11] refers to the knowledge “possessed by every schoolchild,” but Davis and

Morgenstern [15] note that common-sense problems can be “quite. . . complex,” and

among Davis [13]’s “basic concepts” and “basic facts” from “familiar domains” are

some that seem university-level in difficulty; e.g., “a word [namely allopatric] in one

language [English] can be formed out of two words in a different language [Greek].”

When it comes to difficulty, again the literature gives common sense a practically

unlimited scope. It seems appropriate to allow test questions like the adversarial

dyads (3.75) and (3.76), whether or not “your Aunt Edna” [53] can solve them.

Reviewing the content of our own examples, we find that (3.60a) concerns basic

numeracy, specifically the relative size of small whole numbers; (3.60b) connects speed

to time and distance, roughly speaking, and covers the same content as the Winograd
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schema (2.11) without being obviously associative; (3.60c) pertains to set inclusion

or the properties of objects, based on the definitions of words. The variant schemas

in (3.61) and (3.62) cover the same type of content.

By design, (3.63) is broadly similar in content to (3.62c). (3.65a) and (3.65b) both

test basic knowledge of the life cycles and behaviour, specifically predation, of well-

known animals; (3.65c) is again broadly similar to (3.62c). The variant schemas in

(3.66) and (3.67) cover the same type of content as (3.65). By design, the replacement

schemas (3.69a) and (3.69b) are very similar to (3.62c) and (3.63), respectively.

Finally, as we said, the content of (3.70) and (3.71) is very similar to (3.37) from

WSC266, although (3.70a) may be highly associative.

3.6.2 Reid250, a Common-Sense Challenge

. . . withdraw this penurious and malignant ray: I despise Philosophy, and

renounce its guidance: let my soul dwell with Common Sense.

Thomas Reid

We introduce a new test of common-sense knowledge and reasoning2 made up of

125 adversarial schemas comprising 250 fill-in-the-blank problems. We call this test

Reid250 after Thomas Reid, the author of An Inquiry into the Human Mind on the

Principles of Common Sense (1764), which we quoted above, a little out of context.

The test contains 75 substitution schemas and 50 transposition schemas, for a

ratio of three to two. The content tested by those schemas, particularly the difficulty

of that content, is broadly consistent with the discussion in Section 3.6.1.

Reid250 is obviously comparable in size to WSC273 and WSC266.

Given a boolean wrapper, e.g., (3.74a), and a truth pair, e.g., ∥true, false∥, we

can systematically generate 125 adversarial dyads (Section 3.5.6) and a dyadic dataset

that we call Reid250×2, consisting of 250 schemas comprising 500 problems.

Reid250 is invertible: each schema admits solution by answer, i.e., the usual way,

and by key, i.e., inverted (Table 3.4). Moreover, any dyadic version of Reid250 admits

solution by answer, by key, and by boolean (Table 3.5).

2Available here: https://github.com/adrianmaler85/evaluating-common-sense.

https://github.com/adrianmaler85/evaluating-common-sense
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3.7 Evaluating Models on Adversarial Datasets

We discussed evaluation protocols for language models on the Winograd Schema

Challenge, i.e., on Winograd schemas, in Section 2.9. In this section, we generalize

that discussion and extend it to datasets made up of adversarial schemas.

3.7.1 Problem Accuracy and Schema Accuracy

Some terminology: If a model answers both of a schema’s problems correctly, we

say that the model solves the schema. If a model answers exactly one of a schema’s

problems correctly, we say that the model half-solves the schema; in that case, the

model must have given the same answer to both problems. If a model answers both

of a schema’s problems incorrectly, we say that the model anti-solves the schema.

Recall, from Section 2.9.2, problem accuracy (the usual accuracy metric) and

schema accuracy (a group scoring metric). We expect to achieve a schema accuracy

of around 0.25 by guessing at random, and 0 by always choosing the first answer,

whereas the expected problem accuracy for both strategies is 0.5 (Section 2.3).

Suppose we evaluate a model on a dataset. If the shares of solved, half-solved, and

anti-solved schemas are denoted by A, A′, and A′′, so that A is the schema accuracy

and A + A′ + A′′ = 1, then the model’s problem accuracy is given by

a = A + A′/2. (3.80)

We will see in Section 4.2 that anti-solved schemas are rare with the models and

datasets under consideration. If we set A′′ = 0, so that A + A′ = 1, then (3.80)

reduces to a = (1 + A)/2. For example, schema accuracy 0.2, which is worse than

chance, leads to problem accuracy 0.6, which is better than chance, simply because,

by hypothesis, the model never anti-solves schemas. In Chapter 4, we will note these

unusual, perhaps even paradoxical results whenever they occur.

In general, (3.80) can be rewritten as a = (1 + A − A′′)/2. Figure 3.3 shows

problem accuracy a as a function of schema accuracy A for a few small values of A′′.

3.7.2 Transformations, Perturbations, and Consistency

Consistency and other group scoring metrics for Winograd schemas (Sections 2.9.1

and 2.9.2) can be generalized to adversarial schemas in a straightforward way.
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Figure 3.3: Problem accuracy a as a function of schema accuracy A for a fixed rate
A′′ of anti-solved schemas, where A′′ = 0 (top), 0.05 (middle), and 0.1 (bottom).

Let X and Y be sets of problems derived from adversarial schemas. Let

f : A ⊆ X → Y

be a function. Suppose f preserves schemas: that is, f(x1) and f(x2) belong to the

same schema in Y whenever x1 and x2 belong to the same schema in X. In that case,

we call f a transformation of X, and f(A) ⊆ Y the corresponding perturbation.

Although we have distinguished between a transformation and the perturbation

it defines, for simplicity, we may identify a transformation with its perturbation.

Given a model M , we can measure its accuracies on both the transformable subset

A and the perturbation or transformed subset f(A). We can also measure the model’s

consistency under the transformation f , which can be defined in a few ways.

In general, a model will solve some problems from the transformable subset and

some problems from the transformed subset. That leads us to define the consistency
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of M under the transformation f as c = c(M, f), where

c =
|{x ∈ A : M solves x and f(x), or neither x nor f(x)}|

|A|
. (3.81)

Consistency generalizes Trichelair et al. [95]’s switchable consistency, which was also

used by Emami et al. [25] and Abdou et al. [1].

We define the consistent accuracy of M under f as

ca =
|{x ∈ A : M solves x and f(x)}|

|A|
. (3.82)

Consistent accuracy generalizes Ruan et al. [81]’s consistent accuracy, and it can

easily be generalized to multiple transformations as in Elazar et al. [22].

We define the preserved accuracies of M under f as follows:

cp =
|{x ∈ A : M solves x and f(x)}|

|{x ∈ A : M solves x}|
(3.83)

ˆ︁cp =
|{x ∈ A : M solves x and f(x)}|

|{x ∈ A : M solves f(x)}|
(3.84)

We have not seen either preserved accuracy used in the literature.

c, ca, cp, and ˆ︁cp are group scoring metrics across datasets (Section 2.9.2).

Clearly, c, cp,ˆ︁cp ≥ ca, making consistent accuracy stricter in general than either

consistency or the preserved accuracies. We can say that consistency c does not

concern itself with accuracy; that consistent accuracy ca does not value consistently

incorrect answers; and that the preserved accuracies cp and ˆ︁cp only look at problems

that were correct before and after the transformation, respectively.

The preserved accuracies are asymmetrical: that is, consistency c and consistent

accuracy ca stay the same when we invert the transformation,

f−1 : f(A) ⊆ Y → X,

but the preserved accuracies cp and ˆ︁cp are exchanged and, in general, will not stay

the same. cp may be especially appropriate when the transformable subset A is

the original dataset, which we are comparing to several perturbations, and when we

expect or observe that f increases accuracy, as we might like it to preserve correctness

in the process; ˆ︁cp may be especially appropriate when f decreases accuracy.

We can generalize one more time: we defined consistency under transformations,

but we can also measure a model’s consistency with respect to a change of scoring

method (Section 2.2), which we can think of as a sort of transformation.
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3.7.3 Schema Consistency

Recall that inversion (Section 2.9.3), which we called a transformation in Section 2.9.5,

actually acts on schemas, not problems: there is no way to meaningfully associate

either of a schema’s problems with either of the inverted schema’s problems.

Let W and Z be sets of adversarial schemas. Let

F : A ⊆ W → Z

be a function. In that case, we call F a schema transformation of W , and F (A) ⊆ Z

the corresponding schema perturbation. We may refer to the usual transformations

as problem transformations to distinguish them from schema transformations.

Every problem transformation f defines a schema transformation F = ˆ︁f , where

ˆ︁f(w) = ⟨f(x1), f(x2)⟩ for each schema w = ⟨x1, x2⟩. (3.85)

In that case, we say that M solves w ∈ A and F (w) identically if

∀ x ∈ w (M solves x and f(x), or M solves neither x nor f(x)). (3.86)

Just as we have notions of problem accuracy and schema accuracy (Section 3.7.1),

in addition to our consistency metric c (3.81), which we may now want to refer to

as problem consistency, we also have a notion of schema consistency that applies to

schema transformations; indeed, we have more than one notion.

Each schema w = ⟨x1, x2⟩ is made up of problems that can be solved or not solved,

so, as we know, the schemas themselves can be solved, half-solved, or anti-solved.

We define the weak schema consistency of a model M under F as

˜︁C =
|{w ∈ A : M solves w and f(w), or M solves neither w nor F (w)}|

|A|
. (3.87)

We define the schema consistency of M under F as

C =
|{w ∈ A : M solves equally many problems from w and F (w)}|

|A|
. (3.88)

Now suppose F = ˜︁f is defined by a problem transformation as in (3.85). We

define the strict schema consistency of M under F as

C∗ =
|{w ∈ A : M solves w and F (w) identically}|

|A|
. (3.89)
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˜︁C, C, and C∗ are group scoring metrics within and across datasets (Section 2.9.2).

We can say that weak schema consistency ˜︁C does not distinguish between half-

solved and anti-solved schemas; that schema consistency C does not care how many

transformed problems are answered differently, so long as the number of correctly

answered problems stays the same; and that strict schema consistency C∗ applies

problem-wise to each schema, assuming it applies at all.

Clearly, ˜︁C ≥ C, and where C∗ is defined, we also have C ≥ C∗. That is, if a model

solves two problem pairs identically, then it solves equally many problems from each

pair, which implies that it solves either both pairs or neither pair. We also have

c ≥ C∗, where c is problem consistency (3.81).

There is no such simple relationship between c and C or ˜︁C. We can have, e.g.,

c = C∗ = 0 and C = ˜︁C = 1, if the model half-solves every schema before and after the

transformation, but the transformation changes which problem within each schema

is solved. Or we can have, e.g., c = 0.5 and C∗ = C = ˜︁C = 0, if the model solves

every schema before the transformation and half-solves every schema after.

At least we have justified the terms “weak” and “strict.” Strict schema consistency

C∗ is an appropriate schema consistency metric wherever it applies: the only reason

we define C and ˜︁C is for schema perturbations where C∗ does not apply.

We find no support in the literature for any particular definition of schema-based

consistency [1, 22, 23, 25, 44, 81, 95, 96, 109]. That said, on problem transformations,

we can already apply consistency c. On schema transformations, on the other hand,

neither c nor strict schema consistency C∗ applies in general. We should report c

and C∗ wherever they apply, i.e., on problem transformations, and we should report

either schema consistency C or weak schema consistency ˜︁C wherever c and C∗ do

not apply, so we have some way of measuring consistency under, e.g., inversion. We

chose to report schema consistency C, simply because it is the stricter of the two.

Very briefly, we will extend consistent accuracy ca (3.82) and preserved accuracy

cp (3.83) and ˆ︁cp (3.84) to schema-based metrics as well.

We define the consistent schema accuracy of M under F as

Ca =
|{w ∈ A : M solves w and F (w)}|

|A|
. (3.90)
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We define the preserved schema accuracies of M under F as follows:

Cp =
|{w ∈ A : M solves w and F (w)}|

|{x ∈ A : M solves w}|
(3.91)

ˆ︁Cp =
|{w ∈ A : M solves w and F (w)}|

|{x ∈ A : M solves F (w)}|
. (3.92)

Of course, Ca, Cp, and ˆ︁Cp are group scoring metrics within and across datasets.

Clearly, C,Cp, ˆ︁Cp ≥ Ca, and where C∗ is defined, we also have Ca ≥ C∗.

Table 3.6 shows our definitions of consistency and where they apply.

Consistency Metric Symbol Definition
Type of

Transformation
problem consistency c (3.81) problem
consistent accuracy ca (3.82) problem

preserved consistency cp, ˆ︁cp (3.83), (3.84) problem

weak schema consistency ˜︁C (3.87) problem or schema
schema consistency C (3.88) problem or schema

strict schema consistency C∗ (3.89) problem
consistent schema accuracy Ca (3.90) problem or schema

preserved schema accuracy Cp, ˆ︁Cp (3.91), (3.92) problem or schema

Table 3.6: Consistency metrics and the type of transformation to which they apply.

3.7.4 Disparate Answer Tokenization

In Section 2.9.3, we introduced the term disparate answer tokenization: when a model

converts the answer options for a problem into token sequences of different length.

We described problems with any-length answers and equal-length answers. We also

mentioned that we intend to measure the phenomenon’s effect on model accuracy.

The unbalanced perturbation (Section 3.4.4) is designed in part to put a practical

upper bound on that effect. In general, for any dataset, we can measure the effect by

reporting separate results on the subset of problems with equal-length answers.

Detecting disparate answer tokenization is not entirely trivial. Tokenization is

sensitive to both capitalization and preceding whitespace (Section 2.2), and of course

stochastic fill-in-the-blank involves substituting answers into problems (Section 2.8.1).

Therefore, how an answer tokenizes will depend, in general, on whether or not we put

it in the context of the problem statement, which, e.g., may capitalize it.
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In preprocessing WSC273 (Section 3.2), we capitalized the answers according to

their appearance in the context of the problem: it seemed reasonable to prepare

the dataset for solution by stochastic fill-in-the-blank in advance, given that the

alternative would be to capitalize answers on the fly, detecting the start of English

sentences in the middle of running a language model.

We also capitalized answers according to their appearance in the context of the

problem when we created WSC266 (Section 3.3) and Reid250 (Section 3.6.2). This

choice is appropriate for detecting disparate answer tokenization in any dataset.

It also seems appropriate to apply or not apply preceding whitespace to each

answer according to its position in the problem statement, and we did so. In fact,

this choice can greatly affect the share of problems with equal-length answers.

As a preview of the experimental setup in Section 4.1, Table 3.7 shows the share

of problems with equal-length answers, with and without the context of the problem,

for various datasets and perturbations. For T5, we prepended the model’s special

WSC task prefix to each Winograd problem, but this has no effect on the share.

In every case, with or without the context of the problem, the share of problems

with equal-length answers is identical for GPT-2 and RoBERTa. The share for T5 is

sometimes higher than the value for the other models but more often lower.

In the unbalanced perturbation, no problems have equal-length answers. When

solving Reid250×2 by boolean with the truth pair ∥true, false∥, all problems have

equal-length answers, namely true and false (one token each). For an unequally

tokenized truth pair, e.g., ∥true, not true∥, the share would of course drop to zero.

Putting the answers in the context of the problem never changes the share of

equal-length answers for T5: an attribute of that model’s tokenizer. For GPT-2 and

RoBERTa, it does change the share in general. The change is largest for WSC266

switched and inverted, Reid250, and Reid250×2. The change is zero for WSC266

adjectival, Reid250 by key, and of course for WSC266 unbalanced and Reid250×2 by

boolean where the shares are identically zero and one respectively.

Inverted transposition schemas almost always have equal-length answers, because

the answers are orderings of the same two key phrases (Section 3.5.5).
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Dataset Perturbation 1 Perturbation 2 Context
GPT-2 and

T5
RoBERTa

WSC273 original none
none 0.615 0.593

problem 0.681 0.593

WSC266

original
none

none 0.624 0.609
problem 0.684 0.609

inverted
none 0.511 0.669

problem 0.789 0.669

switched none
none 0.671 0.700

problem 0.829 0.700

adjectival none
none 0.897 0.862

problem 0.897 0.862

unbalanced none
none 0.000 0.000

problem 0.000 0.000

Reid250 original
none

none 0.568 0.704
problem 0.752 0.704

inverted
none 0.688 0.656

problem 0.688 0.656

Reid250×2

none
none 0.568 0.704

problem 0.752 0.704
(3.74a)

by key
none 0.736 0.728

true, false problem 0.776 0.728

by boolean
none 1.000 1.000

problem 1.000 1.000

Table 3.7: Share of problems with equal-length answers.
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3.7.5 Answer Placeholder Position

In Section 3.1.1, we argued that partial scoring for GPT-2 may be inappropriate for

some Winograd schemas: specifically, where the target pronoun occurs toward the end

of the problem statement. For adversarial schemas in general, the answer placeholder

or, in the case of an inverted transposition schema, the second of two placeholders

may occur toward the end of the problem statement and create the same issue.

As a supplement to the experimental setup in Section 4.1, Table 3.8 shows the

share of problems with an answer placeholder in the second-last position for various

datasets, subsets of datasets, and perturbations, with notes to follow.

Dataset Perturbation 1 Subset Perturbation 2 Size Target at End
WSC273 original all none 273 0.073

WSC266

original

all
none 266 0.068

no candidates 266 0.068
inverted 266 0.489

associative
none 50 0.120

no candidates 50 0.120

non-assoc.
none 216 0.056

no candidates 216 0.056
switched all none 140 0.043
adjectival all none 174 0.057

unbalanced all none 266 0.068

Reid250 original all
none 250 0.112

inverted 250 0.448

Reid250×2
(3.74a)

all
none 500 0.112

true, false
by key 500 0.448

by boolean 500 0.000

Table 3.8: Share of problems with an answer placeholder second-last.

Note that the answer placeholder occurs in the second-last position for almost half

the problems in WSC266 inverted, Reid250 inverted, and Reid250×2 by key, and no

more than 12% of the problems in any other dataset, subset, or perturbation.

Incidentally, it is possible for an answer placeholder to occur in the very last

position for WSC273, because some of those problems are missing final punctuation

(Section 3.3.8), but this does not actually occur in the dataset.
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3.7.6 An Evaluation Protocol for Adversarial Schemas

We propose an evaluation protocol for adversarial schemas. To be precise, suppose

we have a language model, a dataset made up of adversarial schemas, and possibly

some perturbations of that dataset.

We treat the following generalized perturbations separately: the no-candidate

perturbation, which can be applied to any Winograd schema; inversion or solution by

key, which can be applied to any adversarial schema; and solution by boolean, which

can be applied to any adversarial dyad.

For each of the model’s scoring methods, we calculate the problem accuracy and

schema accuracy, and compare them both to chance. We repeat the calculations on

the subset of problems with equal-length answers.

On a Winograd dataset, e.g., WSC266, we form the no-candidate perturbation

and calculate the model’s accuracies on that perturbation. We compare that to

the original dataset to quantify spurious correlations in the model. If a so-called

associative subset of the dataset has been identified, say by human annotators, we

also report separate comparisons for that subset and its complement.

We calculate the model’s accuracies on each perturbation, as well as the model’s

problem consistency and schema consistency with respect to it. We also invert the

invertible subset of the dataset and report the model’s accuracies and consistencies

with respect to inversion, i.e., solution by key.

On a dataset that admits adversarial dyads, e.g., Reid250, we select a boolean

wrapper and a truth pair, and form a dataset, twice the size, made up of those dyads.

We calculate the model’s accuracies under each mode of solution: by answer, i.e., the

usual way; by key, i.e., inverted; and by boolean, which is specific to dyads.

One last note: whenever we calculate schema accuracy or any other schema-based

group scoring metric on WSC273, we have to deal with two minor issues.

First, one schema has three problems (Section 3.3.1), which changes every metric;

e.g., for this one schema, we expect to achieve a schema accuracy of 0.125 by guessing

at random, which is half the usual value. Not wanting to ignore any problems from

WSC273, for the sake of simplicity and consistency, we treated the first and second

problems as one schema, and the second and third problems as a separate schema.

We did not count the second problem twice when calculating problem-based metrics.
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Second, if we restrict WSC273 to a subset of problems, some schemas may have

only one problem left. For example, we want to study problems with equal-length

answers. In WSC273, the answer options can differ between problems in the same

schema (Section 3.3.2). As a result, under each of GPT-2, RoBERTa, and T5, when

we restrict to problems with equal-length answers, we end up with a single degenerate

one-problem schema, for which problem accuracy must equal schema accuracy. Under

each model, we did not count that schema toward any schema-based metrics.

3.8 Statistical Significance

Before we move on to our results, we should add a remark on statistical significance

in the context of evaluating model accuracy on Winograd datasets.

3.8.1 Binomial Statistical Significance

Suppose we have a model M and some large space S of problems to solve with it,

where N = |S| ≫ 1. Suppose the true accuracy of the model—the share of problems

it solves correctly—is a, where 0 < a < 1.

Now suppose we choose a random sample of problems, or in other words a test

set: T ⊆ S where n = |T | ≪ N . Then the accuracy aT of the model on the test

set is a random variable. To be precise, let X be the number of correctly solved test

problems, so that 0 ≤ X ≤ n and aT = X/n. If we can assume that the model’s

success or failure on any given test problem is independent of its performance on the

other problems, then X has a binomial distribution with parameters n and a:

P(X = k) =

(︃
n

k

)︃
ak(1 − a)n−k, k = 0, . . . , n. (3.93)

The mean is µ = E[X] = na, which corresponds to a sample accuracy of aT = a:

we expect the model’s accuracy on a random sample to be its true accuracy. The

confidence intervals for the sample accuracy may be estimated by the Wald method:

aT ± z

√︃
aT (1 − aT )

n
(3.94)

where z is a parameter derived from the standard normal distribution N(0, 1). For a

95% confidence interval, set z = 1.96; that is, the observed sample accuracy aT lies

in the interval given by (3.94) with probability about 0.95 for that choice of z.
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Suppose we believe that the true accuracy is a0: the null hypothesis. If we observe

a sample accuracy aT such that aT ̸= a0, can we, with any confidence, reject the null

hypothesis and conclude that the true accuracy is not a0? Our confidence depends

on two things: the size of the sample and the size of the gap between observed and

expected accuracies. Larger samples and larger gaps inspire greater confidence.

To be precise, let m1 = a0n be the expected number of correct answers and

m2 = (1 − a0)n the expected number of incorrect answers. Let n1 = aTn be the

observed number of correct answers and n2 = (1 − aT )n the observed number of

incorrect answers. The test statistic3 is a χ2 test with one degree of freedom:

t =
(n1 −m1)

2

m1

+
(n2 −m2)

2

m2

. (3.95)

With this random variable, we can apply an upper one-tailed test by looking up a

standard table of critical values (thresholds for significance) for the χ2 distribution.

For example, if the test statistic t is greater than about 3.84, a critical value, then

our observed accuracy aT is fairly far from the expected value a0, given the size of the

sample: to be precise, observed accuracies on a sample of that size that are at least

that far from a0 occur with a probability of about p < .05 when the true accuracy

is a0. Therefore, based on our observation, we would reject the null hypothesis and

conclude that a ̸= a0 with some confidence, reporting p < .05 as our p-value.

3.8.2 Statistical Significance and Schemas

Now suppose we have n schemas of two problems each. It seems plausible that the

model’s success or failure on one problem from a schema will not be independent of

its performance on the other problem. If we treat each schema as a single entity, the

analysis in Section 3.8.1 applies; on the other hand, it would not be appropriate to

report confidence intervals and p-values for problem-based metrics.

Let z be a random schema. Let z1, z2 be its problems. Let ai be the ith-problem

3Of course, the test statistic is not a test in the same sense as a test set or a test problem.
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accuracy, ai = P(M solves zi), for i = 1, 2. Define four conditional probabilities:

u = P(M solves z2 | M solves z1),

v = P(M solves z2 | M does not solve z1),

u′ = P(M solves z1 | M solves z2),

v′ = P(M solves z1 | M does not solve z2).

(3.96)

If the first and second problems are independent, then u = v = a2 and u′ = v′ = a1.

As a preview of the results in Section 4.2, Table 3.9 shows the observed values of

a, a1, a2, u, v, u′, and v′ for GPT-2, RoBERTa, and T5 on WSC266, with each model

using its most accurate scoring method (Section 4.2.4).

Problems Condition Metric GPT-2 RoBERTa T5
all – a 0.744 0.786 0.868

second
none a2 0.797 0.865 0.940

only
first problem solved u 0.717 0.809 0.925
first problem failed v 0.976 1.000 1.000

first
none a1 0.692 0.707 0.797

only
second problem solved u′ 0.623 0.661 0.784
second problem failed v′ 0.963 1.000 1.000

Table 3.9: Problem accuracy statistics for GPT-2, RoBERTa, and T5 on WSC266.

One important fact is that v and v′ are consistently over 0.9: the models rarely

anti-solve these schemas, as we mentioned in Section 3.7.1, so if, say, the first problem

is answered incorrectly, the second is almost guaranteed to be answered correctly.

We find no support for the statistical independence of the problems in a schema.

By the methods of Section 3.8.1, under the most accurate scoring methods (Table 3.9),

we reject the null hypothesis that v = a2 for GPT-2, p < .01, and RoBERTa, p < .025.

For T5, we are unable to reject the null hypothesis, p < .25: the model’s accuracies

are so high, it is difficult to tell them apart. However, under model loss scoring (mean

masked scoring) with a task prefix, we are able to reject v = a2 for T5, p < .05.

That brings us to a method of calculating statistical significance that works in

spite of problem pair correlations, which is bootstrapping, specifically by the Monte

Carlo method [18]. Let the null hypothesis include values for a1, u, and v, so that

a = a1u + (1 − a1)v/2 + a1(1 − u)/2. (3.97)
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If we observe, on a sample of n schemas, a problem accuracy aT ̸= a, then we need

to find the probability of observing, in a sample of that size, an accuracy that is at

least as far from a as aT is, assuming a1, u, and v are accurate. We estimate that

probability p using a Monte Carlo simulation with ten thousand trials.

For example, when we restrict WSC266 to problems with answers of equal length

(Section 2.9.3), then the accuracy of GPT-2 becomes 0.720, compared to 0.744 on all

problems (Section 4.2). Is the change in accuracy significant?

The reduced dataset has n = 91 schemas with equal-length answers, and we get

the values of a1, u, and v from Table 3.9. Through bootstrapping, we find that a

difference in accuracy of at least that magnitude, |∆a| ≥ 0.025, occurs in k = 4140

of R = 104 trials, yielding the Monte Carlo approximation

p ≈ pmc =
k + 1

R + 1
≈ 0.414, (3.98)

so we can report p = .4 in the traditional style, with exactly one non-zero digit. With

as many as R = 106 trials, we get k = 415108, so we can report p = .4 again.

In short, we are unable to reject the null hypothesis that restricting to answers of

equal length has no effect on problem accuracy for GPT-2 on WSC266, p = .4.

Bootstrapping provides confidence intervals as well, which are either empirical or

percentile intervals. The end results were indistinguishable in our experiments, so we

will report percentile intervals exclusively.

3.8.3 Statistical Significance and Schema Dyads

For adversarial dyads (Section 3.5.6), we cannot even treat each schema as a single

entity, as the schemas occur in pairs. Presumably, the model’s success or failure on

the problems from one schema in a dyad will not be independent of its performance

on the problems from the other schema.

Extending the analysis in Section 3.8.2 to account for schema pair correlations is

probably overkill, given the actual results we will report in Section 4.7, particularly

Figure 4.12. Simply put, all the models perform very poorly, almost identically so,

on Reid250×2, with a problem accuracy very close to chance and a schema accuracy

well below chance. The statistical significance of the outcome is hardly questionable,

so we decided to report approximate bootstrapped p-values and confidence intervals

for adversarial dyads, treating the schemas in each dyad as if they were independent.
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3.8.4 Statistical Significance and Winograd Datasets

Is this at all relevant to the Winograd Schema Challenge or tests of common-sense

reasoning in general? Is there even such a thing as a space of problems?

Some Winograd datasets, including DPR, WNLI, MaskedWiki, WikiCREM, and

Winogrande, are or can be split into training and test sets (Section 2.7). Arguably, we

can interpret the test set as a sample from a larger space of problems; if the sampling

is random, we can even treat the problems as independent. On the other hand, if, say,

we insist on including in the sample either both problems from a schema or neither of

them, we can at least treat the schemas, thought not the problems, as independent.

Crowdsourced Winograd datasets, e.g., DPR and WinoGrande (Sections 2.7.2

and 2.7.5 respectively), generally provide their crowd workers with a specific protocol

for generating problems; e.g., Sakaguchi et al. [85] give a fairly detailed description

of the protocol they used to generate WinoGrande. In theory, we can generate more

problems using the same protocol, so we have a space of problems. However, the

statistical independence of those problems is questionable: both datasets display

predictable structure, and in general we expect a protocol to introduce annotation

artifacts, hence spurious correlations (Section 2.5.3). Indeed, Elazar et al. [23] report

that Sakaguchi et al. [85]’s model exhibits spurious correlations.

Self-supervised datasets such as MaskedWiki and WikiCREM (Section 2.7.4) are

based on large text corpora. The world has no shortage of digital text, so in theory,

we can always generate more problems: again, we have a space of problems, and

again, the statistical independence of those problems is questionable. The contents of

the English-language Wikipedia articles used to create both of the above-mentioned

datasets no doubt include various annotation artifacts.

Of course, the most influential Winograd dataset, WSC273 (Section 2.7.1), was

constructed manually and has only 273 problems, with no training set.

In the context of evaluating model accuracy on Winograd datasets, the confidence

intervals and p-values from Sections 3.8.1 and 3.8.2 are thought experiments. We can

imagine a large space of problems, which may not actually exist, of which our test

set is a random sample, though it may not actually be random. We can imagine that

the model treats each schema independently, and we can work around the lack of

independence of problems within a schema by bootstrapping.
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If a difference in accuracy between models or datasets or scoring methods is not

“statistically significant,” we may be justified in treating those models or datasets or

scoring methods as equivalent; on the other hand, if the difference is “statistically

significant,” that may not be enough to conclude that they are actually not equivalent.

When we present our results in Chapter 4, we will include bootstrapped p-values

and confidence intervals for problems and for schemas.



Chapter 4

Experiments and Results

In Chapter 3, we explained how we approached the problem of evaluating common-

sense reasoning in language models. In particular, we described a new test of common

sense based on adversarial schemas, which generalize Winograd schemas, and we

presented a new evaluation protocol based in part on consistency metrics.

In this chapter, we describe a series of experiments that implement our protocol

to evaluate common-sense reasoning in three pretrained transformer-based language

models, along with our results and some discussion.

In Section 4.1, we explain how we set up our experiments, including the models,

datasets, and subsets and perturbations of datasets we used.

In Section 4.2, we measure accuracy on WSC266 and WSC273, and identify the

best scoring method for each model. In Section 4.3, we measure consistency on

perturbations of WSC266. In Section 4.4, we quantify associativity on WSC266.

In Section 4.5, we measure accuracy on Reid250, and identify the new best scoring

method for each model. In Section 4.6, we measure invertible consistency on Reid250.

In Section 4.7, we measure accuracy and consistency on the dyads of Reid250×2.

4.1 Experimental Setup

Table 4.1 shows the models we used, each of which is the largest model available

in its family, and each of which has been implemented in Python using a library

called Transformers [105]. Refer to Section 2.2 for more details on the models and

Section 3.1 for our implementations of stochastic fill-in-the-blank for each one.

Family Size No. Parameters Implementation
GPT-2 xl 1.6 billion Hugging Face [36]

RoBERTa large 355 million Hugging Face [35]
T5 11b 11 billion Hugging Face [37]

Table 4.1: Models used in our experiments.

108
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As stated in Section 2.9.6, we did not finetune the models on a downstream task.

However, as we noted in Section 2.8.3, the T5 model’s supervised pretraining includes

two Winograd datasets, though not in a fill-in-the-blank format. Also, as stated in

Section 2.8.4, by 2020, at least one important pretraining dataset, that of GPT-3,

had been contaminated by about half the test questions from WSC273.

We ran the models on a server, called Cedar, maintained by the Digital Research

Alliance of Canada (formerly Compute Canada). The largest model, T5, is too big

to run on a typical personal computer or even academic computing environment.

Table 4.2 shows the datasets we used, with notes to follow.

Dataset Perturbation 1 Subset Perturbation 2 Size Equal Length
WSC273 original all none 273 0.681, 0.593

WSC266

original

all
none 266 0.684, 0.609

no candidates 266 0.684, 0.609
inverted 266 0.789, 0.669

associative
none 50 0.560, 0.600

no candidates 50 0.560, 0.600

non-assoc.
none 216 0.713, 0.611

no candidates 216 0.713, 0.611
switched all none 140 0.829, 0.700
adjectival all none 174 0.897, 0.862

unbalanced all none 266 0.000, 0.000

Reid250 original all
none 250 0.752, 0.704

inverted 250 0.688, 0.656

Reid250×2
(3.74a)

all
none 500 0.752, 0.704

true, false
by key 500 0.776, 0.728

by boolean 500 1.000, 1.000

Table 4.2: Datasets used in our experiments. The last column is the share of problems
with equal-length answers under GPT-2/RoBERTa (same value) and under T5.

The table puts the following generalized perturbations in a separate column: the

no-candidate perturbation, which can be applied to any Winograd schema; inversion

or solution by key, which can be applied to any adversarial schema; and solution by

boolean, which can be applied to any adversarial dyad.

The table also includes the share of problems with equal-length answers under

GPT-2/RoBERTa (same value) and under T5 (Section 3.7.4). In every experiment,

we calculated separate results for that subset, whether we report them or not.

For the implementation of stochastic fill-in-the-blank, including scoring methods,
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see Section 3.1.1 for GPT-2, Section 3.1.2 for RoBERTa, and Section 3.1.3 for T5.

For the WSC273 dataset, see Sections 2.7.1 and 3.2. For WSC266, see Section 3.3.

For Reid250 and Reid250×2, see Section 3.6.2.

For adversarial dyads in general, e.g., Reid250×2, see Section 3.5.6.

For the associative subset of WSC266, see Sections 2.7.1 and 3.4.1.

For the switchable subset and switched perturbation of WSC266, see Sections 2.9.1

and 3.4.2. For the inverted perturbation of WSC266, see Sections 2.9.3 and 3.4.3. For

the adjectival and unbalanced perturbations of WSC266, see Section 3.4.4. For the

no-candidate perturbation of a Winograd dataset, e.g., WSC266, see Section 2.9.4.

For inversion or solution by key of adversarial schemas, see Section 3.5.5. For

solution by key and by boolean of adversarial dyads, see Section 3.5.6.

For the evaluation protocol, see Section 3.7.6. For the definitions of our problem-

based and schema-based consistency metrics, see Sections 3.7.2 and 3.7.3 respectively.

We report statistical significance where appropriate, as discussed in Section 3.8.4.

In the figures in this chapter, if the colours are unavailable or illegible, note that

in each bar graph, the items in the legend, from top to bottom and left to right,

correspond to the individual bars, from left to right, in each group of bars.

4.2 Accuracy on Winograd Schemas

Following our evaluation protocol, we begin by calculating accuracy on WSC266. We

evaluate scoring methods for GPT-2 in Section 4.2.1, for RoBERTa in Section 4.2.2,

and for T5 in Section 4.2.3, and we compare the best accuracies in Section 4.2.4.

Our goal is to answer four questions. First, which scoring methods are the most

accurate? Second, how accurate are the models at best? Third, did our changes

to WSC273 to create WSC266 affect model accuracy? Fourth, are the models more

accurate on problems where the answer options have the same number of tokens?

We also try out our consistency metrics, measuring the consistency of each model

as we switch between some of the most accurate scoring methods.

Where relevant, we mention how our results compare to the published performance

of these and other models on WSC273 (e.g., Table 2.4 in Section 2.8.4).
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4.2.1 Accuracy of GPT-2 Scoring Methods

Table 4.3 shows problem accuracy a and schema accuracy A for GPT-2 on WSC266,

under ten scoring methods, on problems with any-length answers and equal-length

answers. Smart scoring at limits 2 and 3 was less accurate than at limit 1, so we do

not report results for limits n > 1. Model loss is mean all-but-one scoring (∗).

Scoring Take a, Any a, Equal A, Any A, Equal
Method Mean? Length Length Length Length

smart scoring no 0.744 0.720 0.496 0.440
at limit 1 yes 0.744 0.720 0.496 0.440

partial no 0.726 0.698 0.474 0.418
scoring yes 0.726 0.698 0.474 0.418

all-but-one no 0.650 0.632 0.308 0.264
scoring yes∗ 0.635 0.632 0.278 0.264

full scoring
no 0.650 0.632 0.308 0.264
yes 0.620 0.632 0.241 0.264

normalized no 0.613 0.621 0.233 0.253
full scoring yes 0.613 0.621 0.233 0.253

Table 4.3: Accuracy of scoring methods for GPT-2 on WSC266.

Taking the mean never improves the accuracy of a scoring method, and it has no

effect at all on smart scoring (at limit 1), partial scoring, or normalized full scoring, so

we restrict our attention to non-mean scoring. Of course, as a mathematical certainty,

taking the mean has no effect on problems with equal-length answers.

In WSC266, no problem statement starts with the target pronoun, so full scoring

and all-but-one scoring give identical results, since we are not taking the mean.

The ranking of scoring methods is straightforward: without mentioning statistical

significance yet, from most to least accurate, we have smart scoring, partial scoring,

full scoring tied with all-but-one scoring, and normalized full scoring.

We identify all-but-one scoring with full scoring, and we reject normalized full

scoring as less accurate than full scoring. Since we already decided not to take the

mean, that leaves three scoring methods: full, partial, and smart.

Figure 4.1 displays the key results from Table 4.3 with 95% confidence intervals.

Moving on to our second question, evidently, the highest accuracies are achieved

under smart scoring: a = 0.744 and A = 0.496. Table 4.4 shows the differences in
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Figure 4.1: Accuracy of scoring methods for GPT-2 on WSC266.

accuracy between full, partial, and smart scoring for GPT-2 on WSC266. It also

includes the statistical significance, i.e., the p-value, of those differences.

Metric
Answer Partial −

p
Smart −

p
Smart −

p
Length Full Full Partial

a
any +0.075 < .001 +0.094 < .001 +0.019 .5

equal +0.066 .006 +0.088 < .001 +0.022 .4

A
any +0.165 < .001 +0.188 < .001 +0.023 .7

equal +0.154 < .001 +0.176 < .001 +0.022 .8

Table 4.4: Difference in scoring methods for GPT-2 on WSC266.

Clearly, partial scoring and smart scoring are not significantly different, p ≥ .4,

and both are significantly more accurate than full scoring, p ≤ .006.

For the record, all twenty problem accuracies in Table 4.3 are significantly better

than chance (0.5), p ≤ .001. The schema accuracies that are significantly better than

chance (0.25) are those achieved under partial, mean partial, smart, and mean smart

scoring, p < .001. Under the other six scoring methods, including full scoring, the

schema accuracies are not significantly different from chance, p ≥ .1.
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Differences in schema accuracy are less significant than differences in problem

accuracy mainly because there are always half as many schemas as problems.

We saw in Section 3.7.1 that a model can have better than random problem

accuracy and worse than random schema accuracy (a > 0.5 and A < 0.25) for a

sufficiently low rate of anti-solved schemas, A′′ ≈ 0. That did occur in this experiment:

under mean full and mean normalized full scoring, any-length answers. A′′ was never

higher than 0.023, which was its value under partial and mean partial scoring.

It is clear that, under several scoring methods, GPT-2 is able to achieve much

better than random accuracy on the Winograd Schema Challenge.

Moving on to our third question, we compare model accuracy across datasets.

Table 4.5 shows problem accuracy a and schema accuracy A for GPT-2, under full,

partial, and smart scoring, on WSC273 and WSC266, on problems with any-length

answers and equal-length answers. It also includes the differences in accuracy between

the datasets and the statistical significance of those differences.

Scoring
Metric

Answer
WSC273 WSC266

WSC266 −
p

Method Length WSC273

smart
a

any 0.736 0.744 +0.008 .7

scoring
equal 0.710 0.720 +0.010 .8

A
any 0.482 0.496 +0.014 .8

equal 0.419 0.440 +0.020 .7

partial
a

any 0.725 0.726 0.000 > .9

scoring
equal 0.699 0.698 −0.001 > .9

A
any 0.474 0.474 −0.001 > .9

equal 0.419 0.418 −0.002 > .9

full
a

any 0.648 0.650 +0.002 .9

scoring
equal 0.634 0.632 −0.002 > .9

A
any 0.307 0.308 +0.002 > .9

equal 0.269 0.264 −0.005 > .9

Table 4.5: Comparing accuracy of GPT-2 on WSC266 and WSC273.

Clearly, accuracies on WSC266 and WSC273 are not significantly different, p ≥ .7.

Our changes to WSC273 have not affected GPT-2’s ability to solve the dataset.

There are some relevant results in the literature. Comparing full scoring to partial

scoring on WSC273, any-length answers, we find a significant increase in both problem

and schema accuracy: ∆a = 0.077, p < .001, and ∆A = 0.168, p < .001. Our results

are consistent with Trinh and Le [98], who found that partial scoring “outperforms”
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full scoring “by a large margin” for their custom language model, and with Radford

et al. [76], who found that partial scoring is more accurate than full scoring for GPT-2.

The accuracy we obtained on WSC273 with partial scoring, 0.725, is higher than

the value of 0.7070 reported by Radford et al. [76] with the same model: ∆a = −0.018,

p = .5. The difference is not significant, but our revised GPT-2 accuracy is identical

to a later state-of-the-art reported by Kocijan et al. [44], who finetuned BERT on

Winograd training datasets. It is not clear why GPT-2 is more accurate now. Our

preprocessing of the dataset (Section 3.2) seems like a more likely culprit than our

implementation of partial scoring (Section 3.1.1). In any case, this may illustrate the

value of stating one’s methodology and reporting statistical significance.

Moving on to our fourth question, we consider the effect of answer length on

accuracy. For WSC266, referring back to Table 4.3, we compare each accuracy on

all problems to the corresponding accuracy on problems with equal-length answers,

twenty comparisons in all, and find no significant differences, p ≥ .3. For WSC273,

referring back to Table 4.5, we make the same comparisons, six in all, and again find

no significant differences, p ≥ .3. On both WSC266 and WSC273, GPT-2 appears to

be fairly robust with respect to the number of tokens in the answer options.

Finally, we try out our consistency metrics. Again, our three scoring methods

are full, partial, and smart scoring. Recall that smart scoring is identical to partial

scoring unless the target pronoun is at the end of the problem statement, which occurs

in only 6.8% of problems in WSC266 and 7.3% in WSC273. Therefore, we expect the

consistency between partial and smart scoring to be very high, and we report it only

for comparison to the consistency between partial and full scoring.

Table 4.6 shows consistency c, consistent accuracy ca, preserved accuracy cp,

schema consistency C, strict schema consistency C∗, consistent schema accuracy Ca,

and preserved schema accuracy Cp for GPT-2 on WSC273 and WSC266 when we

change from full scoring to partial scoring and, for comparison, from partial scoring

to smart scoring, both of which changes increase accuracy.

As expected, the consistencies from partial to smart scoring are very high.

The consistencies from full to partial scoring are not high. On WSC266, the

change increased problem accuracy by 7.5 percentage points and schema accuracy by

16.5 (∆a, ∆A). It did so by changing the predicted answers on 31.6% of problems
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Dataset
Answer

c ca cp C C∗ Ca CpLength
From Partial Scoring to Smart Scoring

WSC266
any 0.974 0.722 0.995 0.970 0.962 0.474 1.000

equal 0.967 0.692 0.992 0.967 0.956 0.418 1.000

WSC273
any 0.967 0.714 0.985 0.956 0.949 0.460 0.969

equal 0.957 0.683 0.977 0.946 0.935 0.398 0.949
From Full Scoring to Partial Scoring

WSC266
any 0.684 0.530 0.815 0.617 0.496 0.203 0.659

equal 0.637 0.484 0.765 0.593 0.440 0.143 0.542

WSC273
any 0.689 0.531 0.819 0.620 0.504 0.204 0.667

equal 0.645 0.489 0.771 0.602 0.452 0.151 0.560

Table 4.6: Consistency of GPT-2 with respect to scoring method.

and 50.4% of schemas (1 − c, 1−C∗). 18.5% of problems and 34.1% of schemas that

were solved under full scoring were not solved under partial scoring (1 − cp, 1 − Cp).

To go into a little more detail, 27.1% of schemas gained accuracy from the change,

11.3% lost accuracy, and 61.7% (C) kept the same accuracy. But 19.5% of the last

group, making up 12.0% of all schemas, kept the same accuracy while changing the

predicted answers. In short, 23.3% of schemas lost or only maintained accuracy while

changing answers, 27.1% gained accuracy, and 49.6% (C∗) were unchanged.

As Table 4.6 shows, the consistency values for WSC273 are almost identical to

the corresponding values for WSC266 across the board.

4.2.2 Accuracy of RoBERTa Scoring Methods

Moving on to RoBERTa, Table 4.7 shows problem accuracy a and schema accuracy A

for that model on WSC266, under six scoring methods, on problems with any-length

answers and equal-length answers. Model loss is mean multi-mask scoring (∗).

Taking the mean improves the accuracy of both statement scoring and multi-mask

scoring, but it worsens the accuracy of answer scoring. We restrict our attention to

mean statement scoring, mean multi-mask scoring, and (non-mean) answer scoring.

Ranking the scoring methods from most to least accurate, we have mean statement

scoring, mean multi-mask scoring, and answer scoring.

We reject answer scoring for being both less accurate and more computationally

intensive than multi-mask scoring. Statement scoring is far more computationally
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Scoring Take a, Any a, Equal A, Any A, Equal
Method Mean? Length Length Length Length

statement no 0.778 0.791 0.556 0.582
scoring yes 0.786 0.791 0.571 0.582

multi-mask no 0.744 0.775 0.489 0.549
scoring yes∗ 0.759 0.775 0.519 0.549
answer no 0.718 0.758 0.444 0.527
scoring yes 0.699 0.758 0.406 0.527

Table 4.7: Accuracy of scoring methods for RoBERTa on WSC266.

intensive than either of the other two scoring methods, but at least it yields higher

accuracy. Since we already decided how to handle means, that leaves two scoring

methods: mean multi-mask or loss scoring and mean statement scoring. We may still

report some results for answer scoring for purposes of comparison.

Figure 4.2 displays the key results from Table 4.7 with 95% confidence intervals.

Figure 4.2: Accuracy of scoring methods for RoBERTa on WSC266.

Moving on to our second question, evidently, the highest accuracies are achieved

under mean statement scoring: a = 0.778 and A = 0.556. Table 4.8 shows the
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differences in accuracy between answer scoring, mean multi-mask scoring, and mean

statement scoring for RoBERTa on WSC266, with statistical significance.

Metric
Answer Multi-Mask −

p
Statement −

p
Statement −

p
Length Answer Answer Multi-Mask

a
any +0.041 .07 +0.068 .002 +0.026 .3

equal +0.016 .5 +0.033 .3 +0.016 .6

A
any +0.075 .08 +0.128 .003 +0.053 .3

equal +0.022 .8 +0.055 .4 +0.033 .6

Table 4.8: Difference in scoring methods for RoBERTa on WSC266

Mean statement scoring, despite its relatively high cost, is not significantly more

accurate than mean multi-mask scoring, p ≥ .3. On all problems from WSC266,

mean statement scoring is more accurate than answer scoring, p ≤ .003, and mean

multi-mask scoring is marginally more accurate, p ≤ .08. However, when we restrict

to problems with equal-length answers, neither is significantly more accurate, p ≥ .3.

For the record, all twenty-four accuracies in Table 4.7 are significantly better than

chance, p < .001. In particular, RoBERTa never has worse than random schema

accuracy, although the rate A′′ of anti-solved schemas was never higher than 0.008,

which was its value under answer scoring and mean answer scoring.

It is clear that, under several scoring methods, RoBERTa is able to achieve much

better than random accuracy on the Winograd Schema Challenge.

Moving on to our third question, we compare model accuracy across datasets.

Table 4.9 shows problem accuracy a and schema accuracy A for RoBERTa, under

answer scoring, mean multi-mask scoring, and mean statement scoring, on WSC273

and WSC266, on problems with any-length answers and equal-length answers. It also

includes the differences in accuracy and their statistical significance.

Clearly, accuracies on WSC266 and WSC273 are not significantly different, p ≥ .8.

Our changes to WSC273 have not affected RoBERTa’s ability to solve the dataset.

The accuracy we obtained on WSC273 with mean multi-mask scoring, which is

model loss, 0.755, is identical to the 2019 state-of-the-art by Ye et al. [106], who

finetuned BERT on a Winograd training set, among other data. As we already

noted, the accuracy we obtained with mean statement scoring, 0.780, is higher than

that value: ∆a = −0.026, p = .3. Indeed, that new retroactive state-of-the-art would

not be surpassed until Sakaguchi et al. [84, 85] finetuned RoBERTa on WinoGrande
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Scoring
Metric

Answer
WSC273 WSC266

WSC266 −
p

Method Length WSC273

mean
a

any 0.780 0.786 +0.004 .9

statement
equal 0.796 0.791 +0.006 .8

A
any 0.562 0.571 +0.006 .9

equal 0.591 0.582 +0.011 .8

mean a
any 0.755 0.759 +0.005 .9

multi-
equal 0.774 0.775 +0.001 > .9

masked A
any 0.511 0.519 +0.008 .9

equal 0.548 0.549 +0.001 > .9

answer
a

any 0.714 0.718 +0.005 .9
equal 0.753 0.758 −0.004 .9

A
any 0.438 0.444 +0.009 .9

equal 0.516 0.527 −0.009 .9

Table 4.9: Comparing accuracy of RoBERTa on WSC266 and WSC273.

to obtain an accuracy of 0.901 on WSC273: as expected, their value is significantly

higher than the pretrained model’s best accuracy, ∆a = +0.121, p < .001.

The accuracy on WSC273 with our implementation of mean statement scoring,

0.780, is significantly higher than the value of 0.694 reported by Zhou et al. [109] on

the same model with, apparently, the same scoring method, p < .001. On the other

hand, the accuracy we obtained with our method of mean answer scoring, 0.692, is

almost identical to their value, p = .9. The cause of the disparity is unknown.

Moving on to our fourth question, we consider the effect of answer length on

accuracy. For WSC266, referring back to Table 4.7, we compare each accuracy on

all problems to the corresponding accuracy on problems with equal-length answers,

twelve comparisons in all, and find exactly one case of significant differences: mean

answer scoring, which we already rejected, ∆a = +0.059, p = .03 and ∆A = 0.121,

p = .02. Otherwise, the differences are insignificant, p ≥ .1, and indeed p ≥ .6 for our

chosen methods of mean multi-mask scoring and mean statement scoring.

For completeness, we make the same comparisons for WSC273, twelve in all, and

again find exactly one case of significant differences: again, mean answer scoring,

∆a = +0.060, p = .03 and ∆A = 0.122, p = .02. Otherwise, the differences are

insignificant, p ≥ .1, and indeed p ≥ .5 for our chosen scoring methods.

Since the outlier, mean answer scoring, is less accurate than answer scoring, which

is less accurate than either of our chosen scoring methods, it seems fair to say that
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on both WSC266 and WSC273, RoBERTa is robust with respect to the number of

tokens in the answer options for the best scoring methods.

Finally, we try out our consistency metrics. Again, our chosen scoring methods

are mean multi-mask scoring and mean statement scoring.

Table 4.10 shows consistency c, consistent accuracy ca, preserved accuracy cp,

schema consistency C, strict schema consistency C∗, consistent schema accuracy Ca,

and preserved schema accuracy Cp for RoBERTa on WSC273 and WSC266 when we

change from mean multi-mask scoring to the more accurate mean statement scoring.

Dataset
Answer

c ca cp C C∗ Ca CpLength
From Mean Multi-Mask Scoring to Mean Statement Scoring

WSC266
any 0.801 0.673 0.886 0.707 0.654 0.398 0.768

equal 0.863 0.714 0.922 0.747 0.736 0.440 0.800

WSC273
any 0.806 0.670 0.888 0.715 0.664 0.394 0.771

equal 0.849 0.710 0.917 0.742 0.720 0.441 0.804

Table 4.10: Consistency of RoBERTa with respect to scoring method.

The consistencies are mediocre. On WSC266, problem accuracy increased by 2.6

percentage points and schema accuracy by 5.3 (∆a, ∆A) as a result of changing the

predicted answers on 19.9% of problems and 34.6% of schemas (1− c, 1−C∗). 11.4%

of problems and 23.2% of schemas that were solved under mean multi-mask scoring

were no longer solved under mean statement scoring (1 − cp, 1 − Cp).

To go into a little more detail again, 17.3% of schemas gained accuracy, 12.0%

lost accuracy, and 70.7% (C) kept the same accuracy. Only 7.4% of the last group,

making up 5.3% of all schemas, kept the same accuracy while changing the predicted

answers. In short, 17.3% of schemas lost or only maintained accuracy while changing

answers, another 17.3% gained accuracy, and 65.4% (C∗) were unchanged.

As Table 4.10 shows, the consistency values for WSC273 are almost identical to

the corresponding values for WSC266 across the board.

4.2.3 Accuracy of T5 Scoring Methods

Moving on to T5, its parametrized scoring (3.29) admits eight variants: mean or no

mean; task prefix or no prefix; and EOS, counting the end-of-string token, or no EOS,

discounting it. Model loss is mean EOS scoring, and it can use a prefix or not.
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To avoid a large, unilluminating table of accuracies, we collect the following general

facts about problem accuracy on all problems from WSC266. First, a prefix always

increases accuracy, regardless of the other parameters, +0.015 ≤ ∆a ≤ +0.045.

Second, discounting EOS increases accuracy by a relatively large amount if we

also take the mean, +0.064 ≤ ∆a ≤ +0.094, whereas discounting EOS barely changes

accuracy if we do not also take the mean, −0.004 ≤ ∆a ≤ +0.023.

Third, taking the mean barely increases accuracy if we discount EOS, ∆a =

+0.015, and it decreases accuracy if we count EOS, −0.056 ≤ ∆a ≤ −0.053.

Our goal is not to adjust the parameters of masked scoring to maximize accuracy

on one dataset. The parameters were justified in Section 3.1.3. We included the

prefix parameter because the model was trained with prefixes. The fact that accuracy

increases with prefixes may indicate that the model’s text-to-text pretraining on DPR

and WNLI-2 is generalizing to stochastic fill-in-the-blank (Section 2.8.3). For that

reason, we will continue to report results both with and without a prefix.

We included the end-of-string token parameter to prevent one apparently spurious

token from dominating the mean. The fact that, basically, discounting EOS increases

accuracy only when we take the mean, and taking the mean increases accuracy only

when we discount EOS, may indicate that we were successful.

For example, the highest accuracy is achieved under mean prefix no-EOS masked

scoring. Compared to that, not taking the mean yields ∆a = −0.015, and counting

EOS yields ∆a = −0.064. But flipping both parameters yields ∆a = −0.011: with

no mean, we no longer need to prevent any one token from dominating the mean.

In light of the above discussion, we will discount EOS if and only if we take the

mean: unless otherwise stated, all our scoring methods follow this rule.

We decided to report accuracies for the following scoring methods: mean prefix

scoring, the most accurate method; prefix scoring with no mean, the second most

accurate method, as well as the most accurate without a mean and the most accurate

that counts EOS; mean scoring with no prefix, the most accurate method without a

prefix; and basic scoring with no mean or prefix, to round out the list.

Model loss did not make the list. But, for comparison, we will report prefix loss

scoring (mean, EOS) and loss scoring with no prefix (also mean, EOS).

Table 4.11 shows problem accuracy a and schema accuracy A for T5 on WSC266,
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under various scoring methods, on problems with any-length answers and equal-length

answers. Model loss is, of course, represented by loss and prefix loss (∗).

Scoring a, Any a, Equal A, Any A, Equal
Method Length Length Length Length

mean prefix 0.868 0.870 0.737 0.741
prefix 0.857 0.864† 0.714 0.728†

mean 0.853 0.840 0.707 0.679
basic 0.816 0.809‡ 0.632 0.617‡

prefix loss∗ 0.805 0.864† 0.609 0.728†

loss∗ 0.759 0.809‡ 0.519 0.617‡

Table 4.11: Accuracy of scoring methods for T5 on WSC266.

Once again, as a mathematical certainty, the mean has no effect on problems with

equal-length answers. For that reason, on that subset, prefix loss scoring is identical

to prefix scoring (†), and loss scoring is identical to basic scoring (‡).
Apart from that, ranking the scoring methods from most to least accurate, we

have mean prefix, prefix, mean, basic (i.e., no mean, no prefix), prefix loss, and loss.

Figure 4.3 displays the results from Table 4.11 with 95% confidence intervals.

Moving on to our second question, evidently, the highest accuracies are achieved

under mean prefix scoring, and they are very good: a = 0.868 and A = 0.737.

Table 4.12 shows the differences in accuracy, for T5 on WSC266, between prefix

loss scoring, a sort of default; mean scoring, which properly discounts EOS without

bothering with a prefix; and mean prefix scoring, which is the most accurate.

Metric
Answer Mean −

p
Mean Prefix −

p
Mean Prefix −

p
Length Prefix Loss Prefix Loss Mean

a
any +0.049 .03 +0.064 .003 +0.015 .5

equal −0.025 .4 +0.006 .8 +0.031 .5

A
any +0.098 .02 +0.128 .003 +0.030 .2

equal −0.049 .4 +0.012 .9 +0.062 .3

Table 4.12: Difference in scoring methods for T5 on WSC266.

Clearly, mean and mean prefix scoring are not significantly different, p ≥ .2, and

compared to prefix loss scoring, both are significantly more accurate on problems with

any-length answers, p ≤ .03, but not on problems with equal-length answers, p ≥ .4.

For the record, all twenty-four accuracies in Table 4.11 are significantly better than
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Figure 4.3: Accuracy of scoring methods for T5 on WSC266.

chance, p < .001. In particular, T5 never has worse than random schema accuracy,

although the rate A′′ of anti-solved schemas was identically 0.

It is abundantly clear that, under several scoring methods, T5 is able to achieve

much better than random accuracy on the Winograd Schema Challenge.

Moving on to our third question, we compare model accuracy across datasets.

Table 4.13 shows problem accuracy a and schema accuracy A for T5, under the

scoring methods from Table 4.12, on WSC273 and WSC266, on problems with any-

length answers and equal-length answers, with changes and statistical significance.

Clearly, for these scoring methods, accuracies on WSC266 and WSC273 are not

significantly different, p ≥ .7. The three scoring methods shown are representative of

all six. Our changes to WSC273 have not affected T5’s ability to solve the dataset.

The highest accuracy we obtained on WSC273, 0.861, which was with mean prefix

scoring, is lower than the 2019 state-of-the-art of 0.901 by Sakaguchi et al. [84, 85],

who finetuned RoBERTa on WinoGrande: ∆a = −0.040, p = .04.

Our highest accuracy is not significantly lower than the zero-shot value of 0.883



123

Scoring
Metric

Answer
WSC273 WSC266

WSC266 −
p

Method Length WSC273

mean
a

any 0.861 0.868 +0.008 .7

prefix
equal 0.870 0.870 0.000 > .9

A
any 0.723 0.737 +0.014 .8

equal 0.741 0.741 0.000 > .9

mean
a

any 0.850 0.853 +0.004 .9
equal 0.840 0.840 0.000 > .9

A
any 0.701 0.707 +0.006 .9

equal 0.679 0.679 0.000 > .9

prefix
a

any 0.802 0.805 +0.002 .9

loss
equal 0.864 0.864 0.000 > .9

A
any 0.606 0.609 +0.003 > .9

equal 0.728 0.728 0.000 > .9

Table 4.13: Comparing accuracy of T5 on WSC266 and WSC273.

reported for GPT-3 on WSC273 by Brown et al. [5, 6]: ∆a = −0.022, p = .3.

Moving on to our fourth question, we consider the effect of answer length on

accuracy. For WSC266, referring back to Table 4.11, we compare each accuracy on

all problems to the corresponding accuracy on problems with equal-length answers,

twelve comparisons in all, and find exactly one case of significant differences: prefix

loss scoring, ∆a = +0.060, p = .03 and ∆A = 0.119, p = .03. Otherwise, the

differences are insignificant, p ≥ .09, and indeed p ≥ .6 apart from loss scoring.

For completeness, we make the same comparisons for WSC273, twelve in all,

and again find exactly one case of significant differences: again, prefix loss scoring,

∆a = +0.062, p = .02 and ∆A = 0.123, p = .03. Otherwise, the differences are

insignificant, p ≥ .1, and indeed p ≥ .7 apart from loss scoring.

Since loss and prefix loss scoring are less accurate than our chosen scoring methods,

it seems fair to say that on both WSC266 and WSC273, T5 is robust with respect to

the number of tokens in the answer options for the best scoring methods.

Finally, we try out our consistency metrics. Again, we take prefix loss scoring as

a sort of default and compare it to mean prefix scoring, which is the most accurate.

Table 4.14 shows consistency c, consistent accuracy ca, preserved accuracy cp,

schema consistency C, strict schema consistency C∗, consistent schema accuracy Ca,

and preserved schema accuracy Cp for T5 on WSC273 and WSC266 when we change

from prefix loss scoring to the more accurate mean prefix scoring.
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Dataset
Answer

c ca cp C C∗ Ca CpLength
From Prefix Loss Scoring to Mean Prefix Scoring

WSC266
any 0.914 0.793 0.986 0.842 0.835 0.594 0.975

equal 0.994 0.864 1.000 0.988 0.988 0.728 1.000

WSC273
any 0.912 0.788 0.982 0.839 0.832 0.584 0.964

equal 0.994 0.864 1.000 0.988 0.988 0.728 1.000

Table 4.14: Consistency of T5 with respect to scoring method.

The consistencies are quite high. On WSC266, problem accuracy increased by 6.4

percentage points and schema accuracy by 12.8 (∆a, ∆A) as a result of changing the

predicted answers on 8.6% of problems and 16.5% of schemas (1 − c, 1 − C∗). Only

1.4% of problems (three) and 2.5% of schemas (two) that were solved under prefix

loss scoring were no longer solved under mean prefix scoring (1 − cp, 1 − Cp).

To go into a little more detail once again, 14.3% of schemas gained accuracy, 1.5%

lost accuracy, and 84.2% (C) kept the same accuracy. Only 0.9% of the last group (one

schema), making up 0.8% of all schemas, kept the same accuracy while changing the

predicted answers. In short, 2.3% of schemas (three) lost or only maintained accuracy

while changing answers, 14.3% gained accuracy, and 83.5% (C∗) were unchanged.

As Table 4.14 shows, the consistency values for WSC273 are almost identical to

the corresponding values for WSC266 across the board.

4.2.4 Model Comparison: Best Scoring Methods

Based on the results and discussion in Sections 4.2.1 through 4.2.3, it is clear that

each of GPT-2, RoBERTa, and T5 is able to achieve significantly better than random

accuracy on the Winograd Schema Challenge; that the choice of scoring method, in

general, significantly affects each model’s accuracy; that our changes to WSC273 to

create WSC266 do not affect any model’s ability to solve the dataset under any of

the best scoring methods; and that on both datasets, each model is fairly robust with

respect to answer option token counts under any of the best scoring methods.

Therefore, on Winograd datasets, we will report results for all three models, but

only under smart scoring for GPT-2, mean statement scoring for RoBERTa, and

mean prefix scoring for T5, which we call the standard setup. Also, since we based

our perturbations on WSC266, we will report results on that dataset rather than on
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WSC273. On the other hand, where appropriate, we will continue to report separate

results for problems with any-length answers and equal-length answers.

Figure 4.4 displays the models’ best accuracies on WSC266, meaning under the

standard setup, on problems with any-length answers and equal-length answers.

Figure 4.4: Best model accuracies on WSC266 under the standard setup.

Table 4.15 shows the differences in best accuracy between models. Clearly, T5 is

more accurate than RoBERTa or GPT-2, p ≤ .005. And RoBERTa is more accurate

than GPT-2, albeit marginally on problems with any-length answers, .08 ≤ p ≤ .1,

but significantly on problems with equal-length answers, .005 ≤ p ≤ .009.

Metric
Answer RoBERTa −

p
T5 −

p
T5 −

p
Length GPT-2 RoBERTa GPT-2

a
any +0.041 .08 +0.083 < .001 +0.124 < .001

equal +0.071 .009 +0.079 .004 +0.151 < .001

A
any +0.075 .1 +0.165 < .001 +0.241 < .001

equal +0.143 .005 +0.158 .005 +0.301 < .001

Table 4.15: Comparison of best model accuracies on WSC266.
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Bear in mind that the subset of WSC266 with equal-length answers differs between

GPT-2 or RoBERTa and T5 (Table 4.2).

At this point, we have reported enough results that it may be helpful to formally

collect them: by the performance profile of a model, a dataset, or a perturbation,

we mean the complete set of reported accuracies and consistencies for that model,

dataset, or perturbation, particularly under the best scoring methods or at least our

chosen scoring methods. Currently, our profiles are limited to WSC266 and WSC273,

but in the next section we extend them to perturbations of WSC266.

4.3 Perturbations of Winograd Schemas

Continuing our evaluation protocol, we calculate the accuracy and consistency of each

model on perturbations of WSC266. As stated in Section 4.2.4, we report results only

under the standard setup and only on perturbations of WSC266, not WSC273.

Our perturbations are as follows: switched, adjectival, unbalanced, and inverted.

The first three are problem transformations, and each has a strong claim to being

substantially equivalent. The fourth is a schema transformation, and whether or not

it substantially preserves the content of a schema is an open question.

The no-candidate perturbation, which is certainly not content-preserving, will be

treated separately when we quantify associativity on WSC266 in Section 4.4.

Our goal is to answer three questions. First, how do the perturbations affect model

accuracy? Second, how consistent are the models on the perturbations? Third, is the

inverted dataset substantially equivalent to its original formulation?

We address the first two questions, on perturbations in general, in Section 4.3.1.

Then we focus exclusively on the third question, about inversion, in Section 4.3.2.

We will not report separate results for the problems with equal-length answers

because that property varies so much between perturbations (Table 4.2).

Where relevant, we mention how our results compare to the published performance

of these and other models, but there are very few directly comparable results.

4.3.1 Consistency on Perturbations

Table 4.16 shows problem accuracy a and schema accuracy A for the usual models,

under the standard setup, on WSC266 and four perturbations thereof. It also includes
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the differences between each perturbation and the corresponding subset of the original

dataset, and the statistical significance, i.e., p-value, of those differences.

Model Perturbation Metric Value
Perturbation −

p
Original Subset

GPT-2

original
a 0.744 – –
A 0.496 – –

switched
a 0.693 −0.014 .6
A 0.414 0.000 –

adjectival
a 0.701 −0.017 .6
A 0.448 +0.011 .9

unbalanced
a 0.654 −0.090 < .001
A 0.376 −0.120 .006

inverted
a 0.628 −0.117 < .001
A 0.278 −0.218 < .001

RoBERTa

original
a 0.786 – –
A 0.571 – –

switched
a 0.707 −0.079 .009
A 0.443 −0.129 .04

adjectival
a 0.753 −0.023 .4
A 0.506 −0.046 .5

unbalanced
a 0.541 −0.244 < .001
A 0.083 −0.489 < .001

inverted
a 0.808 +0.023 .3
A 0.617 +0.045 .3

T5

original
a 0.868 – –
A 0.737 – –

switched
a 0.779 −0.057 .05
A 0.571 −0.100 .09

adjectival
a 0.816 −0.017 .5
A 0.644 −0.023 .7

unbalanced
a 0.722 −0.147 < .001
A 0.466 −0.271 < .001

inverted
a 0.805 −0.064 < .001
A 0.609 −0.128 .001

Table 4.16: Accuracy on perturbations of WSC266.

Figure 4.5 displays the accuracies from Table 4.16 with 95% confidence intervals.

The most significant changes in problem accuracy, all of which are decreases, are

as follows: the switched perturbation for RoBERTa, p ≤ .009, and T5, p ≤ .05; the

unbalanced perturbation for every model, p < .001; and the inverted perturbation for

GPT-2 and T5, p < .001. We get the same list from the schema accuracies.



128

Figure 4.5: Accuracy on perturbations of WSC266.

The three largest absolute changes in accuracy are also the three largest relative

changes, expressed as a fraction of the model’s accuracy on the original dataset.

They are as follows, p < .001 in all cases: GPT-2 on the inverted perturbation,

∆a = −0.117 (−15.7%), ∆A = −0.218 (−43.9%); RoBERTa on the unbalanced

perturbation, ∆a = −0.244 (−31.1%), ∆A = −0.489 (−85.5%); and T5 on the

unbalanced perturbation, ∆a = −0.147 (−16.9%), ∆A = −0.271 (−36.7%).

Indeed, on the inverted perturbation, GPT-2’s schema accuracy is only marginally

better than chance, p = .5, although the model’s problem accuracy is significantly

better than chance, p < .001. On the unbalanced perturbation, RoBERTa’s schema

accuracy is worse than chance, p < .001, and the model’s problem accuracy is only

marginally better than chance, p = .2. Other than that, every model achieves better

than random problem and schema accuracy on every perturbation, p ≤ .001.

We are now able to characterize a model by its performance profile with respect

to perturbations. For example, only GPT-2 is not significantly worse on the switched

perturbation; only RoBERTa is not significantly worse on the inverted perturbation.
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However, the simplest way to characterize a model, as our discussion has indicated,

is with respect to the unbalanced and inverted perturbations. Table 4.17 shows the

relative change in accuracy between the original dataset and each of those. Note the

model order, which would be the same if we used the absolute change instead.

Model Metric
Unbalanced − Inverted −

Original Original

GPT-2
a −12.1% −15.7%
A −24.2% −43.9%

T5
a −16.9% − 7.4%
A −36.7% −17.3%

RoBERTa
a −31.1% + 2.9%
A −85.5% + 7.9%

Table 4.17: Ranking models by change in accuracy on perturbations of WSC266.

That is, the models can be ranked according to their change in accuracy on those

perturbations: for the unbalanced perturbation, RoBERTa loses the most accuracy

and GPT-2 the least; for the inverted perturbation, the order is reversed.

We argued in Section 3.4.4 that the switched and adjectival perturbations are

fairly similar, at least conceptually, and these results somewhat support that claim.

Table 4.18 shows the differences in accuracy between the switched perturbation and

the corresponding subset of the adjectival perturbation, with p-values.

Model Metric
Switched −

p
Adjectival

GPT-2
a −0.007 .9
A −0.029 .7

RoBERTa
a −0.050 .1
A −0.071 .3

T5
a −0.050 .1
A −0.100 .09

Table 4.18: Comparing WSC266 adjectival and switched.

None of the differences are very significant, p ≥ .09. For that reason, we can

treat the switched and adjectival perturbations as a group: call it the interchangeable

family of perturbations. Because the symmetrical subset of WSC266, which becomes

the adjectival perturbation, contains the entire switchable subset, we will take the

larger adjectival perturbation as the representative of the interchangeable family.



130

We also argued in Section 3.4.4 that the unbalanced perturbation is quite different

in concept from the interchangeable family, and these results seem to support that

claim as well. We will discuss the inverted perturbation in detail in Section 4.3.2, but

for now, our results also indicate that it differs from every other perturbation.

Table 4.19 shows the differences in accuracy between the adjectival perturbation,

as a representative of the interchangeable family, and the corresponding subsets of

the unbalanced and inverted perturbations, with p-values. Note the model order.

Model Metric
Unbalanced −

p
Inverted −

p
Adjectival Adjectival

GPT-2
a −0.086 .006 −0.103 .001
A −0.138 .009 −0.241 < .001

T5
a −0.109 < .001 −0.052 .07
A −0.195 < .001 −0.115 .03

RoBERTa
a −0.207 < .001 +0.023 .5
A −0.414 < .001 +0.046 .5

Table 4.19: Comparing WSC266 adjectival, unbalanced, and inverted.

The differences between the adjectival and unbalanced perturbations vary greatly

between models; indeed, we already ranked the models according to their performance

on the unbalanced perturbation (Table 4.17). The differences between the adjectival

and inverted perturbations also vary greatly, but our ranking of models is reversed.

Moving on to our second question, Table 4.20 shows each applicable metric of

consistency c, consistent accuracy ca, preserved accuracy cp, schema consistency C,

strict schema consistency C∗, consistent schema accuracy Ca, and preserved schema

accuracy Cp for each model on each perturbation of WSC266.

Recall that the switched and adjectival perturbations both have fewer than 266

problems, because they are transformations of proper subsets of the original dataset:

the switchable and symmetrical subsets, respectively. According to our consistency

metrics, we compare a perturbation only to the corresponding subset of WSC266.

Figure 4.6 displays the consistency scores C and Ca from Table 4.20.

In Table 4.17, we noted that GPT-2 performs particularly poorly on the inverted

perturbation, and RoBERTa on the unbalanced perturbation. Indeed, the consistent

accuracies are the lowest in exactly those cases: Ca = 0.188 for GPT-2 on WSC266

inverted, and ca = 0.481 and Ca = 0.053 for RoBERTa on WSC266 unbalanced.
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Model Perturbation c ca cp C C∗ Ca Cp

GPT-2

switched 0.686 0.543 0.768 0.686 0.529 0.271 0.655
adjectival 0.718 0.569 0.792 0.644 0.540 0.287 0.658

unbalanced 0.737 0.568 0.763 0.654 0.571 0.286 0.576
inverted – – – 0.579 – 0.188 0.379

RoBERTa

switched 0.807 0.650 0.827 0.743 0.686 0.386 0.675
adjectival 0.770 0.649 0.837 0.701 0.621 0.379 0.688

unbalanced 0.635 0.481 0.612 0.451 0.361 0.053 0.092
inverted – – – 0.699 – 0.444 0.776

T5

switched 0.800 0.707 0.846 0.700 0.657 0.471 0.702
adjectival 0.856 0.753 0.903 0.770 0.747 0.540 0.810

unbalanced 0.718 0.654 0.753 0.564 0.504 0.391 0.531
inverted – – – 0.662 – 0.504 0.684

Table 4.20: Consistency on perturbations of WSC266.

Figure 4.6: Consistency on perturbations of WSC266.
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The perturbation consistencies may be compared to the scoring consistencies of

the models on all problems from WS266 in Tables 4.6, 4.10, and 4.14. For example,

c = 0.684 for GPT-2 when we change from full scoring to partial scoring; c = 0.801 for

RoBERTa when we change from mean multi-mask scoring to mean statement scoring;

and c = 0.914 for T5 when we change from prefix loss scoring to mean prefix scoring.

We highlight the highest consistency: T5 on the adjectival perturbation. The

model’s problem accuracy decreased by 1.7 percentage points (three problems) and

its schema accuracy by 2.3 (two schemas) as a result of changing the predicted answers

on 14.4% of problems and 25.3% of schemas. 9.7% of problems and 19.0% of schemas

that were solved in the original dataset were not solved in the perturbation.

10.3% of schemas gained accuracy from the perturbation, 12.6% lost accuracy, and

77.0% kept the same accuracy. Only 3.0% of the last group (two schemas), making

up 2.3% of all schemas, kept the same accuracy while changing the predicted answers.

In short, 14.9% of schemas lost or only maintained accuracy while changing answers,

10.3% gained accuracy, and 74.7% were unchanged.

We would like to compare our results on WSC266 to published results, but very few

of those are directly comparable. We begin with the invertible perturbation, for which

there is one arguably relevant result, then move on to the switched perturbation.

Elazar et al. [23] evaluate RoBERTa on an inverted perturbation of WSC273 [21]

consisting of 226 problems reportedly with answers of length one. Not all the problems

were correctly inverted, and the dataset is not well preprocessed. We found that 196

inverted problems from WSC266 have unit-length answers, and indeed at most 196 of

their 226 problems actually have unit-length answers (in the context of the problem).

The authors report accuracies of a = 0.7391 and A = 0.4783. Our values of

a = 0.808 and A = 0.617 on the inverted perturbation of WSC266 under mean

statement scoring are significantly higher: ∆a = +0.069, p = .002 and ∆A = +0.138,

p = .004. Restricting to problems with unit-length answers, we get a = 0.816 and

A = 0.633, which are higher still: ∆a = +0.077, p < .001 and ∆A = +0.154, p < .001.

Moving on to the switched perturbation, for which there are several arguably

relevant results, we note that those are typically for WSC273, rarely for WSC285,

and, of course, never for WSC266. Moreover, they typically use the switchable subset

identified by Trichelair et al. [95] and, of course, never our modified version.
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Trichelair et al. [95] report the switchable consistency of Trinh and Le [97]’s custom

language model and Emami et al. [24]’s information retrieval system, which are not

relevant models for this thesis. Emami et al. [25] report the switchable consistency

of BERT on the KnowRef coreference corpus, which is not a relevant dataset.

Kocijan et al. [44] report the switchable consistency on WSC273 of GPT, not

GPT-2, and BERT, under partial scoring and mean multi-mask scoring respectively,

but these are still not directly comparable models. With the pretrained models, they

report a consistency of c = 0.466 for GPT, much lower than our value of c = 0.693

for GPT-2 under partial scoring or c = 0.686 under smart scoring; and they report

c = 0.458 for BERT, much lower than our value of c = 0.743 for RoBERTa under

mean multi-mask scoring or c = 0.807 under mean statement scoring.

Abdou et al. [1] report the consistency of RoBERTa on various perturbations of

WSC285, none of which we studied. Also, they describe a scoring method which is

apparently a variant of mean multi-mask scoring that averages the token probabilities

rather than log probabilities. It appears to be less accurate: a = 0.6982 on WSC285,

compared to our value of a = 0.755 on WSC273 with mean multi-mask scoring. With

the pretrained model, they report a consistency of c = 0.6877 on the closest match

to switching: a perturbation that substitutes each candidate with “an appropriate

synonym” or, if it is a personal name, “a random name of the same gender.” That is

considerably lower than our value of c = 0.743 for RoBERTa’s switchable consistency

under mean multi-mask scoring, or c = 0.807 under mean statement scoring.

Zhou et al. [109] report the consistency of GPT-2 medium, not xl, and RoBERTa

on various perturbations of WSC273 including switching, which they call “swap.”

Apparently, they use mean full scoring for GPT-2 and mean statement scoring for

RoBERTa.1 The RoBERTa result sounds promising, except that they use their own

switchable subset of 75 problems, rather than Trichelair et al. [95]’s 131. With the

pretrained models, they report a consistency of c = 0.52 for GPT-2 medium, much

lower than our value of c = 0.671 for the xl model under mean full scoring, or c = 0.686

under smart scoring; and they report c = 0.56 for RoBERTa, much lower than our

value of c = 0.807 for RoBERTa under mean statement scoring.

Ruan et al. [81] report the switchable consistent accuracy ca, not the consistency

1In Section 4.2.2, we were unable to replicate their accuracy for RoBERTa on WSC273.
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c, of BERT on WSC273. Not only is this not a directly comparable model, but

the authors solve Winograd problems using next sentence prediction, not stochastic

fill-in-the-blank. With the pretrained model, they report a consistent accuracy of

ca = 0.227 for BERT, much lower than our value of ca = 0.650 for RoBERTa under

mean statement scoring, or 0.600 under mean multi-mask scoring.

Trichelair et al. [96] report the switchable consistency of GPT-2 large, not xl, on

WSC273 under full and partial scoring. With the pretrained model, they report a

consistency of c = 0.4504 under full scoring, much lower than our value of c = 0.721

for the xl model under full scoring; and they report c = 0.6335 under partial scoring,

considerably lower than our value of c = 0.693 under partial scoring.

Although we did change the dataset and the switchable subset, and in some cases

the model or the size of the model, making direct comparisons questionable, it does

appear that more accurate scoring methods can lead to much higher consistencies.

4.3.2 Inverted Schemas and Scoring Methods

That brings us to our third question: is the inverted dataset substantially equivalent

to its original formulation? That is, does it preserve the content of the challenge?

In Section 4.3.1, we showed that, under the standard setup, the performance profile

of the inverted perturbation differs significantly from that of the original dataset and

the switched, adjectival, and unbalanced perturbations, and that we can characterize

and rank the models according to their performance on WSC266 inverted.

All of that was under the standard setup. Here, we add some context by comparing

scoring methods for WSC266 inverted as we did for the original dataset in Section 4.2.

These results include and extend the results for WSC inverted in Table 4.16.

Table 4.21 shows problem accuracy a and schema accuracy A for GPT-2 on

WSC266 inverted, under each scoring method from Table 4.3. It also includes the

difference between the original dataset and its inversion, with statistical significance.

Taking the mean has almost no effect on accuracy—at most, one problem and one

schema—so we restrict our attention to non-mean scoring, as we did in Section 4.2.1.

In the inverted dataset, exactly two problem statements start with the target

pronoun, so full scoring and all-but-one scoring give almost identical results.

Inverting the schemas decreases the accuracy of the former best scoring methods,
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Scoring Take
a

Inverted −
p A

Inverted −
p

Method Mean? Original Original
smart no 0.628 −0.117 < .001 0.278 −0.218 < .001

scoring yes 0.628 −0.117 < .001 0.278 −0.218 < .001
partial no 0.579 −0.147 < .001 0.188 −0.286 < .001
scoring yes 0.579 −0.147 < .001 0.188 −0.286 < .001

all-but-one no 0.628 −0.023 .3 0.278 −0.030 .5
scoring yes 0.632 −0.004 .9 0.286 +0.008 .9

full scoring
no 0.628 −0.023 .3 0.278 −0.030 .5
yes 0.628 +0.008 .7 0.286 +0.045 .3

normalized no 0.650 +0.038 .06 0.308 +0.075 .05
full scoring yes 0.650 +0.038 .06 0.308 +0.075 .05

Table 4.21: Accuracy of scoring methods for GPT-2 on WSC266 inverted.

smart scoring and partial scoring, p < .001, and increases the accuracy of the former

worst scoring method, normalized full scoring, p ≤ .06.

The ranking of scoring methods on WSC266 inverted looks very different from the

ranking on WSC266 (which is the order of Table 4.21): from most to least accurate,

we have normalized full scoring, a three-way tie between smart scoring, all-but-one

scoring, and full scoring, and partial scoring last. Actually, though, all the scoring

methods except partial scoring are similar in accuracy now. For example, the change

from smart scoring to normalized full scoring is not significant: ∆a = +0.023, p = .3

and ∆A = +0.030, p = .5. However, the change from smart scoring to partial scoring

is significant: ∆a = −0.049, p = .02 and ∆A = −0.090, p = .03.

The relatively low accuracy of partial scoring may be due to the relatively high

number of problems in WSC266 inverted for which the answer placeholder occurs in

the second-last position: 48.9%, versus 6.8% in the original dataset (Table 3.8).

All the problem accuracies are significantly better than chance, p ≤ .01, and

indeed p < .001 except for the outlier of partial scoring. However, none of the schema

accuracies are significantly different from chance, p ≥ .1.

Table 4.22 shows problem accuracy a and schema accuracy A for RoBERTa on

WSC266 inverted, under each scoring method from Table 4.7. It also includes the

difference between the original dataset and its inversion, with statistical significance.

Taking the mean still improves the accuracy of both statement scoring and multi-

mask scoring, as in Section 4.2.2, but now it also improves the accuracy of answer
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Scoring Take
a

Inverted −
p A

Inverted −
p

Method Mean? Original Original
statement no 0.797 +0.019 .4 0.594 +0.038 .4

scoring yes 0.808 +0.023 .3 0.617 +0.045 .3
multi-mask no 0.714 −0.030 .2 0.436 −0.053 .3

scoring yes 0.729 −0.030 .2 0.466 −0.053 .2
answer no 0.729 +0.011 .7 0.459 +0.015 .8
scoring yes 0.733 +0.034 .1 0.466 +0.060 .2

Table 4.22: Accuracy of scoring methods for RoBERTa on WSC266 inverted.

scoring. However, the improvement to answer scoring is not even close to significant,

p = .9, so we restrict our attention to mean statement scoring, mean multi-mask

scoring, and (non-mean) answer scoring, just as we did in Section 4.2.2. Using mean

answer scoring instead does not appreciably affect any of the following comparisons.

Inverting the schemas has no significant effect on accuracy, p ≥ .1.

The ranking of scoring methods on WSC266 inverted differs from the ranking on

WSC266 (which is the order of Table 4.22): from most to least accurate, we have

mean statement scoring, answer scoring, and mean multi-mask scoring. Actually,

though, the only difference now is that answer scoring has moved up to match multi-

mask scoring. That is, the change from mean multi-mask scoring to answer scoring is

not significant: ∆a = +0.000 (no p) and ∆A = −0.008, p = .9. However, the change

from mean statement scoring to answer scoring, the new second-best method, is still

significant: ∆a = −0.079, p < .001 and ∆A = −0.158, p < .001.

All the accuracies are significantly better than chance, p < .001.

Table 4.23 shows problem accuracy a and schema accuracy A for T5 on WSC266

inverted, under each scoring method from Table 4.11. It also includes the difference

between the original dataset and its inversion, with statistical significance.

The Winograd task prefix still always increases accuracy, albeit insignificantly,

regardless of the other parameters, although inverted Winograd schemas are not

Winograd schemas or even pronoun disambiguation tasks.

Inverting the schemas decreases the accuracy of the former best scoring methods,

mean prefix scoring, prefix scoring, and mean scoring, p ≤ .006, and marginally

increases the accuracy of the former worst scoring method, loss scoring, p ≤ .1.

The ranking of scoring methods on WSC266 inverted looks very different from the
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Scoring
a

Inverted −
p A

Inverted −
p

Method Original Original
mean prefix 0.805 −0.064 < .001 0.609 −0.128 .001

prefix 0.797 −0.060 .002 0.594 −0.120 .003
mean 0.797 −0.056 .004 0.594 −0.113 .006
basic 0.812 −0.004 .9 0.624 −0.008 .9

prefix loss 0.812 +0.008 .8 0.624 +0.015 .8
loss 0.797 +0.038 .1 0.609 +0.090 .04

Table 4.23: Accuracy of scoring methods for T5 on WSC266 inverted.

ranking on WSC266 (which is the order of Table 4.23): from most to least accurate,

we have a tie between basic scoring and prefix loss scoring, mean prefix scoring, loss

scoring, and a tie between prefix scoring and mean scoring. Actually, though, all the

scoring methods are similar in accuracy now. For example, the largest change, from

prefix scoring or mean scoring to basic scoring or prefix loss scoring, is not significant:

∆a = +0.015, p = .5 and ∆A = +0.030, p = .5.

All the accuracies are significantly better than chance, p < .001.

Looking at all the models and accounting for statistical significance or lack thereof,

the best scoring methods for WSC266 tend to still be the best scoring methods for

WSC266 inverted, although two models, GPT-2 and T5, are significantly less accurate

on the inverted perturbation under the best scoring methods.

Table 4.24 shows the applicable metrics of schema consistency C, consistent

schema accuracy Ca, and preserved schema accuracy Cp on the inverted perturbation

of WSC266, under each relevant scoring method for each model, discussed above.

Note that, e.g., consistency c and strict schema consistency C∗ are not applicable

to WSC266 inverted, because inversion is not a problem transformation.

The consistency metrics are not difficult to interpret. For example, smart scoring

was the best scoring method on WSC266, but it lost accuracy under inversion, so

it has relatively high consistent accuracies and relatively low preserved accuracies.

Partial scoring, on the other hand, was less accurate to begin with, and it lost even

more accuracy, so its consistent accuracies and preserved accuracies are the lowest.

For RoBERTa and T5, the ranking of scoring methods by consistency score is

generally consistent, so to speak, with their ranking by accuracy on the original

dataset (which is the order in the table). GPT-2 is less consistent in that regard.
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Model Scoring Method C Ca Cp

GPT-2

smart 0.579 0.188 0.379
partial 0.511 0.105 0.222

all-but-one 0.699 0.158 0.512
full 0.699 0.158 0.512

normalized full 0.714 0.128 0.548

RoBERTa
mean statement 0.701 0.444 0.688

mean multi-mask 0.624 0.308 0.594
answer 0.617 0.263 0.593

T5

mean prefix 0.662 0.504 0.684
prefix 0.699 0.504 0.705
mean 0.647 0.474 0.670
basic 0.647 0.451 0.714

prefix loss 0.579 0.406 0.667
loss 0.579 0.361 0.696

Table 4.24: Consistency on WSC266 inverted: expanded.

At this point, collecting all the results reported here and in Section 4.3.1, we still

cannot conclusively say whether or not an inverted schema is substantially equivalent

to its original formulation, because the models are not consistent enough in general.

We note that each of the other perturbations has a much stronger or at least much

more obvious claim to being substantially equivalent than the inverted perturbation,

but we find no clear empirical evidence that the models are more consistent on them.

For example, from Table 4.20, the most accurate and consistent model, T5,

achieves consistency scores of C = 0.700 on the switched perturbation, C = 0.770

on the adjectival, C = 0.564 on the unbalanced, and C = 0.662 on the inverted,

which is barely below the switched perturbation and actually above the unbalanced.

Granted, the unbalanced perturbation is an outlier, so consider the most consistent

model on that perturbation, GPT-2: it achieves consistency scores of C = 0.686 on

the switched perturbation, C = 0.644 on the adjectival, C = 0.654 on the unbalanced,

and C = 0.579 on the inverted. Now the inverted perturbation is less consistent than

the others; on the other hand, the adjectival perturbation is much less consistent.

At least we can say that every model is less consistent under inversion than under

the switched and adjectival perturbations. And although we showed in this section

that scoring methods may perform differently on WSC266 inverted than on WSC266,

particularly for GPT-2, the extended accuracies in Tables 4.21, 4.22, and 4.23, and
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the extended consistencies in Table 4.24, do not appreciably change our findings.

4.4 Associativity of Winograd Schemas

Continuing our evaluation protocol, we use the no-candidate perturbation to quantify

spurious correlations in each model, and associativity in the dataset itself. As usual,

we report results only under the standard setup and only on WSC266.

Our goal is to answer two questions. First, can the no-candidate perturbation

confirm that the so-called associative subset of WSC266 is indeed associative? Second,

how can we correct model accuracies to account for spurious correlations?

First, we need to address the size of the associative subset of WSC266: because

it consists of only 50 problems, the statistical significance of our results is likely to

be low. Moreover, the associative subset arguably cannot even be interpreted as

a sample from a larger space of problems (Section 3.8.4), as it consists of specific

schemas identified by a specific team of annotators. Nevertheless, we will continue

to report p-values and confidence intervals. However, we will entirely omit results for

the subset of problems with equal-length answers because the associative subset of

that subset consists of only 30 problems, which we consider too few to study.

Table 4.25 shows problem accuracy a and schema accuracy A for each model, under

the standard setup, on the associative and non-associative subsets of WSC266, before

and after applying the no-candidate perturbation. It also includes the differences in

accuracy between the associative and non-associative subsets, as well as the statistical

significance of those differences and of each accuracy versus chance.

Figure 4.7 displays the accuracies from Table 4.25 with 95% confidence intervals.

Every model is more accurate on the associative subset of WSC266 than the non-

associative subset, though the significance of this result varies: p ≤ .008 for GPT-2,

p = .03 for RoBERTa, and .07 ≤ p ≤ .08 for T5, which is very accurate on both.

After applying the no-candidate perturbation, every model is more accurate on

the associative subset of WSC266 than on the non-associative subset, p < .001.

On the original dataset, as expected, all the accuracies were better than chance,

p < .001. After the perturbation, on the non-associative subset, problem accuracies

are only marginally better than chance, .2 ≤ p ≤ .9, and schema accuracies are

actually worse than chance, .001 ≤ p ≤ .04. On the associative subset, however, all
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Model Metric Non-Assoc. p Assoc. p
Assoc. −

p
Non-Assoc.

Original Problems

GPT-2
a 0.718 < .001 0.860 < .001 +0.142 .008
A 0.444 < .001 0.720 < .001 +0.276 .008

RoBERTa
a 0.764 < .001 0.880 < .001 +0.116 .03
A 0.528 < .001 0.760 < .001 +0.232 .03

T5
a 0.852 < .001 0.940 < .001 +0.088 .08
A 0.704 < .001 0.880 < .001 +0.176 .07

No-Candidate Perturbation

GPT-2
a 0.505 .9 0.760 < .001 +0.255 < .001
A 0.167 .04 0.520 .003 +0.353 < .001

RoBERTa
a 0.551 .2 0.780 < .001 +0.229 < .001
A 0.176 .009 0.560 < .001 +0.384 < .001

T5
a 0.546 .2 0.760 < .001 +0.214 < .001
A 0.139 .001 0.520 .003 +0.381 < .001

Table 4.25: Accuracy on associative and non-associative subsets of WSC266.

Figure 4.7: Accuracy on associative and non-associative subsets of WSC266, before
and after applying no-candidate perturbation.
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the accuracies are much better than chance, p ≤ .003.

After the no-candidate perturbation, the gaps in accuracy between the associative

and non-associative subsets (second-last column) increase in size for every model.

It already seems fairly clear that the so-called associative subset is indeed far more

associative than its complement. These results may be broadly consistent with Elazar

et al. [23], who finetuned RoBERTa on WinoGrande, in that their accuracies on the

no-candidate perturbation were much lower than on the original set but still better

than chance, and their accuracies on the no-candidate non-associative subset were

slightly lower than on the no-candidate associative subset.

Table 4.26 rearranges Table 4.25 to show how accuracy on the associative and non-

associative subsets of WSC266 changes after applying the no-candidate perturbation.

Model Metric Subset Original No Cand.
No Cand. −

p
Original

GPT-2
a

non-assoc. 0.718 0.505 −0.213 < .001
assoc. 0.860 0.760 −0.100 .04

A
non-assoc. 0.444 0.167 −0.278 < .001

assoc. 0.720 0.520 −0.200 .04

RoBERTa
a

non-assoc. 0.764 0.551 −0.213 < .001
assoc. 0.880 0.780 −0.100 .03

A
non-assoc. 0.528 0.176 −0.352 < .001

assoc. 0.760 0.560 −0.200 .03

T5
a

non-assoc. 0.852 0.546 −0.306 < .001
assoc. 0.940 0.760 −0.180 < .001

A
non-assoc. 0.704 0.139 −0.565 < .001

assoc. 0.880 0.520 −0.360 < .001

Table 4.26: Effect of no-candidate perturbation on accuracy, compared to original
problems, on associative and non-associative subsets of WSC266.

Figure 4.8 displays the losses in accuracy from Table 4.26.

As expected, every model is significantly more accurate on an original subset of

WSC266 than on its no-candidate perturbation, p ≤ .04. Also as expected, comparing

original subsets to their no-candidate perturbations, every model loses much more

accuracy on the non-associative subset than on the associative subset.

What about the relative change in accuracy? Let r denote an accuracy, problem

or schema, on a subset of WSC266, and let rB denote the corresponding accuracy

on its no-candidate perturbation. Then of course r − rB is the accuracy loss from
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Figure 4.8: Loss of accuracy from applying the no-candidate perturbation to the
associative and non-associative subsets of WSC266.
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Figure 4.8, or equivalently the accuracy gain we obtain by undoing the transformation

and putting candidates back into the mostly unsolvable no-candidate problems.

The accuracy lost due to the transformation can be expressed as a fraction of the

original accuracy: define the relative loss as

r1 = (r − rB)/r for r > 0. (4.1)

If we undo the transformation, the accuracy gained can be expressed as a fraction

of the unsolved share of the no-candidate perturbation: define the relative gain as

r2 = (r − rB)/(1 − rB) for rB < 1. (4.2)

Table 4.27 shows the relative loss and gain of accuracy under the no-candidate

perturbation on the associative and non-associative subsets of WSC266.

Model Metric Subset r − rB
r−rB

r
r−rB
1−rB

GPT-2
a

non-assoc. 0.213 0.297 0.430
associative 0.100 0.116 0.278

A
non-assoc. 0.278 0.625 0.333
associative 0.200 0.417 0.417

RoBERTa
a

non-assoc. 0.213 0.279 0.474
associative 0.100 0.114 0.455

A
non-assoc. 0.352 0.667 0.427
associative 0.200 0.263 0.455

T5
a

non-assoc. 0.306 0.359 0.673
associative 0.180 0.191 0.409

A
non-assoc. 0.565 0.803 0.656
associative 0.360 0.409 0.750

Table 4.27: Relative loss of accuracy from applying the no-candidate perturbation to
the associative and non-associative subsets of WSC266.

Every model loses much more accuracy on the non-associative subset than on the

associative subset according to relative loss, though not always with relative gain.

That leaves us with our second question: how can we correct model accuracies

to account for spurious correlations? The simplest solution might be to subtract a

model’s accuracy on the no-candidate perturbation from its accuracy on the original

dataset: r − rB, as above. We could also express the difference in accuracy as a

fraction of the unsolved share of the no-candidate perturbation, as in (4.2).
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Model Metric r r − rB
r−rB
1−rB

GPT-2
a 0.744 0.192 0.429
A 0.496 0.263 0.343

RoBERTa
a 0.786 0.192 0.472
A 0.571 0.323 0.430

T5
a 0.868 0.282 0.682
A 0.737 0.526 0.667

Table 4.28: Accuracies on WSC266 adjusted for spurious correlations.

Table 4.28 shows the adjusted accuracies from Figure 4.4.

This method essentially gives a model no credit for solving associative problems.

Also, it does not take into account consistency: just because a model solves fewer

problems from the no-candidate perturbation does not mean that it solves exactly

those problems in the original dataset. We will not pursue this here, but we are

referring to the method more modestly as adjusting, not correcting, the accuracies.

Probably the safest way of accounting for spurious correlations is to report a full

set of comparisons as we have done, in accordance with our evaluation protocol.

4.5 Accuracy on Adversarial Schemas

Continuing our evaluation protocol, we calculate accuracy on Reid250, extending the

models’ performance profiles to that dataset (Section 4.2.4). We evaluate scoring

methods for GPT-2 in Section 4.5.1, for RoBERTa in Section 4.5.2, and for T5 in

Section 4.5.3, and we compare the best accuracies in Section 4.5.4.

Our goal is to answer three questions. First, which scoring methods are the most

accurate on Reid250? Second, how accurate are the models on Reid250 at best?

Third, are the models, at best, more or less accurate on Reid250 than on WSC266?

4.5.1 Accuracy of GPT-2 Scoring Methods

Table 4.29 shows problem accuracy a and schema accuracy A for GPT-2 on Reid250,

under the ten scoring methods from Table 4.3, on problems with any-length answers

and equal-length answers. Model loss is mean all-but-one scoring (∗).

As with WSC266, taking the mean never improves the accuracy of a scoring

method, so we restrict our attention to non-mean scoring.
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Scoring Take a, Any a, Equal A, Any A, Equal
Method Mean? Length Length Length Length

smart scoring no 0.552 0.548 0.168 0.181
at limit 1 yes 0.548 0.548 0.160 0.181

partial no 0.540 0.543 0.152 0.170
scoring yes 0.540 0.543 0.152 0.170

all-but-one no 0.552 0.543 0.136 0.128
scoring yes∗ 0.536 0.543 0.112 0.128

full scoring
no 0.552 0.543 0.136 0.128
yes 0.536 0.543 0.104 0.128

normalized no 0.556 0.559 0.152 0.170
full scoring yes 0.556 0.559 0.152 0.170

Table 4.29: Accuracy of scoring methods for GPT-2 on Reid250.

In Reid250, 14.4% of problem statements start with the target pronoun, but full

scoring and all-but-one scoring still give identical results.

Ranking the scoring methods is not entirely straightforward, because problem

accuracy and schema accuracy give different rankings. We decided to prioritize the

stricter, schema-based metric: from most to least accurate, we have smart scoring,

normalized full scoring, partial scoring, and full scoring tied with all-but-one scoring.

Compared to WSC266, normalized full scoring has moved up to second best.

Actually, none of the scoring methods are significantly different. Comparing the

highest schema accuracy, smart scoring, to the lowest, full or all-but-one scoring, on

problems with any-length answers, we get ∆a = +0.000 (no p) and ∆A = −0.032,

p = .4. Comparing the highest problem accuracy, normalized full scoring, to the

lowest, partial scoring, we get ∆a = −0.016, p = .4 and ∆A = +0.000 (no p).

We decided to use smart scoring again: it was the most accurate on WSC266, it has

the highest schema accuracy and the second-highest problem accuracy on Reid250,

and none of the differences on Reid250 are significant anyway.

All the problem accuracies in Table 4.29 are marginally better than chance, .08 ≤
p ≤ .3. The schema accuracies are significantly worse than chance, p ≤ .04, except

smart scoring, normalized full scoring, and partial scoring, mean or no mean, on

problems with equal-length answers, which are marginally worse, .07 ≤ p ≤ .1.

Across the board, GPT-2 has better than random problem accuracy and worse

than random schema accuracy on Reid250 (a > 0.5 and A < 0.25). A′′ was never
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higher than 0.072, which was its value under partial and mean partial scoring.

4.5.2 Accuracy of RoBERTa Scoring Methods

Table 4.30 shows problem accuracy a and schema accuracy A for RoBERTa on

Reid250, under the six scoring methods from Table 4.7, on problems with any-length

answers and equal-length answers. Model loss is mean multi-mask scoring (∗).

Scoring Take a, Any a, Equal A, Any A, Equal
Method Mean? Length Length Length Length

statement no 0.600 0.617 0.272 0.298
scoring yes 0.600 0.617 0.256 0.298

multi-mask no 0.580 0.596 0.176 0.202
scoring yes∗ 0.592 0.596 0.208 0.202
answer no 0.580 0.596 0.168 0.202
scoring yes 0.584 0.596 0.176 0.202

Table 4.30: Accuracy of scoring methods for RoBERTa on Reid250.

As with WSC266, taking the mean has the largest effect on the accuracy of multi-

mask scoring, and it is still an improvement, but now it worsens statement scoring

and improves answer scoring. However, the differences between mean and non-mean

statement and answer scoring are marginal, p ≥ .7, so we restrict our attention to

mean statement scoring, mean multi-mask scoring, and (non-mean) answer scoring,

just as we did in Section 4.2.2. Using (non-mean) statement scoring or mean answer

scoring instead does not appreciably affect any of the following comparisons.

Ranking the scoring methods from most to least accurate, we have mean statement

scoring, mean multi-mask scoring, and answer scoring, the same as with WSC266.

Actually, none of the scoring methods differ significantly in problem accuracy:

p = .3 at best, comparing the highest value, mean statement scoring, to the lowest,

answer scoring. For schema accuracy, mean statement scoring is marginally higher

than mean multi-mask scoring, ∆A = +0.048, p = .2; mean multi-mask scoring is

marginally higher than answer scoring, ∆A = +0.040, p = .3; and mean statement

scoring is significantly higher than answer scoring, ∆A = +0.088, p = .01.

We decided to use mean statement scoring again for obvious reasons: it was the

most accurate on WSC266, and it is the most accurate (left) on Reid250.
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All the problem accuracies in Table 4.30 are significantly better than chance,

.002 ≤ p ≤ .01. None of the schema accuracies are, though: on problems with

any-length answers, statement and mean statement scoring are marginally better,

.6 ≤ p ≤ .9, and the other scoring methods are at least marginally worse, .04 ≤ p ≤ .3.

It follows that RoBERTa has better than random problem accuracy and worse

than random schema accuracy under four out of six scoring methods. A′′ was never

higher than 0.072, which was its value under statement scoring.

4.5.3 Accuracy of T5 Scoring Methods

Table 4.31 shows problem accuracy a and schema accuracy A for T5 on Reid250,

under the six scoring methods from Table 4.11, on problems with any-length answers

and equal-length answers. Model loss is represented by loss and prefix loss (∗).

Scoring a, Any a, Equal A, Any A, Equal
Method Length Length Length Length

mean prefix 0.656 0.676 0.336 0.375
prefix 0.644 0.676† 0.320 0.375†

mean 0.668 0.688 0.360 0.375
basic 0.656 0.676‡ 0.336 0.364‡

prefix loss∗ 0.644 0.676† 0.304 0.375†

loss∗ 0.632 0.676‡ 0.288 0.364‡

Table 4.31: Accuracy of scoring methods for T5 on Reid250.

As we already noted, on problems with equal-length answers, prefix loss scoring

is necessarily identical to prefix scoring (†), and loss scoring to basic scoring (‡).
Ranking the scoring methods from most to least accurate, we have mean, basic

tied with mean prefix, prefix, prefix loss, and loss. Compared to WSC266, mean and

basic scoring have moved up, higher than or equal to mean prefix and prefix scoring.

It would make sense that the Winograd task prefix is no longer reliably increasing

accuracy, since adversarial schemas are not Winograd schemas, in general. Actually,

though, none of the scoring methods are significantly different. Comparing the most

accurate method, mean scoring, to the least accurate, loss scoring, on problems with

any-length answers, we get ∆a = +0.036, p = .1, and ∆A = +0.072, p = .07.

We decided to use mean scoring for T5 on Reid250: it is the most accurate on that

dataset, and although mean prefix scoring was marginally more accurate on WSC266,
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this is not a Winograd dataset, and Winograd task prefixes are not appropriate.

All the problem accuracies in Table 4.29 are significantly better than chance,

p < .001. The schema accuracies are significantly better than chance too, p ≤ .03,

except prefix, prefix loss, and loss scoring on problems with any-length answers, which

are only marginally better, .08 ≤ p ≤ .4.

In particular, T5 never has better than random problem accuracy and worse than

random schema accuracy on Reid250. A′′ was never higher than 0.032, which was its

value under prefix scoring.

4.5.4 Model Comparison: Best Scoring Methods

On Reid250, we will of course report results for all three models, but only under smart

scoring for GPT-2, mean statement scoring for RoBERTa, and mean scoring for T5,

which we call the standard setup for Reid250.

Table 4.32 shows the differences in best accuracy between models. Clearly, T5

is more accurate than GPT-2, p < .001; and RoBERTa, .004 ≤ p ≤ .02, except for

schema accuracy on problems with equal-length answers, where it is marginally more

accurate, p = .1. And RoBERTa is more accurate than GPT-2, .004 ≤ p ≤ .003.

Metric
Answer RoBERTa −

p
T5 −

p
T5 −

p
Length GPT-2 RoBERTa GPT-2

a
any +0.048 .03 +0.068 .004 +0.116 < .001

equal +0.069 .009 +0.070 .02 +0.140 < .001

A
any +0.088 .01 +0.104 .01 +0.192 < .001

equal +0.117 .004 +0.077 .1 +0.194 < .001

Table 4.32: Comparison of best model accuracies on Reid250.

Bear in mind that the subset of Reid250 with equal-length answers differs between

GPT-2 or RoBERTa and T5 (Table 4.2).

Moving on to our third question, Table 4.33 shows the problem accuracy a and

schema accuracy A for GPT-2, RoBERTa, and T5, under the standard setup for

Reid250, on problems with any-length answers and equal-length answers, as well as

the differences between those accuracies and the best accuracies on WSC266 from

Figure 4.4. It also includes the statistical significance of those differences.
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Model Metric
Answer

Reid250
Reid250 −

p
Length WSC266

GPT-2
a

any 0.552 −0.192 < .001
equal 0.548 −0.172 < .001

A
any 0.168 −0.328 < .001

equal 0.181 −0.259 < .001

RoBERTa
a

any 0.600 −0.186 < .001
equal 0.617 −0.174 < .001

A
any 0.256 −0.315 < .001

equal 0.298 −0.285 < .001

T5
a

any 0.668 −0.200 < .001
equal 0.688 −0.183 < .001

A
any 0.360 −0.377 < .001

equal 0.375 −0.366 < .001

Table 4.33: Comparing best model accuracies on WSC266 and Reid250.

Note that we are comparing mean scoring for T5 on Reid250, with no Winograd

task prefix, to mean prefix scoring for T5 on WSC266.

Clearly, every model is less accurate on Reid250 than on WSC266, p < .001. The

loss of accuracy from WSC266 to Reid250 is roughly comparable for each model.

It seems reasonable to say that, for at least these three pretrained language models,

Reid250 is a more challenging test of common-sense reasoning than WSC266.

Figure 4.9 displays the accuracies on Reid250 from Table 4.33, plus the accuracies

on WSC266 from Figure 4.4 for comparison, with 95% confidence intervals.

We should add a note on the effect of answer length on accuracy for Reid250. We

compare each Reid250 accuracy from Table 4.33 on all problems to the corresponding

accuracy on problems with equal-length answers, six comparisons in all, and find no

significant differences, p ≥ .4. On Reid250, as with WSC266, each model appears to

be robust with respect to the number of tokens in the answer options.

4.6 Inversion of Adversarial Schemas

Continuing our evaluation protocol, we calculate the accuracy and consistency of each

model on our only perturbation of Reid250, which is the inverted perturbation. As

stated in Section 4.5.4, we report results only under the standard setup.

Inversion is a schema transformation, and whether or not it substantially preserves
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Figure 4.9: Comparing best model accuracies on WSC266 and Reid250.

the content of a schema is still an open question (Section 4.3.2). Note that the

switched, adjectival, and unbalanced perturbations do not apply to Reid250.

Our goal is to answer two questions. First, how does inversion affect the accuracy

of the models on Reid250? Second, how consistent are the models under inversion?

We begin by very briefly comparing scoring methods for Reid250 inverted, as we

did for Reid250 in Section 4.5 and WSC266 inverted in Section 4.3.2.

Tables 4.34, 4.35, and 4.36 show problem accuracy a and schema accuracy A

on the inverted perturbation of Reid250 for, respectively, GPT-2 under each scoring

method from Table 4.29, RoBERTa under each scoring method from Table 4.30, and

T5 under each scoring method from Table 4.31.

Although some scoring methods are marginally more accurate on Reid250 inverted

than the designated scoring methods from the standard setup for that dataset, the

differences are not large enough to justify changing any of the scoring methods.

The differences in accuracy between Reid250 and its inverted perturbation are not

even close to significant for the standard setup, .6 ≤ p ≤ .8, except for T5, where the
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Scoring Take
a

Inverted −
p A

Inverted −
p

Method Mean? Original Original
smart no 0.564 +0.012 .6 0.160 −0.008 .8

scoring yes 0.560 +0.012 .6 0.136 −0.024 .6
partial no 0.544 +0.004 .9 0.152 0.000 –
scoring yes 0.544 +0.004 .9 0.152 0.000 –

all-but-one no 0.584 +0.032 .09 0.200 +0.064 .05
scoring yes 0.568 +0.032 .08 0.160 +0.048 .1

full scoring
no 0.576 +0.024 .2 0.192 +0.056 .09
yes 0.580 +0.044 .009 0.176 +0.072 .01

normalized no 0.572 +0.016 .5 0.152 0.000 –
full scoring yes 0.568 +0.012 .6 0.136 −0.016 .7

Table 4.34: Accuracy of scoring methods for GPT-2 on Reid250 inverted.

Scoring Take
a

Inverted −
p A

Inverted −
p

Method Mean? Original Original
statement no 0.612 +0.012 .7 0.256 −0.016 .7

scoring yes 0.616 +0.016 .5 0.256 0.000 –
multi-mask no 0.572 −0.008 .7 0.152 −0.003 .6

scoring yes 0.568 −0.024 .3 0.168 −0.040 .3
answer no 0.568 −0.012 .6 0.144 −0.024 .5
scoring yes 0.576 −0.008 .7 0.152 −0.024 .6

Table 4.35: Accuracy of scoring methods for RoBERTa on Reid250 inverted.

Scoring
a

Inverted −
p A

Inverted −
p

Method Original Original
mean prefix 0.648 −0.008 .8 0.312 −0.024 .6

prefix 0.616 −0.028 .3 0.280 −0.040 .4
mean 0.624 −0.044 .06 0.272 −0.088 .05
basic 0.640 −0.016 .5 0.320 −0.016 .7

prefix loss 0.616 −0.028 .2 0.264 −0.040 .4
loss 0.636 +0.004 .9 0.288 0.000 –

Table 4.36: Accuracy of scoring methods for T5 on Reid250 inverted.
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differences are still marginal: ∆a = −0.044, p = .06 and ∆A = −0.088, p = .05.

Figure 4.10 displays the key results from Tables 4.34, 4.35, and 4.36, namely the

accuracies under the standard setup, with 95% confidence intervals.

Figure 4.10: Accuracy on Reid250 and its inversion.

Moving on to our second question, Table 4.37 shows the applicable metrics of

schema consistency C, consistent schema accuracy Ca, and preserved schema accuracy

Cp on Reid250 inverted under the standard setup.

Model C Ca Cp

GPT-2 0.688 0.056 0.333
RoBERTa 0.680 0.128 0.500

T5 0.584 0.120 0.333

Table 4.37: Consistency on the inverted perturbation of Reid250.

Again, note that, e.g., consistency c and strict schema consistency C∗ are not

applicable to Reid250 inverted, because inversion is not a problem transformation.

Figure 4.11 displays the consistency scores C and Ca from Table 4.37, plus the

inversion consistencies on WSC266 from Figure 4.6 for comparison.
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Figure 4.11: Consistency on inverted perturbation of Reid250.

The inversion consistencies are fairly consistent, so to speak, between WSC266

and Reid250. In particular, the consistencies on Reid250 are about equally mediocre.

Also, consistencies on Reid250, unlike WSC266, are fairly consistent across models.

4.7 Accuracy on Adversarial Dyads

Completing our evaluation protocol, we calculate the accuracy of each model on the

adversarial dyads of Reid250×2 and its inversions: by key and by boolean. Specifi-

cally, we apply the boolean wrapper (3.74a) and the truth pair ∥true, false∥:

It is ∥true, false∥ that [original schema].

As usual, we report results only under the standard setup for Reid250.

Our goal is to answer two questions. First, how accurate are the models on

Reid250×2? Second, how do both types of inversion affect the accuracy of the models?

Table 4.38 shows problem accuracy a and schema accuracy A for each model on

Reid250×2 and its inversions, under the standard setup for Reid250. It also includes
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the differences between each perturbation and the original dataset, as well as the

statistical significance of those differences and of each accuracy versus chance.

Model Perturbation Metric Value p
Perturbation −

p
Original

GPT-2

by answer
a 0.524 .3 – –
A 0.168 .003 – –

by key
a 0.502 > .9 −0.022 .2
A 0.108 < .001 −0.060 .01

by boolean
a 0.518 .4 −0.006 .7
A 0.176 .008 +0.076 < .001

RoBERTa

by answer
a 0.526 .3 – –
A 0.152 < .001 – –

by key
a 0.518 .4 −0.008 .7
A 0.148 < .001 −0.004 .9

by boolean
a 0.504 .9 −0.022 .1
A 0.020 < .001 −0.100 < .001

T5

by answer
a 0.524 .3 – –
A 0.176 .008 – –

by key
a 0.502 > .9 −0.022 .2
A 0.128 < .001 −0.048 .06

by boolean
a 0.500 – −0.024 .04
A 0.000 < .001 −0.088 < .001

Table 4.38: Accuracy on Reid250×2 and its inversions: by key and by boolean.

Regarding the schema-based metric A: we have distributed problems into schemas

in accordance with the discussion in Section 3.5.6.

Figure 4.12 displays the accuracies from Table 4.38 with 95% confidence intervals.

In all cases, problem accuracy is marginally better than chance, p ≥ .3, and

schema accuracy is significantly worse than chance, p ≤ .008.

Solving by boolean, T5 answered true to every problem, RoBERTa answered true

to 98.4% of them, and GPT-2 answered true to 54.6%.

To put it simply, the models make no progress at all on Reid250×2. It appears

to be a far more challenging test of common-sense reasoning than WSC266.
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Figure 4.12: Accuracy on Reid250×2 and its inversions: by key and by boolean.



Chapter 5

Conclusion

In Chapter 4, we stated and discussed the results of experiments designed to evaluate

common-sense reasoning in pretrained transformer-based language models.

In this chapter, we review the progress we made on our research problem, including

results and contributions (Section 5.1), then discuss the limitations, generalizations,

and possible future directions of our research (Section 5.2).

5.1 Results and Contributions

We described our research problem and objectives in Section 1.2.

At this point, we have completed all our objectives: to clean up the WSC273 test

set; to systematically perturb the clean dataset; to reevaluate three language models

on the clean dataset using a consistency-based evaluation protocol; to generalize the

Winograd schema as a family of problems in natural language processing; to create

a new test of common-sense reasoning out of our new schemas; and to evaluate the

same models on the new dataset, again using a consistency-based evaluation protocol.

With those objectives complete, our main contributions are as follows: a cleaner

Winograd test set in a standardized format; two perturbations of that dataset suitable

for measuring consistency; a generalization of the Winograd schema; a new common-

sense reasoning challenge; an evaluation protocol for generalized Winograd schemas;

and new results on common-sense reasoning in notable pretrained language models,

including the best scoring methods or implementations of stochastic fill-in-the-blank.

Here, we review those results, without repeating the analysis in Chapter 4.

In Section 4.2, we showed that each of the pretrained models GPT-2, RoBERTa,

and T5 can achieve better than random accuracy on WSC273, and that the choice

of scoring method, in general, can significantly affect each model’s accuracy. For

GPT-2, the most accurate scoring method is smart scoring, which we introduced.

For RoBERTa, the most accurate scoring method is mean statement scoring, which

156
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is computationally intensive but only marginally more accurate than mean multi-

mask scoring. For T5, the most accurate scoring method is mean prefix scoring,

which we also introduced. Under the best scoring methods, T5 is more accurate than

RoBERTa, which is marginally more accurate than GPT-2. Each model is robust

with respect to the length in tokens of the answer options. Our changes to WSC273

to create WSC266 do not significantly affect accuracy of any model.

In Section 4.3, we showed how each model’s accuracy changes on the switched,

adjectival, unbalanced, and inverted perturbations. We were able to characterize

each model according to its performance profile on perturbations; for example, on the

unbalanced perturbation, RoBERTa loses the most accuracy and GPT-2 the least,

whereas on the inverted perturbation, the order is reversed. Conversely, we can

characterize each perturbation according to the performance of the models on it. We

obtained much higher consistency scores than those reported in the literature.

In Section 4.4, we showed that the associative subset of WSC266 is indeed far more

associative than its complement: under the no-candidate perturbation, designed to

detect spurious correlations from associativity, the models perform no better than

chance on the non-associative subset, but fairly well on the associative subset.

In Section 4.5, we showed that Reid250 is a more challenging test of common-sense

reasoning than WSC266, as the performance of every model plummets on it. T5 is

still more accurate than RoBERTa, which is still slightly more accurate than GPT-2.

Every model is still robust with respect to answer option token counts.

In Section 4.6, we showed that the models are no more accurate on the inverted

perturbation of Reid250 than on the original dataset, and that model consistencies

with respect to inversion are mediocre. There is little evidence from either WSC266 or

Reid250 that an inverted schema is substantially equivalent to its original formulation.

This lack of evidence may reflect the inconsistency of the models more than it does

any fundamental difference in the task or content underlying the inverted schema.

In Section 4.7, we put the final nail in the coffin of model performance on Reid250:

on the adversarial dyads that make up Reid250×2, every model exhibits random

problem accuracy and worse than random schema accuracy, whether solving them by

answer, by key, or by boolean. That is, wrapping an adversarial schema, which is

a simple multiple-choice fill-in-the-blank test of common-sense verbal reasoning, in a
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phrase of the form “it is [true, false] that” appears to have a devastating effect on the

ability of pretrained language models to consistently imitate reasoning.

Based on each model’s performance on the new challenge, as well as its consistency

on both WSC266 and Reid250, we argue that there is no convincing evidence of any

verbal reasoning process in these pretrained transformer-based language models.

5.2 Limitations, Generalizations, and Future Directions

Our research has several notable limitations. On the other hand, that means that it

can be generalized in several ways, and indeed we see a few directions for possible

future research in this area, based on the literature and our own findings.

Some of the limitations are relatively minor. By convention, in our unbalanced

perturbation, we always replaced the second of two candidates. We do not know what

effect this choice had, because we have not studied the effect of replacing the first

candidate. But we can straightforwardly create a version of the perturbation that

targets the first candidate in each schema. And although we mentioned correcting

model accuracies to account for spurious correlations, we did not take consistency into

account in any of our adjustments: this is certainly a possible area of improvement.

Of course, we did not finetune any models to improve performance. Now, we did

argue that it is important to assess, if not actually improve, common-sense reasoning

in the pretrained models on which finetuned models are based. Still, we could finetune

a model on a Winograd dataset and see how that affects its performance on Reid250.

We could also try to finetune a model on Reid250 or another new adversarial dataset

and see how that affects its performance on Winograd schemas.

Elazar et al. [22] have noted that “the typical training procedure” of a language

model “does not encourage consistency.” Apart from finetuning models on Winograd

datasets or adversarial datasets, we could try to train a model for consistency. We

already have a few Winograd perturbations that could serve the purpose. If we could

systematically perturb Reid250 as well, we would have the raw material for training

language models to minimize some kind of consistency-based loss function.

Our common-sense reasoning challenge, Reid250, has of course never been studied

before, and we cannot really claim that it was thoroughly tested to be well balanced

by type of content or by difficulty. We did make an effort to include roughly the same
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number of problems from several broad areas of common-sense verbal reasoning, but

our process was far from rigorous. Indeed, we decided not to pursue filtering or

any other algorithmic form of balancing. Moreover, the challenge is made up of two

different types of schema, substitution and transposition, and we have not studied

the differential performance of models on the two types. Each of these limitations is

also a possible generalization. And, of course, we can always expand Reid250.

Along those lines, given that we characterized models and perturbations according

to the performance of the former on the latter, we may also be able to empirically

categorize schemas from particular Winograd or adversarial datasets according to the

performance of various models on those schemas and various perturbations thereof.

But is any one test enough? Sakaguchi et al. [85] have argued that “we now need

AI algorithms to compose challenges that are hard enough for AI, which requires

dynamic datasets that evolve together with the evolving state-of-the-art.”

That is, even with a new, more challenging test of common-sense reasoning, it

should be possible to train a sufficiently large transformer-based language model to

solve it, if only by overfitting. We might be able to defeat such tricks by systematically

generating new challenges. Then again, maybe all our tests will be defeated, in which

case we would again be confronted by two possibilities: either common-sense reasoning

has been achieved this time, or the entire challenge-generating process is flawed.

Before getting ahead of ourselves, can we even generate adversarial schemas, and

Reid datasets, algorithmically? It seems possible, given that we built a somewhat

challenging common-sense dataset, in part, out of mundane facts about bananas and

such. Schemas like (3.63) may not be search-proof, but they seem to be difficult for

language models to solve, especially inside a boolean wrapper. Indeed, the fact that

we can search for facts about bananas is what makes them easy to generate.

The ultimate goal of such a research project would be a challenge-generating

process such that even if a language model has been finetuned to solve one of the

challenges, it will perform no better than chance on the next challenge.
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