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Abstract

The study of the light propagation in some complex media and its out-of-equilibrium dy-

namics is reported. Our research is based on the light-matter interaction hydrodynamic

model under the multiscale expansion framework. At the proper scale of our mathemati-

cal analysis, the optical Benney-Luke equation is obtained. Also, we have proposed and

demonstrated analytically, a novel and simpler variational approach to describe nonlinear

open systems. Our methodology has been extended to the polarization instability effect on

the beat length of propagating optical fields in a nonlinear birefringent Kerr medium. We

have described the generation and dynamics of shock waves, specifically in disordered col-

loids. Finally, a preliminary theory based on reaction-diffusion dynamical system theory

has been developed as a new goal for this project.
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Chapter 1

Introduction

This chapter introduces the main theme of the thesis. The state-of-the-art is reviewed.

Thesis motivations and objectives are presented.

1.1 Overview

The interest in nonlinear waves in open physical, chemical, and biological systems, has

been in the forefront of contemporary nonlinear science. A laser beam propagating in a

nonlinear media [1, 2, 3, 4, 5, 6, 7, 8, 9] produces a richness of physical phenomenons

due to the interplay between nonlinearity and dispersion which brings defocussing (self-

focusing) effects to be present [10, 11, 12].

Nonlocality, which is related to the direct interaction of physical objects that are not in

proximity, plays an important role in real experiments. Thus, it has shown that the state of

a system is strongly dependent on disorder-induced scattering [13]. This could be related

to nonlocality(σ), limiting the wave evolution and propagation length [14]. Therefore the

nonlocality effects on wave dynamics [15, 16] are still a subject of an intense research

interest [7, 17].

Let us begin with the study of a phenomenological model for a nonlinear Kerr media

where nonlocal effects are considered. The laser beam intensityI(x, z)propagating in the

media produces a changeΔnin the index of refractionn. This can be represented through

a phenomenological equation as

Δn(I)=±
∞

−∞

R(x−x)I(x,z)dx, (1.1)

1
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whereR(x)is the response function of the nonlocal medium. The sign±refers to the type

of nonlinearity, focusing or defocusing. Also, thexandzdenote transverse and propagation

coordinates, respectively.

From here, it is straightforward to see that the local case is obtained from the above

equation whenR(x)=δ(x). This means that the refractive index value at a given point is

solely determined by the light intensity at that very point.

Δn(I)=±
∞

−∞

δ(x−x)I(x,z)dx≡±I(x, z). (1.2)

Nonlocality can be modeled mathematically by increasing the width ofR(x). This

corresponds to the case when the light intensity in the vicinity of the pointxalso contributes

to the index change at that point. Notice that in this thesis we are not interested in the case

of highly nonlocal response[18, 19].

When the nonlocality is weak, i.e. when the response functionR(x)is narrow compared

to the extent of the beam, we can expandI(x,z)around the pointx=xto obtain a

partial differential equation (1.4) (a diffusion-like). This equation together with the NLSE

forms the following system that in the paraxial wave equation approximation describes the

propagation of a 1D beam propagating in a weakly nonlocal nonlinear defocusing medium

with a dissipative term

i
∂ψ

∂z
+

2

2

∂2ψ

∂x2
−θψ=−i

α

2
ψ, (1.3)

where the dimensionlesszandxare the spatial evolutionary variable and the transverse

coordinate, respectively. Also,ψ=A/
√
I0,Ais the complex electric field envelop,I0

is the peak intensity,θ=k0LnlΔnis a real function that denotes the nonlinear nonlocal

change of the refractive index depending on the intensityI=|ψ|2.k=k0n≡(ω/c)n

Lnl=(k0|n2|I0)
−1,n2(Δn=n2|A|

2)in the local Kerr coefficient andΔnis the refractive



3

index change of nonlinear origin. AlsoLd=kw
2
0,L=

√
LnlLdandw0is the gaussian

waist.α=ᾱL,̄αis the intensity loss rate [20, 21], =Lnl/L≡ Lnl/Ldis a small

quantity that deal with the weakly diffracting regime[22].

It is important to notice that the scalar NLSE is only valid if we assume in our physical

model the response of the material and the electric field are transverse and the polarization

is linear.

For example, in the reference system x, y, z, we assume that the wave vector is referred

to along the z-axis and so the polarization occurs in the plane x, y. Then, a mode excited

with its polarization in the x-direction would not couple to the mode with the orthogo-

nal y-polarization states. Conventional pulse-shaping technology involves modulating the

spectral amplitudes and phases of linearly polarized light pulses. In such methods, the

optical electric field is treated as a scalar field.

The above expression is complemented by the diffusion-like equation

−σ2
∂2θ

∂x2
+θ=|ψ|2, (1.4)

where the parameterσis a spatial scale (setting the diffusion length) that measures the

degree of nonlocality [22].

This system of equations characterizes the behavior of a beam when it propagates

through a spatially nonlocal defocusing nonlinear media, i.e., defocusing liquid solutions

exhibiting thermal nonlinearities [17] or nematic liquid crystals [23, 24].

This phenomenological model can be solved by means of either the Mandelung or

WKB transformations which permit casting the NLSE equation into a hydrodynamic for-

mulation (i.e., Euler’s equations) [14, 22], similarly to a classical fluid (i.e., undular bores,

shock waves) [5, 8].

In general, hydrodynamics describes the low-frequency, long-wavelength response of a
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system that is disturbed from equilibrium. These conditions are mimicked by the propaga-

tion of a laser beam in complex media where we rely on a nonlocal nonlinear Schr̈odinger

equation (NLSE) coupled through nonlocality with a diffusion-like expression [22, 25].

Specifically, in the case of the defocusing regime, the asymptotic behavior of the hydro-

dynamical model is analyzed using a version of the reductive perturbation theory, based on

a multiscale asymptotic expansion. This allows the authors to derive a dynamical regime

described by a Korteweg-de Vries equation (KdV) [5, 8, 25].

In [25] Horikis and Frantzeskakis reported an analogy between nonlocality in optics and

surface tension in weakly nonlinear shallow water waves. Thus, some similar structures

can appear in both media, i.e., X-, H-, or Y-shaped waves. These results suggest other

equivalent phenomena observed in water waves may also occur during light propagation.

In a weakly nonlocal defocusing nonlinear media, as in the shallow water case, when

the wave amplitude is assumed to be a small and slowly-varying modulation of the steady

state, and at proper scales of the asymptotic analysis – intermediate step of the multiscale

expansion – an optical version of the Benney-Luke equation (BLE) type is obtained [25,

26, 27].

In [25], the authors have proven how the different scenarios for solitary waves, specif-

ically their amplitude and speed, depend on the nonlocal parameterσthrough the optical

surface tension strengthγ[25]. The latter is a function of the degree of nonlocality, which

changes the sign of dispersion, similar to what surface tension does in the shallow water

wave problem. The study includes not only the case for strong nonlocality (orγ<0)but

also when weak nonlocality (orγ>0) is present. The solutions in the form of solitary

waves above and below the continuous wave (CW) background are shown.

Although a variational method is widely used to study the interaction between dark

solitons in weakly nonlocal medium, it has not been applied to the system of equations

above mentioned. The main focus is on the relative center mass position of two dark-soliton

solutions corresponding to the time variation of a relative distance parameterx0and to
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obtain the equation of motion for it by employing the Lagrangian approach [28, 29, 30, 31].

We propose a new Lagrange density such that its Euler-Lagrange equations are identical

to the hydrodynamic ones obtained from applying the Mandelung transformation in the

NLS-diffusion original system. It is based on the one pioneered by Infeld, in the context

for water waves, nonlinear equations [32] and also superconductivity [33].

In addition, it is worth noticing that conversely to the work from Infeld where the author

uses the Euler equations in classical fluids like water, in our proposed Lagrange density

we need to consider the quantum pressure term given its important contribution to the

boundaries. Also, this term allows, in our results, to get the optical analog to the surface

tension contribution in the dispersion term of the KdV [25].

Our interest is also extended to complex media and its out-of-equilibrium dynamics,

through nonlinear optics experiments and theoretical models which have enjoyed an intense

period of activity over the last years [11, 21] after the pioneering work of A. Ashkin in

Ref. [10], and other authors [11, 12, 34]. The general problem of beam propagation and

scattering in a turbid medium is important to fields such as biology and medical imaging

as a diagnostic tool [35, 36]. Specially due to the potential to acquire information non-

invasively through the sample’s optical properties, especially the generation and detection

of traveling waves.

Recent theoretical and experimental investigations have described the generation and

propagation of shock waves in non-local and disordered media in response to an incident

laser beam [14, 37, 38]. An important contribution to this subject has been made by the

authors in Ref. [39] where some experiments and their respective theory on optical ma-

nipulation of the local properties of dense, particulate-loaded, highly-scattering(opaque)

suspensions of dielectric nanoparticles in a liquid were introduced. The experiment, which

was done for the self-focusing case, has proven that multiple-scattered light can give rise

to concentration shock fronts propagating deep inside the opaque suspensions.

These particle density shock waves are primarily the result of the interplay between
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the two components of the applied radiation force, namely the scattering and the optical

gradient forces respectively. The first one represents the momentum transfer from the ex-

ternal radiation field to the nanoparticle by scattering and absorption, and is pointing along

the axis of the energy flux of the light beam, whereas the gradient force is directed along

the intensity gradient of the beam. A partial differential equation (PDE) is well known to

support shock-like waves which apply for both focusing and defocusing cases.

Finally, polarization instability in a medium arises when the nonlinear change of the

refractive index is comparable with the linear birefringence. This phenomenon manifests

when the nonlinear birefringence cancels completely the linear birefringence and the beat

length escalates to infinity. Physically, the beat length (Lef fB ) is the length at which the op-

tical power is transferred from one polarization to another. In a nonlinear medium, such as

the Kerr medium, theLef fB length becomes infinite at a critical input power for a propagat-

ing light that is polarized along the fast axis [20, 40, 41]. It then follows that a substantial

change in the output polarization state is observed when the input power (or its polarization

state) is slightly differing.

To optimize the operation of some photonic devices [42], extensive efforts have been

done theoretically and experimentally in order to control the polarization dynamics [43,

44, 45].

Interestingly, for propagating optical fields in a non-resonant Kerr nonlinear medium, a

biasing electric field induces birefringence even if the medium is optically isotropic [46].

In [47], the authors have studied the impact of applying a DC electric field (i.e.,Eext), to a

third-order nonlinear medium, on the evolution of propagating optical waves. They found

that the polarization evolution can be controlled by the appliedEextfield. As a matter of

fact, theEextfield turns the third-order nonlinearity into a second-order-like as if one deals

with an electro-optic-like effect.
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1.2 Thesis Motivations and Objectives

From the theoretical point of view, there are still several open problems concerning the

physics of optical fluid-like description (hydrodynamic model). One of them is to find a

different kind of solution for the Optical Benney-Luke equation with appropriate bound-

ary conditions in a nonlocal nonlinear defocusing media. This equation has been usually

neglected for its far-field limit expansion, the Korteweg-de Vries (KdV), or its 2D variant,

the Kadomtsev-Petviashvilli (KPI/KPII) equations due to the KdV (or KP) integrability

and solitonic solutions. We intend to study their analytical dependency in terms of optical

surface tension and nonlocality. The interplay between these two effects has not yet been

studied systematically. We would like to elucidate the behavior of a wide class of open

wave systems displaying OBL-type equations and the evolution of certain properties of

the system, which are valid in an intermediate propagation regime. Thus, we would pro-

vide important information that will help to detail the transition from the original system

of equations to the long wavelength limit where the KdV occurs. Furthermore, an open

problem is to demonstrate the evolution of the generalized NLSE model in the intermedi-

ate asymptotics regime that satisfies the reported homeomorphism or parallelism between

optics and shallow water waves.

Another goal is to propose and demonstrate analytically a novel and simpler variational

approach to study the asymptotic behavior of a continuous wave laser beam propagating

in a nonlinear nonlocal medium (i.e., a variational multiscale asymptotics mathematical

method) and its extension to (2+1)-dim.

The idea is to propose a new Lagrange density such that its Euler-Lagrange equations

are identical to the hydrodynamic ones obtained from applying the Mandelung transforma-

tion in the NLS-diffusion original system.

The study of the evolution of small-amplitude waves generated by the interaction of a

laser beam with nanoparticles dispersed in a liquid medium was proven experimentally but
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the theoretical explanation was not well developed. Here the goal is to derive a dynamical

system where a partial differential equation describes in the first approximation a wave

propagation in a form of a kink shock wave.

More theoretical research on the polarization beat length of propagating optical fields

in a nonlinear birefringent Kerr medium is investigated in the presence of an externally

applied DC electric field. Here, we have focused our attention on the possibility to control

when the polarization beat length becomes infinite by means of adjusting the externally

applied electric field.

1.3 Thesis Outline

This thesis is based on papers published publications by the author and others. Each chapter

is dedicated to one paper while the introduction to each and every chapter identifies and

summarizes the author’s original contribution.

In Chapter 2, a detailed theoretical treatment is developed, and a thorough analysis per-

formed for the Optical Benney-Luke equation (OBLE). The analytical solutions in the form

of weakly localized cnoidal waves (CnWs) are introduced. The study has been done in a

nonlocal nonlinear defocusing media. The OBLE solutions lead to periodic waves when ap-

propriated boundary conditions are taken into account. It is found that the wave frequency

and wavelengths depend on the nonlocality and the optical surface tension parameter. The

results are extended in Chapter 3 to obtain the exact solitary wave (SW) profiles, for the

light intensity and its phase chirp in terms of the optical surface tension, a function of the

degree of nonlocality. The solution dynamics have been demonstrated numerically. Our

results show that the OBLE satisfies the reported ”homeomorphism” between optics and

shallow-water waves and gives an insight into the nonlocal nonlinear Schrodinger equation

(NLSE) evolution in the intermediate asymptotics regime.

In Chapter 4, it is proposed the asymptotic variational multiscale approach which is
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based on a new Lagrange density such that its Euler-Lagrange equations are identical to

the hydrodynamic ones obtained from applying the Mandelung transformation in the NLSE

system of equations.

The results of Chapter 4 are generalized to higher dimensions in Chapter 5. Here, the

Kadomtsev-Petviashvili (KP) type equation is obtained. For the first time, to the best of

our knowledge, the variational multiscale asymptotics method is used to describe nonlinear

open systems.

In Chapter 6, we consider the evolution of small-amplitude waves generated by the

interaction of a laser beam with nanoparticles dispersed in a liquid medium. Under the

asymptotic multiscale expansion framework and assuming a low concentration of beads,

we have derived a dynamical system where a partial differential equation describes in the

first approximation a wave propagation in a form of a kink shock wave. This front forms a

depletion region with a vanishing concentration of beads which consequently allows light

propagation through the medium. The possible presence of absorption in the system could

be shown through the complex expressions for the phase and group velocities in the case

of linear propagation of waves.

In Chapter 7, the polarization beat length of propagating optical fields in a nonlinear

birefringent Kerr medium is investigated in the presence of an externally applied DC elec-

tric field. We show that the critical power, at which the effective polarization beat length

becomes infinite, can be controlled by adjusting the externally applied electric field. The

principle of operation is based on modifying the polarization instability by electronically

adjusting the effective birefringence through an external electrical bias. The presented ana-

lytical expressions describe the beat length and the polarization instability as a function of

the applied electric field for an arbitrary optical input state.

Chapter 8 presents a brief discussion and concluding remarks.



Chapter 2

Cnoidal wave solutions for the Optical Benney-Luke equation

This chapter’s work is published in the paper entitled ”Cnoidal wave solutions for the Op-

tical Benney-Luke equation”, Journal of Optics, vol. 22, pp. 105401, 2020. The authors

are Artorix de la Cruz and Michael Cada. The paper proposes by means of an Optical

Benney-Luke equation (OBLE), with appropriate boundary conditions, a nonlinear peri-

odic wave solution. The corresponding analytical expressions and numerical plots of the

cnoidal waves in the phase plane are presented using the Sagdeev pseudo-potential ap-

proach. Our results are written in terms of the media nonlocality through the optical surface

tension parameter.

My contribution to this work includes generating the fundamental ideas, performing the

analytical description and the necessary analysis, and carrying out numerical simulations.

I also wrote the first version of the paper.

2.1 Introduction

The study of a continuous wave (CW) laser beam in a nonlocal nonlinear defocusing media

has gained importance due to its application in understanding light propagating in liquid

solutions exhibiting thermal nonlinearities [14, 15, 17, 21, 37, 48, 49, 50, 51, 52] or nematic

liquid crystals [8, 23, 24, 53, 54]. Mathematically, a generalized nonlinear Schr̈odinger

equation (NLSE) coupled with a diffusion-like expression govern this behavior.

In similitude with the shallow water case, when the wave amplitude is assumed to

be a small and slowly-varying modulation of the steady-state, and at proper scales of the

asymptotic analysis – intermediate step of the multiscale expansion – an optical version

10
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of the Benney-Luke equation (BLE) type is obtained [26, 25, 27]. Furthermore, Horikis

and Frantzeskakis reported an analogy between nonlocality in optics and surface tension in

weakly nonlinear shallow water waves [25].

The Benney-Luke equation has been intensely studied in different scenarios such as

mathematical analysis and hydrodynamic physics [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65].

In optics has been usually neglected for its far-field limit expansion, the Korteweg-de Vries

(KdV), or its 2D variant, the Kadomtsev-Petviashvilli (KPI/KPII) equations [25]. This is

due to the KdV (or KP) integrability and solitonic solutions.

The present paper aims at a further analytical and numerical study of light propagating

in a weakly absorbing nonlocal nonlinear media. The main distinctions of the situation

considered here compared to other relevant researches are as follows:

(i) The analytical solutions for the Optical Benney-Luke equation (OBLE) in the form

of weakly localized cnoidal waves (CnWs) are introduced. We show that by solving the

OBLE, the system of equations (NLSE-diffusion) possess – in the intermediate asymptotics

– cnoidal wave solutions for the intensity profile. Although the OBLE admits waves in two

opposing directions, we restrict its applicability to uni-directional wave motion. This 1D

case illustrates basic physics with the least complexity.

(ii) We prove how the different scenarios for CnWs, specifically their amplitude and

speed, depend on the nonlocal parameterσthrough the optical surface tension strength

γ[25]. The latter is a function of the degree of nonlocality, which changes the sign of

dispersion, similar to what surface tension does in the shallow water wave problem. Our

study specifically includes the case for strong nonlocality (orγ<0) but it can be trivially

generalized also when we are in the presence of weak nonlocality (orγ>0).
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2.2 Basic Model and Derivation of Optical Benney-Luke equation

For the sake of clarity and completeness, we briefly review the mathematical model for

the OBLE derivation following the same method published in [25]. The start point in the

analysis is the light propagation in a weakly nonlocal nonlinear defocusing media described

by a normalized NLSE (8.1) [54] and diffusion-like (2.1b) equations [21, 25],

i
∂ψ

∂z
+
1

2

∂2ψ

∂x2
−nψ=0, (2.1a)

−σ2
∂2n

∂x2
+n=|ψ|2. (2.1b)

Thezis the spatial evolutionary variable andxis a transverse coordinate.ψis the

complex electric field envelop andσis a spatial scale (setting the diffusion length) that

measures the degree of nonlocality. The real functionndenotes the nonlinear nonlocal

change of the refractive index depending on the intensityI=|ψ|2and obeys the diffusion-

like equation (2.1b).

To derive the full nonlinear version of the optical BL equation, the wave amplitude is

assumed to be a small and slowly-varying modulation of the steady state. The solutions of

(2.1) can be proposed in the form

ψ=ψ0
√
ρexp(−i|ψ0|

2z+i1/2Φ), (2.2)

together with the asymptotic expansionsρ=1+ ∞
j=1

jρjandn=|ψ0|
2+ ∞

j=1
jnj.

Here is a formal parameter (0< 1), while the phaseΦand amplitudesρjandnjare

unknown real functions of the slow variablesX= 1/2xandZ= 1/2z, (for more details

on the model see [25]).
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Substituting the expression (2.2) into (2.1), the following results are valid for the leading-

order equation atO(),

n1=|ψ0|
2ρ1, n1=−

∂Φ

∂Z
≡−−1/2∂Φ

∂z
. (2.3)

A scaled Benney-Luke equation is obtained as

∂2Φ

∂Z2
−C2

∂2Φ

∂X2
+

γ

4

∂4Φ

∂X4
+
1

2

∂

∂Z

∂Φ

∂X

2

+
∂

∂X

∂Φ

∂Z

∂Φ

∂X
=0,(2.4)

for an approximation up toO(2).

Our goal is to solve Eq. (8.6) which is a partial differential equation (PDE) in terms of

phaseΦ. This PDE has travelling wave solutions. The phase behaves like a wave as the

laser propagates in the media.

Notice that when =0, the above expression has the form of a well-known wave

equation. Then, it is possible to identify the wave velocity asC2=|ψ0|
2. The effective

surface tension is given byγ=1−4σ2|ψ0|
2.

The equation (8.6) has some similarity with a model of small amplitude long water

waves with finite depth originally derived by Benney and Luke [26] as a description for

bidirectional shallow water waves.

2.3 Cnoidal wave solutions

In this section the effects of nonlocality(σ)on the propagation of cnoidal waves are inves-

tigated. Let us assume travelling wave in the formΦ(X, Z)=V(X−Z)≡V(η), and

substituting it into Equation (8.6), it yields

(1−C2)
d2V

dη2
+
γ

4

d4V

dη4
−
3

2

d

dη

dV

dη

2

=0. (2.5)
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By integrating once and changing variable asϕ=dV /dη, we get the following expres-

sion

(1−C2)ϕ+
γ

4

d2ϕ

dη2
−
3

2
ϕ2=k0, (2.6)

wherek0is an integration constant to be determined later.

Now, multiplying bydϕ/dη,

(1−C2)ϕ
dϕ

dη
+
γ

4

d2ϕ

dη2
dϕ

dη
−
3

2
ϕ2
dϕ

dη
=k0

dϕ

dη
. (2.7)

Finally, we multiply the above equation byϕand integrate once more to get

−
γ

4

dϕ

dη

2

=−ϕ3+Hϕ2+
2k0
ϕ+
2
k1, (2.8)

where we have defined

H=(1−C2)/. (2.9)

andk1is another integration constant to be determined as well. In Eq. (2.8) when the two

constantsk0andk1become zero, it is possible to obtain solitary wave solutions. For the

case whenk0=0, andk1=0, spatially periodic traveling wave solutions are derived. To

compute them, let us first rewrite Eq. (2.8) as a energy conservation law as follows:

1

2

∂ϕ

∂η

2

+V(ϕ)=0, (2.10)

where the Sagdeev-like potentialV(ϕ)is given by

V(ϕ)=κϕ3−κHϕ2−
2κ
k0ϕ−

2κ
k1, (2.11)
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whereκ=2/(−γ).

On can compute the integration constantk0from the differential equation (2.6) using

the following initial conditions forϕ(η)asϕ(0) =ϕ0anddϕ(0)/dη=0. Then,

k0= ϕ0 H−
3

2
ϕ0 . (2.12)

Furthermore, the integration constantk1can be determined by taking into account the

above initial conditions in Eq. (2.11) as well. Therefore,

k1=
2
ϕ20(4ϕ0−3H). (2.13)

In Fig. 2.1 we have depicted the variation in the Sagdeev potentialV(ϕ)with respect to

10 5 5 10 15

40

20

20

40

VHL

Figure 2.1: Variation in Sagdeev potentialV(ϕ)with respect to values ofϕusing
Eq. (2.11). The parameters used to obtain the figure areσ=5.0, =0.05,ϕ0=5.0
andC=0.70.

ϕusing Eq. (2.11). The parameters chosen are representative of the nonlocal nonlinear

defocusing media found in a thermal one. The solid (the dashed) curve demonstrates the
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Sagdeev potential corresponding to the cnoidal wave (solitary wave).

In the case of a cnoidal wave (i.e.,k0=0andk1=0), the three real zeros ofV(ϕ)are

ϕ0,ϕ1, andϕ2. Furthermore, this potential does not become zero atϕ=0. Accordingly,

the potential structure is repeated and the distance between repetitions of the wave shape

is equal to one wavelength. On the other hand, in the case of a soliton (i.e.,k0=0and

k1=0), the potentialV(ϕ)becomes zero atϕ=0.

Now, let us substitute Eqs. (2.12) and (2.13) in Eq. (2.10). Then,

∂ϕ

∂η

2

= −2κV(ϕ), (2.14)

where

V=ϕ3−Hϕ2−2ϕ0H−
3

2
ϕ0 ϕ−ϕ

2
0(4ϕ0−3H), (2.15)

The above expression (2.15) has the form of a third-degree polynomial equation. Then,

by using the well-known cubic formula and after some algebraic manipulations, the factor-

ized expression is

∂ϕ

∂η

2

=κ(ϕ0−ϕ)(ϕ−ϕ1)(ϕ−ϕ2), (2.16)

where

ϕ1,2=
(H−ϕ0)

2
±
1

2
[(Ψ1−ϕ0)(ϕ0−Ψ2)]

1/2, (2.17)

and

Ψ1,2=
H

3
±
2

3
H2+6k0/. (2.18)
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The last relations indicate that the inequalityΨ2≤ϕ0≤Ψ1,orΨ1≤ϕ0≤Ψ2, should

be satisfied. Also,ϕmust lie between the two-zerosϕ0andϕ1which corresponds to the

higher and lowe values of the wave amplitude, respectively. Their difference is the total

dimensionless wave height

h=ϕ0−ϕ1. (2.19)

The periodic wave solution of Eq. (2.10) in original coordinates yields

ϕ=ϕ1+hCn
2[a(x−z),m], (2.20)

where

a =
1

2
κ(ϕ0−ϕ2), (2.21)

m2 =
ϕ0−ϕ1
ϕ0−ϕ2

, (2.22)

andCn(u, k)is a Jacobian elliptic function with argumentuand elliptic modulusk(0≤

k≤1) =
√
m. Physically, the elliptic parameterm(the modulus) may be viewed as a fair

indicator of the nonlinearity with the linear limit beingm→ 0and the extreme nonlinear

limit beingm→ 1. The conditions for the existence of a cnoidal solution (2.20) require

thatϕ0>ϕ1≥ϕ2andϕ1≤ϕ≤ϕ0and therefore the dimensionless wavelengthλCnof a

cnoidal wave is given by

λCn=4
m

κh
K(m), (2.23)

whereK(m)is the standard symbol for the complete elliptic integral of the first kind. The
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wave speed is found by addingϕ1,ϕ2andϕ3from Eqs. (2.10) and (2.16):

C2=1+
2

γ
(ϕ0+ϕ1+ϕ2). (2.24)

In Fig. 2.2 we have plotted the phase plane using Eqs. (2.10)-(2.16). From the numerical

results displayed one can note that the phase curve is repeated on the same path and one

complete cycle corresponds to a wavelength in the physical space. Therefore, the closed

curve in the phase plane implies that the trajectory is a periodic orbit.

10 5 5 10 15 20

10

5

5

10

dêd

Figure 2.2: Phase curves using Eqs. (2.10) and (2.16), withσ=5.0,=0.05,ϕ0=5.0
andC=0.70.

2.4 Limit solution: From Cnoidal to Soliton

Now, to describe the soliton solution as a limit case for (2.20), we assumem→1andk0=

k1=0, which can be realized atϕ1=ϕ2=0. Therefore,h=ϕ0anda=
√
κϕ0/2≡

1/W, andCn(·)→sech(·)[66], then Eq. (2.20) becomes
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Figure 2.3: Evolution of the cnoidal waves in the case of strong nonlocality. The parameters
used to obtain the figure areσ=5.0,=0.05,ϕ0=5.0andC=0.70.

ϕ(x, z)=ϕ0sech
2[(x−z)/W]. (2.25)

whereϕ0andW are the amplitude and the width of the soliton wave, respectively.

2.5 Final general solution

Until now we have obtained the solutions for the OBLE Eq. (8.6). In this section, our

goal is to finally find the solution of the original problem given by the system (2.1). If

we recall thatϕ=dV /dη, then the integration ofϕin (2.20) yields -expressed in original
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Figure 2.4: Evolution of the solitary waves in the case of strong nonlocalityσ=5.0(weak
optical surface tensionγ<0),ϕ0=5.0,C=0.70and =0.05. In both panels the blue
(black) solid lines represent the analytical (numerical) wavefunction’s modulusψ(x, z).
The panel (a) shows|ψ(x=0,z=0)|. The panel (b) is for|ψ(x=30,z= 100)|.

coordinates-,

Φ(x, z)=
bh

ac
+ϕ1x+h 1−

1

m
(x−z), (2.26)

where

b≡ E[am[a(x−z),m],m]Cn2[a(x−z),m]+
1

m
−1,

c≡ dn [a(x−z),m]1−mSn2[a(x−z),m], (2.27)
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andam(u, k)is a Jacobi amplitude function. Also theSn(u, k)anddn(u, k)are the Jaco-

bian elliptic functions whileE(u, k)is the Elliptic integral of the second kind [66].

Transforming back using Eqs. (2.2)- (2.3) leads to the following approximate [up to

orderO()] solution for the macroscopic wavefunctionψ∼ψ0(ρ0+ ρ1)
1/2andn=

n0+ n1as

ψ = ψ0 1−
1/2

|ψ0|2
∂Φ

∂z
exp(−i|ψ0|

2z+i1/2Φ), (2.28)

n = |ψ0|
2− 1/2∂Φ

∂z
, (2.29)

where∂Φ/∂zcan be obtained readily from (2.26). These results can be seen in Fig. 2.3

where we have plotted the profile of the cnoidal wave|ψ|versusxandzusing Eq. 4.17 .

Finally, the analytical results presented above have been confirmed by numerical simu-

lation with the use of the appropriated scaling for the original system (2.1) and experimen-

tal values on nonlocal spatial media [21] . This task was done with the help of a split-step

Fourier method [67, 68]. For the initial conditions we used corresponding analytical forms

given by (2.26).

By taking into consideration strong nonlocal media, Fig. 2.4 shows snapshots of the

evolution of|ψ|versusxin two different values of dimensionlessz. Whenx=0atz=0

in Fig. 2.4a. The 2.4b is forx=30atz=100. In general, the numerically obtained

cnoidal wave profiles coincide, to a good accuracy, with the analytically determined ones.

The relative maximum error in our numerical computations to estimate the solitary waves’

minimum or maximum is relatively small with values around 2.7%.

2.6 Conclusion

The analytical solutions for the Optical Benney-Luke equation (OBLE) in the form of

weakly localized cnoidal waves (CnWs) are introduced. The study has been done in a
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nonlocal nonlinear defocusing media. The OBLE solutions lead to periodic waves when

appropriated boundary conditions are taken into account. It is found that the wave fre-

quency and wavelengths depend on the nonlocality and the optical surface tension param-

eter. The new results are of importance both for the mathematical theory of the OBLE

waves, and also for their physical significance since they shine light on the intermediate

asymptotic scenario for the NLSE. The results of the paper are, to our knowledge, original

and they could be of significant interest, in particular in the context of research on optical

spatial waves in liquid crystals.
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Chapter 3

Optical Benney-Luke equation

This chapter’s work is published in the paper entitled ”Optical Benney-Luke equation”, An-

alytical and Numerical Methods in Differential Equations. 100th birthday of the prominent

Russian mathematician and Academician Nikolai Nikolaevich Yanenko. Conference Pro-

ceedings: http://math.sut.ac.th/conference (July 2021). The authors are T. Diaz-Chang, A.

de la Cruz, Ch. Liang, J. Pistora and M. Cada. The paper analyzes, within the framework

of an Optical Benney-Luke equation (OBLE), the light propagation in a nonlocal nonlinear

defocusing media. The exact solitary wave (SW) profiles, for the light intensity and its

phase chirp, have been obtained analytically in terms of the optical surface tension, which

depends on the degree of nonlocality. The solutions dynamics have been demonstrated

numerically. Our results show that the OBLE satisfies the reported ”homeomorphism”

between optics and shallow-water waves and gives an insight into the nonlocal nonlinear

Schrodinger equation (NLSE) evolution in the intermediate asymptotics regime.

My contribution to this work includes generating the fundamental ideas, performing the

analytical description and the necessary analysis, and carrying out numerical simulations.

I also wrote the first version of the paper.

3.1 Theory

The starting point in the analysis is the light propagation in a weakly nonlocal nonlinear

defocusing medium described by [21] normalized NLSE with a dissipative term and a

23
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diffusion-like equation for the response of the nonlocal medium

i
∂Ψ

∂z
+

2

2

∂2Ψ

∂x2
−ΘΨ = 0 and −σ2∇2Θ+Θ=|Ψ|2, (3.1)

Thezandxare the spatial evolutionary variable and the transverse coordinates, respec-

tively.Ψis the complex electric field envelop peak intensity,Θis a real function that

denotes the nonlinear nonlocal change of the refractive index depending on the intensity.

The 1is a small quantity that deal with the weakly diffracting regime. The parameter

σis a spatial scale (setting the diffusion length) that measures the degree of nonlocality.

3.2 Our results

The solutions can be proposed in the formψ=ψ0
√
ρexp(−i|ψ0|

2z+i1/2Φ). A scaled

Benney-Luke equation [25] is obtained as

∂2Φ

∂Z2
−C2

∂2Φ

∂X2
+

σ

4

∂4Φ

∂X4
+
1

2

∂

∂Z

∂Φ

∂X

2

+
∂

∂X

∂Φ

∂Z

∂Φ

∂X
=0, (3.2)

Let us propose traveling wave solutions in the formΦ(X, Z)=V(X−Z)≡ V(η).

Integrating once and changing the variable asϕ=dV /dη, we obtain the following relation

Integrating (8.6) one obtains the phaseΦassociated with this solution, which in terms

of the original (dimensionless) coordinates,xandzreads:

Φ(x, z)=
−γH

tanh
1

W
x−vgz , (3.3)

wherevg= −(H)/γandW =−(γ/H) −H/γ, H=(1−C2)/.

As a function of the original (dimensionless)zandx, one may write down an approx-

imate [up to orderO()] solution for the macroscopic wavefunctionψ∼ψ0(ρ0+ ρ1)
1/2
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andn=n0+ n1as follows:

ψ=ψ0 1−
1/2

|ψ0|2
∂Φ

∂z
exp(−i|ψ0|

2z+i1/2Φ),andn=|ψ0|
2− 1/2∂Φ

∂z
,(3.4)

3.3 Conclusion

In conclusion, we have explored theoretically and numerically the light propagation in a

nonlocal nonlinear defocusing media through the Optical Benney-Luke equation. We have

proven that solutions of this equation exhibit sech-type solitary waves. We also discussed

the regimes in which the form of the solitary waves can be quantitatively described depend-

ing on the optical surface tension. The insights gained enabled us to interpret our findings

in terms of the nonlocality of the media. The new results are of importance both for the

mathematical theory of the OBLE solitary waves, and also for their physical significance

since they shine light on the intermediate asymptotic scenario for the NLSE.
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Chapter 4

Asymptotic variational approach to study light propagation in a

nonlocal nonlinear medium

This chapter’s work is published in the paper entitled ”Asymptotic variational approach to

study light propagation in a nonlocal nonlinear medium”, Results in Physics (27), 104536

(2021). The authors are Artorix de la Cruz, Michael Cada, Jaromir Pistora and Tamara

Diaz-Chang.

We propose and demonstrate analytically, within the framework of a hydrodynamic

model, a novel and simpler variational approach to study the asymptotic behavior of a

continuous wave (cw) laser beam propagating in a nonlinear nonlocal medium.

My contribution to this work includes generating the fundamental ideas, performing the

analytical description and the necessary analysis, and carrying out numerical simulations.

I also wrote the first version of the paper.

4.1 Theory

The starting point in the analysis is the light propagation in a weakly nonlocal nonlinear

defocusing medium described by normalized NLSE

iψz+
1

2
ψx,x−ϕψ=0, (4.1)

where the dimensionlesszandxare the spatial evolutionary variable and the transverse

coordinates, respectively. Also,ψis the complex electric field envelop,ϕis a real function

26
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that denotes the nonlinear nonlocal change of the refractive index depending on the inten-

sityI=|ψ|2. Finally0< 1is a small quantity that deal with the weakly diffracting

regime (see [25] for more details). Other examples of light propagating in different media

are [69, 70, 71, 72, 73, 74, 75, 76].

The above expression is coupled to a diffusion-like equation for the response of the

nonlocal medium

−σ2ϕx,x+ϕ=|ψ|
2, (4.2)

where the parameterσis a spatial scale (setting the diffusion length) that measures the

degree of nonlocality.

4.2 Proposed mathematical framework

From now on we proceed to develop our method. To start, we consider small ampli-

tude slowly varying modulations of the steady state given by a continuous waveψ=

ψ0exp(−i|ψ0|
2z), whereψ0is an arbitrary complex constant,|ψ0|

2=1and the constant

ϕ=|ψ0|
2.

Applying the Mandelung transformationψ(z, x)=ρ1/2(z, x)exp[ih(z, x)]and re-

taining leading orders in, it is possible to obtain the following equations

ρz+(ρhx)x=0, (4.3a)

hz+
1

2
h2x+

1

2
ρ−1/2ρ1/2x,x+ϕ=0, (4.3b)

−σ2ϕx,x+ϕ=ρ, (4.3c)
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The above system of equations can be derived from the appropriate Lagrangian density

L = ρ
h2x
2
+hz+ϕ−1+

1

2
(ρ1/2x )

2

−
1

2
ϕ2+(σϕx)

2−1. (4.4)

Euler-Lagrange variation with respect tohyields (4.3a) whereas theρandϕvariations

yield (4.3b) and (4.3c), respectively.

To discuss the wave envelop dynamics in this long-wavelength limit due to weak non-

linear and weak dispersive effects, we introduce the stretched variables

ξ= 1/2(x−z) and τ= 3/2z,

whereξallows us to study the system on different, slowly, moving frames and byτ, longer

propagation distancez. Also, is a measure of the deviation from the backgroundψ0.

Using the perturbation expansions

ρ(ξ, τ)=ρ0+
∞

j=1

jρ(j)(ξ, τ), (4.5a)

ϕ(ξ, τ)=ϕ0+
∞

j=1

jϕ(j)(ξ, τ), (4.5b)

h(ξ, τ)=

∞

j=0

j+1/2h(j+1)(ξ, τ). (4.5c)

whereρ0=1,ϕ0=|ψ0|
2.

Therefore we can expand the Lagrangian density for small amplitudes following the

method in [32, 33].

L= L(1)+ 2L(2)+ 3L(3)+O(4). (4.6)
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For:

L(1)=−h
(1)
ξ ,

from where no relevant information is obtained.

For2:

L(2)=
1

2
h
(1)2

ξ −2ρ
(1)h

(1)
ξ +ρ

(1)ϕ(1)+h(1)τ −h
(2)
ξ −
1

2
ϕ(1)

2

(4.7)

from where we have obtained the following expression as Euler-Lagrange equations

δρ(1): h
(1)
ξ =ϕ

(1), (4.8a)

δϕ(1): ρ(1)=ϕ(1), (4.8b)

δh(1): ρ(1)=h
(1)
ξ , (4.8c)

and the relation

h
(2)
ξ =−ρ

(1)h
(1)
ξ . (4.9)

The 3final Lagrangian is obtained with help of (4.8) and (4.9) as

L(3)=
1

2
h
(1)3

ξ −ρ(2)h
(1)
ξ +2h

(1)
τ h

(1)
ξ +
γ

8
h
(1)2

ξξ +h
(2)
τ (4.10)

providing the condition

h(2)τ =−ρ
(2)h

(1)
ξ . (4.11)

whereγ=(1−4σ2)is the optical analogue to surface tension [25]. Second-approximation

termsh(2)andρ(2)could be obtained and studied [77] using the expressions (4.9)-(4.11).

Assumingu=hx, the preceding equation yields, as its Euler-Lagrange equation, a
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KdV type [25, 78]

uτ+
3

2
uuξ−

γ

8
uξξξ=0. (4.12)

The solution of (6.24) is given by

ρ(ξ, τ)≡u=Nsech2
N

2γ
ξ−
N

4
τ . (4.13)

whereNis the soliton amplitude. In original coordinates

u(z, x)=Nsech2
1

4

N

γ
x− 1+

N

8
z , (4.14)

andh(z, x)can be obtained readily from (4.8c),

h=−
4γ N

γ
tanh

1

4

N

γ
x− 1+

N

8
z . (4.15)

In the original (dimensionless)xandz, one may write down an approximate [up to

orderO()] solution for the macroscopic wavefunctionψ

ψ = ψ0
√
ρ0+ ρ1 exp−i|ψ0|

2z+ih(z, x), (4.16)

ϕ = |ψ0|
2+ ϕ1, (4.17)

whereϕ1is written as (4.8b) and (4.14).
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4.3 Conclusions

We have explored theoretically light propagation in a nonlocal nonlinear defocusing media

through a proposed alternative simpler method, the asymptotic variational multiscale ap-

proach. The obtained KdV equation is similar to the one derived using reductive multiscale

technique. Our results advance the understanding of nonlinear phenomena.

4.4 Acknowledgments

Artorix de la Cruz thanks the financial support from Killam Trust Predoctoral and Nova

Scotia Research scholarships. This work was supported by NSERC of Canada and by

the IT4Innovations National Supercomputing Center - Path to exascale project (EF16-

013/0001791).



Chapter 5

(2+1)-dim Asymptotic variational theory for light propagating in a

nonlocal nonlinear dissipative medium

This chapter’s work is published in the paper entitled ”(2+1)-dim Asymptotic variational

theory for light propagating in a nonlocal nonlinear dissipative medium”, Analytical and

Numerical Methods in Differential Equations. 100th birthday of the prominent Russian

mathematician and Academician Nikolai Nikolaevich Yanenko. Conference Proceedings:

http://math.sut.ac.th/conference (July 2021). The authors are A.de la Cruz, T. Diaz-Chang,

Ch. Liang, J. Pistora and M. Cada.

We propose and demonstrate analytically, within the framework of a hydrodynamic

model, a novel and simpler variational approach to study the asymptotic behavior of a

continuous wave (cw) laser beam propagating in a weakly absorbing defocusing nonlinear

nonlocal media. The Kadomtsev-Petviashvili (KP) type equation is obtained. For the first

time, to the best of our knowledge, the variational multiscale asymptotics method is used

to describe nonlinear open systems.

My contribution to this work includes generating the fundamental ideas, performing the

analytical description and the necessary analysis, and carrying out numerical simulations.

I also wrote the first version of the paper.

5.1 Introduction

The starting point in the analysis is the light propagation in a weakly nonlocal nonlinear

defocusing medium described by [22] normalized NLSE with a dissipative term and a

32
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diffusion-like equation for the response of the nonlocal medium

i
∂Ψ

∂z
+

2

2
∇2Ψ−ΘΨ =−i

α

2
Ψ and −σ2∇2Θ+Θ=|Ψ|2, (5.1)

where∇2=∂2x+∂
2
y. Thezandr=(x, y)are the spatial evolutionary variable and the

transverse coordinates, respectively.Ψis the complex electric field envelop peak intensity,

Θis a real function that denotes the nonlinear nonlocal change of the refractive index

depending on the intensity.αis the intensity loss rate and 1is a small quantity that deal

with the weakly diffracting regime. The parameterσis a spatial scale (setting the diffusion

length) that measures the degree of nonlocality. A hydrodynamic model with the help of

the Mandelung transformationΨ(z,r)=ρ1/2(z,r)exp[ih(z,r)]. Both functionsΨand

Θare assumed to be non-zero at the boundaries (infinities). UsingΨ(z,r)=ψb(z)ψ(z,r)

andΘ(z,r)=θb(z)ϕ(z,r)in the above system of equations, the background equations

ψb(z)andθb(z)are to be determined as well.

5.2 Proposed theory and results

We propose that above system of equations can be derived from the appropriate Lagrangian

density

L=ρ
(∇h)2

2
+
∂h

∂z
+ϕ−1−

1

2
ϕ2+(σ∇ϕ)2−1+

∇
√
ρ
2

2
. (5.2)

By means of the stretched variablesξ= 1/2(x−z),η= y ,τ= 3/2z, it is possible to

write the Lagrangian as

L= L(1)+ 2L(2)+ 3L(3)+O(4). (5.3)
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Introducing the variable transformationsτ→ −(8γ)τ,η→ ( 3|γ|/2)ηandu=

−(γ/2)U, we arrive to a KP equation [25]

∂ξ Uτ+6U
2
ξ+Uξξξ+3ς

2Uηη =0. (5.4)

whereς2=−sgnγ.

5.3 Conclusion

We have explored theoretically light propagation in a nonlocal nonlinear defocusing media

through a proposed alternative simpler method, the asymptotic variational multiscale ap-

proach. The obtained Kadomtsev-Petviashvili equation is similar to the one derived using

reductive multiscale technique.



Chapter 6

Small-Amplitude front due to laser radiation force in opaque colloid

media

This chapter’s work is published in the paper entitled ”Small-Amplitude front due to laser

radiation force in opaque colloid media”, Physical Review A 96, 033850 (2017). I am the

sole author.

We consider the evolution of small-amplitude waves generated by the interaction of a

laser beam with nanoparticles dispersed in a liquid medium. Under the asymptotic multi-

scale expansion framework and assuming a low concentration of beads, we have derived a

dynamical system where a partial differential equation describes in the first approximation

a wave propagation in a form of a kink shock wave. This front forms a depletion region

with vanishing concentration of beads which consequently allows the light propagation

through the medium. The possible presence of absorption in the system could be shown

through the complex expressions for the phase and group velocities in the case of a linear

propagation of waves.

My contribution to this work includes generating the fundamental ideas, performing the

analytical description and the necessary analysis, and carrying out numerical simulations.

I also wrote the paper.

6.1 Introduction

The study of complex media and its out-of-equilibrium dynamics, through nonlinear optics

experiments and theoretical models, has enjoyed an intense period of activity over the last

years [21, 79, 80] after the pioneering work of A. Ashkin in Ref. [10], and other authors [11,
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12, 34]. The general problem of a beam propagation and scattering in a turbid medium is

important to fields such as biology and medical imaging as a diagnostic tool [35, 36].

Specially due to the potential to acquire information non-invasively through the sample’s

optical properties, especially the generation and detection of travelling waves.

Recent theoretical and experimental investigations have described the generation and

propagation of shock waves in non-local and disorded media in response to an incident laser

beam [14, 37, 38]. An important contribution to this subject has been made by the authors

in Ref. [39] where some experiments and their respective theory on optical manipulation

of the local properties of dense, particulate-loaded, highly-scattering(opaque) suspensions

of dielectric nanoparticles in a liquid were introduced. The study, which was done for the

self-focusing case, has proven that multiple-scattered light can give rise to concentration

shock fronts propagating deep inside the opaque suspensions.

These particle densityρshock waves are primarily the result of the interplay between

the two components of the applied radiation force, namely the scattering and the optical

gradient forces respectively. The first one represents the momentum transfer from the ex-

ternal radiation field to the nanoparticle by scattering and absorption, and is pointing along

the axis of the energy flux of the light beam, whereas the gradient force is directed along

the intensity gradient of the beam. To characterize this kind of behavior observed experi-

mentally, a mathematical description was developed, resulting in a nonlinear Burger’s-type

equation. This kind of partial differential equation(PDE) is well known to support shock-

like waves which applies for both focusing and defocusing cases.

Some research groups [81, 82, 83] have proposed a new class of synthetic colloidal sus-

pensions capable of exhibiting negative polarizabilities (defocusing case). They obtained

robust propagation and enhanced transmission of self-trapped light over long distances that

would have been otherwise impossible in conventional suspensions with positive polariz-

abilities. However, no asymptotic analysis to study the long-evolution in time and space
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of the concentration wave related disturbance has been reported under the conditions intro-

duced in Refs.[39, 81, 82, 83].

In Ref. [22] the research work have put emphasis on nonlinear optical propagation of

laser beam in a dye-doped strongly absorbing nanoscale colloid. The authors predicted

and studied the absorption and temperature effects on the formation and propagation of

a matter-shock wave. They have used optically induced thermodiffusion to explain the

formation of theρshock and have arrived also to a Burger’s-like wave equation. This

temperature gradient induces a drift velocity on the nanoparticle densityρsince near the

optical field the density travels faster than the surrounding regions.

Conversely to the assertion done in [22], this paper has assumed a very low or non-

absorbing colloids. This condition allows to rule out any thermal effects in our computa-

tion. An example could be the Ref. [39] experimental setup but in our case with nanoparti-

cle beads with negative polarisability. Attention is given to a particular circumstance where

dispersive and nonlinear effects are present during the wave propagation as well as their

role in its long-term evolution. We study a kink wave formation in the out-of-equilibrium

nanoscale particles self-defocusing medium under the influence of a laser excitation. We

have proved that Burger’s-like equations do not describe the asymptotic behaviour of the

colloid nanoparticle dynamics. The analytic expressions for the wave envelope and its cor-

responding propagation speed that support our claim are obtained. We show that at low

background concentration of particles(that is, concentration in absence of laser light) a

front shock could exist asymptotically and in the absence of a temperature gradient based

diffusion. It is also shown that this light-induced disturbance produces a density depletion

in the material, which correspondingly becomes transparent and allows light propagation.

As mentioned before, the necessary condition for the existence and propagation of these

kind of waves is found to be a low nanoparticles density (0∼ρ<<1). Experimentally

this regime corresponds to the defocusing one.
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To develop our theoretical model we have stated a system of equations from first phys-

ical principles and studied it in the mathematical framework of the asymptotic analysis,

specifically the method of multiscale expansions [84, 85]. This leads to the identification

and derivation of a dynamical regime where a partial differential equation governs the mo-

tion of the first-order wave velocity and particle density corrections.

6.2 Physical Model

6.2.1 Governing system of equations

In our problem we have assumed a dielectric nanosized colloidal beads concentrationρ

per unit of volume immersed in a liquid solution such that the dielectric particles and

the surrounding liquid refractive indicesnparticleandnrespectively, satisfy the relation

(nparticle/n)<1. The real part of the particle response to a radiation field(polarisability)

isα<0which corresponds to the self-defocusing case where the particles expelling them

from the large light energy density region. As observed and reported, the scattered light in-

duces localized, directional spearhead shaped, concentration shock-fronts propagating dis-

tances of several photon transport MFPs into the fluid. We have studied the radiation force

acting on the nanoparticles and the wave propagation in thez-direction. Consequently, we

have considered a one-dimensional geometry which can be justified by assuming the wave

propagation in a thin microfluidic channel experimental setup [39].

The system is illuminated by a laser with intensityI=E·E∗, whereEaccounts for

the incident electric field. The nanoparticles are under the influence of the two types of the

radiation forces: scattering (Fscat) and gradient(Fgrad) ones. In the case of the scattering

one, its magnitude is proportional to the light intensity, and its direction is along the time-

average Poynting vector<S>. For simplicity,<S>will be in thez-direction. Then
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Fscaton one particle is expressed as

Fscat= ωσs(1−g)Jph/̃c, (6.1)

where is the Plank constant divided by2πandσs(1−g)is the particle scattering cross-

section withgbeing the anisotropy factor, which is a measure of the isotropy of the scatter-

ing profile. The quantities̃candωare the speed of light in the medium and the frequency

of light respectively.

In Eq.(6.1)Jph=−̃c∇ϕ̃/[3ρσs(1−g)]accounts for the photon flux under the assump-

tion that the wave transport in random media acquires diffusive behaviour due to multiple

scattering and satisfies the so-called first Flick’s law∂̃ϕ/∂t+∇·Jph=0. The expression

that relates the light intensityIwith the photon densityϕ̃is given byε0n
2I/2= ωϕ̃.

As mentioned above,Fgradis the other component of the radiation force acting on a

dielectric nanoparticle. This gradient force is due to the Lorentz force influence on the

dipole induced by non-uniform electromagnetic fields on the particles. The direction of

Fgradis along the gradient of the light intensityI. Therefore,Fgradis expressed as

Fgrad=
1

4
α∇E2≡

α ω

2ε0n2
∇ϕ̃, (6.2)

Finally, in Ref. [39] the authors have obtained an expression, which is also valid in our

case, that relates the photon density with the nanoparticles concentrationρ. Based on the

assumption that theϕ̃always reaches a steady state much faster thanρ, we can write

∂̃ϕ

∂z
=
3vdrag
ωμm

ρ, (6.3)

wherevdragis the drag velocity andμmis the particle mobility. To introduce our governing

system of equations in this theoretical model we first takeαnegative, although we get

both forces(Fscat,Fgrad) acting in the same direction. Therefore, we can state the equation
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of motion for a nanoparticle of massmand velocityvas

m
dv

dt
= Fscat+Fgrad, (6.4)

or due to equations (6.1) and (6.2) as

dv

dt
=
ω

3m

1

ρ

∂̃ϕ

∂z
+
1

2

α ω

mε0n2
∂̃ϕ

∂z
. (6.5)

Also the continuity equation forρin the colloid is given by∂ρ/∂t+∇·(ρv)=0, and

together with (6.3), the normalized and dimensionless equations read

∂̃ϕ

∂z
= ρ, (6.6)

∂ρ

∂t
= −

∂

∂z
(ρv), (6.7)

∂v

∂t
+v
∂v

∂z
=
1

ρ

∂̃ϕ

∂z
+
∂̃ϕ

∂z
, (6.8)

where we have used the convective derivatived/dt=∂/ ∂t+v∂/∂zfordv/dtand have

performed the following scalingsv=vdragv,̃ϕ=ϕ0ϕ̃,z=z0z,z0=kw
2
0,k=2πn/λ

whereλis the wavelength,kis the wave number.t=t0t,t0=z0/vdrag, andρ=ρ0ρ.

Also we have defined the relationsm= ωρ0ϕ0t0/(3z0vdrag),α=(2/3)ρ0ε0n
2and

μm =3vdragz0ρ0/(ωϕ0).

Assuming polarization in thex-direction and propagation in the+zdirection for an

applied Gaussian beam (TEM00) with an incident intensityI0=P0/π w
2
0whereP0and

w0are the incident laser power and the input gaussian waist, respectively. From now on,
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paying attention only to the field on thez−axis, we can rewrite

ε0n
2

2
I(0,z)= ω

ϕ̃

ϕ0
, (6.9)

where the lightz−dependents intensity and spot-size are

I(r, z) =I0
w0
w(z)

e−2r
2/w2(z), (6.10)

w(z) =w0 1+(z/zR)
21/2. (6.11)

ThezR=πw
2
0/λis called the Rayleigh range.ϕ0=ε0n

2P0/(2πω w
2
0). The smallness

parameter =[w20/(2
1/2zR)]

1/2will allows to study thevandρevolutions in the weakly

diffracting regime by the multiscale asymptotic analysis. To complete our mathematical

description, we have imposed the boundary conditions that forz→±∞,ρ∼ρ0and

v=0since the particles are only affected around the localized propagating disturbance.

Finally, we have dropped the tilde for the sake of clarity.

6.2.2 Dispersion relation

The dispersion relation for linear wave propagation can be obtained if we restrict the system

of equations(6.6-6.8) to solutions which are close to the stationary equilibrium state. To

linearize we substitute in the equations the expressionsv(z, t)=v0+δv(z, t),ρ(z, t)=

ρ̄+δρ(z, t)andϕ̃(z, t)= ̃ϕ0+δ̃ϕ(z, t). If the nonlinear terms are neglected, it yields the

expression

∂2δv

∂t2
=
∂δv

∂z
, (6.12)
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where =−(̄ρ+1). Assuming the perturbed valuesδvwith dependency of the form

ei(kz−ωt)and̄ρ=1, the condition on the allowed valueskandωis

ω2=i2k, (6.13)

Using the relation
√
i=±(i+1)/

√
2, we rewrite Eq.(6.13) asω=±(1 +i)k1/2or

ω=ωR+iωI, whereωR ≡ωI=±k
1/2. From the above expressions it is possible

to observe that the linearized system allows the propagation of a sinusoidal wave with

frequencyωR. Notice that at the same time the wave is getting damped with coefficientωI.

The phase velocity is

cp ≡ ω/k=(1+i)k−1/2, (6.14)

or(1 +i)(λ/2π)1/2. The dependency of the wave velocity on the square root ofλimplies

a very important variation over the range of wavelengths of interest.

The group velocity is a complex numbercg≡dω/dk=vgr+ivgigiven bycg=cp/2.

Sincevgi≡Im(dω/dk)=0the medium is not dissipation free. Complex group veloc-

ity is common in absorbing and active media in general, yet its precise physical meaning

is unclear. Conversely to the case of a nondissipative medium the group velocity of the

propagating waves is exactly equal to the observable energy velocity defined as the ratio

between the energy flux and the total energy density. In a dissipative mediumvgcannot

be recognized as the velocity of energy transport, and it may contain information about the

wave energy absorption in the medium [86].

The dispersion relationk∝ω2is obtained from a similar expression to Eq.(6.12) in

the case of gravity waves on deep water or as a limit case for surface water waves in [87]

and [88].
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6.3 Small-Amplitude Waves Propagation

6.3.1 Nanoparticle dynamics

To account for the slow variation of the wave-form due to nonlinear and dispersive(or

dissipative) effects we have applied a multiscale asymptotic analysis by introducing in

Eqs(6.6-6.8), after [89], a long time and space scale transformations for the independent

variables; i.e.,ξ= 1/2(z−t)andη= 3/2t, where the respective derivatives take the form

∂/∂z= 1/2∂/∂ξand∂/∂t=− 1/2∂/∂ξ+ 3/2∂/∂η. Thus, for a finitewith0< 1,

one can observe slow variations of the wave amplitude in the moving frame of reference.

Then the dimensionless system gets the form,

1/2∂̃ϕ

∂ξ
= ρ, (6.15)

∂(ρv)

∂ξ
+
∂ρ

∂η
=
∂ρ

∂ξ
, (6.16)

−ρ
∂v

∂ξ
+
∂̃ϕ

∂ξ
+ρv

∂v

∂ξ
+ρ

∂v

∂η
=
∂̃ϕ

∂ξ
. (6.17)

The Eq.(6.17) exhibits different scaling behaviours depending on the balance between its

different terms. These are the inertia and the scattering forces on the left-hand side and the

gradient force on the right-hand side. With the goal to analyse the most general case, we

are going to choose the scaling in a way that takes into account all the forces introduced

here to describe the dynamical system.

We continue our analysis by assuming the deviation from a distribution of particles is

small. This allows to expand the dependent variables asρ= ∞
j=0

jρ(j),v= ∞
j=1

jv(j),ϕ̃=

∞
j=1

jϕ̃(j), whereρ(0)= 1/2, which is consistent with our assumption of low particle

density.
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Then, from Eqs.(6.15-6.17) we get the relations for the first order in as

∂ρ(1)

∂ξ
=
∂v(1)

∂ξ
= −

∂ϕ̃(1)

∂ξ
, (6.18)

∂̃ϕ(1)

∂ξ
−ρ(1) = 0, (6.19)

where by taking into account the boundary conditions we haveρ(1)=v(1)=−ϕ̃(1).

For the term of order3/2

v(1)
∂v(1)

∂ξ
−ρ(1)

∂v(1)

∂ξ
−ρ(1)

∂̃ϕ(1)

∂ξ
=
∂̃ϕ(2)

∂ξ
. (6.20)

Another result is the system of equations from terms of order 2,

∂v(2)

∂ξ
=
∂ρ(2)

∂ξ
−
∂ρ(1)

∂η
, (6.21)

ρ(1)v(1)
∂v(1)

∂ξ
−
∂v(2)

∂ξ
=
∂̃ϕ(2)

∂ξ
−
∂v(1)

∂η
, (6.22)

∂̃ϕ(2)

∂ξ
= ρ(2). (6.23)

Combining the equations from ,3/2and2we have arrived to a nonlinear PDE for

v(1)

2
∂v

∂η
+v
∂2v

∂ξ2
+v(1 +v)

∂v

∂ξ
+
∂v

∂ξ

2

=0, (6.24)

wherev≡v(1).

This expression can be rearranged into

2
∂v

∂η
+v
∂v

∂ξ
+v2
∂v

∂ξ
+
∂

∂ξ
v
∂v

∂ξ
=0. (6.25)
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The nonlinearity of Eq.(6.25) is an inherent property of the interaction of light with

light-scattering suspensions. In detail it derives from the optical gradient frame acting on

the particles which at the same time scatter the optical field diffusively.

6.3.2 Kink-shape front velocity

Let us look for travelling wave solutions by assumingv(ξ, η)=v(ζ), whereζ=ξ−βηand

βis a constant arbitrary velocity of propagation. Integrating the equation in the co-moving

frame Eq.(6.25) reads

−2βv+
v2

2
+
v3

3
+v
dv

dζ
=B, (6.26)

where the integration constant becomesB=0under the assumption that we are looking

for bounded solutions of Eq.(6.25).

dv

dζ
= 2β−

v

2
−
v2

3

= −
1

3
v+
3

4

2

−
1

2
12β+

9

8
. (6.27)

Now we can rewrite the last equation as

dv

(v−a)2−b2
=−
1

3
dζ, (6.28)

wherea=−3/4andb=[(1/2)(12β+9/8)]1/2.

Integrating both parts and using

dv

(v−a)2−b2
=
1

2b
ln
v−a−b

v−a+b
, (6.29)
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it yields

v=
v2+v1e

−Kζ

(1 +e−Kζ)
, (6.30)

where the leading edge of the wavefront velocityv2=a+band the trailing edgev1=a−b,

K =2b/3and have taken into account thatv2 >v>v1. Note thatv(∞)=v2and

v(−∞)=v1≡0. This last expression is based on the relationv
(1)=ρ(1)≥0since the

particle density can never be negative.

The function (6.30) is called a kink or rarefaction wave, a similar structure can be seen

in the solution to the Sine-Gordon equation. It clearly represents a kink wavefront moving

with velocityβ=(v2−v1)/2in the(ξ, η)−coordinates reference. Then using the identity

2e−z/2

ez/2+e−z/2
=1−tanh (z/2), (6.31)

allows us to write the solution as

v(ξ, η) =β(1 + tanh[β(ξ−βη)]), (6.32)

from where by the assumption that the disturbance moves with speed equal to the average

of its asymptotic values,16β(4β−3) = 0, which gives the speed velocityβ=3/4.

Equation (6.32) represents a kink, which is physically a truly localized excitation since all

the energy and momentum associated with this wave are centered around the disturbance

location. This kind of waves travels to the right without loss of shape or speed and its

presence is supported by the continuous-wave background applied laser beam.

The kink-shape front in the material forms a depletion region with vanishing concentra-

tion of colloids beads as shown by the curve’s tail. This creates a zone that allows the light

propagation through the otherwise forbidden in the linear regime by an absorbing medium.

Similar behaviour can be observed in the defocusing early shock formation experiments
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Figure 6.1: Dimensionless particle density versusz, normalized byw0. The envelope is
a travelling wave driven by the scattering light. Correspondingly, the material becomes
transparent to the optical field, whose propagation is forbidden in the linear regime by
strong absorption. The values used arew0=10μm,vdrag= 400μm/s,t0=47msand
λ= 532nm.

and simulations [22]. Consequently, as the matter front advances, the beam enters the

material that becomes progressively transparent.

Fig.1 shows the asymptotic behaviour of the density profile at several different prop-

agation time. The scattering effects produce a depletion region (whereρ<<1), which

induces an early front wave formation.As the density reaches the valueρ=0, the shock

front starts moving in the material. Figure 2 represents the nanoparticle density time vari-

ation at an specific distancez/w0. The matter-shock front advances inside the colloid it

becomes progressively transparent.

Consistent with the assumption of small amplitude waves in our analysis, the kink-

shape shock does not present that sudden increment [22] in concentration but a monotoni-

cally decrease of the function. Now, taking into account the scaling relations fromξandη
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given above we can write

v=βvdrag 1+tanh
β1/2

z0
{z−vdragt(1+β)} , (6.33)

A=βvdragis a measure of the wave amplitude andβ
1/2/z0is a measure of the steepens

of the wave.

Thus the wave profile takes the form

v=A 1+tanh
1/2β2

At0
(z−cwavet) , (6.34)

where the wave velocity is

Figure 6.2: Density kink wave propagation versus time at fixed distancez/w0.

cwave = vdrag+ A. (6.35)

It follows from Eqs.(6.33) and (6.34) that the amplitude and steepening of the newly dis-

covered kink depend on the wave velocity. Thus larger amplitude waves move with a higher
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speed than smaller amplitude ones. The wave steepen depends on the inverse of the am-

plitude. The lower the speed is, the morev(z, t)tends to a step function and the transition

layer between the two asymptotic values of the solution becomes sharper. Therefore, taller

shock waves are narrower in steepens and travel faster than shorter ones.

In the idealized limit of no dissipative energy loss, these waves propagate without degra-

dation of shape; they are indeed the natural stable, localized modes for propagation in the

colloid. In real conditions where dissipative mechanisms cause waves to lose energy, the

individual kinks therefore broaden.

Finally, it is worth to mention that light experiences various dynamic phases during

propagation in a nonlocal nonlinear medium. The asymptotic evolution problem of a wave

is dependent on its initial conditions such as the beam waist, power, etc.

As the nonlinear wave propagates, its profile evolution ca be studied in terms of the ini-

tial critical power level. In other words, by properly choosing the experimental conditions,

we can establish the occurrence of different kinds of small-amplitude nonlinear waves on

top of the background by using the corresponding initial conditions. Multiscale expansion

is an important mathematical tool to study the continuous transition from shock waves,

Benny-Luke waves and Solitons.

6.4 Conclusion

In conclusion, we have investigated the evolution and nonlinear properties of small-amplitude

kink-like shock waves in colloids under the asymptotic multiscale expansion framework

and assuming a low concentration of beads. The system behavior changes to a regime that

allows beam propagation. We have derived the dispersion relation for linear propagation of

waves in the colloid. We consider the evolution of small-amplitude waves generated by the

interaction of a laser beam with nanoparticles dispersed in a liquid medium.



Chapter 7

Electronically Controlled Polarization Beat Length in Kerr Nonlinear

Media

This chapter’s work is published in the paper entitled ”Electronically Controlled Polariza-

tion Beat Length in Kerr Nonlinear Media”, Results in Physics, Vol 25, pp. 104232, 2021.

The authors are Artorix de la Cruz, Montasir Qasymeh, Jaromir Pistora, and Michael Cada.

The polarization beat length of propagating optical fields in nonlinear birefringent Kerr

medium is investigated in the presence of an externally applied DC electric field. We show

that the critical power, at which the effective polarization beat length becomes infinite,

can be controlled through adjusting the externally applied electric field. The principle

of operation is based on modifying the polarization instability by electronically adjusting

the effective birefringence through an external electrical bias. The presented analytical

expressions describe the beat length and the polarization instability as a function of the

applied electric field for an arbitrary optical input state.

My contribution to this work includes generating the fundamental ideas, performing the

analytical description and the necessary analysis, and carrying out numerical simulations.

I also wrote a first draft of the paper.

7.1 Introduction

Polarization instability in a medium arises when the nonlinear change of the refractive

index is comparable with the linear birefringence. This phenomenon manifests when the

nonlinear birefringence cancels completely the linear birefringence and the beat length

escalates to infinity. Physically, the beat length (Lef fB ) is the length at which the optical

50



51

power is transferred from one polarization to another. In a nonlinear medium, such as the

Kerr medium, theLef fB length becomes infinite at a critical input power for a propagating

light that is polarized along the fast axis [20, 40, 41]. It then follows that a substantial

change in the output polarization state is observed when the input power (or its polarization

state) is slightly differing.

Controlling the polarization dynamics and obtaining non-trivial polarization evolution

is vital [43, 44, 45, 90, 91, 92, 93, 94, 95, 96, 97, 98] to optimize the operation of several

photonic devices [42]. These include the birefringent optical fibers (BOFs), [99, 100,

101, 102, 103], the multimode interference (MMI) couplers [104], the Y-branches [105]

and also, the integrated photonic circuits [106], specially the electric-field-induced second

harmonic generation (EFISHG) could be considered as a practical possibility, in integrated

photonics, due to the fact that the nonlinear susceptibilityχ3in silicon is two order of mag-

nitude larger than in silicon oxide, and that in integrated photonics the non-linear modal

area is reduced by a large factor when compared to typical optical fibers [107]. This keeps

the electric fields required below the silicon breakdown, although not too far from it. An-

other favourable condition of integrated devices is that the required field may be produced

across a small distance (few microns), thus avoiding the requirement of high voltage com-

ponents [108]. Interestingly, for propagating optical fields in non-resonant Kerr nonlin-

ear medium, a biasing electric field induces birefringence even if the medium is optically

isotropic [46]. In [47], the authors have studied the impact of applying a DC electric

field (i.e.,Eext), to a third-order nonlinear medium, on the evolution of propagating optical

waves. They found that the polarization evolution can be controlled by the appliedEext

field. As a matter of fact, theEextfield turns the third-order nonlinearity into a second-

order-like as if one deals with an electro-optic-like effect.

While these effects in a nonlinear and birefringent medium have been known for long,

and examined in details [47], the polarization instability in nonlinear medium with the pres-

ence of externally applied DC electric field has received little attention. Both theLB, which
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is the beat length when nonlinear optical effects are neglected, and theLef fB are important

quantities that must be characterized in fibers and waveguides. For instance, reducing these

lengths can improve the stability of the optical system and enhance the communication ca-

pacity significantly [109]. However, in practice, these lengths are fixed once the geometry,

the materials, and the input power are selected. Thus, a limited capability to adaptively

designing/monitoring the performance of the pertinent optical systems is experienced.

In this letter, we present a theoretical description for electronically controlled polariza-

tion instability [47]. The considered scheme implies adjusting the critical power (at which

the polarization instability takes place) through modifying the effective birefringence by

applying an external electric fieldEext. We have carried out analytical expressions that

relateLB andL
ef f
B with the DC applied field. The derived expression shows that both

the critical power and the effective beat length can be arbitrarily shifted by adjusting the

applied DC electric field.

7.2 Mathematical framework

The theoretical analysis begins by deriving the governing coupled differential equations

of the evolution of the optical field in Kerr nonlinear medium while an external electric

field is applied. On assuming a slow-varying-envelope approximation (whereby the second

derivatives are neglected), considering harmonic fields, and omitting the transverse vari-

ations, a well-known first-order differential equation relating the optical electric field and

the polarization is obtained, given by [47]:

∂E

∂z
=−i

k

2ε
PNL, (7.1)

whereEis the optical electric vector field,kis the propagation constant,εis the material

permittivity, andPNLis the nonlinear polarization vector.

In the following, without losing any aspect of generality, we analyze thex−polarization
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component while it is coupled to they−polarization component. It then follows that the

nonlinear polarizationPxNL is given by:

PxNL= 0χ
Ax
4
|Ax,y|

2+
A∗x
8
A2x,y+

3

8
AxE

2
ext , (7.2)

whereAxandAyare the complex amplitudes of two orthogonal modes (in case of an

optical fiber) or TE modes (in case of planar waveguides),ε0is the vacuum permittivity,

andχ≡χ(3)is the nonlinear susceptibility.

Substituting (7.2) into (7.1) yields the spatial evolution of the polarization state, given

by:

1

Ax

∂Ax
∂z
=iγ|Ax|

2+|Ay|
2+4E2ext+

1

3
|Ay|

2A
∗
xAy
AxA∗y

−1, (7.3)

Here,AandEextare normalized such that|A|
2andE2extare in power unit (i.e.,W). The

parameterγ=3χk0/(8nL)andnL= ε0(1 +χ(1)), whereχ
(1)is the linear susceptibil-

ity.

At this point, we propose to re-write (7.3) in the following form:

∂Ax
∂z
=iγ |Ax|

2+
2

3
|Ay|

2 Ax+4E
2
extAy+

1

3

A∗xAy
AxA∗y

|Ay|
2Ax , (7.4)

here we have(A∗xAy/AxA
∗
y)|Ay|

2Ax=A
2
yA
∗
x, yielding:

∂Ax
∂z

= iγ |Ax|
2+
2

3
|Ay|

2Ax+
1

3
A2yA

∗
x+4E

2
extAx ,

∂Ay
∂z

= iγ |Ay|
2+
2

3
|Ax|

2Ay+
1

3
A2xA

∗
y+
4

3
E2extAy . (7.5)

The above two equations can be expressed in the circular polarization bases using the



54

following transformation:

A1 =
Ax+iAy√

2
exp −i

8

3
κextz,

A2 =
Ax−iAy√

2
exp −i

8

3
κextz. (7.6)

whereκext=γE
2
ext. It then follows that the evolution equations are given by:

i
∂As(z)

∂z
=κextA3−s+

2γ

3
|As|

2+
2

3
|A3−s|

2 As, (7.7)

wheres=1,2pertains to the right 1 and left 2 circular polarization. This equation gov-

erns the self-induced polarization rotation- and the polarization instability, resulting from

a subtle balance between linear birefringence and self- as well as cross-phase modulation.

This is a significant result, which is a generalization of [20, 110, 111, 112]. Hereby, the

polarization dynamics in this regime are controlled by a static electric field. Here,κext

(which is inm−1unit) is a controlled parameter that is a function of the applied DC electric

field. ForEext=0, the equations in (7.7) are identical to those in [110, 111, 112] which

governs nondispersive cross-phase modulation (XPM) in birefringent fibers. The solutions

in [110, 111, 112] are also applicable for short pulses (i.e., 100 ps) given that the fiber

length is adequately shorter than the dispersion length and the walk-off length [20].

The polarization state is determined by the complex ratioξ=A1/A2. The azimuth of

the polarization ellipse isθ=(1/2) arg(ξ). We consider an input beam linearly polarized

at angleθ0with respect to the slow axis. Thus, the slow axis is represented byθ0=0
oand

the fast axis is represented byθ0=90
o.

The solutions of (7.7) can be sought in the form ofAs=(Pcrps)
1/2exp(i2θ0)[40, 20],

where for convenience we have defined the normalization parameter byPcr=3E
2
ext. Here,

psare the normalized power in thesmode satisfyingp≡P0/Pcr=ps+p(3−s), whereP0
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is the total power launched into the medium.
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Figure 7.1: Evolution of the inverse effective beat length versusPcr. DifferentP0are
considered.

It follows from (7.7) that when optical nonlinear effects are neglected, the medium

shows only linear birefringence. Considering this scenario, the propagating light beams

along the principal axes preserve their polarization state and the instability is not taking

place. The governing equation in this case can be written as:

i
∂As(z)

∂z
=γE2extA3−s. (7.8)

From (7.8), one can infer the low-power polarization beat length, given by:LB=π/(γE
2
ext).

It is straight forward to reduce the above expressions in (7.8) as a system of uncoupled lin-

ear ordinary differential equations which behaves like a harmonic oscillator. See [40] for

more details. For an isotropic medium, as the external electric fieldEext→ 0the beat

length alsoLB→ ∞ [20]. However, for birefingent medium, the right hand side of (7.8)
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is given by(Δβ/2+γE2ext)A3−s, whereΔβ=β0x−β0y. Here,β0xandβ0yare the prop-

agation constants of slow and fast polarization modes, respectively. Thus,LBapproaches

(2π/Δβ)asEext→0. In this work, we consider the case of isotropic optical medium. We

also remark that in a case of pulse propagation, a similar system of equations (7.7) can be

obtained in the quasi-CW regime [113].

On the other hand, for intensive optical input power, the polarization evolution can be

described in term of Jacobian elliptic function as detailed in [40, 20]. By following the

same approach, one can obtain the effective beat length from (7.7), given by:

Lef fB (P0;Pcr) =
2K(m)

γ |q|

1

E2ext
,

=
2K(m)

π |q|
LB, (7.9)

whereK(m)is the quarter-period argument of the Jacobian elliptic function. For complete-

ness, we also present the solution of the power evolutionps, given by:

ps(z)=
P0
2Pcr

− m|q|Cn |q|2γE2extz+K(m), (7.10)

whereCn(.|m)is the Jacobian elliptic function,m =[1−Re(q)/|q|]/2, andq=1+

pei2θ0. In Fig. (7.1), the normalized inverse effective beat length is calculated against the

normalized input powerp. Here, the propagating beam is polarized along the fast axes

(θ=900). We have also computed 3 examples with differentP0. The first one is the

black continuous curve (one on the left) for which we have assumedP0=1mW, with

the instability present atp=1whenPcrreaches the value ofP0. As can be seen, asPcr

varies , the critical power shifts as governed by (7.9). This scenario can be utilized for

electronically controlling the optical switching. Also, the instability broadens in terms of

the powerpwhile having smaller interval ofLef fB affected by the instability for largerPcr

(i.e., larger DC electrical field). While similar what was observed previously in [40], the
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Figure 7.2: Evolution of the inverse effective beat length versusP0. DifferentPcrare
considered.

beat length monotonically decreases for power values increased beyond the critical power.

Fig. (7.2) is devoted to show the inverse beat length versusP. This is illustrated by com-

puting some examples of very distinctive regions for constantPcrwhileP0is increased.

Similar to Fig. (7.1), the effective beat length becomes infinite as input power becomes

identical to the critical power. Further increment in the input power turns the fiber birefrin-

gent again but with reversed slow and fast axes. Once the condition for the instability is

passed (the input power is increased beyond the critical power),Lef fB decreases monotoni-

cally in a similar behaviour to the case of slow axis oriented beam.

Finally, we present an illustrative example using real experimental parameters. We

consider an optical fiber with6.6μmeffective mode radius,nL=1.46refractive index,

andγ=0.0043W−1m−1nonlinear coefficient. The corresponding normalized effective

beat length for these values is presented in Fig. (7.3) as function ofPcr. As an example, if

one considersP0=1mWandEext=80V/μm, the beat lengths areLB =3.11mand
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Lef fB =9.35m. We note that the quantityEext=(2nLA
2
ef f 0c)

1/2Eextin our theoretical

description is normalized so thatE2extis in[W]unit, whileEextis the physical applied DC

electric field in[V/m]andcis the light speed in free space.
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Figure 7.3: Normalized effective beat length evolution versusPcr. DifferentP0are consid-
ered.

The presented scheme in this work is also applicable for micro-photonic devices includ-

ing planar waveguides and photonic integrated circuits. Several interesting devices/systems

are natural candidates to benefit from electronically controlled polarization instability. These

include fiber laser devices that incorporate birefringent cavities [114], supercontinuum pho-

tonic crystal fibers that use polarization dynamics of Raman solitons [115], vector cavity

solitons in birefringent resonators [116], semiconductor lasers that utilize vertical cavity

resonators, and vertical cavity surface-emitting lasers, just to mention few examples. Al-

ternatively, the proposed modality can be devised as a sensitive polarizer (utilizing the po-

larization instability) that is directly integrable with a specific device (e.g., a semiconductor

vertical-cavity surface-emitting laser) to monitor its extreme operation [117].
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7.3 Conclusions

We have theoretically demonstrated the possibility of controlling the polarization instability

of optical fields propagating in Kerr nonlinear medium through applying an external electric

field. The proposed scheme implies electronically modifying the effective birefringence of

the medium and thus varying the critical power required for the polarization instability.
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Chapter 8

Conclusion

This chapter discusses the thesis work from an overall prospective, draws conclusions and

suggests future work.

8.1 Discussion and Conclusion Remarks

In Chapter 2, the analytical solutions for the Optical Benney-Luke equation (OBLE) in the

form of weakly localized cnoidal waves (CnWs) are introduced. The study has been done

in a nonlocal nonlinear defocusing media. The OBLE solutions lead to periodic waves

when appropriated boundary conditions are taken into account. It is found that the wave

frequency and wavelengths depend on the nonlocality and the optical surface tension pa-

rameter. The new results are of importance both for the mathematical theory of the OBLE

waves and also for their physical significance since they shine a light on the intermediate

asymptotic scenario for the NLSE. The results of the paper are, to our knowledge, original

and they could be of significant interest, in particular in the context of research on optical

spatial waves in liquid crystals.

The corresponding results in Chapter 2 have motivated the author to further investigate

the possibility of a different nonlinear wave. In Chapter 3, we have explored theoretically

and numerically the light propagation in a nonlocal nonlinear defocusing media through

the Optical Benney-Luke equation. We have proven that solutions of this equation exhibit

sech-type solitary waves. We also discussed the regimes in which the form of the solitary

waves can be quantitatively described depending on the optical surface tension. The in-

sights gained enabled us to interpret our findings in terms of the nonlocality of the media.

60
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The new results are of importance both for the mathematical theory of the OBLE solitary

waves and also for their physical significance since they shine a light on the intermediate

asymptotic scenario for the NLSE.

In Chapter 4, we have explored theoretical light propagation in a nonlocal nonlinear de-

focusing media through a proposed alternative simpler method, the asymptotic variational

multiscale approach. The obtained KdV equation is similar to the one derived using the

reductive multiscale technique. Our results advance the understanding of nonlinear phe-

nomena. These results were extended to higher dimensions in Chapter 5.

In Chapter 6, we have investigated the evolution and nonlinear properties of small-

amplitude kink-like shock waves in colloids under the asymptotic multiscale expansion

framework and assuming a low concentration of beads. The system behavior changes to

a regime that allows beam propagation. We have derived the dispersion relation for lin-

ear propagation of waves in the colloid. We consider the evolution of small-amplitude

waves generated by the interaction of a laser beam with nanoparticles dispersed in a liquid

medium.

Finally, in Chapter 7, we have theoretically demonstrated the possibility of controlling

the polarization instability of optical fields propagating in Kerr nonlinear medium by ap-

plying an external electric field. The proposed scheme implies electronically modifying the

effective birefringence of the medium and thus varying the critical power required for the

polarization instability.

Finally, it is important to know that besides controlling the light polarization via an

external DC electric field, there exists in optical wave engineering the possibility to control

the polarization by coherent light. An example is polarization switching induced by optical

feedback which has attracted considerable interest [118, 119, 120, 121, 122], including

polarization control by changing the anisotropic values of the external feedback cavity.

The polarization dynamics of the laser light subjected to weak optical feedback from
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the birefringence external cavity have been explained theoretically. Experimentally, polar-

ization flipping with hysteresis was induced by birefringence feedback, and the intensities

of two eigenstates were both modulated by the external cavity length [123].

Artificial birefringence has been extensively employed in technology applications [124],

e.g., in photoelasticity. Birefringence has been used for analyzing stress distribution in

solids, while in flat panel displays, electrically induced birefringence can modulate the in-

tensity of light by using a polarizer inside a light modulator. Nowadays, the ever-growing

security and environmental needs in a modern society have made remote sensing one of the

most important technical approaches in explosives detection and pollution control.

8.2 Future work

Inspired by the findings of this work, on the other hand, we recommend exploring further

following topics.

It would be interesting to keep investigating the interaction of a laser beam with nanopar-

ticles dispersed in a liquid medium under the asymptotic multiscale expansion framework

and assuming a low concentration of beads. The possibility of deriving a KdV-type equa-

tion. Its soliton solution could allow deeper penetration of light propagation through the

medium. If we assume the presence of absorption in the system, it will lead to a KdV-

Burgers equation. Also, the variational approach developed in this thesis can be applied

here to study the asymptotic behavior and see if the Kadomtsev-Petviashvili (KP) type

equation is obtained.

Another possibility is to study the propagation of light in a particular nonlinear medium

as a reaction-diffusion problem. Specifically the description of dark solitons where Raman

self-pumping is present [125]. It is possible to show that the NLSE in the asymptotics can

be expressed as a reaction-diffusion equation. A detailed derivation follows:

Introduction. The experimentally perturbation-induced dynamics observed temporal
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self-shift of dark solitons produced by the Raman self-pumping is given by the perturbed

NLS equation. Because the Raman response function of fused silica is extremely short, an

approximate response function has been successfully used to model the Raman contribution

in the NLS equation by a local term.

i
∂Ψ

∂x
−
∂2Ψ

∂t2
+2|Ψ|2Ψ=αΨ

∂

∂t
|Ψ|2 =0, (8.1)

whereΨ(x, t)is the complex electric-field amplitude envelope with the general solution

Ψ(x, t)=[u0+a(x, t)] exp2iu
2
0+iφ(x, t), (8.2)

andφ(x, t)is the phase,u0is the CW solutionΨ=u0= 1. The right-hand side term repre-

sents the Raman contribution to the nonlinear refractive index.αbeing in proportion to the

Raman gain parameterα(see, e.g., Ref. [125] for more details on the model). Assuming

τ= (t−Cx);ξ= 3x, (8.3)

and expanding in terms if small-parameter as

a(x, t) = 2ψ0+
4ψ1+... ,

φ(x, t) = φ0+
3φ1+... , (8.4)

the resulting first-order equation for the amplitude has the form

∂3ψ

∂τ3
−24ψ

∂ψ

∂τ
−2C

∂ψ

∂ξ
+η
∂2ψ

∂τ2
=0, (8.5)

where for simplicity we writeψ0≡ψ. Also,C
2=4is the wave velocity of the CW

background linear excitation andη=2α/.
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The Equation (8.5) is the Korteweg-de Vries-Burgers equation (KdVB) arising in dif-

ferent branches of physics, mostly in hydrodynamics.

Front propagation.Let us propose traveling wave solutions in the form

ψ(τ, ξ)=ϕ(s),with s=τ−vξ. (8.6)

If we supposed2ϕ/ds2anddϕ/ds→0as|s|→∞thenϕ(s)tends to a constant value

as the variablestends to infinity. However,ϕ(s)need not tend to the same constant value

in both directions. Suppose, then that

ϕ→1 as s→−∞ (8.7)

ϕ→0 as s→∞ (8.8)

Then the equation is given by

d2ϕ

ds2
+η
dϕ

ds
+f(ϕ)=0, (8.9)

where

f(ϕ)=6C
v

3
−ϕ ϕ. (8.10)

Notice that we must scale (8.10) given it does not satisfy the boundary condition (8.7).

Therefore, let us make a change a variable asϕ=Kθ, whereKis to be determined. Then

the functionθsatisfies

d2θ

ds2
+η
dθ

ds
+2Cvθ−6CKθ2=0, (8.11)



65

Then Eq.(8.11) can be finally written as

d2θ

ds2
+η∗

dθ

ds
+(1−θ)θ=0, (8.12)

forK=v/3. Also, we have determined thatη∗=η/(
√
2vC)and for the sake of simplic-

ity and clarity we have define the scaled variables≡s (2vC).

Thus, the the original problem can be expressed as a classic reaction-diffusion problem,

d2θ

ds2
+η∗

dθ

ds
+(1−θ)θ=0, (8.13)

with new boundary conditions,

θ→1 as s→−∞ (8.14)

θ→0 as s→∞. (8.15)

The form ofη∗expresses the dependency ofαon the background velocityCand wave

velocityv.

Finally, it is worth noticing that conversely to the standard reaction-diffusion theory

where the quantityη∗represents the front propagation speed, in the Eq.(8.12),η∗is the

minimum value at which the front exists.

Several methods can be used to solve the differential equation with a plethora of new

physics to be analyzed.
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