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Abstract

Cucumaria frondosa—the most abundant sea cucumber species in the Maritimes—is

the target of a relatively new offshore fishery on the Scotian Shelf. In an effort to

ensure the long-term sustainability of the stock, spatial reserves for C. frondosa were

set aside for the 2018/2019 fishing season. However, the expected habitat map used

to design the reserve boundaries was acknowledged to be somewhat coarse at the

time. Furthermore, high-resolution environmental data layers (including several from

a digital elevation model) have recently become available for the area. We therefore

incorporated these new data layers into three spatio-temporal species distribution

models, with the aim of re-examining the distribution of C. frondosa on the Scotian

Shelf. Each model accounted for spatio-temporal autocorrelation differently, allowing

us to compare their underlying methodologies.

Specifically, we fitted a generalized additive model with spatio-temporal smooths

and two generalized linear mixed models with spatio-temporal random effects, one

of which implemented the random effects using Gaussian Markov random fields, and

the other with nearest-neighbour Gaussian processes. All three were fitted to catch

data (recorded 2000-2019) from Fisheries and Oceans Canada’s annual Research Ves-

sel and Snow Crab surveys. To accommodate the large number of zero catch values,

each model consisted of two parts; the first part modelled the probability of sea cu-

cumber presence using all tows, whereas the second used the Gaussian distribution

to model positive catch for presence tows. Together, the three models suggested that

several environmental covariates were possibly predictive of sea cucumber habitat

and abundance in the region, including log-transformed depth and bottom stress.

Furthermore, they indicated that considerable C. frondosa aggregations existed on

Middle Bank, Banquereau Bank, and Sable Bank as of 2019. The models’ predictions

were generally very similar, although they provided somewhat different inferences re-

garding covariate effects; we discuss the implications of this result for the practitioner.
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Chapter 1

Introduction

As a result of burgeoning market demand and declining finfish stocks, the exploitation

of benthic invertebrate species has exploded since the 1950s (Shackell et al., 2013).

In addition, regulation and the scientific knowledge underlying it have been unable

to keep up with the increase in their exploitation (Anderson et al., 2008; Anderson

et al., 2011). This potent combination of fisheries growth and slow management

response has alarming implications not only for benthic invertebrates, but also for

the ecosystems in which they reside (Shackell et al., 2013). Of particular concern

here are sea cucumber species, which have been over-exploited in many parts of the

world (Purcell et al., 2010; Anderson et al., 2011).

Permanent or rotational fishery reserves are now considered integral to the protec-

tion of sea cucumber populations (Humble et al., 2007). Of course, the creation and

maintenance of effective reserves requires extensive knowledge of how the species of

interest is distributed. This thesis focuses on Cucumaria frondosa, the most abundant

sea cucumber species on the Scotian Shelf (Hamel and Mercier, 2008). The analyses

described herein were undertaken with two motivations. Firstly, we aimed to develop

a species distribution model for C. frondosa on the Scotian Shelf using a framework

that accounts for spatio-temporal autocorrelation.

This effort necessitated the selection of an approach, and the myriad of ways to

account for spatio-temporal dependence in ecological data can be daunting. Conse-

quently, ecologists well-versed in several such frameworks have to either select one, or

move forward with an ensemble approach based on a few. Meanwhile, those familiar

with only one framework have to decide whether to work with the method to which

they are accustomed, or to learn how to apply others. In all cases, a non-trivial

choice must be made and justified. Thus, our second motivation was to compare a

selection of spatio-temporal species distribution modelling (SDM) frameworks using

this investigation as a case study. Employing multiple frameworks would allow us to

1
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examine the impact of choosing a particular one in this setting. Of course, if their

predictions all concurred, we would have greater confidence in our overall inference.

This chapter will discuss spatio-temporal SDM, the three particular modelling

frameworks we applied, and the motivating biological population (i.e., C. frondosa

on the Scotian Shelf). The following chapter will describe the available data and

the overarching modelling approach used. It will also provide specifics on how each

framework was employed to address our particular problem. Chapter 3 will compare

the resulting models in terms of their predictions and interpretations. Finally, Chap-

ter 4 will discuss the results and what they mean for sea cucumbers on the Scotian

Shelf, and spatio-temporal ecologists at large.

1.1 Species Distribution Modelling

In fields concerned with natural resource management, such as fisheries science, it is

often necessary to develop a map of a species’ actual or potential geographic distri-

bution (Franklin and Miller, 2010). Reserve design is only one possible application of

such maps; once obtained, they can also be used to support biodiversity assessment

and ecological monitoring, among other applications (Zhang et al., 2018). Various

techniques are employed to generate them. On occasion, the use of kernel density

estimation is deemed sufficient; the technique enables the non-parametric estimation

of a continuous probability density function, and has been extended to estimate the

spatial distribution of species (Kenchington et al., 2009; Kenchington et al., 2014).

Kernel density estimation is notably limited in that it does not directly incorporate

or require environmental variables, whereas SDM does (Franklin and Miller, 2010).

Also known as habitat suitability modelling or ecological niche modelling, SDM as a

methodology involves the use of statistical models or machine learning algorithms to

predict a species’ spatial or spatio-temporal distribution (Franklin and Miller, 2010).

Generally, environmental variables believed to correlate with habitat suitability are

chosen as predictors or used by the selected algorithm (Franklin and Miller, 2010).

In the case of a benthic marine species for example, the bottom temperature or

bathymetry (depth) at a given location may be incorporated.

A number of algorithms and modelling approaches are now used for SDM; in prac-

tice, the method a researcher selects generally depends on the type of data available
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to them (Boitani and Powell, 2014). Information on where the species of interest

has been present (i.e., presence data) is required by all SDM approaches (Boitani

and Powell, 2014). However, presence-absence techniques necessitate absence data as

well—that is, information on locations where the species is known to not have been

present (Boitani and Powell, 2014). Presence-only data is highly prevalent, often

emerging from patrol records and historical collections (Zhang et al., 2018). Absence

data is more difficult to obtain, usually only arising via carefully designed surveys

(Zhang et al., 2018). Absence data can also be somewhat unreliable; one can readily

imagine situations where a species was present but undetected (Boitani and Powell,

2014).

To accommodate the ubiquity of presence-only data, methods such as ecological

niche factor analysis (Hirzel et al., 2002), the MaxEnt algorithm (Phillips et al.,

2006), and Mahalanobis distance modelling (Farber and Kadmon, 2003) have been

developed. They all assume presence locations represent ideal habitat conditions,

and then determine the suitability of other locations by examining how similar they

are (Boitani and Powell, 2014). Meanwhile, when presence-absence data is available,

SDM is frequently conducted via traditional statistical learning approaches such as

generalized linear models (GLMs), generalized additive models (GAMs), and tree-

based models (Zhang et al., 2018). These methods are often adequate to model the

complex predictor-response relationships that can arise in SDM (Franklin and Miller,

2010). They can also move beyond the presence-absence paradigm and model species

abundance if that information is available.

As a complication, the considered environmental covariates may not sufficiently

describe the species’ distribution; important environmental variables may be unob-

served or neglected, and ecological processes such as dispersal, predation, and com-

petition can have some influence (Bakka et al., 2016). Moreover, the measurement

process used to study the species may exhibit a spatio-temporal dependence struc-

ture, especially when environmental information is retrieved via raster maps that

were created independently of the biological survey (Gelfand et al., 2006). Somewhat

surprisingly then, a brief perusal of the literature suggests that spatio-temporal au-

tocorrelation is often neglected in SDM. A failure to account for correlated model

residuals can lead to a multitude of issues, including biased parameter estimates,
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overly-optimistic estimates of uncertainty, and even misidentification of important

environmental variables (Record et al., 2013; Bakka et al., 2016). Alternatively, dis-

regarding the spatio-temporal relationships between observations can simply be seen

as casting aside potentially crucial information.

1.2 Accounting for Spatio-temporal Autocorrelation

In a regression setting, researchers often attempt to account for spatial autocorrelation

through the inclusion of a trend surface involving geographic coordinates (Gelfand

et al., 2006). This approach is perhaps most natural when the trend surface is incor-

porated into a GAM using splines. Introduced by Hastie and Tibshirani (1986) and

popularized by implementations such as the mgcv R package (Wood, 2011), GAMs

can be viewed as a generalization of GLMs where the link function is modeled as the

sum of smooth non-parametric functions of the covariates. One can easily incorporate

a function of geographic position (i.e., s) into their GAM (with response Y and link

function g(·)) such that it can be specified as

g(E(Y )) = f(s) + ... (1.1)

The function of space can then be expanded such that it also involves time, resulting

in a spatio-temporal model.

This method incorporates information on the spatial or spatio-temporal relation-

ships between observations through the model’s systematic component (Stock et al.,

2020). In contrast, the inclusion of random effects through Gaussian random fields

(GRFs) is another commonly-used approach which focuses on the random component

(Stock et al., 2020). GRFs have been noted to improve prediction in fishery science

settings (Kallasvuo et al., 2017), and they are now commonly used to model species

distributions (Commander et al., 2022).

In classical geostatistics, a random field Y (·) is a continuous stochastic process

defined by {Y (s) : s ∈ D}, where s is a point within the region of interest D (Zim-

merman and Stein, 2010). However, sampled observations constitute only a partial

realization of this process; as such, it is considered to have a sample size of one (Mor-

aga, 2020). To accommodate this, geostatistical models must be carefully structured
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(Moraga, 2020). Traditionally, they are given the form

Y (s) = μ(s) + e(s), (1.2)

where μ(·) is a deterministic mean function and e(·) is a stationary stochastic error

process with a mean of zero (Zimmerman and Stein, 2010).

It is prudent to briefly define stationarity in a spatial context. Let C(·) be the

field’s covariance function, which describes the degree of spatial autocorrelation be-

tween any two locations in D (Bakka et al., 2016). Then second-order stationarity

posits that

C(e(si), e(sj)) = C(si−sj) (1.3)

for any two points si and sj (Zimmerman and Stein, 2010). In essence, second-order

stationarity implies that the covariance function is translation invariant (Moraga,

2020). Alternatively, intrinsic stationarity can be assumed (Zimmerman and Stein,

2010). Less strict than second-order stationarity, it says that for a semivariogram γ(·)
and any two points si and sj,

V ar(e(si)− e(sj)) = 2γ(si−sj) (1.4)

(Zimmerman and Stein, 2010). One may in addition suppose second-order or intrinsic

isotropy, where the covariance function or semivariogram depends only on ||si−sj||
(Moraga, 2020). However, the assumptions of stationarity and isotropy are easily vio-

lated in marine environments (especially near land masses); thus, they are sometimes

relaxed through various means (Thorson et al., 2015; Bakka et al., 2016).

GRFs are continuously indexed collections of random variables where every finite

collection is multivariate normal (Moraga, 2020). Because a GRF can be completely

expressed by its mean and covariance function, they are frequently used in practice

(Van Lieshout, 2019). However, the covariance function must be specified; Matérn

functions are common selections (Moraga, 2020). For a random field Y (·), the Matérn

covariance function takes the form

C(si, sj) = Cov(Y (si), Y (sj)) =
σ2
MV

2ν−1Γ(ν)
(κ||si − sj||)νKν(κ||si − sj||), (1.5)
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where si and sj are the two locations of interest, σ2
MV is the spatial field’s marginal

variance, κ controls the spatial scale, and Kν(·) is the modified Bessel function of

second kind and order ν > 0 (Moraga, 2020). Generally, ν is held fixed (at, say,

ν = 1) and ρ =
√
8ν/κ is reported as the distance where the spatial autocorrelation

diminishes to 0.1 (Carson et al., 2017). We further note that named special cases

of the Matérn exist, such as the exponential covariance function (where ν = 0.5)

(Moraga, 2020).

1.3 Gaussian Markov Random Fields and Nearest-Neighbour Gaussian

Processes

GRFs are relatively convenient for spatial and spatio-temporal modelling, but they

can be computationally expensive (Lindgren et al., 2011; Carson et al., 2017). The

difficulty arises because they require dense n×n covariance matrix factorization; this

issue has been dubbed “the big n problem” (Lindgren et al., 2011). The Stochas-

tic Partial Differential Equations (SPDE) approach rectifies this by representing a

continuously indexed GRF with a discretely indexed Gaussian Markov random field

(GMRF) (Lindgren et al., 2011). GMRFs are often used to model dependence within

a grid or lattice structure, and have a neighbourhood-based construction where non-

neighbouring components are conditionally independent (Lindgren et al., 2011; Car-

son et al., 2017). Their use provides a computational gain because only factorization

of the sparse precision matrix Q = Σ−1 is required (where Σ = C(s1, s2)) (Lindgren

et al., 2011).

In practice, the SPDE procedure involves assuming an underlying GRF with co-

variance matrix Σ (which originated from a Matérn covariance function), finding a

GMRF such that Q is close to Σ−1, and then conducting the computations with the

GMRF (Lindgren et al., 2011). However, the substitution of a GMRF in place of a

GRF requires a discretely indexed representation of a continuously indexed process

to be found (Lindgren et al., 2011). The SPDE approach uses triangulation to do

this, rather than a simple grid—this allows the cells to vary in size, and as a direct

result, also enables them to appropriately portray the resolution provided by the data

in each part of the spatial domain (Lindgren et al., 2011; Carson et al., 2017). The

resulting triangulation is often called a mesh (Lindgren et al., 2011).



7

Various software implementations of the SPDE approach exist, including Rue et

al.’s R-INLA package (2009). For our purposes, the R package sdmTMB (Anderson et

al., 2022) is especially notable. Designed with ecologists and SDM in mind, sdmTMB

can fit generalized linear mixed models (GLMMs) with spatial or spatio-temporal

random effects. All of this is handled in a highly efficient manner, because of the

package’s reliance on Template Model Builder (TMB)(Kristensen et al., 2016). TMB

enables the fast optimization of user-coded likelihood functions using the Laplace

approximation and automatic differentiation. When applied to fit complex spatio-

temporal models for fishery-based applications, including those involving GMRFs,

TMB has seen great success (Thorson et al., 2015; McDonald et al., 2022).

The SPDE approach is not the only method that has been proposed to approxi-

mate a Gaussian process. Of particular interest here is the nearest-neighbour Gaus-

sian process (NNGP) proposed by Datta et al. (2016), which is based on the Vecchia

approximation (Vecchia, 1988). Briefly, they begin its development by assuming that

w(s) follows a Gaussian process with a mean of zero and covariance function C(si, sj).

Next, they let S = {s1, s2, ...sk} be a reference set of points located in the spatial

domain of interest D such as—but not necessarily—the observed locations. Subse-

quently, the joint distribution of wS can be expressed as a product of conditional

densities, giving

p(wS)) = p(w(s1))p(w(s2)|w(s1))...p(w(sk)|w(sk−1),w(sk−2), ...w(s1)). (1.6)

They note that the computational burden is eased when the conditioning sets on the

right hand side are replaced with sets of size m such that m << k; in a NNGP these

sets are chosen to be each si’s m-nearest neighbours (in terms of Euclidean distance).

Generally, modelling frameworks that implement NNGP-based random effects specify

one or more underlying directed acyclic graphs (DAGs) on a set of random effects

nodes; the graphs fill an analogous role to the basis functions used by spline-based

models or the triangulation used in the SPDE approach (Lawler et al., 2023).

This is all exemplified by the starve R package (Lawler et al., 2023), which uti-

lizes NNGPs to allow for efficient likelihood-based fitting of hierarchical GLMMs to

spatio-temporal point-referenced data. starve is designed to be accessible to non-

statisticians, and relies on the efficient and likelihood-based TMB. Thus, it is akin to
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sdmTMB as a modelling framework.

1.4 Case Study: Cucumaria frondosa on the Scotian Shelf

Despite being the most abundant sea cucumber species on the Scotian Shelf, little

is known about C. frondosa’s life-history characteristics in the region (Pantin et al.,

2018). Some understanding has been developed by extrapolating what is known of

C. frondosa living in the Gulf of St. Lawrence area; however, regional differences are

expected (Pantin et al., 2018). Furthermore, the offshore fishery for C. frondosa on

the Scotian Shelf has only existed since 2004, with fishing restricted to designated

areas in Northwest Atlantic Fisheries Organization Divisions 4W, 4Vs, and 4X (Figure

1.1) (DFO, 2021a).

Figure 1.1: An illustration of relevant Northwest Atlantic Fisheries Organization
Divisions (as well as others in proximity).

As mentioned previously, reserves are now believed to be critical to the protection

of sea cucumber populations (Humble et al., 2007). C. frondosa tends to aggregate

in high densities and is considered a low-mobility species; such traits make their

populations potentially vulnerable to hyperstability—i.e., population decline masked

by stable catch-based indicators (Orensanz et al., 1998). As a result, conventional

management approaches (such as the setting of a Maximum Sustainable Yield) have

been shown to be problematic, and the use of reserves is recommended instead (Purcell



9

et al., 2010; DFO, 2021a).

For the 2018/2019 fishing season, Fisheries and Oceans Canada (DFO) set aside

reserves in the 4Vs Offshore fishing area (DFO, 2021a). Commercial data was limited

for the region, and challenges arose in identifying predictive environmental variables.

Thus, DFO’s annual Research Vessel (RV) and Snow Crab surveys were used to

construct an expected habitat map via a kernel density approach (DFO, 2021a).

Each habitat was classified as being either primary, secondary, or tertiary, and then

30% of their combined area was set aside (Figure 1.2) (Purcell et al., 2010; DFO,

2021a). This endeavour has been accompanied by more targeted investigations into

C. frondosa’s distribution, such as drop-camera surveys of 4W Offshore and 4W

Midshore (Harper, 2020).

Figure 1.2: The map of expected C. frondosa habitat created by DFO, overlaid with
where C. frondosa reserves were set aside for the 2018/2019 fishing season. Nearby
fishing zones and Areas of Access are also shown. This figure was taken from DFO,
2021a.

It was recommended that the expected habitat map be updated as new informa-

tion emerges (DFO, 2021a). Multibeam echosounders allow for detailed bathymetric

measurements to be taken and used to create digital elevation models (or DEMs)
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(Lecours et al., 2016). Terrain attributes, such as slope and slope aspect, are com-

monly derived from such models and exploited to produce benthic habitat maps

(Lecours et al., 2016). Environmental data layers sourced from a novel DEM and

the Bedford Institute of Oceanography North Atlantic Model (BNAM) (Brickman

et al., 2016; Wang et al., 2018) have recently been made available. Thus, we aimed

to broadly reassess the spatial distribution of C. frondosa using these new layers and

a SDM framework that adequately accounts for spatio-temporal dependencies.

Using C. frondosa on the Scotian Shelf as a case study, this thesis will consider

and informally compare the following three spatio-temporal SDM frameworks:

• GAMs with spatio-temporal smooth functions (as implemented bymgcv (Wood,

2011)),

• spatio-temporal GLMMs based on NNGPs (as implemented by starve (Lawler

et al., 2023)),

• and spatio-temporal GLMMs based on the SPDE approach (as implemented by

sdmTMB (Anderson et al., 2022)).

These three were chosen because they are relevant and accessible to ecologists. We

initially implemented our GMRF-based model with TMB (Kristensen et al., 2016)

directly. However, using a widely available package specifically tailored for such mod-

els (i.e., sdmTMB) seemed more prudent for the purposes of reproducibility. Using

TMB directly gave similar results.
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Methods

We will now develop our spatio-temporal models for C. frondosa on the Scotian Shelf.

As is usually the case with SDM, this task required that several data sources of various

types (i.e., survey data and environmental rasters) be integrated in a cohesive and

ecologically sensible way. Necessarily then, a considerable proportion of this chapter

is devoted to describing the data and various concerns surrounding them. The rest of

the chapter will specify how the three modelling frameworks were used to produce a

trio of comparable species distribution models. All references to log transformations

refer to uses of the natural log. Analyses were conducted in the R programming

language (R Core Team, 2021), as was any data pre-processing.

2.1 Survey Data

DFO conducts an annual RV survey of the Scotian Shelf and Bay of Fundy to monitor

the state of the ecosystem (DFO, 2021b). Stratified random sampling based on

depth is used to select the fishing stations, and then standardized 30-minute tows are

conducted at 3.5 knots using Western II-A bottom trawl gear (Tremblay et al., 2007).

Generally, the CCGS Alfred Needler has been the vessel used, although others—most

commonly the CCGS Teleost—have conducted the survey on occasion (Tremblay

et al., 2007). Both the Needler and the Teleost were employed in 2005, and their

catch rates were not found to be consistently different (Fowler and Showell, 2009).

DFO supplied data on RV Survey tows conducted during the years 2000-2019; most

occurred midsummer, while the rest generally took place in the winter. Only 4X saw

survey coverage in 2018 because of mechanical issues with the survey vessel (DFO,

2021b). Pre-2000 tows were not provided, as invertebrates were only reliably identified

to the species level starting in 2000.

DFO also supplied data on tows from the 2002-2019 Snow Crab Surveys. The

annual Snow Crab Survey occurs in the late summer and early fall, and follows a fixed

11
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station design where five-minute tows are conducted at a vessel speed of approximately

two knots (Zisserson, 2015). While designed to aid stock assessment for snow crabs

on the Scotian Shelf, it also catalogues information on other species encountered

through bycatch (Zisserson, 2015). The Snow Crab Survey is more limited than the

RV Survey in its spatial extent, however. It focused only on a small portion of 4Vs

upon its inception in 1996, although it has gradually expanded since to include parts

of 4Vn, 4W, and 4X (Zisserson, 2015). Throughout this period of early expansion

(1996-2003), five vessels were used to conduct the survey (Zisserson, 2015). Their

successor, the F/V Gentle Lady, served as the survey vessel until 2013, when it sank

and was replaced by the F/V Ms. Jessie (Zisserson et al., 2018). A modified version

of the Bigouden Nephrops trawl net has been employed across all years for consistency

(Zisserson, 2015).

Figure 2.1: An illustration of the spatial domain considered for modelling and pre-
diction.

We combined the available data from the two surveys and then subsetted the

result to reflect only our spatial domain of interest. While most of the offshore sea

cucumber fishery occurs in 4Vs and 4W (DFO, 2021a), Shackell et al. (2013) showed

that C. frondosa aggregations exist as far south as Browns Bank. Thus, modelling was

restricted to the Scotian Shelf, bounded by the Laurentian Channel in the northeast

and the Northeast Channel in the southwest. It was further decided that predictions

would not be made in areas with depths shallower than 23 metres (i.e., the minimum
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depth value associated with our survey tows). This avoided potentially untenable

extrapolation in the area immediately surrounding Sable Island, which was also not

of interest for prediction (Figure 2.1).

There were a total of 10327 tows used in modelling. The record associated with

each tow included the date, latitude, and longitude at which the observation occurred,

as well as a standardized total weight of C. frondosa caught. Therefore, we had not

only presence-absence data, but catch per unit effort (CPUE) quantities as well. We

note that the Snow Crab Survey weights from before 2005 were considered unreliable

due to the absence of a scale on the survey vessel, and thus they were not used in

the analyses. 3168 (30.68%) of the available tows encountered C. frondosa, although

only 2806 (27.17%) recorded a reliable non-zero weight.

Each survey dataset used different units for total weight. The RV Survey weights

were provided in kilograms standardized to a 1.75 nautical mile tow length, whereas

the Snow Crab Survey weights were given in kilograms per square kilometre. Using

an assumed standard width of 41 feet for the RV Survey trawl (Shackell et al., 2013),

the RV Survey weights were converted to kilograms per square kilometre. Further

standardization was then required, because differences in gear and gear efficiency

resulted in the Snow Crab Survey tows having higher CPUE. To control for this

disparity, an indicator variable was included in each model; it was set to one for

observations that occurred as part of the Snow Crab Survey (and zero otherwise).

The indicator also implicitly accounted for the dissimilarity in the timing of the Snow

Crab and RV surveys.

This temporal variability in tow occurrence had to be carefully considered because

size-dependent seasonal migration has been identified in C. frondosa populations in

other regions. In the St. Lawrence estuary for example, sexually mature sea cucum-

bers have been noted to move to deeper water in the fall (Hamel and Mercier, 1996).

Preliminary analyses suggested that any confounding seasonality effects were likely

negligible, however. Specifically, the available environmental data layers indicated

that bottom temperature, stress, and salinity measurements were relatively stable in

hypothesized C. frondosa habitat across any given year; this indicated that an exten-

sive migration might not be of concern in such areas. Furthermore, predictions from

our models were relatively insensitive to whether winter RV Survey tows were used
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during model fitting. Seasonality differences were thus not explicitly accounted for

during modelling, and no observations were dropped based on when they occurred.

The tows were projected onto the Universal Transverse Mercator (UTM) system,

and then the resulting coordinates were converted from metres to kilometres. This

transformation ensured that distance remained constant throughout the study region,

and simplified our eventual interpretation of the spatial parameters (McDonald et al.,

2021).

2.2 Environmental Covariates

BNAM is an eddy-resolving model of the North Atlantic Ocean (Brickman et al.,

2016; Wang et al., 2018). Based on the NEMO 2.3 (Nucleus for European Modelling

of the Ocean) framework, it is designed to support various DFO monitoring programs

by providing both hindcast simulations and future climate projections. Monthly-

averaged BNAM hindcast output was available at a resolution of 0.10◦ for 2000-2019.

To incorporate relevant BNAM output into our modelling, we joined each tow with the

bottom temperature, stress, and salinity values which corresponded spatio-temporally

(i.e., to the month and year the tow was conducted, as well as its geographic middle

point). Bottom stress was of particular interest here because it is believed to exert

a mechanistic influence on benthic communities and has shown utility in mapping

some benthic habitats (Jackson-Bué et al., 2022). Further, it can serve as a proxy for

sediment grain size (Ward et al., 2015); this is a useful trait given that C. frondosa

seems to prefer harder substrate types on the Scotian Shelf (Harper, 2020).

Preliminary analyses suggested that the BNAM values were generally close to in

situ measurements, and thus validated our subsequent use of the BNAM data layers

in modelling. Additional layers were also derived from BNAM’s bottom temperature,

stress, and salinity values such as the average and absolute minimum, maximum, and

range. The “average” layers averaged across years, whereas the “absolute” layers took

the absolute minimum, maximum, and range values as in Beazley et al. (2018). Of

these, only (absolute) stress and temperature range were utilized. Once spatially in-

tersected with the tows, additional layers deemed potentially relevant were correlated

with others of interest. To avoid multicollinearity issues, we ensured that all pairwise

|r| < 0.70 and all VIFs < 3 for the final set used in modelling (Zuur et al., 2010).
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Figure 2.2: A bathymetric map of our spatial domain of interest (and the excluded
area around Sable Island) created using values from the DEM. The scale is discrete
because the depth values were log-transformed and then binned. Prominent banks
in the area are labelled. Also overlaid on the plot are points denoting the survey
tows used in the analysis, where white points illustrate the tows that encountered sea
cucumbers.

The tows were augmented with information from a DEM as well. Lecours, Dev-

illers, et al. (2016) recommended the consideration of six terrain attributes for ecolog-

ical studies: relative deviation from mean value (RDMV; which identifies local peaks

and valleys), rugosity (which measures roughness of terrain), local mean, slope, and

two measures of slope aspect (i.e., easterness and northerness). They argued that this

combination maximizes the amount of information extracted from the terrain while

reducing the covariation and redundancy. However, they also noted that the local

mean is often strongly correlated with depths from the original DEM, and thus its

use is only recommended if the DEM itself it very noisy.

The available 100 m resolution DEM (Figure 2.2) was standardized to mean wa-

ter level and compiled with gridded data from the General Bathymetric Chart of
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the Oceans, Canadian Hydrographic Service NONNA-100 products, and DFO multi-

beam echosounders. In consultation with its creators, DFO supplied the DEM and

the recommended terrain attributes for use in this project. Rugosity and the local

mean were provided in metres (i.e., the original units of the DEM), while the slope

values were given in degrees and the other three quantities were dimensionless. We

used values from the DEM itself for depth measurements, rather than the local mean.

Furthermore, we dropped rugosity from consideration in the models because it was

almost perfectly correlated with slope (r ≈ 1.00). Although slope and rugosity ex-

plained different components of the topography (Lecours et al., 2016), they provided

redundant information. It should also be noted that RDMV was initially undefined

for some observations because the slope at their location was zero; any such RDMV

values were set to zero too.

Table 2.1: Environmental covariates

Covariate Data source

Bottom temperature (°C) BNAM (2000-2019)

Bottom temperature range (°C) BNAM (2000-2019)

Bottom salinity (psu) BNAM (2000-2019)

Log(Bottom stress [kg ∗m−1s−2]) BNAM (2000-2019)

Log(Bottom stress range [kg ∗m−1s−2]) BNAM (2000-2019)

Log(depth [m]) DEM√
Slope(◦) DEM

Northerness (unitless) DEM

Easterness (unitless) DEM

RDMV (unitless) DEM

To ensure the analysis was robust to the presence of several large slope values,

a square root transformation was applied to slope. Bottom stress, stress range, and

depth were log-transformed for similar reasons. The final set of environmental covari-

ates is summarized by Table 2.1. All were centered and scaled prior to their use in

modelling.
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2.3 Overall Modelling Approach

As expected from a species with a patchy spatial distribution, many tows did not

catch any C. frondosa. To accommodate this large proportion of zero catch values,

we employed a delta modelling approach. In a delta model, positive abundances and

the occurrence of a zero value are modelled separately; zero occurrence is treated

as a Bernoulli response, whereas positive abundances are generally modelled with

a gamma or lognormal distribution (Stefansson, 1996; Fletcher et al., 2005). The

predictions from the two sub-models can then be combined to obtain final abundance

estimates (Stefansson, 1996; Fletcher et al., 2005).

Define Yi as the C. frondosa catch in kg/km2 associated with tow i, which occurred

at location s in year t (where t ∈ [2000, 2019]). Further, let Ki ∼ Bernoulli(pi), where

Ki = 1 if C. frondosa was present in the tow and Ki = 0 otherwise. Here, we

allowed the positive abundance sub-model to model log(Yi|Ki = 1) as a Gaussian

response, whereas the zero occurrence sub-model treated Ki as a Bernoulli response.

We assumed (Yi|Ki = 1) and Ki to be independent quantities, and related the two

sub-models’ output through the following relationship:

E(Yi) = E[(Yi|Ki = 1)(Ki)] = piE(Yi|Ki = 1) = pi exp (log[E(Yi|Ki = 1)]). (2.1)

The positive abundance sub-model provided E[log(Yi|Ki = 1)] rather than log[E(Yi|Ki =

1)]. However, the two quantities were linked (see Crow and Shimizu (1988)) in that

log[E(Yi|Ki = 1)] = E[log(Yi|Ki = 1)] + 0.5σ2, (2.2)

where σ2 is the variance of the errors from the positive abundance sub-model. Hence-

forth, the zero occurrence and positive abundance sub-models will be referred to as

the presence and CPUE sub-models respectively.

As implied previously, we fit three spatio-temporal delta models of this form to

the data. The first used a GAM framework, whereas the second and third used

starve and GMRFs respectively. Despite their differences in implementation, all six

sub-models incorporated the Snow Crab Survey indicator as well as our entire set of

environmental covariates (which are listed in Table 2.1). Model-specific concerns will
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now be discussed.

2.4 Model Descriptions

2.4.1 The GAM

Using a GAM framework for the first delta model enabled any non-linear relationships

between the environmental covariates and the response to be accurately represented,

and it also allowed for the inclusion of a spatio-temporal smooth in each sub-model.

To fit GAMs in R, Wood’s mgcv library (2011) was applied, and smoothness selec-

tion was conducted with REML (rather than GCV) as he recommended. Using the

notation defined previously, the presence and CPUE sub-models took the form

pi = logit−1(Xi
∗β∗1 + f1(s, t) + f2(X1i) + ...+ f10(X9i)), (2.3)

and

E[log(Yi|Ki = 1)] = Xi
∗β∗2 + f11(s, t) + f12(X1i) + ...+ f20(X9i) (2.4)

respectively. Here, Xi
∗ is tow i’s row in the model matrix for the parametric compo-

nents (i.e., the intercept and the survey indicator), β∗1 and β∗2 are the corresponding

parameter vectors, f1(s, t) and f11(s, t) are spatio-temporal smooths, and the remain-

ing terms are smooth functions of the environmental covariates evaluated at tow i’s

values. As northerness and easterness jointly describe slope aspect, they were incor-

porated together in a 2D smooth function; the rest of the environmental covariates

were given univariate smooth functions.

We further note that each fj(s, t) was implemented as the tensor product of a

one-dimensional marginal smooth for year and a two-dimensional marginal smooth

for space (using eastings and northings). For space, Duchon splines based on first

derivative penalisation were used, with their s parameter set to 1/2 (Wood, 2017).

This selection was made in an effort to prevent inflated prediction away from the

observed data (which was particularly a concern for the CPUE sub-model) (Miller

and Wood, 2014; Wood, 2017). All other smooths were incorporated using mgcv ’s

implementation of thin plate splines.

When fitting a GAM in mgcv, the basis dimension k must be chosen for each
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smooth function. This selection subsequently sets an upper limit on the smooth’s

potential complexity, with higher values generally leading to greater computational

expense (Wood, 2011). Here, this determination was most critical for the spatio-

temporal smooths. k was set to 400 and 300 for the presence and CPUE sub-models’

respective space marginal smooths, and 5 for each year marginal smooth. Increasing

these values seemed to result in little change to model predictions. Meanwhile, the

smooth functions for the environmental covariates were each granted a basis dimension

of 3 (except for slope aspect, for which k was set to 3 × 3 = 9 to accommodate the

two variables used to specify it).

2.4.2 The starve Model

The second delta model was developed using Lawler et al.’s starve framework and R

package (2023). In this version, the presence and CPUE sub-models were given the

form

pi = logit−1(Xiβ1 + wt(s)), (2.5)

and

E[log(Yi|Ki = 1)] = Xiβ2 + zt(s) (2.6)

respectively. Here,Xi is tow i’s row in the model matrix, β1 and β2 are vectors of fixed

effect coefficients, and wt(s) and zt(s) are spatio-temporal random effects. Note that

intercepts are implicit in starve models. Furthermore, mgcv -style regression splines

were not available in starve, and so any non-linear effects had to be approximated

through polynomials. Ultimately, a quadratic term for depth was included in both

sub-models. In addition, bottom temperature, salinity, and temperature range were

granted quadratic terms in the presence sub-model; such terms appeared unnecessary

for modelling non-zero CPUE.

The random effect vectors wt(s) and zt(s) each arose from their own separate time

series of random fields. These two time series were described by analogous sets of

parameters and temporal random effects, although they are not all written out here,

as to avoid cumbersome notation. For example, wt(s) could be fully described with

wt(s)|[wt−1(s), ε] ∼ NNGP (φ(wt−1(s)− εt−1) + εt, C(s1, s2)), (2.7)
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and

ε ∼ N(μ,
σ2

(1− φ2)
Σ), (2.8)

where

Σij = φ||i−j||. (2.9)

Each field in the time series was assumed to follow a NNGP with a covariance function

C(s1, s2), and a mean function defined such that each location temporally evolved

through an AR(1) process. Convergence issues were encountered in preliminary mod-

els that used a Matérn covariance function with ν = 1. Because of this, we let

C(s1, s2) be an exponential covariance function with an unknown spatial range ρ and

spatial standard deviation τ = σMV /ρ. Meanwhile, the mean function was informed

by a random vector ε, which consisted of a random effect εt for each year in the model.

This temporal AR(1) process was directed by its mean μ, one-step-ahead variance σ2,

and AR(1) parameter φ (where |φ| ≤ 1), all of which were assumed unknown.

starve allows one to specify the maximum number of parents to be used for each

random effect node in the DAGs. Some experimentation indicated that setting this

to a value of five was reasonable. Leaving the hyperparameter at its default of 10

led to substantially greater computational expense and little change in the estimated

parameters or random effects. This was not particularly surprising; Datta et al.

(2016) showed that NNGP inference is fairly robust to such choices. It is also worth

mentioning that starve models use a persistent DAG to encode the reference set S,

and transient graphs (i.e., one for each time step) to encode any observed location

not in S (Lawler et al., 2023). We included the locations of all observations in the

reference set S, as is the default in starve.

2.4.3 The GMRF Model

The final delta model was fit using sdmTMB (Anderson et al., 2022). This model

differed from its starve counterpart in that it included explicit intercepts and specified

wt(s) and zt(s) differently. Of these two main distinctions, the one involving the ran-

dom effects is more interesting. Once again, each sub-model treated their associated

random effects vector as arising from a time series of random fields (which evolved

through an AR(1) process). However, these random fields were parameterized in a
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a.)

b.)

Figure 2.3: a: The Delaunay triangulation used for the GMRF presence sub-model.
b: The Delaunay triangulation used for its CPUE sub-model counterpart. In both
cases, the orange dots represent the locations of tows used in model fitting.
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slightly different fashion, and the SPDE approach was used to model the random

effects rather than NNGPs. We will begin by defining how the random effects were

parameterized, before exploring computational concerns.

As with before, we will consider only wt(s) for simplicity. We let Wt(·) represent
the random field underlying wt(s) at time t, and assumed that

Wt(·) = φWt−1(·) +
√
1− φ2Yt(·) (2.10)

for the temporally independent zero-mean Gaussian random field Yt(·) (see Anderson
et al., 2022). We then gave the process the initial condition

W1(·) = Y1(·), (2.11)

and represented the Yt(·)’s as GMRFs. A Matérn covariance function was used to

describe the spatial relationships implicit in each Yt(·). For this model, we held ν = 1,

and estimated the remaining Matérn parameters—i.e., the spatial scale parameter κ

and the spatial marginal variance σ2
MV . However, we instead reported the more

interpretable spatial range parameter ρ in place of κ. φ again served as the unknown

AR(1) correlation, now restricted by sdmTMB ’s implementation so that |φ| < 1.

Fitting a model using the SPDE approach requires the creation of a triangulation

(Lindgren et al., 2011). The R-INLA package (Rue et al., 2009) was used to create

a separate one for each sub-model (Figure 2.3). Care had to be taken to choose an

appropriate number of nodes for each, because a more complex mesh can potentially

increase both the computational burden and the resolution of the approximation

(Lindgren et al., 2011). In some sense then, these decisions were comparable to those

required to setup the DAGs used by the starve model or the basis functions used by

the GAM. Ultimately, the presence sub-model mesh was given 1365 nodes, whereas

its CPUE counterpart was granted 1069 nodes. Model fitting was not prohibitively

expensive with these meshes, and further increases in their complexity led to little

change in the resulting approximations.
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2.5 Model Predictions and Validation

Once residual plots were deemed satisfactory, we used each model to produce pre-

diction maps of C. frondosa CPUE across our domain. The predictions were log-

transformed to ease their interpretation. Maps of uncertainty were also produced for

the log-transformed predictions using Shono’s (2008) standard error approximation:

SD(log(Ŷi)) ≈
√
SD[logit(p̂i)]

2(1− p̂i)
2 + SD(log(Yi|Ki = 1)
∧

)
2
. (2.12)

Such standard errors rely on Taylor expansions and the delta method.

We started by producing high resolution maps (≈ 0.02◦) for 2019, the last year

for which we had survey coverage. This allowed us to closely examine recent spatial

patterns and evaluate whether the models gave plausible and similar fine scale pre-

dictions. When we were satisfied that the maps seemed reasonable, they were shown

to experts on the sea cucumber fishery, including those from industry, as a quali-

tative assessment of the models’ predictions in 4W and 4Vs; these experts deemed

our predictions sensible. Next, with the aim of identifying any macroscale historical

trends, a set of lower resolution (≈ 0.06◦) maps were generated for each year for which

we had survey coverage. All decisions regarding output resolution were made as a

compromise between output quality and computational expense.

It was necessary to preprocess the environmental data layers before the maps could

be created. The layers were first subsetted to our domain of interest and projected

onto the UTM system. From there, they were bilinearly resampled such that they

shared a common grid at the required resolution. The temporally varying data layers

required slightly more preprocessing for this task than their static counterparts; for

them, the model was given each location’s year-specific average value (i.e., the average

across all months in the year of interest). In addition, the Snow Crab Survey indicators

were set to one during prediction. This decision to assume Snow Crab Survey gear

only affected the scale of the predicted catch values, and not the relative differences

between locations and across years.
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Results

This chapter will begin by individually examining our three model fits and their

predictions. From there, it will thoroughly compare the models. Model summary

tables are given in Appendix A, and supplementary figures (including residual plots)

are provided in Appendix B. A 5% significance level was used where necessary.

3.1 Model Fits and Predictions

3.1.1 The GAM

The smooth functions of the covariates are illustrated (with p-values and 95% con-

fidence bounds) in Figure 3.1. Plots of the spatio-temporal terms (i.e., f1(s, t) and

f11(s, t)) are located in Appendix B (Figures B.10 and B.11). The majority of the

model’s explanatory power can be attributed to the spatio-temporal smooths. The

presence sub-model explained 45.30% of its null deviance, a substantially higher quan-

tity than the 17.20% explained if it was refit with the spatio-temporal smooth func-

tion removed. A similar phenomenon occurred with the CPUE sub-model, which saw

72.69% vs 34.90%. Thus, our covariates appeared insufficient alone to explain the

variability in sea cucumber abundance.

RDMV,
√
slope, easterness, and northerness were not significantly informative to

the GAM. Most of the other covariates, including log(bottom stress) and log(bottom

stress range), were significant solely when predicting sea cucumber presence. Log(depth)

and bottom temperature range were unique among our environmental variables in that

their effects were significant in both sub-models. They were also the only significant

environmental predictors of non-zero CPUE. Log(depth) was the more informative

of the two; the wide ranges associated with its smooth functions implied that they

contributed strongly to predictions. Both catch values and the probability of a pres-

ence tow were substantially lower at higher depths (all else being equal). Meanwhile,

24
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Presence sub-model (on the log odds scale)

CPUE sub-model

Figure 3.1: Partial effect plots (with 95% confidence bounds) for all the smooth
functions in the GAM except for the spatio-temporal smooths. For the easterness-
northerness smooth, lighter shades denote areas where the effect is more positive.
The axis ticks illustrate the values of the predictors for which data were available.
*** indicates the term is significant at the 5% significance level.
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Figure 3.2: The GAM’s prediction and associated uncertainty for 2019, obtained
using the available BNAM and DEM raster data (and with the Snow Crab Survey
indicators set to one).
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Figure 3.3: Predictions from the GAM for the years 2000-2019, obtained using the
available BNAM and DEM raster data (and with the Snow Crab Survey indicators
set to one).
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Figure 3.4: Uncertainty estimates for the GAM’s 2000-2019 predictions.
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higher temperature ranges were clearly associated with higher catch values where

C. frondosa was encountered. However, while the presence sub-model’s temperature

range smooth was estimated to be approximately parabolic in shape, its confidence

bounds made it challenging to interpret with any degree of certainty.

According to the GAM’s predictions (Figures 3.2 and 3.3), most C. frondosa

habitat existed in the eastern half of our spatial domain—i.e., off of Cape Breton,

or on Sable Bank, Middle Bank, or Banquereau Bank. However, some pockets of

habitat (albeit with a lower probability of sea cucumber presence) were also predicted

in the west on Browns Bank, Baccaro Bank, Roseway Bank, and La Have Bank. The

model further indicated that sea cucumber abundance was not uniformly distributed

across habitat areas; particularly strong hotspots of CPUE were located on the three

aforementioned banks in the east. Naturally, these predictions were interpreted with

prediction uncertainty in mind (Figure 3.4). The GAM estimated low standard errors

inside core sea cucumber habitat, and relatively higher ones elsewhere. This disparity

was more pronounced in earlier and later years. The standard errors were clearly

highest for the westernmost tip of our spatial domain, because of high uncertainty

in the predicted log odds of presence there. They were second highest on the slopes,

where only one tow encountered sea cucumbers.

The GAM suggested that sea cucumber abundance was relatively stable across

our time series in the east; however, it did detect some shifts in distribution there

(Figure 3.3). For example, its CPUE predictions for the northernmost point of Sable

Bank declined early in the time series. This decrease was predicted due to a drop in

C. frondosa catch values when the species was caught there. The GAM also predicted

an increase in catch rates in the late 2010s south of that area and a gradual increase in

abundance on the northwestern tip of Banquereau Bank. The former change resulted

from a regional increase in the predicted probability of presence. Meanwhile, the

latter was driven by a local increase in predicted non-zero CPUE across most of our

time series.

More substantial changes occurred in the west (Figure 3.3). In the early 2000s,

a part of Browns Bank was predicted to be the dominant sea cucumber aggregation

in the area. However, C. frondosa abundance there and at nearby Baccaro Bank

slowly declined throughout the remainder of the time series. These western shifts
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in predicted abundance were mainly driven by changes in the presence sub-model’s

predictions.

3.1.2 The starve Model

Partial effect plots for the environmental variables (with 95% confidence bounds) are

given in Figure 3.5. According to the starve model, log(depth) was again predic-

tive. All else held constant, starve suggested that this covariate had a concave-down

parabolic relationship with the log odds of presence. However, the covariate’s re-

lationship with non-zero CPUE was more uncertain; a 95% confidence interval for

log(depth)’s first-order term would be negative across its entire range, but an analo-

gous interval for the second-order term would contain zero. Bottom temperature and

salinity were the only other variables significantly informative to both sub-models.

This model suggested they had, respectively, concave-up and concave-down parabolic

relationships with the log odds of a presence tow (after holding the other predictors

fixed). Furthermore, CPUE was predicted to decrease with increasing bottom temper-

ature, whereas CPUE increased with increasing bottom salinity. Log(bottom stress)

was a significant predictor of sea cucumber presence, while bottom temperature range

and log(bottom stress range) had significant effects in the CPUE sub-model. All other

environmental predictors were deemed not significant by starve.

We now shift our attention to two of the spatio-temporal parameters, starting with

the AR(1) correlation φ. starve φ estimates were close to unity (φ̂presence = 0.997,

standard error = 0.004; φ̂CPUE = 0.941, standard error = 0.009), suggesting that each

sub-model’s time series of random fields arose from an approximation of a random

walk process. Random walks are often appropriate for modelling the distribution of

sedentary and patchily-distributed species (Commander et al., 2022). The spatial

range ρ was sensibly larger for the presence sub-model (ρ̂presence = 32.642, standard

error = 3.763; ρ̂CPUE = 9.705, standard error = 0.361); this suggested that the

random fields associated with CPUE exhibited more fine-scale spatial variation than

their presence counterparts.

These properties of the random effects were better understood by examining model

predictions (Figures 3.6 and 3.7). The 2000-2004 predictions differed from their GAM

analogues, and thus some of the early shifts in abundance that model detected were
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Presence sub-model (on the log odds scale)

CPUE sub-model

Figure 3.5: Partial effect plots (with 95% confidence bounds) for all environmental
variables incorporated into the starve model. The axis ticks illustrate the values of
the predictors for which data were available. *** indicates the variable has a term
significant at the 5% significance level.
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Figure 3.6: The starve model’s prediction and associated uncertainty for 2019, ob-
tained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicators set to one).
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Figure 3.7: Predictions from the starve model for the years 2000-2019, obtained using
the available BNAM and DEM raster data (and with the Snow Crab Survey indicators
set to one).
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Figure 3.8: Uncertainty estimates for the starve model’s 2000-2019 predictions.
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less evident here. After 2004, the starve model’s predictions were essentially con-

sistent with those from the GAM with three exceptions. First, its predictions were

noticeably less smooth than the GAM’s. Second, starve predicted higher abundances

on Middle Bank. Third, it detected a noticeable late 2010s decline in CPUE imme-

diately northeast of Sable Island and on Middle Bank. Note that the starve model’s

prediction uncertainty steadily grew throughout the time series (Figure 3.8). For

most years, starve was more uncertain of its predictions inside core sea cucumber

habitat than the GAM was; this was particularly evident on Browns Bank. However,

starve’s standard errors were often much lower in the far west and on the slopes.

3.1.3 The GMRF Model

Partial effect plots for the environmental variables (with 95% confidence bounds) are

provided in Figure 3.9. The model considered all environmental covariates, with the

exception of RDMV, to be significant predictors of C. frondosa presence. In contrast,

log(depth), bottom salinity, and bottom temperature range were the only significant

environmental predictors of abundance when the species was caught. The model

indicated that CPUE decreased with increasing bottom temperature, and presence

log odds troughed at intermediate bottom temperatures (after holding our other co-

variates constant). Presence log odds peaked at intermediate bottom temperature

ranges, whereas CPUE increased with increasing bottom temperature range. Bottom

salinity’s effect on presence log odds was uncertain as the covariate’s quadratic term

was not significant. However, bottom salinity clearly had a positive effect on CPUE.

The φ parameter values were near their upper boundary (φ̂presence = 0.990, stan-

dard error = 0.003; φ̂CPUE = 0.985, standard error = 0.004). This signified—as it did

with our starve-based approach—that the random effects temporally evolved through

an approximation of a random walk. Furthermore, the presence sub-model’s ρ esti-

mate was larger than its CPUE sub-model counterpart (ρ̂presence = 56.118, standard

error = 6.810; ρ̂CPUE = 28.756, standard error = 3.667). This again hinted that the

CPUE random fields exhibited more fine-scale spatial variation than their presence

counterparts.

Compared to the GAM, the GMRF model predicted higher abundances on Middle

Bank and near the center of our spatial domain (Figures 3.10 and 3.11). Outside of
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Presence sub-model (on the log odds scale)

CPUE sub-model

Figure 3.9: Partial effect plots (with 95% confidence bounds) for all environmental
variables incorporated into the GMRF model. The axis ticks illustrate the values of
the predictors for which data were available. *** indicates the variable has a term
significant at the 5% significance level.
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Figure 3.10: The GMRF model’s prediction and associated uncertainty for 2019,
obtained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicators set to one). Note that the two triangulations underlying the model
are somewhat visible in the bottom plot.
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Figure 3.11: Predictions from the GMRF model for the years 2000-2019, obtained
using the available BNAM and DEM raster data (and with the Snow Crab Survey
indicators set to one).
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Figure 3.12: Uncertainty estimates for the GMRF model’s 2000-2019 predictions.



40

these regions, the two models’ predictions were essentially consistent. Their estimates

of prediction uncertainty were somewhat less congruous (Figure 3.12). The standard

errors estimated by the GMRF model changed substantially less year-over-year, and

they were generally lower in the far west. Furthermore, mesh vertices were visible in

the GMRF-based standard errors (Figure 3.10).

3.2 Model Comparisons

As previously discussed, the GAM used smooth functions to account for any spatio-

temporal autocorrelation, whereas our other two models relied on random effects

which evolved temporally through an AR(1) process. The effects of the environ-

mental covariates were also implemented differently between our three approaches;

while the GAM utilized regression splines and thus flexibly represented any nonlin-

ear relationships, its mixed model counterparts used a set of fixed effect coefficients.

Because of these broad differences, the GAM considered bottom temperature range

and log(depth) to be the only significant environmental predictors of non-zero CPUE,

while our other approaches deemed additional covariates informative (such as bottom

salinity).

The models based on random effects sometimes disagreed with each other as well,

despite being structurally similar. For example, our GMRF-based approach indicated

that bottom temperature range had a concave-down parabolic relationship with the

log odds of a presence tow, and implied that log(depth) had a similar relationship

with non-zero CPUE. By comparison, our starve model deemed log(depth)’s second-

order term and both bottom temperature range terms not significant when predicting

non-zero CPUE and presence, respectively. We additionally note that northerness,

easterness, and
√
slope were significant predictors of presence solely in the GMRF

model. The standard errors associated with the GMRF model’s fixed effects were

similar to their starve model analogues. Nonetheless, because of distinctions in how

the two models implemented random effects and intercepts, their fixed effect estimates

sometimes diverged substantially (e.g., see Figure 3.13).

Clearly, each approach produced different overall conclusions regarding the sig-

nificance of the covariate effects. Yet, in instances where their conclusions agreed,

we had stronger evidence that the effects were meaningful. This was perhaps most
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(a) starve model (b) GMRF model

Figure 3.13: Partial effect plots for bottom temperature range from the two presence
sub-models based on random effects. 95% confidence bounds are included. The axis
ticks illustrate the values of the predictors for which data were available.

notably the case with the effects of log(depth) and log(bottom stress). Log(depth)

was significant in all six sub-models. Similarly, all three models deemed log(bottom

stress) a significant predictor of sea cucumber presence, but not non-zero CPUE.

We note that the random effects used by the GMRF and starve models shared

some properties. The ρ estimates from the GMRF-based approach were substantially

larger than those found by starve. This was likely another consequence of subtle

model specification differences. Both approaches indicated that ρ was larger for the

presence random fields, however. Furthermore, their φ estimates were alike, and

implied that the random effects evolved temporally through an approximation of a

random walk process. Of course, the two models’ random effects were most easily

compared by examining predictions.

Despite any dissimilarities mentioned thus far, our models concurred in their pre-

dictions overall. Still, a few differences between the three sets of predictions (Figure

3.14) should be highlighted. For example, the GAM somewhat de-emphasized the sea

cucumber aggregation on Middle Bank. Simultaneously, the GMRF model produced

slightly higher predictions near the middle of our spatial domain; only one tow en-

countered sea cucumbers in this region, and the frameworks therefore had to rely on

limited spatio-temporal information there. We further note that the starve model’s

random fields for the years 2000-2004 were affected by how starve parameterizes its
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Figure 3.14: The models’ predictions for three years in our time series, obtained
using the available BNAM and DEM raster data (and with the Snow Crab Survey
indicators set to one).
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Figure 3.15: The models’ estimates of prediction uncertainty for three years in our
time series.
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initial conditions (as of writing). This phenomenon led the model to give rather dif-

ferent predictions for these initial years. Once beyond this time period, its predictions

became highly similar to those from the other models—albeit less smooth, due to its

use of the exponential covariance function. However, starve detected an appreciable

late 2010s decline in CPUE immediately northeast of Sable Island and on Middle

Bank. The other approaches did not.

The models’ estimates of prediction uncertainty (Figure 3.15) were arguably more

sensitive to methodology differences than the predictions themselves. This was exem-

plified by the GMRF model’s standard errors, which visibly depended on the triangu-

lations used to incorporate the random effects (Figure 3.10). Those standard errors

changed minimally across the years. In contrast, the starve model’s standard errors

generally grew over time, and the GAM’s were smallest around 2010. The former

model generally had the highest predictive uncertainty inside core C. frondosa habi-

tat, whereas the latter often had the most uncertain predictions for the far west and

on the slopes. The large fluctuations in the GAM’s standard errors were caused by

uncertainty in the time marginal smooths for earlier and later years. The approaches

based on random effects did not use smoothing to model temporal variability; rather,

they allowed their random fields to evolve over discrete timesteps.

The spatio-temporal components of the models outperformed the environmen-

tal covariates. Similarly, the covariates were unable to predict noteworthy spatio-

temporal changes in abundance (such as on Browns Bank). This all indicated that

substantial information would have been lost had we ignored the dependencies in the

data.
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Conclusion

Because of the inherently spatial characteristics of C. frondosa, such as its sedentary

nature and tendency to aggregate (Orensanz et al., 1998), we anticipated the need for

a rigorous spatio-temporal approach. This choice was validated, as considerable vari-

ability in the species’ distribution could not be explained by the examined covariates

alone. Our predictions were greatly affected by our decision to account for underly-

ing spatio-temporal dependence. However, they were less affected by our choice of

framework. While the three frameworks differed somewhat in their predictive uncer-

tainty, their post-2004 predictions only markedly diverged on small portions of the

banks, and at one location far from core sea cucumber habitat. This outcome should

provide reassurance to the practitioner whose primary interest is to simply map the

distribution of a species. When troubled by the decision of which framework to use,

we recommend using the one most familiar, if this is the only objective of an analysis.

Yet, we find that comparing the output from multiple frameworks can be useful

as a validation technique. It is also helpful when the identification of predictive en-

vironmental covariates is of principal concern. While our models generally concurred

in their predictions, each gave different conclusions regarding the significance of the

covariates.
√
Slope, easterness, and northerness were significant only in the GMRF

presence sub-model. In contrast, log(bottom stress) was significant in all three pres-

ence sub-models; all else equal, the log odds of presence appear to decrease linearly

as this covariate increases. Because bottom stress can serve as a proxy for sediment

grain size (Ward et al., 2015), its utility here was relatively unsurprising. Log(depth)

was unique in that it was statistically significant in all six sub-models; they essen-

tially suggested that C. frondosa prefers the relatively lower depths afforded by the

banks. We are confident these covariates have meaningful effects, given that the

models agreed in their significance. We cannot say the same for the effects of
√
slope,

easterness, and northerness. Examining multiple models allows us to make these

45
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distinctions between the predictors.

Our results involving the covariates seem reasonable. However, there is little to

compare them to because no ecological studies of a similar nature have been conducted

on this population. It is also worth noting that the smooth functions and fixed effect

estimates we obtained might have been somewhat influenced by spatial confounding.

The phenomenon generally biases covariate effect estimates, and arises when some

subset of a model’s predictors are correlated with its spatial/spatio-temporal effects

(Clayton et al., 1993; Reich et al., 2006). It can be expected to some degree whenever

the predictors used in a spatial or spatio-temporal model exhibit strong autocorrela-

tion themselves (Hanks et al., 2015). Fortunately, the presence of spatial confounding

does not hinder prediction to unobserved locations (and in truth, may actually help)

(Page et al., 2017).

Our predictions support the findings of Shackell et al. (2013), who noted the

existence of large sea cucumber aggregations on Middle Bank, Banquereau Bank,

and Sable Bank, and smaller ones on La Have Bank, Roseway Bank, Baccaro Bank,

Browns Bank, and off of Cape Breton. Yet, our models indicate that the aggregations

on Browns Bank and Baccaro Bank have diminished substantially in abundance since

the mid-2000s. We further state that our predictions for 2019 generally concur with

DFO’s expected habitat map (see Figures 4.1 and 4.2). It is more challenging to

meaningfully compare our results with those described in Harper (2020). They showed

that one can estimate C. frondosa biomass from drop-camera images. Nonetheless,

they used their images to study counts instead, and found evidence that the areas

with the highest count-based densities did not have the largest sea cucumbers.

To our knowledge, all other inquiries into this population’s distribution have taken

purely spatial approaches. Given the characteristics of sea cucumbers, this is under-

standable. Nonetheless, we posit that future examinations would benefit from taking

a spatio-temporal approach (if it is feasible). The spatio-temporal methodologies

we used here give further insight into how C. frondosa habitat and abundance have

changed over time. They allowed us to detect the apparent decrease in abundance

on Browns Bank, for example. This decline does not appear to be an artifact of the

survey data, and could be related to an increase in scallop dredging on the bank

(Hubley et al., 2014). If this is the case, than the models’ spatio-temporal smooth
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Figure 4.1: These plots provide a closer look at each model’s abundance predictions for
2019 in the eastern half of our spatial domain. The brown lines denote the boundaries
of the Western/Emerald Banks Conservation Area, while the white and black lines
delineate sea cucumber reserves and fishing zones respectively.



48

Figure 4.2: A duplicate of Figure 1.2, provided here for convenience. The figure was
originally taken from DFO, 2021a.

functions and random effects captured anthropogenic-driven factors (such as shifts in

fishing pressure for other species) without requiring them to be explicitly included

as covariates. Our models based on random effects additionally indicated that C.

frondosa’s distribution evolves temporally through an approximation of a random

walk process. Accounting for spatio-temporal autocorrelation with smooth functions,

while convenient, does not allow for such inferences on the underlying dependence

structure.

The species’ fishery on the Scotian Shelf is restricted to a number of small fishing

zones (Figure 4.2), most of which were sparsely covered by our two surveys. Any

fishery-driven trends would therefore be challenging to capture with RV and Snow

Crab survey data alone. With that said, it is worth highlighting the situation in

4W Offshore Zone 2, as that zone’s data coverage was significant. The starve model

predicted a noticeable (and recent) drop in CPUE for the area immediately northeast

of Sable Island, which 4W Offshore Zone 2 notably rests on. The other models did not

detect any noticeable decrease inside this zone. The situation on the eastern Scotian

Shelf should continue to be carefully monitored.
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4.1 Future Directions

The modelling framework we proposed for Scotian Shelf C. frondosa can be readily

expanded upon. For example, additional benthic environmental data layers can be

considered for inclusion in our models as they become available for the region. In

particular, we suggest that a layer denoting sediment grain size be evaluated when

one is procurable. High resolution sediment information was unavailable at the time

of writing, and we thus had to rely on bottom stress to serve as a proxy (Ward et al.,

2015); ideally, this would be unnecessary. Data layers that provide information on

relevant anthropogenic-driven factors, including fishing effort, would also be worth

including if generated. A broadened suite of covariates could potentially lead to

improved predictions and scientific advice.

In a similar vein, expanding our framework to consider drop-camera survey data

could improve resolution in the fishing zones and reserves. A more ambitious propo-

sition, but one worth contemplating, would be the incorporation of fishery-dependent

data. This would be nontrivial because commercial fishing ventures and scientific

surveys clearly differ in their overall goals and the data they collect. The preferential

sampling nature of the new data would have to be considered, for example (Pennino

et al., 2016). Furthermore, integrating fishery-dependent and fishery-independent

data would require several sources of variability (such as the vessel, gear type, etc.)

to be more rigorously accounted for. In recent work, some of these challenges have

been addressed—with success—to produce species distribution models based on in-

tegrated survey and commercial data. In particular, Rufener et al. (2021) proposed

a spatio-temporally explicit model for the western Baltic cod stock based on inte-

grated data, and then compared it to a model that relied only on fishery-independent

sources. They showed that the integrated model provided more information on spatio-

temporal abundance dynamics and had reduced uncertainty in the fixed effects and

predictions.

The potential effect of seasonality on the distribution of Scotian Shelf C. frondosa

warrants further investigation. Our preliminary work suggested that (on average)

bottom temperature, stress, and salinity were relatively stable across any given year

in core C. frondosa habitat; this indicated extensive migrations may be of little con-

cern. Furthermore, our results were insensitive to whether survey tows conducted in
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the winter were used during model fitting. Nonetheless, given that size-dependent

migration has been observed in other regions (Hamel and Mercier, 1996), the season-

ality issue calls for a future study of its own. If evidence for an underlying seasonal

trend is found, our current paradigm for studying and protecting this population may

need to be reevaluated.

These models were not intended to provide a stock assessment. Regardless, we

believe they have the potential to support such an endeavour, if expanded to consider

data beyond our two surveys. Currently, assessments for Scotian Shelf C. frondosa

rely heavily on commercial catch rates (DFO, 2021a). However, because of the species’

sedentary nature, sea cucumber catch rates can be sensitive to the spatial relocation

of fishing effort (DFO, 2021a). This was demonstrated within 4W Midshore Zone F

on the Shelf; after six years of focused effort on a particular area, fishers relocated

to a new location, leading to an increase in catch rates that may not have reflected

conditions across the entire zone (DFO, 2021a). Yearly indices derived from the

output of our models, such as the mean model prediction across a given zone, would

not have such concerns. These ideas should be further developed. Indices derived from

spatio-temporal models hold great promise in decreasing the uncertainty surrounding

the stock assessment of sedentary benthic species such as C. frondosa.
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Appendix A

Model Summary Tables

Table A.1: GAM presence sub-model

Parametric Term Estimate Std. Error Z P-value

∗ Intercept -1.506 0.079 -18.950 < 0.001

∗ Snow Crab Survey -0.162 0.077 -2.094 0.036

Smooth Function Effective Df Reference Df χ2 P-value

∗ f(Eastings, Northings, Year) 442.409 567.567 1960.152 < 0.001

∗ f(Log(Depth)) 1.758 1.900 25.333 < 0.001

∗ f(Bottom Temperature) 1.895 1.982 7.350 0.023

∗ f(Btm. Temperature Range) 1.896 1.967 8.323 0.020

∗ f(Bottom Salinity) 1.820 1.941 8.186 0.023

∗ f(Log(Bottom Stress)) 1.000 1.001 9.851 0.002

∗ f(Log(Btm. Stress Range)) 1.600 1.789 5.359 0.035

f(
√
Slope) 1.651 1.860 4.150 0.067

f(Easterness, Northerness) 4.659 5.834 11.772 0.062

f(RDMV) 1.001 1.002 0.769 0.381

*Term significant at the 5% significance level.
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Table A.2: GAM CPUE sub-model

Parametric Term Estimate Std. Error Z P-value

∗ Intercept 3.779 0.049 76.686 < 0.001

∗ Snow Crab Survey 2.022 0.074 27.405 < 0.001

Smooth Function Effective Df Reference Df F P-value

∗ f(Eastings, Northings, Year) 366.132 469.93 6.545 < 0.001

∗ f(Log(Depth)) 1.949 1.980 22.385 < 0.001

f(Bottom Temperature) 1.000 1.001 1.596 0.207

∗ f(Btm. Temperature Range) 1.009 1.014 3.881 0.049

f(Bottom Salinity) 1.605 1.800 0.866 0.489

f(Log(Bottom Stress)) 1.001 1.002 1.312 0.252

f(Log(Btm. Stress Range)) 1.637 1.799 0.675 0.429

f(
√
Slope) 1.525 1.736 3.047 0.098

f(Easterness, Northerness) 2.009 2.016 0.287 0.751

f(RDMV) 1.001 1.002 0.003 0.966

*Term significant at the 5% significance level.
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Table A.3: starve presence sub-model

Fixed Effect Estimate Std. Error

∗ Log(Depth) -0.783 0.101

∗ Log(Depth)2 -0.108 0.048

Bottom Temperature -0.178 0.096

∗ Bottom Temperature2 0.099 0.034

Btm. Temperature Range 0.141 0.144

Btm. Temperature Range2 0.011 0.056

∗ Bottom Salinity -0.399 0.143

∗ Bottom Salinity2 -0.094 0.038

∗ Log(Bottom Stress) -0.167 0.051

Log(Btm. Stress Range) 0.111 0.077√
Slope -0.074 0.061

Northerness 0.073 0.043

Easterness 0.073 0.043

RDMV -0.044 0.037

Snow Crab Survey -0.089 0.105

Spatio-temporal Parameter Estimate Std. Error

Spatial Standard Deviation (τ) 0.152 0.010

Spatial Range (ρ) 32.642 3.763

Global Mean (μ) -2.116 2.122

AR(1) Correlation (φ) 0.997 0.004

Temporal Standard Deviation (σ) 0.161 0.087

*Term significant at the 5% significance level.



63

Table A.4: starve CPUE sub-model

Fixed Effect Estimate Std. Error

∗ Log(Depth) -0.613 0.082

Log(Depth)2 -0.027 0.037

∗ Bottom Temperature -0.140 0.049

∗ Btm. Temperature Range 0.433 0.067

∗ Bottom Salinity 0.262 0.081

Log(Bottom Stress) -0.008 0.035

* Log(Btm. Stress Range) -0.154 0.057√
Slope -0.091 0.054

Northerness 0.016 0.036

Easterness -0.023 0.032

RDMV 0.001 0.024

∗ Snow Crab Survey 1.991 0.089

Spatio-temporal Parameter Estimate Std. Error

Spatial Standard Deviation (τ) 0.207 0.015

Spatial Range (ρ) 9.705 0.971

Global Mean (μ) 2.862 0.361

AR(1) Correlation (φ) 0.941 0.009

Temporal Standard Deviation (σ) 0.146 0.057

*Term significant at the 5% significance level.
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Table A.5: GMRF presence sub-model

Fixed Effect Estimate Std. Error

∗ Log(Depth) -0.389 0.094

∗ Log(Depth)2 -0.136 0.048

Bottom Temperature -0.100 0.081

∗ Bottom Temperature2 0.086 0.030

∗ Btm. Temperature Range 0.348 0.156

∗ Btm. Temperature Range2 -0.161 0.057

∗ Bottom Salinity -0.361 0.147

Bottom Salinity2 -0.076 0.039

∗ Log(Bottom Stress) -0.147 0.044

∗ Log(Btm. Stress Range) 0.226 0.074

∗ √
Slope -0.105 0.051

∗ Northerness 0.085 0.042

∗ Easterness 0.076 0.037

RDMV -0.043 0.033

∗ Snow Crab Survey -0.177 0.085

∗ Intercept -2.578 0.451

Spatio-temporal Parameter Estimate Std. Error

Spatial Range (ρ) 56.118 6.810

Marginal Spatial Standard Deviation (σMV ) 2.787 0.221

AR(1) Correlation (φ) 0.990 0.003

*Term significant at the 5% significance level.
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Table A.6: GMRF CPUE sub-model

Fixed Effect Estimate Std. Error

∗ Log(Depth) -0.408 0.084

∗ Log(Depth)2 -0.171 0.040

Bottom Temperature -0.094 0.048

∗ Btm. Temperature Range 0.359 0.090

∗ Bottom Salinity 0.183 0.093

Log(Bottom Stress) -0.036 0.036

Log(Btm. Stress Range) 0.060 0.060√
Slope -0.056 0.049

Northerness 0.039 0.034

Easterness -0.045 0.031

RDMV -0.011 0.025

∗ Snow Crab Survey 2.032 0.071

∗ Intercept 2.798 0.173

Spatio-temporal Parameter Estimate Std. Error

Spatial Range (ρ) 28.756 3.667

Marginal Spatial Standard Deviation (σMV ) 1.555 0.077

AR(1) Correlation (φ) 0.985 0.004

*Term significant at the 5% significance level.



Appendix B

Supplementary Figures

Figure B.1: An illustration of where non-zero weights of sea cucumber were caught
during the available Snow Crab Survey tows. The first five years of CPUE data came
exclusively from the RV Survey because only the Snow Crab Survey weights from
2005 onwards were considered reliable.
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Figure B.2: An illustration of where non-zero weights of sea cucumber were caught
during the available RV Survey tows. The 2018 survey was not completed due to
mechanical issues with the survey vessel (DFO, 2021b).
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GAM

starve model

GMRF model

Figure B.3: The predictions from the six sub-models for 2019, obtained using the
available BNAM and DEM raster data (and with the Snow Crab Survey indicators
set to one).
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Figure B.4: Predictions from the GAM presence sub-model for the years 2000-2019,
obtained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicator set to one).
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Figure B.5: Predictions from the GAM CPUE sub-model for the years 2000-2019,
obtained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicator set to one).
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Figure B.6: Predictions from the starve presence sub-model for the years 2000-2019,
obtained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicator set to one).
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Figure B.7: Predictions from the starve CPUE sub-model for the years 2000-2019,
obtained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicator set to one).
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Figure B.8: Predictions from the GMRF presence sub-model for the years 2000-2019,
obtained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicator set to one).
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Figure B.9: Predictions from the GMRF CPUE sub-model for the years 2000-2019,
obtained using the available BNAM and DEM raster data (and with the Snow Crab
Survey indicator set to one).
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Figure B.10: A partial effects plot illustrating the GAM presence sub-model’s spatio-
temporal smooth function. Interpretations should not be made outside of our study
area (outlined in white).
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Figure B.11: A partial effects plot illustrating the GAM CPUE sub-model’s spatio-
temporal smooth function. Interpretations should not be made outside of our study
area (outlined in white).
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Figure B.12: The random effect contributions to the predictions shown in B.6. The
random effects are in link space.



78

Figure B.13: The random effect contributions to the predictions shown in B.7.
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Figure B.14: The random effect contributions to the predictions shown in B.8. The
random effects are in link space.



80

Figure B.15: The random effect contributions to the predictions shown in B.9.



81

Figure B.16: Plots of the response residuals from the GAM CPUE sub-model.
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Figure B.17: Plots of the conditional response residuals from the starve CPUE sub-
model.
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Figure B.18: Plots of the conditional response residuals from the GMRF CPUE sub-
model.


