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ABSTRACT

The overwhelming majority of eukaryotic diversity is microbial and protistan. Major new groups
are discovered nearly every year up to this day. I established several dozen cultures of heterotro-
phic protists comprised of two kinds of ‘unknowns’: 1. Incertae sedis organisms previously
described using morphological approaches but devoid of sequence data and difficult to place in

the tree of eukaryotes based on their current taxonomy alone; and 2. Previously unattested mor-
photypes. Particularly productive were samples from anaerobic, hypersaline, and alkaline envi-
ronments, and combinations thereof—in those environments, eukaryote predators of other
protists comprised a generous portion of hitherto uncharacterised diversity. I used light mi-
croscopy to carefully characterise their cell morphology and life histories, and, for some taxa,
electron microscopy was used to examine their fine structure. Using ribosomal DNA sequenc-
ing, I obtained molecular data for 39 isolates for phylogenetic analyses. Among them were

considerable contributions to the diversity of breviates, metamonads, and novel rhizarian lin-
eages among Filosa and Endomyxa. The phylogenetic position of several of these isolates re-
mained unresolved by ribosomal DNA phylogenies; thus, two of these taxa—the gliding marine

cell Meteora sporadica and ‘Protist X’, an anaerobic flagellate that preys upon other microbial

eukaryotes—were then subject to transcriptome sequencing and multigene phylogenomic anal-
yses. Surprisingly, these analyses revealed that Meteora sporadica and ‘Protist X’ form a robust

clade with the deep-branching Hemimastigophora. This hints at the existence of a new biolog-
ically diverse supergroup in the eukaryotic Tree of Life. Finally, a survey of available molecular

environmental sequence data found that about half of the novel taxa have been virtually un-
detected by environmental methods to date. Altogether, this emphasises the importance of
cultivation not only for downstream research, but in the exploration of biodiversity itself.
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CHAPTER I

INTRODUCTION

UcH of the central philosophy in cell biology and biochemistry is driven by the idea
M of unity, encapsulated by a quotation attributed to microbial biochemist Jacques Monod:
“...anything found to be true of E. coli must also be true of Elephants” (Friedmann 2004). In
other words, findings in one organism should be expected to be relevant to another. Further-
more, we study (ideally, convenient) model systems in attempt to learn about The Cell or The
Organism, particularly as it relates to human biology. Yet, incorporating the evolutionary con-
text complicates the idea of unified biology of all life. That is not to say that general principles
cannot be found across the tree of eukaryotes or tree of life, but rather that the extrapolation of
biological principles from one or a few select organisms must be done with care.

New discoveries in biology inherently fall into a phylogenetic and evolutionary context.
Not only does this context impact the interpretation of the discovery, but also how the dis-
covery is applied to other organisms. Furthermore, hypotheses and generalisations are made
from the patterns inferred by examining a sampling of total diversity from the perspective of
a specific system. All of these considerations demand not only a correct phylogeny, but also
adequate sampling of organisms from this phylogeny, or taxon sampling. This is particularly
true for fields like cell biology, where evolutionary approaches have become more common only
relatively recently—unlike, for example, ecology or physiology—and significant difficulties are
still presented by incomplete or suboptimal sampling.

Incorrect phylogenetic inferences or assumptions can lead to incorrect interpretations of
new data. The common assumption that morphologically simpler life forms ‘predate’ or di-

verge before their more complex counterpart has diminished in light of evidence building up



showing small and/or parasitic animals to be derived rather than ancestral forms (Garey and
Schmidt-Rhaesa 1998), or the collapse of “crown eukaryotes” (e.g. Baldauf 2003). Incorrect
phylogenies involving key model systems have also led to mistaken interpretations (e.g. Hughes
and Friedman 2004a). Even with a correct phylogeny, skewed sampling across taxa can likewise
lead to inaccuracies, to date a relatively common problem in animal-model-centric studies of
protein evolution (e.g. Hehenberger et al. 2020 vs. Cahill 2017), or systems as a whole (e.g. Cor-
field and Berry 2015). Or a chance absence of a feature in a particular chosen representative for
a clade can be inferred, incorrectly, as an absence for an entire group (discussed with respect to
choanoflagellates in (Richter et al. 2018).

In this Introduction, I will discuss taxon sampling and its relevance. I will then provide a
brief overview of where improvements in taxon sampling among microbial eukaryotes (protists)

have come from in light of recent technological and methodological innovations.

1.1  WHAT IS TAXON SAMPLING?

Taxon sampling is the selection of organisms examined in a particular study. Usually, it is a
subsample of known, or available, taxon sampling, tailored to a specific group and question.
Typically, taxon sampling is discussed in the context of inferring the correct phylogenetic tree
(e.g. Rosenberg and Kumar 2001; Heath et al. 2008); however, here we will focus on the role of
taxon sampling in applying the inferred phylogenetic tree to broader questions. Both the correct
tree and appropriate taxon sampling are crucial for quality ancestral state reconstructions and
evolution-informed hypothesis generation. The selection of taxa would ideally strive to be as
complete, balanced, and appropriate for the question on hand as possible (Plazzi et al. 2010) for
applying phylogenies as well as constructing them, but in practice, usually remains a subjective
process. Optimal taxon sampling for one question may be inappropriate for another. It is im-
portant to note here that the concept of ‘basal lineages’ is misleading, and that a ‘species-poor’
deeply diverging lineage is not necessarily primitive or slow-evolving for a trait of interest, or, in
fact, most traits (for a thorough discussion, see Crisp and Cook 2005).
Novel taxa and expanded taxon sampling can lead to major paradigm shifts and rule-breaking—

regardless of phylogenetic placement. For example, a bacterial phagocytosis-like process in the
planctomycete Uab was found via new taxon discovery (Shiratori et al. 2019), as well as the pres-

ence of a mixed ‘archaeal’ and ‘bacterial’ type phospholipid membranes in a novel bacterium



(Villanueva et al. 2020), and the first rotary flagellum known in any eukaryote along with the
first example of a toroidal swimmer, in amoebozoan Idionectes (Hess et al. 2019). In another ex-
ample, total mitochondrial organelle loss had been considered implausible until the discovery
that the oxymonad Monocercomonoides lacks any relic of the mitochondrion (Karnkowska et al.
2016).

Alternatively, novel taxa can change our understanding of the nature or evolutionary his-
tory of a specific phylogenetic group. The new archaean sister lineages to eukaryotes, Asgard
Archaea (Spang et al. 2015 Spang et al. 2018; Zaremba-Niedzwiedzka et al. 2017), are in the
process of imposing a dramatic overhaul of our understanding of eukaryogenesis (Zaremba-
Niedzwiedzka et al. 2017; Akil and Robinson 2018; Lu et al. 2020; Akil et al. 2020) and the
evolution of features previously considered as unique to eukaryotes. The conclusion that the
apicomplexan apicoplast was a relict plastid of a previously photosynthetic ancestor was con-
firmed by the discovery of its algal relative Chromera (Moore et al. 2008); similarly, the predicted
flagellate ancestry of red algae was supported by the discovery of a novel deep-branching preda-
tory flagellate, Rhodelphis (Gawryluk et al. 2019). The examples above all concern the discovery
of novel sister groups to the taxon of interest; however, reconstruction of evolutionary history
can also be enhanced by adding more nodes to a lineage of interest: for example adding barth-
elonids to the “grade” of Carpediemonas-like organisms contributing to the reconstruction of
fornicate mitochondrial evolution (Yazaki et al. 2020).

Taxon sampling can be said to come in shallow or deep forms: the former can be seen as an
expansion of sampling in a known clade (fig. 1.1; labels s, d), for example by sequencing more
Carpediemonas-like organisms among fornicates (Kolisko et al. 2010b); the latter would be in-
troducing deep lineages of a clade—for example, the discovery of Asgard Archaca mentioned
above, or finding Hemimastix (Lax et al. 2018) or Rbodelphis (Gawryluk et al. 2019), in the con-
text of deep eukaryote phylogeny. This distinction is fundamentally arbitrary and depends on
the question being asked: expanding the sampling of Carpediemonas-like organisms is shallow
from the perspective of the tree of eukaryotes or the supergroup Metamonada, but deep with
respect to diplomonads or diversity of Giardia species. Both forms of sampling are important
in reconstructing evolutionary history: while it is obvious that deep sampling contributes new
nodes (and, thus, last common ancestor (LCA) reconstructions) along the lineage of interest,
shallow sampling also improves accuracy in reconstructing the subsequent evolutionary history

of a group.
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Figure 1.1: Types of taxon sampling. SHALLOW taxon sampling is expanding the sampling within a
clade, whereas DEEP taxon sampling adds new branches (and a last common ancestor (LCA)) outside
the clade of interest; note that the distinction between the two is subjective and context-dependent.
While the hypothetical new lineage between clades A and B would represent deep sampling pertaining
to the evolution of clade B, it would be shallow sampling within clade A+B and arguably still shallow
sampling with respect to clade A, as it would contribute to reconstructing an extant LCA in the lineage
leading to A. The novel clade outside A+B itself represents deep sampling, whereas expanding the taxa
within it is shallow.

AVAILABLE taxon sampling is a taxon that is known and characterised—in the modern age, usually
molecularly, though placement suspected by morphology can be considered tentatively available as
well. ACCESSIBLE taxon sampling, on the other hand, is whether one is able to include the taxon
in a particular analysis; for example, if a genome of a known organism has not yet been sequenced,
that organism is available but not accessible to sampling in the given context. The same taxon can
be accessible or inaccessible depending on the question and methods used, whereas a taxon is either
available or not, regardless of context. Due to differential loss, retention, gain, and derivation of
characters (shown here as filled in ovals), an undersampled clade may lead to improper assumptions
about its LCA, as in this diagram where a trait (filled-in circle) would be assumed to evolve much more
recently in the tree (bar) than it actually did, due to chance available and accessible sampling of taxa
that do not have this trait.
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Furthermore, taxon sampling can be contrasted between available—the mere knowledge
that an organism branches at a particular node in the tree of life, in this era at least via some
molecular data-and accessible-organisms that can be interrogated in a given context or by a given
technology of interest (fig. 1.1, ovals). For accessing molecular cell biology, simply knowing that
Hemimastix exists and where it goes in the tree of eukaryotes is not enough: one must also have
appropriate tools and prior research to interrogate the organism; Hemimastix is not yet, as of
this writing, accessible for molecular cell biology, or comparative genomics (although a culture
exists). In a similar vein, heliozoans have been known for over a century, but did not become
truly available until ribosomal small subunit rDNA separated them into four distantly related
groups (Nikolaev et al. 2004), with the emergence of centrohelids as a separate lineage further
supported by phylogenomics to be fairly distinct from the major supergroups (Burki et al. 2016).
Adding more choanoflagellate transcriptomes (Richter et al. 2018) would be an example of ex-
panded accessible shallow taxon sampling from the perspective of molecular biology. Often, a
trade-off exists between advanced or expensive technology and the taxon sampling accessible to

it, particularly if involves a reduction in throughput.

WHY DOES TAXON SAMPLING MATTER?

To illustrate the importance of accurate trees and appropriate taxon sampling, I will use a charis-
matic example from animal phylogeny featuring groups containing two important classical model
systems: arthropods and nematodes. Nematodes, being small worms with a simplified body
cavity, or coelom, were considered a ‘simpler’ animal (then, pseudocoelomates) diverging later
than, say, flatworms' (acoelomates) and expected to branch outside arthropods+chordates® (coelo-
mates) (Adoutte et al. 1999). This view was in line with the prevalent concept of evolution-
ary grades of complexity at the time (Adoutte et al. 1999). A competing hypothesis was that
the shared moulting, or ecdysis, unites arthropods+nematodes as Ecdysozoa (first proposed in
Barnes et al. 1993 The Invertebrates, a New Synthesis, 2nd Ed.; Valentine and Collins 2000).

Early ribosomal RNA gene phylogenies supported the coelomate idea (Ohama et al. 1984), but

"Namely, platyhelminths; flatworms are polyphyletic (Cannon et al. 2016).
*For the sake of simplicity, I will focus specifically on nematodes, arthropods, and chordates in this discussion.



this was later shown to be a result of long branch attraction resulting from the elevated evo-
lutionary rate of Caenorbabditis elegans (C. elegans) specifically, and thus alleviated by its re-
placement with a slower evolving taxon (Aguinaldo et al. 1997; Adoutte et al. 1999). Early pro-
tein phylogeny work, however, contradicted the ribosomal inferences (Sidow and WK Thomas
1994), contributing to a heated debate in animal phylogenetics (Wigele and Misof 2001; Wolf et
al. 2004) that eventually settled down by 2010 (Holton and Pisani 2010) in favour of Ecdysozoa.

The story of nematodes and arthropods matters here for several reasons: first, it is a strik-
ing example of how taxon sampling impacts inference (e.g. acknowledged in Holton and Pisani
2010) and how an early drawback of new technology is often the insufficient taxon sampling
available to its nascent form. The reversal to coelomates in the early days of protein phylogenies
was, in part, a consequence of the available nematode sequences coming from one species, the
fast-evolving C. elegans. This has continued on with the addition of ‘minor’, small and ‘simple’
taxa like bryozoans, tardigrades, and rotifers, altering our understanding of animal evolution
(Garey and Schmidt-Rhaesa 1998; Laumer et al. 2015). Second, it is a case where the traditional
view of evolution by gradual gain in complexity was eventually interrupted by improved molec-
ular phylogenies. In addition to the collapse of the pseudocoelomates, the acoelomates (flat-
worms) were later shown to fall within the massive clade containing Arthropods, molluscs, and
chordates (reviewed in Telford et al. 2015), supporting that simplification of the coelom has oc-
curred several times independently. Lastly, arthropods and nematodes contain two of the most
important model systems in cell biology: Drosophila melanogaster and C. elegans, respectively.
Extrapolating any organismal biology from those systems to general animal evolution and ap-
plying these ideas to hypotheses in chordate evolution relies upon correct assumptions about
their phylogenetic relationships.

The protein phylogeny confusion coincided with an explosion of developmental and molec-
ular cell biology work on the model systems Drosophila and C. elegans, forcing authors doing
ancestral reconstruction to pick one of the hypotheses (Friedman and Hughes 2001; Hughes
and Friedman 2004b vs. Nicholson et al. 2005), or agnostically include both (Bertrand et al.
2004; Kim and Ausubel 2005). This affected studies like those mapping ancestral genome du-
plications (Friedman and Hughes 2001) or losses (Hughes and Friedman 2004b); for example, in
the latter incorrectly assuming losses in Drosophila and C. elegans as parallel rather than shared.
(Lees-Miller etal. 2020) point out an example where a gene was absent in both invertebrate mod-

els and thus assumed to be a later, vertebrate, innovation, but then found not only in insects
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but even outside animals. Genes found in presumed deep-branching organisms were assumed
on that basis to be ancient innovations, for example HOX genes in a flatworm (Balavoine and
Telford 1995). Thus, referring to the correct phylogeny is extremely important when making

evolutionary inferences.

WHERE ARE NEW PROTIST TAXA COMING
FROM?

Discovery and cultivation of microbes has gone on for a few centuries, but molecular biology
has thoroughly changed what the act of microbial sampling entails. Morphological data are
now routinely accompanied by sequence information (or, in some cases, sequence information
is completely unassociated with any morphology), and previously-described organisms are ‘re-
discovered’ from this molecular perspective. Next-generation sequencing has been an impor-
tant driver behind this ‘molecular revolution’, providing an accessible tool for objectively as-
signing microbes to their evolutionary places and at the same time empowering researchers to
ask more complex questions about non-model systems. Previously undescribed taxa can now
be characterised by molecular approaches without the need to culture, via single-cell ribosomal
DNA/RNA sequencing (Lax et al. 2018; Lax and Simpson 2020), transcriptomics (Kolisko et
al. 2014; Krabbered et al. 2017; Lax et al. 2018) and genomics (Gawryluk et al. 2016a; Strassert
et al. 2018; Wideman et al. 2019), in addition to environmental metagenomics (West et al. 2018;
Obiol et al. 2020). Furthermore, the ease and cost of next-generation sequencing unleashed a
revolution in bioinformatic tools that has relaxed requirements for the purity of cultures, which
no longer need be axenic nor even mono-eukaryotic for targeted molecular work or even whole
genome sequencing to be practical (Leger et al. 2017; Monteil et al. 2019; Gawryluk et al. 2019).
As a result, organisms that were previously missed due to dependencies on other prokaryotic
or eukaryotic microbes (e.g. as food sources, symbionts or oxygen scavengers), are now more
accessible to sequencing and/or cultivation. This has led to a major influx of a variety of protis-
tan heterotrophs (especially eukaryotrophs) and anaerobes into research. Similar parallels are
noted on the prokaryote side (Lewis et al. 2020).

The combination of better sampling and improved phylogenetic techniques has led to a
richer and more stable tree of eukaryotes, with a variety of new groupings and deep-branching

lineages added in the last 15 years (for review, see Burki et al. 20205 also refer to Figure 1.2). In
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Figure 1.2: Reference tree of eukaryotes. Modified from (Simpson and Eglit 2016) with some
updates based on (Burki et al. 2020) and own unpublished phylogenomic data. Fully anaerobic lineages
are in red, while lineages known to contain anaerobes are in orange.

many ways, these developments mirror those in the earlier animal phylogenies discussed above:
lower complexity taxa often turned out to be secondarily reduced—e.g. the complete demise of
‘archezoa’ as an assemblage of ancestrally mitochondrion-lacking extant taxa (Embley 2006)—
and numerous prior inferences based on incorrect phylogenies were overturned.

In this thesis, I markedly increase the deep taxon sampling of heterotrophic protists from
the perspective of resolving the tree of eukaryotes. I prioritised cultivation-based approaches,
since, in addition to expanding the available taxon sampling by contributing new molecular se-
quences, I specifically aimed to broaden the collection of taxa accessible to further downstream
studies—for example, genome sequencing or cell biology investigations. In chapter 2, I describe

establishing several dozen cultures of organisms that are distinctive on the SSU rDNA (DNA



encoding small subunit ribosomal RNA) sequence level. In the case of some particularly phylo-
genetically distinct isolates, I took advantage of the cultivation-based approach to examine their
fine structure using electron microscopy. I also used IDNA sequence data to probe a selection
of publicly available environmental sequence datasets to explore the distribution of the newly
discovered groups across habitat types. In chapters 3 and 4, select organisms whose position
in the tree of eukaryotes was not resolved by single gene (i.e. SSU rDNA) molecular phyloge-
nies were subject to multi-gene (phylogenomic) analyses. Sequences for protein-coding genes
were obtained from either bulk-culture- or single-cell-transcriptome sequencing. In the course
of this work, we improved the shallow taxon sampling of several major clades and revealed the

existence of a candidate novel supergroup.
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CHAPTER 2

ISOLATION AND CHARACTERISATION OF
NOVEL HETEROTROPHIC PROTISTS

INTRODUCTION

ESPITE its over 350 year history (Lane 2015), the age of discovery of new eukaryotic mi-
D crobes has yet to taper down (Burki etal. 2020). A half century of molecular phylogenet-
ics studies (since Ishikawa 1977) has subtantially transformed our understanding of eukaryote
evolution. An important part of this has been environmental sequencing approaches, which
have revealed entire novel clades known only from molecular sequence data (eg. Takishita et al.
2007, Lépez-Garcia et al. 2003). Some of these clades, like the conspicuously diverse environ-
mental clade of diplonemids from deep sea (Lépez-Garcia et al. 2007, Lara et al. 2009, Scheck-
enbach et al. 2010) and planktonic environments (de Vargas et al. 20152), have subsequently
had some of their members characterised by morphology (Gawryluk et al. 2016b). In a simi-
lar vein, the Marine Alveolate 1 (MALV-1) clade was found to be an assemblage of parasites of
other protists (Brite et al. 2012). Other environmental clades, however, remain undersampled
or altogether uncharacterised. For example, to date, neither Novel Clade 12 (NC-12) (Bass et al.
2018) in Rhizaria nor the phylogenetically ambiguous NAMAKO-1 and NAMAKO-2 lineages
(Takishita et al. 2007) have representatives with known cell morphology.

While some claims have been made about researchers getting closer to exhausting the mi-

crobial eukaryote diversity of some types of planktonic habitats (Vargas et al. 2015b), overall
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it is clear that uncharacterised biodiversity remains considerable (Forster et al. 2016). A major-
ity of eukaryotic microbial ecology studies to date have focused on planktonic habitats (Vaulot
et al. 20224, Forster et al. 2016), which are more amenable to DNA and RNA extraction and
sequencing. A much smaller abundance of samples exists for soils (approx. 8oo in MetaPRa,
compared with 3259 for water column; Vaulot et al. 2022a), and a tiny handful for marine and
freshwater sediments (<20 in MetaPR2). Among sediment samples, a substantially higher por-
tion of sequences cannot be classified (Forster et al. 2016). In addition, the claims that the dis-
covery of biodiversity in some areas is saturating are based on short read amplicon sequencing.
Meanwhile, metagenomic, metatranscriptomic, and especially, single-cell approaches are con-
tributing increasingly more to the sampling of existing clades of microbial eukaryotes (Lax and
Simpson 2020, Lax et al. 2019), and, importantly, to finding new lineages (Lax et al. 2018, Wide-
man et al. 2019).

Although the discovery of novel biodiversity in microbial ecology is typically equated with
environmental sequencing, cultivation remains an important exploratory tool. Cultivation not
only presents another set of techniques for expanding our sampling of novel diversity, but
brings a considerable advantage by enabling a much greater range of research on the organ-
ism in question. Going back to diplonemids, since the initial discovery of the ‘environmental
clade’ and subsequent characterisation of a few representatives’ morphology using single cell
methods, a considerable number of additional diplonemid cultures have been established (e.g.
Tashyreva et al. 2018a), on top of sparking development of transformation techniques in exist-
ing strains (Kaur et al. 2018). The cultures facilitated ultrastructure studies, allowed the demon-
stration of flexibility in transition between osmotrophy and bacterivory on an organismal level
(Prokopchuk et al. 2022), and the discovery of exceptional accumulations of barite and celestite
crystals in diplonemids (Pildtovd et al. 2022). Thus, the establishment, molecular characterisa-
tion, and first-pass morphological description of a cultivated organism is only a starting point

as long as the culture remains viable.

In this work, I report efforts to cultivate novel diversity from across the tree of eukaryotes,
focused substantially but not exclusively on selected poorly sampled environments (anaerobic
and/or hypersaline and/or alkaline) and understudied life histories—specifically, eukaryotro-

phy, or eukaryotes feeding on other eukaryotes.
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2.1.1

2.1.1.1

HABITATS

Anoxic environments

Low oxygen environments are naturally present in a variety of habitats, from marine and fresh-
water sediments to oxygen minimum zones in the water column and anoxic layers of meromictic
lakes, to digestive tracts and other microhabitats on and inside animal bodies. Typical sediments
contain a redoxcline from oxygenated surface layers to anoxic depths, where a gradient of opti-
mal electron acceptors supports stratified layers of differing microbial communities, for example
denitrifiers closer to the oxic layer and sulfate reducers farther away, with a methanogen zone at
the very bottom (Treude 2012). Conventionally, focus on anaerobic microbes has largely been
on their prokaryotic fraction, as well as parasitic eukaryotes of medical or economic importance.
In fact, microbial eukaryote diversity was expected to be fairly low in anoxic layers, in part due
to sulfide toxicity (Triadé-Margarit and Casamayor 2015).

By contrast, molecular sequencing and cultivation efforts suggest there remains much di-
versity of anaerobic microbes to be characterised (Zuendorf et al. 2006, Takishita et al. 2007,
Epstein and Lépez-Garcia 2008, Stoeck et al. 2010, Edgcomb et al. 2011, Orsi et al. 2012, Triadé-
Margarit and Casamayor 2015). Polyxenic culturing approaches and expansion of interests be-
yond the classical medically relevant protistan parasites have yielded a number of novel anaero-
bic lineages within the past 20 years (Kolisko et al. 2010a, Tdborsky et al. 2017, Gawryluk et al.
2016¢, Burki et al. 2013, Walker et al. 2006, Yubuki et al. 2015a2). Many of these lineages represent
novel adaptations to low oxygen environments, including resistance to toxic effects of anaero-
biosis in key metabolic pathways (Stairs et al. 2018). Furthermore, recent works show that fac-
ultative anaerobes and those not far along the path of adaptation are widespread throughout
the tree of eukaryotes (Gawryluk et al. 2016¢, Roger et al. 2017, Leger et al. 2019). Lastly, anaer-
obic eukaryotrophs are a particularly undersampled assemblage (see discussion in Chapter 4).
Thus, I set out to explore some of the undercharacterised diversity of anaerobic communities
in sediments through a combination of sampling low oxygen environments and enrichments

with high organic content promoting sufficient prokaryotic growth to suppress oxygen levels.

12



2.1.1.2

2.1.1.3

2.1.1.4

Saline lakes

High salt environments (with salinity substantially higher than that of seawater) include hu-
man made solar salterns (Ventosa et al. 2014), brine channels in sea ice (DN Thomas and Dieck-
mann 2009), deep hypersaline anoxic basins (DHABs) (Stock et al. 2012), and athallasic salt
lakes (Harding and Simpson 2018) — to name a few. In this chapter, the focus will be on salterns
and thalassic salt lakes, with the chemical and physical diversity of these environmnets simpli-
fied to two types: salt lakes and, with high pH, soda (alkaline) lakes. Saline lakes of both types
usually vary considerably in salinity throughout time, in some cases subjecting their organismal
communities not only to low water availability and an extreme osmotic environment, but also
challenging rapid changes in conditions. My search for hypersaline protists from salt lakes has
mostly been focused on habitats with at least 15oppt salinity, whereas soda lake samples with

salinity as low as 3oppt (but pH>9) were still considered in this chapter.

Soda lakes

Soda lakes are usually found as endorrheic bodies of water in regions with little exposed sedimen-
tary rock (Schagerl and Renaut 2016, Jones et al. 1998); without the calcium and magnesium
from deposits of shells in ancient aquatic sediments to sequester carbonate ions from water,
sodium carbonate and sodium bicarbonate ions accumulate to dominate the lake chemistry, up
to high salinities and pH. They can be chemically diverse (Sorokin et al. 2015, Boros and Kol-
pakova2018). Classic examples are Rift Valley lakes in Eastern Africa, and lakes in the mountains
along the west coast of the Americas, such as Mono Lake in California. A population of such
lakes exists in the Pacific Northwest region in both US and Canada, such as Soap Lake in Wash-
ington (Sorokin et al. 2007), or Goodenough and Last Chance Lakes in interior BC (Zorz et al.
2019). Despite being among the more productive lake ecosystems (Pirlot et al. 2005), the eu-
karyotic microbiology of alkaline lakes has received relatively little attention (Pirlot et al. 2005,
Yasindi and Taylor 2006, Zorz et al. 2019), particularly from a morphological perspective (but

see Yasindi and Taylor 2016, though mostly focusing on ciliates)

Eukaryotrophs

In the early part of the molecular era, the majority of focus on protists has been on autotrophs,
medically-relevant parasites, and bacterivorous heterotrophs. Technological limitations at the

time severely restricted molecular analyses of cultures containing more than one eukaryote.
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2.1.2

2.2

2.2.1

Over the past two decades, this has been turned around and the majority of major novel he-
terotrophic protistan lineages discovered in recent years have been eukaryotrophic (Burki et al.
2020; Tikhonenkov 2020). This reflects a “catching up” once better sequencing and bioinfor-
matic techniques have enabled transcriptomic and now genomic study of mixtures of eukary-
otes. For example, non-metazoan holozoans were until recently primarily bacterivorous or par-
asitic, comprised of groups like choanoflagellates and ichthyosporea. In the past decade alone,
three distinct novel lineages of eukaryotrophs were added to the holozoan tree (Hehenberger
et al. 2017, Tikhonenkov et al. 2020a). Furthermore, Ancoracysta was recently found as new
distinct lineage outside known supergroups (Janouskovec et al. 2017). Even the newest major

lineage in Archaeplastida turned out to be eukaryotrophic (Gawryluk et al. 2019)!

SUMMARY

This chapter summarises a “low-throughput” approach using light microscopy and classical cul-
tivation techniques to isolate morphologically-distinctive protists that represent candidate new
major lineages or taxa whose phylogenetic affinities are not immediately obvious. Itisimportant
to note that my sampling approaches do not attempt to capture a snapshot of diversity at the
time, nor quantify relative or absolute abundances of any organism therein. The aim is cherry-
pick potentially novel or otherwise interesting organisms for further study. Results include
microscopy images and phylogenies showing isolated organisms loosely grouped by taxonomic
affiliation; residual organisms that escaped molecular characterisation by SSU rDNA (DNA en-
coding small subunit ribosomal rDNA) are included at the end. The SSU rDNA sequences are
also used to attempt to detect probable similar taxa in public short read environmental sequence

data.

MATERIALS AND METHODS

OVERVIEW

Samples, usually containing sediment, were obtained in 15 mL or so mL conical centrifuge tubes,
and typically enriched within 2-3 days with suitable media (Table 2.3). Enrichments were mon-
itored every 1 or 2 days on an inverted microscope with phase contrast optics for protists with

morphology resembling either previously described incertae sedis taxa (‘known unknowns’) or
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organisms we could not find similar descriptions to in the literature (‘unknown unknowns’).
Candidates were imaged further with DIC optics on a Zeiss Axiovert 200M and its AxioCam
Ms (Carl Zeiss AG) camera to confirm morphology as well as attempt to predict culturing ap-
proaches most likely to be successful, e.g. by searching for evidence of eukaryotrophy. Some
organisms were incubated overnight under a petroleum jelly sealed coverslip prior to imaging.
Further details on isolation and cultivation provided below.

For molecular study, approximately romL volumes (typically) of established cultures were
pelleted by centrifugation and subjected to DNA extraction using the QTAGEN DNEasy Blood
and Tissue Kit (QIAGEN 567 N.V,, Hilden, Germany), with elution in 30-soul. RO water. In
cases where cultivation appeared unlikely to be successful, or where the presence of a second
(prey) eukaryote in culture was unavoidable, single cells were picked with a glass pipette drawn
out over a flame and placed in suL sterile molecular grade or RO water in a 200 uL. PCR tubes.
In some cases, high magnification images for each picked cell were obtained on the Zeiss Ax-
iovert. Sometimes multiple cells were pooled. The cells were subject to Whole Genome Ampli-
fication using a Multiple Displacement Amplification (MDA) kit (GE Health). The amplified

product was then used directly as input for PCR.

Name Fwdorrev  Sequence (5'-3")

25F F CATATGCTTGTCTCAAAGATTAAGCCA
42F F CTCAARGAYTAAGCCATGCA

82F F GAAACTGCGAATGGCTC

EukA F AACCTGGTTGATCCTGCCAGT
Hemi2-342F F ACTTTCGATTGTAGGATAGA
1492R R AAGTCGTAACAAGGT

1498R R CACCTACGGAAACCTTGTTA

EukB R TGATCCTTCTGCAGGTTCACCTAC
Hemiz-no3R R AAAACTTGCGATTTCTCTGG
SSF-1345R R TAATCTAGCCCCATCACGTTGCA

Table 2.1: Primers used for obtaining SSU rDNA sequences

PCR with universal eukaryotic primers (Table 2.1) ; many of the universal primer sequences
were obtained from Adl et al. 2014) was used to amplify partial SSU rDNA (Table 2.2.1 for
Sanger sequencing (Génome Québec). Upon succesful sequencing, the Sanger reads were man-
ually trimmed and assembled in Geneious R1o (Kearse et al. 2012), then used to search NCBI nt
(nucleotide) via BLASTn for matches with significant (usually >97%) sequence identity. The

sequences were then added to a pan-eukaryotic SSU rDNA alignment and phylogeny inferred

IS



using maximum likelihood under the GTR+I+I model in RAxML (Stamatakis 2014). Organ-
isms whose evolutionary position was unresolvable with SSU rDNA phylogenies were then
candidates for multi-gene phylogenomic analyses using transcriptome sequencing (for exam-
ples, see chapters 3 and 4).

SSU rDNA sequences were also used to search publicly available V4 and Vg short read
environmental SSU rDNA sequence datasets (see Table 2.6) for high probability matches in
other locations and environments. Additionally, some organisms were subject to preliminary
transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) imaging
to examine ultrastructure and surface morphology, respectively. Further details of these proce-

dures are provided below.
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2.2.2

2.2.3

SAMPLING, ENRICHMENT, AND CULTIVATION

Samples were kept sealed and o.5-1 mL aliquots including sediment, if present, were added to
enrichment media, typically a couple days after sampling. One sample, LRM3, was re-enriched
two years after sampling date. Marine enrichment media were based on autoclaved natural sea-
water from the Northwest Arm, Halifax, while hypersaline samples were added to medium
“HS#5” (NaCl 137.6, KCI 3.8, MgCl,*6H,O 13.45 MgSO,*7H, 0 1.65, CaCl,*2H,0 0.65 g°'L7;
Park 2012), diluted to similar salinities to those of the source samples as determined by a high
salinity refractometer. Alkaline lake samples were enriched using medium “TZ” (KH,PO, o.2,
MgCl, o.1, KCl 0.2, NH,Cl 0.5, NaCl 100, Na,CO;, 68, NaHCO, 38 g*L™; adapted from Mes-
bah et al. 2007), likewise diluted to appropriate concentrations determined by a high salinity
refractometer. Aerobes were usually enriched for by supplementing the medium with a single
autoclaved wheat grain or with 0.1% v/v LB medium in an unvented tissue culture flask stored
horizontally. Anaerobes were enriched in 12mL volumes in a sealed 1smL conical centrufuge
tube sealed and stored upright, with 3% v/v LB (eg. in seawater, “3%LS”) and/or four auto-
claved grains added to provide organic enrichment for the prokaryotic community. In some
cases, resazurin was used as a chemical indicator to assess oxygen levels and detect anoxic layers
in enrichments (Karakashev et al. 2003).

The enrichment cultures were monitored by light microscopy every 1-2 days. Cells of inter-
est were either directed to cultivation efforts or, in some cases, picked for single-cell molecular
methods (see above). Cultures were established either by serial dilutions or long-term mainte-
nance leading to decline in contaminants, or via single cell isolation. For eukaryotrophs and
anaerobes, prey eukaryote and bacterial communities were supplied or established first. Upon
establishment, most culture were passaged at 1, 2, or 4 week intervals, with the exception of

slower-growing halophiles passaged every several months.

ELECTRON MICROSCOPY

By default, cells were harvested by centrifugation. More fragile organisms, especially anaerobes,
were instead left undisturbed in 1smL conical centrifuge tubes as the top fluid was removed until
the last 2 mL, the bottom of which was gently collected and added to fixative (Table A.2). Cells
were spun between washes, and then dehydrated through an ethanol or acetone series and infil-
trated and embedded in EPON 812 resin. The resin blocks were sectioned in series using a Leica

UC6 ultramicrotome. Preliminary examination skipped staining, but sections of adequately
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2.2.4

fixed preparations were stained with lead citrate and either uranyl acetate or Uranyless™ (Ben-
meradi etal. 2015). Sections were imaged on a Tecnai-12 transmission electron microscope using
a FEI Gatan camera.

SEM fixation was done on cells added to poly-L-lysine coated coverslips in multiwell plates
(Table A.3). Then, exchanges of increasing concentrations of ethanol were performed for dehy-
dration. Cellsattached to coverslips were then dried by a critical point dryer (Leica EM CPDj300)
and coated with a gold-palladium alloy in a Leica EM ACE200 sputter coater, both at the EM
Core Facility in the Life Sciences Centre. Imaging was done at the DalTech SEM-FIB facility,
Faculty of Mechanical Engineering. Downstream image processing for both electron and light

microscopy was done using FIJI (Rasband 1997; Schneider et al. 2012).

PHYLOGENETIC ANALYSES AND ENVIRONMENTAL SEQUENCE
PLACEMENTS

The reference global alignment for SSU rDNA from the Aeteora project (Eglit ez al. in prep;
chapter 3), was expanded considerably in its taxon sampling by adding sequences of organisms
characterised here, as well as environmental sequences from NCBI and published environmen-
tal datasets (Takishita et al. 2007, Jamy et al. 2020a). The alignment was trimmed with a mask
derived from gblocks (Castresana 2000) readjusted for a final matrix of 1176 sites and 250 taxa.
A maximum likelihood phylogeny was inferred in RAxML-NG (Kozlov et al. 2019) under the
GTR+T+I model, and support values provided by 200 non-parametric bootstrap replicates.
SSU rDNA sequences of several isolates ended up branching within Rhizaria, so to make a sec-
ond alignment focused on that group, an original alignment kindly provided by Sebastian Hess
was expanded with additional relevant taxa plus known environmental lineages from NCBI
nt, as well as the literature (Takishita et al. 2007, Bass et al. 2018), particularly for endomyxea.
The taxon sampling of Filosa was intentionally kept sparse as resolving branching orders within
filosan groups is difficult using SSU rDNA alone. The alignment mask was started from gblocks
and curated manually for a final matrix of 1192 sites across 113 taxa. The phylogeny was inferred
using the same parameters as above.

The available V4 and Vg regions of the 39 new SSU rDNA sequences reported here (38
and 36 regions, respectively) were used as queries for a greedy BLASTn search of a custom com-
bined public environmental sequences database (14 million sequences, see 2.3) with the settings

-perc_identity 80, -max_target_seqs 500, and —-qcov_hsp_perc 70. The setting
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-qcov_hsp_perc 70wasincluded to reduce spurious high percentidentity matches over ultra-
short portions of the sequence, while allowing for partial sequence matches. The corresponding
matching sequences were then aligned against the untrimmed reference global eukaryotic SSU
rDNA alignment using PaPaRa (SA Berger and Stamatakis 2011) and short sequence placements
inferred via RAxML-EPA (SA Berger et al. 2011) using the above reference phylogeny. Matches
among Rhizaria with likelihood weight ratios > o.5 were further refined by repeating the align-
ment and placement procedures described above with the densely sampled Rhizaria SSU rDNA

alignment and corresponding reference phylogeny. This analysis is outlined in fig. 2.1.

Shorthand Reference Type Size  Habitat types Acknowledgements
VAMPS2021 Huse et al. 2014 V4, Vo 11065110 various

TARAvg de Vargas et al. 20152 Vo 2306025 sunlit open ocean

DeepSeaVo Schoenle et al. 2021 Vo 472664  deep sea sediment (bathyal, abyssal, hadal) Alexandra Schoenle
NeoMetaTv4 Mahé et al. 2017 V4 75613 neotropical soils: Costa Rica, Panama, Ecuador ~ Frédéric Mahé
MalaspinaV4 Obiol et al. 2020 Vs 25843  marine water column

BCSodaLakesV4  Zorz et al. 2019 Va 587  interior BC soda lake mats (and sediment) Jackie Zorz
GuaymasV4 Pasulka et al. 2019 V4 mz9  hydrothermal vent, surface layers of sediment

Cariaco Suter et al. 2021 Va 14176 ~ marine anoxic water column, Cariaco basin Elizabeth Suter
Biomarks Vaulot et al. 2022a V4 9097  metanalysis: TARA, Malaspina, polar, other Daniel Vaulot
SoilMetaT Geisen et al. 2015 Va 199275  temperate soils

GordaRidge Hu et al. 2021 V4 20399  10-80C vent fluids above hydrothermal vent

RiaFormosa Filker et al. 2015 Va 1515 saltern water column, 3 ponds Sabine Filker
Filkerzo17 Filker et al. 2017 V4 251807 39-440ppt salinity, salterns, multiple locations Sabine Filker
TOTAL: 14453240

Table 2.3: Public environmental sequence datasets surveyed in Chapter 2

Sequences corresponding to placements at edges of interest with likelihood weight ratios
> 0.9 were extracted using an R script and then used for reciprocal BLASTn against NCBI
nt (downloaded 08 Aug 2022), with Viruses, Bacteria, Bilateria, Tracheophytes, and Dikarya
removed from the search for computational simplification, combined with full length and near-

tull length private SSU rDNA sequences for queried organisms using blastdb_aliastool.

sequence placement
BLASTn
TTTTT—280%

seq identity

V4 and V9

/ queries

source
SSU rDNA
queries

RAXML-EPA
short read
placement

extract hits
on relevant edges
using ggtree

PaPaRa
e alignment
top 1000
BLASTN hits

Iwr 20.9

EPA hit
sequences | BLASTN

original query

public environmental
as top result?

sequence DBs
VAMPS, TARA, PR2

combined

NeBInt T

via alias

Figure 2.1: Overview of the

environmental sequence survey analysis.
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2.3

REsuLTS

Over 100 cultures were established, of which 66 are still viable as of August 2022 (Table 2.3).
From these, I determined 39 SSU rDNA sequences, with all but the phenotypically distinc-
tive palpitomonad ‘BLOL’ had <97% sequence identity to anything in the NCBI nucleotide
database, thus representing novel species or genera of eukaryotes. Of these SSU rDNA se-
quences, only half had any probable matches in the public short read environmental sequence
data surveyed in this study. Of the major novel lineages, Meteora sporadica and Protist X are ex-
amined in greater detail in chapters 3 and 4 of this thesis, respectively, while Hemimastigophora

have been published as: Lax, Eglit, Eme ez a/ (2018).
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2.3.1

2.3.1.I

RESULTS BY ORGANISM

Alveolates

CorroNEMIDS LO, GEM COLP, AND PALUSTRIMONAS

(Gigeroft, Eglit, Simpson; in review)

A number of raptorial eukaryotrophic flagellates with colponemid-like morphology were
isolated from hypersaline enrivonments, one of which was also alkaline. Isolates F2-LO and
LRS2-LO are morphologically similar: gliding flagellates with a long trailing flagellum and a
flattened cell shape with a depression loosely resembling a spoon, and were isolated from salt
pools. Feed on percolomonads and pharyngomonads in culture; poorly fed cells have a promi-
nent protrusion lined with extrusomes that appears to be involved in prey capture. The prey
cell is intially contacted by the anterior and then phagocytosed in the groove (fig. 2.3H,]).

GEM-colp was isolated from an alkaline lake microbial mat (pH ~10, soppt), and culti-
vated on a co-occuring kinetoplastid. GEM-Colp is a swimming raptorial eukaryotroph with
two unequal flagella emerging subapically, the posterior running through a groove (fig. 2.3C).
The groove, in turn, is lined by granules that are likely extrusomes, and has a tooth-like pro-
jection at its anterior end just below and to the right of where the posterior flagellum emerges.
Palustrimonas yorkeensis isolate PSL3-Pal (fig. 2.3A-B) was isolated from a salt pond and cul-
tivated on a co-occuring (much larger) pharyngomonad as prey. Baton-shaped cell with two
unequal flagella and a subtle ventral groove. This is the first stable culture of Palustrimonas
since its discovery and with its recent molecular characterisation being from a now extinct crude
culture (Ruinen 1938; Park and Simpson 2015).

SSU rDNA phylogenies place PSL3-Pal with the existing P. yorkeensis sequence, while LO
and GEM-colp are also deep-branching colponemid alveolates, although the branching order

remains unresolved (fig. 2.2). No environmental sequence matches were found for any of these

SSU rDNA isolates.

Figure 2.2: (Continued from previous page) Maximum likelihood phylogeny calculated from a 250-
taxon and 1176-site SSU rDNA alignment under the GTR+I+1 model in RAXML-NG, aiming to repre-
sent the overall phylogenetic diversity of eukaryotes. Support values from 200 non-parametric bootstrap
replicates. Taxa from isolates discussed in Chapter 2 are highlighted in red; where the final sequence
was provided by a collaborator is indicated in brackets, as are sequences not indexed in NCBI GenBank,
from a published long read dataset. Environmental sequences indicated in grey.
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Figure 2.3: Light micrographs of colponemids isolated in this study: Palustrimonas sp.,GEM-
Colp, and LO. A-B) Palustrimonas sp. The anterior flagellum (af) inserts sub-apically above a group
of granules likely to be extrusomes (arrowhead). A prominent food vacuole is often visible at the
posterior of the cell (v). C) Optical section through the flagellar insertion site of GEM-Colp, with the
row of granules (extrusomes; arrowhead) visible beneath the posterior flagellum. A food vacuole can be
seen in the posterior of the cell (v). D-G) LRS2 LO. The cell typically glides passively on its posterior
flagellum. A food vacuole (v) can be seen distending the extreme posterior of the cell (D,E). F) View
from the top showing the insertion of posterior (pf) and anterior (af) flagella. G) A protrusion with
a cluster of granules (extrusomes; arrowhead) can be seen in not well-fed cells. H-J) F2 LO. F) Early
stage in feeding of LO on a prey percolomonad (p), showing the attachment of the prey to the cell's
right (also the site of presumed extrusomes in the other colponemid isolates), relative to the insertion
of anterior (af) and posterior (pf) flagella. I) A pair of cells in late division. J) Time series of the
flagellate (asterisk) in (H) in the early process of the ingestion of its prey (p). Scale bars: 10 m.
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2.3.1.2

CorroDELLID “NF”

Extremely narrow (2 x 10-12um) gently twisted flagellate with two flagella roughly the length of
the body with a subapical insertion, isolated from rehydrated dried salt crust from Lake Man-
yara, Tanzania (TZLMi) and cultivated with a co-occuring pharyngomonad as prey. Feeds on
the much larger pharyngomonad via myzocytosis and then encysts and divides into four flagel-
lates (fig. 2.4). Branches among colpodellids in SSU rDNA phylogenies (fig. 2.2), which is con-
sistent with mode of feeding and subsequent digestive cysts that divide into multiple progeny.
SSU rDNA phylogenies place it among environmental lineages in the Colpodella angusta clade
with strong support (fig. 2.2). The survey of public environmental sequence data has detected a
number of matches from marine anoxic and hypersaline sediments and water, as well as sewage

treatment biofilm and cave lampenflora biofilm (fig. 2.23).

Soar “Corpr”

Raprorial eukaryotrophic biflagellate superficially resembling a colponemid: a subtle groove
underlies the posterior flagellum, while a smaller groove is associated with the anterior (fig. 2.5).
Isolated from a haloalkaline sediment sample (soppt salinity) from Soap Lake, WA, but grows
as a stable culture in marine F/2 medium with Zsochrysis sp. as prey. In culture, a high por-
tion of cells can often be seen mid-division. SSU rDNA phylogenies place SoapColp within
Stramenopiles with mediocre support, and no support for their position within stramenopiles

(fig. 2.2). No significant matches were found among short read environmental data.

Metamonads

BARTHELONIDS

(included in: Yazaki E, Kume K, Shiratori T, Eglit Y, Tanifuji G, Harada R, Simpson AGB, Ishida K.-i,
Hashimoto T, Inagaki Y (2020). “Barthelonids Represent a Deep-Branching Metamonad Clade with
Mitochondrion-Related Organelles Predicted to Generate No ATP”. PTRSB 287.1934:20201538)

Barthelona species, first described in Bernard et al. 2000, are flagellates with a conspicu-
ously long flagellum and a distinct J-shaped cytoskeletal element travelling from the flagellar
insertion site around the posterior end of the cell (fig. 2.6). Feed on bacteria by ingesting prey

through a posterior opening (fig. 2.6K). The position of barthelonids within Metamonada as
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Figure 2.4: Light micrographs and putative life cycle of colpodellid TZLM1-NF assembled
from multiple individuals. A-B) Flagellate (A) and a cluster of cysts (B) of the colpodellid NF. An
apical protrusion can be seen (black arrowhead) and is consistent with a colpodellid apical complex.
C) Life cycle of the colpodellid. Pharyngomonad isolated from TZLM1 as prey before (C ) and after
(C ) predation by the colpodellid. I) General view of the flagellate, showing flagellar insertion at the
anterior end and the extreme narrow morphology. II) NF (asterisk) in the process of feeding on its prey
(p), which occurs at the anterior end of the predator and is consistent with colpodellid feeding. 11I-1V)
Freshly fed cells likely initiating the encystment process. V) Digestive cyst in an earlier stage. VI)
Four-celled stage of the digestive cyst. VII-VIII) New flagellates beginning to form. IX) Four flagellates
are visible in cross section of the mature cyst (arrowheads), which is adjascent to a digestive cyst in an
earlier stage (below). X) Mature digestive cyst with active flagellates swimming inside. Scale bars: 10
m, except A ) 5 m.

sister to fornicates was further confirmed by phylogenomic analysis incorporating a different
Barthelonaisolate (Yazaki et al. 2020). Two additional strains, CuFir and LR S2, were cultivated
from hypersaline environments but not yet sequenced (fig. 2.6H-M), and are maintained in

anaerobic media at 150ppt salinity. Despite the frequent appearance of barthelonids in anoxic
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Figure 2.5: DIC light micrographs of SoapColp flagellates. A) Side view of a flagellate with
posterior and anterior flagella visible. Large vacuole with prey (asterisk). B-D) View of the surface
covered in fine granules, as well as anterior and posterior ventral groves, indicated by arrowheads in D.
E) Flagellates inside a carcass of a rotifer in an enrichment of the sample, presumably having fed upon
it. Scale bars = 10 m.

enrichments, only two sequences were detected among short read environmental sequence sur-
veys, both from marine anoxic water and hydrothermal vent sediments and at very low read

abundances (fig. 2.23).

RETORTACARPS

Cells have a rounded anterior end and a pointed posterior, ending in a spike up to half the cell
length. There is a significant ventral groove exending from the flagellar insertion site at the far
anterior of the cell, towards the base of the spike. A cytopharynx opens to the posterior end
of this groove, and extends back up along the dorsal side of the cell. The right margin of the
groove is broad and extremely thin, and wraps in a gentle helix around the cell towards the cy-
topharyngeal opening. Flagella insert subapically with a prominent ridge between them. The
anterior flagellum is approximately cell-length, while the posterior flagellum is two cell lengths.
A broad vane, readily visible by light microscopy, runs along the posterior flagellum for one cell

length, facing outward. The flagellates nod as they swim. The nucleus is in the anterior of the
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Figure 2.6: Light micrographs of barthelonids isolated in this study. A) LRM2 barth. Anterior
(af) and posterior (pf) flagella insert at the anterior of the cell. The distinctive cytoskeletal element of
barthelonids can be seen at the posterior (arrowhead). B-D) FB11 barth. Similar morphology to that
of LRM2 barth, with the posterior structure and the dorsal cytopharynx extending upward (arrowhead).
E-G) PCE barth. An exceptionally small barthelonid that nevertheless retains the key features of the
group, namely the posterior structure (G; arrowhead). The flagellar insertion can be seen in (F). H-K)
Halophilic barthelonid Cull barth. General view of the cell (H), and a pair of cells with an ingested
elongated bacterium visible in one (asterisk). J) Optical section through the characteristic barthelonid
posterior structure (white arrowhead) and the ventral groove leading to it (black arrowhead). K) Early
feeding process, where bacteria (asterisk) are ingested through the posterior opening and up the dorsal
cytopharynx opposite of the ventral groove (black arrowhead). L-M) LRS2 barth, a smaller halophilic
barthelonid, with the posterior structure (white arrowhead) and ventral groove (black arrowhead) still
visible. Scalebar: 10 m.
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Barthelona

FBu GEMRC Soapi8 RC  Soap20ARC TZLMiRC TZLM3RCL
TZLM3 RCL 78.49 89.23 88.94 89.79 87.72 -
TZLMi1RC 80.9 97.45 97.85 99.22, - 87.72
Soap20A RC 8r.12 96.86 98.05 - 99.22 89.79
Soapi8 RC 79.7 95.88 - 98.05 97.85 88.94
GEMRC 80.77 - 95.88 96.86 97.45 89.23
BarthelonaFBu - 80.77 79.7 SL.12 80.9 78.49

Table 2.5: Percent identity between SSU rDNA of Retortacarps. Barthelona sp. isolate FB11
serves as an ‘outgroup’.

cell, to the right of the flagellar insertion. There are numerous bacteria in vacuoles, presum-
ably prey. The food vacuoles sometimes distort the shape of a well-fed cell. The flagellates vary
considerably in size within one culture isolate. Cysts were observed (see fig. 2.71K).
Retortacarps were observed in 7 different samples over the course of this study, all from
alkaline lakes; of these, s SSU rDNA sequences were obtained (see Table 2.5). Of note is TZLMi-
RC, isolated from a hypersaline environment at 16oppt salinity and pH ~10. No corresponding

environmental sequence data were found.

2.3.1.3 Obazoa

BREVIATES

A number of breviates were cultivated from enrichments of samples from anoxic environments
(fig. 2.8). Isolate FBroN is a “classical” breviate (like Breviata or Subulatomonas; referred to here
as ‘Breviata-Subulatomonas type’) with a long “neck” leading up to the flagellar insertion site,
and poor swimming behaviour (contrast with “Pygsuia-type” breviates below) (fig. 2.8A-B).
Glides with a trailing posterior flagellum. In culture with accompanying prokaryotes grown in
organically enriched conditions (3%LB in sterile seawater). SSU rDNA sequencing reveals it to
be a lineage of Subulatomonas.

LRMib (fig. 2.8E) is a large (often 15-20 um in length) amoeboflagellate with two flagella
emerging apically from the cell body, one trailing behind and often invisible as the cell glides.
Produces lateral filopodia characteristic of breviates. The organism resembles Pygsuia biforma
but is considerably larger. It swims in a smoother manner than ‘Breviata-Subulatomonas type’
breviates by transforming into a narrow cigar-shaped cell with the long anterior flagellum point-

ing forwards. Thrives in anoxic conditions but is also fairly tolerant of more oxygenated media
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Figure 2.7: DIC light and TEM micrographs of Retortacarps TZLM1-RC, TZLM3-RCL, and
GEM-RC showing overall morphology and conspicuous features. A-C) Micrographs of the flag-
ellate TZLM1-RC. A-B) General views of the cell showing flagellar insetion and the overall shape of
the feeding groove. C) Position of the posterior flagellum relative to the groove; the flagellar vane is
visible (arrowhead). D-F) Flagellates of GEM-RC. Note conspicuous flagellar vane (arrowhead). G-I)
Morphology of TZLM3-RCL. G-H) General views of the flagellate. 1) Two cysts with visible nuclei, and
a characteristic plug (asterisk). J) TEM cross-section of the posterior flagellum of TZLM1-RC showing
a 0.7 m wide vane with an internal cytoskeletal structure along its distal end. K) TEM cross section
through a cyst of TZLM3-RCL, showing 2 distinct wall layers, as well as a distinctive plug (asterisk).
Scale bars: A-1) 10 m; J-K) 0.5 m.
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(data not shown). Saa brev (fig. 2.8F) and PCE brev (fig 2.8G-H) are considerably smaller amoe-
boflagellates with two flagella emerging apically from the cell body, with the posterior trailing
behind underneath the cell. Lateral filopodia extend from the ventral side. Both isolates have
identical morphologies and SSU rDNA sequences. LRM2NG6 (fig. 2.81) is likewise small and
morphologically similar, however is molecularly distinct (96.6 % identical; see fig. 2.2). Cu-
riously, one of anaerobic rhizarians discussed below, QSI-PG, would feed on the culture of
PCEbrev but not LRM2N6brev. Numerous breviate-associated environmental sequences were
found primarily in marine environment datasets, particularly of sediments; there was a high
number of OTUs likely associated with Subulatomonas, which is consistent with prior environ-

mental data (Katz et al. 2011).

Evidence for balorolerant breviates

Organisms nearly identical by morphology to Subulatomonas spp. were seen several times in
low oxygen enrichments of anoxic sediments from hypersaline salterns (fig. 2.8]J-L). One isolate
was maintained in culture for several years in 15oppt salinity medium #s organically enriched
with grains and LB. This isolate was documented by light microscopy (fig. 2.8J-L), but no se-
quence was obtained. The survey of environmental sequences in this chapter also detected sev-

eral OTUs likely related to Subulatomonas spp. in hypersaline environment datasets (fig. 2.23).

CARMGS BLO

Biflagellate bacterivore with an exceptionally long posterior flagellum, up to about eight cell
lengths (fig. 2.8M). Swims awkwardly with flagellum facing backwards. Attaches to substrate
with anterior flagellum facing towards it (fig. 2.8N-O), and beats outward facing long posterior
flagellum, presumably to generate feeding currents. A posterior channel dissects the ventral side
of the cell into two unequal lobes, and a smaller groove continues to the anterior of the flagellar
insetion site. Ingestion occurs at the anterior end of the channel near the insertion site. Poste-
rior flagellum extremely “sticky” and covered in debris; there is a possibility the organism uses
flagellar adhesion to bacteria in feeding, but this has been difficult to image, given the organ-
ism’s sensitivity to microscopy light. Isolated from anoxic mangrove sediment, Piscadera Baai,
Curagao.

Despite little morphological similarity, SSU rDNA phylogenies firmly place CARMGS

BLO among breviates or sister to them (with poor resolution between the two options). This
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Figure 2.8: Light micrographs of breviates and the related organism BLO. White arrowheads
point to lateral filopodia in all cases. A-D) Subulatomonas sp. isolates FB10N (A-B) and AuB brev
(C-D). A thickened ventral strip can be seen from which lateral filopodia emerge (black arrowhead).
Examples of “Subulatomonas type" breviates. E) LRM1b, an exceptionally large breviate of the “Pygsuia
type”. Note the trailing posterior flagellum extending almost the full length of the cell body. F-H) small-
sized isolates of “Pygsuia type” breviates, Saa Brev (F) and PCE brev (G-H). F) and G) and crawling
forms whereas a time series of the swimming form can be seen in (H). 1) A phylogenetically distinct
small " Pygsuia type” isolate LRM2NG6 brev. A dividing cell (asterisks) can be seen next to a flagellate
in growth phase. J-L) Breviates found in a 150ppt HS#H5 enrichment from hypersaline CuSP2-1 sample
(100ppt). Lateral filopodia (arrowhead) can be seen in (J), and the individuals also have a ventral strip
(black arrowhead). K-L are of the same individual. M-O) Flagellate relative of breviates CARMGS BLO.
M) Swimming cell, arrow indicates direction of swimming. N-O) Attached individuals, the posterior
flagellum (pf) facing away from the substrate while the anterior (af) faces towards it. A channel
(arrowhead) between two lobes of the cell can be seen in (O). Scalebar: 10 m.

38



sequence was confirmed to belong to the isolate by direct single cell PCR amplification par-
tially sequenced by a single Sanger read. Additionally, collaborators found a morphologically
similar cell with close sequence identity to CARMBS BLO (Ivan Cepicka, unpublished data).
Thus, the organism is an atypical breviate that, atleast in observed life cycle stages, lacks the char-
acteristic lateral filopodia and gliding motility, instead attaching to surfaces and filter feeding.
Anaerobig; preliminary TEM did not reveal canonical mitochondria, thus it may have MROs as
do (other) breviates. Numerous short read environmental sequences related to this group were

detected in marine anoxic and hydrothermal vent sediments, as well as the water column.

Figure 2.9: Light micrographs of Lithocolla globosa. A) Agglutinated form of the amoeba. B)
Filopodia mid-retraction. C-D) Views of the non-agglutinated form common in culture. Scalebar: 10
m.

Lireocorr4

Sphaerical filose amoeba surrounded by a conspicuous layer of agglutinated debris, maintained
in stable culture fed on Phaeodactylum tricornutum. In culture of the isolate SnP, flattened
forms more closely resembling Nuclearia spp. appear, but can be tranformed into sphaerical
agglutinated forms by adding sterile chalk dust (Galindo et al. 2019). Isolated from sea floor
sediment near Splitnose point, Nova Scotia. The placement of Lithocolla within nucleariids
was established by molecular phylogenies using this isolate (Galindo et al. 2019). Short read
environmental sequences were detected in datasets from marine water and biofilm, as well as

hypersaline samples (see fig. 2.23).

MayoP

Intracellular parasite of Paramoeba sp. isolate (host identity confirmed by partial SSU rDNA
sequence, possibly P. eilbardi), with distinctive late infection stages consisting of rosettes of cells,
each of which then subdivides into many dozens of non-flagellated spores (fig. 2.10). Following

spore dispersal, the parasite leaves behind an empty husk of the amoeba with jug-like openings
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Figure 2.10: Light, TEM and SEM images of unidentified parasite MayoP in Paramoeba sp.:
appearance of infected cells and detail of spores. A-G) DIC light micrographs of a sequence of
infectious stages of the parasite across different individuals. A) Earliest detected infection stage, with
numerous small cells inside the amoeba. Brown pigment originates from diatom prey of the amoeba.
B) Early-mid infectious stage with larger parasite cells, each containing a clear space in the middle. The
host amoeba is still capable of motility. C) Middle infectious stage with the host amoeba stationary
and filled with characteristic clusters. Parasite-associated lipid bodies start to form (copper-coloured
refractile globules). D) Late-mid infectious stage with the amoeba entirely filled with parasite cells and
the host nucleus no longer visible. E) Late stage featuring the beginning of the parasite’s cellularisation.
F) Nearly empty “rosette” with remnant spores and lipid bodies. G) Characteristic jug-like openings
left behind following sporulation. n — host nucleus; white arrowheads — parasite cells; black arrowheads
— parasome. H-l) (preliminary, unstained) TEM cross-sections through MayoP spores. Note complex
structure at the anterior end (white arrowhead), presumably involved in invasion. J-L) SEM images
of the host and parasite. J) Scale-covered surface of an uninfected host Paramoeba sp. K) Detail of
openings left after infection and sporulation. L) Detail of the host membrane and scales covering the
parasite cells, most likely in the mid-late stage. Scale bars: A-G) 10 m; H-I) 200nm; J-K) 10 m; L)
5m.

(fig. 2.10G,K) see figure legend for further details). Each spore contains a complex structure

at the anterior end visible by TEM (fig. 2.10H,I), likely involved in invasion. Isolated from
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2.3.1.4

a subtidal beach sample from Larnaka, Cyprus. Although no sequence data are yet available,
MayoP is most likely a cryptomycete, and resembles Rozellids like Nucleophaga spp. (Lavier
1935, Corsaro et al. 2014, Corsaro et al. 2016). Unlike Nucleophaga, MayoP appears to exclusively
infect the host cytoplasm (see fig. 2.10A-C). A cytoplasmic rozellomycete parasite Morellospora
saccamoebae also has a cluster-like morphology but the spores contain anchoring disks and spiny
forms are known (Corsaro et al. 2020). The infectious cell morphology of MayoP under DIC

most closely resembles that of Nucleophaga amoebae (Gordetskaya et al. 2019).

Rhizaria

SSF (“CERCOMONAS” GRANULATUS)

Squirmy, teardrop-shaped cell with a thick pellicle and a conspicuous row of refractile bodies
anterior of the flagellar insertion point, which is roughly a third of the cell length from the tip
(fig. 2.11A-E). Anterior flagellum extends along the anterior end of the cell. Posterior flagellum
likewise extends along the cell surface towards the back of the cell and continues another cell
length past it. Posterior end often full of rounded up prey cells in phagocytic vacuoles. Sensitive
to oxygen. Roughly triangular nucleus located adjacent to the flagellar insertion site. Size can
vary considerably, presumably depending on how well-fed the cell is.

Isolated from subtidal low oxygen sediments from White Rock, BC (Saa) and Cavendish,
PEI(PCE), and maintained on breviates Saabrev (Saa) and PCEbrev (PCE brev) as prey, only the
latter culture presently extant. Preliminary TEM suggests reduction of mitochondria (fig. 2.11F).
SSU rDNA phylogenies place it in Novel Clade 12 among endomyxeans. Originally described
as “Cercomonas granulatus” (Lee and Patterson 2000), but does not belong with cercomonads
in SSU rDNA phylogenies (fig. 2.2) and has a different morphology. No likely environmental

sequence matches were found (fig. 2.23).

PYRIFORM GLIDER

Spindle-shaped cell with one extended “tail” end; two conspicuously long flagella emerge from
the opposite, rounded end. Moves in a jerky motion as it glides passively on the long posterior
flagellum (fig. 2.11G-I). Cell body filled with conspicuous phagocytic vacuoles. Eukaryotroph,
maintained in stable dieukaryotic culture on breviates: TBB1-PG was grown on the large brevi-
ate LRMib as prey (fig. 2.11L; QSI-PG is grown on the much smaller breviate PCEbrev. Isolated
from anoxic intertertidal sediments from Boundary Bay (TBB1) and Quadra Island (QSI-PG),
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BC, Canada. Preliminary TEM data suggest non-canonical mitochondria (not shown) and ex-
trusomes vial- or flask- shaped (fig. 2.11K), superficially resembling those of heliomorphids Di-
morpha (=Heliomorpha; see below) and Tetradimorpha (brugerolleCellCharactersTworg84a).

No environmental sequence matches were found.

HELIOMORPHA

Eukaryotrophic flagellate with radiating axopodia and two unequal flagella. The axopodia fold
back and retract when the flagellate swims, longer flagellum pointing forwards. As the previ-
ously attested ‘Dimorpha-like’ sequence branching among then-proteomyxids (Cavalier-Smith
and EE.- Chao 2003) was almost certainly misidentified, heliomorphids (=dimorphids; Dimor-
pha mutans was moved to Heliomorpha due to homonymy, Bass et al. 2009) were among the
last of distinct heliozoan groups needing molecular phylogenetic placement. Single cell isolate
DM2 was picked by Gordon Lax from a freshwater sediment, and isolate SDM2 was picked
from an alkaline lake sample. Sequence data were obtained for the former, and in SSU rDNA
phylogenies, heliomorphid DMa falls within endomyxeans, forming a clade with environmen-
tal sequences MPE2-26 (AB695520.1), from aquatic moss pillars in an antarctic freshwater lake,
and PR_3E_90 (GQ330591.1) with 72% bootstrap support; this clade, in turn, branches with
Novel Clade 10 (Bass et al. 2018) (fig. B.2), sometimes Novel Clade 12 but both with mediocre
support. In any case, this Heliomorpha isolate branches outside Filosa. A single environmental

OTU match was found in short read data, from deep sea sediment, with a very low abundance

(fig. 2.23).

Discocerra “HT”

Flat, approximately triangular cell, about 10 um wide, with two flagella and a rim punctated by
granules. Glides smoothly and rapidly, usually in a circular path, on the posterior flagellum as
the anterior vibrates laterally (fig. 2.12H-I). Bacterivorous. BoP4.1t HT matches the description
of Discocelia saleuta (Vors 1988), then an incertae sedis taxon but later placed among bicosoe-
cids (stramenopiles) based on ultrastructural characteristics (Karpov 2000), then in Apusozoa
(Cavalier-Smith 2013), and in Filosa based on unpublished SSU rDNA data (Cavalier-Smith
et al. 2014). In this study, the SSU rDNA phylogeny places it within Filosa with strong sup-
port. High probability candidate environmental sequence matches were found from marine

sediment samples, including some around hydrothermal vents (fig. 2.23).
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Figure 2.11: Light microscopy and TEM images of endomyxeans Seriously Squishy Flagellate
(SSF) and Pyriform Glider (PG). A-C) General morphology of isolate SaaSSF. A) Optical section
along the left-right axis of the cell. Distinctive row of granules extends along the portion of the cell
body along the attached portion of the anterior flagellum (white arrowhead). Conspicuous phagocytic
vacuoles with prey (p) fill up the bulk of the posterior region. B) Section along the dorsoventral axis
of the cell showing flagellar insertion and the nucleus immediately underneath it (n). A theca is visible
under light microscopy (black arrowhead). C) additional view of the same cell showing the apical end
of the cell body directly adjascent to the anterior flagellum. D-E) General morphology and preliminary
TEM of PCE-SSF. Anterior granules can be seen as in SaaSSF. The cell morphology is less distinct.
F) TEM section through the cytoplasm of PCE-SSF. Osmiophilic bodies, presumably lipid globules
(L), and double-membrane-bound organelles, likely MROs (M), can be seen inside. A layer external to
the cell membrane (arrowhead) stands out as the cell body shrinks during fixation, likely the structure
indicated by the black arrowhead in (B). G-J) General views of isolate QSI-PG. Flagella are long (G),
and a rod-like granule-lined protrusion makes up about half of the cell's posterior (G,H). The nucleus is
immediately underneath the flagellar attachmennt site (1), and the posterior flagellum extends through
a channel in some cases (J). The pair of cells in (J) is recently divided. K) TEM section through an
extrusome docked underneath the cell membrane in QSI-PG. L) Time series of predation behaviour of
TBB1-PG on the prey breviate LRM1b. The predator (arrowhead) touches the prey (p), after which
the prey rapidly disintegrates, and the predator then phagocytoses the breviate. Scale bars: A-E) 10
m; F) 1 m; G-1) 10 m; K) 200nm; L) 10 m.
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ABOLLIFER SPP.
BoP4.1r RotF

A vaguely shield-shaped cell with a wider anterior end and pointier posterior, a pair of flagella
emerging in parallel from inside the opening of an anterior “hood” and an “apron” of granules
just underneath it. The “apron” has a pronounced lower boundary visible in DIC (fig. 2.13).
Anterior flagellum is shorter and points forward as the cell moves, whereas the posterior flag-
ellum trails behind the cell for an additional half cell body length and can be coiled when the
cell travels in a circular motion repeatedly. BoP4.1 RotF is a eukaryotroph, observed to feed on
diatoms and is maintained in dieukaryotic culture with a kinetoplastid prey (isolate LAR KIN).

This morphotype was previously misidentified as Heterochromonas opaca by Lee and Pat-
terson 2000, and the original Heterochromonas is most likely a different taxon entirely (also see
comment by Prokina etal. 2021). SSU phylogenies place BoP4.1 RotF with 4bollifer globosa Shi-
ratori et al. 2014 with full support; though 4bollifer globosa has a less pronounced “apron”, its
boundary is still discernable through light microscopy. Differs from Abollifer prolabens Vors
1992 (Vers 1992, Irwin et al. 2019) in that the latter was reported to glide with the cell body
perpendular to the substrate. Probably environmental matches occur moderately frequently
in examined environmental sequence data, primarily from marine environments ranging from

sediment to biofilm to water column (fig. 2.23).

BWH RotFL

Smaller but otherwise superficially similar to BoP4.1 RotF above, albeit with a less pronounced
“hood”, “apron”, and a more plastic morphology overall. Grown in stable dieukaryotic culture
with the diatom Phacodactylum as prey, in the dark. Forms a well-supported clade with envi-
ronmental sequence TS698-42 (HM369739.1) from Boothbay Harbour, Maine (Heywood et
al. 2011), and NAMAKO-14 (AB252754.1). In this study’s survey of public environmental se-
quence data, this organism matched the highest number of OTUs, primarily from oxic marine

environments and a few OTUs in brackish water.

BoP4.1Q

A dish- or hat-shaped cell, 12-20 um in diameter, with a pair of unequal flagella emerging in par-
allel from a channel beginning behind the nucleus and opening in the centre of the underside

of the disk. Glides on a longer trailing flagellum while the shorter flagellum vibrates in a curved
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Figure 2.12: Light microscopy of Heliomorpha single cells, Discocelia, and filosan isolates
related to Abollifer spp. A-D) Abollifer isolate BoP4.1 RotF (previously misidentified as Hete-
rochromonas opaca). A-B) Optical sections through a single individual showing anterior (af) and
posterior (pf) flagella emerginf from a ‘hood’, and a clear collar (arrowhead) at the edge of an ‘apron’
of granules (better visible in B). C) Another individual showing the postion of flagella as well as the
clear collar (arrowhead). D) A deeper optical section through another cell showing a canal-like clearing
posterior to the flagellar insertion site. E-G) Isolate BWH RotFL, related to Abollifer. E) Individual
gliding in reverse, with straightened flagella pointing opposite to the direction of motility. F-G) Optical
sections through the same individual showing a typical flagellar placement with the end of its posterior
flagellum coiled. H-1) Discocelia sp. The cell glides on its posterior flagellum as the anterior flagellum
vibrates. Small granules can be seen along the rim of the cell. 1) An individual cell with a discharged
granule (black arrowhead). J-L) Heliomorpha single cell isolates picked for SSU rDNA sequencing. DM1
(J) and DM2 (K) were isolated from a freshwater sample by Gordon Lax, while SDM2 was isolated
from an alkaline lake. Scale bars: 10 m. Images J and K courtesy of Gordon Lax.

bow to the side underneath the disk. Edge of disk lined with what appear as ridges in DIC
(fig. 2.13B), appearing as extrusomes in TEM (fig. 2.13J-L). Eukaryotroph that hunts prey by po-
sitioning itself above it and rapidly snapping down to trap the prey like a “lid” (fig. 2.13), then
extruding pseudopods from the underside to engulf and phagocytose the prey. Isolated from

beach sediment. SSU rDNA phylogenies place it within Filosa, specifically near Cryomonadida.
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Figure 2.13: Light microscopy and preliminary TEM of filosan flagellate BoP4.1 Q. A) A
phase contrast image showing the typical orientation of flagella of a moving cell, the anterior flagellum
pointing up in the image. B) A stationary cell clamped down to the surface. Note the flagella contained
underneath, and fine ridges along the thick rim of the cell. C) A stationary cell with caught kinetoplastid
prey, which was still motile but unable to escape. D) A cell in early division. E-F) Optical sections
through a cells at the end of cytokinesis. Nuclei (n) are visible in F. G-1) Optical sections through the
top of the cell with a channel (arrowhead) visible through which the flagella pass in parallel to descent
down the central channel in the cell (black arrowhead). J-L) Preliminary ultrastructure by TEM. J)
Tangential section through a cell, dorsal side to the left and the ventral disk opening to the right,
cutting through a portion of the outer rim (r). A prey kinetoplastid can be seen in the food vacuole
(fv). Mitochondria (m) have tubular cristae. Extrusomes can be seen along the rim (arrowheads). K)
Close-up of the rim (r). Arrowheads point to individual extrusomes in varying longitudinal sections.
L) Section through the top of the cell. A pair of flagella initiate from the basal bodies (bb) near the
nucleus (n), pass upwards before emerging back down a channel (c) in parallel (see: pair of axonemes
(ax)). A fibrous region (circled in red) exists on the other side of the basal bodies from the channel.
Scale bars: A-1) 10 m; J) 2 m; K) 200nm; L) 2 m.
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2.3.L5§

This group contains other eukaryotrophs, flagellates and amoebae with a thick theca and a ten-
dency to form filose pseudopods. A single extremely low abundance environmental sequence

hit was found in marine hydrothermal vent sediment.

Amoebozoa

Murricirra

(Zlatogursky et al., in prep)

Large cell with a variable number of radiating flagella (from half a dozen to over 20); the
organism takes turns gliding on different flagella pointing forward in the direction of travel.
Predator of a Vannella sp., which it consumes by positioning itself above it and extending a
pseudopod to collect it. Morphology identical to that of Multicilia Cienkowski 1881 (Mikr-
jukov and Mylnikov 1998, Cienkowski 1881). This morphotype was previously cultivated but
the culture has since been lost (Mikrjukov and Mylnikov 1998). A single cell transcriptome was
obtained from isolate HAK MC from a mud flat in BC (Canada) by Gordon Lax. In the mean-
time, a culture established independently from an isolate from another sediment sample, LIS
MC. The SSU rRNA sequence derived from the HAK MC transcriptome had 96.5% identity
to Multicilia marina, and 90.5% to Artodiscus.

Organisms with nearly identical morphology to that of Mulricilia were isolated from two
independent hypersaline samples (PSL3 and JT4U, both >100 ppt salinity). The prey is pre-
sumed to be small amoebae but di-eukaryotic cultures have not yet been established. Molec-
ular data have not yet been obtained, but the organisms most likely belong to the Multicilia-
Artodiscus clade. These may be the first observations of a multiciliid in a hypersaline environ-
ment to date, as there is no prior mention of hypersaline sightings (Mikrjukov and Mylnikov
1998, Nikolaev et al. 2006, Ntakou et al. 2019). No significant matches were found in short read

environmental data.

TRICHOSPHAERIUM

Isolated from subtidal coastal beach sediment in southern Nova Scotia, amoeboid cells from
~so um up to well over a hundred microns long, covered in a pellicle with a layer of conspicuous
carbonate crystals 8-10 um long, with multiple circular openings through which narrow tubular
pseudopodia emerge (fig. 2.14). Feed on eukaryotes and bacteria alike, and can be maintained

in culture on bacteria alone. Early in the cultivation process, one flask of culture contained
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Figure 2.14: DIC light micrographs of amoebozoans Trichosphaerium sp., and Muilticilia isolate
HAK-MF. A-E) Trichosphaerium sp. A) Low magnification view of several amoebae showing distinctive
colour from the calcium carbonate spicules. B) Surface of an amoeba with regular-sized openings
among the spicules. C) Optical section through the layer of spicules covering the cell. D-E) Optical
sections through a rare de-spiculated individual showing surface apertures from which dactylopodia (E,
arrowheads) emerge. F-H) Optical sections through an individual of Multicilia isolate HAK MF. Flagella
radiatie from all around the cell, and surface granules can be seen in (H). Scale bars: 10 m except A)
50 m; and F-H) 20 m.
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only “naked” forms of the amoeba was observed once. Both forms were originally described by
(Schaudinn 1899), but the current Trichosphaerium in molecular datasets, strain ATCC 40318,

was in the less distinctive “naked” form (Tekle et al. 2008), making its identification less certain

at the time. Molecular confirmation of identity done by collaborators.

Figure 2.15: DIC light micrographs of amoebozoan with a flagellate stage LRM3-1F A-B) Views
of a swarmer cell with the flagellum extended (A) and held in acharacteristic manner wrapping halfway
around the cell (B). C) Cyst. D-E) Morphological variation of the amoeboid stage. The arrangement
of filopodia can be spider-like (D, bottom) or as very long filaments extending from one or two ends of
the cell (D, top), and several amoebae can form clusters (E). F) Time series of a transforming swarmer
flagellate, with time indicated in minutes. The total process from attachment to amoeba takes about a
half hour. Shortly after transformation, a small protrusion remains where the flagellum was (arrowhead).
Scalebar: 10 m.

LRM3-1F

Flat amoeboid cell with a round main body (~10 um long) with very long branching filopodia
radiating from around the cell body, some for considerable distances (fig. 2.15). Has a swarmer
stage: a small sphaerical cell (7-8 um in diameter) with a single emergent flagellum that gen-
tly curves backwards around the cell. A swarmer cell was observed to transform fully into the
amoeboid form in 3omin (fig. 2.15F) Top BLASTn hit within NCBI nt is a Schizoplasmidium
sp. (accession ID: FJs44418.1, 77% identical); the sequence from LRM3-1F is well-supported
within Amoebozoa in SSU rDNA phylogenies but placement within the group remains unre-
solved. No short-read environmental placements were found, although only the Vg region was

present in the current SSU rDNA sequence.
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2.3.1.6

Heterolobosea

DacryrLoamonN4s/SELENAION “YAF”

Elongate cell with two long, unequal flagella emerging subapically.There is a short groove wrap-
ping around the far anterior end of the cell (fig. 2.16). The posterior flagellum bends backwards
around the cell, and has a characteristic small lateral finger-like projection not far from its base.
A vesicular nucleus is located a third of a cell length from the anterior end of the cell. Bac-
terivorous heterotroph, ingestion occurs at the anterior end of the cell (fig. 2.16). Isolated from
and maintained in low oxygen haloalkaline (160ppt) conditions enriched with grains and iron
citrate. Isolated from salt crust from alkaline Lake Manyara, Tanzania. Morphologically resem-
bles the freshwater heterolobosean flagellate Dactylomonas (Hanouskovd et al. 2019), although
branches with its sister lineage Selenaion in SSU rDNA phylogeny (fig. 2.16). While flagellates
were not recorded in the original description of Selenaion (Park et al. 2012), it may have a flagel-

lated stage that resembles that of Dactylomonas and YAF. No environmental sequence matches

were found.

Figure 2.16: Light microscopy of heterolobosean flagellates TZLM1-YAF and TZLM3-JC. A-
E) Heterolobosean TZLM1-YAF. General views of the cell. A groove can be seen curving around the
anterior end of the cell (black arrowhead). Part way down the posterior flagellum is a small lateral
protrusion (white arrowhead). E) Dividing cell with two sets of flagella visible at the anterior end.
F-G) Optical sections through two individuals of Heterolobosean TZLM3 JC (“Jakobacarp”). Both
flagellates, fed to different degrees, carry an excavate-like groove through which the posterior flagellum
beats. A vesicular nucleus is visible (n). Scale bars: 10 m.
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2.3.1.7

JAKOBACARP

A biflagellate bacterivore of spindle-to-rounded overall shape that varies considerably within a
culture isolate, and with a distinct groove through which the posterior flagellum beats (fig. 2.16F-
G). Usually swims with heterodynamically beating flagella. Isolated from a haloalkaline lake
(TZLM3) and established in a monoeukaryotic culture with co-isolated bacteria. The SSU
rDNA phylogeny places it at the base of Tetramitiidae, and it does share the SSU rDNA Helix
17_1 Tetramitiid synapomorphy (Harding et al. 2013) (see fig. B.3). The overall shape resembles
that of a “typical excavate” such as Jakoba or CLOs. One potential SSU rDNA Vg environmen-

tal sequence was found, from deep sea sediment.

“RipGgY FLAGELLATE” RF

Fairly large cell with conspicuous longitudinal ridges twisting slightly helically along the cell and
ending in a spike-like projection, particularly along the dorsal side of the cell. Higher magnifi-
cation DIC images of flattened cells show a segmented structure immediately underneath each
ridge (fig. 2.17) — possibly localised alveolae or bacterial endosymbionts. Ventral side contains a
groove resembling that of a pharyngomonad. Four flagella emerge apically, with one pair pro-
jecting forwards with a gentle curve and beating in parallel, as the other two point backwards
and to opposite sides. Prominent vesicular nucleus located anteriorly close to the emergence of
flagella. Cytoplasm full of round vesicles towards the posterior of the cell. In some conditions,
flagellates exhibit a peculiar swarming behaviour (fig. 2.17F).

RF contains amoebae that resemble those of pharyngomonads and their close relatives
(Harding et al. 2013). These amoebae contain abundant bacteria in the cytoplasm — possibly
endosymbionts. Additionally, somewhat irregularly-shaped cysts can be found, smooth and
devoid of pore plugs. Isolated from sediment from alkaline Soap Lake, WA, US and grown in
20ppt alkaline medium TZ enriched with grain. No sequence data available to date, but likely
a heterolobosean due to life cycle stages, nuclear morphology under light microscopy, arrange-

ment of flagella, and resemblance of the groove to that of pharyngomonads.

Residual lineages
CENTROHELID “CUF1-MH”

(Zlatogursky, Eglit, Simpson, in prep)
A small heliozoan (fig. 2.18) isolated from rehydrated salt crust from a pool with rzoppt

salinity and cultivated on a halotolerant choanoflagellate (isolate ‘C3C’) in 15oppt HS#s medium.
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Figure 2.17: Light micrographs of putative heterolobosean “ridgy flagellate” (RF). A-F) Flag-
ellates of RF. A) The surface of the flagellates shows distinctive ridges. B) Four flagella, two in parallel
and each of the remaining two opposite of each other, emerge from the apical end of the cell (white
arrowheads). The parallel flagella extend behind the dorsal end of the cell, away from the ventral de-
pression (v) C) Septae subdiving the ridges into smaller compartments (black arrowheads). D) A view
of three flagellates showing sections through nuclei (n) and a ventral depression (v) (likely homologous
to the pharyngomonad groove). E) Edge of the “swarm” that forms on a wet mount slide, with the
flagellates arranged in a crowded line. F) Low magnification phase contrast image of the edge of a
“swarm", approaching from the left. H-I) RF amoebae. The amoebae are elongate with a hyaline region
in the anterior that erupts outward, and thin lateral filopodia (arrowheads) that remain anchored to the
surface as the cell moves. A single nucleus is visible (n). The cytoplasm is filled with rod-shaped in-
clusions, likely bacterial endosymbionts (I'). J) A pair of cysts, containing a plugged opening (asterisk).
Scale bars: 10 m except F) 100 m.
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Can ingest prey roughly its own size (fig. 2.18B). SSU -DNA phylogenies place CuF1-MH firmly
among centrohelids (fig. 2.2), and the organism represents a previously exclusively environmen-
tal clade (V. Zlatogursky; data not shown). SEM imaging reveals an absense of scales and an
altogether naked surface (fig. 2.18C), which is unusual but not unknown among centrohelids:
eg. Oxnerella (Cavalier-Smith and EE Chao 2012), which branches in a different part of the
centrohelid phylogeny (V. Zlatogursky; data not shown). There are short read environmental
data from marine sediment, water, and near hydrothermal vents that meet this study’s criteria

for high probability matches (fig. 2.23), but those sequences may also represent other closely

related undersampled or uncharacterised centrohelid clades.

Figure 2.18: Light microscopy and surface features of halophilic centrohelid CuF1-MH. A)
General view of the centrohelid. B) Time series of CuF1-MH (top) feeding on a chanoflagellate (bottom).
C) SEM image showing the cell surface devoid of spicules. Scale bars: 10 m, except 2 m in C.

Figure 2.19: DIC light micrographs of ancyromonad CuF1l-Anc. A-F) Different DIC optical
sections through a single specimen of ancyromonad CuF1-Anc c.f. Ancyromonas melba. Note the
unusually long anterior flagellum for this group (B,C). The left side of the ventral depression contains
a row of granules, presumably extrusomes (C, arrowhead). Scalebar: 10 m.

ANCYROMONAS MELBA

Bean-shaped dorso-ventrally flattened cell with a conspicuous ventral depression through which
the posterior flagellum passes; anterior flagellum short but longer than in other ancyromonads

(fig. 2.19). Prominent battery of granules — presumably extrusomes - lines the anterior left side
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of the ventral groove. Strongly resembles the uncultivated species Ancyromonas melba (Patter-
son and Simpson 1996) by morphology. No sequence data yet available. Isolated from rehy-

drated salt crust from a salt pond (r2oppt salinity) in Curagao, and currently in crude culture in

HS#s medium at 15oppt salinity. Most likely bacterivorous.

Figure 2.20: Light microscopy and preliminary ultrastructure of palpitomonad CuSP2-3 BLOL.
A-C) Optical sections through an individual CuSP2-3 BLOL flagellate showing the long anterior (af)
and posterior (pf) flagella, and a wide groove (arrowhead). D) optical section through a cell with the
nucleus (n) visible. E-F) Optical sections through a dividing individual, each set of flagella indicated
with an asterisk. G-J) Preliminary ultrastructure by TEM. The wide groove can be seen opening to the
bottom right (g). H) The nucleus (n) is encircled by mitochondrial lobes (m), and vesicles with fibrillar
inclusions (asterisks) where mastigoneme hairs are likely produced can be seen associated with the
endoplasmic reticulum. A food vacuole (fv) is to the right. I-J) Sections through two individuals, with
a total of three basal bodies (arrowheads). Where appropriate sections where available, all observed
cells had more than two basal bodies. Further serial sectioning will likely reveal a fourth. Scale bars:
A-F)10 m; G-J) 1 m.
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2.3.1.8

ParrrromonaDp “BLOL”

Biflagellate with along (approximately 4 cell lengths) trailing posterior flagellum extending past
a prominent posterior groove. The anterior flagellum is about 3 cell lengths long and held later-
ally as the cell swims gracefully on a helical path (fig. 2.20). Isolated from sulfidic muds (7oppt
salinity) on Curagao. Initially grown under anaerobic conditions with Carpediemonas BICM
as prey, which it was observed to ingest at the posterior end of the cell, but currently maintained
in aerobic media with only bacteria as prey. Thus, BLOL appears to be both facultatively eu-
karyotrophic and also capable of tolerating anaerobic conditions.

The SSU rDNA sequence places it with Palpitomonas bilix (Yabuki etal. 2010), with 98.7%
sequence identity over 1178 nucleotides. The published morphological description for P. bilix
does not mention a groove, but mentions the cell is delicate under imaging conditions. BLOL
is likewise sensitive to light exposure and the groove disintegrates rapidly; it cannot be ruled out
that the original P. bilix isolate may also sometimes carry a groove. Preliminary ultrastructure
data are consistent with those of Palpitomonas bilix: vacuolated cytoplasm, flat cristae, and a
distinctively concentric endoplasmic reticulum around the nucleus (fig. 2.20G-I). BLOL has a
wide band of microtubules associated with the groove, and atleast one extra pair of unflagellated
basal bodies that were not observed in P. bilix (Yabuki et al. 2010).

A slightly smaller isolate with an otherwise identical morphology (BoP3.4 BLOL) was cul-
tivated from another hypersaline environment, but no sequence has been obtained yet. Short
read environmental sequences equally identical to both BLOL and Palpitomonas bilix (with

98% sequence identity) were detected in marine as well as hypersaline samples (fig. 2.23).

INCERTAE SEDIS and major new lineages

HEMIMASTIGOPHORA

(published in: Lax G*, Eglit Y*, Eme L*, Bertrand EM, Roger AJ, Simpson AGB (2018). “Hemimastigo-

phora Is a Novel Supra-Kingdom-Level Lineage of Eukaryotes”. Nature 564(7736):410—414)

Eukaryotrophs with two rows of flagella on the sides of the cell and a prominent anterior
cap, or ‘capitulum’, which also serves at the site of prey ingestion. Spironemids taper oft into
a long “tail” at the posterior end, with which they sometimes attach to surfaces (fig. 2.21A-F).
Hemimastix, on the other hand, is rounded and with hardly any “tail”. Both were picked for

single cell transcriptomes, but a culture of Hemimastix was in the meantime established with
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Spumella sp. as prey. The culture is now available for further research, such as genome sequenc-
ing. A smaller Hemimastix sp., probably H. amphikineta based on size and fewer flagella, was

seen in an enrichment inculated with material sampled by Gordon Lax near glacial runoft from

Joffre Lakes PP, BC (Canada).

METEORA

(Eglit*, Shiratori* et al., in prep)

Small (2-4um) cell body with long longitudinal extensions on either end upon which it
glides, usually with two or more swinging “arms” extending from the cell body proper (fig. 2.21G).
Morphologically identical to Meteora sporadica Hausmann 2002. Numerous dynamic small
granules visible throughout the cell surface, some of which can extend quickly. Aerobes and
bacterivores, isolated from intertidal marine sediments. Meteora was additionally seen in two
Curagaoan intertidal sediment samples (beach in front of CARMABI, and San Juan Baai; data
not shown).

SSU rDNA phylogenies do not place Meteora among members of Rhizaria with a simi-
larly dynamic cytoskeleton, nor among any of the former “Heliozoan” groups with radiating
axopodial-type extensions, and, in fact, fail to resolve its placement in the eukaryote tree of life.

Discussed further in Chapter 3.

ProT1IiST X

Anaerobic eukaryotroph with four flagella emerging apically in a cruciform arrangement, each
with its own flagellar pocket (fig. 2.21H-K). Its morphology matches that of “Protist X” found
in anoxic sediments (Bernard et al. 2000). Position unresolved by SSU rDNA phylogenies (see
fig. 2.2). Despite two rounds of environmental sequence searches, each with a greedy approach,

no significant matches were found in any dataset. Discussed further in Chapter 4.

S]B2

Bacterivorous flagellate with a conspicuous groove and unequal flagella rapidly skidding on
the longer posterior one, overall resembling a “typical Excavate”, something between a CLO
and a malawimonad by morphology and behaviour (fig. 2.22A-D). Atypical division plane (see
fig. 2.22D). Aerobe, isolated from San Juan Baai beach sand. Taxonomic affinity not resolved by

SSU rRNA phylogenies. Has surprisingly numerous high probability hits—some previously
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Figure 2.21: Light and TEM micrographs of hemimastigotes, Meteora, and Protist X. A-F)
Basic characteristics of hemimastigotes Spironema cf. multiciliata (A) and Hemimastix kukwesjijk (B-
F). A) Spironema cf. multiciliata is a lanceolate cell with a posterior “tail” and two rows of flagella at
the anterior end. The capitulum is not visible in this image. B) General morphology of H. kukwesjijk.
From the anterior capitulum (here in lateral section) two rows of flagella continue gently helically down
towards the posterior. C) H. kukwesjijk feeding on Spumella sp. with its anterior capitulum. E) SEM
image of the prey ingestion process. F) Early division stage showing a presumably nascent row of
short flagella. (For further information on A-E, see Lax et al. (Lax et al. 2018)). G) Time series of
a gliding cell of Meteora sporadica isolate LBC3 illustrating the distinctive swinging motion of lateral
“arm” extensions. (See Chapter 3 for further information) H-K) DIC light micrographs of the anaerobic
eukaryotroph Protist X, isolate MSW. H) Longitudinal section through the flagellate including two of its
four flagella. 1-J) Cross section of the apical insertion site of four flagella and their respective channels.
K) Early step in the feeding process showing attachment of the prey Carpediemonas cell. (See Chapter
4 for further information). Scale bars: 10 m, except E-F) 10 m.
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anotated as green algae—in environmental sequence datasets from marine sediments (includ-
ing those from the deep sea), hydrothermal vent water, and anoxic marine environments, some

with very high abundance for this study (fig. 2.23).

LRMj3-SF

Tiny (3-5 wm cell body proper, but up to 8 um in some larger individuals) amoeba with ultra-fine
filopodia (barely visible under near maximum light microscopy resolution with DIC optics) and
a flagellated stage that glides upon its posterior flagellum (fig. 2.22E-]). Flexible cell body. Ultra-
fine filopodia emerge from the flagellate in some cases as well (fig. 2.22I). A dividing flagellate
was found (fig. 2.22I-]). Mature amoebae surrounded by a ring of particulate matter/bactera
with ~2 um of space; sometimes two cells can be found within one such ring and a binucle-
ate individual was found (fig. 2.22F-G), implying division can occur in this stage. Phylogenetic
placement resolved by neither a BLASTn search of the nucleotide database (no hits above 86%
sequence identity), nor via SSU rDNA phylogeny (fig. 2.2). Obtained from standard enrich-
ment of a 2 year old sample of anoxic silt from an abandoned saltern now at regular marine
salinity from near Sant Carles de la Rapita, Catalonia, Spain. Several short read environmen-

tal sequence matches were found in data from hydrothermal vent fluid and deep sea sediments

(fig. 2.23).

2.3.2 GENERAL ENVIRONMENTAL SEQUENCING RESULTS

A ‘probablehit’ or ‘probably match’ is defined as a sequence (operational taxonomic unit (OTU),
amplicon sequence variant (ASV), or, occasionally, read) with a R AxML-EPA placementlikelihood-
weight ratio (lwr) >0.9 and its corresponding query sequence ranked above all named (non-
environmental) subject sequences in a BLASTn search of the combined NCBI nt and own se-
quences database.

Of the novel sequences in this chapter, most would have appropriate binding sites for
conventional short read ribosomal environmental amplicon sequencing studies. For the V4
region, QSI-PG had a potentially significant mismatch with respect to the TAReuk454FWDr
primer (Stoeck et al. 2010) (fig. B.4; note: no data were available for LRM3-1F, TZLM3-RCL,
GEM-RC, Jakobacarp, or CuSP2-3 BLOL in that region). For Vg, every sequence except that of
LRM3-1F had a perfect match to the “TARA Oceans” 1398F primer (de Vargas et al. 20152), and

no significant mismatches were present for the corresponding 1510R reverse primer (fig. B.4;
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Figure 2.22: DIC light microscopy of incertae sedis organisms SJB2 and LRM3-SF. A-D)
Excavate-like flagellate SJB2. A-B) General views and optical sections of two individuals, showing the
insertion sites of anterior (af) and posterior (pf) flagella, as well as a vane on the posterior flagellum
(arrowhead). C) Probable cyst of SJB2. D) A dividing flagellate (asterisks). Note unusual axis of
division. (Continued on the next page)
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note low quality and generally sparse sequence data for the reverse primer binding site at the 3’
end of the gene). Thus, one would expect QSI-PG to evade amplification by this example V4
primer set, while most sequences should be amenable to amplification by the “TAR A Oceans”
V9 primer set.

This analysis was able to detect probable relatives for 16 out of 27 surveyed groups (20/39
isolates for which sequences were available) in a set of public short read sequence datasets to-
talling 14M sequences (OTUs, ASVs, and reads) (fig. 2.23a). The examined taxa with the most
probable hits were the colpodellid NF, the breviates (especially Breviata-Subularomonas type;
perhaps unsurprisingly, as a number of environmental sequences has been detected previously:
Katz et al. 2011), cercozoans RotF (Abollifer sp.) and RotFL - and, surprisingly, the represen-
tative of a novel excavate-like lineage SJB2. The majority of probable hits come from marine
samples.

Despite appearing in high abundance in every alkaline sample and enrichment examined
so far (n=s), no sequences with significant identity to any of the Retortacarps were found,
even in the metagenome (not shown) and amplicon datasets from one of the sampling loca-
tions (Table 2.6; Zorz et al. 2019). Similarly, only two probable hits were identified for barth-
elonids, which appear frequently in anoxic enrichments, including those from hypersaline en-
vironments. The high abundance of sequences from cave lamenflora from the VAMPS dataset
(Havlena et al. 2021) may be a result of lack of clustering or sequencing errors; without it, the
colpodellid NF was still found in a variety of habitat types but with fewer probable hits for each.

Of the high probability hits, 40 matching environmental sequences met the traditional
97% sequence identity cut off for OTU classification, of which 24 had a sequence identity of
99% or above. The organisms with hits of above 97% sequence identity were LRM3-SF, brevi-

ates (including BLO), Lithocolla, S]B2, Discocelia and palpitomonads, with the latter three with

Figure 2.22: (continued from the previous page) E-J) Extremely small amoeba LRM3-SF and its
flagellate stage. E) General view of a small individual. Note ultra-fine filopodia (arrowheads, see
contrast-enhanced inset E') emerging from the cell body. F-G) Larger amoebae, usually surrounded by
a ring of bacteria and/or debris, with a conspicuous 2-3 m clearing around the cell body (asterisk).
The individual in (F) contains two nuclei (black arrowheads), and two cells can be found inside some
rings (G), implying division in this stage. H) Another amoeba, not surrounded by a ring of debris,
with ultra-fine filopodia emerging from the cell body (arrowheads, see contrast-enhanced image H'),
I-J) flagellates of LRM3-SF. Two flagella, one anterior and one trailing posterior, emerge from the
anterior of the cell. Ultra-fine filopodia can be seen extending from some individuals (arrowheads, see
contrast-enhanced image I'). An individual with two sets of flagella (J) and two nuclei (not shown) was
observed, indicating cell division is possible in this stage as well. Scale bars: 10 m.
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Organism Number of OTUs found
Barthelonids 2
Discocelis 16
BoP4.1Q I
BLO (breviate?) 45
Breviates: subulatomonas 57
Breviates: other 24
CuF1 MicroH 21
Heliomorpha 1
Jakobacarp I
LRM3-SF 5
Lithocolla 39
Colpodellid NF 166
Palpitomonads 7
RotF (Abollifer) 46
RotFL (Abollifer-like) 109
S]B2 52

Table 2.6: OTU matches from environmental sequence datasets to novel taxa found in this study.

hits of 99% sequence identity or above. None were exactly identical.

Among the probable hits, a considerable majority are accompanied by low total abun-
dance counts (non-normalised) in their respective datasets. Where per-site abundance infor-
mation was available, a pattern of generally low counts occasionally interspersed with one or
two higher abundance samples was observed for numerous organisms (fig. 2.23b. Note palpito-
monads and Discocelia especially, as well as RotFL). 1097 of 1318 hits, or 83% (258 / 292 OTUs,
or 88%, with the VAMPS data excluded) had corresponding abundance counts less than 3.
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2.4

2.4.1

DiscussION

The few dozen novel isolates in this study primarily come from sediment enrichments of ma-
rine, alkaline, and hypersaline samples. The newly identified and cultivated heterotrophic lin-
eages are distributed broadly across the tree of eukaryotes, including Sar (eg. colponemids
and SoapColp), metamonads (barthelonids and retortacarps), Obazoa (breviates and Litho-
colla), Rhizaria (PG, Discocelia), Amoebozoa (Multicilia), Heterolobosea (Jakobacarp), and the

nascent supergroup surrounding Hemimastigophora (Meteora, Protist X) (fig. 4.7, Chapter 4).

EVOLUTIONARY SIGNIFICANCE OF NOVEL LINEAGES

Of note are some shared morphological features between several of the novel lineages. It has
long been noticed that several groups of eukaryotes with morphology dominated by a large ven-
tral groove, called “excavate taxa” (Simpson and Patterson 1999), fall in different parts of the eu-
karyotic tree. Of the three major “excavate” groups, Carpediemonas-like organisms (CLOs) are
metamonads, jakobids fall in Discoba, and malawimonads are currently of uncertain placement
in the tree, but branch with metamonads (possibly then representing an aerobic sister taxon) or
within Amorphea near ancyromonads (Brown etal. 2018). In this study, isolate ‘SJB2 has classic
“excavate” features down to the dominating groove and a visible flagellar vane; however, SSU
rDNA phylogenies do not place it within the previously known “excavate” groups, and its posi-
tion remains unresolved. Isolate ‘Jakobacarp’ was another organism with an excavate-like mor-
phology, including the groove. Surprisingly, SSU rDNA phylogenies place it in Discoba, but
firmly within Heterolobosea: specifically within Tetramitiida (with whom it shares a derived
SSU rRNA feature). Within Heterolobosea, percolomonads are another group with arguably
“excavate” features, but with a notably different arrangement of flagella (all in parallel, as op-
posed to the heterodynamic flagella of classical excavates; Pdnek and Cepiéka 2012). Altogether,
it is possible the “excavate” traits in both SJB2 and Jakobacarp may be retained relics of an an-
cestral form; however, ultrastructural studies of the flagellar apparatus are needed to examine
this further.

Colponemids are eukaryotrophic flagellates that also carry a ventral groove, although this
time more subtle than in excavates, and accompanied by a smaller groove associated with the an-
terior flagellum. In addition to the importance of colponemids in understanding the evolution
of alveolates (Tikhonenkov et al. 2014, Tikhonenkov et al. 2020b), a number of novel major lin-

eages in the recent decade have been characterised from organisms resembling colponemids by
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2.4.2

morphology and behaviour (raptorial eukaryotrophy). Examples include Rbodelphis (Gawry-
luk et al. 2019), Ancoracysta (Janouskovec et al. 2017) and Aguavolon (Bass et al. 2018). This
study continues the trend: despite its resemblance to colponemids, ‘SoapColp’ turns out to
not associate with them in SSU rDNA phylogenies, but instead branches within Stramenopiles,
albeit with modest support. The broad yet patchy phylogenetic distribution of “colponemid-
like” lineages may potentially reflect a selective retetion of ancestral traits in those lineages — in
other words, the common ancestor of Diaphoretickes may have been a raptorial eukaryotroph
with two ventral grooves or concavities: a major one underneath the posterior flagellum and a
smaller one underneath the anterior. Relics of this arrangement may arguably also be present
in the glaucophyte Cyanophora paradoxa (Kugrens et al. 1999). This possibility deserves further
attention through more detailed examinations of the cell biology and morphology of these taxa,
many of which are incompletely characterised.

Itis notable how diverse flagellates with grooves are, and that they are broadly distributed
across the tree of eukaryotes. The sampling of organisms with ‘colponemid-like’ and ‘excavate-

like’ morphologies may continue to prove fruitful for the characterisation of novel lineages.

The survey of organsims from anoxic environments revealed several novel distinct anaer-
obic and anaerotolerant clades; or, in other words, independent adaptations to low oxygen
environments. SSF and PG each represent a distinct adaptation to anoxic conditions among
Rhizaria, complementing Brevimastigomonas (Gawryluk et al. 2016¢) and Mikrocyros (Burki et
al. 2013). Protist X currently represents the first cultivated anaerobic relative of hemimastigotes
(although reports of unusual protists that might be hemimastigotes have been made previously:
Ivan Cepicka, personal communication) The tolerance of low oxygen envirionments by BLOL
is also novel to palpitomonads, as the type species is aerobic (Yabuki et al. 2010). Altogether,
these established cultures may prove useful for expanding our understanding of adaptation to

anoxic environments, perhaps of the earlier stages in particular.

FEW NOVEL SEQUENCES FALL WITHIN KNOWN ENVIRONMEN-
TAL CLADES

Of the newly obtained SSU rDNA sequences in this study, several were placed in previously
identified environmental clades. The anaerobic eukaryotrophic rhizarian lineage SSF maps

onto Novel Clade 12 (NCr2) Bass et al. 2018. Interestingly, the existence of anaerobes among



endomyxeans was previously suspected from short read environmental sequence surveys of sul-
fidic and anoxic waters (Triadé-Margarit and Casamayor 2015). It is possible some of these se-
quences are associated with the similarly anaerobic and eukaryotrophic rhizarian lineage PG,
but are too divergent to be detected through BLASTn searches or evolutionary placement anal-
yses. The heliomorphid DM2 was placed in the environmental clade containing envirionmental
sequences MPE2-26 and PR_3E_9o, branching either with NCro or NCiz2; NCro was recently
characterised by the discovery of colponemid-like acrobic eukaryotrophs .4guavolon and Lapot
(Bass et al. 2018). BWH-RotFL ended up in the environmental clade containing environmen-
tal lineages NAMAKO-14 and NAMAKO-15 (Takishita et al. 2007), sister to Abollifer species.
This supports an 4bollifer-related identity for that clade. Lastly, CuF--MH mapped onto a pre-
viously exclusively environmental clade of centrohelids (Vasily Zlatogursky, unpublished data).

On the other hand, most novel lineages identified in this study did not correspond to a
previously recognised environmental clade. For example, despite organisms resembling Barth-
elona species thriving in anoxic enrichments of a variety of different samples, no long read en-
vironmental SSU rDNA sequences were found in NCBI nt databases, nor did the Barthelona
spp- SSU rDNA branch with any previously identified environmental lineage (a caveat here is
that BLASTn searches for related lineages may not be sensitive enough: with default BLASTn
parameters, the PCE barthelonid sequence does not pick up that of barthelonid LRM2 and
vice versa). In a similar vein, Retortacarp-like organisms were found in virtually every alkaline
lake sample examined so far, often at high abundance in the original sample; still, we could
not find any related environmental sequence, even in short read data. Of the novel major lin-
eages, while hemimastigotes did have corresponding molecular sequences in ecological studies
(Lax et al. 2018), extensive surveys of both long read and short read environmental sequence
data found nothing for Meteora or Protist X (each seen in and successfully cultivated from
multiple different samples). None of the organisms discussed here had significant phylogenetic
affinity to any of the environmental clades not assigned to supergroups that are in EukMap (Cé-
dric Berney). Curiously, most of these clades consist of environmental sequences identified via

Sanger sequencing of clone libraries in the early 2000s.

2.4.3 UNDERSAMPLED HABITATS ARE PRODUCTIVE FOR FINDING NOVEL
DIVERSITY

In this study, two groups of anaerobes showed an unexpected prevalence and diversity in marine

anoxic environments: barthelonids and breviates. Both groups were recognised as distinct taxa
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relatively recently, within the past couple of decades (Bernard et al. 2000 and Walker et al. 2006),
and a similar expansion of diversity and distribution was detected at the same time by other
research groups (Yazaki et al. 2020; Ivan Cepiéka, unpublished data). In an analogous case, the
recognition of of Carpediemonas membranifera as a distinct lineage in the 1990s (Ekebom et al.
1996, Simpson and Patterson 1999) was then followed by the characterisation of an extensive
breadth of distinct lineages in that part of the tree (Kolisko et al. 2010b). This suggests that not
only may currently non-speciose lineages represent larger groups of distinct lineages, but that
anoxic habitat diversity in particular may be severely undersampled. In contrast to the novel
emergence of anaerobes within aerobic groups discussed above, this is an example of expansion
of shallow rather than deep taxon sampling.

Most of the new halophiles characterised over the last 15 years have been classified as novel
genera (Z.e. not known from marine or freshwater habitats) (Harding and Simpson 2018), and
there is a diversity of short read environmental sequences restricted to high salinity habitats
(Filker et al. 2017). The known diversity of halophilic protists is normally dominated by het-
erolobosean groups (Park and Simpson 2015, Harding and Simpson 2018, Ruinen 1938), some
ciliates (Park and Simpson 2015, Post et al. 1983), stramenopiles (Park et al. 2006, Rybarski et al.
2021), chlorophytes like Dunalliela (Post et al. 1983), colpodellids (Post et al. 1983, Patterson and
Simpson 1996), choanoflagellates (Schiwitza et al. 2018), and unidentified centrohelids (Post et
al. 1983); in short, non-halophilic protists have invaded hypersaline enrivonments a multitude of
times independently. This study continues to expand that list, with the addition of hypersaline
representatives of Multicilia, breviates, barthelonids, and a collection of additional colponemid
lineages, all of which were found the live in salinities at or over 15oppt. One possible cause be-
hind the degree of novelty discovered here is that the anoxic layers of hypersaline habitats have
been particularly underexplored. One partial exception is the anaerobic ciliate Trimyema (Park
and Simpson 2015). Molecular adaptations to halophily have been explored in very few of these
halophilic protists (Harding et al. 2016). The transition between marine and freshwater envi-
ronments within clades was recently found to be not as rare as originally believed (Jamy et al.
2022), thus one would expect finding further halophilic lineages within otherwise marine or
freshwater clades.

Alkaline environments present another chemical challenge for single-celled eukaryotes.
The majority of microbial studies of these environments to date have been on prokaryotes

(Sorokin et al. 2015, felfoldiMicrobial CommunitiesSoda2o20; but Pirlot et al. 2005, Yasindi and
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Taylor 2016); in fact, the diversity of eukaryotes is expected to be low compared to that in fresh-
water lake systems (Lanzén et al. 2013, Schagerl and Burian 2016). Overwhelmingly, the new or-
ganisms found in this study represented new species and, in several cases, a distinct novel lineage
(e.g. Retortacarps, SoapColp). Further sampling of alkaline environments should continue to
yield yet uncharted novel euakryotic diversity. Next to nothing is known about the adaptation
of microbial eukaryotes to extreme alkaline environments, and the established cultures could
be suitable systems for its study—for example, Retortacarps, as all lineages to date have been

detected exclusively in alkaline samples, and several grow to high density in culture.

2.4.4 EUKARYOTROPHS ARE AN ESPECIALLY UNDEREXPLORED SOURCE
OF NEW DIVERSITY

Besides a handful of algae, the majority of protists currently characterised from hypersaline en-
vironments are bacterivores (Harding & Simpson 2018); furthermore, the majority of studied
anaerobic microbial eukaryotes are either bacterivores or animal parasites (see Chapter 4 Discus-
sion). Here, I documented and isolated several new eukaryotrophic lineages, many from anaer-
obic, hypersaline, and hyperalkiline environments. The largest collection were the colponemid
isolates, representing novel deep lineages of alveolates. SoapColp (Weston et al. in prep) may
represent a novel major lineage of stramenopiles, while endomyxeans PG and SSF each rep-
resent a new Rhizarian anaerobic eukaryotroph. The most phylogenetically distinct groups
found in this study, the Hemimastigotes (Lax et al. 2018) and Protist X (see Chapter 4), are also
both eukaryotrophs. Thus, it appears that in most types of environments, searching for eukary-
otrophs in particular may prove fruitful in the hunt for novel diversity (see also: Tikhonenkov
2020). This may be due a combination of past requirements for purity of cultures for molecular
work, as well as the possibility that eukaryotrophic lineages in particular may evade detection
in environmental sequencing analyses due to high trophic level (and thus usually low relative

abundance; Bachy et al. 2022).

2.4.5 ENVIRONMENTAL SEQUENCE ANALYSIS

My analysis of environmental sequences in this chapter requires several caveats. For the sake of
simplicity, in this discussion, I will use OTUs to refer to ASVs as well (as an additional caveat,
some data in the VAMPS environmental sequence dataset appear to not have been clustered, e.g.
the cave lampenflora dataset). Next, molecular sequence classification is dependent upon the

completeness of the reference database at any given time: a more closely related representative
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may be found to be phenotypically divergent from the previous closest relative and change the
assumptions made about the environmental lineage. This is especially true among the more
sparsely characterised areas of the tree of eukaryotes. And lastly, the input environmental data
were inconsistently clustered and not normalised; thus, abudance data should be interpreted
qualitatively rather than quantitatively. Absense of normalisation should have minimal impact
on interpreting low abudances (frequencies of 1 or 2), but whether a high per sample abundance
represents a true ‘bloom’ should not be inferred from these data. As an aside, some taxa may
be missing from some public datasets due to quality filters removing extremely low abundance
OTUs (eg. with a frequency of 2 or lower).

The taxa in this study are overwhelmingly rare in surveyed environmental datasets. Where
plausible OTU matches were detected at all, the majority had low total abundance counts in
their respective datasets. Some had a pattern of low counts across individual samples, with the
occasional spike in abundance in one or two. A similar pattern of generally low abundances
with a high relative abundance in one dataset was observed for hemimastigotes (Lax et al. 2018).
This pattern could have two contributing explanations. First, these low read abundance taxa
may, in fact, be present at least at modest levels: either due to much of the sequencing depth
being soaked up by a small number of exceptionally high abundance taxa, and/or as a result
of biases in amplicon sequencing methods. Additionally, some environment types have been
sampled substantially more thoroughly than others. Alternatively, the organisms could be not
abundant in nature, sparsely distributed, or persist at low abundances outside of short-lived
blooms.

That the majority of reads usually belong to a small portion of the OTUs is a widely ob-
served result in microbial ecology (de Vargas et al. 20153, Forster et al. 2016, Mahé et al. 2017).
Some of this may be a consequence of technical biases. For example, some of these technical
problems reviewed in V. Wintzingerode et al. 1997 are: 1. primer affinity bias and incompatibil-
ity (In the course of this study, some cultivated organisms provided difficult to sequence with
standard eukaryotic primers), mixed eukaryotic DNA in ecological samples would only exac-
erbate the problem further; 2. biases in PCR amplification (eg. due to %GC content); chem-
ical contaminants in the sample can further impact PCR efficiency; 3. introns and other sec-
ondary structure complications in SSU rDNA and rRNA; some taxa may have DNA-associated
molecules that can inhibit PCR, e.g. by causing loops; 4.polymerase error may appear as low

abundance sequence variants that are difficult to distinguish from true low abundance variants.
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At low abundances, factors affecting quantitative analyses can lead to a failure to detect a por-
tion of the biodiversity altogether. Thus, additional complications—such as due to variations
in ribosomal copy number between organisms (V. Wintzingerode et al. 1997; Lavrinienko et al.
2021)—can nevertheless impact qualitative studies.

Technical issues aside, some of the underdetection of taxa in molecular environmental
surveys can be a result of taxonomic groups being specific to certain environments that are rarely
sampled. A prime case of this is the benthos, which, partly due to being a more difficult type of
sample to process, is considerably less explored than its planktonic counterparts (Forster et al.
2016, Vaulot et al. 2022b). Taxa may also be difficult to detect due to the dominance of a small
number of extremely abundant OTUs (de Vargas et al. 2015a, Suter et al. 2021); that some novel
taxa appear prevalent in ‘extreme’ environments (Stoeck et al. 2003, Pasulka et al. 2019) may
be a consequence of a lower relative abundance of ‘weedy’ taxa that normally dominate but
do poorly under those unusual environmental conditions. Sampling ‘extreme’ or otherwise
unusual environments may allow detection of more taxa with broad ecological distributions, in
addition to the specialists restricted to those ‘extreme’ environments.

Another critical factor in molecular ecology is the timing of sampling. Microbial commu-
nities fluctuate over time, and this is true both of prokaryotic (Robicheau et al. 2022, Parada and
Fuhrman 2017, Yeh and Fuhrman 2022) and eukaryotic microbes (Piredda et al. 2017, Robicheau
etal. 2022). Sparse temporal sampling can lead one to overlook organisms that have a particular
seasonality, or that may appear only in very specific conditions (biotic or abiotic). An obvious
example is algal blooms in the ocean, where predators, parasites, and opportunistic feeders may
accompany a rapid crash in the algal population. This can be picked up through continuous
monitoring, eg. via FlowCytobot (Peacock et al. 2014) or frequent environmental sequencing
sampling (Ollison et al. 2022). Sequences of organisms likely related to hemimastigophora were
at a low abundance in surveyed environmnetal sequence data except in one sample (Lax et al.
2018); we speculate that the timing of this particular sampling event may have coincided with a
bloom of its prey.

Some microbial eukaryotes may in fact be present at extremely low abundances, or be al-
together dormant, for the vast majority of time. There have been arguments for a “microbial
seed bank”—a dormant population lingering, for example, in sediments, awaiting opportunity
to arise as new colonisers (Finlay 2002, Scheckenbach et al. 2010). This may explain some of

the observed differences between diversity characterised through cultivation-based approaches



and that in environmental sequence data, which has been observed for prokaryotes (Ventosa
et al. 2014)—where some frequently isolated taxa were consistently low abdunce OTUs in cor-
responding environmental data from the same samples—as well as protists (Risse-Buhl et al.
2013). Thus, the cultivation-based approaches to exploring protist diversity in this study may
have been accessing the “microbial seed bank”, .e. some of the isolated organsisms may repre-
sent normally low abundance taxa that flourished when presented with an underpopulated or

unestablished environment (the enrichment medium).

FURTHER DIRECTIONS

Although this study was cultivation-based, comparisons with publicly available environmental
sequence data highlighted some limitations in current datasets. Short read, 454- and Illumina-
based, sequencing has largely limited amplicon-based studies in microbial eukaryotes to the V4
and Vo regions of the gene. This leads to the omission of unusually long versions of these
regions (e.g. V4 in euglenids; Lax and Simpson 2020) and, more crucially, insufficient signal
for placing sequences without known close relatives in databases, nor in reference phylogenies.
Furthermore, these short reads are sometimes misidentified by BLAST-based pipelines and en-
vironmental sequence placement analyses alike. Longer environmental amplicons would relax
the sampling requirements and significantly improve the phylogenetic resolution of novel envi-
ronmental sequences.

A significant innovation gaining attention at present is the use of long read sequencing

technologies for close-to-full-length SSU rDNA amplicon—or the full (DNA operon—sequencing.

Initially plagued by relatively high error rates, both Oxford Nanopore and PacBio technologies
have become more reliable as the manufacturers and the research community have become bet-
ter acquainted with the new types of sequence data. Research in long read error correction is
ongoing (eg. Zhang et al. 2020, Dohm et al. 2020). A recent study using PacBio sequencing
rDNA in eukaryotes improved on this further by applying clustering methods and using both
direct addition to the ribosomal reference tree as well as environmental sequence placements to
assign and verify taxonic classification (Jamy et al. 2020a). Furthermore, long read sequencing
can include portions of the LSU rDNA. While primer biases may continue to be a major prob-
lem (that they were for clone libraries (Stoeck et al. 2006), and also for direct PCR on cultured
organisms in this chapter), long read sequencing may enable finding “mostly universal” primers
in regions that were previously unsuitable for short read amplicon sequencing. Alternatively, a

mix of primer sets may prove effective for covering a broader spectrum of taxonomic diversity,
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especially for eukaryotes.

This chapter shows the value of a diverse approach to sampling from novel environments.
Here, I utilised a relatively small repertoire of both sample types and the methods used to in-
terrogate them. Amongst many possibilities for new directions, here I'd like to highlight two
in particular. First, as lake chemistry is more complex and diverse than simply salinity and al-
kalinity, it may be worth investigating further different types of chemically unusual lakes, e.g.
the magnesium rich Mahoney Lake, BC (Canada). Second, it would be interesting to explore
further down the redoxcline for eukaryotes that feed upon or otherwise require bacteria that
use alternative terminal electron acceptors, such as iron or sulfate. The eukaryotes themselves
need not utilise these compounds in the same way. While it is clear that emplying different
approaches broadens the exploration of novel protistan diversity, it is also true that if every pro-
tistology lab applies the same methods, there would still be plenty of novel diversity to be found.

The golden age of microbial exploration is still only beginning.
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CHAPTER 3

REDISCOVERY, CULTIVATION AND
PHYLOGENOMIC ANALYSIS OF METEOR A
SPORADICA REVEALS A NEW EUKARYOTE
‘SUPERGROUP’

3.1 INTRODUCTION

¢ INGDOM-LEVEL’ branches are being added to the tree of eukaryotes at a rate approaching
K one per year, with no signs of slow-down (Burki et al. 2020; Gawryluk et al. 2019; Lax
et al. 2018; Tikhonenkov et al. 2020a). Some are completely new discoveries, while others are
morphologically unusual protists that were previously described but lacked molecular data. For
example, Hemimastigophora are predatory (eukaryotrophic) protists with two rows of flagella
that were known since the 19 century, but proved to represent a new deep-branching eukary-
ote lineage when phylogenomic analyses were conducted recently (Lax et al. 2018). Meteora
sporadica Hausmann et al. (2002) has an unique cell morphology including a long axis of an-
terior and posterior projections, and, typically, a pair of lateral ‘arms’ (fig. 3.1a). The cell glides
along substrates with the ‘arms’ swinging regularly back and forth. Unfortunately, the original
description of Mereora was by light microscopy only and from a short-term enrichment of deep
sea sediment; thus, Meteora represents both a novel cell type and eukaryote of unknown phylo-
genetic placement. Here, we cultured Meteora sporadica and obtained transcriptomic data from

this organism. Transmission electron microscopy shows that anterior-posterior projections are
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3.2.1

supported by microtubules originating from a cluster of perinuclear microtuble organising cen-
tres (MTOC:s). Likewise, the ‘arms’ are supported by microtubules, and neither have a flagellar
axoneme-like structure. Remarkably, phylogenomic analyses of 254 phylogenetic marker pro-
teins robustly support a close relationship with Hemimastigophora. Our study suggests that
Meteora and Hemimastigophora together represent a morphologically diverse eukaryotic ‘su-
pergroup’, and thus are important for resolving the tree of eukaryote life and early eukaryote

evolution.

RESULTS AND DISCUSSION

MORPHOLOGY

The cell body of Meteora sporadica isolate LBC3 is typically about 4-5 um in diameter, with 1 or
more lateral ‘arms’ (usually 2) and glides along the surface via its long axis. The arms normally
swing regularly back and forth, but gliding persists when the ‘arms’ are static or absent, indicat-
ing that motility does not depend on arm movement. Detached floating cells bend and squirm
butappear to lack directed motility. There are numerous small granules along the ‘arms’, as well
as the long axis (fig. 3.1D, arrow). These move back and forth along those extensions, as well as
between them (fig. 3.1D). Occasionally, some granules rapidly expand into a short protrusion
(Fig. 3.1D, white barbed arrow).

Meteorateeds on bacteria by contacting the prey with a granule (fig. 3.1C), typically on one
of the ‘arms’. The bacterium becomes attached, is gradually moved to the base of the arm, then
phagocytosed once at the cell body proper. Each bacterium in a digestive vacuole fully covered
by serial TEM (of isolate SRT610; see methods) contained a single complex structure (fig. 3.2),
presumably the discharged extrusome. Most microbial eukaryotes with extrusomes use them
for capturing eukaryotic prey or for defense (Archibald et al. 2017; Hausmann et al. 2003); it is
notable that here extrusomes are used to capture bacterial prey, which is much rarer (Mikrjukov
1995).

TEM sections also reveal a population of distinctive hash-mark-shaped microtubule or-
ganising centres (MTOC:s), underneath the nucleus. These MTOCs nucleate a bundle of mi-
crotubules in both anterior and posterior directions, forming the long axis. In cross section,
the microtubules form a loose bundle, without any semblance of a flagellar axonemal structure.

Transverse microtubules emerge from the same MTOCs and focus into the base of each ‘arm’.
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Figure 3.1: Light micrographs of Meteora sporadica isolate LBC3.A) General view of four cells of
Meteora sporadica isolate LBC3, showing their direction of movement (arrows), and variety in lateral
"arm” morphology. B) Collision between two cells (arrow shows movement) showing the bending of the
long axis. C) Feeding on a bacterium. A granule on an "arm” plays a role in contacting and attaching
the bacterium (arrowhead), which is then moved towards the cell body proper and phagocytosed there.
D) Behaviour of cytoskeletal elements and surface granules. Protrusions can jump between the long
axis and the "arms" across the surface of the cell body proper (black arrowhead). Areas of the axes
associated with surface granules can protrude outwards, sometimes rapidly (white barbed arrow), and
later fuse with the long axis (not shown). E) Cell in early division, "arms” retracted, as the cell body
proper, containing the nucleus (n) in mitosis, gradually moves up and down along the long axis. F) Later
stage of another dividing cell. Cells separate along the long axis and gradually begin to reconstitute
"arms” starting from this stage. Scalebars: 10 m (all to same scale)
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Figure 3.2: Ultrastructure of Meteora sporadica isolate SRT610.A) Cross section through a
cluster of microtubule organising centres (MTOCs; white arrowheads) associated with the bundle of
longitudinal microtubules (Im), and from which transverse microtubules (tm) extend at a right angle.
B) Cross section through a bundle of longitudinal microtubules (Im). C) Longitudinal section through a
cell, with the ventral side on the bottom of the image, showing the MTOCs (white arrowheads) situated
underneath the nucleus (n). D) Food vacuole (fv) containing a prey bacterium (b) with a discharged
extrusome (ex) still attached. The membrane inside the food vacuole is covered in a fibrillar material
(black arrowhead). E-F) An undischarged extrusome (ex) docked to the cell membrane on the cell body
proper (E) and in one of the lateral "arms” (F). Samples prepared and images by Takashi Shiratori
(Univeristy of Tsukuba; JAMSTEC), used with kind permission. Scalebars: 500nm
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The cells reproduce by dividing across the long axis: the cell stops in place while the cell
body proper moves up and down for several minutes until visible cytokinesis begins; the daugh-
ter cells pinch off and then re-establish the missing ends of the long axis (fig. 3.1E-F).

Meteora is a bacterivorous surface glider; most other organisms that glide across surfaces,
eating bacteria, are flagellates, and they usually glide on one of their flagella. They are highly
abundantand found widely distributed across the tree of eukaryotes: examples include phagotrophic
euglenids (Lax and Simpson 2020), glissomonads (Howe et al. 2009), mantamonads (Gliicks-
man etal. 2o11), and apusomonads (Torruella et al. 2017). The ecology and behaviour of Mereora
closely resembles that of bacterivorous gliding flagellates; however, it does not have flagella, nor
their obvious derivatives. Thus, it defies sorting into one of the general categories of eukaryotic

organisms.

3.2.2 RDNA PHYLOGENIES AND ENVIRONMENTAL SEQUENCE ANAL-
YSIS

The SSU rDNA sequences for Meteora isolates LBC3 and SRT 610 were 97% identical. An SSU
rDNA gene phylogeny of 192 taxa broadly representing eukaryote diversity (fig. 3.3) failed to
resolve the phylogenetic position of Meteora with any support, nor place it in any major group
of eukaryotes. A similarly broad dataset of concatenated SSU+LSU rDNA likewise failed to
resolve its position (fig. 3.4).

A phylogenetic placement analysis of environmental sequences from various publicly avail-
able datasets (see Chapter 2) using R AxML-EPA identified almost no candidate relatives of Ae-
teora. A marine environmental sequence (asv_os3_06994, Biomarks) was identified as a candi-
date Mereora relative with a modest likelihood-weight ratio of 0.7, but in turn was 97% iden-
tical to uncultured marine hydrothermal vent sediment clone AT'4-68 (AFs30543.1); this latter
sequence sometimes resolves as sister to Meteora but without support (20% bootstrap support).
Another environmental sequence, from a Neotropical soils metatranscriptome, was identified
with a likelihood-weight ratio of only 0.56 and 86% sequence identity to Mereora LBC3 — thus,
its identity remains inconclusive. No other environmental sequence hits were found. Thus,
Meteora appears to represent a new and distinct phylogenetic entity in the current molecular

tree of eukaryotes.
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Figure 3.3: Position of Meteora sporadica in an SSU rDNA phylogeny. (Continued on the
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3.2.3

PHYLOGENOMICS

To better assess Mereora’s placement in the eukaryote phylogeny, we generated a transcriptome
from isolate LBC3, and analysed this together with transcriptome data generated independently
fromasecond isolate, SRT 610 (Takashi Shiratori and Ken-Ichiro Ishida; University of Tsukuba).
We assembled a 254-gene dataset, representing a broad sampling of eukaryotic diversity through
108 taxa, reduced to 66 for computationally-intensive analyses. The phylogenomic dataset was
well represented in the sequenced transcriptomes (236/254 genes for both), which additionally
had relatively high BUSCO scores (211 and 231 complete/2s5 for LBC3 and SRT 610, respectively).
Phylogenies inferred for both 108- and 66-taxon datasets, broadly agree with other eukaryote-
wide phylogenetic studies (Burki et al. 2020; Gawryluk et al. 2019; Lax et al. 2018; Strassert et
al. 2019), for example recovering Sar, Obazoa, Amorphea (i.e. Obazoa+Amoebozoa) and Dis-
coba with full support (figs. 3.8 and 3.5). We did not, however, recover Telonemia as the sister
group to Sar, z.e. the TSAR group (Strassert et al. 2019; but see: Yazaki etal. 2022). Remarkably,
Meteora did not fall into any of the established supergroups, but instead formed a maximally-
supported clade with Hemimastigophora, a phylogenetically isolated taxon recently proposed
to represent a new eukaryote supergroup (Lax et al. 2018). The orphan protist lineage Ancora-
cysta branches as sister to this Meteora+Hemimastigophora clade, though with weaker support
(85% PMSF bootstrap support; 97% UFBOOT support; posterior probability 0.99).

To assess the robustness of the Mereora+Hemimastigophora clade, we examined multiple
variations on the 66-taxon dataset that test for potential sources of phylogenetic error. Analy-
sis of a dataset that excludes three branches identified as long-branching outliers (“nLB”) still
returned maximal support for the Mereora+Hemimastigophora clade (fig. B.6). Recoding the
amino acid data into a reduced alphabet of 4 classes based on (i) the pre-defined “SR4” categori-
sation (Susko and Roger 2007), or (ii) custom classes optimised to minimise across-taxon com-
positional bias in this dataset minmax-chisquared)(Susko 2021), both robustly supported
Meteora+Hemimastigophora (SR 4 and minmax-chisquared: 100% and 99% UFBOOT sup-
port, respectively; figs. 3.6 and B.9). By contrast, these same analyses did not recover Anco-

racysta+Meteora+Hemimastigophora and placed Ancoracysta elsewhere entirely, as sister to

Figure 3.3: (continued from previous page) SSU rDNA phylogeny representing eukaryote-wide diversity
for use as the reference tree for environmental sequence placement analyses. Alignment contains 1187
sites across 173 taxa. Tree inferred under the GTR+T+I model with 1000 non-parametric bootstrap
replicates. Meteora sequences highlighted in red.
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sites (bottom).
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‘Diaphoretickes” (SR4, 92% UFBOOT) or to haptophytes (mninmax-chisquared, 97% UF-
BOOT). Incidentally, the 66-taxon dataset without 4ncoracysta (noAnco) recovered the Ae-
teora+ Hemimastigophora relationship with full support (fig. B.7).

Removal of the fastest evolving sites (FSR) in 10% increments (fig. 3.7a) showed Meteo-
ra+Hemimastigophora as maximally supported until 30% sites remaining, where support drops
to ~80% UFBOOT; the widely-accepted Discoba taxon and the CRuMs clade behave similarly.
Conversely, support for Ancoracysta+Meteora+Hemimastigophora is lower throughout (gen-
erally <95% UFBOOT although 98% at 50% sites remaining) and drops precipitously at 30%
sites remaining.

Random subsampling of 50% of the genes in 5 jackknife replicates maintained robust sup-
port for Meteora+Hemimastigophora but not for Ancoracysta+Meteora+Hemimastigophora
(fig. 3.7b). The gene concordance factor (gCF, Minh et al. 2020a) ; Minh et al. 2020a) for Me-
teora+Hemimastigophora (8.65%) was similar, or higher, than that of several accepted super-
groups like Sar (9%), CRuM:s (4.35%) and Amorphea (1.2%). By contrast, Ancoracysta+Meteora+
Hemimastigophora was recovered in <1% of the single gene trees (gCF 0.87%, fig. 3.6a). We
infer that the phylogenetic signal for the Mereora+Hemimastigophora relationship is broadly
distributed across genes.

Overall, the Mereora+Hemimastigophora association remained robust through tests for
biases from subsets of genes and sites, and, notably, those for compositional bias. On the
other hand, Ancoracysta+Meteora+Hemimastigophora was poorly supported in these tests, es-
pecially compositional bias. The position of Ancoracysta remains unresolved, as in prior studies
(Gawryluk et al. 2019; Janouskovec et al. 2017).

In summary, phylogenomic analyses convincingly show AMereora as a sister group to He-
mimastigophora. This seems remarkable based on their morphology and basic life history. As
shown here, Meteora cells are completely aflagellate bacterivores, whereas hemimastigotes are
multi-flagellated cells that prey on microbial eukaryotes (W Foissner et al. 1988b; Lax et al. 2018).
Both exhibit symmetry, which is relatively unusual among eukaryotes; however, Hemimastig-
otes have diagonal symmetry and are essentially a constant shape, whereas Mereora appears to be
predominantly bilaterally symmetrical and is highly plastic, breaking and re-establishing symme-
try in the arrangement of arms. While these groups seem to have little in common, established
eukaryotic supergroups like Sar and CRuMs also encompass a bewildering variety of morpholo-

gies and lifestyles. Sar encompasses fungal-like, flagellated, and amoeboid forms, and even large
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macroscopic algae (Grattepanche etal. 2018). Although there are fewer than 10 described species
of CRuMs, they range from small filose amoebae, bacterivorous nanoflagellates to larger eukary-
otrophic flagellates (Brown et al. 2018).

This finding resonates with the high rate of discovery of novel eukaryotes, and indeed en-
tire new phylum- and supergroup-level lineages, over recent years (Burki et al. 2020; Gawryluk
etal. 2019; Janouskovec et al. 2017; Lax et al. 2018; Strassert et al. 2019). As with all other recently
discovered major lineages (Burki et al. 2020), Mereora is a free-living heterotrophic protist, un-
derlining the importance of pursuing this category for cataloguing deeper eukaryote diversity.
Itis also an illustration that the first known representative of a major clade (i.e. hemimastigotes
in Mereora+Hemimastigophora) need not reflect the morphology or biology of the rest of the
group. In particular, environmental lineages, i.e. groups known only from molecular data, may
not necessarily be similar in basic biology to their closest morphologically-characterised relatives.
Both the remarkable cellular architecture and unexpected phylogenetic placement of Mereora
sporadica suggest that the bewildering diversity of microbial eukaryotes is far from fully under-

stood, and will continue to surprise us.

METHODS

ISOLATION AND CULTIVATION

Meteora sporadica LBC3 was isolated from an intertidal sediment sample from Cuba (21 °35’
24.99”,-77 %5 35.33”), kindly provided by Claire Burnard. The sample was enriched in seawater
+ LB at room temperature (21 °C). An individual cell on a flake of biofilm was picked with a
drawn-out glass micropipette and placed in 0.1%LB in autoclaved natural seawater medium.It
was subsequently maintained in tissue culture flasks with unidentified co-cultured bacteria at

16 °C and transferred every 2 weeks.

LIGHT MICROSCOPY

Aliquots of culture are incubated on a sealed slide preparation overnight and imaged on Zeiss
AxioVert 200M with an AxioCam ICcs camera (Carl Zeiss AG). Downstream image processing

and analysis was done in FIJI (Rasband 1997; Schneider et al. 2012).
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3.3.3 TRANSMISSION ELECTRON MICROSCOPY

Transmission electron micrographs (TEMs) of serially sectioned material from Meteora spora-
dicaisolate SRT 610 (which is morphologically indistinguishable from LBC3), were provided by
Takashi Shiratori and Ken-ichiro Ishida (University of Tsukuba).

3.3.4 DNA ExTRACTION, PCR, SSU RDNA PHYLOGENETICS

DNA was extracted from cultured isolate LBC3 using DNeasy Blood & Tissue kit (Qiagen).

The small subunit ribosomal DNA (SSU rDNA) was obtained by semi-nested PCR, with initial
amplification using forward primer EukA (5“AACCTGGTTGATCCTGCCAGT-3') and re-

verse primer 1498R (5'-CACCTACGGAAACCTTGTTA-3') at 63 °Cannealing temperature for

35 cycles, followed by secondary amplification with forward primer 82F (s-GAAACTGCGAATGGCTC-
3') and reverse primer 1498R at 63 °C for 25 cycles. The final sequence was determined by

Sanger sequencing (Génome Québec), with some PCR product being gel-extracted prior to
sequencing (QIAquick Gel Extraction kit; Qiagen). Sanger reads were trimmed and assembled

in Geneious v. 6.1.8 (Biomatters Ltd.).

The SSU rDNA sequence from LBC3, plus that from isolate SRT 610 (provided by Takashi
Shiratori and Ken Ishida, University of Tsukuba), were added to a global eukaryotic SSU rDNA
alignment (derived from the reference SSU rDNA dataset for the environmental analysis in Lax
etal. 2018) via profile alignment in SeaView (Edgar 2004; Gouy etal. 2010a). The alignment was
further augmented for taxon sampling with additional environmental sequences from NCBI
and Jamy et al. (2020b), corrected manually, then masked via gblocks (Castresana 2000) fol-
lowed by manual correction to yield a 1187 site alignment across 173 taxa. This was subject to
phylogenetic analyses in RAxML (Stamatakis 2014) (raxmIHPC-PTHREADS-SSE3 v. 8.2.6)

under the GTR+I'+I model with so starting trees and 1000 non-parametric bootstraps.

3.3.5  SSU+LSU RDNA PHYLOGENIES

Source alignments for SSU and LSU rDNA from Jamy et al. (2020b) were expanded for broader
taxon selection using publicly available data in NCBI nt, or extracted from published transcrip-
tome and genome assemblies using barrnap (seemanBacterialRibosomalRNA2018) v. 0.9. Me-
teora LSU rRNA sequences were extracted from the transcriptomes (see below) using barrnap
and concatenated with the SSU rDNA mentioned above. Site selection was performed on each

alignment using g-blocks (Castresana 2000) in SeaView (Gouy et al. 2010a) followed by manual
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curation, then the SSU and LSU rDNA alignments were concatenated for a total of 30sr sites.
The phylogeny was inferred via RAXML (Stamatakis 2014) (raxmlHPC-PTHREADS-SSE3 v.

8.2.6) under the GTR+T+I model with so starting trees and 1000 non-parametric bootstraps.

3.3.6 ENVIRONMENTAL SEQUENCE ANALYSIS

We searched 14 153,628 publicly available V4 and V9 sequences from TARA Oceans (V9) (de
Vargas et al. 20152), VAMPS (V9) (Huse et al. 2014) , MetaPR2 (“Biomarks”) (V4) (Pawlowski
etal. 20125 Vaulot et al. 2022b), deep sea sediments (V9) (Schoenle et al. 2021), Malaspina (V4)
(Obiol et al. 2020), neotropical (Mahé et al. 2017) and temperate (Geisen et al. 2015) soil meta-
transcriptomes (V4), and the Cariaco basin oxic-anoxic gradient (V4)(Suter et al. 2021) for se-
quences very similar to Meteora. The V4 and Vg regions of the Mereora LBC3 SSU rDNA were
extracted and used to query the respective databases using BLASTn, with a sequence identity
threshold of 80%. The collected sequences were then aligned using PaPaRa (S Berger and Sta-
matakis 2012) against a 1187 site, 173 taxon reference SSU rDNA alignment derived from Lax
et al. 2018, manually curated through MUSCLE (Edgar 2004) profile alignments in SeaView
(Gouy et al. 20102), augmented for taxon sampling with additional environmental sequences
from NCBI and Jamy et al. 2020 (Jamy et al. 2020b) (fig. 3.3). Phylogenetic placements were
inferred via RAxML-EPA (SA Berger et al. 2011). Output was analysed in R using ggtree (Yu

etal. 2017) and filtered with a likelihood-weight ratio threshold of o.s.

3.3.7 TRANSCRIPTOME SEQUENCING AND ASSEMBLY

For LBC3, RNA was extracted from culture grown in 0.1%LB in sterile seawater on 20 Petri
plates (15 cm diameter), scraped and spun 30 min at 2500 ¢ and 16 °C, followed by adding 15 mL
TRIzol (ThermoFisher) to s mL of resuspended pellet. Then, 3 mL of chloroform was added
and phase separation obtained by centrifugation for 30 min at 4500 ¢ at 4 °C. The aqueous
phase was removed and further treated as per manufacturer instructions. The RNA was further
purified with a phenol:chloroform extraction and treated with DNase. Quantity was assessed
by Qubit (ThermoFisher). The sequencing library was prepared using the NEBNext Poly(A)
mRNA Magnetic Isolation Module (NEB #E7490; New England Biolabs), and sequenced on
Illumina MiSeq with 2 x 250 bp reads (V2 kit), indexed with Illumina adaptors i703 and iso3
(multiplexed with an undescribed metamonad with adaptors i7o4 and is04).

Read quality was inspected using FastQC (Andrews 2010), adaptors clipped and reads
trimmed with Trimmomatic (Bolger etal. 2014) v.0.30 (LEADING: 3 TRAILING:3 SLIDINGWINDOW:4:15
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CROP:160 MINLEN:36) and assembly performed in Trinity (Haas et al. 2013) v.2.0.2. To re-
move most cross-contamination from multiplexed samples, we used a custom script (M. Kolisko,
Institute of Parasitology Biology Centre, Czech Academy of Sciences, Ceské Budg¢jovice) and
then reassembled in Trinity.

The independently sequenced and assembled transcriptome of isolate SRT610 was pro-
vided by Takashi Shiratori and Ken-ichiro Ishida (University of Tsukuba).

Transcriptome completeness for both isolates was assessed by BUSCO (Simio et al. 2015)
v3.0.2 using eukaryote_odbro dataset. This yielded 211/255 complete BUSCOs (24 fragmented)
for LBC3 and 231/255 complete BUSCOs (13 fragmented) for SRT610. Of the 254 phylogenomic
marker genes, 236 genes and 88.5% and 90.2% of sites were present in the final alignment for
LBC3 and SRT 610, respectively. Both transcriptomes were derived from monoeukaryotic cul-
tures, sequenced independently in different locations, and the resulting marker genes were sim-
ilar between the transcriptomes. Throughout the single gene trees, in almost all cases where
candidate marker gene sequences were present for both isolates, they were sister lineages to each

other with high support.

PHYLOGENOMIC DATASET ASSEMBLY

The 351 gene phylogenomic dataset from Lax et al. 2018 (based originally on Brown et al. 2018),
was expanded by adding the two AMereoraisolates, plus recently sequenced taxa including 4nco-
racysta (Janouskovec et al. 2017), telonemids (Strassert et al. 2019), and the three Rbhodelphis tran-
scriptomes (Gawryluk et al. 2019) via a custom pipeline (Brown etal. 2018). Telonemids, Rbodel-
phis, and Meteora were added (and Hemimastigophora re-added) using a custom script that en-
ables multiple candidate genes per transcriptome to be selected and added at once, up to 4 in
this case. After addition, each gene was re-aligned with MAFFT-linsi (Katoh and Standley 2013),
trimmed with BMGE (Criscuolo and Gribaldo 2010a) (-h 0.5 -g 0.2, -m BLOSUM30),
and phylogenies inferred under the LG4X+I' model (Le et al. 2012) in IQ-Tree v1.5.5 (Nguyen et
al. 2015), then manually inspected for paralogues, contaminants, lateral gene transfers, and signs
of deep paralogies within the base dataset. Sequences marked for deletion were removed using a
custom script. Where deep paralogies were detected affecting the whole gene tree, we discarded
the gene from the dataset, resulting in a final phylogenomic dataset of 254 genes. The single gene
alignments were filtered using PREQUAL (Whelan et al. 2018) with -filterthresh 0.95
(0.28% masked), then trimmed with BMGE (-h 0.5 -g 0.2, -m BLOSUM30)and concate-

nated, for a final alignment of 70471 sites. The taxa were subsampled to produce a 108-taxon
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dataset aiming to represent pan-eukaryote diversity, and a 66-taxon dataset for computationally
intensive analyses. In both cases, phylogenetically redundant taxa were removed, with retention

of higher coverage taxa where possible.

PHYLOGENOMIC ANALYSES

An initial phylogeny was inferred from the concatenated 254 gene 108 taxon dataset in IQ-TREE
vi.s.s (Nguyen et al. 2015) using the LG+Cz20+F+I' model, with support assessed via UFBOOT
bootstrap approximation (1000 replicates) in IQ-TREE (Minh et al. 2013). Next, a phylogeny
was inferred from the subsampled 66-taxon dataset under the LG+C60+F+I" model, then used
as a guide tree for the 60 custom profile site heterogeneous mixture model LG+MAM6o+T'
(Susko etal. 2018) (hereafter referred to as “MAM60”) using the program mammal (Susko 2022),
with support values generated via UFBOOT bootstrap approximation in IQ-TREE (Minh etal.
2013). MAMG6o0 was preferred over C6o by AIC (7324035 - 7302542 = 21493) and BIC (7325959
- 7314353 = 11606). A site-heterogeneous mixture model approximation method, PMSF (Wang
et al. 2018), was used to generate 200 non-parametric bootstrap trees using the MAMG6o tree as
the guide tree. A Bayesian phylogeny was inferred using the CAT+GTR model in Phylobayes
(Lartillotand Philippe 2004) v. 1.8 via 4 chains, with r.1x 10* cycles and a burnin of s00. Posterior
probabilities were inferred from the 3 converged chains (chains 2-4), with the remaining chain
(chain 1) stabilising on a topology with a different placement of haptophytes and 7élonema (Figs.
B.1o and B.1).

The Hemimastigophora+Aereora relationship was interrogated further via downstream
analyses based on the 66-taxon dataset. A step-wise removal of fastest evolving sites (Fast Site
Removal — FSR) was done in 10% increments using Phylofisher v.o0.1.20 (Tice et al. 2021) and
corresponding phylogenies inferred under MAM6o with UFBOOT support. Support values
for relationships of interest were summarised via a custom script. A ‘no long-branching taxa’
(nLB) alignment was produced by determining the outlier long branches via a custom script (L.
Eme; CNRS at Université Paris-Sud, France), in this case Tetrabymena, Diplonema, and Bodo.
This dataset, along with one with Ancoracysta removed (noAnco) was used to infer a phylogeny
under the MAM60o model.

To test whether the Hemimastigophora+Adeteora relationship was the result of a few out-
lier genes, two analyses were conducted: gene jack-knifing and gene concordance factor (gCF

(Minh et al. 2020a)) calculation. s gene-jack-knifing replicate alignments of 50% of the genes
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(following recommendations for adequate statistical power in (Brown et al. 2018) were gener-
ated using random_sample_iteration. py udility in Phylofisher (Tice et al. 2021), and corre-
sponding phylogenies inferred under MAMG6o0 in IQ-TREE with statistical support from 1000
UFBOOT replicates. Single gene trees were estimated under MAMG6o in IQ-TREE v.rs.5 for
each of the 254 individual gene alignments and gCF calculated in IQ-TREE v2.0 (Minh et al.
2020Db).

To test for biases arising from sequence composition, two recoding approaches were used.
The Susko and Roger set of 4 amino acid classes (SR4, Susko and Roger 2007) was used to
reduce the amino acid alphabet. Additionally, a set of 4 amino acid classes that minimises com-
positional differences between sequences was determined via minmax-chisq (Susko 2021). In
both cases, these schemes were used to recode the amino acid alignment as well as the 6o cat-
egory MAMMaL model definition via custom scripts, and then a phylogeny was inferred un-
der the GTR +[4binCustomModel]+R 6 model in IQ-TREE 2.0, with support values inferred
from 1000 UFBOOT replicates. Trees were formatted using the Ete3 toolkit (Huerta-Cepas et

al. 2016).
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Figure 3.8: Phylogenetic placement of Meteora among eukaryotes under the MAM60 model.
Maximum likelihood phylogeny inferred from 70471 sites across 254 genes over 66 taxa under the
LG+MAMG60+I model. Support values on branches show posterior mean site frequency bootstrap
support (PMSF; 200 true replicates), UFBOOT support (1000 replicates), and Bayesian posterior
probabilities (PP) under the CAT+GTR model, in that order, left to right or top to bottom. Filled
circles indicate full support (100%, 100%, 1). Bars on the right indicate % coverage by gene (above)
and by site (below).
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4.1

CHAPTER 4

THE ANAEROBIC EUKARYOTROPH
‘PROTIST X’ IS A DEEP-BRANCHING
RELATIVE OF HEMIMASTIGOPHORA AND
METEORA

INTRODUCTION

VER the past 15 years, considerable advances have been made in the understanding of the
O eukaryotic tree of life, with much of eukaryotic diversity coalescing into “supergroups”
well-supported by molecular phylogenetics (Burki et al. 2020). A handful of difficult to place
“orphan” lineages still remains — e.g. Ancyromonads (Brown et al. 2018), — a problem exacer-
bated by what is likely incomplete taxon sampling across the eukaryote tree. Furthermore, lin-
eages new to molecular sequencing are both completing and complicating our view of the tree of
life. The discovery of Rhodelphis (Gawryluk et al. 2019) and enrichment of Picozoa taxon and
gene coverage (Schon et al. 2021) have yielded moderate statistical support for Archaeplastid
monophyly in multigene molecular phylogenies; this association was previously not recovered
or statistically unsupported (eg. Janouskovec et al. 2017; but see Lax et al. 2018). On the other
hand, the position of the newly discovered protist 4ncoracysta(Janouskovec et al. 2017) remains
unclear. Still, other lineages represent potential novel major groups containing a diverse collec-

tion of organisms — recently, collodictyonids, rigifilids, and mantamonads were shown to be
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a well-supported clade (Brown et al. 2018) despite their varied morphology and lifestyles. An-
other lineage previously lacking molecular data, Hemimastigophora, was identified as a distinct
branch outside any previously identified supergroup (Lax et al. 2018). It was later joined by
an organism with very little resemblance to them — the remarkable gliding aflagellate AMeteora
sporadica (see Chapter 3).

An unusual heterotrophic flagellate was seen twice in marine anoxic sediment samples by
Bernard et al. (2000), and mentioned — but not formally described — as ‘Protist X’. This flagel-
late had an ovoid, slightly elongate cell body (12 um and 19 wm in length) exhibiting rotational
symmetry, with a cruciform arrangement of four equal flagella, each inserting subapically and
emerging from a depression. This distinctive morphology did not resemble that of any previ-
ously established group of flagellates, anaerobic or otherwise, known at the time of the study.
Nothing described since resembles ‘Protist X’ either, nor have associated molecular data ever
been published for this organism.

Here, we characterise several isolates of flagellates corresponding closely to the description
of ‘Protist X’. The flagellates were found in marine and hypersaline anoxic sediment samples,
and observed to feed on other eukaryotic flagellates in the sample, using the cell surface as the
site of attachment and ingestion. The cells are sensitive to oxygen exposure, suggesting they are
anaerobes. We have obtained ribosomal small subunit for several isolates, transcriptome data
for 2, and have successfully established a permanent culture of one with a eukaryotic anaerobic
flagellate as prey. We also characterise the ultrastructure of the cultivated strain by electron mi-
croscopy. Remarkably, phylogenomic analyses reveal that ‘Protist X’ forms a highly supported

clade with Hemimastigophora and AMeteora.

METHODS

CULTIVATION AND LIGHT MICROSCOPY

Several days after collection, a silty sediment sample with a bacterial mat from an intertidal la-

goon (3spptsalinity) on McNabs Island at the mouth of Halifax harbour, Nova Scotia (44°36720.5“ N,

63°3119.5” W) yielded a bloom of ‘Protist X’ under organic-rich (and anaerobic) conditions al-
ready present in the sample. Cells were picked by micropipette and washed in filter-sterilised
medium from the same source. Three healthy cells were added to an established culture of the

anaerobic jakobid Stygiella incarcerata strain MBr (Simpson et al. 2008) as prey, growing in 3%
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LB in autoclaved natural seawater filled to ramL in a 1smL conical centrifuge tube; and, once
established, transferred weekly. Later, the prey were switched to the faster growing CLO Car-
pediemonas membranifera strain BICM (Kolisko et al. 2010a), and also transferred weekly.

Additional cells were imaged and picked for sequencing as follows: isolate CuSP2-1 from
Salina Sint Michiel, Curagao, sediment (12°09723.6“N 68°59’14.4”W) was temporarily maintained
in culture on Ergobibamus cyprinoides strain CL (Park et al. 2010) as prey, from which cells were
imaged, and three were picked and pooled for single cell transcriptome sequencing. Secondly, a
single cell from anoxic intertidal sediments in False Bay, San Juan Island, WA, US (48°29’10.2“N,
123°04’32.7” W) (FBi), was picked for SSU rDNA sequencing via whole genome amplification
by multiple displacement amplification (MDA, see below).

Light microscopy was done using DIC and phase contrast optics on a Zeiss Axiovert 200M

with an AxioCam ICcg camera (Carl Zeiss AG).

SSU RDNA SEQUENCING

To separate the predator from the prey, a multiple displacement amplification (MDA) kit (Gen-
eral Electric Health) was used to amplify the genomic DNA of single or pooled cells of MSW
and FBu, picked by micropipette as described above. Then material was amplified by PCR us-
ing unviersal eukaryotic primers (EukA and EukB) as per Table 2.2.1. (Chapter 2), and Sanger

sequenced at Génome Québec.

RDNA PHYLOGENIES

An alignment of 196 SSU rDNA sequences broadly sampling the available tree of eukaryotes
was profile aligned using MUSCLE (Edgar 2004) and manually curated in SeaView (Gouy et
al. 2010b), then masked via gblocks (Castresana 2000) further edited manually for a total of
1212 sites. RAXML-NG (Stamatakis 2014) was used to infer the maximum likelihood phylogeny
under the GTR+T+I model with 5o starting trees, and support values determined from 200
non-parametric bootstraps. LSU rRNA sequences for isolates MSW and CuSP2-1 were both ob-
tained from the respective transcriptome data suing barrnap (seemanBacterialRibosomalRNA2018),
and added to the concatenated SSU-LSU alignment from Chapter 3. Phylogenetic analysis per-

formed as described in chapter 3.

RNA EXTRACTION AND TRANSCRIPTOME SEQUENCING

For strain MSW, TRIzol was used to extract bulk RNA from whole culture at peak preda-
tor:prey ratio, following the standard TRIzol protocol. An mRNA library for sequencing was
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Figure 4.1: Three individual cells picked for single cell transcriptome of the isolate CuSP2-1.
A-C) DIC light microscopy of the three individual cells of the isolate CuSP2-1 harvested for the single
cell transcriptome. Cells are approximately 15 m long.

then prepared using the Illumina TruSeq kit, and sequenced on a MiSeq along with an unde-
scribed heterolobosean (Yang et al. 2017). The reads were trimmed by Trimmomatic and assem-
bled in Trinity.

For isolate CuSP2-1 (“CuCandC4”), 3 cells (fig. 4.1) were harvested and washed in sterilised
source medium by micromanipulation with a glass pipetter, then preserved in lysis buffer and
frozen overnight. A modified version of the Smart-seqz protocol (Picelli et al. 2014) was fol-
lowed to prepare input for the sequencing library. The sequencing library was prepared with
a Nextera XT kit and sequenced on a V2 kit on an Illumina MiSeq. Reads were trimmed by

Trimmomatic and assembled using RNAspades (Bushmanova et al. 2019).

4.2.5 PHYLOGENOMIC ANALYSES

A modified version of a phylogenomic pipeline used in Brown e al. 2018 was employed, with
modifications described in Chapter 3. Prey and other contaminating sequences were removed
from ‘Protist X’ transcriptomes by screening single gene phylogenies generated under theLG+Cao+I'+F
model. A 110 taxon concatenated dataset was built from BMGE-trimmed with default param-
eters (Criscuolo and Gribaldo 2010b) alignments of 254 phylogenomic marker genes for a total
of 70471 sites (67145 distinct), based on the analysis in chapter 3, with isolates MSW and Cu-
CandC4 covering 89% and 55% of genes (84%, 31% sites), respectively. A preliminary phylogeny
was inferred from the full 110 taxon dataset under the LG+C20+F+I model with support val-
ues from 1000 replicates of UFBoot2 (Hoang et al. 2018) in IQTree2 (version 2.2.0, Nguyen

et al. 2015). For computationally intensive analyses, a subset of 68 taxa was extracted from this
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4.2.6

dataset, from which a phylogeny was then inferred under the LG+MAM60+I model (hereafter
referred to as “MAM60”) in IQTree2, with support values inferred via UFBoot2 optimised by
nearest neighbour interchanges (-bnni). The resulting best tree topology was then used as a
guide tree for PMSF (Wang et al. 2018) in IQTree (version 1.5.5) for 200 non-parametric boot-

straps. Trees were formatted for publication using the Etes toolkit (Huerta-Cepas et al. 2016).

ELECTRON MICROSCOPY

Cells from s-7 day old cultures of MSW with Carpediemonas isolate BICM as prey were grown
in multiple 15 mL conical tubes, filled to 5 mL, and harvested by gently pipetting the last 0.5-0.7
mL from the bottom of the tube into a new 1smL tube, let to settle overnight, then the bottom
1 mL taken and mixed with cells harvested from other tubes into a 1.5 mL tube. Residual cells
were confirmed to appear healthy in that state even a couple hours after the rest were fixed.

Generally, soo uL of cells was added directly to soo uL of fixation solution (see Table A.2)
in 2 mL tube and immediately gently mixed and placed on ice for 1 hour. Cells were spun 4min
at 9K rpm and the pellet rinsed once with RO water, then resuspended in 200 wL. RO water and
100 uL dehydrated acetone added to it for the first dehydration step at 33% acetone. Each dehy-
dration step was 8 minutes and direct addition of dehydrated acetone was used to increase its
concentration, for 50%, 75%, and 90% steps. Material was again spun 4min at 9K rpm and
supernatant replaced with 100% acetone for 7 minutes, then with 50% acetone s0% EPON
(SpiPON) 812 stored horizontally overnight. Cells were spun, aliquotted into 200 uL tubes
and left overnight for acetone to fume off, then topped off with fresh resin, pelleted 5 min at
8k rpm in a horizontal centrifuge, then cured for two days at 65°C. In the meantime, 10 uL of
resin-infiltrated cells were transferred to a slide to make a permanent mount.

Resin blocks were sectioned with a diamond knife on the Leica UC6 Ultramicrotome in
approximately 65 nm increments, which were placed on pioloform coated slot grids. Imaging
was done on a Tecnai-12 transmission electron microscope with a FEI Gatan Camera.

For SEM, cells added to poly-L lysine-coated :amm round coverslips in multiwell plates,
and fixed in 25% gluteraldehyde and osmium vapour. The samples were washed in seawater
and then subject to an ethanol dehydration series (30-50-70-80-90-95-3 x 100%), then dried in a
critical point dryer with CO2 (Leica EM CPDj300) and gold-palladium coated with a Leica EM
ACE200 sputter-coater. Samples were imaged on the Hitachi S4700 scanning electron micro-

scope at the DalTech SEM facility.
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4.3.1

Figure 4.2: Light microscopy and a general diagram of Protist X. A-C) ‘Protist X' isolate MSW. A)
General view of the cell showing two of the flagella and associated pockets. B-C) View of a cell feeding
on a prey Carpediemonas cell (p), and small particles on the surface, presumably where extrusomes
dock (arrowheads). D-G') ‘Protist X' isolate CuSP2-1. D) Longitudinal section through a cell showing
two flagellar pockets and the nucleus (n) immediately underneath. E-F) Cross section through the
apical flagellar pockets showing their cruciform arrangement. G) Cell in early division with two nuclei
and the flagellar pockets growing apart (asterisks). Extrusomes (arrowheads) are particularly visible at
the apical end of the cell. G') Grazing top view of the separating flagellar pockets from the cell in G.
H) Diagram representing the general structure of the cell, drawn upon data from light and electron
microscopy. Shows four flagella (f) and their pockets (fp), and the nucleus (n), vesiculated vacuoles (v),
lipid globules (L) and digestive vacuoles (dv) inside the cell. Extrusomes (ex) are distributed underneath
the surface, and up to two prey (p) cells can be ingested at once. Scalebar: 10 m

REsuLTS

GENERAL MORPHOLOGY AND BEHAVIOUR

Cells are spindle-shaped or pear-shaped (fig. 4.2A, D), typically about 14 - 18 um long and 7
- 9 um wide at the widest point, with four equal flagella one cell length long, each emerging
from a deep anterior flagellar pocket, in a cruciform arrangement (fig. 4.2E-F). Cells swim in a
jerky (stepwise) fashion, with ciliary beats by the flagella and diagonally opposite sets of flagella
generally moving in synchrony. A single conspicuous nucleus is located just below the flagel-
lar insertion sites, with condensed material towards the posteior (fig. 4.2D). Multiple refractile
globules are located predominantly in the posterior end of the cell (fig. 4.2A - D), and the cy-
toplasm is overall highly vacuolated. Regular-sized small bumps, presumably docking sites of

extrusomes, are distributed across the entire cell body surface (fig. 4.2B), including the anterior
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end around flagellar pockets (fig. 4.2G). Cells are sensitive to oxygen exposure on a slide.
‘Protist X’ captures flagellate prey by surface contact anywhere on the cell surface, presum-

ably through extrusomes. This is followed by gradual engulfment (fig. 4.2B; fig. 4.3). Some-

times more than one prey can be ingested at once (fig. 4.3B). Cell division occurs longitudinally

(fig. 42G, G)

4.3.2 ULTRASTRUCTURE

SEM reveals the four flagellar pockets with a single corresponding flagellum each at the apical
end of the cell (fig. 4.4A, B). Bumps resembling the surface particles visible under DIC light
microscopy are likely the extrusomes (fig. 4.4A). The cell surface, as well as the flagella, is covered
in fibrillar material (fig. 4.4A-C).

Under transmission microscopy, the cytoplasm appears highly vacuolated (fig. 4.4D-F),
with a large nucleus at the anterior third of the cell (fig. 4.4D,E) containing condensed material
around the periphery and as a body towards the posterior end of the nucleus (fig. 4.4E). A pop-
ulation of large electron-dense globules is found particularly concentrated at the posterior end
of the cell (fig. 4.4D). A subset of the vacuoles apparently contain internal vesicular material
(fig. 4.4F,G), sometimes with coated vesicles visible facing outward from the surface (fig. 4.4G).
Extrusomes are found throughout the cell in different stages of development (fig. 4.4E,F, H-]).
Presumably mature extrusomes are found docked underneath the cell surface, and are conical,
600 nm long, with a rounded base consiting of dense-staining material, and a dense-staining
central core extending halfway up the structure (fig. 4.4H-]). The more rounded immature
extrusomes are associated with the endomembrane system, and consist of three layers: light-
staining material between a dense staining and medium-staining layers (fig. 4.4F). The cell sur-
face, including that of flagella, is covered in fine hair-like structures (fig. 4.4G, K). No double-

membrane bound organelles were found.

4.3.3 RDNA PHYLOGENIES AND ENVIRONMENTAL SEQUENCE SUR-
VEY

The SSU rDNA sequences of isolates MSW, FB11, and CuSP2-1 are longer than usual, at 2.1kb;
MSW and FBirare 95% identical to each other, and each is 89% indetical to CuSP2-1. A eukaryote-
wide SSU rDNA phylogeny inferred under the GTR+T'+I model does not reveal a well-supported

placement of ‘Protist X” anywhere in the tree (fig. 4.5). Notably, ‘Protist X’ does not go within
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Figure 4.3: Image sequences of ‘Protist X’ feeding on flagellates. A-B) ‘Protist X' cells from the
same location as isolate FB11 but 2 years prior. A) Gradual ingestion of a flagellate from the posterior
end of the cell. B) Another individual attempting to ingest a second cell as it phagocytoses the first.
Cells were about 15 m long.

98



Figure 4.4: Ultrastructure of ‘Protist X’ isolate MSW by SEM and TEM. A-C) SEM images
showing the surface and general structure of Protist X. Extrusomes (perhaps partially discharged) can
be seen protruding from the surface (arrowheads). B) View of the apical end of the cell with the four
flagella and their pockets. The entire cell surface including that of the flagella is covered in a fibrillar
material (also visible in TEM images). D) Longitudinal section through a 'Protist X' cell. At the
anterior end, a grazing section through a flagellum and its pocket (f) is position anterior to the nucleus
(n). Three digestive vacuoles (dv) can be seen. Osmiophilic organelles, presumably lipid globules, are
especially concentrated towards the posterior end of the cell. (Continues on the next page.)
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4.3.4

4.4

any known anaerobic group with meaningful support. The placement of ‘Protist X’ (repre-
sented by isolates MSW and FB) is likewise not resolved by the concatenated SSU+LSU phy-
logeny inferred under the same model (fig. 4.6).

As reported in Chapter 2, no sequences with significant affinity to ‘Protist X’ taxa were
found in surveys of publicly available short read environmental sequence data, despite greedy

search strategies.

PHYLOGENOMICS

A 68-taxon 254-gene phylogeny was inferred under the site heterogenous MAM60o mixture
model (see: methods). Widely accepted major supergroups like Obazoa, Sar, Metamonada, and
Discoba (Burki et al. 2020) were recovered with full support, as was a clade encompassing He-
mimastigophora and Meteora (fig. 4.7, chapter 3). Surprisingly, Protist X does not branch with
any previously described group of anaerobes characterised by molecular phylogenetics, nor, in
fact, any established supergroup. Instead, it forms a robust, fully supported clade with Hemi-
mastigophora and Meteora (100% PMSF bootstrap support). We refer to this as the “MHX”
clade. ‘Protist X* and Hemimastigophora form a clade to the exclusion of AMeteora with 85%
PMSF bootstrap support. Interestingly, PMSF support went up slightly for an association of
Ancoracysta with Hemimastigophora, Meteora, and Protist X, compared to the dataset without

‘Protist X’ (Chapter 3).

DI1sCcUSSION

A handful of other flagellates also carry a cross-like arrangement of four anteriorly situated

flagella. Of non-algal groups, most notable are Collodictyon (Orr et al. 2018), Tetradimorpha

Figure 4.4: (Continued from previous page) E) Close up of the anterior end of a longitudinal section.
A population of extrusomes (white arrowheads) is visible near the surface, anterior to the nucleus. The
cytoplasm is highly vacuolated. F) Cross section across the far anterior end of the cell. Extrusomes
presumably in early stages of maturity can be seen inside the cytoplasm (white arrowheads; especially
i). G) Close-up of the far anterior section showing three of the four flagella (f), one in its pocket. The
fibrillar coating of the flagella and surface of the cell is discernible (black arrowheads). Vesiculated
vacuoles (v) pack the cytoplasm in this region, one with an apparent coated vesicle budding outwards
from its surface (double arrowhead). H-J) Higher magnification views of the mature extrusomes. One
of the cells can be seen docked at the surface of the cell and protruding outwards (1). K) Close-up of a
cross section through a flagellum, showing the axoneme and the fibrillar coating around the flagellum
(black arrowhead). Scalebars: A-C) 5 m; D-F) 1 m; G) 500 nm; H-K) 200 nm

100



Figure 4.5: ‘Protist X’ in a global eukaryote SSU rDNA phylogeny. Inferred under the GTR+I+I
model in RAXML-NG. See text for further details.
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Figure 4.6: Concatenated eukaryote-wide SSU-LSU phylogeny inferred under the GTR+I14+T
model showing the position of Protist X. (Continued on the next page.)
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(Brugerolle and Mignot1983), and rarely-seen cruciform tetraflagellates of Anaeramoeba(Tiborsky
et al. 2017). ‘Protist X’ lacks the axopodial extensions and prominent long basal bodies of
Tetradimorpha (visible even by light microscopy); nor does it does not swim like Collodictyon.
Assuming Tetradimorphais closely related to Dimorpha (i.e. a rhizarian, see Chapter 2), ‘Protist
X’ did not branch with any of these groups in neither IDNA nor protein phylogenies. Despite
similar resemblance to the flagellates of Anaeramoeba—a metamonad (Stairs et al. 2021) and an
anaerobe— Protist X’ did not branch near Anaeramoeba nor metamonads in general. More-
over, ‘Protist X’ does not share the extra-thick (up to 2 um) flagella of .4naeramoeba flagellates
(Téborsky et al. 2017, fig 10).

‘Protist X’ is morphologically and behaviourally different from the other characterised
members of the MHX clade. Currently described Hemimastigophora (W Foissner et al. 1988a,
I Foissner and W Foissner 1993) are eukaryotrophs with two rows of several to a dozen or more
flagella. They are predominantly freshwater and soil aerobes, though possible marine members
were identified in analyses of environmental sequence databases (Lax et al. 2018), and a prob-
able hemimastigophoran was recorded from marine anoxic sediments as “Protist Y” (Bernard
et al. 2000). Meteora on the other hand, is a gliding aerobic bacterivore without flagella, but
with a unique “rowing” morphology, and is found in marine sediments (Hausmann et al. 2002;
chapter 3). ‘Protist X’ may represent the first characterised anaerobic lineage of this emerging
diverse clade.

There is abundant precedent for a vast range of morphological and behavioural diver-
sity within a group that lacks obvious synapomorphies, but is robustly defined by molecular
phylogenetics. Rhizaria are a striking example of such a group, encompassing bacterivorous
flagellates, parasites (haplosporidia, paramyxids, phytomyxids), eukaryotrophs (Viridiraptor,
Aurigamonas), anaerobes (Brevimastigomonas; also chapter 2)), and giant amoebae with retic-
ulated pseudopods (radiolaria, foraminifera) (Grattepanche et al. 2018)—and even fungal-like
osmotrophs (Feng et al. 2021)— and are well supported even in SSU rDNA phylogenies (Niko-
laev et al. 2004). More recently, CRuMs was proposed based on phylogenomic analyses, and
contains the bacterivorous gliding flagellate AMantamonas, eukaryotrophic flagellates like Collo-
dictyon, and the tiny amoeboid Rigifilids (Brown et al. 2018).

Free-living anaerobic eukaryotes have evolved numerous times, in almost every supergroup

Figure 4.6: (Continued from previous page) See Materials and methods text for further details.
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Figure 4.7: Position of ‘Protist X' in a phylogenomic tree. 254-gene phylogeny inferred under
the LG+MAMG60+F+T model in IQTree. See Materials and methods text for further details. Support
values from 1000 UFBOOT replicates, except among Ancoracysta, Meteora, Hemimastigophora, and
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(fig.1.2) (Leger etal. 2019). In addition to expanding previously established anaerobic groups (eg.
Anaeramoeba Stairs et al. 2021), researchers continue to discover new lineages descended from
within aerobic clades, such as: breviates within Obazoa (Brown et al. 2013), Brevimastigomonas
within Filosa (Gawryluk et al. 2019), Rictus (Yubuki et al. 2010), and Cantina(Yubukietal. 2015b,
Noguchi et al. 2015) both within Stramenopiles. These new lineages have greatly improved our
understanding of the diversity of metabolic and genetic adaptations to low oxygen environ-
ments, as well as their evolutionary histories (Gawryluk et al. 2016¢). Thus, it is perhaps not
surprising that a phylogenetically deep and presumably highly diverse group would contain
previously uncharacterised anaerobic lineages.

Anaerobic environments have been considered to host little predation activity, especially
eukaryotrophy (eg. Fenchel 2012). Ciliates have been proposed as an exception (Fenchel 2012),
and there are large anaerobic amoebae known to be detritivores and may be capable of ingesting
eukaryotic prey. However, what is sparse are mentions of eukaryotrophs of a similar size to
their prey in anaerobic environments. These eukaryotrophs are widely attested in other types of
environments (eg. colpodellids and colponemids, Janouskovecetal. 2015). ‘Protist X’ represents
one such anaerobic lineage, as it is in the same size category as its flagellate prey.

Anaerobic eukaryotes were previously predicted to almost exclusively prey on bacteria,
with the exception of ciliates and large amoebae mentioned above; partly this was predicted
based on the greater biomass of prokaryotes relative to eukaryotes observed in those environ-
ments (Fenchel 2012). Indeed, it is difficult to detect anaerobic eukaryotroph sequences in pub-
lic environmental short read datasets (see Chapter 2). It was further argued that phagotrophy
was unlikely to arise prior to global oxygenation (Fenchel 2012). The characterisation of Protist
X along with several other anaerobic eukaryotrophs (see Chapter 2) calls this into question, and
suggests anaerobic eukaryotrophy merits further investigation for ecological and evolutionary

reasons alike.

FUTURE DIRECTIONS

Whether ‘Protist X’ truly forms a robust clade with Meteora and Hemimastigophora remains
to be tested. First of all, a series of downstream analyses similar to those done for Mereora
(Chapter 3) would examine whether the association is robust within the given dataset. It would
also be useful to test the association using alternative datasets sampling a different set of marker
genes. Lastly, one should look for morphological synapomorphies in ultrastructure data, focus-

ing in particular on comparing elements of the flagellar root apparatus between ‘Protist X’ and
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Hemimastigophora.

‘Protist X’ represents an independent adaptation to anaerobiosis. The transcriptome data
reported here are available for investigating the presence of anaerobiosis-related genes. Furthe-
more, isolate MSW is still in viable culture, and can thus be subjected to genome sequencing and
further ultrastructural studies, such as examining whether there are shared features between its
flagellar apparatus and those of hemimastigophora. Considering further molecular and elec-
tron microscopy data together, it would be interesting to determine whether ‘Protist X’ has a
mitochondrion-related organelle (MRO). Lastly, the characterisation of this novel anaerobic
eukaryotroph suggests they are an underexplored category that may continue to yield fruitful

novel taxon discovery.
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CHAPTER 5

CONCLUSION

ERE, the search for novel protist taxa, primarily through cultivation and combined with
morphological characerisation and molecular phylogenetics, has substantially enhanced

our knowledge of eukaryotic diversity. In this section, I will discuss the role of culturing in con-
temporary protist discovery. Then I will outline a non-exhaustive set of future research avenues

made accessible by the cultures established in this thesis.

Since the emergence of environmental molecular sequencing methods, there has been con-
siderable emphasis on the concept of the “uncultured [or unculturable] majority” (Staley and
Konopka 1985, Dawson and Fritz-Laylin 2009, Lewis et al. 2021, Marcy et al. 2007, Woyke et al.
2017), often stated to comprise 99% of microbes (e.g. Staley and Konopka 1985, Marcy et al.
2007). Additionally, there was an unspoken assumption that the set of organisms accessible
to cultivation would fall fully within the set discoverable by cultivation-independent molecular
approaches. In other words, given deep and extensive environmental sequencing, we would not
discover any new significant taxa through cultivation. By contrast, most of the major novel lin-
eages found in chapter 2 did not map onto any preexisting environmental clades (eg. Meteora,
Protist X, QSI-PG, or the Retortacarps), and about half had no detectable ‘candidate related
OTUs’ in environmental data. While a very large number of environmental sequences indeed re-
main without a representative that has been cultured—or even morphologically characterised—
as it stands, cultivation-based approaches are providing access to a different pool of biodiversity
than environmental sequencing.

Establishing polyeukaryotic cultures expands access to a pool of diversity that may be more
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difficult to maintain in the lab in monoeukaryotic systems. By definition, obligate eukary-
otrophs require other eukaryotes. Previously, it had been particularly difficult to examine poly-
eukaryotic systems using molecular sequencing approaches. Excitingly, recent advances in se-
quencing technology as well as bioinformatics have opened up groups that were previously con-
sidered intractable for molecular biology (and molecular cell biology), such as colponemids and
colpodellids, Hemimastigophora, eukaryotrophic filosans, heterotrophic dinoflagellates. The
pattern continues in this thesis through numerous examples, such “Protist X” or “Q” or “Pyri-
form Glider”.

A similar pattern in apparent in bacterial and archaeal research (Lewis et al. 2020). For ex-
ample, cultivation by gradually eliminating some ‘excess’ microbial diversity instead of starting
out from a single isolate has enabled the capture of previously uncultured bacteria known only
from sequence data (Luzan and Chistoserdov 2017). The remarkable cable bacteria (Geerlings
etal. 2019) and a recently discovered centimeter-long prokaryotic giant Ca. Thiomargarita mag-
nifica (Volland et al. 2022) were characterised through cultivation-based approaches, and the
latter has not been found in metagenomic data. The previous expectations for monomicrobial
bacterial cultures completely exclude entire ecological types of microbes, for example bacteria
that are obligate predators of other bacteria. The recently discovered bacterivorous plancto-
mycete Ca. Uab (Shiratori et al. 2019) may yield insights to previously underappreciated capa-
bilities of bacterial membranes, and perhaps point to scenarios of early endomembrane evolu-
tion in eukaryotes through analogy; however, due to bacterial nomenclatural rules’, an obligate
predator like Uab cannot even be formally described, leading to an entire ecological niche of

now culturable but still undescribable prokaryotes.

An emerging addition to pure environmental sequencing and pure cultivation methods
are single cell molecular approaches, including those accompanied by morphological data. Sin-
gle cell transcriptomics can yield phylogenomic marker gene data of sufficient quality to place
a novel deep lineage of eukaryotes in the tree of life (Lax et al. 2018). This approach has also
enabled harvesting complex phylogenomic data from many taxa within a specific group, for a
fraction of the cost involved in culturing and bulk sequencing each of these organisms; the over-

haul of phagotrophic euglenid phylogenetics (Lax and Simpson 2020 Lax et al. 2019) would be

'Governed by rule 31b of ICNB; previous editions disallowed naming based on mixed cultures (Lapage et al.
1992) but the latest edition appears to permit it provided the description is unambiguous (Parker et al. 2019).
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incredibly expensive, in both cost and effort, without single cell methods, and perhaps impos-
sible in places. Single cell genomics is rapidly improving as well and allows inferring ecological
and physiological information not available in a ribosomal DNA fragment (e.g. Labarre et al.
2020). Single cell approaches can help tailor the cultivation techniques most likely to work for
an organism of interest, e.g. by obtaining hints of trophic mode from the single cell genomic or
transcriptomic data, or identifying potential contaminating prey sequences. Thus, the combi-
nation of traditional cultivation with single cell molecular approaches will further expand the
eukaryotic diversity that is available and accessible to study. Needless to say, a certain set of mi-
crobial diversity will resist domestication outright, and, in addition, cultivation-independent

approaches will continue to be invaluable for microbial ecology studies.

FURTHER DIRECTIONS

The several dozen cultures established in this thesis provide access to many further avenues of
study. The cultured representative isolates of the possible novel supergroup containing Ae-
teora, hemimastigotes, and Protist X is rich in opportunity for further studies. First of all, two
distinct but related cell motility behaviours of Meteora sporadica in particular attract attention.
Gliding in protists is generally associated with flagella (Saito et al. 2003), or with an acto-myosin
motility system like in diatoms (Poulsen etal. 1999) or some apicomplexans (Soldati-Favre 2008).
Since Meteora is missing flagellar proteins (see Chapter 3), and is not directly related to any of
the groups with well-studied acto-myosin motility systems, it would be fascinating to investigate
the molecular mechanisms of its gliding behaviour. Moreover, the peculiar swinging motility
of the lateral “arm” extensions has no immediate obvious analogue in any other eukaryotic cell
type. Following the cytoskeletal systems involved may well reveal a novel molecular ‘type’ of
cellular movement.

Protist X represents a novel, independently-derived anaerobiclineage. Double-membrane-
bound organelles indicative of mitochondrial origin have not yet been found in TEM data (see
Chapter 4). Investigating the anaerobic metabolism genes would at the very least reveal an in-

dependent evolutionary pathway to anaerobiosis. In addition to searching for the MRO, more
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thorough ultrastructural studies could explore potential synapomorphies for the Hemimastigote-

Protist X association in the flagellar root apparatus.

Besides ‘Protist X, the other eukaryotes isolated from anaerobic environments in this the-
sis will yield interesting insights to the study of both the diversity of anaerobic metabolism as
well as its evolutionary development. This will be a continuation of an existing trend, help-
ing uncover an apparently complex set of evolutionary stories with horizontal as well as vertical
inheritance (Stairs etal. 2018, Leger etal. 2019). Expanding the characterised diversity within pre-
viously known anaerobic clades (.e., shallow taxon sampling), such as through the additions of
an atypical breviate relative BLO or of barthelonids and Retortacarps to the metamonads can
improve the models of evolution of anaerobiosis in those groups. Newly characterised anaer-
obes emerging from within aerobic clades are of particular interest for seeking parallels in early
adapration (e.g. Gawryluk etal. 2016¢, Stairs et al. 2014), thus QSI-PG and SSF each could make
an excellent system in which to explore those questions. Lastly, perhaps the claims that eukary-
otrophy might be energetically expensive for inhabitants of permanently anoxic environments
(Fenchel 2012) can be investigated through quantitative feeding experiments (like Massana and
Pedrés-Ali6 1994) and growth curves compared to those for acrobic eukaryotrophs.

The newly cultivated isolates in this study can be examined for traces of retained ancestral
characters within and between existing supergroups. The atypical breviate relative BLO raises
questions about early Obazoa and the evolution of opisthokonts: the flagellar apparatus would
be of interest there as BLO, unlike typical breviates, is a flagellate sezsu stricro (i.e. lacks lateral
filopodia altogether and does not glide—at least in the life stages seen so far). On a bigger scale,
the broad distribution of colponemid-like cells across lineages of Diaphoretickes raises a tanta-
lising question: are there shared features—for example, in the flagellar apparatus—that have
been retained from a (possibly eukaryotrophic) last common ancestor of the group (or groups,
depending on the position of the root of the eukaryote tree)? Or does the general morphology
of a eukaryotroph with a large posterior ventral groove or depression and a smaller anterior one
simply arise often enough through convergence?

Studies on eukaryote adaptation to high salt environments (Harding et al. 2016) can be
further augmented by parallel investigations of adaptation to extreme alkalinity, especially in
polyextremophiles. The ‘retortacarp’ TZLMi1 RC appears to be adapted to an environment
that should be hostile to eukaryotes on three counts: it is anoxic, hypersaline, and hyperal-

kaline. Additionally, the degree of these conditions varies considerably by season in TZLM1
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RC’s source habitat. Retortacarps were found in every alkaline sample examined in this study,
and thus far no hint of them—neither morphological nor molecular—has been found in non-
alkaline samples. The existing Retortacarp cultures are monoeukaryotic and grow to high den-
sities; altogether, this highlights these organisms as potential excellent candidates for research

on adaptation to extreme environments in microbial eukaryotes.

Cultivation remains an important toolkit for the exploration of protist diversity. Identi-
fication by morphology discernible under light microscopy is effective for detecting important
lineages. These traditional “low throughput” methods are incredibly powerful in combination

with current molecular technologies.
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Figure B.1: Position of new sequences in a global eukaryotic SSU rDNA phylogeny.
(Continued on the next page.)
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Figure B.2: Placement of novel taxa in a Rhizaria-focused SSU rDNA phylogeny. Maximum
likelihood phylogeny of a 1192 site alignment inferred in RAXML-NG under the GTR+I+I model with
support values from 200 non-parametric boostraps. See online supplement for bigger version of the
tree.
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Figure B.3: Tetramitid synapomorphy SSU rDNA Helix 17_1 in ‘Jakobacarp’. Tetramitid taxa
highlighted in orange, other heterolobosea in blue, and ‘Jakobacarp’ sequence in yellow. Green boxes
indicate palindromic stem sequences. Aligned and annotated in AliView (For further information on
Helix 17_1, see Harding et al. 2013)
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Figure B.6: Figure S4. No long-branching taxa (nLB) phylogeny, core 66 taxon dataset with three
taxa removed, inferred from a concatenated 254-gene alignment under the LG+MAMG60+I" model,
support values from 1000 UFBOOT replicates. Filled circles indicate full support.
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Figure B.7: MAMG0 analysis with Ancoracysta removed (nAnco). No Ancoracysta (nAnco)
phylogeny, core 66 taxon dataset with Ancoracysta removed, inferred from a concatenated 254-gene
alignment under the LG+MAMG60+I model, support values from 1000 UFBOOT replicates.

circles indicate full support.
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Figure B.8: SR4 Recoding analysis. Phylogeny inferred from SR4-recoded 254-gene alignment de-
rived from core 66 taxon dataset, under the LG+MAM®60-+I model, support values from 1000 UFBOOT
replicates. Filled circles indicate full support.
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Figure B.9: minmax-chisquared recoding analysis.Phylogeny inferred from MinMax-Chisq-recoded
254-gene alignment derived from core 66 taxon dataset, under the LG+MAMG60-+I model, support
values from 1000 UFBOOT replicates. Filled circles indicate full support.
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Figure B.10: Meteora PhyloBayes CAT+GTR, chains 2-4 (Chapter 3). 66-taxon PhyloBayes
CAT+GTR consensus phylogeny of chains 2-4, following 1.1 x 104 cycles with a burnin of 500. Support
values show posterior probabilities. Filled circles indicate full support.
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Figure B.11: Meteora PhyloBayes CAT+GTR, chain 1. Chapter 3) 66-taxon PhyloBayes
CAT+GTR phylogeny of chain 1, following 1.1 x 104 cycles with a burnin of 500. Support values
show posterior probabilities. Filled circles indicate full support.
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APPENDIX C

ONLINE SUPPLEMENT

TABLE C.1: ENVIRONMENTAL SEQUENCE MATCHES FOR ORGANISMS ISOLATED IN CHAP-
TER 2. Tab-delimited text file. The prefix before the first vertical barin Target sequence id
is the code for the database the sequence originated from (see Table 2.3). Pass reciprocal
BLAST? indicates whether the sequence matched the original query (SSU rDNAs obtained for
the Chapter 2 isolates) as the top non-environmental hit via BLASTn search of the NCBI nu-

cleotide database combined with Chapter 2 SSU rDNAs sequences.

Electronic supplement: Deposited on DalSpace
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