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Abstract 

Asset pricing models have been used extensively in studies to predict fund performance.  

However, my motivation is to test which asset pricing model is the best to evaluate mutual 

fund performance in Canada. In addition, I identify whether there is any difference in model 

performance before and after Covid-19. The competing models are the Capital Asset 

Pricing Model of Sharp and Lintner, Fama and French’s Three-Factor Pricing Model, 

Carhart’s  Four-Factor Pricing Model, and Fama and French’s Five- and Six-Factor Pricing 

Models. I compare frequently employed factor models using Gibbons, Ross and Shanken's 

methodology. I find that the Fama French Six-Factor Model is the best model for the entire 

period including post-Covid-19. It also performs best for all types of funds and equity funds 

in the pre-Covid-19 period. However, the CAPM emerges as the best performer for bond 

funds, and the FF5 best explains the mixed asset fund performance for pre-Covid-19.  
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Chapter 1: Introduction 

Asset pricing factor models can explain returns across assets, and a great amount of literature has 

verified the validity of various kinds of factor models in different countries. The results show 

that factor models yield different outcomes in different countries. Griffin (2002) states that 

country-specific three-factor models better explain average returns than international factor 

models. Kubota and Takehara (2018) argue that in Japan, the Fama and French five-factor model 

(FF5) does not fit as well as evidence indicates for the US because the coefficients of the 

profitability factor and investment factor are not statistically significant. Yet FF5 can justify 

more asset pricing anomalies in pricing Australian equities (Chiah et al., 2016). In the long-term 

Canadian stock market, the three-factor pricing model is augmented by a momentum factor 

(L’Her et al., 2004). However, the results are supportive of the Fama and French three-factor 

model (FF3) for the Canadian market after 2000 with both equally weighted and value-weighted 

portfolios (Beaulieu et al., 2016). Finally, Lalwani and Chakraborty (2019) believe that a high 

level of market integration is necessary when combining data from different countries, so they 

use data for different markets. They find that FF5 improves pricing performance for stocks in 

Australia, Canada, China, and the US, while FF3 or its four-factor variants are more suitable for 

markets in Japan, the UK, India, Malaysia, South Korea, and Taiwan (Lalwani and Chakraborty, 

2019). 

In this paper, I aim to focus on mutual fund performance. A mutual fund is an investment vehicle 

consisting of asset classes overseen by a professional manager on behalf of a pool of investors. 

The first open-end mutual fund in Canada was started in Montreal in 1932 during the Great 

Depression. There has been a tremendous increase in the market value of mutual funds in 
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Canada. The number of mutual funds available has increased to over 5,000 since 1932, and the 

amount of money Canadians invest in these funds has surpassed $1.71 trillion (IFIC, n.d.). 

Patterns of mutual fund performance are different from stock performance because the fund 

market is more rational than the stock market (Treynor & Mazuy, 1966). In addition, investors 

tend to allocate money based on the correct pricing risk model (Berk & van Binsbergen, 2016). 

An impressive amount of literature discusses the indicators of mutual fund performance 

evaluation. Angelidis et al. (2013) report that mutual fund manager performance is better 

measured by utilizing a self-reported benchmark rather than a passive portfolio with the same 

risk, and they prefer the return-based mutual fund performance evaluation. Also, mutual fund 

performance is affected by professional managers’ decisions. Huij and Verbeek (2009) show that 

multifactor performance is affected by systematic bias, regardless of transaction costs and 

trading impact. They also find that factor proxies based on mutual fund returns rather than stock 

returns provide better standards for evaluating professional money managers. Other research 

establishes the importance of factor models in evaluating mutual fund performance. Christensen 

(2013) analyzes mutual fund performance based on the Capital Asset Pricing Model (CAPM) 

and multifactor models and finds that Danish mutual funds have neutral performance with non-

persistent returns. Likewise, in the Portuguese equity fund market, European Union funds 

underperform the market significantly by utilizing CAPM and FF3 models (Leite et al., 2009).  

There is extensive literature on mutual fund performance, but far too little attention has been paid 

to the validity of factor models on mutual fund performance. My motivation to conduct this study 

is to find the best fit model for the Canadian mutual fund industry in order to fill the gap. Alpha 

refers to a percentage measuring how funds perform compared to the benchmark index and positive 

alpha implies a professional fund manager who can generate added value. Huang et al. (2021) find 
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that when returns are measured net of management and trading costs, 2.9% to 8.4% of US actively 

managed funds produce positive alpha. Sha and Gao (2019) highlight that FF5 outperforms other 

models in the Chinese mutual fund industry, and CAPM controls the estimated alpha dispersion 

better than other models. Likewise, Kildahl and Lunde (2018) demonstrate that while FF5 is the 

best model for explaining US mutual fund returns, the simplicity of CAPM performs surprisingly 

well. Rehman and Baloch (2016), who study a different selection of factor models, report that 

CAPM is preferred over FF3, which shows poor results for the value and size factors. For the 

Polish equity mutual fund, the Fama and French six-factor model (FF6) fits the performance of the 

mutual funds best with the market factor (MKT), the size factor (SMB), the profitability effect 

(RMW), and the investment effect (CMA) having a significantly positive impact on the 

performance of mutual funds (Trzebiński, 2022). What’s more, the conditional version of Carhart's 

(1997) four-factor asset pricing model (FFC) is recommended by Sehgal and Babbar (2017) as the 

best performance benchmark for assessing mutual fund performance. However, based on the US 

and UK mutual funds markets, modifying the standard model to account for the alpha of the 

benchmark index can change the traditional view of mutual fund performance (Mateus et al., 2019).  

The main objective is to establish the most appropriate asset pricing model for Canadian mutual 

funds by evaluating the utility of applying multifactor asset pricing models to characterize their 

performance. The fund managers can effectively capture the factors affecting the fund market and 

make the best decision for investors. I assess and contrast performance of CAPM, Fama and 

French’s three-factor, five-factor, and six-factor models, and the four-factor model from Carhart. 

Due to the massive increase in demand for cash during the pandemic (Chen et al., 2020), holding 

fixed-income assets now poses a greater risk from a liquidity standpoint. According to the 

Investment Funds Institute of Canada, one of the greatest monthly drops in Canadian mutual fund 
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history was the stunning $14.1 billion in net redemptions reported for just March (Canada Mutual 

Funds Post Record Redemptions as COVID-19 Worries Grow, 2020). Also, the total net asset 

value was $1.45 trillion at the end of March 2020, a dramatic decline of 11.3% from the end of 

2019 (Canada Mutual Funds Post Record Redemptions as COVID-19 Worries Grow, 2020). This 

indicates that some of these losses have been recovered as a result of mutual funds having to sell 

investment positions to cover redemptions. Hence, I compare the pre- and post-Covid-19 periods 

to detect whether the pandemic affects the models’ performance. 

I compare widely used factor models using the approach proposed by Gibbons, Ross, and 

Shanken (1989). This method is popular for evaluating the model performance (Fama & French 

(1996), (2015), (2016)) and ranking the model performance by many recent papers (Ahmed et al. 

(2019), Kildahl and Lunde (2018), Sha and Gao (2019), (Trzebiński, 2022)). 

The structure of this paper is as follows. Section 2 presents a review of asset pricing models. 

Section 3 reports the methodology used to test model performance. Section 4 describes the data 

and variables. Section 5 explores the empirical results, and Section 6 provides a conclusion based 

on the findings.  



 5 

Chapter 2: Review of the asset-pricing models 

The CAPM, Fama and French three-, five-, and six-factor model and Carhart's four-factor model 

are still predominantly used to evaluate the efficacy of mutual funds despite the introduction of 

roughly ten new models a few years ago (Hou et al., 2019; Mateus et al., 2019; Ahmed et al., 2019). 

This section aims to introduce several asset-pricing models that are used in this research.  

2.1 Asset Pricing Models 

The first process is to get the consumption-based pricing model. As we know, P0=
𝐷1

1+𝑟
+

𝐷2

(1+𝑟)2 +

𝐷3

(1+𝑟)3 +……，P1=
𝐷2

1+𝑟
+

𝐷3

(1+𝑟)2 +
𝐷4

(1+𝑟)3 +……, so P0=
𝐷1

1+𝑟
+

1

1+𝑟
[

𝐷2

1+𝑟
+

𝐷3

(1+𝑟)2 + ⋯ ]=
𝐷1

1+𝑟
+

𝑃1

1+𝑟
=

𝑥1

1+𝑟
 , P0=m1*x1. Because the equation is random, I take the expectation for the equation. 

Hence, I have  

𝑃𝑡 = 𝐸𝑡[𝑚𝑡+1𝑥𝑡+1] (1) 

Pt stands for asset price, mt+1 stands for stochastic discount factor (SDF) which is 𝛽
𝑢′(𝑐𝑡+1)

𝑢′(𝑐𝑡)
 and 

xt+1 stands for the value of all future payoff from the security/asset. Considering the two-period 

economy,  

𝑈 = 𝑈(𝐶𝑡) + 𝛽𝐸𝑡[𝑈(𝑐𝑡+1)] (2) 

 stands for subjective discount factor, Et stands for conditional expectations, and Ct denotes 

consumption at time t. I try to maximize the utility of (2) to get the number of securities, subject 

to two constraints: ct=yt-pt and ct+1=yt+1+xt+1, yt is the revenue at time t and yt+1 is the revenue 

at time t+1, substitute to equation (2) solves the problem  
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𝑈(𝑦𝑡 − 𝜃𝑝𝑡) + 𝛽𝐸𝑡[𝑢(𝑦𝑡+1 + 𝜃𝑥𝑡+1)] (3) 

The first order condition is −𝑝𝑡𝑢′(𝑐𝑡) + 𝛽𝐸𝑡[𝑥𝑡+1𝑢′(𝑐𝑡+1)] = 0, so  

𝑝𝑡𝑢′(𝑐𝑡) =  𝛽𝐸𝑡[𝑥𝑡+1𝑢′(𝑐𝑡+1)] (4) 

and this equation means that the marginal cost equates with the marginal utility of selling the 

asset and consuming payoffs.  

Dividing each side of equation (1) by pit, I can also get the new general pricing model as follows: 

1 = 𝐸[𝑚𝑡+1(1 + 𝑅𝑡+1)] (5) 

where Rt+1 is the return at time t+1. 

According to the riskless asset, I can get 

1 = 𝐸[𝑚𝑡+1(1 + 𝑅𝑓𝑡+1)] (6) 

  

Hence, the expected excess security return can be rewritten as follows: 

𝐸𝑡[𝑟𝑡+1] = −(1 + 𝐸𝑡[𝑅𝑓𝑡+1])𝐶𝑜𝑣𝑡[𝑟𝑡+1, 𝑚𝑡+1] (7) 

Where rt+1=Rt+1-Rft+1 is the excess return at t+1 and Covt is the conditional covariance operator. 

2.1.1 Capital Asset Pricing Model 

With the assumption states that consumption and wealth are equivalent, it can be written as: 

𝑚𝑡+1 = 𝑎𝑡 + 𝑏𝑡𝑅𝑚𝑡+1 (8) 
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Where Rmt+1 is the excess return of market at t+1, and at and bt are parameters. I can substitute (8) 

into equation (7) yields: 

𝐸[𝑅𝑡+1] = −𝑏𝑡(1 + 𝐸[𝑅𝑓𝑡+1])𝐶𝑜𝑣[𝑅𝑡+1, 𝑅𝑚𝑡+1] (9) 

and 

𝐸[𝑅𝑚𝑡+1] = −𝑏𝑡(1 + 𝐸[𝑅𝑓𝑡+1])𝑉𝑎𝑟(𝑅𝑚𝑡+1) (10) 

  

Dividing (8) by (9), I may get 

𝑟𝑖𝑡 − 𝑟𝑓𝑡 = 𝛼𝑖
𝐶𝐴𝑃𝑀 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝜖𝑖,𝑡 (11) 

where 𝛽 =
𝐶𝑜𝑣(𝑅𝑐,𝑅𝑝)

𝑉𝑎𝑟(𝑅𝑐)
. Based on the expected utility maxim analysis of (Markowitz, 1959), the 

CAPM model proposed by Sharpe (1964) Lintner (1965) Black (1972) indicates a linear 

relationship between beta and expected returns. They argue that firm-specific risk can be 

diversified by a large portfolio. Beta can affect the expected returns among assets because the 

return of an asset is related to its sensitivity to the market. Rit is the return of asset I at time t, rft is 

the risk-free rate and MKT is the market factor in the model. Berk and van Binsbergen (2016) 

propose a new method of testing asset pricing models depending on quantities rather than prices 

or returns and infer CAPM is normally used by investors.  

2.1.2 Fama and French Three-Factor Pricing Model 

To date, CAPM is the standard model used to examine the market beta, which is a significant 

explainer of the cross-sectional expected returns. However, a few studies have highlighted the 

relevance of other factors and weaknesses of CAPM: Basu (1977) reports that the security price 
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pattern does not support the efficient market hypothesis. However, Reinganum (1981) points out 

that anomalies are the result of the misspecification of CAPM rather than an inefficient capital 

market because the abnormal returns persist for two years from the portfolio formation date. 

Basu (1983) employs a different methodology that controls for the effect of risk on returns and 

shows that earnings-price ratios can significantly explain the average returns on US stocks with 

different firm sizes. Banz (1981) suggests the existence of the size effect for very small firms and 

finds that average returns on low market equity are higher than that on high market equity. 

What’s more, the book-to-market ratio also strongly affects the cross-section of average returns 

in the US stock market (Rosenberg et al., 1985) and value stocks have higher expected returns. 

Similarly, Chan et al. (1991) find that the book-to-market ratio also has a positive relation with 

cross-sectional average returns on Japanese stocks. Moreover, Fama and French (1992) question 

the uniqueness of the factor-beta and find the combination of the book-to-market ratio absorbs 

the role of leverage and earnings-price ratio in average stock returns and the negative relation 

between market value and returns. Furthermore, Fama and French (1993) reject the term-

structure variables to explain the average returns in US government and corporate bonds and add 

two additional factors besides CAPM: SMB and HML. 

𝑟𝑖𝑡 − 𝑟𝑓𝑡 = 𝛼𝑖
𝐹𝐹3 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝜖𝑖,𝑡 (12)  

In equation (12), SMB (low market capitalization minus high market capitalization) is a market 

capitalization factor, while HML (high book-to-market ratio minus low book-to-market ratio) is 

a value factor. 

2.1.3 Carhart’s Four-Factor Pricing Model 
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In general, people tend to overreact to unexpected news events. Previous pricing models are 

based too much on earnings rather than a long-term dividend. Shiller (1981) shows that the 

efficient markets model does not describe movements in data and dividends do not explain 

observed price movements. Furthermore, Ohlson and Penman (1985) find that return volatility 

increase following the ex-split date is due to the overreaction. Moreover, De Bondt and Thaler 

(1985) use a behavioural principle to test the overreaction hypothesis, and the result shows that 

losing stocks earn 25% more than winning. Also,  Jegadeesh and Titman (1993) identify the one-

year momentum effect. Hence, Carhart (1997) adds an additional factor UMD, which captures 

momentum anomaly. 

𝑟𝑖𝑡 − 𝑟𝑓𝑡 = 𝛼𝑖
𝐹𝐹𝐶 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑖,𝑈𝑀𝐷𝑈𝑀𝐷𝑡+𝜖𝑖,𝑡 (13) 

2.1.4 Fama and French Five- and Six-Factor Pricing Models 

The previous three-factor model was directed at capturing size and value in average returns, but 

some researchers propose that many anomalous variables related to profitability and investment 

cause problems for the three-factor model. Novy-Marx (2013) reports a proxy for profitability 

that is related to average returns. Likewise, Aharoni et al. (2013) show that there is a statistically 

reliable relation between investment and average returns. As the market value of a share of stock 

is the discounted value of expected dividends per share, I get 

𝑚𝑡 = ∑
𝐸(𝑑𝑡+𝜏)

(1 + 𝑟)𝜏

∞

𝜏=1

(14) 

Where mt is the share price at time t, E (dt+) is the expected dividend per share for period t+, 

and r is the internal return on expected dividends. Dividend f can be substituted by Yt+ (total 
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equity earnings for period t+) minus 𝐼𝑡+𝜏 (investment). Miller and Modigliani (1961) report that 

the total market value implied by equation (14) is,  

𝑀𝑡 = ∑
𝐸(𝑌𝑡+𝜏 − 𝐼𝑡+𝜏)

(1 + 𝑟)𝜏

∞

𝜏=1

(15) 

Dividing both sides by Bt, the equation is 

(1 + 𝑟)𝜏 = ∑ 𝐸(
𝑌𝑡+𝜏

𝐵𝑡
−

𝐼𝑡+𝜏

𝐵𝑡
) ×

𝐵𝑡

𝑀𝑡

∞

𝜏=1

(16) 

The equation indicates that by fixing everything except Mt and r, expected returns are positively 

influenced by book-to-market equity ratio (
𝐵𝑡

𝑀𝑡
), positively influenced by profitability (

𝑌𝑡+𝜏

𝐵𝑡
) and 

negatively influenced by expected growth in book equity investment (
𝐼𝑡+𝜏

𝐵𝑡
). Fama and French 

(2015) add profitability and investment factors into the model to find whether the five-factor 

model performs better than the three-factor model. 

𝑟𝑖𝑡 − 𝑟𝑓𝑡 = 𝛼𝑖
𝐹𝐹5 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑖,𝑅𝑀𝑊𝑅𝑀𝑊𝑡+𝛽𝑖,𝐶𝑀𝐴𝐶𝑀𝐴𝑡 + 𝜖𝑖,𝑡(17) 

RMW in equation (17) is the return on stocks with robust minus weak operating profitability, and 

CMA is the return on stocks with conservative minus aggressive investment style. In this model, 

the value factor is redundant for average returns when profitability and investment factors are 

added. Fama and French also add the UMD factor to the six-factor model. UMD (up minus 

down) is a momentum factor. 

𝑟𝑖𝑡 − 𝑟𝑓𝑡 = 𝛼𝑖
𝐹𝐹6 + 𝛽𝑖,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑖,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿𝐻𝑀𝐿𝑡

+𝛽𝑖,𝑅𝑀𝑊𝑅𝑀𝑊𝑡+𝛽𝑖,𝐶𝑀𝐴𝐶𝑀𝐴𝑡 + 𝛽𝑖,𝑈𝑀𝐷𝑈𝑀𝐷𝑡 + 𝜖𝑖,𝑡 (18)
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Chapter 3: Testing Methodology 

The methodology for testing the factor models is explained in this section. The first analysis is 

based on the commonly used Gibbons et al. (1989) methodology, denoted as the GRS statistic, to 

test the performance of different asset pricing models. The null hypothesis proposes that the 

cross-section alphas (intercepts of the regressions) of the considered factors are jointly equal to 

zero. The GRS test ranks the models by mean-variance efficiency of asset returns, and the metric 

is the F-statistic of joint significance of alphas. The GRS test is computed as follows: 

𝐺𝑅𝑆 =
𝑇 − 𝑁 − 1

𝑁
𝛼 ′̂ [(1 +

𝑟̅𝑚

𝜎̂𝑚
)

2

Σ̂]

−1

𝛼̂  ~𝐹(𝑁, 𝑇 − 𝑁 − 1) (19) 

T is the length of the time series, N is the number of portfolios, 𝛼 ′̂ is the N1 vector of the 

estimated alphas, 𝑟̅𝑚 is the sample mean of excess market return, 𝜎̂𝑚 is the estimated standard 

error of the excess market return and Σ̂ is the estimated residual variance-covariance matrix. 

Moreover, the GRS test can be expanded to more factors to allow for multifactor models 

(Kamstra & Shi, 2020): 

𝐺𝑅𝑆 = (
𝑇

𝑁
) (

𝑇 − 𝑁 − 𝐿

𝑇 − 𝑁 − 1
) (

𝛼̂′Σ̂−1𝛼̂

1 + 𝜇̅′Ω̂−1𝜇̅
)  ~𝐹(𝑁, 𝑇 − 𝑁 − 1) (20) 

L is the number of independent variables (the number of risk factors),  𝜇̅ is a column vector of 

the factors’ sample means and Ω̂ is the estimated covariance matrix of the factors. A set of 

evenly numbered portfolios with lower GRS statistics suggests that the tested portfolios deviate 

from the efficient portfolio less than those with higher GRS statistics. If the asset pricing model 

adequately accounts for the assets' return, the alpha is equal to zero. The lower value of GRS 

statistics represents the better performance of the model. 
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As a robustness test for the GRS test, I utilize several other tests. The first one to evaluate the 

factor models is the average absolute value of the alphas, denoted as A|i|. I estimate the alpha of 

fund I by running the time-series regression and then computing the average of alphas (Ahmed et 

al., 2019). The time-series factor regression's alpha can be seen either a gauge of model 

mispricing or a test asset's deviation from the model. To discern between the two implications, I 

gauge the alphas' dispersion by 
𝐴|𝛼𝑖|

𝐴|𝑟̅𝑖|
 and 

𝐴𝛼𝑖
2

𝐴𝑟𝑖̅
2, which represent, respectively, the ratio of the 

average absolute value of the alphas to the average absolute value of 𝑟̅𝑖, and the ratio of the 

average squared alpha to the average squared value of 𝑟̅𝑖, where 𝑟̅𝑖 is the average excess return on 

fund i minus the average excess return on the market portfolio. These two metrics measure the 

dispersion of the alphas generated by a specific asset pricing model relative to the dispersion of 

the average excess returns on test assets (Ahmed et al., 2019). Lower values for these ratios 

represent superior performance of the model. The next metric for model performance assessment 

is 
𝐴𝑠2(𝛼𝑖)

𝐴𝛼𝑖
2 , the ratio of the average variance of sampling errors of the estimated alphas to the 

average squared alpha. Specifically, the metric measures the percentage of the alpha estimate 

dispersion that results from sampling error rather than the true alpha dispersion, and a larger ratio 

value denotes an improved model performance (Ahmed et al., 2019). The last metric I examine is 

A(R2), which is the average of the degrees of freedom-adjusted time-series regression R2 value, 

and better model performance is indicated by a greater number (Ahmed et al., 2019). 
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Chapter 4: Data and Variables 

4.1 Data 

From the Thomson DataStream database I collected data on Canada-domiciled mutual fund 

monthly returns with total net assets of C$200 million or higher. Additionally, to prevent 

duplication of various classes, no-load funds that are sold without commission or sales charge 

are chosen, inspired by Kildahl and Lunde (2018). I collect time-series return data for bond, 

equity, and mixed asset mutual funds for the 68-month period beginning on January 1, 2017, and 

ending on August 1, 2022. I can distinguish two subperiods: the first and second time frames are 

January 1, 2017 to March 1, 2020, and April 1, 2020 to August 1, 2022, respectively. 

Distinguishing the two subperiods is necessary to investigate whether there is any difference in 

factor models' performance during the pre- and post-Covid-19 periods. The last restriction is that 

the index replication method is not full. After eliminating five missing data points, I eventually 

get a sample with 361 mutual funds.  

Ten portfolios are created to be used as test portfolios in the GRS test. Multiple goals are served 

by this choice. First, it lessens the variation in return caused by idiosyncratic risk. Second, a 

small number of portfolios are required to ensure that the GRS test has enough degrees of 

freedom. Third, the GRS test has some drawbacks. For instance, when the quantity of assets 

increases, the test's power is reduced (Ahmed et al., 2019). I construct the portfolios on the 

characteristics-based sort. According to Daniel and Titman (1997), asset characteristics are better 

at predicting cross-sectional stock returns than factor exposures. Characteristics are easily 

observable and are seen to be a more accurate indicator of a portfolio's true style. In addition, the 

factor-based sorting method needs many successive return series, which can become noisy with 

inadequate observations. Hence, I build portfolios by categorizing available funds according to 
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funds’ average excess returns. I sort the funds from the lowest returns to the highest returns and 

categorize the funds into 10 decile portfolios. 

4.2 Variables 

I choose Canada's one-month Treasury bill rate as the monthly risk-free rate rft. After reinvesting 

all capital gains and cash distributions, the monthly mutual fund return rate is determined by 

dividing the net asset value (NAV) change from the net asset value at the beginning of the month. 

The formula is as follows: 

𝑟𝑖𝑡 =
𝑁𝐴𝑉𝑖𝑡 − 𝑁𝐴𝑉𝑖,𝑡−1

𝑁𝐴𝑉𝑖,𝑡−1
× 100% (20) 

 

For each month t, rit represents the monthly fund return rate. NAVit is the cumulative net value of 

units in month t. NAVi,t-1 is the cumulative net value in month t-1. I obtain data on SMB, HML, 

UMD, RMW, and CMA factors from Kenneth R. French's Internet Data Library 

(https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). The bond fund yield 

is based on the monthly yield of the S&P Canada Investment Grade Corporate Bond Industry Index. 

The equity fund yield is based on the S&P TSX Composite index. The benchmark for mixed asset 

funds is composed of 30% of the S&P Canada Investment Grade Corporate Bond Industry Index 

and 70% of the S&P TSX Composite Index. 

 

 

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Chapter 5: Empirical Results 

5.1 Descriptive Statistics 

Table 1 shows a summary of descriptive statistics by fund type. There are 361 funds in total, 

including 63 bond funds, 172 equity funds, and 126 mixed asset funds. The sample period is 

January 1, 2017 to August 1, 2022. The average excess returns of each fund type seem 

consistent. Since equity combines higher returns with higher risk, it makes sense that equity 

funds have larger average excess returns (i.e. 0.672) than other fund types. Table 2 shows 

descriptive statistics of the pre-Covid-19 period for all types of funds, bond funds, equity funds, 

and mixed asset funds. The sample period is January 1, 2017 to March 1, 2020. Equity funds 

have the largest average excess returns (i.e. 0.583), and bond funds have the smallest average 

excess returns (i.e. 0.218). Table 3 shows descriptive statistics of the post-Covid-19 period for all 

types of funds, bond funds, equity funds, and mixed asset funds. The sample period is April 1, 

2020 to August 1, 2022. Table 3 presents that the average excess returns of bond funds are 

negative because the Bank of Canada lowered its policy interest rate to boost the economy in 

response to the Covid-19 pandemic. The standard deviations are larger than pre-Covid-19, which 

suggests disturbing circumstances. Table 4 shows the correlation of factors. Although there is a 

significant correlation between the variables, the outcome is comparable to that of the prior study 

(Sha & Gao, 2019). 

Table 1 Descriptive Statistics 

VarName Number 

of funds 

Raw 

returns 

obs mean sd max min 

Total 361 0.480 24548 0.433 3.507 41.706 -30.292 

Bond 63 0.099 4284 0.052 1.685 7.220 -17.070 

Equity 172 0.719 11696 0.672 4.456 41.706 -30.292 

Mixed 126 0.345 8568 0.298 2.558 10.627 -18.931 
Note: This table shows descriptive statistics of monthly raw returns and excess returns for all types of funds, bond funds, 

equity funds, and mixed asset funds. The data are from the Thomson Datastream database. The sample period is January 1, 

2017 to August 1, 2022. 
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Table 2 Descriptive Statistics for Pre-Covid-19 

VarName Number 

of funds 

Raw 

returns 

obs mean sd max min 

Total 361 0.495 14079 0.429 2.376 16.356 -22.864 

Bond 63 0.284 2457 0.218 1.026 5.531 -4.471 

Equity 172 0.649 6708 0.583 3.098 16.356 -22.864 

Mixed 126 0.390 4914 0.324 1.575 6.503 -9.312 
Note: This table shows descriptive statistics of monthly raw returns and excess returns for all types of funds, bond funds, 

equity funds, and mixed asset funds. The data are from the Thomson Datastream database. The sample period is from 

January 1, 2017, to March 1, 2020. 

 

 
 

Table 3 Descriptive Statistics for Post-Covid-19 

VarName Number 

of funds 

Raw 

returns 

obs mean sd max min 

Total 361 0.460 10469 0.439 4.610 41.706 -30.292 

Bond 63 -0.151 1827 -0.171 2.271 7.220 -17.070 

Equity 172 0.813 4988 0.792 5.800 41.706 -30.292 

Mixed 126 0.284 3654 0.263 3.466 10.627 -18.931 
Note: This table shows descriptive statistics of monthly raw returns and excess returns for all types of funds, bond funds, 

equity funds, and mixed asset funds. The data are from the Thomson Datastream database. The sample period is April 1, 

2020 to August 1, 2022. 

 

 

Table 4 Correlation of Factors 

 SMB HML RMW CMA UMD Rf 

SMB 1 0.184 -0.421*** 0.096 -0.261** -0.051 

HML 0.252** 1 -0.312*** 0.805*** -0.403*** -0.225* 

RMW -0.441*** -0.166 1 -0.202* -0.007 -0.065 

CMA 0.014 0.823*** -0.053 1 -0.306** -0.212* 

UMD -0.360*** -0.467*** -0.056 -0.220* 1 0.077 

Rf -0.184 -0.269** -0.106 -0.280** 0.100 1 
Note: The correlation is based on data of 68 months from January 1, 2017, to August 1, 2022.*** p<0.01, ** p<0.05, * p<0.1 

 

 

5.2 An Empirical Analysis of Mutual Funds for the Whole Period  

Starting with Panel A of Table 5, it is apparent that all but FF6 and FF5 are rejected by the GRS 

test. This suggests that these three models’ explanation of the average excess returns on anomaly 

portfolios is incomplete. FF6 has the lowest GRS statistics of 1.732 (p-value=0.098). The next 

best factor models are FF5 in terms of GRS statistics with a marginally larger value than FF6. 



 17 

The average absolute value A|i| of 0.090 per month in FF6 is the smallest among all the factor 

models. Also, the value of 0.260 for the ratio  
A|αi|

A|r̅i|
 generates the lowest dispersion, which means 

that the dispersion of alphas is approximately 26% as large as the dispersion of the average 

excess returns on portfolios. A point estimate of 0.108 for the ratio 
Aαi

2

Ar̅i
2  generates the smallest 

dispersion for FF6. FF5 is the second-best model in terms of the three dispersion metrics,  A|i| , 

A|αi|

A|r̅i|
 , and 

Aαi
2

Ar̅i
2 . The two dispersion metrics, A|i|, 

A|αi|

A|r̅i|
, show that FF3 generates the highest 

dispersion (i.e. the values are 0.122 and 0.353, respectively), suggesting that FF3 cannot capture 

the fund returns with higher dispersion. FF6 also offers the largest value for 
As2(αi)

Aαi
2 , which is 

1.400. I notice that FF6 has the largest point estimate of the A(R2), which is 0.783, and FFC has 

a slightly lower value of A(R2). In summary, FF6 outperforms other models with the GRS 

statistics, A|i|, 
A|αi|

A|r̅i|
, 

Aαi
2

Ar̅i
2 , 

As2(αi)

Aαi
2 , and A(R2). 
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Table 5 Performance of the Factor Models 

 

Model CAPM FF3 FFC FF5 FF6 

Panel A: all types of funds 

GRS 2.566 2.363 2.286 1.831 1.732 

p-value(GRS) 0.012 0.021 0.026 0.077 0.098 

A|i| 0.119 0.122 0.118 0.100 0.090 
A|αi|

A|r̅i|
 0.344 0.353 0.341 0.289 0.260 

Aαi
2

Ar̅i
2  

0.182  

 

0.172  

 

0.168  

 

0.118  

 

0.108  

 

As2(αi)

Aαi
2  

0.742 

 

0.804 

 

0.831 

 

1.266 

 

1.400 

 

A(R2) 0.774 0.778 0.780 0.776 0.783 

Panel B: bond fund 

GRS 3.048 3.225 3.089 2.575 2.401 

p-value(GRS) 0.004 0.002 0.004 0.013 0.020 

A|i| 0.092 0.094 0.087 0.089 0.078 
A|αi|

A|r̅i|
 0.724 0.740 0.685 0.701 0.614 

Aαi
2

Ar̅i
2  

0.677  

 

0.715  

 

0.623  

 

0.698  

 

0.562  

 

As2(αi)

Aαi
2  

0.616 

 

0.605 

 

0.694 

 

0.681 

 

0.854 

 

A(R2) 0.779 0.776 0.778 0.773 0.774 

Panel C: equity fund 

GRS 3.091 2.986 2.897 2.418 2.302 

p-value(GRS) 0.003 0.004 0.006 0.019 0.025 

A|i| 0.185 0.172 0.173 0.151 0.150 
A|αi|

A|r̅i|
 0.995 0.925 0.930 0.812 0.806 

Aαi
2

Ar̅i
2  

1.180  

 

1.027  

 

1.041  

 

0.751  

 

0.734  

 

As2(αi)

Aαi
2  

0.566 

 

0.668 

 

0.671 

 

0.989 

 

1.037 

 

A(R2) 0.855 0.853 0.851 0.852 0.850 

Panel D: mixed asset fund 

GRS 7.519 7.186 7.150 6.339 6.146 

p-value(GRS) 0.000 0.000 0.000 0.000 0.000 

A|i| 0.083 0.089 0.085 0.072 0.064 
A|αi|

A|r̅i|
 0.203 0.218 0.208 0.176 0.157 

Aαi
2

Ar̅i
2  

0.045  

 

0.053  

 

0.048  

 

0.033  

 

0.026  

 

As2(αi)

Aαi
2  

1.484 

 

1.280 

 

1.438 

 

2.224 

 

2.851 

 

A(R2) 0.848 0.848 0.848 0.845 0.846 
Note: This table reports the performance of five competing models (CAPM, FF3, FF4, FF5, FF6, respectively) in all types of funds, bond 

funds, equity funds, and mixed asset funds. I employ the GRS test and derive the corresponding p-value associated with the GRS statistics. 

The other 5 metrics are introduced in the methodology section. The estimates are rounded to 3 decimal places. The comparison covers 361 

mutual funds in Canada between January 1, 2017 and August 1, 2022. 
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The GRS test on the bond fund, shown in Panel B of Table 5, rejects all the asset pricing models 

at conventional levels of significance. Yet the rejection is weakest for FF6 with a GRS statistic 

of 2.401 (p-value=0.020). In terms of the magnitude of the GRS statistics, FF5 is the second-best 

factor model, followed by the CAPM and the FFC. FF3 appears to be the worst-performing 

model as it generates the largest GRS statistics.  

Looking at the dispersion metrics of alpha for FF6, A|i|, 
A|αi|

A|r̅i|
, and 

Aαi
2

Ar̅i
2  generate the smallest 

values of 0.078, 0.614, and 0.562, respectively. The next best model for the three dispersion 

measures is the FFC. FF6 still does the best with the largest point estimate of 0.854 for the model 

fitting indicator 
As2(αi)

Aαi
2 , which indicates that 85% of the second moment of the alpha estimates 

for the model is due to sampling error. However, FF3 does the worst when judged by A|i|, 
A|αi|

A|r̅i|
,  

Aαi
2

Ar̅i
2 , and 

As2(αi)

Aαi
2 . The largest value of A(R2) is 0.779 for CAPM. To sum up, FF6 provides the best 

description of the bond fund portfolios with the best performance of the GRS statistics and four 

metrics. 

Focusing on Panel C of Table 5, the GRS test rejects all the factor models at the 5% level of 

significance. However, FF6 outperforms all other factor models as it generates the smallest point 

estimate of 2.302 (p-value=0.025) for the GRS statistics. The second-best performer is FF5 

according to the magnitude of the GRS statistics, followed by FFC and FF3.  

FF6 has the smallest average absolute value of 0.150% each month for alphas among all the 

factor models. The value of 0.806 for the ratio 
A|αi|

A|r̅i|
 produced by FF6 is also the smallest among 

all the factor models, indicating that the dispersion of alphas is approximately 81% as large as 
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the dispersion of the average excess returns on portfolios. Moreover, FF6 appears to be the top 

performer with 0.734 for the ratio 
Aαi

2

Ar̅i
2  and 1.037 for the ratio 

As2(αi)

Aαi
2 . By contrast, though CAPM 

has the largest point estimate for A(R2) (i.e. 0.855), I notice that all the factor models outperform  

CAPM by generating better point estimates for the A|i|, 
A|αi|

A|r̅i|
, 

Aαi
2

Ar̅i
2 , and 

As2(αi)

Aαi
2 . To summarize, 

FF6 offers the best performance for explaining the excess returns on equity funds based on the 

GRS statistics, A|i|, 
A|αi|

A|r̅i|
, 

Aαi
2

Ar̅i
2 , and 

As2(αi)

Aαi
2 . 

The results for the mixed asset funds in Panel D of Table 5 indicate that all the factor models are 

rejected easily by the GRS test. FF6 produces the smallest GRS statistics of 6.146 (p-

value=0.000), followed by FF5 and FFC. The worst performer is CAPM with the largest GRS 

statistics. 

The point estimates of A|i|, 
A|αi|

A|r̅i|
, and 

Aαi
2

Ar̅i
2  generated by FF6 are the smallest, at 0.064, 0.157, and 

0.026, respectively, followed by FF5. FF6 also generates the largest value, 2.851, for the ratio 

As2(αi)

Aαi
2 . By contrast, for the three alpha dispersion measures, A|i|, 

A|αi|

A|r̅i|
, and 

Aαi
2

Ar̅i
2 , FF3 yields the 

largest point estimate (i.e., 0.089, 0.218, and, 0.053, respectively). Coincidentally, CAPM, FF3, 

and FFC show a superior performance with the same largest point estimate of A(R2). Taken 

together, FF6 is the best factor pricing model, accommodating the excess returns on balanced 

funds, judged by the GRS statistics, A|i|, 
A|αi|

A|r̅i|
,  

Aαi
2

Ar̅i
2 , and 

As2(αi)

Aαi
2 . 

5.3 An Empirical Analysis of Mutual Funds for Pre-Covid-19 
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Next, I consider the candidate factor pricing models' ability to forecast excess returns for the pre-

Covid-19 period. Panel A of Table 6 reports that all the models cannot be rejected by the GRS 

test. FF6 is the best description of the average excess returns on total funds with the smallest 

GRS statistics of 1.666 (p-value=0.150), followed by FFC and FF5. The CAPM presents the 

worst performance based on the GRS statistics (i.e., 2.059). 

Table 6 Performance of the Factor Models for Pre-Covid-19 

Model CAPM FF3 FFC FF5 FF6 

Panel A: all types of funds 

GRS 2.059 1.860 1.684 1.830 1.666 

p-value(GRS) 0.065 0.099 0.140 0.109 0.150 

A|i| 0.152 0.117 0.102 0.114 0.104 

A|αi|

A|r̅i|
 0.738 0.568 

 

0.495 

 

 

0.553 

 

 

0.505 

 

Aαi
2

Ar̅i
2  

0.687  

 

0.417  

 

0.383  

 

0.358  

 

0.369  

 

As2(αi)

Aαi
2  

0.448 

 

0.964 

 

1.109 

 

1.112 

 

1.139 

 

A(R2) 0.647 0.637 0.646 0.641 0.646 

Panel B: bond fund 

GRS 2.693 3.432 3.471 3.486 3.454 

p-value(GRS) 0.019 0.006 0.006 0.006 0.007 

A|i| 0.085 0.094 0.099 0.091 0.097 
A|αi|

A|r̅i|
 

0.322 

 

0.356 

 

2.400 

 

0.345 

 

0.367 

 

Aαi
2

Ar̅i
2  

0.146  

 

0.146  

 

0.160  

 

0.141  

 

0.156  

 

As2(αi)

Aαi
2  

0.438 

 

0.569 

 

0.517 

 

0.600 

 

0.532 

 

A(R2) 0.701 0.708 0.712 0.709 0.715 

Panel C: equity fund 

GRS 3.030 2.603 2.304 2.491 2.234 

p-value(GRS) 0.010 0.024 0.044 0.033 0.051 

A|i| 0.237 0.208 0.207 0.208 0.212 
A|αi|

A|r̅i|
 

0.862 

 

0.756 

 

0.753 

 

0.756 

 

0.771 

 

Aαi
2

Ar̅i
2  

0.761  

 

0.473  

 

0.476  

 

0.434  

 

0.477  

 

As2(αi)

Aαi
2  

0.426 

 

0.886 

 

0.940 

 

0.959 

 

0.925 

 

A(R2) 0.751 0.748 0.742 0.753 0.749 

Panel D: mixed asset fund 

GRS 4.019 3.031 3.133 2.848 3.209 

p-value(GRS) 0.002 0.011 0.010 0.017 0.010 
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Table 6 Performance of the Factor Models for Pre-Covid-19 

Model CAPM FF3 FFC FF5 FF6 

A|i| 0.093 0.071 0.054 0.054 0.047 
A|αi|

A|r̅i|
 

0.108 

 

0.082 

 

0.063 

 

0.063 

 

0.054 

 

Aαi
2

Ar̅i
2  

0.754  

 

0.465  

 

0.315  

 

0.303  

 

0.263  

 

As2(αi)

Aαi
2  

1.192 

 

2.544 

 

3.960 

 

3.758 

 

4.601 

 

A(R2) 0.742 0.732 0.733 0.743 0.739 
Note: This table reports the performance of five competing models (CAPM, FF3, FF4, FF5, FF6, respectively) in all types of funds, bond 

funds, equity funds, and mixed asset funds. I employ the GRS test and derive the corresponding p-value associated with the GRS statistics. 

The other 5 metrics are introduced in the methodology section. The estimates are rounded to 3 decimal places. The comparison covers 361 

mutual funds in Canada between January 1, 2017 and March 1, 2020. 

 

The average absolute value of the alpha is 0.102% for the FFC, which is smaller than any other 

model. FFC also generates the smallest value of 0.495 for pricing performance metric  
A|αi|

A|r̅i|
. The 

corresponding point estimates are marginally lower for FF6 (i.e. 0.104, and 0.505 for A|i|, and 

A|αi|

A|r̅i|
, respectively). FF5 emerges as the best-performing asset pricing model with the smallest 

value of 0.358 for the ratio 
Aαi

2

Ar̅i
2 , followed byFF6. The ratio 

As2(αi)

Aαi
2  for FF6 has a value of 1.139, 

which is significantly higher than all the other factor models. CAPM turns out to be the worst of 

all the measures except for the value of A(R2) (i.e. 0.647). According to the GRS statistics and   

As2(αi)

Aαi
2  measure, FF6 performs well as the superior model, and CAPM performs worst based on 

almost all the metrics for pre-Covid-19. The outcome displays the same for total funds across the 

entire period. 

I next consider Panel B of Table 6, which shows that all models are easily rejected by the GRS 

test. CAPM has the smallest GRS statistic of 2.693 (p-value=0.019), which still disagrees with 

the null hypothesis that all intercepts from CAPM are jointly equal to zero. The next best model 

is FF3, followed by FF6, and FFC. 
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The average absolute alpha for the portfolios from CAPM is 0.085% per month, which is the 

smallest value across all the factor models. The 
A|αi|

A|r̅i|
 ratio of 0.322 for CAPM is also smaller than 

any competing model. FF5 also does a good job by producing a slightly higher value for A|i| 

and 
A|αi|

A|r̅i|
. Moreover, FF5 generates the smallest value of 

Aαi
2

Ar̅i
2 , at 0.141. About 60% of the 

dispersion of the alpha for FF5 is attributable to the sampling error. I also find that FF6  

generates the largest value of 0.715 for A(R2). All in all, CAPM offers the best performance 

based on the GRS statistics, A|i|, and 
A|αi|

A|r̅i|
 measures, while FF5 also does a good job in 

explaining the excess returns for the bond fund for pre-Covid-19. For bond funds, the best model 

appears differently than that for the entire time. 

I find that the alphas in Panel C of Table 6 are not explained by the factor models apart from 

FF6, which generates the smallest value of 2.234 for the GRS statistics (p-value=0.051). FFC 

produces the second smallest value of GRS statistics, followed by FF5 and FF3. 

FFC generates the smallest average absolute alpha, of 0.207% per month, as well as the smallest 

point estimate of 0.753, for the ratio 
A|αi|

A|r̅i|
. FF5 performs well based on more than half of the 

metrics. For example, the ratio 
Aαi

2

Ar̅i
2  relative to the model is 0.434, which is the smallest. FF5 also 

generates the largest value of 0.959 for ratio 
As2(αi)

Aαi
2 , suggesting that approximately 96% of the 

second moment of the alpha estimates for FF5 is attributable to sampling error, compared to 43% 

for CAPM. FF5 produces the largest value of A(R2) of 0.753. FF6 is ranked first, generating the 

smallest GRS statistics, while FF5 does a good job with the majority of the performance metrics 
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for pre-Covid-19. For equity funds, the outcome appears to be constant with that for the entire 

period. 

The results in Panel D of Table 6 report that the null hypothesis of zero alphas cannot be rejected 

by all the asset pricing models. FF5 produces smaller GRS statistics of 2.848 (p-value=0.017), 

compared to other factor models. FF3 emerges as the second-best model, followed by FFC and 

FF6. 

FF6 stands out as the best with most of the best performance metrics. For the three dispersion 

measures, FF6 produces the smallest value of A|i|, 
A|αi|

A|r̅i|
, and 

Aαi
2

Ar̅i
2 , which are 0.047, 0.054, and 

0.263, respectively. Judged by the same metrics, FF5 turns out to be the second-best model, with 

values of 0.054, 0.063, and 0.303, respectively. FF6 also generates the largest value of 4.601 for 

ratio 
As2(αi)

Aαi
2 . For these metrics, CAPM ranks at the bottom among all the factor models. FF5 

delivers the best performance for A(R2), which is 0.743. The performance of FF5 is best judged 

by the GRS statistics and A(R2) for pre-Covid-19. For mixed asset funds, the outcome seems 

different than it does over the long term. 

5.4 An Empirical Analysis of Mutual Funds for Post-Covid-19 

I observe from Panel A of Table 7 that the null hypothesis of the GRS test cannot be rejected for 

all the factor models at conventional levels of significance. FF6 emerges as the best performance 

model with the smallest GRS statistics of 0.896, followed by CAPM, FF5, and FFC. 

FF6 delivers the best performance on virtually all the metrics. For instance, it generates the 

smallest average absolute alpha, smallest point estimate for ratio of  
A|αi|

A|r̅i|
, smallest point estimate 
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for the dispersion metric 
Aαi

2

Ar̅i
2 , and largest value of  

As2(αi)

Aαi
2 , at 0.107, 0.149, 0.023, and 8.539, 

respectively. Notably, looking at the model fitting indicator, 
As2(αi)

Aαi
2 , FF6 is far superior to other 

models. The sole exception is A(R2), where CAPM stands out (i.e. 0.818). Overall, FF6 best 

captures the average excess returns on all types of funds for the post-Covid-19 periods, judging 

by the GRS statistics, A|i|, 
A|αi|

A|r̅i|
, 

Aαi
2

Ar̅i
2 , and 

As2(αi)

Aαi
2 . For total funds, the outcome is consistent with 

that across the entire period. 

Table 7 Performance of the Factor Models for Post-Covid 19 

Model CAPM FF3 FFC FF5 FF6 

Panel A: all types of funds 

GRS 1.095 2.114 1.980 1.119 0.896 

p-value(GRS) 0.112 0.088 0.112 0.412 0.561 

A|i| 0.217 0.225 0.217 0.156 0.107 
A|αi|

A|r̅i|
 

0.303 

 

0.314 

 

0.303 

 

0.218 

 

0.149 

 

Aαi
2

Ar̅i
2  

0.111  

 

0.110  

 

0.103  

 

0.050  

 

0.023  

 

As2(αi)

Aαi
2  

1.041 

 

1.155 

 

1.306 

 

3.583 

 

8.539 

 

A(R2) 0.818 0.817 0.811 0.812 0.810 

Panel B: bond fund 

GRS 3.626 3.238 3.227 1.870 1.697 

p-value(GRS) 0.009 0.018 0.020 0.138 0.184 

A|i| 0.147 0.140 0.132 0.137 0.122 
A|αi|

A|r̅i|
 

0.750 

 

0.714 

 

0.673 

 

0.699 

 

0.622 

 

Aαi
2

Ar̅i
2  

0.788  

 

0.714  

 

0.651  

 

0.867  

 

0.710  

 

As2(αi)

Aαi
2  

0.693 

 

0.827 

 

0.974 

 

0.963 

 

1.346 

 

A(R2) 0.806 0.779 0.792 0.788 0.780 

Panel C: equity fund 

GRS 1.016 1.207 1.076 0.608 0.468 

p-value(GRS) 0.468 0.356 0.435 0.784 0.883 

A|i| 0.128 0.162 0.152 0.151 0.112 
A|αi|

A|r̅i|
 

0.298 

 

0.377 

 

0.353 

 

0.351 

 

0.260 

 

Aαi
2

Ar̅i
2  

0.159  

 

0.265  

 

0.231  

 

0.215  

 

0.130  
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Table 7 Performance of the Factor Models for Post-Covid 19 

Model CAPM FF3 FFC FF5 FF6 

As2(αi)

Aαi
2  

3.050 

 

2.001 

 

2.394 

 

3.500 

 

6.481 

 

A(R2) 0.893 0.889 0.887 0.883 0.879 

Panel D: mixed asset fund 

GRS 2.927 2.595 2.489 1.427 1.188 

p-value(GRS) 0.023 0.043 0.054 0.264 0.378 

A|i| 0.264 0.269 0.257 0.186 0.130 
A|αi|

A|r̅i|
 

0.306 

 

0.312 

 

0.298 

 

0.216 

 

0.151 

 

Aαi
2

Ar̅i
2  

0.103  

 

0.104  

 

0.097  

 

0.048  

 

0.025  

 

As2(αi)

Aαi
2  

0.533 

 

0.587 

 

0.669 

 

1.814 

 

3.895 

 

A(R2) 0.881 0.875 0.870 0.868 0.866 
Note: This table reports the performance of five competing models (CAPM, FF3, FF4, FF5, FF6, respectively) in all types of funds, bond 

funds, equity funds, and mixed asset funds. I employ the GRS test and derive the corresponding p-value associated with the GRS statistics. 

The other 5 metrics are introduced in the methodology section. The estimates are rounded to 3 decimal places. The comparison covers 361 

mutual funds in Canada between April 1, 2020 and August 1, 2022. 

 

Turning to Panel B of Table 7,  I find the GRS test rejects all the factor models at the 5% 

significance level, except for FF6, and FF5. FF6 stands out as the best with the smallest GRS 

statistics of 1.697 (p-value=0.184), followed by FF5. 

What’s more, FF6 presents the best performance when judged by A|i| and  
A|αi|

A|r̅i|
 (i.e., 0.122 and 

0.622, respectively). Conversely, the corresponding point estimate of the metrics for CAPM is 

the worst across all the factor models, though the value of A(R2) is the largest overall.  The point 

estimate of the dispersion metric 
Aαi

2

Ar̅i
2  for FFC is the smallest, at 0.651, followed by FF6. I 

observe that FF6 produces the largest point estimate of 1.346 for ratio 
As2(αi)

Aαi
2 . Hence, the results 

suggest that FF6 has a superior ability to accommodate the excess returns on the bond fund based 

on the GRS statistics, A|i|, and  
A|αi|

A|r̅i|
 for post-Covid 19. The result is the same as the whole 

period for bond funds. 
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Looking at Panel C of Table 7, I see that all the factor pricing models cannot be rejected by the 

GRS test at conventional levels of significance. FF6 shows superior performance with the 

smallest GRS statistics, at 0.468 (p-value=0.883), followed by FF5, CAPM, and FFC.  

Comparing the competing factor models based on the 5 metrics reveals that FF6 is the top 

contender with the best performance for most of the metrics, which are A|i|,  
A|αi|

A|r̅i|
, 

Aαi
2

Ar̅i
2 ,and 

As2(αi)

Aαi
2  (i.e., 0.112, 0.260, 0.130, and 6.481, respectively). Contrarily, FF3 underperforms all 

other factor pricing models on virtually all metrics, except A(R2). Using the metric A(R2), FF6 is 

only 0.01% lower than CAPM, which is the best performer. I conclude that FF6 is the best 

performer in explaining the excess returns of the equity fund for post-Covid-19. For equity 

funds, the result remains constant over the whole time frame. 

I can see that in Panel D of Table 7 the GRS test rejects only two-factor models at a 5% 

significance level. The null hypothesis cannot be rejected for FFC, FF5, and FF6 (p-value=0.054, 

0.264, and 0.378, respectively), and FF6 presents the best result when judged by the GRS 

statistic of 1.188.  

The factor models rank in the same order for the point estimates of three dispersion metrics, 

A|i|,  
A|αi|

A|r̅i|
, and 

Aαi
2

Ar̅i
2 . FF6 ranks first among the candidate factor models for all the dispersion 

indicators, followed by FF5, and FFC. Contrary to FF6, FF3 appears to be the worst factor model 

based on the three dispersion metrics. In particular, FF6 also performs best for the ratio  
As2(αi)

Aαi
2 . 

The largest value of A(R2) is from CAPM. FF6 appears to be the top performer based on the 
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GRS statistics and the majority of metrics for post-Covid-19. For mixed asset funds, the outcome 

is constant during the entire time. 
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Chapter 6: Conclusion 

This paper investigates which asset pricing model best fits the performance of Canadian mutual 

fund. The objectives are accomplished using asset pricing models——the Capital Asset Pricing 

Model of Sharpe (1964) and Lintner (1965), Fama and French’s (1993) Three-Factor Pricing 

Model, Carhart’s (1997) Four-Factor Pricing Model, and Fama and French’s (2015) Five- and 

Six-Factor Pricing Models (2018). 361 Canadian mutual funds are analyzed from January 1, 

2017, to August 1, 2022. Three categories and one combined group make up my classification of 

funds: bond funds, equity funds, mixed asset funds, and all types of funds. I employ six 

indicators to gauge how well these factor models perform: GRS statistics, A|i|,  
A|αi|

A|r̅i|
, 

Aαi
2

Ar̅i
2 , 

As2(αi)

Aαi
2 , and A(R2). Additionally, I compare the effectiveness of factor pricing models for the 

periods before and after Covid-19, and for the entire time. 

Table 8 Best Models 

Test Total funds Bond funds Equity funds Mixed funds 

GRS FF6 FF6 FF6 FF6 

A|i| FF6 FF6 FF6 FF6 

A|αi|

A|r̅i|
 

FF6 FF6 FF6 FF6 

Aαi
2

Ar̅i
2  

FF6 FF6 FF6 FF6 

As2(αi)

Aαi
2  

FF6 FF6 FF6 FF6 

A(R2) FF6 CAPM CAPM FFC 
Note: This table shows the best model (among CAPM, FF3, FFC, FF5, and FF6) of different metrics for all types of funds, bond funds, equity 

funds, and mixed asset funds, respectively, for the entire period. The sample period is from January 1, 2017 to August 1, 2022. 
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Table 9 Best Models for Pre-Covid-19 

Test Total funds Bond funds Equity funds Mixed funds 

GRS FF6 CAPM FF6 FF5 

A|i| FFC CAPM FFC FF6 

A|αi|

A|r̅i|
 

FFC CAPM FFC FF6 

Aαi
2

Ar̅i
2  

FF5 FF5 FF5 FF6 

As2(αi)

Aαi
2  

FF6 FF5 FF5 FF6 

A(R2) CAPM FF6 FF5 FF5 
Note: This table shows the best model (among CAPM, FF3, FFC, FF5, and FF6) of different metrics for all types of funds, bond funds, equity 

funds, and mixed asset funds, respectively, for the pre-Covid-19 periods. The sample period is January 1, 2017 to March 1, 2020. 

 

Table 10   Best Models for Post-Covid 19 

Test Total funds Bond funds Equity funds Mixed funds 

GRS FF6 FF6 FF6 FF6 

A|i| FF6 FF6 FF6 FF6 

A|αi|

A|r̅i|
 

FF6 FF6 FF6 FF6 

Aαi
2

Ar̅i
2  

FF6 FFC FF6 FF6 

As2(αi)

Aαi
2  

FF6 FF6 FF6 FF6 

A(R2) CAPM CAPM CAPM CAPM 
Note: This table shows the best model (among CAPM, FF3, FFC, FF5, and FF6) of different metrics for all types of funds, bond funds, equity 

funds, and mixed asset funds, respectively, for the pre-Covid-19 periods. The sample period is April 1, 2020, to August 1, 2022. 

 

Table 8 shows that FF6, which produces the smallest GRS statistics and the best performance for 

most measures, is the best model for explaining excess returns for all types of funds, bond funds, 

equity funds, and mixed asset funds, during the entire period, though it does not have the largest 

A(R2). However, pre-Covid-19 tells a different story. Turning to Table 9, CAPM is the best-

performing model for bond funds. FF5 is the best-performing model for mixed-asset funds, while 

FF6 performs well for four other metrics. I hypothesize that the reason for this is that the stock 

market is strongly related to factors in FF6. The performance of the model may be impacted 

when a low percentage of funds is invested in stocks. Focusing on Table 10, for post-Covid-19, 
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FF6 still captures the excess returns best with the majority metrics for all types of funds, bond 

funds, equity funds, and mixed asset funds. 

My research demonstrates that while FF5 has significant success in the US (Kildahl & Lunde, 

2018) and China (Sha & Gao, 2019), it cannot account for the performance of Canadian mutual 

funds. The study reaches the same conclusion for \ Polish equity mutual funds (Trzebiński, 

2022), namely that FF6 best accounts for the performance of equity mutual funds. 

There are some implications of this study. First, for different fund type, we should use different 

factor models to evaluate the mutual fund performance. Second, we usually take alpha as a 

measure of fund’s manager’s ability. The failure of most factor models in explaining the mutual 

fund excess returns suggests that we should consider other explanations for the significant alpha. 

To choose the optimal model for mutual funds, many other factor models should be examined in 

future research, such as Hou et al.’s Q-factor model, the Stambaugh and Yuan 4-factor model, 

and Barillas and Shanken’s 6-factor model. 
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