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Abstract

Forward Error Correction Codes (FEC) in Coding Theory, Information Theory and

Telecommunication is used to control the errors in information that was transmitted

over a noisy channel. Low Density Parity Check (LDPC) codes are linear error cor-

recting codes used to transmit messages over noisy channels. LDPC codes are capacity

approaching, meaning that practical constructions exist in which noise threshold can

be set very close to Shannon Limit. LDPC codes are defined by a sparse parity check

matrix. It is transmitted through Additive White Gaussian Noise channel with Bi-

nary Phase Shift keying modulation. The noisy message data is decoded using Sum

Product and Min Sum decoding algorithms. Short cycles in LDPC tanner graphs

are called girths. They degrade the performance as they affect the independence of

extrinsic information exchanged in iterative decoding. In this research, Simulated

Annealing[25][24] algorithm is used to construct QC-LDPC codes with Higher girth.

Product Codes are the combination of linear codes. It produces powerful error

correcting codes through multiple low error correction capability codes. Since each

code symbol appears once in the row element and once in the column element, the

encoding of product codes is done in horizontal and vertical manner. Here Zipper

Codes are used, a type of Product Codes.

This manuscript will be demonstrating through the research evidence gathered

through various experimentation on Error Correction Codes, one of the efficient

methods to achieving better Bit Error Rates. Zipper Codes, introduced in 2019,

a framework for describing Spatially-Coupled Interleaved Codes with Sliding Win-

dow - Iterative Decoding Scheme. Here BCH Codes are used to demonstrate Zipper

Codes.

Followed by that is GRAND - Decoder. A new form of decoding strategy where the

error patterns are determined rather than determining entire code-words. Together

this research intends to demonstrate that the system is able to efficiently decode

at rates of 10−7 by Sound-Noise-Ratios (SNR) 5dB in the Additive White Gaussian

Noise Channel.
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Chapter 1

Introduction

1.0.1 Background

Error Correction Codes (ECC) in Coding Theory, Information Theory and Telecom-

munication is used to control the errors in information that was transmitted over a

noisy channel. Though technology has developed well, noise and loss of information

is inevitable. So the sender/transmitter will send encoded redundant copies of the

data to the receiver where a limited number of errors can be corrected without re-

transmission. Richard Hamming was the first to propose a ECC known as Hamming

(7, 4) code[2].

Optical Transport Networks (OTN)[15] is an industry standard protocol that pro-

vides effective means of information transmission and receiving through transport,

switching and multiplexing services on a high capacity bandwidth over the Optical

Network defined in protocols such as G.709 and G.798 by International Telecommu-

nications Union - ITU.

When data transmission rates started increasing exponentially with the advent of

cloud services, the OTNs started using Forward Error Correcting codes (FECs). FEC

adds redundant bits to the code for transmission, and can correct specific number of

errors without retransmission. The First Standards for FEC in OTNs was set in 2000

by the ITU for G.975. It is a (255, 239) Reed Solomon Code with 2.5Gbps throughput.

Low Density Parity Check (LDPC) codes[3] were first invented by Robert Gallager

in 1963 and was reinvented by Mackay and Neal in 1995. LDPC codes have been

getting much attention as the Bit Error Rate (BER) was close to the Shannon Limit.

Since then LDPC has become the Error Correcting Code of Choice. It is employed

for use by NASA’s Deep Space Network, Satellite Broadcast Standard for Digital

Television DVB-S2 and 5th Generation New Radio for the 5G Mobile Network.

LDPC codes are Linear Error Correcting Codes which are defined by a sparse

binary parity check matrix[1]. Sparsity of a matrix is defined as when the binary 1’s

1
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are sparsely populated in the matrix based on LDPC Construction methods. The

data to be transmitted is first encoded using this matrix and transmitted on a noisy

channel to the receiver where the information is decoded. Many methods of encoding

and decoding are used for data transmission depending on their efficiency rates.

For instance assume that a sparse LDPC Parity Check Matrix (PCM) of size 4x6

is created. It can contain six code-words. Each code-word is right if it can satisfy the

relation with the PCM. If c is the code-word and H is the PCM then the relation is -

H[c]T = 0⃗ (1.1)

Short cycles in parity check matrix also known as girth of the code hamper the

code’s performance. During decoding the information cycles between the check and

variable nodes. But in the presence of short cycles, the wrong information enters a

loop within the short cycle and extrinsic information cannot correct the error. So

construction of codes with higher girth is considered effective. This research presents

Simulated Annealing[23], a method to construct LDPC codes without short cycles.

With higher girth per code, the BER increases considerably.

Product Codes, also known as a type of Convolutional codes, differ from the

traditional block codes, where instead of linear encoding, the encoding also comprises

of data from previous encoding iteration. Product Codes can obtain Powerful Error

correction systems using low error correction capacity codes such as BCH.

Zipper codes are a new framework for Spatially Coupled Product like codes, which

is iteratively decoded using a sliding window decoder. Along with Guessing Random

Additive Noise Decoding algorithm, have achieved better BERs in the range of 10−6

for SNR 5dB.

1.0.2 Scope of the Research

This thesis manuscript presents its Novel Results from the Research of Forward Er-

ror Correcting Codes. It employs Zipper Codes, with GRAND Decoding strategy

to derive a better Bit Error Rate in the order of 10−6 for SNR 5dB. This research

was conducted with the aim to design an advanced system of Forward Error Cor-

recting Codes[4][30]. It was decided to attempt recreating various classes of codes

to demonstrate the research. Beginning with Low Density Parity Check codes which
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can produce better Bit Error Rate (BER) per Sound to Noise Ratio (SNR dB) than

current models. For demonstration purposes the simulation was coded entirely in

MATLAB.

First trial was a simulation, a simple LDPC error correction code using the [155,

64, 20] Tanner code[1]. The formation of the binary parity check matrix was for-

mulated based on Quasi Cyclic arrangement. They are algebraically created where

binary identity matrices are cyclically shifted to the right and placed in a pattern.

This method designed by Tanner has been deemed as the best method in terms of

storage, access, encoding, decoding and analysing the performance of the code. They

also perform better than its counterpart Random LDPC codes.

Using Sum Product Algorithm (SPA) and Minimum Sum Algorithm (MSA)[6]

for decoding, a transmitter was created which creates a random binary data. This

binary data is encoded using Modified Approximate Lower Triangular (MALT)[8]

Parity check matrix, where the parity matrix is rearranged to the MALT format using

row-column operations. This process will encode the binary data and add parity bits

to the data with the entire transmittable data being 155 bits long.

This encoded data is modulated using Binary Phase Shift Keying (BPSK) and

then passed through the Additive White Gaussian Noise (AWGN)[17] channel[10],

which adds random noise to the encoded data for the purpose of the simulation. The

receiver will decode the data using SPA and MSA decoders for SNR ratios ranging

from 1-5 dB. This produced a better BER rate than random codes.

Post that, the research tackled the problem of short cycles in LDPC codes. After

study of various algorithms designed to reduce the short cycles in the Tanner graph of

LDPC codes, Simulated Annealing[23], was employed to reduce the number of short

cycles in the Tanner Graph which resulted in an improved BER compared to the ones

with existing short cycles.

A new class of Spatially Coupled - Product Like Interleaved Codes - Zipper

Codes[32] is introduced which shows potential for a better Bit Error Rate. The

simulator was redesigned on MATLAB with features for automation with any FEC

codes. The system employs Sliding Window Decoder[37], which iteratively decodes

a set of code-words, until the window is completed, and the window slides down to

the next mark to repeat the process. Then a design simulation using BCH codes on



4

Zipper with a Staircase Implementation and utilised the Berkelamp Massey [41] to

compare results.

Finally this thesis presents a novel method of decoding focusing on Noise instead

of code-words[43]. Guessing Random Additive Noise Decoding[40], is a new decoding

strategy which tries to determine the noise pattern affecting the transmitted code

instead of determining the entire code. Ordered Reliability Bits GRAND[42], is also

introduced which has improved BER. With Bound Distance Decoding[13] Combi-

nation of both ORBGRAND and GRAND, this thesis achieves its motive of high

BER.

1.0.3 Thesis Structure

This thesis manuscript is structured as described. Chapter 2 has the description of

Low Density Parity Check Matrix. It discusses about LDPC Code Construction,

Quasi Cyclic Codes. The pre-processing required for the Encoding Process and the

Decoding Systems is also given followed by the Simulation Results.

Chapter 3 discusses about Girth, short cycles and Tanner Graphs. It demonstrates

the use of Simulated Annealing method to reduce short cycles in Tanner Graphs of

LDPC Codes. It is followed by its Simulated Results.

The fourth chapter of this manuscript contains information on Zipper Codes, a

Spatially Coupled, product like Codes. The first section is about the Zipper Code

format and its structure. It discusses about Staircase Codes and the code rate. The

next section contains information about the Zipper Simulation Setting done in this

thesis. It talks about thee Transmission Setting, Zipper Block Creation, Factor Graph

and the Decoding Settings. The final section of this chapter talks about the simulated

results of Zipper Hamming Codes and BCH Codes.

Fifth Chapter is about GRAND Decoder and Tiled Diagonal Zipper Codes, used

in this research. It contains the algorithm, various other iterations of Grand in-

cluding ORBGRAND and Bound Distance Decoding. It is finally succeeded by the

Performance Evaluation results.

The sixth Chapter is the Conclusion of this thesis research explaining and sum-

marizing this research and the results of it.

The final chapter contains the Bibliography of this research.



Chapter 2

Low Density Parity Check Codes - LDPC Codes

2.1 Error Correction

Error Correction is the process of correcting errors received after transmission which

gets distorted due to many factors mainly noise. For instance, consider that system

will be transmitting binary messages which consists of 0’s and 1’s. The basic idea of

Forward Error Control is that the actual/original message is augmented or appended

with redundant parity bits, which is received and decoded without any errors.

A straightforward and easy demonstration would be the (3, 1) Repetition Code.

In this case, the message bits are augmented with parity bits and transmitted. The

receiver could get up to eight copies.

Now this enables to user to correct errors using majority. Amongst many error

correction techniques, LDPC codes stands alone as the most efficient as they are very

efficient and can easily approach the Shannon limit with extreme precision.

2.2 LDPC Codes

Low Density Parity Check Codes (LDPC) are linear block codes with parity check

matrix (PCM) H, which is sparsely populated. Sparseness here means that of all

Table 2.1: Simple Error Correction
Received Error Corrected

000 0 (sans error)
001 0
010 0
100 0
111 1 (sans error)
110 1
101 1
011 1

5
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the binary data in the parity matrix, the 1’s are lesser in units compared to the

0’s. This means that the decoding complexity and the minimum distance is linearly

proportional to the code length. An LDPC Parity Check Matrix has columns with

fixed number of non-zero elements dv and its rows also have fixed number of non-zero

elements dc. This sparse parity check matrix is generally constructed through many

ways with algebraic one being the most favored.

H =


1 1 0 1 0 0

0 1 1 0 1 0

1 0 0 0 1 1

0 0 1 1 0 1

 (2.1)

Here H is the Parity check matrix that is sparsely populated with dv = 2 and dc =

3, where row-wise or column-wise, the units of 0’s supersedes 1’s. Such an LDPC code

defined by (dv, dc) are known as regular LDPC codes. The length of the code-word is

equivalent to the number of columns present denoted by N. Consider the rows of the

Parity Matrix as M where M <N. Assuming x as the column vector, the solution of

the Parity matrix is given by -

Hx⃗ = 0⃗ (2.2)

The number of linearly independent columns is characterised by K which is defined

by the equation -

K = N −M (2.3)

This is also is the number of information bits present in a code-word. As the sum

of 1’s in the rows and columns are equal, So -

Ndv = Mdc (2.4)

= (N −K)dc (2.5)

K

N
= 1− dv

dc
(2.6)
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From these equations get the code-rate R which is defined by

R =
K

N
(2.7)

That is, the average information bits present per code-word symbol. Therefore, a

regular (dv, dc) LDPC has a code-rate of

R = 1− dv
dc

(2.8)

2.3 LDPC Code Construction

There are many methods to construct an LDPC code. The common methods are

random construction techniques which are not reliable, as the random construction’s

lack of organisation makes it disadvantageous to storing, accessing and code analysis.

Adopting an algebraic method of LDPC code construction, bypasses most of the

problems related to random code construction. This thesis has adopted Quasi Cyclic

LDPC code construction methods for demonstration.

2.4 Quasi Cyclic LDPC Codes

Quasi Cyclic LDPC codes[1] are created algebraically, which has a definitive structure

that enables it to produce better Bit Error rates. Basically, their construction has

blocks of identity matrices of size m. Each of those identity matrices are shifted

cyclically to the left.

For a prime number m, all the integers up to m-1 conform to the Galois Field

(m). The non zero elements of this field forms the cyclic groups. Consider a and b as

two non zero elements with multiplicative factors o(a) = k and o(b) = j. Then the

base/parent/mother matrix P is formed which is j X k in size, populated with the

elements from the Galois Field of m.

P =


1 a a2 ... ak−1

b ab a2b ... ak−1b

... ... ... ... ...

bj−1 abj−1 a2bj−1 ... ak−1bj−1

 (2.9)
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The next step towards the process will be expanding the parent matrix/mother

matrix or P into its binary counterparts which will form our actual LDPC Parity

Check Matrix H.

H =


I1 Ia Ia2 ... Iak−1

Ib Iab Ia2b ... Iak−1b

... ... ... ... ...

Ibj−1 Iabj−1 Ia2bj−1 ... Iak−1bj−1

 (2.10)

So, the parity matrix H is made of a jxk sized circulant identity matrices. Here

Ix, is an identity matrix of dimensions m by m.

The individual circulant elements of the mother matrix P are obtained by cycli-

cally shifting the elements to the left by their Galois number. Post expansion into

the Parity check matrix, will result in a binary matrix which is sparsely populated of

1’s and 0’s equally distributed across rows and columns in the size of jm x km. That

is, each row of the parity matrix H will exactly have j 1’s and every column will have

exactly k 1’s. The resultant PCM H is a (j, k) regular LDPC code of rate R >= 1 -

(j, k)[11][6].

This construction method for constructing cyclic algebraic Quasi Cyclic Low Den-

sity Parity Check Codes can also be applied to a non - prime m. For any integer m,

the set of non-negative integers less than m and relatively prime to m, Z∗
m, forms a

multiplicative group. Generally Z∗
m has order,

ϕ(m) = m
∏

p |m,p prime

(1− 1p) (2.11)

This is the Euler phi equation. Some common construction examples and a detailed

step by step is also depicted below.

• [155, 64, 20] QC Code with GF(31). With a = 2, b = 5, o(a) = 5 and o(b) = 3,

the parity H is

H =


I1 I2 I4 I8 I16

I5 I10 I20 I9 I18

I25 I19 I7 I14 I28

 (93x155) (2.12)

• [21, 8, 6] QC LDPC with GF(7). With a = 2, b = 6, o(a) = 3 and o(b) = 2, the

parity H is
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H =

[
I1 I2 I4

I6 I5 I3

]
(14x21) (2.13)

• [104, 20] QC LDPC with non prime m = 26. With a = 5, b = 9, o(a) = 4 and

o(b) = 3, the parity H is

H =


I1 I5 I25 I21

I9 I19 I17 I7

I3 I15 I23 I11

 (78x104) (2.14)

• [5219, 4300] QC LDPC with GF(307). With a = 9, b = 17, o(a) = 17 and o(b)

= 3, the parity H is given below separately of size (921x5219)

H =


I1 I9 I81 I155 I114 I105 I24 I216 I102 I304 I280 I64 I269 I272 I299 I235 I273

I17 I153 I149 I113 I96 I250 I101 I295 I199 I256 I155 I167 I275 I19 I171 I4 I36

I289 I145 I77 I79 I97 I259 I182 I103 I6 I54 I179 I76 I70 I16 I144 I68 I305


(2.15)

For instance, lets try constructing the Tanner code which is a [155, 64, 20] QC code

(Galois Field m=31). Initial Elements a=2, b=5 are chosen from GF(31); then o(a)

= 5, o(b) = 3 and the Mother matrix P is -

H =


I1 I2 I4 I8 I16

I5 I10 I20 I9 I18

I25 I19 I7 I14 I28

 (93x155) (2.16)

The individual circulant permutation matrices above were derived from the methods

mentioned above. A breakdown of some of those elements are given below.

Element H(1, 1) ⇒ 1

H(1, 2) ⇒ a = 2

H(2, 1) ⇒ b = 5

H(1, 3)...H(1, 5) ⇒Ia2+1

H(3, 1) ⇒b2 = 25

H(2, 2) ⇒Iab = 5 x 2 = 10
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H(2, 3) ⇒Ia2b = 4 x 5 = 20

H(2, 4) ⇒Ia3b = 8 x 5 = 40 >31. So H(2, 4) = 40 % 31 = 9 (remainder)

H(2, 5) ⇒Ia4b = 16 x 5 = 80 >31. So H(2, 5) = 80 % 31 = 19

Similarly, the base matrix H is created.

Now populating the base matrix and expanding it, would result in a jm x km sized

Parity check matrix, which is 93x155 in dimensions.

Figure 2.1: [155, 64, 20] QC Tanner code

The above figure was obtained from coding the Quasi Cyclic LDPC parity matrix

creation protocols in MATLAB and using the function imagesc(”x”) which gives a

sized color-print graph of the matrix. The size is large to perceive directly, so here each

yellow square is a binary ’1’ while the rest of the blue are 0’s. The code was generalised

to create a Quasi Cyclic regular LDPC code for any matrix settings ranging for any

j, k dimension.

2.5 Pre - Processing

Though LDPC codes are superior to most of its counterparts in many ways, one

major hurdle in employing LDPC codes is its complications with encoding. It had

a high encoding complexity, which made it incredibly tough to even implement with
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any available technology during Gallager’s time period, that it was forgotten and re-

discovered by Mackay and Neal in 1996, 27 years later. For instance, Turbo Codes,

the closest counterpart of LDPC was linearly encodable with time, but LDPC has

complexity quadratic in the block length, which made a straightforward linear encoder

unfathomable. In 2001 February, TJ Richardson and RL Urbanke presented their

novel idea of encoding which would go on to become the de-facto for LDPC encoding

named, ’Richard Urbanke Encoding’. This process involved the rearrangement of the

parity check matrix into an Approximate Lower Triangular (ALT)[5] format which

then enabled easier implementation of Linear Encoding.

Based on an array of encoding techniques, after research, this thesis will be uti-

lizing Modified Approximate Lower Triangular Rearrangement coupled with linear

encoding.

2.5.1 Modified Approximate Lower Triangular (MALT) Format

Modified Approximate Lower Triangular (MALT)[8] format is the result of cascading

modifications done collectively by the field of Science over time with Richard Ur-

banke’s Approximate Lower Triangular (ALT) form being the origin. In that method,

using row - column permutations the non singular Parity check Matrix is brought to

an ALT form -

ALT (H) =

[
A B T

C D E

]
(2.17)

such that ϕ = −ET−1B+D is non singular of dimensions m by n and the resulting

matrix is still sparse, meaning the rearrangement hasn’t lost data.

Here A, B, C and D are sparse matrices pertaining to data while T is the lower

triangular matrix and E is eliminated using Gaussian Eliminations.

Qi and Noertz from the University of Edinburgh proposed an addition to that where

they created an algorithm generalised enough to form the lower triangular T for any

matrix of any size. Aside from that their, ’Systemic Approximate lower Triangular’

(SALT)[7] format had added steps where Gaussian Elimination was added to C and

D where D was converted to an identity matrix. After removing all the linearly

dependent rows at the bottom, the SALT form was arrived at which promises better
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Figure 2.2: Approximate Lower Triangular Format

Bit Error rate compared to the RU method.

Figure 2.3: Systemic Approximate Lower Triangular Format

As for most matrices, SALT method was sufficient, for some rare cases, the ϕ

turned out to be singular meaning its inverse did not exist thereby it couldn’t be lin-

early encoded. Dutta and Pramanik from the Indian Institute of Engineering Science

and Technology, Shibpur, India proposed Modified Approximate Lower Triangular
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form. This was an addition to the SALT format, where Gaussian Elimination was

applied to C and D matrices again to obtain an Upper Triangular D matrix. This

method promised better BER rates than its predecessors.

Figure 2.4: Modified Approximate Lower Triangular Format for [155, 64, 20] QC
Tanner Code simulated on MATLAB

An algorithm to achieve the MALT format for any sized Quasi Cyclic LDPC Par-

ity Check matrix was developed on MATLAB. Through multiple separate functions

performing each task increment wise, performing row - column permutations contin-

uously, this is called the pre-processing and the flowchart of the algorithm is below.

This algorithm projects a way to systemically bring the Lower Triangular Part.

The Quasi Cyclic LDPC Parity Check Matrix that was generated for the [155,

64, 20] Tanner code with m = 31, is a 93x155 matrix. As it is a relatively large

matrix, directly viewing that seems impossible. Hence here the imagesc(K) function

of MATLab is used to create a binary image based on the data of the parity check

matrix.The Quasi Cyclic LDPC Parity Check Matrix that was generated for the [155,

64, 20] Tanner code with m = 31, is a 93x155 matrix. As it is a relatively large

matrix, directly viewing that seems impossible. Hence here the imagesc(K) function
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Figure 2.5: Flowchart detailing the method on arriving at the ALT Form[5]

of MATLab is used to create a binary image based on the data of the parity check

matrix.

Using the algorithm specified in the flowchart above, an automatic generalized

code was developed on MATlab which takes the QC LDPC PCM as input and returns

the output. The code was designed such that the rearranged matrix has a smaller

gap g.

To begin with the process of rearranging the parity matrix, a scan of the columns

1.../, n with the least number of 1’s are found. Considering regular LDPC[19] codes,

a random initial column can be chosen owing to the reason that the 1’s are evenly

distributed. That column is cascading at the far right n. Now all the rows in the

current column which has entries of 1’s are cascaded to the bottom of the matrix. Now

the scan is repeated for the columns of 1.../, n − 1 and the same steps are repeated
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Figure 2.6: Modified Approximate Lower Triangular Format Algorithm for Lower
Triangular D Matrix[8]

until all possible columns are achieved. The rows with 1’s in each current column are

placed in a diagonal position T. If the column has only one 1, in the current column

above the diagonal position, T, then that row is cascaded to that position and moved
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Figure 2.7: [155, 64, 20] Tanner code

on. If there are more entries of rows with 1’s, the nearest is cascaded to position T

and the rest are cascaded to the bottom of the matrix increasing the gap size g. Now

the scan is repeated for the columns of 1.../, n − 1 and the same steps are repeated

until all possible columns are achieved. The resultant will be a matrix with a Lower

Triangular arrangement similar to Figure 2.8.

Figure 2.8: ALT form after implementing algorithm
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After this process the E matrix is converted to an all zero matrix using Gaussian

Jordan Elimination using T matrix. Then the D matrix is converted to an Upper

Triangular Matrix without changing the data on matrices A, B and T. In this process

C matrix loses its sparsity and some all zero rows occur which are to be eliminated.

To change the D matrix into an Upper Triangular Matrix, the first row and column

of the D matrix is checked for 1. If the flag fails, then any column of C and D with 1

in it’s first row is cascaded. Else, the remaining 1’s below the topmost is XOR’ed and

eliminated. Once the process is complete, some all zero rows will be present at the

bottom which must be eliminated. Post which the MALT form is achieved similar to

Figure 2.9.

Figure 2.9: Modified Approximate Lower Triangular Format for [155, 64, 20] QC
Tanner Code simulated on MATLAB

This format of the Parity Check matrix allows us to apply Linear Encoding tech-

nique to this.

2.5.2 Simulated Results

Some of the examples listed above were created and pre-processed to rearrange into

MALT format, ready for encoding using a MATLAB script which automates all meth-

ods mentioned above. As mentioned in Section 2.4, a function will accept 5 inputs
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in the order of (o(a), o(b), a, b,m) where the first two inputs are the row-column of

the base matrix and the next two are the row-column circulant shift for the identity

matrices of the parity matrix, finally m, is the size of the identity matrices, which

can accept both prime and non prime numbers to create and populate a LDPC Quasi

Cyclic Parity Check matrix.

Once the parity matrix is created, the pre-processor function will receive that as

input and will being the process. Initially, the matrix is rearranged to the Lower

Triangular Matrix format, followed by a function which will Gaussian eliminate the

E matrix, finally the last function will use the C and D matrix of the H matrix to

iterate D into Upper Triangular matrix which yields the MALT format parity matrix

ready for encoding. The examples listed in the 2.12 to 2.15 series were simulated for

depiction.

Figure 2.10: [21, 8, 6] QC LDPC with GF(7). With a = 2, b = 6, o(a) = 3 and o(b)
= 2.

Figure 2.11: [21, 8, 6] QC LDPC with GF(7). After Pre Processing. Note that this
resembles a typical parity-generator pair.
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Figure 2.12: [104, 20] QC LDPC with non prime m = 26. With a = 5, b = 9, o(a) =
4 and o(b) = 3.

Figure 2.13: [104, 20] QC LDPC with non prime m = 26. After Pre-Processing
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Figure 2.14: [5219, 4300] QC LDPC with GF(307). With a = 9, b = 17, o(a) = 17
and o(b) = 3

Figure 2.15: [5219, 4300] QC LDPC with GF(307). After Pre-Processing
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2.6 Linear Encoding

After matrix manipulation techniques now have the MALT format Parity check ma-

trix. Now apply Linear Encoding. Consider a message of u bits. The resultant

code-word c will be turned into 3 parts where c = [up1p2] where p1 and p2 are parity

bits 1 and 2.

The code word c = [u, p1, p2] must satisfy the parity-check equation cHT = 0

and so

Au+Bp1 + Tp2 = 0 (2.18)

Cu+Dp1 + 0p2 = 0 (2.19)

As E is zero, the parity bits in p1 depend only on the message bits, and so can be

calculated independently of the parity bits in p2. If D is invertible, p1 can be found

from

p1 = D−1Cu. (2.20)

If D is not invertible the columns of H can be permuted until it is. By keeping g

as small as possible the added complexity burden of the matrix multiplication which

is O(g2), is kept low. Once p1 is known p2 can be found from

p2 = −T−1(Au+Bp1) (2.21)

So finding p2 for all parity bits would be,

p2(l) =
n−m∑
j=1

Al,j.uj +

g∑
j=1

Bl,j.p1(j) +
l−1∑
j=1

Tl,j.p2(j) (2.22)

Form the code vector as

C = [u, p1, p2] (2.23)

p1 holds the first g parity and p2 contains the remaining parity bits.

2.7 Decoding

The message bits are encoded with parity bits and is transmitted through an Additive

White Gaussian Noise (AWGN) Channel after Binary Phase Shift Keying (BPSK)
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Modulation. So all the binary bits (0, 1) are now (-1, 1). The receiver will send the

received code through decoding to get the corrected data transmitted.

The class of decoders for LDPC[20] Codes are called Message Passing Decoders as the

message is passed along the edges of a Tanner Graph. Their are also called iterative

decoders as the message volleys back and forth between the bit nodes and check nodes

until result is achieved, iteratively. The methods used to decode here are known as

Belief Propagation Decoding where the message bits are values of probabilities. They

are represented by log-likelihood ratios which are used in Sum Product Algorithm

(SPA) and Minimum Sum algorithm (MSA).

2.7.1 Sum Product Algorithm (SPA)

Sum Product Decoding Algorithm (SPA) is a soft - decision message passing algo-

rithm. Each of its message bits are in the values of probabilities which are likelihood

values. They accept only probability values as input and hence called soft - decision.

As message bits keeps volleying between nodes, the input bits of probability values

are called priori, meaning that they are known well ahead. The probability values

returned back by the decodes is called posteriori. All Probability values are in log

- likelihood ratio. For a binary x, if p(x=0) is already given, then p(x=1) is just

1-p(x=0). So by storing only either, store the message bit in likelihood ratio as

shown.

L(x) = log

p(x = 0)

p(x = 1)

 (2.24)

The extrinsic information being passed between the nodes are the probabilities.

The check node j and bit node i between which extrinsic information is passed through

is denoted by Ej,i. This gives the probability that the bit ci will be 1 that satisfies

parity j. The probability that an odd number of bits are 1 is given by -

P ext
j,i =

1

2
− 1

2

∏
i′∈Bj ,i′ ̸=i

(1− 2Pj,i′) (2.25)

And the probability for 0 will be 1 − P ext
j,i . Coming back to eqn (2.18), the sign of

L(x) gives a hard decision on x and the magnitude will give the reliability. Changing
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to probabilities,

P (x = 1) =
e−L(x)

1 + e−L(x)
(2.26)

P (x = 0) =
eL(x)

1 + e−L(x)
(2.27)

The extrinsic information can be represented as a Log Likelihood Ratio

Ej,i = L(P ext
j,i ) = log

1− P ext
j,i

P ext
j,i

(2.28)

Now,

Ej,i = log
1/2 + 1/2

∏
i∈Bj ,i′ ̸=i(1− 2Pj,i′)

1/2− 1/2
∏

i∈Bj ,i′ ̸=i(1− 2Pj,i′)
(2.29)

Ej,i = log
1 +

∏
i∈Bj ,i′ ̸=i(1− 2 e

−Mj,i′

1+e
−Mj,i′

)

1−
∏

i∈Bj ,i′ ̸=i(1− 2 e
−Mj,i′

1+e
−Mj,i′

)
(2.30)

Ej,i = log
1 +

∏
i∈Bj ,i′ ̸=i(

1−e
−Mj,i′

1+e
−Mj,i′

)

1−
∏

i∈Bj ,i′ ̸=i(
1−e

−Mj,i′

1+e
−Mj,i′

)
(2.31)

where Mj,i′ =
△ L(Pj,i′) = log

1−Pj,i′

Pj,i′

Using the equation -

tanh
1

2
log

1− p

p
= 1− 2p (2.32)

gives us,

Ej,i = log
1 +

∏
i∈Bj ,i′ ̸=i tanh

Mj,i′

2

1−
∏

i∈Bj ,i′ ̸=i tanh
Mj,i′

2

(2.33)

Alternatively,

2tanh−1p = log
1 + p

1− p
(2.34)

Then,

Ej,i = 2tanh−1
∏

i∈Bj ,i′ ̸=i

tanh(Mj,i′/2) (2.35)
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The presence of tanh and tanh−1 makes the calculations complicated, so following

Gallager use the sign and magnitude of Mji.

Mji = αjiβji (2.36)

αji = sign(Mji) (2.37)

βji = |Mji| (2.38)

So now rewrite as -

tanh
Mji

2
=

∏
i′

αji′ .
∏

i∈Bj ,i′ ̸=i

tanh
βji′

2
(2.39)

Following which,

Ej,i =
∏
i′

αji′ .2tanh
−1

(∏
i′

tanh
βji′

2

)
(2.40)

Ej,i =
∏
i′

αji′ .2tanh
−1log−1log

(∏
i′

tanh
βji′

2

)
(2.41)

Ej,i =
∏
i′

αji′ .2tanh
−1log−1

∑
i′

log

(
tanh

βji′

2

)
(2.42)

Which can be rewritten as -

Ej,i =
∏
i′

αji′ .ϕ

(∑
i′

ϕ(βji′)

)
(2.43)

where ϕ(x) is,

ϕ(x) = −log[tanh(x/2)] = log
ex + 1

ex − 1
(2.44)

ϕ(x) = ϕ−1(x) when x>0, Each bit node has input probability Li, and to the proba-

bilities from every check node. The total probabilities for ith bit is its sum,

LTotal
i = Li +

∑
j∈Ai

Eji (2.45)
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The hard decision is given by the signs of the LTotal
i . After checking to see if the

parity equation is satisfied, update Mji accordingly,

Mji =
∑

j∈Ai,j′ ̸=j

Ej′i + Li (2.46)

The output received will be the a posteriori bit probabilities of the received bits as Log

likelihood ratios. The number of iterations of the decoder is determined by the valid

code-word found which satisfies the parity equation or the total iterations specified.

The decoder is initialised by setting all variable node messages Mji equal to,

Li = L(ci|yi) = log
Pr(ci = 0|yi)
Pr(ci = 1|yi)

(2.47)

Here yi is the channel value received and the Li for different channels can be cal-

culated. This thesis used Additive White Gaussian Noise Channel, where the ith

received sample is yi = xi+ni where the ni are independent and normally distributed

as η(0, σ2).σ2 = N0/2 where N0 is the noise density.

Pr(xi = x|yi) =
1

1 + exp(−4yix/N0)
(2.48)

where x ∈ ±1

L(ci|yi) =
4yi
N0

(2.49)

Now these are the steps for iterative SPA decoding

Step 1: Initialization: for all i, initialize Li for the appropriate channel model. Then,

for all i, j for which hi,j = 1 set Mji = Li; and l = 0. Define Bj to represent the

set of bits in the jth parity check equation of H and Ai to represent the parity check

equations for the ith bit of the code.

Step 2: CN update: compute outgoing CN message Eji for each CN



26

Mji = αjiβji (2.50)

αji = Sign(Mji) (2.51)

βji = |Mji| (2.52)

Eji =
∏
i′

αji′ .ϕ

(∑
i′

ϕ(βji′)

)
(2.53)

ϕ(x) = −log[tanh(x/2)] (2.54)

= log

ex + 1

ex − 1

 (2.55)

Step 3: LLR total: For i = 0; 1; . . .; N - 1 compute total LLR

LTotal
i = Li +

∑
j∈Ai

Eji (2.56)

Step 4: Stopping criteria: For i = 0; 1; . . .; N - 1, set

ĉi =

1 if LTotal
i < 0,

0 on else
(2.57)

To obtain c. If cHT = 0 or the number of iterations equals the maximum Limit

(l = lmax,) stop; else

Step 5: VN update: compute outgoing VN message Mji for each VN

Mji = Li +
∑

j′∈Ai,j′ ̸=j

Ej′i.1 = 1 + 1; (2.58)

go to step 2

This is the step by step pseudo code used in Algorithm 1.
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Algorithm 1 Algorithm for Sum Product Decoding[35]

1: procedure Decode (r)( ▷ )Initialisation

2: I = 0

3: for i = 1 : n do

4: for j = 1 : m do

5: Mj,i = ri

6: end for

7: end for

8:

9: repeat

10: for j = 1 : m do ▷ Step 1: Check Messages

11: for i ∈ Bj do

12: Ej,i = log
(

1+
∏

i′∈Bj,i
′ ̸=i tanh(Mj,i′/2)

1−
∏

i′∈Bj,i
′ ̸=i tanh(Mj,i′/2)

)
13: end for

14: end for

15: for i = 1 : n do ▷ Test

16: Li =
∑

j∈Ai
Ej,i + ri

17: zi =

1 if Li ≤ 0,

0 on Li > 0

18: end for

19:

20: if I = Imax or HzT = 0 then

21: Finished

22: else

23: for i = 1 : n do ▷ Step 2 : Bit Messages

24: for j ∈ Ai do

25: Mj,i =
∑

j′∈Ai,j′ ̸=j Ej′,i + ri

26: end for

27: end for

28: I = I + 1

29: end if

30: until Finished

31: end procedure
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2.7.2 Minimum Sum Algorithm (MSA)

The Min Sum algorithm is not different compared to sum product algorithm. Consider

the following relation

ϕ

(∑
i′

ϕ(βji′)

)
∼= ϕ(ϕ(mini′βji′)) = mini′βji′ (2.59)

The min-sum algorithm is simply the log domain SPA with Step 2 replaced by

Mji = αjiβji (2.60)

αji = Sign(Mji) (2.61)

βji = |Mji| (2.62)

Eji =
∏
i′

αji′ .min
i′

βji′ (2.63)

It can also be shown that, in the AWGN case, the initialization Mji = 4Yi/N0 may

be replaced by Mji = Yi when the simplified log domain sum–product algorithm is

employed. The advantage, of course, is that an estimate of the noise power N0 is

unnecessary in this case.

This is how the basic structure of the MATLAB Simulation is[22]. Here the SPA

and MSA decodes each time for SNR values from 0 to 5 dB for upto length of total

message bit each time.
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Figure 2.16: Basic Structure of LDPC Simulation - MATLAB
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2.8 Simulated Results on MATLAB

For the simulation, a function with input parameters for j, k, m, a and b creates the

specified Quasi Cyclic LDPC code. After which that matrix is run on the MALT

form rearrangement function which uses row column permutations for each of them

iteratively, which will display the graphs of both the original ad rearranged matrices.

The SNR values are specified from 0 to 5 dB and the frame is set for N2 iterations

where the PCM is [N1, N2]. For each iteration of the SNR and Frame the message bit

is encoded, BPSK modulated, AWGN passed and decoded by SPA and MSA decoders

in parallel, as the Bit Error Rate for each iteration is accumulated. Once the loop

is complete, the BER for SPA and MSA are plotted against the SNR values in dB.

This method was able to achieve BER in the range of 10−6.

An entire MATLAB Simulation was created to simulate the transmission of data. The

software was used on a Windows 10 Intel Dual Core i5 - 7200 of 2.5GHz. Simulations

were run on all available cores simultaneously using Parallel Pool. LDPC codes in

the range of 100’s had a faster pre processing run and overall simulation. Codes of

higher length took some processing. For instance, codes above the length of 1000’s

took anywhere from 4 - 8 hours. During the thesis period, the simulation was run on

an Intel Xeon E3 with 3.5GHz, which had a higher speed for the same range, cutting

down the time from 6 hours to mere 30 minutes in total. Results are displayed below.
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Figure 2.17: [155, 64, 20] Tanner Code Results comparison. SPA is the Blue Line



Chapter 3

Girth

3.1 Short Cycles and Tanner Graph

The scientific community has been studying factor graphs or bipartite or Tanner

graphs vastly due to their practical applications for Artificial Intelligence, Computer

Science, Communication engineering, statistics, channel coding, wireless systems,

acoustics etc. These graphs are decoded through any message passing algorithm.

Quasi Cyclic Low Density Parity Check Codes (QC-LDPC) have shown remarkable

performance with respect to approaching the Shannon Limit in a noisy distorted chan-

nel. But recent studies have shown that the removal of short cycles in the Tanner

Graphs of the code produces a better Bit Error Rate. The presence of short cycles in

the Tanner graph increases the probability of errors. These short cycles tend prevent

the soft decision decoders from converging. They degrade the performance of the

code itself because they hinder with the exchange of intrinsic information.

A cycle is a looped path within the codes defined by the 1’s alternating between

the check node and variable node, ending at its starting point. During decoding,

the alternating between the check and variable nodes tend to cause errors as wrong

message bits tend to cycle making it hard for the extrinsic information to update in

time. The shorter the cycle, the more errors it tend to produce due to the frequency

of the alternating in a short cycle.

The shortest cycle available in a tanner graph of any LDPC code is its girth[26]. So

naturally, the best decision is to eliminate them. There are multiple methods to iter-

atively find a specified length short cycle and eliminate them. But the more preferred

way is to eliminate them during construction itself. There are many methods of QC

LDPC code construction which can be directly created with a particular girth level.

That is, during construction, all short cycles below the girth level are non existent

and the short cycles with the girth values are the only ones present. The higher the

girth of a code, means better BER. But studies have shown that generally for most

32



33

codes, elimination of short cycles of 4, 6 and 8 tends to work well. For larger codes,

girth above 12, tends to have a nullified effect in the BER improvement.

Amongst many proposed methods[27][28] to create a QC-LDPC code of particular

girth ranging from 4 to 12, Hill Climbing, Progressive Edge Growth (PEG), Modifies

(PEG), Girth Cycle Embedding (GCE) and Simulated Annealing (SA) algorithms

show promise as one of the top choices for construction. This thesis has employed

Simulated Annealing (SA) method for cycle free QC-LDPC code construction pre-

sented by Usatyuk and Vorobyev from South-West State University and Institute for

Information Transmission Problems, Russia.

3.2 Simulated Annealing

3.2.1 Tanner Graph

Tanner Graph is the graphical representation of a binary parity check matrix. It

shows the connection between various check and variable nodes of the matrix. For

example consider a random binary LDPC parity matrix as shown below. The rows

are the check nodes c and the columns are the variable nodes v. This matrix has 6

variable nodes and 4 check nodes. The tanner graph is constructed by connect all the

respective variable nodes to the check nodes which has data, that is, the cells with

1’s in it.

Figure 3.1: A random binary PCM

The resultant is the tanner graph formed for the binary matrix.
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Figure 3.2: The Tanner Graph representation.

3.2.2 Short Cycles from Tanner Graphs

In the Parity check matrix, it is observable that it has short cycles, specifically in the

range of 4. Consider one for example. V3C2, V3C4, V5C2, V5C4. These four cells in the

Parity matrix forms a short cycle of girth 4. This short cycle is highlighted in the

Tanner graph shown below.

Figure 3.3: Short Cycle 4 in the Tanner Graph representation.

With all the other short cycles included, they tend to affect the bit Error Rate

marginally. Identifying all the short cycles of range 4, Apply row column permutations

to rearrange the matrix without those short cycles. Matrix H2 has all its short cycles
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of range four removed.

Figure 3.4: Short Cycles of range 4 eliminated.

Notice that the matrix is sparse and has exactly the least required amount of

changes necessary to remove the short cycles of range four from the parity check

matrix H1. A tanner graph representation has an implied effect where one nodes of

each of the short cycles are eliminated which breaks the loop, thereby nullifying that

particular short cycle.

Figure 3.5: Short Cycles of range 4 removed in the Tanner Graph representation.

A simulation of the Bit Error Rate of both the matrices, where one has short cycles

of 4 and the other was removed, the Bit Error Rate shows that the improvement in

BER is significant in the absence of short cycles.

From the construction of Quasi Cyclic LDPC Codes from Chapter 2, the expanded

parity matrix H, is the identity matrices that populated the parity check matrix

cyclically shifted defined by their GF number.

The message passing decoder will fail to converge if the erased bits include a set

of code bits, S, which are a stopping set/Trapping Set. A stopping set, S, is a set of
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Figure 3.6: BER Results of the Short Cycles of range 4 removed. H2 is the matrix
sans short cycles.

code bits with the property that every parity-check equation which checks on a bit

in S checks on at least two bits in S. The size of a stopping set is the number of bits

it includes. The message-passing decoder cannot correct a set of erased bits S which

are a stopping set. Since every parity-check node connected to S includes at least two

erased bits there will never be a parity-check equation available to correct a bit in S,

regardless of the number of iterations employed. In a sense the decoder has converged

to the stopping set. The stopping set distribution of an LDPC parity-check matrix

determines the erasure patterns for which the message-passing decoding algorithm

will fail in the same way that the codeword distribution of a code determines the

error patterns for which the ML decoder will fail. The minimum stopping set size

determines the minimum number of erased bits which can cause a decoding failure.

H =


I1 Ia Ia2 ... Iak−1

Ib Iab Ia2b ... Iak−1b

... ... ... ... ...

Ibj−1 Iabj−1 Ia2bj−1 ... Iak−1bj−1

 (3.1)

A short cycle in a matrix is called the block-cycle and is defined by 2l, its length.

The sequence of integers determining the cyclical shift of each circulant identity ma-

trix (i x j) defined by its GF(L) is called the exponent chain sequence. The method
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to identify short cycles in a Tanner Graph is given by

Theorem 1 An exponent chain forms a cycle in the Tanner graph of H if the fol-

lowing condition holds

2l∑
i=1

(−1)iai ≡ 0 mod L (3.2)

Extrinsic Message Degree (EMD) is the number of check nodes connected to a

variable node which constitutes the short cycle in a Tanner Graph. As each short

cycle pose a threat of message distortion through errors, EMD becomes a vital variable

in determining the amount of short cycles. The EMD can be calculated by the

approximate cycle EMD (ACE).

ACE(C) =
∑

v∈E(Vc)

(d(v)− 2) (3.3)

Here C is the cycles, Vc is the variable nodes and d(v) is the degree of the variable

node in forming a cycle.

3.2.3 Simulated Annealing Algorithm For QC-LDPC Code Construction

Consider a QC-LDPC matrix of m by n dimensions and the circulant identity matrix

size L. The Mother Matrix will beM(H) and the expanded exponent matrix is Eij(H).

Code length will be nL. Simulated Annealing can be applied on the basis of -

1. girth g

2. minimal EMD

3. minimum code word weight

All these basis ensure the construction of high girth QC-LDPC codes bereft of

short cycles. Higher Girth requires search and identification of short cycles in any

construction. Generally greedy algorithms are entrusted with this task, but the Sim-

ulated annealing method promises high girth LDPC codes with minimal circulant

identity matrix size compared to other methods, making this efficient.

By increasing the minimum EMD value, the trapping sets with equal probabili-

ties gets eliminated. The trapping set (a, b) error probability depends on its ratio



38

Algorithm 2 Simulated Annealing algorithm to construct QC-LDPC codes with

higher girth[23]

Require: M(H) - base/mother matrix, L - circulant identity matrix size, g - girth,

EMD - minimal value, Iter - Max Value, seed - Pseudo random generator, Temp

- Initial value

1: Nstep = 0

2: i, j = rnd(seed)

3: for it = 0; it ≤ Iter; it++ do

4: while Mij(H) = 0 do

5: i, j = rnd(seed)

6: end while

7: for k = 0; k ≤ L− 1; k ++ do

8: Θk = enumcircycles(i, j, k, g, EMD)

9: P (k) = w(k)/
∑L−1

m=0w(m)

10: w(k) = ϵ−
Θk

Temp

where Θk - number of cycles through Eij, (H) - circulant identity matrix with

shift k, P(k) - probability of k shift circulant matrix choice, w(k) - weight;

11: end for

12: Φ = enumcycles(E(H), g, EMD)

where Φ is total cycles in binary exponent matrix E(H);

13: Eij(H) = rndshift(P, Temp)

14: NStep++

15: Temp = η Φ
NStep2

where η is a constant

16: end for

return E(H)
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b/a. Unfortunately probability of Trapping Set errors depend on the parameters of

the decoder: scale and offset values, scale for message quantization, input bits and

message bit, considering errors only in information bits, puncturing, shortening and

etc.

An initial exponent matrix can be generated by taking sub optimal random values

of shifts for non-empty circulant identity matrices. Construction of exponent parity

matrix of QC-LDPC codes is done by greedy choice of circulant permutation matri-

ces value (shift value). This exponent matrix usually has low girth and EMD value

due sub-optimality of circulant permutation matrices shift choice. To improve cy-

cles properties of initial exponent matrix, simulated annealing optimization method

helps. The process is looped iteratively to improve the initial parity check matrix by

repeating the procedure defined by the pseudo code.

The proposed simulated annealing method progresses as described here.

• The counter Nstep is initialized to zero.

• A random element present in the base matrix is chosen hj,i

• All possible cycles determined by girth value g is determined in this circulant

matrix hj,i

• Enumerate all the cycles found Θ for all possible cyclic shift in aj,l ∈ 0... L − 1

• Randomly one value of aj,l is chosen based on the probability depending on the

number of cycles and Temp. Shift selection probability circulant aj,l is given by,

P (aj,l) =
w(aj,l)∑L−1
i=0 w(i)

(3.4)

where the probability density function w(aj,l) increases with decreasing cycles

Θ and decreases with decreasing Temp.

w(aj,l) = e
−Θ(aj,l)

Temp (3.5)

• Increment the counter variable NStep and calculate the new Temp value,

Temp = η
Φ

NStep2
(3.6)

where η is a constant multiplier, Φ is the number of cycles in the expanded

parity check matrix H.
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• The loop is terminated when after NStep iterations, the number of available

cycles Φ has not decremented, else restart the loop.

3.3 Simulated Results of Simulated Annealing on MATLAB

A similar simulation environment as of the previous was employed to simulate for

this instance. Simulated Annealing method was used to create Parity Matrices of

certain girth, which was imported into MATLAB which then populated the parity

check matrix based on the circulant matrices produced by simulated annealing.

This was then encoded using Modified Approximate Lower Triangular (MALT),

linearly encoded and parity bits added, and the message was transmitted in an Ad-

ditive White Gaussian Noise (AWGN) channel and BPSK modulated. The receiver

decoded the higher girth matrices using Sum Product and Min Sum Decoding Algo-

rithms (SPA and MSA), and the Bit Error Rates (BER) proved the validity of the

Simulated Annealing Algorithm. The simulation was run on a Quad Core Intel Xeon

E2 with 16 GB RAM. Various parity check matrices of various lengths of code were

created and run on Parallel Pooling, various results of those simulations are presented

below.

A crucial observation made by Sarah J Johnson[12] of the University of Newcastle,

was validated by the simulations. For a larger LDPC codes, elimination of short cycles

above 4, 6, 8 tend to have diminished improvements in BER rate over increasing block

length.
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Figure 3.7: BER difference between Girth 4, 6, 8 of [155, 64] LDPC Code SPA
Decoding
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Figure 3.8: BER difference between Girth 4, 6, 8 of [155, 64] LDPC Code MSA
Decoding



Chapter 4

Zipper Codes

Zipper Codes are the newest addition to the class of Spatially - Coupled Product -

Like Codes. It is a form of Generalised LDPC Codes with each variable node having a

degree of two. Zipper Codes can be applied to Staircase Codes, Braided Block Codes,

Swizzle Codes, Tiled Diagonal and Delayed Diagonal Codes. This thesis uses Zipper

Codes on Staircase Codes for demonstration purposes.

4.1 Zipper Code - Format

The Zipper Code has an arrangement similar to a zipping pair and hence, the name.

It is an efficiently interleaved arrangement of codes where in the interleaving format

resembles the interleaved structure of a zipping line.

4.1.1 Zipper Code Formation based on Staircase Codes

Zipper code, as mentioned earlier is an arrangement of a set of code-words.

c0, c1, c2, c3, ... (4.1)

where each of them is a code-word of a constituent code or inner code which

could be any Forward Error Correction Code C (n, k, d). Where n is the length, k is

the dimension of message, d the minimum hamming distance. The Zipper Code is

considered in two halves, its real and virtual pair. For staircase codes, it is formed

of a series of blocks of data of dimensions m x m. The are in the form of [Bi, B
T
i+1]

where its length is 2m.

From the figure (4.1), each block is the size of m by m, and n is 2m, k is the

dimension of the information bits, and p for the parity. At the beginning of the

transmission, the transmitter will relay a known message (all - zero) to begin trans-

mitting chunks of data. The information bits are randomly filled up in the BT
1 . Then

each [B0, B
T
1 ] is encoded using the constituent code’s encoder and the parity bits are

43
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Figure 4.1: Staircase Arrangement with n = 2m

calculated and the periods of data are produced. For the next period, the previous

block is transposed and appended as B2 and the process is reiterated as necessarily

defined by the period.

To re construct the Staircase into a Zipper Code, as previously mentioned, the data

is split into virtual and real pairs. To begin transmission, for instance for the period

[B1, B
T
2 ], the previous block BT

1 is transposed to serve as B1, followed by information

bits being filled up in BT
2 . Now each [B1, B

T
2 ] is encoded by the constituent’s encoder

and parity bits are calculated. The width of both the real and virtual pairs are m,

and together the width is 2m = n.

Let mi for i ranging from 0, 1, 2, .... such that

0 ≤ mi ≤ k (4.2)

Every code-word is denoted as the (i, j)th entry of the code is the jth entry of the

ith code-word. Now let A and B be,
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Figure 4.2: Zipper Arrangement of a Staircase Code with n = 2m

Ai = (i, j) : j ∈ [mi] (4.3)

Bi = (i, j) : j ∈ [n]\[mi] (4.4)

and

A =
⋃
i

Ai, (4.5)

B =
⋃
i

Bi (4.6)

A is the virtual set and B is the real set and together they form the zipping line.

4.1.2 Interleaving

The interleaving function ϕ is defined as,

ϕ : A ⇒ B (4.7)

which is the description of the co-ordinates of the bits in the virtual set mapped

to the real set. Every bit in the virtual set must be a direct copy of the previous
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real set. The interleaving function ϕ for Staircase codes for period m and parity r is

defined by,

ϕ(mi+ r, j) = (m(i− 1) + j,m+ r) where r ∈ [m]. (4.8)

For encoding, each k bit information bit is of the form [Bi, B
T
i − r]. So the encoder

memory size is m2 +m.

4.1.3 Code Rate

Code Rate of a Zipper code is given by the ratio of information bits in the real buffer

for one period v.

R =

∑v−1
i=0 (n−mi − ri)∑v−1

i=0 (n−mi)
(4.9)

= 1− r

n−m
(4.10)

where r =
1

v

v−1∑
i=0

ri (4.11)

and m =
1

v

v−1∑
i=0

mi (4.12)

Interleaving is assumed to be bijective meaning that the virtual and real pairs

have same dimensions. So,

v−1∑
i=0

mi =
v−1∑
i=0

(n−mi) (4.13)

Now the rate equation is,

R = 1− 2r

n
(4.14)

= 1− r

m
(4.15)

The number of symbols in a buffer for a period is given by vn.

vn = 2
v−1∑
i=0

mi (4.16)

which implies that vn must be even.
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4.2 Zipper Simulation Setting

A Zipper Simulator for any length of constituent code C(n, k) comprising of LDPC,

BCH and Extended Hamming[16] Codes, for any period length p, for any buffer

length, for any Sound to Noise Ratio was entirely developed on MATLAB. The simu-

lator uses parfor, MATLAB’s parallel processing function to utilise all available cores

of the running CPU simultaneously to cut down the longer processing times.

Multiple different functions pertaining to encoding, multiple decoders, Pre-processing,

Zipper Buffer generator all work in sync to simulate the transmission and decoding

over various SNR values. The simulator BPSKModulates the transmission signal then

passes it through an Additive White Gaussian Noise (AWGN) channel to simulate

pseudo - random errors which the hard or soft decoder decodes with each iteration to

produce the right code-word post distortion. It calculates the average Bit Error Rate

(BER) for every iteration over each SNR value to produce the EbN0 vs BER plot

which has produced BER’s up to 10−10. Some parameters to be defined to understand

the simulation scenario are as follows.

4.2.1 Transmission Setting

As the virtual pair is a copy of the previous real pair, technically Zipper Code trans-

mits real information bits. They are linearly encoded and linearly transmitted similar

to a stacked operation. Chunks or stacks of data together could be transmitted as an

alternative way. Through the use of nestled loops, for each SNR value, for each buffer,

a zipper buffer is created and encoded up-to to the length of the period defined, which

is decoded bit-by-bit as required by the decoder’s iteration limit whenever present.

4.2.2 Zipper Block Creation

A specific function with inputs of the constituent code, n, k and the period length

to produce the zipper frames of multiple periods. As initialization, the first block B0

is an all-zero matrix of dimensions m by m. This half of the code is the virtual pair.

The information bits are generated by a pseudo random binary generator and filled

from m+1 to k length of the information bit of the first period defined by dimensions

[m, n-k]. The parity bits p is generated after encoding the first set of [B0, B
T
1 − p]
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Figure 4.3: Zipper Simulator Flowchart
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and appended as the row for that particular period. The dimensions described by

[m, m+1 : 2m] is the real pair.

Figure 4.4: BCH Zipper Buffer Visualisation

Post generating the first period, the algorithm begins to run a recursive function

until the periods from 2 to p which is the length of the period. In this loop, the
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previous real pair BT
1 is transposed and filled at block B1 as the new periods virtual

pair. The transposition is the result of the ϕ function as pertaining to staircase code

formation. The information bits are now filled from m+1 to n-k then encoded in a

similar fashion. This process is looped until the number of periods are created and

the zipper block buffer has been formed.

In traditional Zipper codes, the Phi function describes the location of the current

bit and its proportional transposed bit addresses, which is used to flip the erroneous

bits during decoding, twice at the same time. This phi function can be used to

mathematically generate a note of addresses of each bit of each code-word arranged

in a zipper pair along with each address of its transposed copy for one whole period

known as the Inter-leaver map. A period is defined by a [Bx, B
T
x+1]. This required an

additional function that generated the inter-leaver map according to the phi function

and size of the code, inputting for each run.

This research developed a new method using deduction formulas, where the ad-

dress of the bit and its respective copyT , for within one period starting from addresses

(1, 1), that enabled mathematical reverse tracking for each and every bit through-

out 100 Million bit transmissions. In essence, these formulas derived became the

equivalent of a phi function in traditional Zipper, which is termed as the Bit Address

Formula (BAF), a generalised formula applicable to any kind of of Zipper Codes.

The BAF for Zipper codes always has two variants pertaining to the Virtual and

the real pairs of the Zipper Array. For staircase codes, the BAF for an error present

in a current real pair, meaning it also has same error in its immediate future virtual

pair is given.

For each error location position epos, with the current decoded row indicator

rowid, the beginning and end of the current block with the current rowid, dstart and

dend respectively, m is half the code-word length. Then

row = rowid− dstart + 1 (4.17)

col = epos−m

where row and col are the indices of the bit within the current block. Then

vrow = col + dend (4.18)

vcol = row
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where vrow and vcol are the future virtual indices of the transposed bit. Then

the data of the current erroneous bit can be copied over the existing future virtual

addresses data for both the parallel arrays.

Similarly the BAF for the condition when the erroneous bit is located in the

current virtual pair of the zipper code,

row = rowid− dstart + 1 (4.19)

col = epos

rrow = col + dstart − 1−m (4.20)

rcol = row +m

where rrow and rcol are the corresponding indices of the past real pair bit.

Many random Zipper buffers are produced throughout the simulation as defined

by factors such as n, k, p period length and buffer length. A BCH Zipper buffer of

dimensions (127, 106) was created for demonstration purposes in (Fig. 4.4). The

yellow blocks are the binary 1’s and notice the difference between the previous real

pair and the subsequent virtual pair. A detailed algorithm on how this function works

is detailed.

4.2.3 Factor Graph

The Zipper Code can be represented as a Tanner Factor Graph as shown in Fig.

4.x. Each variable node has connections extending to two check nodes, so every

information bit in variable node can be a real or a virtual bit. One of the check

nodes pertain to the constituent code C and the = represents the ϕ function. Every

constituent code C is a check node that connects to the n real and virtual pair of

that code-word and each ϕ function is a check node connecting the virtual to the real

pair variable node. Depending on the length of the period, the length of the factor

graph increases linearly. The factor graph can also be converted into a periodic graph

by replacing with edges for the variable and ’=’ nodes.



52

Algorithm 3 Zipper Block Creation Algorithm

Require: Constituent Code Parity H, Generator G, n, k, p

1: m = n/2 ▷ To Split Virtual and Real buffers

2: zm = period ∗ m ▷ Initialize the entire buffer with zeros

3: Zipper Buffer =zeros(zm, n)

4: Initial Period =zeros(m,n) ▷ For the first period B0, BT
1

5: for (i = 1 : m) do

6: Initial Period(i, m+ 1 : k) = randi([0, 1], 1, length(m+ 1 : k))

—————————————> ▷ Fill information for m+1 to k

7: parity = Encode(Initial Period(i, 1 : k)) ▷ Now encode

8: Initial Period(i, :) = parity

9: end for

10: Previous Period = Initial Period ▷ Set as previous period

11: Zipper Buffer(1 : m, :) = Initial Period ▷ Fuse Initial Period with Buffer

12: for (p = 2 : m) do ▷ From 2nd Period on-wards

13: Current Period = zeros(m, n) ▷ Initialize

14: for (i = 1 : m) do

15: Current Period(:, i) = Previous Period(i, m+ 1 : n).′ ▷ The ϕ

16: Current Period(i, m+ 1 : k) = randi([0, 1], 1, length(m+ 1 : k))

17: parity = Encode(Current Period(i, 1 : k))

18: Current Period(i, :) = parity

19: end for

20: Previous Period = Current Period

21: Zipper Buffer(((m ∗ (p− 1)) + 1) : (m ∗ p), :) = Current Period

—————————————> ▷ Fuse Current Period to Zipper Buffer

22: end for
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Figure 4.5: A Tanner Graph Visualisation of a Zipper Code

4.2.4 Decoding Setting

For Decoding Setting of Zipper Code, a sliding-window decoder is utilised which can

decode groups of code-words M. Depending on the type of constituent code selected,

the simulator uses its respective decoders. Considering the decoding procedure for a

random sliding window of code-words, the decoding is linearized, where each code-

word grouped is decoded in a linear fashion to prevent race conditions and collisions

when using parfor which splits the batch of code-words to be simultaneously decoded

using the available number of cores.

This decoding method also pre-computes the next up-coming rows of data, as the

setup requires the virtual pair to be a copy of the real pair. So for the potentially next

set of oncoming data, the simulator only updates for the current row with previous

half. The simulator looks back at the previous code-word for the current set of new

symbols making the decoding more precise. Fig. 4.5 is the structure of decoding.

4.3 Simulated Results

Multiple Zipper Simulators were developed on MATLAB with constituent codes com-

prising of Bose–Chaudhuri–Hocquenghem Codes, Extended Hamming Codes, and

Low Density Parity Check Codes. As depicted in the previous parts of this the-

sis manuscript, a LDPC Simulator was developed which created QC-LDPC Codes,

used Modified Approximate Lower Triangular Transformation (MALT) pre-processing

based Linear LDPC Encoder, Sum-Product and Minimum Sum Decoders to simulate

the BER over various SNR values. Using that as primary model, simulators for BCH

Codes and Extended Hamming Codes were developed, which aided in the creation of
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Figure 4.6: Zipper Decoding Visualisation

Multiple Zipper Simulators pertaining to each class of codes. All Zipper Simulators

used a Staircase Implementation of the above mentioned class of codes to simulate

and decode.
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4.3.1 Bose–Chaudhuri–Hocquenghem (BCH) Codes

BCH Codes are powerful multiple error correcting codes over the finite-Galois Field.

It belongs to the class of cyclic codes and became the common error - correction codes

for digital communication systems such as Satellite Comms, CD and DVD Players,

disk drives, SSD’s and more. BCH codes have easy applicability for a hardware

implementation, aiding its rise in popularity. The Zipper Simulator for BCH codes

uses various codes of the staircase format.

Let a be the elements in GF(2m) where m is any positive integer with valuem ≥ 3.

BCH codes can be constructed using generator polynomial g(x) which is the lowest

degree polynomial over GF(2). Then the roots of the polynomial are a, a2, ..... a2t.

Let pi(x) be minimal polynomial of αi where i is a positive integer. The g(x) can

be found by getting the Least Common Multiple of the series p1(x), p2(x), ... p2t(x).

If m is the message with length k, it can be represented using polynomial m(x) =

m0 +m1x+m2x
2 + ...+mk−1x

k−1. Then the code-word is

c(x) = xn−km(x) + xn−km(x)(mod g(x)) (4.21)

BCH Codes of dimensions (127, 106), (255, 231), (511, 484), (1023, 993) were

simulated for Zipper Codes of multiple periods and buffers over Sound to Noise Ratio

values ranging from 1 to 10. The multiple nestled loops sends in one code-word at a

time for decoding to avoid collisions. The channel is AWGN with BPSK modulation,

and the Bit Error Rate was simulated. The Fig. 4.7 is the BER vs SNR semilog plot

of the BCH-Staircase Error only and Error-Erasure Decoding Simulation by Alvin

Yonathan Sukmadji for their thesis from the University of Toronto in C++. This

research managed to validate and modify it for various other class of codes. Fig 4.8

is the BER vs SNR for BCH Codes developed on MATLAB with transposed ϕ.
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Figure 4.7: BER versus SNR for staircase codes Zipper with inner BCH(256, 239)
decoded by Berkelamp Massey

Figure 4.8: Comparison of the BERs of the same code with same parameters over BSC
channel between this research’s software vs Alvin Sukhmadji’s[31] on C Language



Chapter 5

Stall Patterns and Simulated Annealing based Random

Zipper Codes

5.1 Stall Patterns

Sometimes, during iterative decoding using Sliding Window decoding scheme, there

might be some error patterns, that cannot be corrected. These are termed as Stall

Patterns and they affect the performance of the code. For a constituent code with

error correcting capacity, t, if the number of errors present is higher than t, then the

decoder will attempt to perform a miscorrection. This will result in additional errors

due to decoding failure. So error correction must only happen when the number of

errors present in a code is equal or less than t.

5.1.1 Stall Pattern Terminologies

From Zipper Codes structure, the code-words are split into Virtual A and Real B

pairs along the midpoint of the code-word length N . Recall that during transmission,

only the real pair B is transmitted. Consider S to be the stall pattern present in B.

Then

S∗ = S ∪ ϕ−1 (5.1)

is the Stall pattern for the corresponding virtual pair A. Then π1(S
∗) is the number

of rows in the block with that Stall Pattern and the row i ∈ π1(S
∗) is correctable if,

|S∗ ∩ (Ai ∪Bi)| ≤ t (5.2)

Then the correctable rows are

K(S) = i ∈ π1(S
∗) : |S∗ ∩ (Ai ∪Bi)| ≤ t (5.3)

The decoding function is given by

D : P (B) ⇒ P (B) (5.4)
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S 7→

S ifK(S) = ϕ

S\(Bk∗ ∪ ϕ(Ak∗) otherwise,
(5.5)

where P(B) is the power set of B and K∗ = minK(S). So that only the rows with

lowest affected index along with its respective transposed copies will be removed.

For a Stall Pattern S, |D(S)| ≤ |S|, so the correct-ability can be found by applying

D, |π1(S
∗)| times. S is correctable when,

D|π1(S∗)| = D(D(D(...D(D(S))...))) = ϕ (5.6)

A stall pattern S is minimal if for all nonempty T ⊆ S, T is correctable.

A stall pattern S is always minimum sized if for all patterns T have |T | ≥ |S|.
A minimum sized stall pattern is always minimal but converse necessarily don’t. In

staircase codes with t = 2, minimum sized stall patterns are of size (t+ 1)2 = 9. but

there can also be a minimal, but not a minimum sized pattern of size 12.

Figure 5.1: Minimum-sized and minimal, not minimum sized stall patterns of a stair-
case code with double-error-correcting constituent code.

5.2 Experiments on reducing Stall Patterns by limiting Girth

As mentioned in Chapter 3, A short cycle in a parity check matrix is defined as

an even number set of node coordinates, starting and ending in the same node as

the initial, alternating between variable and check nodes bound by binary 1s, also

known as girth. A code of girth X means that code does not have short cycles of

length X up-to X short cycles. The presence of short cycles in a code is harmful, as

wrong information starts looping within the cycle disabling the transfer of extrinsic

information, there by decoding failure happens.
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5.2.1 Manipulating the Phi Function of the Zipper Code

The phi function of the zipper code is the mathematical relation for each bit between

its real and virtual pair. In zipper codes, for any form of arrangement such as Stair-

case, Braided Block, Tiled Diagonal, the underlying principle, is that the message

part is in the real pair, which is transmitted and copied in some format into its cor-

responding virtual pair. The generalised form of phi for any arrangement of Zipper

Code is,

ϕ : A ⇒ B (5.7)

For instance in Staircase codes, each block of the real pair, is transposed to the

next virtual pair. Then the mathematical relation of the Staircase Zipper Phi function

is,

ϕ(mi+ r, j) = (m(i− 1) + j,m+ r) (5.8)

where r is parity, i, j are the coordinates of each bit.

The phi function for Tiled Diagonal Zipper Codes, discussed later in this thesis,

is given by,

ϕ(wq + i, ws+ j) = (w(q − s− 1) + j, w(L+ s) + i) (5.9)

where w is the size of the square tile, and i, j are the bit coordinates. L is the

number of tiles, q, s is the coordinates of the tile position.

As the phi function, determines the structure of the Zipper Code, crafting a proper

phi function can lead to avoidance of stall patterns.

During the research,various methods in correcting the performance of the Zipper

Code were tried.

For experimentation, a Staircase Zipper code with with inner constituent code as

Extended Hamming (16, 11) with it’s constituent decoder, the results of transpose

phi, and random row permutation was compared.

5.2.2 Simulated Annealing Zipper Codes

As discussed in Section 3.2, Simulated Annealing[23] is an effective method to create

Low Density Parity Check Matrices without short cycles. In this research investigators
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Figure 5.2: Comparison of Transpose Phi and Random Row Permutation Phi over
various crossover for BSC Channel.

experimented with eliminating the short cycles of Zipper Codes by constructing a

short-cycle free constituent code deriving from a specifically designed Low Density

parity Check Matrix without short cycles using Simulated Annealing. The presence of

short cycles prevent the exchange of extrinsic information during error correction, and

codes without short cycles have shown better performance compared to otherwise.

To begin with,a special binary matrix with specific parameters defined, from which

the Phi function for the Zipper Codes were to be derived was created.

Staircase Encoding Scheme and factor graphs

The encoding process of Staircase codes is given in the picture. Staircase codes are

characterised by their block arrangement, in the structure of staircases and hence, its

name. Blocks are encoded alternatively in a horizontal, followed by a vertical fashion.

So, each bit is encoded twice and their parity bits are interleaved with horizontal and

its vertical components.

The factor graph, or the tanner graph of the bits can be realised by splitting into

its corresponding check nodes and variable nodes. Each bit is alternating between
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Figure 5.3: Visualization of Staircase Codes Encoding Scheme

one check node and one variable node, denoting the horizontal and vertical encoding

pattern of Staircase Codes. From the picture displayed, see the factor graph of girth

8 from the Staircase Codes.

Figure 5.4: Staircase Encoding and the Factor graph indicating a Girth 8

It is also possible to derive the girth of a code from its factor graph. For instance,

the Staircase code[21][39] of each block containing 3 rows and 3 columns with bits

present, being encoded horizontally and vertically is given.

As every short cycle is bound by binary 1s, starting and ending at the same node,

alternating between a check node and a variable node, see the girth of a code from

its factor graph.
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Figure 5.5: Encoding of a Staircase code with Block size 3 X 3

Figure 5.6: Factor Graph of a Staircase code of square block size 3, with its girth

Creation of Specific Binary Matrix

A binary Quasi Cyclic Parent Matrix of size 2 by 16 was created. Each element of the

parent matrix is an identity matrix of size 8. The white squares in the figure denotes

binary 1. The Quasi Cycling matrix is split into its four quadrants going anti-clock

wise from the top right quadrant starting from A,B,C,D.

QuadrantsA, B and C contain the same elements. Every element of those matrices

of those quadrants are identity matrices of size 8. For quadrant D, an LDPC Parity

Check matrix without short cycles of size 1 by 8 is created using Simulated Annealing.

This matrix is Quasi Cyclic, with each of its element, cyclically shifted by the number

of the element. The matrix is joined to the quadrant and this forms the Specific binary

Matrix.
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Figure 5.7: Specific Binary Matrix formed using Simulated annealing

With the specific binary matrix, check nodes and variable nodes denotes the po-

sition of each bit in the matrix. On the left quadrants, each identity matrix has

variable nodes from U1, U2...Un followed by Un+1, ...U2n, U2n+1, ..., U3n and so on upto

U7n+1, ..., U8n.

Figure 5.8: Specific Binary Matrix with variable nodes denoting Phi function

The right side of the quadrant shows the indices of the various respective variable

nodes denoted by π. From V π1(j), to, Vn + π2(j), V2n + π3(j) to V7n + π8(j). The

composition of the matrix of individual variable and check nodes is shown.

Table 5.1: The Variable and Check nodes for the Specific Binary Matrix

Now from the picture, the phi function for the zipper code can be derived. For

each of the Cyclic shift matrix, for each check node j, the respective index is the index
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Table 5.2: Minimum required value of circulant matrix size for a parent matrix with
row m = 3, column n, and Girth 10[23]

of the bit within that check node corresponding to its variable node. Its is given by

πn(j) where n is the number of variable nodes and j is the jth check node.

Figure 5.9: Phi function mapping for current real block to future virtual block from
Specific Binary Matrix created by Simulated Annealing

The Phi function derived from the Specific Binary Matrix created by Simulated

annealing is given by,

Φ(j, k) = (k − 1).n+ πk(j) (5.10)

where k is the variable node.
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Table 5.3: Minimum required value of circulant matrix size for a parent matrix with
row m = 3, column n, and Girth 12[23]

When creating Parity Matrices without specific number of short cycles, the con-

straint on the number of rows and columns, increase linearly with increase in the

girth. Meaning, to create a Parity Check Matrix with short cycles above X, then the

parent parity matrix rows and columns will be increased by a factor of X.

So, it is not possible to apply this method to a short sized code. The table for

required circulant matrix size for specific girth and specific rows and columns is given.

As seen in the tables, for various girth, the demand for the size of the binary matrix

increases greatly, with increase in girth. So a Zipper Code with a large constituent

code is necessary to remove short cycles. It is not possible to apply for constituent

codes of smaller dimensions.



Chapter 6

Improving Zipper Codes using Guessing Random Additive

Noise Decoding - GRAND

6.1 GRAND Decoder

6.1.1 Hard Detection GRAND

Guessing Random Additive Noise Decoders (GRAND) [40][48] have recently been

proposed as an alternative to code-specific decoders to perform ML decoding or near-

ML decoding with limited complexity. Rather than using code structure, GRAND

generates noise sequences based on channel statistical information, sorts them from

most likely to least likely breaking ties arbitrarily, subtracts noise sequence from

hard decision received sequence and queries whether the result does exist in the code-

book[44][45]. The first code-book member is selected as the originally sent code-word.

GRAND is a universal decoder, i.e., it can be used to decode any code. Pseudo code

for GRAND is shown below.

In general, all GRAND versions are comprised of two steps. First step is to

sort noise sequences in descending likelihood order, and second step is to check that a

given code-word is a member of the code-book. For block codes, a simple membership

check function is given by the parity check matrix of the code. While the second step

is the same for all versions of GRAND algorithms, the first step can vary for each one.

GRAND algorithm is designed to generate a permutation-combination of all pos-

sible error patterns which is repeatedly tested against the received code-word to see

if the decoded code-word belongs in a Code-Word-List, a list of all possible encodings

which both the transmitter and receiver will posses throughout the transmission. For

linear codes like Hamming Code (7,4), BCH Codes, LDPC codes, the Code-List is its

parity check matrix H. This research will be demonstrated using linear (n, k) BCH
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codes. The type of ranking/ordering schema of the GRAND algorithm is the distinc-

tive feature between the many GRAND variants of some, which will be demonstrated

here.

6.1.2 The GRAND Algorithm

Let Xn and Y n be the input and the output of a discrete channel made of blocks of

n symbols from a finite set of characters A of size |A|. The channel is a memory-less

random noise Nn, independent of input and set of An. Then -

Y n = Xn ⊕Nn (6.1)

which is also invertible meaning,

Xn = Y n ⊖Nn (6.2)

For decoding, both the transmitter and receiver must share the code-word list

Cn = cn, ..., cn,Mn having Mn elements of An. Then the conditional probability of

each of the received code-words are given by -

p(yn|cn,i) = P (yn = cn,i ⊕Nn) for i ∈ 1, ...,Mn (6.3)

The decoded code-word by GRAND is then an element of the code-list with the

highest probability of transmission.

cn,∗ = argmax
{
p(yn|cn,i) : cn,i ∈ Cn

}
(6.4)

= argmax
{
P (Nn = yn ⊖ cn,i) : cn,i ∈ Cn

}
(6.5)

Code-Lists are large for storage rising exponentially with block length n. The

normalised rate of that code-word list is

R = lim
n

1

n
log(Mn) (6.6)

This is why Maximum Likelihood Decoding is infeasible as it would have to -

• Calculate AnR conditional probabilities of equation (5.3), ordering with weighted

ranks for every signal.

or
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• Calculate |A|n(R+1) conditional probabilities in advance for every (cn,i, yn) pair,

storing the resulting |A|n decoding for every received signal.

To combat that. GRAND offers a different approach. One where the receiver,

weighted-orders the noise sequences in terms of likeliness, and sequentially calculate

the received sequence by eliminating each noise sequence for every signal to find the

resulting code-word which is part of the code-list.

Let the ordered list of noise sequence in terms of likeliness be,

G : An 7→ {1, ..., |A|n} (6.7)

G(zn,i) ≤ G(zn,j) if and only if (6.8)

P (Nn = zn,i) ≥ P (Nn = zn,j) (6.9)

For each received signal, the GRAND Decoder employs the following algorithm

Algorithm 4 GRAND[40] Algorithm

Require: Input Signal Xn, Output Y n, Noise Zn, Code-List Cn.

1: Initialize i = 1.

2: Form the noise pattern Zn such that G(Zn) = i.

3: while (Xn = Y n ⊖ Zn /∈ Cn) do

4: i++

5: Set next noise sequence Zn

6: Return Xn

7: end while

6.1.3 Tiled Diagonal Zipper Code

As the name implies, Tiled Diagonal Zipper codes[32] are made of tiles formulated

into a zipping pair. Tiled Diagonal Zipper is a generalised form of Staircase Zipper

codes, when the number of Tile is 1, then Tiled Diagonal becomes a Staircase Zipper

Code.

From the structure above, the number of tiles is L, and the size of a tile is ω. For

a inner constituent BCH(N,K) code, the m = N/2 = ωL. The size of a tile must

be a square and the product of tile size with number of tiles must be equal to half
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Figure 6.1: Encoding Structure of a Tiled Diagonal Zipper code with number of Tiles,
L = 3.

the encoded message size. Now the row and column coordinates of each bit in a tile

is given by ωq + i and ωs+ j, for q ∈ Z, s ∈ 2L and i, j ∈ [ω]. Then the sub-matrix

Tq,s is given by,

Tq,s =


C

(q,s)
0,0 ... C

(q,s)
0,ω−1

... ... ...

C
(q,s)
ω−1,0 ... C

(q,s)
ω−1,ω−1

 (6.10)

where C
(q,s)
i,j is a notation of the bit ωq + i, ωs+ j. Like Zipper codes, if the Tile

in row a, column b is in the virtual side where s < m. And if s > m, it is on the real

side.

The encoding happens in the following fashion[33].

• The Zipper pair of BCH(N,K) size is initialised for Sliding window capacity

in all Zeros.
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• Tile size ω and number of tiles L is chosen with relation ωL = m = N/2.

• Random data is added in rows = ω, column = K −m.

• Linear Encoding and Parity bits are added similar to Staircase Zipper Codes.

• The tiles are transposed to upcoming virtual side. In increasing ranges of Tile

number, each corresponding block is placed at forthcoming rows displaced by

tile number.

• Repeat from above.

The rate of the Tiled Diagonal Zipper Code is given by r = 1− 2(n−k)
n

. As a result,

the encoder must store,

ω2 + 2ω2 + 3ω2 + ...+ Lω2 =
L(L+ 1)ω2

2
(6.11)

The Bit Address Formula (BAF) of Tiled Diagonal Zipper Codes is presented.

For each error location position epos, with the current decoded row indicator rowid,

the beginning and end of the current block with the current rowid, dstart and dend

respectively, m is half the code-word length. Then the BAF for error in current real

and future virtual is,

row = rowid− dstart + 1 (6.12)

col = epos−m

For tiled diagonal zipper codes, more variables are introduced. Firstly Tcol which

calculates the bit beginning from the current tile. Tile is the count of the current

tile. W is the size of the tile, then the Tcol can be found by,

tcol = col− ((tile− 1) ∗ w)

Then the future indices of every bit from every tile of both binary code-word and

LLR array can be found by

vrow = tcol + dend + (tile− 1) ∗ w (6.13)

vcol = row + (tile− 1) ∗ w
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Similarly the BAF for error in current virtual and past real can also be found by

row = rowid− dstart + 1 (6.14)

col = epos

tcol = col− ((tile− 1) ∗ w)

rrow = dstart − (tile ∗ w) + tcol− 1 (6.15)

rcol = row + (tile− 1) ∗ w +m

Decoding of Tiled Diagonal Zipper codes is straightforward. A sliding window decoder

of tile capacity 5, maximum sliding window iterations 5. Simulation is done in BPSK

modulation and AWGN channel for SNRs 5 to 7.5. The tile size ω = 32 and tiles

L = 4 for BCH(256, 239) constituent code. GRAND Decoder was used to derive

results. With Tiled Diagonal Zipper, the window size set is ω ∗ 5 = 160 code-words

per window, whereas for Staircase Zipper, the window size was m ∗ 5 = 640, as the

window capacity affects results, in-spite of which Tiled Diagonal had better than

expected performance using GRAND Decoder, the results of which are presented.

Figure 6.2: BER vs SNR of a Tiled Diagonal Zipper code with number of Tiles, L =
4. tile size ω = 32.
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6.1.4 ORBGRAND

Using soft information is known to significantly improve accuracy of the decoder. To

this end, Ordered Reliability Bits GRAND has recently been introduced to alter the

noise generation component of GRAND algorithm in order to use soft information

effectively. Consider xn ∈ {0, 1}n as the soft output of the channel that is subjected

to an additive white Gaussian noise resulting in a random received signal. Let yn

denote the hard decision demodulation. ORBGRAND decodes yn using xn to record

reliability order of the bits in a vector πn that contains permutation of (1, 2, ·, n).
The algorithm generates en,1, en,2, ... assuming that the first bit is the least reliable

bit, the second bit is the second least reliable bit and so forth. To this end, Logistic

Weight is defined as

ωL(e
n) =

n∑
k=1

k (6.16)

For pattern generation, a logistic weight will be assigned to each sequence. Initializ-

ing with with ωL(e
n) = 0, the first noise sequence will be all zeros. The next query

for ωL(e
n) = 1 corresponds to the least reliable bit being flipped. For the next noise

sequence only the second least reliable bit is flipped. For the next logistic weight

ωL(e
n) = 3 either the third bit is flipped or both least and second least reliable bits

are flipped with the tie broken arbitrarily. This procedure will be continued until

ωL(e
n) = n(n+1)

2
. This process defines ORBGRAND algorithm. Therefore, for its

operation, ORBGRAND only requires the order of bit reliability of each received se-

quence that are stored in vector πn.

The algorithm will begin by sorting all the soft valued likelihood values of the

received signal in ascending order and their location is recorded by the system. Now

the algorithm will apply logistic weights (LW ) to the LLR values which is the sum

of the non zero element’s indices. The error pattern is generated which will be run

against the received signal and passed through the Parity check matrixH to determine

if the decoded code-word is part of it. In the event the decoding fails to return

a code-word part of H, the system will return the erroneous received signal. The

ORBGRAND Algorithm is given below.
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Algorithm 5 ORBGRAND[42] Algorithm

Require: Input Signal Xn, Output Y n, Noise Zn, Parity Matrix H

1: Sort the LLR values of input Xn

2: Record the indices ind

3: Calculate the Logistic Weights LW

4: for i = 0 : LWmax do

5: Form the error pattern Zn

6: Check H(Xn ⊕ Zn) == 0

7: if Yes then

8: Return Output Y n

9: end if

10: end for

6.1.5 Applying Bounded Distance Decoding

A source of decoding failure of product codes is miscorrection. Consider a component

code with error correction capacity t. If there exist more than t errors in a component

code, decoder attempts to correct them but more errors are introduced instead. One

solution to this problem is to apply bounded distance to decoder. It means that error

correction happen only if no more than t errors exist in the component code. Another

advantage of applying BDD in GRAND is that it reduces the decoder’s complexity

by limiting the number of noise sequences.

6.2 Performance Evaluation

The following configuration is considered for our simulations. BCH(256, 239) is set

to be the constituent code of Zipper product code, and period of the sliding window is

set to 5 block lengths. For each sliding window, 5 iterations are performed. Additive

White Gaussian Noise (AWGN) Channel is employed with a BPSK modulation for

error simulation. Sound-Noise-Ratio (SNR) values of 1 to 6 were simulated in a series

of parallel executions on High Performance Computing Supercomputers of Alliance

Canada formerly known as Compute Canada.

All scenarios were simulated above 100,000 errors, 100,000,000 bits until BER

stability. First, principal investigator simulated GRAND and ORBGRAND without
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limitation on number of corrected bits. For making a trade-off between accuracy

and computational complexity, This research also proposed a hybrid ORBGRAND-

GRAND method which uses ORBGRAND in first 3 iterations and uses GRAND in

the second 2 iterations. Then applied bounded distance to GRAND algorithm. To

this end, rather than applying a fixed bounded distance, initialized with ϕ = 1 and

rose it in the next iterations. To be more specific, this research used ϕ = 1 for the

first 2 iterations, then incremented it for for the second 1 iterations, and further

increased it to ϕ = 3 in the remaining 1 iterations. Also applied bounded distance to

ORBGRAND in the same manner. Finally, applied bounded distance to our hybrid

ORBGRAND-GRAND method. To this end, ϕ = 1 is applied to ORBGRAND in

the first 2 iterations. Then, bounded distance is increased to ϕ = 2 for the next 1

iterations. For the remaining 1 iterations, ϕ = 3 is applied to the GRAND algorithm.

The results of BCH(256, 239) Zipper Code simulated with various decoders in BPSK-

AWGN Channel for SNRs 1 to 6 is given.

The sliding window decoder, operates as follows. Initially it will begin with block

1 to block 5. The window capacity defined as 5 blocks can handle 5 ∗m number of

rows as specified by the constituent code. When decoding, begins, the code-words in

the sliding window are decoded one by one from starting to the last code-word of the

window.

When there is an error present in the code-word that can be connected, the algo-

rithm first checks if the erroneous bit is in the real or virtual side. If the error is in

real, then the index of that bit along with its corresponding future transposed bits are

flipped to correct the error. Similarly, if the error is in the virtual side of the array,

then the index of the virtual and the corresponding past real indices are flipped to

correct the error.

So error correction happens at two different places at any given time during de-

coding. Only after the entire window is completed, the sliding window slides from

block 1 to block 2, now comprising blocks from 2 to 6, and so on.

The system design of this research is a Hybrid of Soft Input and Hard Output

(SIHO) unlike that of a Hard Input Hard Output (HIHO) or a Soft Input Soft Output

(SISO)[34][50]. The simulator was designed with two parallel array of code-word data.

After applying AWGN to an encoded code-word, the simulator will convert the Log
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Likelihood Ratios (LLRs) into binary and one array consists of Binary Code-words in

Zipper Arrangement. Another array will have the LLR values of every corresponding

binary bit. As ORBGRAND uses LLRs to compute, during iterative decoding, when

error correction happens, bits are flipped in current line of code-word and its propor-

tional transposed copy. Likewise, negating the LLR value mathematically achieves the

equivalency of a binary bit flip, negating both current and corresponding transpose

copy of the LLRs, hence making this a hybrid SIHO system.

6.2.1 BER of Zipper - GRAND

Zipper GRAND was the first combination to be simulated which resulted in a higher

performance showing the efficiency of the combination of Product codes with GRAND

Sliding Window iterative decoding. Upto SNR 4, see that the Bit Error rate is poor.

This is due to simulation criteria, where with lower SNR’s the frequency of error

injection above the constituent code’s correction capacity t, is high. So the decoder is

programmed to avoid decoding for such code-words which is known as Burst Errors.

At lower SNR’s Burst Error injections happen very frequently, hence the Bit error

rates tend to be in the ranges of 10−1 to 10−2.

Once the SNR crosses 4.5 dB, begin to see improvements in the Bit Error Rates.

Obbserved the BER to be 1.083558e−02 for SNR 4.5dB. Post which see an immediate

drop in the rates, which denotes the waterfall of the curve. For SNR’s 5.5 and 6 dB,

see the error rates fall to 2.312142e− 04 and 2.009797e− 06 respectively.

6.2.2 Zipper ORBGRAND

Ordered Reliability Bits Grand Zipper immediately proves to be a powerful com-

petitor to Grand-Zipper. From the results, it is evident that at SNR 5.5dB there is

approximately 1.7 dB gain in BER in comparison with Grand Zipper.

6.2.3 Zipper GRAND Bound Distance Decoding

Bound Distance Decoding for GRAND Algorithm applied to Zipper Codes resulted

in considerable gain in the bit error rates when compared to Grand-Zipper. There is

approximately, a gain of 0.25 dB in comparison, but this fails short of ORBGRAND

Zipper’s BER.
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Figure 6.3: BCH(256, 239) Zipper Code with various Decoders

6.2.4 Zipper Dual Decoders - Grand and ORBGRAND

This research proposes a hybrid dual decoding scheme where the Grand Decoder and

the ORBGRAND decoder combination is applied to Zipper Codes. This results in a

considerable BER boost in comparison to its individual counterparts. In comparison

with Grand Zipper, it has approximately 2.5 dB gain at SNR 5 dB. It has above

1.5 dB gain in comparison with GRAND-BDD-Zipper and roughly 0.4dB gain in

comparison with ORBGRAND.



77

6.2.5 Zipper ORBGRAND with Bound Distance Decoding

This particular variant of Bound Distance OrbGrand[49] Decoding strategy proved to

result in the most highest BER among its other candidates. At SNR 5, ORBGRAND-

BDD-Zipper easily trumps over Grand-Zipper with a staggering 4 dB gain in Bit

Error Rates. It went to surpass every combination tested, and proved out to be the

most efficient decoding strategy for Zipper Codes. Even in comparison with its own

non-BDD counterpart, it easily has 3 dB gain.

6.2.6 Zipper Dual Decoder - BDD-Grand-ORBGRAND

This variant of Zipper code has results close to BDD-ORBGRAND-Zipper. It lags

behind the latter by a loss of 0.1-0.2 dB. This can be considered as an alternative to

ORBGRAND-BDD when cost of computing becomes critical.



Chapter 7

Conclusion

Communication has been a primary need for human communities since the begin-

ning. Every time in history, there was a new revolutionary means of communication

discovered, those communities have made great strides across time. In this digital era

of communication transmission systems, unfortunately, we are pressed to transmit

digital data through erroneous channels. Since we encode our data and transmit as

electric signals, the channel naturally comes with many random error factors such as

thermal noise, shot noise, coupling noise through nearby electrical interference human

errors etc. Thereby error correction is a crucial field in supporting higher powered

transmission systems with high throughput and low latency rates.

Through this research we have demonstrated how different classes of Forward Error

Correction Systems work. FEC’s are essential to achieve error correction without the

need for redundant transmissions. We have demonstrated how Low Density Parity

Check codes can achieve an improved Bit Error Rate through the Additive White

Gaussian Noise Channel with lesser short cycles preventing the lapse in exchange of

intrinsic data across variable nodes thereby increasing its Bit Error Rate.

Product codes, a system with each message symbol being an encoded part of the

horizontal and vertical component has better Bit Error rate with increased complexity.

Through the use of Staircase Codes implementation, this thesis has demonstrated that

Zipper Codes, a form of Spatially-Coupled, Product Like Interleaved Codes has better

BER over linear codes. Using the powerful Bose–Chadhuri–Hocquenghem Codes, we

have demonstrated that Zipper Codes has the ability to produce a improved Bit Error

Rate. The Sliding Window Iterative Decoding Strategy repeatedly[29] decodes the

Product Like Codes for extended improvement on the error correction.

We experimented with various methods to eliminate short cycles in the constituent

code of Zipper Codes. Simulated Annealing was used to create a specific design

matrix, for an efficient mapping of Phi function to improve the performance of Zipper
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codes. It became evident that with more eliminations of short cycles in the code, the

size of the code increases by the factor of the girth. This is applicable for constituent

codes of greater size, with a greater memory usage.

Finally this thesis has demonstrated the improvement in decoding rates when

focused on the noise patterns of the signal instead of determining the entire code

using the Guessing Random Additive Noise Decoding Algorithm. Compared to many

FEC systems for Zipper Codes, GRAND decoder has better potential in delivering a

better Bit Error Rate with lesser complexity resulting in faster decoding of received

code-word. Using the Ordered Reliability Bits strategy for GRAND, the system was

able to achieve improved BER compared to GRAND. As the minimum hamming

distance between two code-words denoting the minimum change in bits required to

distinguish two code-words also determines the error correcting capability of the code,

sometimes when the noise is beyond the error correcting capability, the decoding is

bound to result in miscorrection. By applying Bound Distance Decoding, the system

was proved to improve the BER beyond ORBGRAND. When coupled with Bound

Distanced Decoding ORBGRAND and BDD-GRAND, the Zipper System was able

to achieve the Highest Bit Error Rate with lesser decoding complexity.

7.0.1 Future Work

This research has some potential places to develop and extend into future work. Some

of them are

• LDPC inner constituent code based Zipper Codes. With LDPC’s advanced en-

coding schema and the Sum Product algorithm, the results must be promising.

• Stall Patterns can be minimised. Stall patterns are those errors which failed

correction in Sliding window decoding. Those can be minimised by correcting

the girth of the code.

• Soft Input Soft Output AWGN Zipper Codes may prove to have better Bit

Error Rate[47].

• A hardware based implementation of Zipper Codes has the potential to outper-

form software simulations with lower memory requirement with BER’s poten-

tially going up-to 1e−15[46][51].
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• This research set serialised decoding to avoid code-word conflict when com-

puting syndromes. A parallel set up sliding window decoder might be able to

surpass standard serialised setup[52].
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