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Abstract

Benthic habitat mapping is a process of labeling substrates, plants, and animals on

the seafloor. Mapping of the benthic habitat is crucial to monitor changes happening

due to natural and human-related activities. Annotation of the large amount of data

produced with underwater camera systems requires automation. A large dataset

of around ten million ocean floor images (BenthicNet) was recently compiled as a

part of the BEcoME Project (Benthic Ecosystem Mapping & Engagement). This

thesis discusses the development and specific challenges of a classification system for

this dataset. We specifically discuss the importance of careful training and test set

partitioning. We further evaluate the performance of pretrained models on ImageNet

by supervised learning versus those by self-supervised learning. We show that transfer

learning from ImageNet enables good performance comparable with versions that

start from self-supervised representations from the BenthicNet dataset.
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Chapter 1

Introduction

A benthic habitat is an underwater environment on the seafloor that sustains a par-

ticular community of plants and animals. A process of labeling or classifying biotic

or abiotic elements on the seafloor is considered benthic habitat mapping. Habitat

mapping is crucial to monitor ongoing changes in seafloor habitat posed by natural

(e.g. a shifting climate) or human-related (e.g. commercial fishing activities) factors.

Besides mapping plays a crucial role in creating policies to address these changes.

The collection of data representing all habitat features in the seafloor area is impor-

tant for accurate habitat mapping and advancement in data gathering techniques is

helping this with automating and, hence, speeding up the process. The first way of

collecting benthic data for seafloor mapping was physical sample collection which lim-

its the size of data to be collected due to the speed of sample collection. Furthermore,

physical samples are resource expensive to store. On the other hand, benthic imagery

data in the form of images and videos are easier to gather and store. Imagery data

can be collected by manual on-site (e.g., snorkeling, SCUBA) or surface(e.g., drop

camera) deployment. The introduction of automated and remote underwater vehicles

increased data collection speed and volume significantly as they don’t require direct

human supervision for data collection. However, the speed of manual classification,

annotation, and labeling is a bottleneck to the usage of all collected data for training

benthic habitat mapping models which creates a need to automate the process.

Machine learning has been proven to be successful in automating manual tasks by

mapping the input data to the target output by finding numerical correlations between

them. Especially deep learning can be used to build complex models to solve difficult

tasks and has been applied to many image-processing tasks like classification [19,36,

39], segmentation [18,19,32], and generation [22,34,42]. Deep learning models require

a large amount of data to train but the model trained on one task can be retrained for

another task with fewer samples which is called transfer learning. Transfer learning
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is possible due to the fact that earlier layers of models are responsible for learning

simple features in the image like edges which is common to all image-related tasks. In

computer vision, transfer learning is usually done on the models which are pretrained

on the ImageNet-1k dataset which consists of 1.28 million natural images with 1000

classes [33].

Some previous works on benthic habitat mapping has been done with smaller local

datasets and smaller models [3, 8, 10, 12, 15, 30, 35]. A big dataset for training deep

learning models was not available as small labeled datasets are scattered around the

world in different research groups and they don’t have a common labeling scheme.

When we have a limited number of labeled benthic data, we can use the benefits of

transfer learning to train a supervised model which generalizes well. As the benthic

images are natural images, transfer learning [20] from a model pretrained on ImageNet

should help and our experiments show it does. On the other hand, benthic images

differ from ImageNet natural images in terms of lighting and clarity which questions

the performance of transfer learning from ImageNet on benthic image classification

to be the best possible.

Considering labeled seafloor data to be a small portion of all available benthic

data, it is reasonable to believe a model trained with all available data could perform

better than transfer learning from ImageNet. The self-supervised learning methods

[5, 6, 14, 16, 17] use unlabelled data to train a model with a pretext task that is

created from the input image so that learning more task-independent representations.

Training a self-supervised learning method on all available data and using transfer

learning to retrain or fine-tune the model with available labeled data should result in

better performance on unseen data.

There has been some work on benthic habitat mapping mainly focusing on sub-

strate and biota classification on specific datasets. A limiting factor for training

large-scale models that can generalize well is the lack of benthic imagery data. Using

the BenthicNet dataset [27] which has 10 million images and modern self-supervised

learning (SSL) methods, we aim to train a model that generalizes well across datasets

around the world.

When evaluating the model’s performance on unseen benthic data it is crucial to

choose the right test data for the desired application purpose. A common way of
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choosing test data in image classification tasks is randomly picking test images for

each class. However, we found that two geographically close seafloor images are very

visually similar as the habitat is spread along huge areas on the seabed. Having one

of the images in the training and the other one in a test partition may question the

real generalization ability of the model on unseen data in terms of what one wants

to use the trained model for. For example, if one wants to annotate images from

a geographical area where they have some labeled data from to train a model, it is

acceptable to use randomly picked images as test data that we refer to as test-same

partition through the thesis. Nevertheless, if one wants to annotate images from a

location through a model trained on data from different locations the generalization

evaluation through random test data may mislead. Because, test data can include

an image that is spatially next to an image used for training, biasing the real per-

formance of the model in test data. A better approach for this use case is putting

geographically close images in one partition avoiding bias in model’s performance on

unseen data that we call a test-other partition through the thesis. Before compiling

the big BenthicNet dataset, we ran experiments on a smaller dataset to analyze the

performance gap for different test partitions. Through these experiments, we found

a noticeable difference in model performance between randomly and spatially chosen

test partitions suggesting the importance of proper test data aligning our intentions.

Despite being similar to natural ImageNet images with respect to color and other

features, benthic images differ from natural ImagenNet images in lighting conditions,

surrounding water clarity, and so on. This arises the question of whether trans-

fer learning from ImageNet is useful. To answer this question we run experiments

on the transferability of learned representations from ImageNet on benthic imagery

and found that the learned representations from ImageNet are beneficial for benthic

imagery as seafloor images are also natural images. The experiments showed that

when transfer learning from ImageNet it is very important to train a new classifier

layer before fine-tuning the whole network because fine-tuning from the beginning can

propagate big loss due to random initial weights on the last layer that can destroy

the previously learned representations.

Furthermore, we compare the benefit of learned representations from supervised
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learning and self-supervised learning on ImageNet data. As SSL tries to learn task-

independent features on imagery, we expect it to generalize better. However, we

found they perform similarly in our classification task. As the labeled data is a small

part of the whole dataset we have, we want to take advantage of unlabelled data for

training the habitat mapping model. For this purpose, we trained the SSL model on

BenthicNet data and compared it to learned representations from ImageNet. Results

show the learned representations from ImageNet are better in our classification task

setup. The potential reason is the classification task we created is not complex enough

to take advantage of SSL pretraining. It requires further investigation by creating a

more complicated task hierarchical classification task in the whole labeled dataset.



Chapter 2

Background

2.1 Benthic image classification

There has been a number of studies that emphasized computer vision techniques

to apply to benthic habitat classification tasks before the deep learning era. For

example, Shihavuddin et al [35] proposed an image classification scheme that uses

various combinations of feature descriptors(e.g., completed local binary pattern, grey

level co-occurrence matrix, Gabor filter response) and machine learning classifiers such

as k-nearest neighbors, neural networks, and support vector machines (SVMs). The

authors evaluated their method on three benthic datasets: EILAT, Rosenstiel School

of Marine and Atmospheric Sciences (RSMAS), and Moorea labeled corals (MLC) [4].

The results showed using a combination of different feature extraction methods and

classifiers outperformed using a single method with at least 5% better accuracy in all

datasets. Gauci et al. [12] used three red-green-blue channels and three LAB color

dimensions as features to classify each pixel as either sand or maerl. They used three

machine learning algorithms random forest, neural network, and classification trees to

classify images captured by cameras mounted on remotely operated vehicles (ROVs).

Each applied algorithm achieved promising classification results. Another study by

Raj and Murugan [30] used bagging of features descriptor together with the SVM

algorithm to classify 11 000 images, captured by a camera on an ROV device, into

seven benthic classes achieving 93% overall accuracy.

The introduction of convolutional neural networks (CNNs) has revolutionized com-

puter vision. As convolutions enabled learning spatial correlations between pixels in

the image it became the dominant architecture for computer vision tasks. CNN has

been successfully applied to many computer vision tasks such as object detection [13],

pose estimation [40], classification [21], segmentation [26], object tracking [28], de-

noising [31], and super-resolution [9]. The development of CNN architecture such as

AlexNet [24], VGGNet [36], ResNet [19], and GoogLeNet [38] enabled state-of-the-art

5
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classification accuracy results on different computer vision problems.

Elawady [10] used CNNs for coral classification first. The author first enhances

images used in the study by correction and smoothing filtering. Then they train

a LeNet-5 CNN with input which consists of three color channels from the images

and two layers of texture and shape descriptors. Two datasets were used to evaluate

the study results: the MLC dataset with 2 000 images belonging to nine classes and

the Atlantic Deep-Sea dataset with 55 images from five classes. The model achieves

an overall accuracy of 55%. Another study by Asma et al. [3] proposed a CNN

model for classifying coral images as damaged and healthy. The authors collected

1 200 images from different online sources and trained the model with 90% of the

images. They achieved 95% classification accuracy on the remaining 10% of test

data. A study by Gómez-Ŕıos et al. compared several CNN architectures on the

classification task with two different coral texture datasets [15]. Using a ResNet-50

architecture, they achieved an accuracy of 97.85% after 500 epochs. Diegues et al.

presented an automated approach for habitat mapping by collecting images by AUVs

and classifying them with CNNs [8]. Their model achieved an accuracy of 85.1%.

All aforementioned works achieved high accuracy results but were trained and

evaluated on datasets belonging to some local geographical area. To the best of our

knowledge, the test partitions are chosen randomly which leaves spatial partitioning

unexplored. The quality of learned representation by SSL on ImageNet for benthic

image classification was not explored either. Novel self-supervised methods were not

applied to benthic image classification before as a big benthic dataset as BenthicNet

was not available to train SSL.

2.2 Self-Supervised Learning Methods

Self-supervised learning is unsupervised learning where a supervised task for training

is created from unlabelled input data. A supervised task can be that of giving half of

an image, predicting the other half, predicting the color channel values of the image

given a greyscale version, or finding the correct order of shuffled image patches. Su-

pervised learning requires a lot of high-quality labeled data which is expensive and

time-consuming for computer vision tasks like image classification, object detection,

or segmentation. Fortunately, unlabelled data is more common. SSL tries to learn



7

representations from unlabelled data through a self-supervised task. These learned

representations can be fine-tuned for another downstream task (e.g. image classifica-

tion) with different labeled data. The motivation behind SSL is a model can learn

the underlying structure of the data when trying to solve the pre-text task from the

input data. One of the famous SSL approaches is contrastive learning.

Let’s suppose we have a function f represented by a neural network model. Given

an input x, f returns learned features f(x). Let positive pairs be two different parts

of the same image, two frames of the same video, or two augmented versions of the

same image, while negative samples are patches from different images, frames from

different videos, or augmented versions of different images. Contrastive learning tries

that for any positive pair of inputs x1 and x2, the function outputs f(x1) and f(x2)

should be as similar as possible while for a negative input x3, the function outputs

f(x1) and f(x2) should be as dissimilar to f(x3) as possible. In ”Representation

Learning with Contrastive Predictive Coding” [41] paper, the authors divide images

into overlapping grid patches and train a model to predict the lower rows given the

few patches from the upper rows of an image. To train the model effectively, a loss

function should enforce the similarity of model output to the positive pair (correct

patch) and dissimilarity to negative pairs (incorrect patches). For calculating the loss,

the set of N patches is used: one positive sample (correct patch) and N-1 negative

patch samples which are chosen from the same image or other images in the batch.

This loss is referred to as InfoNCE loss (NCE - Noise Contrastive):

Lq,k+,{k−} = − log
exp (q × k+/τ)

exp (q × k+/τ) +
∑

k− exp (q × k−/τ)

Here q is the network output, k+ is the positive (correct) patch, k− is the set of

N-1 negative patches, and τ is a temperature scaling factor. q, k+, and k− are all rep-

resentations (output from the network) not original image patches. The evaluation of

the learned representations by the method is done with a linear evaluation protocol.

That is adding a linear classifier on top of the frozen encoder part of the model and

training it, then evaluating with classification accuracy on ImageNet val/test parti-

tion. The Contrastive Predictive Coding method achieved top-1 accuracy of 48.7%

outperforming all other unsupervised learning methods but still far from supervised
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counterparts. The idea of image discrimination was extended to instance discrimina-

tion.

Instance discrimination applies contrastive learning concepts to whole images.

Instance discrimination tries to achieve that representations of the two different aug-

mented versions of the same image(positive pair) are similar while the representations

of the two augmented versions of the different images(negative pair) are dissimilar.

The papers SimCLR [5] and MoCo [17] use instance discrimination. Their objective

is to keep learned representations of an image invariant under augmentations. These

augmentations include gaussian blur, a random resized crop, horizontal flip, and color

distortion. Intuitively these augmentations can change an image visually but not the

class of the image. Hence, the representations of images should not change. The

instance discrimination method works as the following:

• Given an image, 2 randomly augmented versions of the image are created. Ad-

ditionally, N-2 augmented versions of the other images from the dataset are

taken.

• All N images are passed through the encoder model and representations are

obtained

• InfoNCE loss is applied to the obtained representations.

The main difference between SimCLR and MoCo is how they handle negative samples

In SimCLR, negative samples are all the images in the current batch. SimCLR

trained in this way achieved the top-1 accuracy of 69.3 % using a linear evaluation

protocol as described earlier. In practice, InfoNCE loss is highly dependent on the

number of negative samples and it requires a big batch size of 4096 in the case of

SimCLR. SimCLR was trained with an 8k batch size which is the main drawback of

the method considering the required computational resources for that big batch size.

On the other hand, MoCo uses a queue of representations, a memory bank, from

previous batches as negative samples. This decouples negative samples’ size from

batch size enabling smaller batch size during training resulting in more computa-

tional effectiveness. MoCo has two encoders: query and momentum. A query image

is selected and processed by the query encoder to compute the encoded query image

q. The InfoNCE loss is calculated for q with keys, encoded representations of other
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images, in the memory bank. When the current batch is passed through the momen-

tum encoder it is enqueued to the memory bank where negative samples are kept

and the oldest representation in the queue is dequeued(Figure 2.1). When the query

encoder weights are updated with backpropagation and the new weights of the query

encoder are copied to the momentum encoder the network performed poorly. The

authors suggested that rapid change in momentum encoder parameters reduced the

key representations’ consistency. To address this, the authors proposed a momentum

update on the parameters of the momentum encoder:

θk ← mθk + (1−m)θq

Here θk is the parameters of the momentum encoder, and θq is the parameters of

the query encoder, m is a momentum coefficient. Using this method MoCo achieved

60.6% top-1 accuracy on ImageNet after training for 200 epochs. MoCo v2 achieved

67.5% top-1 accuracy on ImageNet by introducing an MLP projection head and more

data augmentations.
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(a) (b)

Figure 2.1: a) Momentum Contrast (MoCo) uses a contrastive loss by matching an
encoded query q to a dictionary of encoded keys. The dictionary keys k0, k1, k2, ... are
representations of the images in the batch by the momentum encoder. The dictionary
is built as a queue, with the current mini-batch enqueued and the oldest mini-batch
dequeued, decoupling it from the mini-batch size. b) Only the weights of the query
encoder are updated by backpropagation. The momentum encoder is updated with a
momentum update with the parameters of the query encoder. This method enables
a large and consistent dictionary for contrastive learning. Note. From ”Momentum
Contrast for Unsupervised Visual Representation Learning”, by Kaiming He, Haoqi
Fan, Yuxin Wu, Saining Xie., Ross Girshick, 2020



Chapter 3

Dataset

3.1 BenthicNet

BenthicNet is a vast collection of labeled and unlabeled images from different loca-

tions around the world. It has over 9.8 million images gathered from individuals,

research groups, and government organizations [27]. The dataset tries to achieve the-

matic diversity by including images from various geographical locations and different

marine environments. Some datasets in BenthicNet came from individual project

partners. 2 281 images are extracted from passive drop-down video drifts conducted

in the Bay of Fundy between 2017 and 2019 using 4K cameras. 4 094 high-quality im-

ages belong to the survey conducted in St Anns Bank between 2009-2014. 62 seabed

images came from sources that are used for the 2017 R2Sonic Multispectral Challenge

in the Bedford Basin, Nova Scotia. 3 000 images extracted from a video used for the

“Coastal Habitat Mapping of Placentia Bay” project, in Newfoundland. The above

four datasets came from east Canada. 1 220 images, collected in shallow eelgrass

sites in Nova Scotia between 2019-2021, were provided by the Ecology Action Centre

(EAC). All dataset sources are shown in Table 3.1. The dataset has non-thematic

variety (e.g., image quality, lighting, perspective) as the images are gathered from

different camera configurations and platforms. Some image examples are given in

Figure 3.1 As the BenthicNet dataset is a collection of smaller datasets with differ-

ent structures, all consisting datasets are brought to the same CSV format that is

described in Table 3.2.

3.1.1 Subsampling

BenthicNet data is collected from a variety of sources as described above. However,

images are not distributed geographically evenly. While some locations have only a

few images taken manually by divers, other locations have a big number of images

11

https://ecologyaction.ca/
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Table 3.1: Dataset summaries for BenthicNet including their source, geographic re-
gion, number of comprising datasets and sites, and number of overall and subsampled
images. Note. From ”BenthicNet: A global dataset of seafloor photography for deep
learning applications”, by Scott C. Lowe, Benjamin Misiuk, Manuscript in prepara-
tion.

№ Samples
Source Region № Datasets № Sites Full collection Subsampled

Online Repository/Collection
AADC Antarctic 2 86 2056 2056
IMOS (via SQUIDLE+) Australia 58 787 6 633 927 235 879
MBARI (via FathomNet) W. USA 4 3196 61 508 53 313
MGDS Global 4 4 2308 2110
NOAA (via OneStop) USA 18 526 73 019 41 896
NRCan Canada 73 1737 20 260 19 234
PANGAEA Global 1112 1118 721 638 242 128
RLS (via SQUIDLE+) Global 494 10 657 238 696 238 187
SOI (via SQUIDLE+/MGDS) Global 15 149 1 307 009 47 726
SQUIDLE+ (other) Global 9 227 557 925 48 599
USAP-DC Antarctic 5 27 4144 2886
USGS USA 5 38 104 155 7035
WHOI (via MGDS) E. USA 1 9 2595 1985

Individual Contributions
4D Oceans E. Canada 2 274 3008 3000
LaboGeo (Marine Geosciences Lab/UFES) E. Brazil 1 359 359 359
DFO (BIO) Canada 6 381 7773 7722
DFO (IOS) W. Canada 7 9 16 247 2324
EAC E. Canada 1 7 1220 1192
Hakai Institute W. Canada 2 45 4735 3941
MUN Arctic 4 135 10 691 8579
NGU Norway 4 580 50 290 50 275
NOAA (NFSC) N.E. USA 1 2 2240 2240
SEAM E. Canada 3 283 6692 6544

Total Global 1831 20 636 9 832 495 1 029 210
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Figure 3.1: Image samples from BenthicNet
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Table 3.2: CSV format for BenthicNet. Note. From ”BenthicNet: A global dataset of
seafloor photography for deep learning applications”, by Scott C. Lowe, Benjamin Mi-
siuk, Manuscript in preparation.

Column Contents Data-type Units Coverage of images

dataset Name of contributing dataset string 100.0%
site Name of recording location string 100.0%
image Image filename (possibly including an extension) string 92.3%
url URL address for this image string 90.3%
source Collection containing contributing dataset string 100.0%
longitude Longitude (WGS 84) float degree 99.5%
latitude Latitude (WGS 84) float degree 99.5%
datetime Acquisition date and time (UTC) string YYYY-MM-DD HH:mm:ss 94.6%
depth Seafloor depth float metre 70.8%
altitude Distance from camera to seafloor float metre 32.0%
temperature Seawater temperature float degrees Celsius 28.0%
salinity Seawater salinity float 28.0%
chlorophyll Seawater chlorophyll concentration float 20.0%

as they are collected by AUVs. As a result, the dataset is subsampled to lessen the

sampling density imbalance across all data sources [27]. Subsampling also resulted

in a more manageable dataset size, while preserving the available variety of benthic

habitats. Most of the sub-datasets in BenthicNet have annotations for the recording

station or camera deployment where a group of images was collected that is called

”site” onwards. To achieve as much diversity in location and represented habitat in

each image as possible subsampling is done on the site level. There are 20 913 sites

in the BenthicNet dataset.

The base target number of images for subsampling from each site is 250 whereas

subsampling the site with less than 250 images does not reduce the number of images

for that site. The base target number was chosen to keep a good balance between

the subsampled dataset size and benthic habitat variety by our research group mem-

bers. Some subdatasets do not annotate which images were collected from the same

geographical site despite grouping the images into some distinct locations which can

be considered a site. For addressing this, the number of pseudo-sites was calculated

automatically by finding the number of clusters of samples with inter-distance of at

least 1 000 meters, then the target number for the site is increased by a factor of

the number of pseudo-sites within the site. 2 350 additional pseudo-sites were found

across 591 of the 20 913 annotated sites. Moreover, a few pseudo-sites contained

pictures that were all in the same area, though others had a few hundred meters
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distance between samples, which were denoted as “subsites”. The target number of

samples for the site is increased by 50 for each subsite separated by at least 100 m. 2

353 sites had more than one subsite. 17 365 sites with less than 40 samples for each

of its pseudo-site were not subsampled. 145 sites could not be spatially subsampled

as they lack accurate coordinates for the samples. These sites were subsampled by

selecting evenly spaced images, as described below. The remaining 3 403 sites were

subsampled spatially starting with the inclusion of the first image in the subdataset in

the subsampled dataset. Scanning through the images, all images were removed until

reached an image that was at least 0.625m away from all images already flagged for

inclusion in the subsampled dataset. Either this image or the next image, whichever

was closer to 1.25m from the previous image included, was selected. This process

was repeated until the end of the images at a site. Many sites still had more images

than their target number of samples after this initial spatial subsampling, so this

process was repeated with larger separation distances to achieve the target subsam-

ple size. The separation distances were scaled up by factors of 2, 3, 4, 6, 8, 10, 12,

14, or 16 compared to the base subsampling of 0.625m minimum and 1.25m target

separation to achieve the desired subsample size (i.e. corresponding to 1.25m min-

imum, 2.5m target; then 1.875m minimum, 3.75m target; all the way through to

10m minimum and 20m target separation) [27]. The subsampling distance selected

(and hence the subsampled set of images at that site) was the largest distance which

did not reduce the total number of images below the target for the site determined

as described above. Subsampling procedure selected 1 037 003 images (10.53% of the

total) to be included in the subsampled BenthicNet dataset (Figure 3.2). The kernel

density estimates (KDEs) before and after subsampling can be seen in Figure 3.3 and

Figure 3.4.

3.2 Labelling Scheme - CATAMI

BenthicNet has about 100 000 labeled images which have different labeling schemes

for different datasets. There are 3 types of labeling styles: whole-frame, point, and

coverage. Whole-frame labeling assigns single or multiple labels for the whole image.

Point labels have separate labels for some pixel points within an image. Coverage

labeling annotates coverage of some specific label in an image as an area in m2 or
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Figure 3.2: (Top) source and location of image samples after spatial subsampling.
(Bottom) Aggregated image sample density, scaled logarithmically and projected to
Equal Earth. Note. From ”BenthicNet: A global dataset of seafloor photography
for deep learning applications”, by Scott C. Lowe, Benjamin Misiuk, Manuscript in
preparation.
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Figure 3.3: Kernel density estimate for BenthicNet imagery with all 9.8M sourced im-
ages. Gaussian kernel, with 1◦ bandwidth and Haversine distance metric. Note. From
”BenthicNet: A global dataset of seafloor photography for deep learning applications”,
by Scott C. Lowe, Benjamin Misiuk, Manuscript in preparation.

Figure 3.4: Kernel density estimate for BenthicNet imagery with 1M subsampled im-
ages. Gaussian kernel, with 1◦ bandwidth and Haversine distance metric. Note. From
”BenthicNet: A global dataset of seafloor photography for deep learning applications”,
by Scott C. Lowe, Benjamin Misiuk, Manuscript in preparation.
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%. In order to be able to use all labeled images to train a model we need a common

labeling scheme. The CATAMI classification scheme provides an Australian-wide

acknowledged, standardized terminology for annotating substrate and biota in benthic

imagery [1]. It has four independent label types: substrate, relief, bedforms, and

biota. Each has a hierarchical structure, the deeper the label is, the more specific it

is. Researchers can choose the labeling depth for their own purposes. The mapping

rules for various labeling schemes to CATAMI were created by oceanographers and

they are in the form of CSV. The basic structure of mapping CSV has 5 columns:

the first one is for labels from the source labeling scheme and the other four columns

are for matching labels for each label type in CATAMI. The CATAMI label columns

can have the following values other than corresponding CATAMI label name:

• NONE - There are no instances of this label type in the image (e.g. there is no

biota in the image).

• N/A - This label type (e.g. substrate) does not apply to this label because the

source scheme already has separate columns for (e.g.) substrate and biota (so

the substrate is known, but by looking at the OTHER label not this label).

• REMOVE - This label needs to be removed.

• UNKNOWN - From the source label, there is no way to know whether this

output label type is present in the image.

When mapping source labels for an image to CATAMI, we keep the most specific

labels for an image to avoid redundancy in annotations. For example when mapping

a label for an image if we already have a more specific label for this image that

includes a new label we skip it. If we have a less specific version of the new label for

an image we replace it with a more specific one. The source code for mapping each

subdataset in BenthicNet can be found here.

3.2.1 Subtrate

The substrate is a type of physical environment in the surface being observed [1].

It has two subdivisions: unconsolidated (i.e. soft substrates) and consolidated (i.e.

hard substrates). In benthic environments, hard substrates can be covered by a

https://github.com/DalhousieAI/BenthicNet-log/blob/master/scripts/catami_mapping.py
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Figure 3.5: Hierarchical structure for the Substrate branch of the CATAMI Classi-
fication Scheme. Note. From CATAMI class PDFGuide V4 20141218, by Althaus
Franziska, Hill Nicole, Edwards Luke, Ferrari Legorreta Renata, 2013.

thin layer of sand or mud. In this case, CATAMI annotates the visible substrate.

Consolidated substrates are divided into three types based on element size: cobbles,

boulders and bedrock. Cobbles are distinct rocks of approximately 65-255 mm in

diameter. Boulders are large rocks with a diameter >255 mm where clear edges

can be determined. Bedrock is a flat surface outcropping ledge or cliff face that

can be covered in biota and/or a veneer of sediments. Unconsolidated substrates

are divided into two types based on grain size: ”Sand/mud” and ”Pebble/gravel”.

Pebble/gravel has a diameter of 2-64 mm while Sand/mud grainsize is smaller than 2

mm in diameter. ”Sand/mud” and ”Pebble/gravel” has more subdivisions which one

can see in the complete CATAMI Substrate hierarchy figure Figure 3.5

3.2.2 Relief

Relief describes the height and rugosity of the substrate [1]. This label type annotates

a whole image rather than a point in it as the height and rugosity feature of a location
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Figure 3.6: Hierarchical structure for the Relief branch of the CATAMI Classification
Scheme. Note. From CATAMI class PDFGuide V4 20141218, by Althaus Franziska,
Hill Nicole, Edwards Luke, Ferrari Legorreta Renata, 2013.

can be determined by comparing it to its surrounding. Relief has three sub-categories:

flat, low/moderate, and high. The flat category denotes a flat substrate with no

features. The Low/moderate category describes the height feature of the substrate

with less than 3m that can be steps or outcrops Rockwalls, cliffs, or high steps with

a height feature of more than 3m belong to the high category. The second and third

categories have further divisions that is shown in the full hierarchy tree of relief label

type in Figure 3.6

3.2.3 Bedforms

Bedforms are the structural changes caused by the transportation of sediment on the

seabed due to water movement [1]. As the possible changes in hard rocky surfaces re-

sulting from sedimentary processes over a long time period can not be estimated from

the imagery itself, bedform annotations are done for only unconsolidated substrates.

Bedform labels are divided into 4 categories: Bioturbated, 2D, 3D, and None. The

image is annotated as bioturbated if the described substrate is structured by burros

and/or tracks formed by biota. 2D bedforms are defined as straight-crested features
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Figure 3.7: Hierarchical structure for the Bedforms branch of the CATAMI Classi-
fication Scheme. Note. From CATAMI class PDFGuide V4 20141218, by Althaus
Franziska, Hill Nicole, Edwards Luke, Ferrari Legorreta Renata, 2013.

in a planar view [2] and are further divided into ripples and waves according to

the height of the 2-dimensional feature. Three-dimensional bedforms have sinuous to

wavy crestlines with distinguishing scour pits [2]. It is also divided into two categories

as same as 2D bedforms. The images showing flat soft substrate surfaces without any

bedform, typical for deep-sea habitats, are labeled as None. The full hierarchy tree

for Bedform annotations is described in Figure 3.7

3.2.4 Biota

Biota annotations refer to the visible benthic organisms or types of flora on the ocean

floor. This label type also annotates visible traces of biota, referred to as bioturbation.

Biota has 16 subdivisions:

1. Bacterial mats

2. Macroalgae

3. Seagrasses

4. Sponges

5. Cnidaria

6. Jellies
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7. Worms

8. Bryozoa

9. Ascidia

10. Crustacea

11. Seaspiders

12. Echinoderms

13. Brachiopods

14. Molluscs

15. Fishes

16. Bioturbation

Each subdivision has further branched into more specific biota types. The further

division of worms is shown in Figure 3.8. The full hierarchy tree for other biota

subdivisions and the sample images for all label types and subtypes in CATAMI can

be found in the original ”CATAMI Class PDF Guide” [1].

Figure 3.8: Hierarchical structure for the worms subbranch of Biota branch of the
CATAMI Classification Scheme. Note. From CATAMI class PDFGuide V4 20141218,
by Althaus Franziska, Hill Nicole, Edwards Luke, Ferrari Legorreta Renata, 2013.
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Methods

In this chapter, we talk about the methods used in the thesis. The BenthicNet has

the following properties and limitations:

• BenthicNet is a large dataset with 10 million images

• Labelled images can have multiple labels for the whole frame or a pixel inside

an image.

• The absence of some label for an image does not always mean the absence of

that feature on the image.

• Not all the labels are complete, meaning not all images are labeled as specifically

as the leaf nodes in the hierarchy tree for a specific label type.

Taking all the complexity of the dataset, we wanted to explore the habitat mapping

problem in a simplified way, by working on the single-label classification task. For

that, we created a dataset with only whole-frame labeled images in BenthicNet and

used substrate labels truncated in the depth of three. We refer to this dataset as a

simplified BenthicNet dataset from here on. As some images have multiple labels,

if one image has contradicting substrate labels in the depth of three, this image is

discarded from the dataset.

4.1 Partioning

We have four partitions for our simplified BenthicNet dataset: train, validation, and

two test (test same and test other). The test other partition is selected by keeping

geographically close images in the same partition while the test same partition is cho-

sen through stratified random sampling across classes. Having the right test partition

to evaluate the generalization of the model on benthic data is important as the model

performance differ substantially between the two test partitions. The reason behind

23
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the performance gap could be that geographically close underwater images represent

very similar benthic habitats as one type of habitat can span many kilometers while

images from spatially remote locations differ greatly in terms of habitat elements. To

experimentally show the difference in the generalization ability of a model on different

test partitions, we trained the supervised model on one of the labeled sub-datasets of

BenthicNet which is discussed in chapter 5. The test other partition is an appropriate

test data when we want to train our model with data from one location and want to

use the model to classify images from another unseen location. The test same data

is appropriate when we train our model with labeled data in one location and want

our model to label unlabelled images from that location.

4.2 Supervised Model

We trained a supervised model with the simplified BenthicNet dataset to analyze its

performance in the classification task. The main model architecture used was ResNet

[19], as it is one of the go-to model architectures for image classification. Before

ResNet architecture was introduced, researchers tried to build deep Convolutional

Neural Networks, which they believed should be more capable as deeper CNNs have

more parameter space to explore than shallower ones. However, it has been witnessed

that after some depth the performance gets worse. This was one of the problems with

VGG [36], the authors could not build an as deep model as they wanted due to

the loss in generalization capability. This problem is caused by vanishing gradients.

When the network is deep, the gradient calculated from the loss in the last layers

shrinks to nearly zero as the chain rule is applied many times before gradients reach

earlier layers. This avoids the weights in the earlier layers to be updated which as

a result avoids learning. ResNet used the residual connection between layers so that

the gradients can flow to the initial layers enabling better learning despite the depth

of the network.

Depending on the number of overall layers and how big each layer is operations-

wise, ResNets have various sizes. Figure 4.1 shows the structure of the ResNet-18.

Every ResNet has four layers (given with the same color) after the first common

step (given in yellow color). Only the number of operations and the parameters in

the operations differs for different ResNet architectures. Here an operation means a



25

Figure 4.1: A residual network with 18 parameter layers. The dashed shortcuts mean
a change in dimensions. Note. Adapted from ”Deep Residual Learning for Image
Recognition”, by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2015
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convolution, a batch norm, and ReLU activation. The last operation in each layer

does not have activation at the end. Now let’s discuss operations and layers in more

detail for ResNet-18 in the figure for ImageNet with input size 224× 224 . The first

step is common for all ResNets and consists of a convolution (7 × 7 kernel, filter 64

and stride, batch normalization, and max pooling (3×3 kernel, stride 2). The output

dimension of this step is 56 × 56. As the figure shows all preceding layers follow

the same pattern. They perform 3 × 3 convolutions a number of times with fixed

filter size 64, 128, 256, and 512 respectively along with keeping the width and height

dimensions constant within a layer. The network bypasses input every 2 convolutions.

The dashed line means there has been a change in the input dimension. When the

input from the previous layer is passing to the new layer its width and height are

decreased twice by changing the stride to 2. The bypassing input is reduced in size

by 1× 1 convolution with stride 2 to facilitate addition. The output from the fourth

layer is flattened after average pooling. For our first experiment in chapter 5, we use

ResNet-18 architecture as it has fewer parameters than other models with ResNet

architecture, matching the dataset size used. Besides, to check the dependency of our

results on model architecture we used EfficientNetB0 [39]. For the other experiments,

we used ResNet-50 architecture for fair comparison as the pretrained SSL models on

ImageNet use this architecture.

4.3 Self-supervised Model

As the labeled data is a small part of the whole BenthicNet dataset we want to take

advantage of the unlabeled data. As we discussed in earlier sections self-supervised

learning helps to learn the representations of the data without labels. First, we investi-

gate the quality of the learned representation by self-supervised learning on ImageNet

on the classification task in BenthicNet. Second, we want to train the SSL model on

subsampled BenthicNet data and compare the quality of the learned representations

with the ImageNet representations. To train our SSL models we use Sololearn li-

brary [7] which includes many state-of-the-art self-supervised learning methods of

visual representation learning. All methods are implemented using Pytorch [29] and

Pytorch Lightning [11].



Chapter 5

The importance of the right test data

In this chapter, we explore the performance of a model on spatially and randomly

picked test data. Before compiling the whole BenthicNet dataset we train a supervised

model on a smaller dataset.

5.1 Dataset

The dataset of benthic habitat photographs was collected at St. Anns Bank (Atlantic

Canada) in 2014 [25]. The dataset is comprised of 4 681 images, collected from 64

stations. The images within the dataset have been annotated with full-frame labels,

using a classification scheme bespoke to this dataset and consisting of seven distinct

benthoscapes types. Example images for each habitat class are shown in Figure 5.1.

Figure 5.1: Representative sample images of each benthoscape class in the St. Anns
Bank dataset. a: Mud. Asp: Bioturbated mud with seapens. b: Gravelly sand/mud.
c: Till. d: Till with coral-line algae. e: Gravel with Crinoids. f : Sand with sand
dollars.

27
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We partitioned the dataset for training and testing as follows, and indicated in

Table 5.1. Since the distance between images at the same station is much smaller than

the distance between stations, photographs at the same station are highly similar. To

test the model’s ability to generalize to novel data, we held out some stations from

training, placing approximately fourteen of the stations into the “test:other-station”

set. The held-out stations were selected with stratification against the dominant

habitat class at that station, such that around 20% of the samples for each class were

placed in the “test:other-station” set.

For the remaining stations, we randomly selected 50 images from each class and

placed these in a “Test:same-station” partition. This partition allows us to test the

ability of the model to generalize to unseen images taken from stations on which the

model was trained. The remaining data comprised the training partition.

№ stations № images

Class Description Train Test:other Train Test:same Test:other Total

A Mud (bioturbated in places) 14 3 689 50 190 929
Asp Bioturbated mud with seapens 3 1 196 50 77 323
B Gravelly sand/mud (<50% gravel) 11 2 377 50 97 524
C Till (>50% cobbles, gravel) 18 4 1040 50 296 1386
D Till with coral-line algae 10 3 715 50 191 956
E Gravel with Crinoids 2 1 106 50 60 216
F Sand with sand dollars 3 1 204 50 93 347

Overall 50 14 3327 350 1004 4681

Table 5.1: Dataset statistics. The number of recording stations and image samples
for each partition: training, test:same-station, and test:other-station.

5.2 Methods

We trained models using two convolutional architectures: ResNet-18 [19] and EfficientNet-

B0 [39]. Since our dataset is comparatively small, we employed a transfer learning

approach. We initialized the model using weights pre-trained on ImageNet-1k before

training on our own training data. Each model was trained for 50 epochs using the

Adam optimizer [23] to minimize the cross entropy between the network’s output log-

its and the ground truth class labels. We used a cosine-annealed one-cycle learning

rate schedule [37], with a peak learning rate of 1× 10−4 occurring after 30% of train-

ing, and cyclic momentum from 0.95 to 0.85. The training batches each contained
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128 images, and we used a weight decay of 1× 10−4.

Before training, all images were downscaled such that their shortest side was the

length of 512. For some of our experiments, we used online data augmentation as

follows. First, we randomly cropped the image to select a square of size 512 × 512.

The brightness, contrast, saturation, and hue were each multiplied by a random factor

chosen uniformly from [0.6, 1.4]. With probability 0.5, the image was rotated by a

random angle, up to 360°. The image was flipped horizontally with a probability of

0.5. Finally, we resized the image to 224× 224 and normalized the RGB values using

the mean and standard deviation statistics from ImageNet-1k.

Our dataset is heavily imbalanced, with ten times more samples for the largest

class than for the smallest class. In some of our experiments, we addressed this

imbalance with oversampling. To do so, we changed our batch sampler to select

images at random with the probability of each image inversely proportional to the

number of samples for that class, such that there was a uniform distribution of classes

shown to the network. Samples were randomly selected with replacement, and the

total number of samples per batch (128) and the number of batches per epoch (25)

were held the same as when training without rebalancing.

5.3 Results

We trained both a ResNet-18 and EfficientNet-B0 model, with transfer learning from

weights pre-trained on ImageNet-1k. The performance of the two networks during

training is shown in Fig. 5.2. Overall, our results are consistent between the two

architectures. The various training configurations indicated in the plots are explained

below.

As outlined earlier, there are two ways to test the generalization performance

of the networks. First, we considered the performance on samples that were un-

seen during training but recorded at the same stations as the training examples

(test:same-stations, dotted lines in Fig. 5.2). Here, we found that test performance

was high (> 92%), with a marginally higher performance achieved by the more power-

ful EfficientNet-B0 model. Second, we considered the performance on sample images

from held-out stations which did not appear in the training set (test:other-stations,

dashed lines). In this case, we found performance reached a plateau after only 5 epochs
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Figure 5.2: Accuracy of benthic habitat classification with different training configu-
rations. Aug: with training data augmentation. Balanced: with class rebalancing.

of training. Performance on samples from unseen stations (70–75%) was much worse

than on images from seen stations.

The results indicate that images from the same station can be very similar, to the

extent that they are pseudoreplicas of one another. The amount of variability within

a single station is notably lower than the variability between stations. Consequently,

the test:same-station partition does not capture enough of the true variability between

instances of the target class to reliably estimate the model’s generalization ability over

the target class. In contrast, the variability between images of different stations is big

enough to challenge models’ ability to generalize. It is a discouraging finding as we

want to build a habitat mapping model which generalizes well all around the world

by training it on the data from some locations around the world.



Chapter 6

The benefit from the learned representations from ImageNet

In this chapter, we explore the quality of transfer learning from the ImageNet pre-

trained model by supervised learning. The dataset to be used is a bigger labeled

dataset from BenthicNet which includes multiple survey imagery from different geo-

graphical locations.

6.1 Dataset

Considering the complexity of the labeled BenthicNet dataset (described in Chap-

ter 4), for simplification of the classification task we used the simplified BenthicNet

dataset which has five classes, and only the whole frame labeled images because cover-

age and point labels could have opposing labels for the whole image as they annotate

some parts of an image. If we have opposing labels for the whole frame before the

depth of three we excluded those images also. The chosen dataset has 14 731 images

overall. The dataset was divided into four partitions: train, validation, and two test

(same and other). First, test-other data was chosen so that all geographically close

images are on one partition, and the test-same partition(20% of remaining data) was

chosen by stratified sampling from the rest of the data. The remaining unallocated

data was divided into train and validation partitions with a 3:1 ratio. The number

of images across partitions and classes is shown in Table 6.1. There is a strong

imbalance in the dataset as the largest class ”Sand/mud” is six times as big as the

second largest class ”Pebble/gravel”.

6.2 Methods

For this supervised classification task, we used the ResNet-18 architecture imple-

mented in Pytorch. We modified the number of neurons in the last fully connected

layer to five, the number of classes we have. We wanted to see the effect of learned
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Figure 6.1: The number of samples in each partition for the whole-frame annotated
subset of BenthicNet.

representations from ImageNet compared to a model trained from scratch. We have

four training setups for our experiment:

FS : We train a model from scratch with the dataset.

LP : We initialize the model with pretrained weights from ImageNet and train only

the last layer which is modified and freeze all other layers. Here LP stands for a

linear probe that is probing the learned representations in the model by a fully

connected layer.

FT : We initialize the model with pretrained weights from ImageNet and retrain

the whole model with our dataset. Here FT stands for fine-tuning and it means

taking the weights of a trained neural network and using it as initialization for

a new model being trained on data from the same domain.

LP+FT : We initialize the model with pretrained weights from ImageNet, then we freeze

all layers except the last and train it for half of the whole training. In the second

half of the training, we unfreeze all the layers and continue training the whole

model.

As the dataset is imbalanced, models were trained with weighted cross-entropy loss

with a learning rate of 0.002 for 100 epochs. Weighted cross entropy gives different

weights to each sample according to which class they belong. It is useful to address

overfitting when we have an imbalanced dataset. The weights in the loss function
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for each class are inversely proportional to the number of samples for that class.

When training from scratch with random initial weights we need a bigger learning

rate compared to the other three setups and we used 0.01 in our experiment. The

Adam optimizer with weight decay value 1e-4 was used. The augmentation stack

during the training is the standard ImageNet augmentations for supervised learning:

random resized crop to 224×224 pixels with scale interval [0.3, 1], followed by random

horizontal flip with 0.5 probability. The color channels of images were normalized with

ImageNet statistics at the end. For validation and testing center crop of 224x224 from

resized image to 256 in short dimension was used. For obtaining statistical measures

we trained each setup five times with different random seeds from 0 to 4.

6.3 Results

The average training loss curve for five runs with different random seeds on training

data is given on Figure 6.2. The shaded region around the lines is the standard

deviation. When training from scratch (FS), the loss is bigger than the other setups

with initial pretrained weights supporting that learned representations from ImageNet

are indeed useful. When only the linear probe is trained (LP), model weights reach

a minimum in the loss plane and do not decrease much after 60 epochs. It can be

explained with that the learned representations from previous layers are not changing

and model weights in the last layers have already reached their optimal values for the

state of the previous layers. Besides when we unfreeze all the layers for LP+FT, on

epoch 51, we see a surge in the loss and a steeper decrease afterward. A jump in loss

value means the model is forgetting learned representations from previous epochs. To

address this, we need to use a smaller learning rate when unfreezing all layers so that

we keep learned features as much as possible and train it more. The FS, LP+FT,

and FT setups have not reached their plateau and can be trained longer.

Now let’s see how the models are performing on the classification task. As the

dataset is imbalanced we evaluate models’ performances by macro average F1-score

across classes. The macro average F1-score is the arithmetic mean of F1-scores across

all classes. From the training macro average F1-score curves on training and validation

data (Figure 6.3 and Figure 6.4), It is clear learned representations from ImageNet

help as all models initialized from pre-trained weights perform better than models
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Figure 6.2: Weighted Cross-Entropy loss of ResNet-18 models with different training
setups (FS, LP, LP+FT, FT) on training data over five runs. The solid line is the
mean over different runs for the setup. The shaded region around the lines is the
standard deviation.

with random initial weights.

Now let’s explore how each setup is performing on unseen test data. We recorded

the models’ performance on test data for each setup with different random seeds in

the last five epochs. Figure 6.5 shows the average and standard deviation of macro-

average F1-scores of the models across all classes with different setups through the

last five epochs of training. This gives more information about the model’s perfor-

mance on test partitions than taking results on the last epoch itself. We can compare

the performances in more checkpoints enabling better-supported conclusions about

different training setups. We see that the average macro average F1-scores of all se-

tups with pretrained initial weights are higher than training from scratch. Besides FT

setup is performing better than FS considering standard deviation. Figure 6.6 shows

the average and standard deviation of macro-average F1-scores of different setups for
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Figure 6.3: Macro-average F1-score of ResNet-18 models with different training setups
(FS, LP, LP+FT, FT) on training data over five runs. The solid line is the mean
over different runs for the setup. The shaded region around the lines is the standard
deviation.
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Figure 6.4: Macro-average F1-score of ResNet-18 models with different training setups
(FS, LP, LP+FT, FT) on validation data over five runs. The solid line is the mean
over different runs for the setup. The shaded region around the lines is the standard
deviation.
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(a) (b)

Figure 6.5: Macro-average F1-score of ResNet-18 models with different training setups
(FS, LP, LP+FT, FT) on a) test same b) test other data in the last 5 epochs over
five runs. The solid line is the mean over different runs for the setup. The shaded
region around the lines is the standard deviation.

each class at the end of training. The results show the mean macro average F1-scores

of models with initial pretrained weights from ImageNet are systematically higher

than that of FS setup across all classes. One also can notice the standard deviation

of F1-scores is smaller across all classes for both test partitions when only the last

layer is trained. All setups have better macro average F1-cores ranging from 0.03 to

0.09 on the test same partition than on the test other partition. The takeaway from

this experiment is transfer learning from ImageNet is useful to classify BenthicNet

images.
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Figure 6.6: F1-score statistics of ResNet-18 models different training setups (FS, LP,
LP+FT, FT) on test partitions at the end of training across classes



Chapter 7

Self-Supervised learning on BenthicNet

In this chapter, we explore the quality of learned representation through self-supervised

learning on our classification task. We continue using the same dataset and partition-

ing from the previous chapter. As we want to evaluate learned representations, we

continue our experiments in three setups: LP, LP+FT, and FT leaving out FS. We

start with comparing models’ performance when initialized with pretrained weights

on ImageNet with supervised learning(SLI) and self-supervised learning(SSLI). We

take weights of the pretrained model by self-supervised learning from Sololearn [7].

The method used for SSL learning is MoCo v2 which was discussed in the background

section. As the ImageNet pretrained checkpoint for the SSL model is ResNet-50, we

run all following experiments on this model architecture for a fair comparison. We

are keeping training hyper-parameters for supervised learning (e.g batch size, learning

rate, number of training epochs, etc) unchanged from the previous chapter as they

worked for new architecture. The augmentations for training partition along with

standardization for validation and test partitions are kept the same. However, we

decreased the learning rate for fine-tuning after linear probe training ten times to

2e−4 so that the model does not destroy learned representations when unfreezing all

layers. All setups have five different runs with different seeds from 0 to 4 as in the

previous chapter.

Figure 7.1 shows the Cross-Entropy loss of the models on training data. It is

noticeable that FT has a bigger loss for both SSLI and SLI at the beginning of the

training as it is tuning the whole network by changing more parameters resulting in

a bigger loss. At the end of the training, it is getting smaller than LP for the same

reason of tuning more parameters has a bigger effect on loss. Interestingly, LP+FT

has a very similar loss in the second half of the training despite a noticeable difference

in the first half. Besides LP+FT is getting a much smaller loss than LP or FT itself.

The decrease in the learning rate when the whole network is unfrozen made a huge
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Figure 7.1: Weighted Cross-Entropy loss of ResNet-50 models with different training
setups (FS, LP, LP+FT, FT) and with different initial pretrained weights on Ima-
geNet, by supervised (SLI) and self-supervised learning (SSLI), on training data over
five runs. The solid line is the mean over different runs for the setup. The shaded
region around the lines is the standard deviation.

difference compared to the loss graph for the experiment from the last chapter. We

still observe a smaller bump in the loss that we can address by further decreasing the

learning rate for FT.

Figures 7.2 and 7.3 represent macro average F1-scores of different setups on train-

ing and validation data. In both figures, it can be seen LP+FT is the best-performing

setup. However, the performance of models with initial SSL and SL pretrained weights

are very close to each other.

Now let’s look at the models’ performances on unseen data. As SSL tries to learn

task-independent representations we expect it to perform better on the test other

partition. Table 7.4 shows the average and standard deviation of the F1-score over

different runs for each setup at the end of training. The first thing to notice is LP+FT
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Figure 7.2: Macro-average F1-score of ResNet-50 models with different training setups
(FS, LP, LP+FT, FT) and with different initial pretrained weights on ImageNet, by
supervised (SLI) and self-supervised learning (SSLI), on training data over five runs.
The solid line is the mean over different runs for the setup. The shaded region around
the lines is the standard deviation.
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Figure 7.3: Macro-average F1-score of ResNet-50 models with different training setups
(FS, LP, LP+FT, FT) and with different initial pretrained weights on ImageNet, by
supervised (SLI) and self-supervised learning (SSLI), on validation data over five runs.
The solid line is the mean over different runs for the setup. The shaded region around
the lines is the standard deviation.
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Figure 7.4: F1-score statistics of ResNet-18 models different training setups (FS, LP,
LP+FT, FT) and with different initial pretrained weights on ImageNet, by supervised
(SLI) and self-supervised learning (SSLI), on test partitions at the end of training
across classes

is performing much better than the other two setups across all classes. It shows the

importance of training the changed layer before fully training the whole model with a

new dataset when transfer learning. Performances of the model with initial SSL and

SL ImageNet pretrained weights are similar on all partitions considering standard

deviation. SSLI LP models have the smallest standard deviation for all classes across

runs showing the robustness of SSL-learned representations for different runs.

Figure 7.5 shows the mean macro average F1-score of models on test data over

different runs in the last five epochs of training. The left graph clearly shows the

superiority of LP+FT on test data with the same distribution as training data, while

the difference gets smaller on out-of-distribution test other data on the right. Be-

sides each setup individually performs better on the test same dataset than the test

other data. The results on test data show no advantage of self-supervised learned

representation over supervised learned representations on ImageNet.
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(a) (b)

Figure 7.5: Macro-average F1-score of ResNet-50 models with different training setups
(FS, LP, LP+FT, FT) and with different initial pretrained weights on ImageNet, by
supervised (SLI) and self-supervised learning (SSLI), on a) test same b) test other
data in the last 5 epochs over five runs. The solid line is the mean over different runs
for the setup. The shaded region around the lines is the standard deviation.

In the second part of the experiment, we train a self-supervised model on our Ben-

thicNet dataset and further fine-tune learned representations with our whole frame

depth 3 substrate-labeled dataset. We use MoCo v2 method for SSL on BenthicNet

with same hyperparatmeters for ImageNet training. As the dataset contains 4k res-

olution images, one of the bottlenecks of training a model is reading images from a

disk for inputting into the model. As we are resizing images to a smaller size for

training, we are first resizing all images to 512 in smaller dimensional saving them

to the disk, so that we can load them faster from the disk. We are using resources

from The Digital Research Alliance of Canada for our experiments that require a job

submission with required resources for the needed node. When training a model, it

needs to read all images through the network from its original location to the training

node’s memory which is very time-consuming. To address this issue we are caching

images to the local memory of the node in the first epoch of training so that the data

loading speed is faster for preceding epochs. We trained the model for 100 epochs

(same with ImageNet SSL pretrained model) and the loss graph during training is

given in Figure 7.6. The training took little more than 8 days with 4 NVIDIA Tesla

V100 (32 GB variant) GPUs.

When transfer learning from BenthicNet pretrained weights we used the same

https://alliancecan.ca/en
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Figure 7.6: InfoNCE Loss of MoCo v2 self-supervised method on BenthicNet

three setups as in the previous part: LP, LP+FT, and FT. We refer to models with

initial BenthicNet learned representations as SSLB. When training a model with

LP+FT we used a learning rate of 2e − 5 which enabled a smooth transition in the

training loss curve when unfreezing all layers halfway through training. We retrained

a model using transfer learning from ImageNet pretrained model with this learning

rate. This helps a model not to deteriorate learned representation when we start fine-

tuning after initial linear probe training. Figure 7.7 shows the mean and standard

deviation of the cross entropy loss over different runs for each setup during training.

It is clear from the figure that the transition from LP to FT for LP+FT is smooth for

both SSLI and SSLB for the chosen learning rate. Besides cross-entropy loss is very

similar for both models, with ImageNet and BenthicNet pretrained initial weights, in

LP setup during training. Solely looking at the loss curve, SSLI representations are

more useful for our classification task as the corresponding models have the smallest

loss.

The figures 7.8 and 7.9 show models’ performances on training and validation

data. The graphs support the superiority of LP+FT and learned representations

from ImageNet are working better for our classification task as this setup has a

higher F1-score than others considering standard deviation. SSLI LP has smoothest
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Figure 7.7: Weighted Cross-Entropy loss of ResNet-50 models with different training
setups (FS, LP, LP+FT, FT) and with different initial SSL pretrained weights on
ImageNet (SSLI) and BenthicNet (SSLB) on training data over five runs. The solid
line is the mean over different runs for the setup. The shaded region around the lines
is the standard deviation.
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Figure 7.8: Macro-average F1-score of ResNet-50 models with different training setups
(FS, LP, LP+FT, FT) and with different initial SSL pretrained weights on ImageNet
(SSLI) and BenthicNet (SSLB) on training data over five runs. The solid line is the
mean over different runs for the setup. The shaded region around the lines is the
standard deviation.

F1 curve in both training and validation partitions. Furthermore, SSLI is performing

better than SSLB for all three setups on training and validation data.

Figure 7.10 shows the performance of different setups on test partitions. SSLI

LP+FT is performing best in both partitions. SSLB LP+FT is performing better

than LP and FT setups on the test same partition, however, it performs similarly to

SSLI LP setup in the test other partition. The graph for the test other partition also

shows SSL learned representations from ImageNet is more useful without fine-tuning

as SSLI LP performs better than SSLB LP.

Figure 7.11 shows mean and standard deviation of F1-scores for different classes

at the end of training. SSLI LP+FT setup is performing best in both partitions in

all classes. It is achieving a mean F1-score of 0.78 and 0.73 on test same and other
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Figure 7.9: Macro-average F1-score of ResNet-50 models with different training setups
(FS, LP, LP+FT, FT) and with different initial SSL pretrained weights on ImageNet
(SSLI) and BenthicNet (SSLB) on validation data over five runs. The solid line is
the mean over different runs for the setup. The shaded region around the lines is the
standard deviation.
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(a) (b)

Figure 7.10: Macro-average F1-score of ResNet-50 models with different training
setups (FS, LP, LP+FT, FT) and with different initial SSL pretrained weights on
ImageNet (SSLI) and BenthicNet (SSLB) on a) test same b) test other data in the
last 5 epochs over five runs. The solid line is the mean over different runs for the
setup. The shaded region around the lines is the standard deviation.

partitions respectively on minority class ”Cobbles”. It is also achieving 0.98 and 0.96

on the test same and other partitions respectively on the majority class ”Sand/mud”.

SSLB LP+FT is achieving the second-best F1 score across all classes on the test same

data. SSLB FT setup is showing the lowest F1-scores in both test partitions across

all classes. Furthermore, SSLI models have smaller standard deviations than SSLB

models in all setups across all classes in both test partitions. This shows ImageNet

learned representations are more robust to different runs for our classification task.



50

Figure 7.11: F1-score statistics of ResNet-18 models different training setups (FS, LP,
LP+FT, FT) and with different initial SSL pretrained weights on ImageNet (SSLI)
and BenthicNet (SSLB) on test partitions at the end of training across classes



Chapter 8

Conclusion & Future Work

Benthic habitats span large area underwater. The adjacent images or frames in

the video can represent very similar benthic habitats causing spatial redundancy

in the images. The inclusion of the first image in the training partition and the

following image in the test partition can question the generalization of the model.

Considering this, it is crucial to partition the benthic dataset either randomly or

spatially according to the use case of the model. We found a gap in model performance

on different test partitions in our all experiments. In case the model is to be used

to label images from a geographical location that is trained with images from, it is

acceptable to partition the dataset randomly as we did with the test same partition.

However, if the user wants to use the model to classify images from the area which

is not used for training the model, the model’s generalization on random test data

does not infer the model can extrapolate on unseen data we want. In this scenario,

it is important to choose a test dataset spatially facilitating that no two images very

similar to each other are on the training and test partition.

The results of the experiment in Chapter 6 show that when the labeled data is few

to train a model from scratch the learned representations from ImageNet are useful.

It also showed the importance of training new layers in the network before fine-tuning

the whole network when using transfer learning.

Another finding in our work was getting similar performance for models when

transferring learning from ImageNet learned representations by supervised and self-

supervised learning. However, the models with initial ImageNet pre-trained weights

by SSL were more robust to different runs with different random seeds supporting the

advantage of using ImageNet SSL pretrained model for benthic image classification

for transfer learning from ImageNet.

Benthic images are different from ImageNet images in terms of lighting conditions

and clarity due to the water between the object and the camera. That is why we
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assumed the SSL model trained on the whole BenthicNet dataset and fine-tuned

for the labeled dataset should perform better than transfer learning from ImageNet.

However, the last experiment, Chapter 7, showed SSL learned representations on

ImageNet are more useful for our classification task than BenthicNet.

Our results also showed that models are performing better to classify sand/mud

than other classes (e.g., rock, cobbles) as sand/mud has more distinguishable shape

features from other classes than other classes do from each other. One way to make

low-performing classes more distinguishable from each other for the model could be

integrating camera resolution for each image into training so that model has more

information on physical element size which is the main differentiating factor among

classes. This hypothesis needs further exploration in future work.

Another forward step in this work would be creating a more complex task to ex-

plore the advantage of SSL-learned representations from BenthicNet. As the labeled

dataset has a hierarchical structure and we created a simplified task of classifying

substrate at a level depth of three, a more complex task can be hierarchical classifi-

cation on the whole dataset for all four label types: substrate, relief, bedform, and

biota. Then one can investigate the effect of different self-supervised methods on the

quality of learned representations.
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