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Abstract

A computational ŕuid dynamics (CFD) model was used to predict the hydrodynam-
ics of transient 3-dimensional ŕow on sieve trays. The model is constructed in the
Eulerian-Eulerian framework for two interpenetrating phases. The interphase momen-
tum exchange term is modelled as a drag force term and evaluated using a suitable
literature correlation. The turbulence properties are evaluated using a turbulence
model based on the k − ϵ equations for the mixture of two phases. The open-source
CFD software package OpenFOAM® version 6 was employed to build and solve the
model. A set of test cases was conducted to determine the optimized solver settings.
A series of simulations for sieve trays of different sizes and under different operat-
ing conditions were conducted and validated using previous CFD and experimental
studies. The results of the sieve tray simulations are in good agreement with the
validation data.
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Chapter 1

Introduction

1.1 Background

In the petroleum, chemical, and related process industries, distillation is the most

widely used separation unit to carryout mass transfer between liquid and gas phases,

which consumes the biggest share of capital and operating costs [11]. The mass trans-

fer primarily occurs at the internal structuresÐe.g., traysÐinside the column. The

sieve tray is one of the dominant internals for distillation columns owing to various at-

tractive features, including simple structure, low maintenance, high cost-effectiveness,

and wide operating range. The separation efficiency and overall performance of distil-

lation columns is strongly inŕuenced by the ŕow of ŕuid phases over the trays. These

factors have motivated the detailed study of distillation tray hydraulic characteristics.

Early related studies [3, 4, 44ś46] were limited to experimental work due to the

difficulties associated with modelling the complex behaviour of the multiphase ŕow on

the tray. In recent years, with the software and hardware development of computers,

there has been an emerging trend of using computational ŕuid dynamics (CFD) to

model the complex ŕows on the distillation tray [10, 22, 24, 33] and to optimize tray

geometry [21, 29, 47, 51].

Most of the previous CFD studies for distillation tray hydrodynamics were con-

ducted using commercial software packagesÐe.g., ANSYS CFXÐwhich have been

proved to be able to provide reliable results when combined with appropriate inter-

phase momentum closure and turbulence models. In this work, CFD studies were

conducted using the OpenFOAM® package, which is an open-source, customizable

software toolbox for CFD that was originally created by Henry Weller [13] in 1989.

1
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1.2 Literature review

1.2.1 Experimental studies

Stichlmair and Ulbrich [46] conducted experimental studies using a bubble cap and a

sieve tray. The multiphase system was composed of hot water and air. Thermocouples

were used to measure local liquid temperatures at multiple locations. Isotherms within

the liquid phase were calculated using local temperatures and interpreted as contours

of residence time.

Bell [3, 4] conducted experimental studies on commercial-scale distillation trays

using the ŕuorescent tracer and őber optic techniques to determine liquid-phase res-

idence time distributions on the tray.

Solari and Bell [45] utilized the same experimental techniques and obtained ŕuid

ŕow patterns and velocity proőles on commercial-scale sieve trays. These experi-

mental results were commonly used as validating criteria in later CFD studies [10,

33].

Schubert et al. [44] used a wire-mesh sensor technique that tracks conductivity

tracer pulses during their passage across the tray. The residence time distribution

and velocity proőle on a tray of 800mm diameter were obtained with high spatial

and temporal resolution.

1.2.2 CFD studies

Liu et al. [30] proposed a simple two-dimensional model for two-phase ŕow on a sieve

tray in an Eulerian-Eulerian framework. The ŕow variations in the froth regime along

the vertical direction were not considered. The interphase momentum exchange was

modelled as a resisting force on the liquid phase, evaluated based on the assumption

that the gas phase obtains the same velocity as the surrounding liquid phase in the

horizontal directions in the froth regime. They modeled the turbulence properties

in the liquid phase using a k − ϵ model. No turbulence model was employed for the

gas phase. The simulation results were compared with experimental measurements

by the authors. They concluded that the proposed model is suitable for predicting

two-dimensional liquid ŕow patterns on a sieve tray.

Mehta et al. [33] simulated the three-dimensional ŕows on the sieve tray using a
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single-phase model in an Eulerian framework for the liquid phase only. The momen-

tum transfer between liquid and gas phases was modelled as a force term acting on

the liquid phase. The vertical component of this force terms was calculated from a

mean momentum balance in the froth regime, and the horizontal components were

evaluated with the assumption that the rising bubbles of the gas phase accelerate to

the surrounding liquid velocity in the horizontal directions in the froth regime. The

turbulence was modelled using an empirical correlation proposed by Zuiderweg [52].

Simulations of a commercial-scale sieve tray were conducted and the results were

evaluated against experimental measurements by Solari and Bell [45]. They found

that the simulation results of the proposed model were within 33% of the measured

values, indicating the model should be further improved to provide more accurate

predictions.

Krishna et al. [22] simulated the three-dimensional ŕows of gas and liquid phases

on a sieve tray using a two-phase model in an Eulerian-Eulerian framework. The mo-

mentum transfer term between the two phases was estimated based on the correlation

of Bennett et al. [5], which assumes that the drag force dominates the momentum

exchange through bubble-liquid interactions. They modelled the turbulence proper-

ties of the liquid phase using the standard k− ϵ model [14]. No turbulence model was

employed for the gas phase, thereby assuming that the turbulence of the two-phase

system is dominated by the liquid velocity őeld. They simulated the three-dimensional

ŕows on a small rectangular experimental-scale tray using the package of models pre-

viously described. The results were validated against the experimental measurements

conducted in the same study. They concluded that the proposed model made rea-

sonable predictions of ŕow patterns but overpredicted the liquid hold-up in the froth

regime.

Krishna and Van Baten [24] extended the same simulation approach proposed by

Krishna et al. [22] to simulate the hydrodynamics of a larger experimental-scale sieve

tray and containing catalyst őlled containers. The results showed good quantitative

agreement with the experimental measurements of Van Baten et al. [49]. They

concluded that the proposed CFD approach encapsulated the geometry and scale

effects properly.

Gesit et al. [10] employed the same models proposed by Krishna et al. [22]
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and conducted simulations on a commercial-scale sieve tray conőguration. Their

simulations were validated using the experimental data from the work of Solari and

Bell [45].

Zarei et al. [51] simulated the three-dimensional ŕows using the same models

proposed by Krishna et al. [22] for a sieve tray based on the work of Solari and Bell

[45] and a geometrically similar Mini V-Grid valve tray. The concluded that the Mini

V-Grid valve tray has a higher capacity compared to the sieve tray. The simulation

results of sieve tray are in agreement with the experimental data of Solari and Bell

[45]. No experimental data was provided for the Mini V-Grid valve tray.

Li et al. [29] simulated the three-dimensional ŕows for a new type of őxed valve

tray using the same models proposed by Krishna et al. [22] with a few modiőcation:

a correlation based on experimental data was introduced into the momentum closure

model; and the standard k − ϵ model [14] was applied to both liquid and gas phases.

The macroscopic parametersÐe.g., clear liquid heightÐwere in good agreement with

experimental measurements by the authors. However, validation of the details of the

ŕow őeldÐe.g., velocities, phase fractionsÐwas not included in their study due to

the lack of experimental data.

Jiang et al. [21] developed a two-phase three-dimensional model in an Eulerian-

Eulerian framework to predict the hydrodynamics, mass-transfer behavior, and tray

efficiency of ripple trays. The interphase momentum exchange terms was modelled

as the drag force term. The value of the drag force was evaluated using different

correlations [1, 5]. Turbulence properties were modelled using the shear stress trans-

port (SST) model [34] for both the liquid and gas phases. Interphase mass transfer

was evaluated using a model developed based on őlm theory [27, 37] and penetra-

tion theory [7, 15]. The CFD predictions were in good agreement with experimental

measurements by the authors.

A summary of the reported CFD studies of distillation trays is given in Table

1.1. It can be observed that the majority of the simulations are conducted using two-

phase three-dimensional models in an Eulerian-Eulerian framework with momentum

and turbulence closure models for sieve trays. The simulated results of hydrodynamics

on sieve trays are commonly validated using the experiments of Solari and Bell [45].
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Table 1.1: Summary of literature on CFD studies for predicting the tray performance.

Reference Multiphase model* Closure models Tray setup CFD Software Validation

Liu et al.

[30]

Single-phase

2D, steady-state

Force term

evaluated using [30],

k − ϵ model [30]

for liquid phase only

Sieve tray

Φ=1.2m
Not speciőed [30]

Metha et al.

[33]

Single-phase

3D, steady-state

Force term

evaluated using [33],

eddy diffusivity model [52]

for liquid phase only

Sieve tray

Φ=1.21m
CFDS-FLOW 3D [45]

Krishna et al.

[22]

Two-phase

3D, transient

Drag force term

evaluated using [5]

Standard k − ϵ model [14]

for liquid phase only

Sieve tray

0.39m× 0.22m
CFX 4.2 [22]

Continued on next page
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Table 1.1 – continued from previous page

Reference Multiphase model Closure models Tray setup CFD Software Validation

Krishna

and

Van Baten

[24]

Two-phase

3D, transient

Drag force term

evaluated using [5]

Standard k − ϵ model [14]

for liquid phase only

Sieve tray

with

catalyst containers

Φ=1.2m

CFX 4.2 [49]

Gesit et al.

[10]

Two-phase

3D, transient

Drag force term

evaluated using [5]

Standard k − ϵ model [14]

for liquid phase only

Sieve tray

Φ=1.22m
CFX 5.4 [45]

Zarei et al.

[51]

Two-phase

3D, steady-state

Drag force term

evaluated using [5]

Standard k − ϵ model [14]

for liquid phase only

Sieve tray

and

Mini V-Grid

valve tray

Φ=1.22m

CFX 10.0

Only for

sieve tray

[45]

Continued on next page
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Table 1.1 – continued from previous page

Reference Multiphase model Closure models Tray setup CFD Software Validation

Li et al.

[29]

Two-phase

3D, transient

Drag force term

evaluated using [5]

with correlation [29]

Standard k − ϵ model [14]

for both phases

Fixed Valve Tray

Φ=0.54m
CFX 12.0 [29]

Jiang et al.

[21]

Two-phase

3D, steady-state

Drag force term

evaluated using [1, 5]

SST model [34]

for both phases

Ripple tray

Φ=0.31m
CFX 13.0 [21]

* All multiphase models in the summarized studies are constructed in the Eulerian framework or Eulerian-Eulerian framework.
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1.3 Thesis objectives

This research is intended to evaluate an Euler-Euler approach for the two-phase

hydrodynamics simulation of sieve trays using the open-source software package,

OpenFOAM®, with the following speciőc objectives:

• Evaluate the suitability of the Euler-Euler multiphase ŕow solver available in

OpenFOAM® for sieve tray simulation.

• Determine appropriate closure models for sieve tray hydrodynamics simulation.

• Conduct sieve tray simulations and validate the results against experimental

and simulation data obtained form published studies.



Chapter 2

Numerical Methodology

2.1 Governing equations

The two-ŕuid model is governed by two sets of conditional-averaged partial differential

equations expressing the conservation of mass and momentum using the Eulerian

approach for each ŕuid phase.

2.1.1 Eulerian approach

In the Eulerian approach, the description of the ŕuid őeld is focused on a certain őxed

location in space and its properties change as time passes and ŕuid ŕows through

that location. The instantaneous value of an arbitrary quantity ϕ is governed by the

following equation:

∂ (ρϕ)

∂t
︸ ︷︷ ︸

accumulation

= −∇ · (ρvϕ)
︸ ︷︷ ︸

convection

+∇ · (Γ∇ϕ)
︸ ︷︷ ︸

diffusion

+ Sϕ
︸︷︷︸

source

(2.1)

where ρ is local ŕuid density, v is the local ŕuid velocity vector, Γ is the diffusion

coefficient of quantity ϕ, and Sϕ represents the source or sink where quantity ϕ been

created or consumed.

The instantaneous mass conservation equation can be derived by substituting ϕ

with unity and recognizing that there is no generation/consumption or diffusion of

total mass:
∂ρ

∂t
= −∇ · (ρv) (2.2)

The instantaneous momentum conservation equation, in which the work done by

pressure and gravity have been taken into consideration, can be derived by substitut-

ing ϕ with v and accounting for the additional forces:

∂ (ρv)

∂t
= −∇ · (ρvv) +∇ · τ −∇p+ ρg (2.3)

9
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where p is ŕuid pressure, and g is gravitational acceleration. For a Newtonian ŕuid,

the viscous stress tensor τ is deőned by the following expression:

τ = µ
[

(∇v) + (∇v)T
]

− 2

3
µ (∇ · v) I (2.4)

where µ is the dynamic viscosity of the ŕuid, symbol T denotes the transpose opera-

tion, and I is the identity matrix.

Equations (2.2) and (2.3), also know as NavierśStokes equations (NS equations),

are capable of describing turbulent ŕows. However, it can be quite challenging to

resolve all the details in turbulent ŕows using NS equations directly due to the re-

quirements of extremely őne computational meshs and small time steps resulting

unacceptably high computational costs.

2.1.2 Reynolds averaging

In practice, turbulent ŕows are usually described in a statistical fashion. One such

a method, known as Reynolds averaging, was introduced by Osborne Reynolds in

1895. The principle of the Reynolds-averaging approach is to consider that, in a

turbulent ŕow őeld, at any given time t and location x an arbitrary quantity ϕ can be

decomposed into the average component ϕ̄ and its turbulent ŕuctuation component

ϕ
′

:

ϕ (t,x) = ϕ̄ (t,x) + ϕ
′

(t,x) (2.5)

Substituting equation (2.5) into equation (2.1) and taking an ensemble average yields

the general form of averaged conservation equations:

∂
(
ρ̄ϕ̄

)

∂t
= −∇ ·

(
ρ̄v̄ϕ̄

)
+∇ ·

(
Γ∇ϕ̄

)
+ S̄ϕ −∇ ·

(

ρv′ϕ′

)

(2.6)

The details of mathematical operations used during the averaging process are well

described in literature [50]. Equation (2.6) has the same form as equation (2.1) but

with an additional term, −∇ ·
(

ρv′ϕ′

)

, which is introduced in the averaging process.

Substituting the expression of forms in equation (2.6) into equations (2.2) and

(2.3) yields the Reynolds-averaged mass and momentum conservation equations:

∂ρ

∂t
= −∇ · (ρv̄) (2.7)
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∂ (ρv̄)

∂t
= −∇ · (ρv̄v̄) +∇ · τ̄ −∇p̄+ ρg −∇ ·

(

ρv′

v
′

)

(2.8)

In these equations, the term −ρv′

v
′ is deőned as the Reynolds stress R. Additionally,

replacing the mean velocity v and mean static pressure p with new notations U and

P yields the following equations:

∂ρ

∂t
= −∇ · (ρU) (2.9)

∂ (ρU)

∂t
= −∇ · (ρUU) +∇ · τ̄ −∇P + ρg +∇ ·R (2.10)

Equations (2.9) and (2.10), also know as Reynolds-averaged NavierśStokes equa-

tions (RANS equations), have similar forms as the NS equations as introduced in

Section 2.1.1, with the variables now representing ensemble-averaged values. To rep-

resent the effects of turbulence, an additional term known as Reynolds stress tensor

R was introduced into equation (2.10). This term cannot be calculated directly from

the averaged őeld values and therefore requires models for closure.

2.1.3 Conditional-averaged two-phase flow equations

For a two-phase system, both phases can be treated as continua that are inter-

penetrating and represented by two sets of averaged conservation equations over the

same őxed location in space[16]. It is essential to distinguish the amount of contri-

bution to the averaged conservation equations by each individual phase as they are

usually unevenly distributed at the same location. The solution to this problem is a

technique known as conditional averaging developed based on the work of Dopazo [8]

for intermittent turbulent ŕows.

The key concept of conditional averaging is a phase indicator function, χi (t,x),

which is deőned as follows:

χi (t,x) =







1, if phase i presents at (t,x)

0, if phase i does not present at (t,x)
(2.11)

The probability that a phase i is present at a certain location in space and time,

which is represented by the phase fraction αi is deőned as the ensemble average of χi

[16]:

αi = lim
N→∞

1

N

N∑

n=1

χi (2.12)
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Multiplying the RANS equations by the ensemble-averaged phase indicator func-

tion for both phases in a two-phase system yields:

∂ (αcρc)

∂t
= −∇ · (αcρcUc) (2.13)

∂ (αdρd)

∂t
= −∇ · (αdρdUd) (2.14)

∂ (αcρcUc)

∂t
= −∇· (αcρcUcUc)+∇· (αcτ̄ c)−αc∇P +αcρcg+∇· (αcRc)−M (2.15)

∂ (αdρdUd)

∂t
= −∇·(αdρdUdUd)+∇·(αdτ̄ d)−αd∇P+αdρdg+∇·(αdRd)+M (2.16)

where subscript c and d denote the continuous and dispersed phases, g is gravitational

acceleration, and M represents the momentum transfer between the two phases due

to interphase forces. The momentum transfer terms in equations (2.15) and (2.16)

have opposite signs, indicating that these are internal forces in the system.

Equations (2.13), (2.14), (2.15), and (2.16) are the governing equations for two-

ŕuid Model. The terms of Reynolds stress tensor R and interphase momentum trans-

fer term M are introduced through the averaging process and require modelling, which

will be discussed in detail in the subsequent sections.

2.2 Momentum transfer closure model

As shown in equations (2.15) and (2.16), a source term, M, is introduced into the

momentum equations to represent the momentum transfer due to forces acting be-

tween the continuous and dispersed phases. Depending on the physics involved, there

are variety of models and formulations available in literature [23, 31, 32, 42]. Some

of the most commonly utilized momentum transfer terms in bubbly ŕows are listed

below:

• Drag force term, MD: Momentum transfer due to the force acts on the bubble

in the direction opposite to the bubble motion with respect to surrounding

continuous phase.

• Lift force term, ML: Momentum transfer due to the force acts on the bubble

perpendicular to the bubble motion with respect to surrounding continuous

phase.
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• Virtual mass force term, MVM : Momentum transfer due to the force required

to accelerate the mass of the surrounding continuous phase as an accelerating

bubble moves through it.

• Turbulent dispersion force term, MTD: Momentum transfer due to the force

describes the spreading/diffusion of the dispersed phase due to turbulent ŕuc-

tuations in the continuous phase.

• Wall lubrication force term, MWL: Momentum transfer due to the force acts

on a bubble near a wall to prevent the bubble from touching the wall.

The interphase momentum transfer term is given by the sum of the momentum

transfer components caused by all the forces considered:

M = MD +ML +MVM +MTD +MWL (2.17)

Among these forces, the drag force usually dominates interphase momentum exchange

[22]. Therefore, only the drag force was considered in this study.

The momentum transfer due to drag force acting on a bubble can be calculated

from the following equation:

MD =
3

4
αdρc

Cd

d
|Ur|Ur (2.18)

where d is the bubble diameter, Ur = Ud−Uc represents the relative velocity between

the two phases, and Cd is the drag coefficient that requires modelling.

For a distillation column operating in the churn-turbulent regime, it can be chal-

lenging to determine the drag force on bubbles for the following reasons [23]:

• Bubbles breakup and coalesce resulting in non-uniform bubble sizes.

• Large bubbles have non spherical shapes.

• Bubbles do not necessarily have well deőned boundaries because gas jets break

up in the liquid to form bubbles, and the gas phase becomes the continuous

phase above the froth on the distillation tray.

Many studies have been conducted to try to improve the understanding of this ŕow

pattern and develop a model to predict the forces in such conditions; however, the
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challenge still remains largely open. A comprehensive literature review on this topic

can be found in [35].

In this work, the correlation proposed by Krishna et al. [23] was adopted to

estimate the drag coefficient acting on a group of bubbles in the churn-turbulent

regime:

Cd =
4

3

ρc − ρd
ρc

g
d

U2
slip

(2.19)

where Uslip is the relative velocity of the bubbles with respect to the liquid. When

the tray reaches the quasi-steady-state condition, Uslip is given by the following ex-

pression:

Uslip =
Us

αB
d

(2.20)

where Us is the superőcial gas velocity, and αB
d is the average gas hold-up in the froth

when system operates at a quasi-steady-state condition.

Substituting equation (2.20) into equation (2.19) yields:

Cd =
4

3

ρc − ρd
ρc

gd

(
αB
d

Us

)2

(2.21)

In this work, the correlation established by Bennett et al. [5] was used to estimate

the value of αB
d :

αB
d = 1− exp

[

−12.55

(

Us

√
ρd

ρc − ρd

)0.91
]

(2.22)

Substituting equations (2.20) and (2.22) into equation (2.19) yields:

Cd =
4

3

ρc − ρd
ρc

gd







1− exp

[

−12.55
(

Us

√
ρd

ρc−ρd

)0.91
]

Us







2

(2.23)

Therefore, the interphase momentum transfer term due to drag force can be evaluated

by Substituting equation (2.23) into equation (2.18). The resulting formulation is:

MD = αd (ρc − ρd)g







1− exp

[

−12.55
(

Us

√
ρd

ρc−ρd

)0.91
]

Us







2

|Ur|Ur (2.24)

This formulation is convenient for distillation tray ŕuid dynamics simulations because

it allows the drag force to be calculated without information about bubble diameter

d, which is difficult to obtain locally in the churn-turbulent regime.
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2.3 Turbulence closure model

As mentioned in Section 2.1.2, the Reynolds stress tensor R is introduced from the

averaging operation of the momentum conservation equations to account for turbulent

ŕuctuations. This term must be appropriately modelled to close the RANS equations.

One of the most common theories that is employed to approximate this unknown

term is the Boussinesq hypothesis [6]. Joseph Boussinesq proposed this theory to cor-

relate R as a linear function of the known deformation rate tensor with the coefficient

deőned as eddy viscosity:

R = −ρv′

v
′ = µt

[

(∇U) + (∇U)T − 2

3
µt (∇ ·U) I

]

− 2

3
ρkI (2.25)

where k is turbulent kinetic energy which is deőned as follows:

k =
1

2
U

′

U
′ (2.26)

the term 2/3ρkI is introduced to maintain the proper trace of the Reynolds stress

tensor [50], and µt is the eddy viscosity. Unlike the dynamic viscosity of a ŕuid µ,

the value of µt is not a constant for a given ŕuid but rather a quantity that changes

with position and status of the ŕow őeld. The Boussinesq hypothesis eliminates

the unknown Reynolds stress tensor but also introduces new unknowns k and µt.

The relationship between these two quantities can be described using the following

assumption:

µt = Cµρ
√
kL (2.27)

where Cµ is a dimensionless constant, and L is the characteristic length of the turbu-

lence. Now, the challenge is relating k and L with known quantities using turbulence

models.

In engineering applications, the most commonly used turbulence models are called

two-equation models, in which two transport equations are used to calculate the tur-

bulent kinetic energy and characteristic length separately. The well known standard

k − ϵ model [26] falls into this two-equation turbulence model category.

In the standard k− ϵ model, the turbulent kinetic energy k is obtained by solving

the following equation:

∂ (ρk)

∂t
+U · ∇ (ρk)−∇ ·

[(
µeff

Sck

)

∇k
]

= Gk − ρϵ+ Sk (2.28)
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where µeff is the effective viscosity, which is calculated as the sum of the dynamic

and eddy viscosities:

µeff = µ+ µt (2.29)

It should be mentioned that µeff will be used in lieu of µ in the momentum equa-

tions when a turbulence model is employed. Furthermore, Sck denotes the turbulent

Schmidt number for k, Gk is the production of the turbulent kinetic energy due to

the non-isotropic part of the Reynolds stress tensor, deőned as follows:

Gk = µt

[

(∇U) + (∇U)T − 2

3
(∇ ·U) I

]

: ∇U (2.30)

ϵ is the dissipation rate of k, and Sk represents other sources of turbulent kinetic

energy.

In turbulent ŕows, the kinetic energy of the turbulence will eventually transfer

into internal energy due to viscous dissipation. Based on this dissipation phenomena,

k and ϵ are related by the following equation:

L =
k3/2

ϵ
(2.31)

Thus, the expression for the eddy viscosity µt can be written as follows:

µt = Cµρ
√
kL = Cµρ

√
k
k3/2

ϵ
= Cµρ

k2

ϵ
(2.32)

To close the standard k− ϵ turbulence model, the following equation is employed

to obtain the value of ϵ:

∂ (ρϵ)

∂t
+U · ∇ (ρϵ)−∇ ·

[(
µeff

Scϵ

)

∇ϵ
]

= C1Gk
ϵ

k
− C2ρ

ϵ2

k
+ Sϵ (2.33)

where Scϵ denotes the turbulent Schmidt number for ϵ, C1 and C2 are constants, and

Sϵ represents other sources for the rate of turbulent kinetic energy dissipation.

The model parameters for equations (2.28) and (2.33) have been determined by

data őtting for a wide range of turbulent ŕows [26] and their values are listed in Table

2.1.

Equations (2.28) and (2.33) are the components of the single-phase standard k− ϵ
turbulence model. As presented in Section 1.2, Most of the investigated previous

simulation works have employed the standard k− ϵ turbulence model for liquid phase

only and modelled the gas phase as laminar ŕow. This is based on the assumption that
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Table 2.1: Coefficients in standard k − ϵ turbulence model.

Cµ C1 C2 Sck Scϵ

0.09 1.44 1.92 1.00 1.30

turbulence is dominated by the continuous phase; therefore, only the continuous phase

turbulent kinetic energy kc needs to be solved. The dispersed phase turbulent kinetic

energy kd will be determined using kc along with a response coefficient [26]. However,

it has been shown by the study of Garnier et al. [9] that the dominance of continuous

phase on turbulence is less signiőcant at high dispersed phase fractions. Moreover, in

regions where the continuous phase vanishes, the dispersed phase actually becomes

the continuous phase. This situation, which is known as phase inversion, introduces

additional numerical problems when solving the governing equations.

In the present study, a mixture k − ϵ model for two-phase ŕow developed by

Behzadi [2] has been adopted for turbulence modelling. The model is based on the

theory that at high phase fraction, both phases ŕuctuate as one mixed phase and the

transport equations are solved using the mixture properties for km and ϵm:

∂ (ρmkm)

∂t
+Um · ∇ (ρmkm)−∇ ·

[(
µt,m

Sck,m

)

∇km
]

= Gk,m − ρmϵm + Sk,m (2.34)

∂ (ρmϵm)

∂t
+Um·∇ (ρmϵm)−∇·

[(
µt,m

Scϵ,m

)

∇ϵm
]

= C1Gk,m
ϵm
km

−C2ρm
ϵm

2

km
+Sϵ,m (2.35)

The values of model parameters in equations (2.34) and (2.35) are left unchanged

from those in the standard k − ϵ model and are presented in Table 2.2.

Table 2.2: Coefficients in mixture k − ϵ turbulence model.

Cµ C1 C2 Sck,m Scϵ,m

0.09 1.44 1.92 1.00 1.30

The mixture properties appearing in equations (2.34) and (2.35) are deőned as

follows:

ρm = αcρc + αdρd (2.36)

Gk,m = αcGk,c + αdGk,d (2.37)

km =

(

αc
ρc
ρm

+ αd
ρd
ρm

Ct
2

)

kc (2.38)
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ϵm =

(

αc
ρc
ρm

+ αd
ρd
ρm

Ct
2

)

ϵc (2.39)

Um =
αcρcUc + αdρdUdCt

2

αcρc + αdρdCt
2 (2.40)

µt,m =
ρm

(
αcµt,c + αdµt,dCt

2
)

αcρc + αdρdCt
2 (2.41)

µt,d = C2
t

(
νc
νd

ρd
ρc

)

µt,c (2.42)

the new parameter Ct denotes the turbulence response coefficient [12], which is deőned

as follows:

Ct =
Ud

′

Uc
′

(2.43)

It is obvious that the value of Ct is required to evaluate equations (2.38) to (2.42).

In this study, the procedure used to obtain value of Ct is based on the model origi-

nally proposed by Issa [18] and the modiőcation proposed by Rusche [41] to account

for correlation with the dispersed phase fraction has been included. The model is

summarized as follows:

Ct = 1 + (Ct,0 − 1) exp(−f(αd)) (2.44)

f(αd) = 180αd − 4.71× 103αd
2 + 4.26× 104αd

3 (2.45)

Ct,0 =
3 + β

1 + β + 2ρd/ρc
(2.46)

β =
2AdL

2
e

ρcνcRet
(2.47)

Ad =
3αdρcCd |Ur|

4d
(2.48)

Le = Cµ
k
3/2
c

ϵc
(2.49)

Ret =

√
2kc
3
Le

νc
(2.50)

where Le is the eddy length scale, and Ret is the turbulence Reynolds number.
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2.4 The reactingTwoPhaseEulerFoam solver in OpenFOAM

A summary of the implementation of the őnite volume method in OpenFOAM® is

provided in A. In this study, the OpenFOAM® version 6 was used, and the Euler-

Euler solver reactingTwoPhaseEulerFoam was employed. The source code for this

solver is located in the OpenFOAM-6/applications/solvers/multiphase/react

ingEulerFoam/reactingTwoPhaseEulerFoam directory. The solver is described in

the reactingTwoPhaseEulerFoam.C őle as follows:

Solver for a system of 2 compressible ŕuid phases with a common pres-

sure, but otherwise separate properties. The type of phase model is run

time selectable and can optionally represent multiple species and in-phase

reactions. The phase system is also run time selectable and can optionally

represent different types of momentum, heat and mass transfer.

The following topics are discussed in this section:

• How the set of governing equations are implemented and solved

• How the drag model is implemented in this study.

• How the turbulence closure model is implemented and solved.

2.4.1 Solver algorithm

The reactingTwoPhaseEulerFoam solver employs the PIMPLE algorithm, which is

a combination of the PISO [19] and SIMPLE [40] algorithms, to obtain a segregated

solution of the pressure and velocity őelds. The pressure-implicit with splitting of

operators (PISO) algorithm is suitable for transient simulations, but the time step

size is constrained to a Courant number of less than 1 (Co < 1). The semi-implicit

method for pressure-linked equations (SIMPLE) algorithm is suitable for steady-state

simulations. The PIMPLE algorithm is a combination of both PISO and SIMPLE,

which is suitable for transient simulations with less constraints on time step size than

imposed by PISO.

As shown in equation (A.7), the accumulation term is discretized through a őnite-

difference approximation, which allows the ŕow őeld information to be obtained at a
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certain time point. When the ŕow is transient, using a large time step will cause too

large of a deference of ŕow őelds between two adjacent time steps, which can make

the PISO algorithm unstable and/or inaccurate. However, using a small time step

means that more computational resources are required, which is always unfavourable.

The principle of the PIMPLE algorithm is to use the SIMPLE algorithm to perform

iterations within each time step to converge the pressure and velocity őelds to a desired

tolerance. Meanwhile, the PISO algorithm is used in an inner loop to advance the solu-

tion in time. This combination of inner and outer looping structures within each time

step is intended to maintain stability for larger time steps, while also facilitating error

control. Figure 2.1 illustrates the structure of the PIMPLE algorithm implemented in

the reactingTwoPhaseEulerFoam solver in OpenFOAM® version 6. In Figure 2.1,

nOuterCorr stands for the number of outer loops for pressure-momentum coupling;

nCorr stands for the number of inner loops for pressure correction; nNonOrthoCorr

stands for the number of loops for pressure gradient correction due to non-orthogonal

mesh; and T is the end time of the simulation given by the user.
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Figure 2.1: Flowchart of the PIMPLE algorithm in OpenFOAM®.
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The application of this algorithm to the two-ŕuid model and its sub models is

described below.

First, given the similarities in terms of formulation between the viscous stress

tensor τ (see equation (2.4)) and the Reynolds stress tensor R (see equation (2.25)),

it is possible to merge these two terms into a new variable named effective stress Reff ,

which is given by the following expression:

Reff =
τ +R

ρ
(2.51)

and must be closed with a turbulence model.

As stated in Section 2.2, the only interphase force been considered in this study

is the drag force, therefor:

M = MD (2.52)

The drag force term can be split into explicit and implicit contributions as follows:

MD = Kd|Ur|Ud −Kd|Ur|Uc (2.53)

where Kd = 3
4
αdρc

Cd

d
. The purpose of splitting the drag force is that the implicit

term promotes diagonal dominance of the resulting matrix after discretization [28],

which facilitates convergence when solving the system of algebraic equations.

Substituting equations (2.51), (2.52), and (2.53) into the momentum conservation

equations (2.15) and (2.16) yields:

∂ (αcρcUc)

∂t
+∇ · (αcρcUcUc)−∇ · (αcρcReff,c)

= −αc∇P + αcρcg −KdUrUc +Kd|Ur|Ud (2.54)

∂ (αdρdUd)

∂t
+∇ · (αdρdUdUd)−∇ · (αdρdReff,d)

= −αd∇P + αdρdg −KdUrUd +Kd|Ur|Uc (2.55)

Performing a partial FVM discretization on equations (2.54) and (2.55) results in

an expression that can be presented in a matrix form similar to equation (A.12):

aQ,cUQ,c = H(Un
c )−

αc∇P ′

ρc
+
Kd

ρc
|Uo

r|Uo
d (2.56)
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aQ,dUQ,d = H(Ud)−
αd∇P ′

ρd
+
Kd

ρd
|Uo

r|Uo
c (2.57)

where H() is an operator that accounts for the contribution of all terms except the

pressure gradient, explicit part of the drag, and gravitational term from the momen-

tum equations [20], and P ′ = P − ρgh is a modiőed pressure. This step corresponds

to the "Build matrices for momentum equations" step in Figure 2.1. Equations (2.56)

and (2.57) can be further rearranged as follows:

Uc =
H(Uc)

aQ,c

− 1

aQ,c

(
αc∇P ′

ρc
+
Kd

ρc
|Uo

r|Uo
d

)

(2.58)

Ud =
H(Uc)

aP,d
− 1

aP,d

(
αd∇P ′

ρd
+
Kd

ρd
|Uo

r|Uo
c

)

(2.59)

The phase continuity equations (2.13) and (2.14), can be rearranged to give the

following equations:

∂ (αcρc)

∂t
+∇ · (αcρcUc)

= αc
∂ (ρc)

∂t
+ ρc

∂ (αc)

∂t
+ αcUc · ∇(ρc) + ρc∇ · (αcUc)

= αc
D(ρc)

Dt
+ ρc

∂ (αc)

∂t
+ ρc∇ · (αcUc)

(2.60)

∂ (αdρd)

∂t
+∇ · (αdρdUd)

= αd
∂ (ρd)

∂t
+ ρd

∂ (αd)

∂t
+ αdUd · ∇(ρd) + ρd∇ · (αdUd)

= αd
D(ρd)

Dt
+ ρd

∂ (αd)

∂t
+ ρd∇ · (αdUd)

(2.61)

These equations can be further rearranged as follows:

∇ · (αcUc) = −αc

ρc

D(ρc)

Dt
− ∂ (αc)

∂t
(2.62)

∇ · (αdUd) = −αd

ρd

D(ρd)

Dt
− ∂ (αd)

∂t
(2.63)

Summing these two equations and recognizing that ∂(αc+αd)
∂t

= 0 yields:

∇ · (αcUc + αdUd) = −αc

ρc

Dρc
Dt

− αd

ρd

Dρd
Dt

(2.64)

Equation (2.64) is equivalent to the continuity equations in the two-ŕuid model and

it provides a constraint for volume conservation [41].
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The pressure Poisson equation can be constructed by substituting equations (2.58)

and (2.59) into equation (2.64), which gives the following result:

∇ ·
[

αc

(
H(Uc)

aP,c
+

Kd

aP,cρc
|Uo

r|Uo
d

)

+ αd

(
H(Ud)

aP,d
+

Kd

aP,dρd
|Uo

r|Uo
c

)]

+

(
αc

ρc

Dρc
Dt

+
αd

ρd

Dρd
Dt

)

= ∇ ·
[

(
αa

ap,aρa
+

αb

ap,bρb
)∇P ′

]

(2.65)

Equation (2.65) can be solved for the updated pressure őeld. This step corresponds

to the "Solve Poisson equation" step in the PIMPLE algorithm shown in Figure 2.1.

In OpenFOAM®, the gradient terms in equation (2.65) are transformed into a

summation of face ŕuxes using the Gauss theorem. The faces ŕuxes are obtained

through iterations and corrected in the "Flux correction" step in in Figure 2.1. The

corrected ŕuxes will then be used to correct the velocities to obtain a set of new

velocities that satisfy the continuity constraint imposed by equation (2.64). This step

corresponds to the "Momentum corrector" step in Figure 2.1.

2.4.2 Drag model implementation

The reactingTwoPhaseEulerFoam solver provides a set of common drag models.

However, the drag model employed in this study is not provided and therefore needs to

be implemented by the user. The procedure for adding new sub-models is described in

detail by Norouzi [38]. The discussion in this section mainly focuses on the numerical

treatment applied to the new drag model.

In OpenFOAM®, the drag force coefficient is returned by a base class dragModel

as K(). The interphase momentum transfer term due to the drag force is then calcu-

lated as follows:

MD = KUr (2.66)

The source code of dragModel is available in the OpenFOAM-6/applications/so

lvers/multiphase/reactingEulerFoam/interfacialModels/dragModels/dr

agModel/dragModel.C őle. The relevant part of the code is given in Figure 2.2.

Thus, the code of dragModel.C is given by the following mathematical expression:

K = max(αd, αd,residual)
3

4
CdReCsρcνc

1

d2
(2.67)
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1 Foam::tmp<Foam::volScalarField> Foam::dragModel::Ki() const

2 {

3 return

4 0.75

5 *CdRe()

6 *swarmCorrection_->Cs()

7 *pair_.continuous().rho()

8 *pair_.continuous().nu()

9 /sqr(pair_.dispersed().d());

10 }

11

12

13 Foam::tmp<Foam::volScalarField> Foam::dragModel::K() const

14 {

15 return max(pair_.dispersed(), pair_.dispersed().residualAlpha())*Ki();

16 }

Figure 2.2: The deőnition of drag coefficient K() in dragModel.C.

1 Foam::tmp<Foam::volScalarField> Foam::phasePair::magUr() const

2 {

3 return mag(phase1().U() - phase2().U());

4 }

5

6 Foam::tmp<Foam::volScalarField> Foam::phasePair::Re() const

7 {

8 return magUr()*dispersed().d()/continuous().nu();

9 }

10

Figure 2.3: The deőnition of bubble Reynolds number Re in phasePair.C.

where Cs is the swarm correction coefficient that can be used to correct the value of

the drag coefficient Cd to account for the effect of a dense swarm of rising bubbles [48].

In this study, no swarm correction is employed, and therefore Cs() returns value of

unity. Re is the bubble Reynolds number, which is calculated as shown in Figure 2.3

and the code can be found in the OpenFOAM-6/applications/solvers/multipha

se/reactingEulerFoam/phaseSystems/phasePair/phasePair/phasePair.C

őle.

The code in Figure 2.3 can be translated into the following mathematical equation:

Re =
|Uc −Ud| d

νc
(2.68)
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1 Foam::tmp<Foam::volScalarField>

2 Foam::dragModels::Krishna::CdRe() const

3 {

4 dimensionedScalar unitconversion

5 (

6 "unitconversion",dimensionSet(0, -1, 0, 0, 0, 0, 0),1

7 );

8

9 return

10 (4.0/3.0)

11 *(rhoc_-rhod_)/rhoc_

12 *9.81

13 *pair_.dispersed().d()

14 *unitconversion

15 *sqr((1-exp(-12.55*pow(Us_*sqrt((rhod_/(rhoc_-rhod_))),0.91)))/Us_)

16 *max(pair_.continuous(), scalar(1.0e-6))

17 /exp(-12.55*pow(Us_*sqrt((rhod_/(rhoc_-rhod_))),0.91))

18 *max(pair_.Re(), residualRe_);

19 }

20

Figure 2.4: The deőnition of the drag coefficient in Krishna.C.

Substituting equations (2.67) (with Cs=1) and (2.68) into equation (2.66) yields:

MD = max(αd, αd,residual)
3

4
Cd

|Uc −Ud| d
νc

Csρcνc
1

d2
Ur

=
3

4
max(αd, αd,residual)ρc

Cd

d
|Ur|Ur

(2.69)

Equation (2.69) is in agreement with the conventional formula used to evaluate the

drag force given as equation (2.18) with a minor modiőcation on the phase fraction

term. αd,residual is a small user-deőned value to set the lower limit of phase fraction

when calculating drag force. This modiőcation prevents the value of drag force from

approaching zero in regions where the continuous phase fraction approaches zero [28].

At line 5 in Figure 2.2, the function named CdRe() is called, which returns the

product of the drag coefficient Cd and the bubble Reynolds number Re. The value

returned by this function call depends on the drag model from which Cd is obtained.

In this study, the drag coefficient correlation by Krishna et al. [23] was implemented

into OpenFOAM®. The relevant source code for this correlation was implemented

and the relevant code is shown in Figure 2.4

Translating the code in Figure 2.4 into mathematical form and removing the term
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Re yields the following equation:

Cd =
4

3

ρc − ρd
ρc

gd

(
αB
d

Us

)2
max(αc, αc,residual)

1− αB
d

(2.70)

where αc,residual was set to be 1.0× 10−6 and αB
d is calculated using equation (2.22).

The implemented drag model in equation (2.70) is derived from the theoretical for-

mulation in equation (2.21) by multiplying a term that serves as a weighting factor.

This modiőcation, which is similar to the one implemented by Krishna et al. [22],

is found to be essential for obtaining reasonable simulation results. A study case on

this term is presented in Section 3.4.

2.4.3 Turbulence model implementation

In OpenFOAM® version 6, a built-in turbulence model named mixtureKEpsilon is

provided. This is the model that was used in the present work. The source code can

be found in the OpenFOAM-6/src/TurbulenceModels/phaseCompressible/RA

S/mixtureKEpsilon directory. It should be noted that the source code is not in

exactly the same form as the model provided by Behzadi [2] in Section 2.3. The main

differences are described in Appendix B.



Chapter 3

Case Studies

In this chapter, a series of case studies was conducted using the OpenFOAM® solver

reactingTwoPhaseEulerFoam to evaluate its capacity to simulate the multiphase

ŕow on a simpliőed sieve tray conőguration with a variety of settings.

3.1 Base case setup

3.1.1 OpenFOAM case structure

One of the advantages of using OpenFOAM® over commercial CFD software packages

is that the user has the control over almost every detail of the computing process and

data ŕow. But, on the other hand, it also requires the user to have a comprehensive

understanding of the physics of problem, proper modelling, and solving algorithm

control as well as the OpenFOAM® case structure itself. A basic őle structure for

an OpenFOAM® case using the reactingTwoPhaseEulerFoam solver that contains

the minimum set of őles required to run a sieve tray simulation is presented in Figure

3.1 and described as follows:

• A 0 directory that contains a set of individual őles providing data of initial

values and boundary conditions for every ŕow őeld of interestÐe.g., pressure,

velocityÐto initialise the simulation. Those data must be speciőed by the user.

The name 0 comes from the fact that simulations usually start at time t = 0.

OpenFOAM® writes simulation results into directories that share the same

structure of 0 directory and named based on the simulated time at which the

data is written.

• A constant directory that contains őles specifying physical propertiesÐe.g.,

turbulence propertiesÐfor the simulated problem and a sub-directory polyMesh

that provides full information of the computing mesh.

28
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• A system directory that contains at least three őles: the controlDict őle that

provides general control parametersÐe.g.,start/end timeÐfor the simulation;

the fvSchemes őle that speciőes numerical schemes for discretization; and the

fvSolution őle that speciőes tolerances and controls the algorithm for linear

equation solvers.
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Figure 3.1: Directory structure of a typical reactingTwoPhaseEulerFoam case.
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3.1.2 Simulation geometry and mesh

A simpliőed sieve-tray-like geometry was used for solver testing. The design param-

eters of the simulated tray are shown in Table 3.1. Figure 3.2 shows the schematic

diagram of the geometry used in the simulation. The liquid phase enters through the

liquid inlet boundary at a liquid load per weir length of 8.25× 10−4m2 s−1. The gas

phase enters through the gas inlet boundary at a superőcial gas velocity of 0.5m s−1.

A fully orthogonal hexahedral grid was created based on this geometry. The total

number of grid cells within the computing domain is 7740, with a uniform grid size

of 5× 10−3m.

Table 3.1: Design parameters of the simple sieve tray.

Design parameter Value

Tray length 0.215m
Tray height 0.18m
Tray depth 0.025m
Downcomer clearance 0.015m
Weir height 0.08m
Number of holes 10
Square Hole size 0.005m
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Figure 3.2: Schematic layout of the simple sieve tray geometry.
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3.1.3 Boundary and initial conditions

In the 0 directory, a set of őles is provided for every ŕow variable that is involved in

the simulation. These ŕow variables are described in Table 3.2.

Table 3.2: Variables that require input of boundary conditions and initial conditions
in the 0 directory of the base case.

Flow variables Physical meaning

alpha.air Volume fraction of the gas phase
alphat.air Turbulent thermal diffusivity of the gas phase
alphat.water Turbulent thermal diffusivity of the liquid phase
T.air Temperature of the gas phase
T.water Temperature of the liquid phase
U.air Velocity of the gas phase
U.water Velocity of the liquid phase
p Static pressure
p_rgh Pseudo hydrostatic pressure
k.air Turbulent kinetic energy of the gas phase
k.water Turbulent kinetic energy of the liquid phase
km Turbulent kinetic energy of the mixture
epsilion.air Turbulent kinetic energy dissipation rate of the gas phase
epsilion.water Turbulent kinetic energy dissipation rate of the liquid phase
epsilionm Turbulent kinetic energy dissipation rate of the mixture
nut.air Turbulent viscosity of the gas phase
nut.water Turbulent viscosity of the liquid phase

Appropriate boundary conditions are essential to a successful simulation. In prac-

tice, the local ŕow proőles at the liquid and gas inlets are usually unavailable; instead,

the averaged quantities like ŕow rates are given. To set up a simulation with the lack

of information, some reasonable assumptions and simpliőcations are required when

specifying the boundary conditions.

OpenFOAM® offers a bank of comprehensive boundary conditions, which inherit

from two of the most basic built-in boundary conditions, namely FixedValue and

zeroGradient.

The fixedValue boundary condition prescribes a Dirichlet condition, which ex-

plicitly speciőes the value on the patch as follows:

ϕ = ϕref (3.1)
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Where ϕ is an arbitrary quantity and ϕref is the explicitly speciőed reference value

on the patch.

The zeroGradient boundary condition prescribes a Neumann condition, which

speciőes a zero gradient of the őeld variable in the direction normal to the patch:

∂ϕ

∂n
= 0 (3.2)

Where n is the unit vector normal to the patch face.

In this study, heat transfer was not considered. Thus, the boundary conditions for

turbulent thermal diffusivity of both phasesÐi.e., alphat.air and alphat.waterÐ

were speciőed using calculated conditions, which means the values of these variables

will be calculated using relevant ŕow variablesÐe.g.,αt = νt/Prt, αt is turbulent

thermal diffusivity, νt is kinematic Eddy viscosity, and Prt is Turbulence Prandtl

NumberÐwith values set to be 0 on all boundary patches except the walls. On the

boundary patch for walls, wall functions were employed. The initial values of these

two ŕow variables in the internal computing region were speciőed to be 0.

The boundary conditions for temperaturesÐi.e., T.air and T.waterÐwere spec-

iőed using fixedValue conditions with values of 273.15K on all boundary patches.

It should be noted that since heat transfer is not considered in this study, the speciőed

values of the temperatures do not affect the simulation results. Initial values of these

two ŕow variables were speciőed to be 273.15K for the internal őelds as well.

For turbulence variables k.air, k.water, km, epsilion.air, epsilion.water,

and epsilionm, the boundary conditions on the inlet patches were speciőed using

fixedValue conditions with values estimated from empirical correlations [1]. Wall

functions were applied to the wall boundary patches. On the outlet boundary, the

boundary conditions for these variable were speciőed as inletOutlet conditions.

This boundary condition works as a zeroGradient condition for outŕow and for

backŕow it works as a fixedValue condition with the value to be explicitly speciőed

by the user. In this case, the values of these turbulence variables in the backŕow

condition were speciőed to be the same as the values of initial internal őelds. Initial

values of these ŕow variables within the internal region were set to be small values

with the same magnitude of the estimated values on the inlet patches.

For the turbulence ŕow variables nut.air and nut.water, wall functions were
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applied to the boundary patch for walls. On the other boundary patches, the bound-

ary conditions were speciőed as calculated. The initial values of these two ŕow

variables were set to be a small value (1× 10−8) for the internal őelds.

In the solver reactingTwoPhaseEulerFoam the pseudo hydrostatic pressure prgh

is solved instead of the regular static pressure p to gain numerical advantages [13].

prgh is related to p through the following formula:

prgh = p− ρg(h− href ) (3.3)

where g is the gravitational acceleration, h is the height in the opposite direction to

gravity, href is the reference height in the opposite direction to gravity. Thus, only

explicit boundary conditions are required for p_rhg and all boundary conditions in

the p őle can be set to the calculated condition. The speciőcations of boundary

and initial conditions for p_rgh and the rest three ŕow variablesÐi.e., alpha.air,

U.air, and U.waterÐare given in the following paragraphs.

On the boundary patch of walls, the speciőed boundary conditions for each ŕow

variable are listed below:

• alpha.air: zeroGradient boundary condition.

• p_rgh: fixedFluxPressure boundary condition. This boundary condition

adjusts the pressure gradient such that the ŕux on the boundary is that speciőed

by the velocity boundary condition.

• U.air: A free-slip wall boundary condition.

• U.water: A no-slip wall boundary condition.

On the boundary patch of liquid inlet, the following boundary conditions for each

ŕow variable were speciőed:

• alpha.air: fixedValue boundary condition with the value speciőed to be

0. This assumes that only pure liquid phase is entering the computing domain

through the liquid inlet.

• p _rgh: fixedFluxPressure boundary condition.
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• U.air: A free-slip wall boundary condition. This assumes that the gas phase

does not penetrate the liquid inlet boundary.

• U.water: fixedValue boundary condition with the value calculated from the

known liquid ŕow rate. The formula is as follows:

UL,in =







QL

hapLw

0

0







(3.4)

where QL is the liquid load, hap is the downcomer clearance, and Lw is the weir

length.

On the boundary patch of gas inlet, the following boundary conditions for each

ŕow variable were speciőed:

• alpha.air: fixedValue boundary condition with the value set to be 1. This

assumes that only pure gas phase is entering the computing domain through

the gas inlet.

• p _rgh: fixedFluxPressure boundary condition.

• U.air: fixedValue boundary condition with the value calculated from the

known gas ŕow rate. The formula is as follows:

UG,in =







0

0

|Us| AB

AH







(3.5)

where AB is the bubbling area, and AH is the total area for holes.

• U.water: A no-slip wall boundary condition. This assumes that the liquid

phase does not penetrate the gas inlet boundary.

On the boundary patch of outlet, the following boundary conditions each ŕow

variable were speciőed:

• alpha.air: inletOutlet condition. In this case, the value for backŕow was

speciőed to be 1, which implies that backŕow is pure gas.
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• p_rgh: prghTotalPressure condition.

• U.air: pressureInletOutletParSlipVelocity condition.

• U.water: pressureInletOutletParSlipVelocity condition.

Details of the boundary conditions applied to this boundary patch are discussed in

Section 3.3.

The initial value of modiőed pressure, p_rgh, was set to 101 325 kgm−1 s−2 for

the internal őeld. It should be noted that for incompressible ŕuids simulation, as was

done in this study, the numerical value used for the pressure őeld initialization has

no inŕuence on the simulation results. Both the initial values of gas velocity U.gas

and liquid phase velocity U.water were speciőed to be 0 for internal őelds. The gas

phase fraction alpha.air was initialized to a value of 0.2 from the bottom of the

tray to the weir height and initialized to a value of 0 for the rest part of the internal

őeld.

3.1.4 Physical properties and other sub-models

Within the constant dierctory, there is a thermoType dictionary which provides a

set of thermodynamic and transport property models. As an example, the entry for

the packages of thermophysical models employed in this study for water is presented

in Figure 3.3:

The entries in this thermoType dictionary are explained below:

1 thermoType

2 {

3 type heRhoThermo;

4 mixture pureMixture;

5 transport const;

6 thermo hConst;

7 equationOfState rhoConst;

8 specie specie;

9 energy sensibleInternalEnergy;

10 }

11

Figure 3.3: An example entry for thermoType dictionary.
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• type: Thermophysical model type. heRhoThermo is a density-based model

which is the only valid option for solver reactingTwoPhaseEulerFoam[13].

• mixture: The model speciőes mixture composition, pureMixture represents

a mixture that has only one chemical component (i.e., no mass transfer or

reactions).

• transport: The transport model used to evaluates dynamic viscosity µ and

thermal conductivity κ. The const model speciőes a constant dynamic viscosity

µ and a constant Prandtl number Pr, value of the thermal conductivity κ is

calculated using the following formula:

κ =
cpµ

Pr
(3.6)

• thermo: The thermodynamic model used to evaluate the speciőc heat capacity

cp . The hConst model speciőes a constant cp and a constant heat of fusion Hf .

• equationOfState: The rhoConst model assumes a constant density ρ.

• specie: Deőnes number of moles, Moles, and molecular weight, molWeight,

of the specie.

• energy: The form of energy to be used in the simulation. The key word

sensibleInternalEnergy indicates that the solution uses internal energy e

in forms that the heat of formation ∆hs is not included.

The same set of thermophysical models were selected for air as well. The required

numerical inputs for the selected models are summarized in Table 3.3.

Table 3.3: Speciőcations of thermophysical properties for the base case.

Air Water

Density 1.204 kgm−3 998.21 kgm−3

Molecular weight 28.97 gmol−1 18 gmol−1

Speciőc heat 1006 J kg−1 K−1 4184.4 J kg−1 K−1

Heat of fusion 0 JK−1 0 JK−1

Dynamic viscosity 1.825× 10−5 kgm−1 s−1 0.39 kgm−1 s−1

Prandlt number 0.7309 6.99
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In the phaseProperties dictionary within the constant directory, a system of

two phases was deőned for the simulation: water, and air. A constant diameter model

was selected for both phases with a diameter of 0.0055m was speciőed for air bub-

bles and water droplets. However, it should be noted that the speciőed values of the

bubble/droplet diameters should have no signiőcant impact on the simulation results

because the drag model employed in the simulations is independent of the bubble/-

droplet diameter. Drag force is the only interphase momentum transfer mechanism

considered in the simulations and air is always considered as the dispersed phase. The

drag force model employed in the simulations is described in equation (2.70). The

equivalent code of equation (2.70) is described in Section 2.4.2.

In the turbulenceProperties.air and turbulenceProperties.water dic-

tionaries within the constant directory, the mixtureKEpsilon turbulence model as

described in Section 2.4.3 was speciőed for both phases.

Gravitational acceleration was included in this study and its value is speciőed in

the g dictionary within the constant directory.

3.1.5 Discretization schemes

The discretization methods, which discretize the governing equations into algebraic

equations over the control volumes, are speciőed in the fvSchemes dictionary within

the system directory. The speciőcations of discretization schemes employed are listed

in Table 3.4. In this study, transient simulations were performed to maintain numer-

ical stability. However, analysis of the results focused on the time-averaged ŕow

characteristics rather than their instantaneous behaviour. Thus, the implicit Euler

temporal discretization scheme, which is őrst-order accurate but bounded, was em-

ployed. This scheme is less accurate than other second-order temporal discretization

schemesÐe.g., backwardÐbut more robust. For the discretization of the gradient

terms and the divergence of the stress tensor, the Gauss linear scheme was em-

ployed. This scheme is second-order accurate and unbounded. For the divergence

terms involved in mass conservation equations, the Gauss vanLeer scheme, which

is a second-order accurate bounded scheme in the class of total variation dimin-

ishing (TVD) schemes, was employed. This scheme is specially formulated to pro-

vide oscillation-free solutions in regions with rapidly changing gradients. The Gauss
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limitedLinear 1 scheme was employed for turbulence and energy equations. This

scheme has second-order accuracy and requires an explicitly speciőed coefficient with

a value between 0 and 1, where 1 provides the strongest limiting towards the Gauss

upwind scheme and 0 provides the least limiting towards the Gauss linear scheme.

In this study, the coefficient was speciőed to be 1. The Gauss limitedLinearV 1

scheme was applied to the divergence terms of momentum equations. It is similar

to the Gauss limitedLinear 1 scheme with an additional V in its name indicating

that this scheme is applied separately for each component of the vector őeld. The

uncorrected scheme was employed for surface normal gradient terms. This scheme

is only valid for computing meshes with very low non-orthogonality, which is appro-

priate because the mesh prepared for the case studies is fully orthogonal. The scheme

speciőed for Laplacian terms is Gauss linear uncorrected, which means that the

Gauss scheme is employed for discretization, the linear scheme is employed for in-

terpolation, and uncorrected scheme is speciőed for the surface normal gradient

part of the Laplacian terms.

There are over őfty options of different schemes provided in OpenFOAM® [13].

Conőguring the optimized combination of schemes which gives the best numerical

performance for a given simulation is out of the scope of this study and many com-

binations of schemes may perform similarly. The presented combination of schemes

was obtained through a process of trial and error following a few general guidelines:

• Use schemes of at least second-order accuracy for the ŕow őelds of interest.

• Use schemes that ensure the boundedness of certain ŕow propertiesÐe.g., phase

fraction.

• Use surface normal gradient schemes that are appropriate based on the orthog-

onality of the computing grid.
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Table 3.4: Speciőcations of discretization schemes for the base case.

Category Syntax of related terms in the equations Discretization scheme

Time schemes ddt() Euler

Gradient schemes grad() Gauss linear

Divergence schemes
div(phi,alpha.air)

div(phir,alpha.air)
Gauss vanLeer

Divergence schemes* div(alphaRhoPhi,U)

div(phi,U)
Gauss limitedLinearV 1

Divergence schemes*

div(alphaRhoPhi,(h|e))

div(alphaRhoPhi,K)

div(alphaPhi,p)

div(alphaRhoPhi,(k|epsilon))

div(phim,(k|epsilon)m)

Gauss limitedLinear 1

Divergence schemes* div((alpha*rho*nuEff)*dev2(T(grad(U)))) Gauss linear

Laplacian schemes laplacian() Gauss linear uncorrected

Interpolation schemes N/A linear

Surface normal gradient schemes snGrad() uncorrected

* These schemes apply to equation terms for both phasesÐe.g. div(phi.air,U.air) and div(phi.water,U.water)Ðthe suffixes are
omitted for simplicity.
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3.1.6 Solution and algorithm control

The algebraic equations created as a result of the discertization process must be solved

using linear equation solvers that are explicitly speciőed within the fvSolutions

dictionary in the system directory. An example of the syntax is presented in Figure

3.4.

The descriptions of relevant parameters are as follows:

• p_rgh: The name of the ŕow variable being solved. In this example, the linear

solver is speciőed for the pseudo hydrostatic pressure calculation.

• solver: Speciőcation of the linear solver. In this example, GAMG stands for the

generalised geometric-algebraic multi-grid linear solver.

• smoother: Speciőcation of the smoother being applied to the linear solver. In

this example, the GaussSeidel smoother is speciőed.

• tolerance: A value that serves as the absolute convergence criteria. If the

solver error evaluated by substituting the current solution back into the original

algebraic equations being solved and taking the normalized magnitude of the

difference between left and right hand sides falls below this speciőed value, the

solver will stop iterating.

• relTol: A value that serves as the relative convergence criteria. If the relative

error evaluated by the normalized magnitude of the ratio of current solver error

and the solver error from last iteration falls below this speciőed value, the solver

will stop iterating. In OpenFOAM®, the linear solver will stop iterating when

any of the speciőed tolerances have been reached. In transient simulations, this

value is commonly set to be 0 to maintain the accuracy of solutions in each time

step.

We can apply different linear solver settings for each ŕow variable, and the speciőca-

tions used for the base case are summarized in Table 3.5.

For the base case, the PIMPLE algorithm, as described in Section 2.4.1, was em-

ployed for velocity-pressure coupling. Control parameters of the algorithm are speci-

őed in the fvSolutions dictionary and the syntax is presented in Figure 3.5.

The descriptions of relevant parameters are as follows:
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1 p_rgh

2 {

3 solver GAMG;

4 smoother GaussSeidel;

5 tolerance 1e-8;

6 relTol 0;

7 }

8

Figure 3.4: An example syntax of linear solver speciőcation entry.

Table 3.5: Speciőcations of linear solvers for the base case.

Flow őeld Linear solver Residual control

Phase fraction
solver: smoothSolver

smoother: symGaussSeidel
1e-8

Pressure
solver: GAMG

smoother: DIC
1e-7

Velocity
solver: smoothSolver

smoother: symGaussSeidel
1e-8

Energy
solver: smoothSolver

smoother: symGaussSeidel
1e-8

Turbulence
solver: smoothSolver

smoother: symGaussSeidel
1e-8

1 PIMPLE

2 {

3 nOuterCorrectors 3;

4 nCorrectors 2;

5 nNonOrthogonalCorrectors 0;

6 }

7

Figure 3.5: The syntax of PIMPLE algorithm speciőcations
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• nOuterCorrectors: The number of times the entire system of equations must

be solved for each time step, namely the outer loop.

• nCorrectors: The number of times the pressure equation and momentum

corrector must be solved within each outer loop for each time step, namely the

inner loop.

• nNonOrthogonalCorrectors: The iterations of the explicit non-orthogonal

correction applied to pressure equation within each inner loop.

The under-relaxation factor, a numerical treatment that improves the stability of

a simulation[36], can be speciőed in the fvSolutions dictionary as well. For the base

case the under-relaxation factor was speciőed to be 1, meaning no under-relaxation

is applied.

The time step size of simulation is speciőed in the controlDict dictionary in

the cystem directory. For the case study adjustTimeStep was used, which allows

the solver to adjust the time step size during the simulation based on an explicitly

speciőed maximum Courant number maxCo. For the base case, the value of maxCo

was set to be 0.5.

The reader is referred to the OpenFOAM® documentation [13] for detailed de-

scriptions of the mentioned numerical settings as well as other parameters that are

not presented in this section.

3.1.7 Base case results

A transient simulation was conducted for the previously described base case. The

liquid phase fraction proőles at various time steps are shown in Figure 3.6. It is

shown that, at the beginning of the simulation, the air phase injects into the domain

through the holes of the sieve tray as gas jets. This is because the initialized phases

on the tray are stationary, which leads to a large relative velocity between the phases

on the tray and the gas entering the tray. As the simulation continues, the two phases

become well mixed in the tray center and high liquid hold-up can be observed at the

lower corners of the tray due to the constraints of walls. Time-averaged liquid phase

fraction proőles are presented in Figure 3.7. It shows that the time-averaged liquid

phase fraction at the given plane does not change appreciably after a certain time
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step, indicating the simulation has reached a quasi-steady-state condition. The overall

liquid hold-up in the system was monitored throughout the simulation and the results

are shown in Figure 3.8. It shows that the instantaneous value of overall liquid hold-

up is time dependent but the time-averaged overall liquid hold-up dose not change

appreciably after time t = 25 s. Therefor, the base case simulation is deemed to have

converged to a quasi-steady-state condition after 20 seconds of simulated time.
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(a) t = 1 s (b) t = 5 s

(c) t = 10 s (d) t = 20 s

Figure 3.6: Instantaneous Liquid phase fraction proőles on the XZ plane across the
tray center at different simulated times for the base case.
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(a) t = 0 s to t = 1 s (b) t = 0 s to t = 5 s

(c) t = 0 s to t = 10 s (d) t = 0 s to t = 20 s

Figure 3.7: Time-averaged liquid phase fraction proőles on the XZ plane across the
tray center over different time intervals for the base case.
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Figure 3.8: Overall liquid hold-up as a function of time for the base case. (a) Instan-
taneous values at time t, (b) Time-averaged values over the time range from t = 0 s
to time t.
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3.2 Flow regime case study

As seen in Figure 3.6, the top one third of the tray region is practically occupied by

gas phase only. A test case with a reduced tray height was examined to explore the

possibility of reducing computing cost by reducing the size of the geometry because

the region of interest is mainly the mixed froth regime above the plate.

The geometry of this test case is modiőed from the based case with a reduced tray

height of 0.12m. Other settings were kept the same as the base case. The instan-

taneous phase fraction results are shown in Figure 3.9. The simulation results show

that liquid phase will reach the top boundary of the tray with reduced height of the

simulation domain, which is an unfavoured situation for the adopted boundary con-

dition settings. The prghTotalPressure boundary condition was used for pressure

őeld on the top boundary, which allows possible backŕow into the simulation regime

with a user-deőned phase composition. For a sieve tray with enough height, it is safe

to assume the backŕow through the top boundary will be pure air as water droplets

above the froth regime will eventually drop back due to gravity. However, with re-

duced height of the simulation domain causing both phases to be able to leave the

region through the top boundary in a heterogeneous manner, the phase composition

of the possible backŕow becomes unpredictable. Moreover, the reduced height brings

difficulties when it comes to determine the dispersion height. The results shown in

Figure 3.9 suggest that the simulated sieve tray geometry should have enough verti-

cal space such that the single-phase backŕow boundary condition is suitable and to

calculation of the dispersion height from the simulation.
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(a) t = 1 s (b) t = 5 s

(c) t = 10 s (d) t = 20 s

Figure 3.9: Instantaneous liquid phase fraction proőles on the XZ plane across the
tray center at different simulated times for the ŕow regime test case.
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3.3 Boundary condition case study

OpenFOAM®requires a set of boundary conditions to be speciőed on each boundary

patch for every ŕow variables, which includes temperature, turbulence parameters,

phase fraction, velocity, and pressure. On the boundary patch for the outlet, the ŕow

is complex and there is no predetermined information available about the phase frac-

tion and velocity proőles for each phase. Therefore, the following boundary conditions

were tested for each ŕow variable:

• p _rgh:

1. The prghPressure boundary condition provides an explicitly speciőed

value for the static pressure p similar to the fixedValue condition.

2. The prghTotalPressure boundary condition provides an explicitly spec-

iőed reference pressure pref , and the value for prgh is then calculated as

follows:
prgh = p− ρg(h− href )

p =







pref for outŕow

pref − 0.5ρ|U|2 for inŕow

(3.7)

where p is static pressure, h is the height in the opposite direction to gravity,

href is the reference height in the opposite direction to gravity.

• U.air:

1. zeroGradient boundary condition.

2. pressureInletOutletVelocity boundary condition. This boundary

condition performs as a zeroGradient condition for outŕow. For back-

ŕow, the velocity in the normal direction is calculated from the ŕux and the

tangential velocity can be optionally speciőed. In this case, the tangential

velocity was speciőed as zero.

3. pressureInletOutletParSlipVelocity boundary condition that per-

forms as a zeroGradient condition for outŕow. For backŕow, the velocity

is calculated from the ŕux and a slip condition is applied tangential to the

patch.
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• U.water: The boundary condition for this ŕow variable was kept the same as

the one used for U.air.

The results of test cases employing different pressure and velocity boundary con-

dition combinations on the outlet boundary patch are presented in Table 3.6.
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Table 3.6: Results of boundary condition case studies.

Case Pressure boundary condition at outlet Velocity boundary condition at outlet Stability

01 prghPressure pressureInletOutletVelocity unstable
02 prghPressure pressureInletOutletParSlipVelocity unstable
03 prghPressure zeroGradient unstable
04 prghTotalPressure pressureInletOutletVelocity stable
05 prghTotalPressure pressureInletOutletParSlipVelocity stable
06 prghTotalPressure zeroGradient unstable
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The results indicate that a pressure boundary condition which allows backŕow is

required at the outlet patch. The prghPressure boundary condition leads to un-

stable simulations because it can not uphold continuity while handling backŕow. For

velocity at the outlet patch, zeroGradient is an unsuitable option because the back-

ŕow ŕux at the outlet is not constrained. Both pressureInletOutletVelocity

and pressureInletOutletParSlipVelocity deliver stable simulation and give

virtually identical prediction of phase fraction proőles as illustrated in Figure 3.10.

However, these two velocity boundary conditions lead to different predicted velocity

őelds near the outlet patch due to the methods they utilize to calculate the back-

ŕow velocity. As illustrated in Figure 3.11, pressureInletOutletVelocity leads

to a nonsensical velocity proőle around the top corner of the outlet patch and the

pressureInletOutletParSlipVelocity gives a more realistic prediction.

Unless otherwise indicated, the boundary conditions prghTotalPressure and

PressureInletOutletParSlipVlocity are speciőed for the pressure and velocity

őelds at the outlet patch for all subsequent simulations conducted in this study.
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(a) (b)

Figure 3.10: Time-averaged liquid phase fraction proőles on the XZ plane across the
tray center. (a) Case 04 in Table 3.6, (b) Case 05 in Table 3.6. Over time interval
from t = 0 s to t = 5 s.
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(a) (b)

Figure 3.11: Instantaneous liquid phase velocity proőle at t = 5 s on the YZ plane
across the outlet patch. (a) case 04 in Table 3.6, (b) case 05 in Table 3.6.
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3.4 Drag model case study

Recall the model for drag force calculation developed by Krishna et al. [23] in its

original form:

Cd =
4

3

ρc − ρd
ρc

gd

(
αB
d

Us

)2

(2.21 revisited)

As stated in Section 2.4.2, this model was implemented into OpenFOAM® with

the following modiőcation:

Cd =
4

3

ρc − ρd
ρc

gd

(
αB
d

Us

)2
max(αc, αc,residual)

1− αB
d

(2.70 revisited)

The same modiőcation was suggested by Krishna et al. [22] for the reason that it

helps the simulation to overcome numerical instability. A simulation was conducted

using the base case with the drag model switched from the modiőed version to its

original form. The results are shown in Figure 3.12. It is shown that the simulation

presents no numerical instability using the unmodiőed drag model, but the predicted

continuous phase hold-up in the computing domain decreases over time, which is

nonsensical at the given operating condition.

It is obvious that the drag force calculated using equation (2.21) is proportional

to the dispersed phase fraction αd and inversely proportional to the continuous phase

fraction αc when other ŕow properties are set to be constants. This leads to over-

predicted drag force in regions where the local continuous phase fraction is relatively

low. The over-predicted drag force promotes momentum transfer from the continuous

phase to the dispersed phase. As a result, the continuous phase will carried away

by the dispersed phase in such regions. This positive feedback loop will eventually

remove most of the continuous phase from the computing domain. The root of this

problem is miscalculated momentum exchange when phase inversion occurs. When

phase inversion occurs in certain regions, the original dispersed phase becomes the

continuous phase and thus the drag force is acting on the previous continuous phase

now. This phase inversion effect has not been considered when using equation (2.70).

In OpenFOAM®, the phase inversion problem can be handled with built-in blend-

ing methods, which calculates the drag coefficient K from three parts:

K = f1K1,2 + f2K2,1 + (1− f1 − f2)K1&2 (3.8)
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t = 1 s t = 5 s

t = 10 s t = 20 s

Figure 3.12: Instantaneous liquid phase fraction proőles on the XZ plane across the
tray center at different simulated times using drag model proposed by Krishna et al.
[23] in its original form without blending.
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where f1 and f2 are blending factors, K1,2 and K2,1 are drag coefficients evaluated on

the basis of phase 1 and phase 2 as the dispersed phases respectively, and K1&2 is the

drag coefficient evaluated for situation in which both phases are considered as partly

continuous or partly dispersed. In this study, the linear blending method was tested,

which deőnes the blending coefficients as follows:

f1 = min

(

max

(
α2 − α2,P

α2,F − α2,P

, 0

)

, 1

)

f2 = min

(

max

(
α1 − α1,P

α1,F − α1,P

, 0

)

, 1

) (3.9)

where α1,F and α2,F are the minimum phase fraction values for phase 1 and phase 2

to be considered as fully continuous phases, respectively; and α1,P and α2,P are the

minimum phase fraction values for phase 1 and phase 2 to be considered as partly

continuous phases, respectively. If the phase fraction value for phase 1 is less than

the value of α1,P then phase 1 will be considered as a fully dispersed phase. The same

rule applies to phase 2 as well.

The linear blending method generates a continuous function for the blending fac-

tors for the whole range of the phase fraction values as shown in Figure 3.13.

To test this method for handling the phase inversion problem, test cases were

constructed using equation (2.21) to evaluate the momentum transfer term due to drag

force when gas phase is considered to be the dispersed phase. When liquid phase is

considered to be the dispersed phase, the SchillerNaumann [43] model was employed

for the momentum transfer evaluation. The following formula is implemented in

OpenFOAM® for the SchillerNaumann model:

Cd =







0.44, if Re > 1000

24
(
1.0 + 0.15Re0.687

)
/Re, if Re ≤ 1000

(3.10)

where Re is obtained from equation (2.68). Contributions of these two drag models

are handled via linear blending method. The parameters used for blending are sum-

marized in Table 3.7. The same values were assigned for the pair of α1,F and α1,P

and the pair of α2,F and α2,P to avoid the situation of having any phase being partly

dispersed, as Figure 3.14 illustrates, hence the drag coefficient K1&2 does not need to

be evaluated.



60

Figure 3.13: Blending factors f1 and f2 calculated using linear blending method.
α1,F = 0.7, α1,P = 0.3, α2,F = 0.7, and α2,P = 0.3.

Table 3.7: Speciőcations of parameters for linear blending test cases.

Case Air Water

01

α1,F 0.97 N/A
α1,P 0.97 N/A
α2,F N/A 0.03
α2,P N/A 0.03

02

α1,F 0.90 N/A
α1,P 0.90 N/A
α2,F N/A 0.10
α2,P N/A 0.10

03

α1,F 0.70 N/A
α1,P 0.70 N/A
α2,F N/A 0.30
α2,P N/A 0.30
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Figure 3.14: Blending factors f1 and f2 calculated using linear blending method for
case 02 in Table 3.7.
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Results of test case 01 in Table 3.7 are presented in Figure 3.15 and Figure 3.16.

The results are similar to those of the base case, indicating that the blending method

employed for test case 01 in Table 3.7 is a valid solution to the phase inversion

problem.

The results of all test cases in Table 3.7 are compared with the base case result

in terms of time-averaged overall liquid hold-up, shown in Figure 3.17. It shows that

although the blending method solves the numerical instability introduced by phase

inversion problem, the simulation results varies signiőcantly with different speciőed

values of the blending parameters. Only the the case 01 in Table 3.7 gives comparable

results with the base case. This indicates that the values of blending parameters

should be set according to a speciőc manner (see Table 3.7 ) such that the momentum

transfer term due to drag force will be calculated mainly based on equation (2.21) and

blending with the SchillerNaumann model only occurs at regions with very high gas

phase fractions to maintain physical behaviour.

Another approach to over come the phase inversion problem is to introduce a

weighting factor into the original drag model as presented in equation (2.70). Figure

3.18 illustrates the working mechanism of this method. The weighting factor magniőes

the predicted drag force for regimes where dispersed phase fraction is lower than the

predicted balance value at convergence and suppresses the predicted drag force for

regimes where dispersed phase fraction is higher than the predicted balance value at

convergence. Therefore, this weighting factor works in a similar way as the blending

method does, without the necessity of introducing new drag models. It also promotes

the solution stability in regions with high phase fraction gradient.

Two working approachesÐi.e., Blending method and modiőed drag modelÐwere

explored for overcoming the phase-inversion problem. The blending method intro-

duces a new drag model that requires input of dispersed phase diameter. This elim-

inates the advantage of calculating drag force without using the phase diameters by

employing the drag model proposed by Krishna et al. [23] alone. Also, the parameters

of blending method need optimization to maintain physical behaviour. Unless other-

wise indicated, all subsequent simulations conducted in this study use the modiőed

drag model as presented in equation (2.70) without blending.
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t = 1 s t = 5 s

t = 10 s t = 20 s

Figure 3.15: Instantaneous liquid phase fraction proőles on the XZ plane across the
tray center at different simulated times for test case 01 in Table 3.7.
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(a) t = 0 s to t = 1 s (b) t = 0 s to t = 5 s

(c) t = 0 s to t = 10 s (d) t = 0 s to t = 20 s

Figure 3.16: Time-averaged liquid phase fraction proőle on the XZ plane across the
tray center using different time intervals for test case 01 in Table 3.7.
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Figure 3.17: Time-averaged overall liquid hold-up over the time range from t = 0 s to
time t. (a) base case, (b) case 01 in Table 3.7, (c) case 02 in Table 3.7, (d) case 03 in
Table 3.7.
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Figure 3.18: Drag force predicted using the model proposed by Krishna et al. [23].
(a) In the original form, as presented in equation (2.21), (b) In the modiőed form, as
presented in equation (2.70). αB

d is the average gas hold-up in the froth when system
operates at a quasi-steady-state condition, calculated using the correlation proposed
by Bennett et al. [5] (see equation (2.22)).
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3.5 Turbulence model case study

As discussed in Section 1.2, the majority of previous studies on sieve tray simulation

employed the standard k − ϵ turbulence model for the liquid phase. However, this

turbulence model can introduce numerical instability when applied to mutiphase ŕow

simulations due to the phase inversion problem. In OpenFOAM®, the governing

equations of the standard k−ϵ turbulence model are formulated using the phase frac-

tion őeld; therefore, the discretized transport equations face numerical problems in

the computing regions where the phase fraction value tends towards zero. Holzinger

[17] suggested that a preconditioned biconjugate gradient solver without precondi-

tioner could be used as the linear solver for the discretized turbulence transport

equations to overcome the numerical problem. In this study a relatively newly devel-

oped turbulence model, mixtureKEpsilon, was employed. The reason of choosing

this turbulence model is to avoid numerical instability when phase inversion occurs

as expressed in Section 2.3.

Case studies were carried out using different turbulence models and linear solver

settings to test numerical stability. The results are presented in Table 3.8. The

mixtureKEpsilon turbulence model gives stable simulations with various linear

solvers. On the other hand, the kEpsilon model always leads to unstable simulations

unless a preconditioned biconjugate gradient solver, PBiCGStab, is used without a

preconditioner. It was also observed that, although the simulation using PBiCGStab

solver without preconditionerisis stable, it requires signiőcantly more iterations to

solve the discretized transport equations for turbulence properties when compared to

other working cases.

The simulation results were compared in terms of time-averaged overall liquid

hold-up as presented in Figure 3.19. It shows that the results of both cases using

different turbulence models converged to quasi-steady-states. The value of converged

overall liquid hold-up given by the caseÐi.e., Case 06 in Table 3.8Ðusing standard

k − ϵ turbulence model for the liquid phase and laminar model for the gas phase

is slightly lower than the value given by the caseÐi.e., Case 01 in Table 3.8Ðusing

the mixtureKEpsilon model. One of the potential causes of this difference is that

the mixtureKEpsilon model took the contribution of gas phase into consideration

when evaluating the turbulence, which accounts more dissipation and less interphase
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Table 3.8: Results of turbulence model case studies.

Case Turbulence model Linear solver for turbulence Stability

01
water: mixtureKEpsilon
air: mixtureKEpsilon

solver: smoothSolver
smoother: symGaussSeidel

stable

02
water: mixtureKEpsilon
air: mixtureKEpsilon

solver: PBiCGStab
preconditioner: DILU

stable

03
water: mixtureKEpsilon
air: mixtureKEpsilon

solver: PBiCGStab
preconditioner: none

stable

04
water: kEpsilon

air: laminar
solver: smoothSolver

smoother: symGaussSeidel
unstable

05
water: kEpsilon

air: laminar
solver: PBiCGStab

preconditioner: DILU
unstable

06
water: kEpsilon

air: laminar
solver: PBiCGStab

preconditioner: none
stable

momentum transfer and therefore less liquid phase was carried away by the gas phase.

Unless otherwise indicated, all subsequent simulations conducted in this study use

the The mixtureKEpsilon turbulence model for turbulence evaluation.
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Figure 3.19: Time-averaged overall liquid hold-up over the time range from t = 0 s to
time t. (a) Case 06 in Table 3.8, (b) Case 01 in Table 3.8.



Chapter 4

Experimental-Scale Tray Simulation

CFD simulations of an experimental-scale tray under various operating conditions

were conducted using the OpenFOAM® solver reactingTwoPhaseEulerFoam with

the optimized settings described in Chapter 3. The results were validated with ex-

perimental data and CFD simulations from the work of Krishna et al. [22]. The

simulation procedure and results are presented in this chapter.

4.1 Case setup

4.1.1 Simulation geometry and mesh

Figure 4.1 shows the conőguration of the experimental-scale tray that was simulated.

The design parameters of this tray presented in Table 4.1 are adapted from the

simulation study of Krishna et al. [22], but the height of the simulation domain

was extended from 0.12m to 0.18m for better numerical convergence as explained in

Section 3.1.2.

70



71Figure 4.1: Schematic layout of the experimental-scale sieve tray.
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Table 4.1: Design parameters of the experimental-scale sieve tray.

Design parameter Value

Tray length 0.39m
Tray height 0.18m
Tray depth 0.22m
Downcomer clearance 0.015m
Weir height 0.06m, 0.08m, and 0.10m
Number of holes 216
Square Hole size 0.005m × 0.005m

A fully orthogonal hexahedral grid was created based on this geometry. The total

number of cells within the computing domain is 123 552, with a uniform grid size of

5mm. The cell size of this grid is the same as the one used in the simulation work of

Krishna et al. [22], which has passed their grid sensitivity tests.

4.1.2 Boundary and initial conditions

The mesh topology of the simulated experimental-scale tray is identical to that of

the base case described in Chapter 3. Therefore, the type of boundary conditions

employed in all the simulation cases in this chapter are kept the same as the ones

described in Section 3.1.3, with their numerical values adjusted accordingly. Various

values of superőcial gas velocity, liquid load, and weir height were used in simulations.

These values are summarized in Table 4.2.

In this study, the tray was initially őlled with a water and air mixture from the

bottom of the tray up to the weir height. The volume fraction of water in this region

was set to be 0.8. The rest of the computational domain was őlled with pure air phase.

The velocity őelds of both phases within the tray were initialized to be stationary.
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Table 4.2: Speciőcations of operating parameters for experimental-scale tray simula-
tions.

Operating parameter Tested values

Superőcial gas velocity
0.4m s−1

0.7m s−1

0.9m s−1

Liquid load per weir length
4.0× 10−4m2 s−1

8.25× 10−4m2 s−1

1.2× 10−4m2 s−1

Weir height
0.06m
0.08m
0.10m

4.1.3 Solver setup

The speciőcations for physical properties and other sub-models employed for the

experimental-scale tray simulations are the same as the ones used for the base case

as described in Section 3.1.4.

The discretization schemes used for all the simulation cases in this chapter are the

same as the ones used for the base case, which are summarized in Table 3.4.

A set of linear solver speciőcations was constructed through trial and error, and

the őnal settings are summarized in Table 4.3. These speciőcations provided a good

balance between robustness and convergence speed for this particular simulation prob-

lem. It should be noted that two convergence criteria were used for the pressure

variable, p_rgh. A more relaxed tolerance criterion was used for the intermediate

corrector steps and a tighter tolerance was used for the last step. This procedure

helped to speed up the simulations by putting most of the computational effort into

the last corrector step, denoted by p_rghFinal.

For experimental-scale tray simulations, nOuterCorrectors and nCorrectors

were set to be 3 and 2, respectively. nNonOrthogonalCorrectors was set to be

0. No under-relaxation was applied to the system of equations. The variable time

stepping method was employed and controlled by Courant number with its maximum

value set to be 0.5.
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Table 4.3: Speciőcations of linear solvers for experimental-scale tray simulations.

Flow őeld Linear solver Tolerance

Phase fraction
solver: PBiCGStab
smoother: DILU

1e-8

p_rgh
solver: GAMG

smoother: GaussSeidel
1e-4

p_rghFinal
solver: GAMG

smoother: GaussSeidel
1e-7

Velocity
solver: PBiCGStab
smoother: DILU

1e-8

Energy
solver: PBiCGStab
smoother: DILU

1e-8

Turbulence
solver: PBiCGStab
smoother: DILU

1e-8

4.1.4 Parallel computing in OpenFOAM

Due to the considerably larger grid size used in the simulations in this chapter, par-

allel computing was employed to speed up the simulations. OpenFOAM® supports

parallel computing through the method of domain decomposition [13], in which the

grid and őelds are decomposed into pieces and each of them is allocated to individual

processors for computing. OpenFOAM® provides four methods of decomposition.

In this study, the Scotch method was used, which requires no geometric input from

the user and uses a strategy that attempts to minimize the number of boundaries

between the decomposed grid on processors [13].

Simulation cases were conducted using parallel computing with different number

of processors. The execution time needed to complete a simulation time period of 5

seconds for each test was recorded and the results are presented in Table 4.4.

It can be observed that, within the tested range, the simulation runs faster with an

increased number of processors. However, the speed-up between simulations running

on 32 processors and 16 processors is less signiőcant than the speed-up between simu-

lations running on 16 processors and 8 processors. This is because parallel computing
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Table 4.4: Results of parallel computing case studies.

Case Number of processors Execution time
Relative speed-up

(compared to 8 processors)

01 8 10 108 s 0%
02 16 6769.86 s 49.31%
03 32 5673.85 s 78.15%

Table 4.5: Results of renumberMesh utility case studies.

Case # of processors renumberMesh Execution time Relative speed-up

01 32 No 5673.85 s 0%
02 32 Yes 5122.88 s 10.76%

with more processors comes with heavier demand of data communication between the

processors, which may eventually offset the advantage of using more processors.

An OpenFOAM® utility named renumberMesh was used to further reduce the

simulation time. This utility reduces the bandwidth of the large sparse coefficient

matrices produced from discretization by renumbering the cell label list [13]. Table

4.5 illustrates the improvement in speed after using renumberMesh. Unless other-

wise indicated, all simulation cases presented in this chapter after this section were

execture after running renumberMesh and carried out using parallel computing on

32 processors.

4.2 Results and discussions

The results of an experimental-scale tray simulation case with the superőcial gas

velocity of 0.5m s−1, the weir height of 0.8m, and the liquid load per weir length of

8.25 × 10−4m3s−1m−1 are presented in Figure 4.2 and 4.3. The overall liquid hold-

up of this speciőc case was monitored and presented in Figure 4.4. This speciőc

simulation is deemed to have converged to the quasi-steady-state after 40 seconds of

simulated time.
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(a) t = 1 s (b) t = 5 s

(c) t = 10 s (d) t = 40 s

Figure 4.2: Instantaneous liquid phase fraction proőles on the XZ plane across the tray center at different simulated times
for an experimental-scale sieve tray simulation with the superőcial gas velocity of 0.5m s−1, the weir height of 0.8m, and the
liquid load per weir length of 8.25× 10−4m3s−1m−1.
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(a) t = 0 s to t = 1 s (b) t = 0 s to t = 5 s

(c) t = 0 s to t = 10 s (d) t = 0 s to t = 40 s

Figure 4.3: Time-averaged liquid phase fraction proőles on the XZ plane across the tray center over different time intervals
for an experimental-scale sieve tray simulation with the superőcial gas velocity of 0.5m s−1, the weir height of 0.8m, and the
liquid load per weir length of 8.25× 10−4m3s−1m−1.
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Figure 4.4: Time-averaged overall liquid hold-up over the time range from t = 0 s
to time t for an experimental-scale sieve tray simulation with the superőcial gas
velocity of 0.5m s−1, the weir height of 0.8m, and the liquid load per weir length of
8.25× 10−4m3s−1m−1.

Clear liquid height was determined by multiplying the time-averaged overall liquid

hold-up at the quasi-steady-state by the height of the tray. Figures 4.5, 4.6, and 4.7

present the comparison of the simulation results of this study with the experimental

and CFD simulation data from the work of Krishna et al. [22] in terms of clear liquid

height under various operating conditions. The clear liquid height was predicted to

decrease with increased superőcial gas velocity at given weir height and liquid load,

as illustrated in Figure 4.5. The clear liquid height was predicted to increase with

increased weir height at given superőcial gas velocity and liquid load, as shown in

Figure 4.6. The clear liquid height was predicted to increase with increased liquid

load at a given superőcial gas velocity and weir, as shown in Figure 4.7. These trends

are consistent with reference CFD simulations and experimental data. The predicted

clear liquid heights from experimental-scale tray simulations were therefore in good

quantitative agreement with the CFD simulation results of Krishna et al. [22].
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Figure 4.5: Clear liquid heights at different superőcial gas velocities for experimental-
scale sieve tray simulations with the weir height of 0.8m and the liquid load per weir
length of 8.25× 10−4m3s−1m−1.

It is noticeable that the predicted clear liquid heights from this study are slightly

higher in values compared to the CFD simulation results of Krishna et al. [22] in

most tested cases. The simulation setup employed in this study differs from that of

Krishna’s work mainly in two aspects: turbulence models and boundary conditions

at the outlet boundary. It has been shown in Figure 3.19 that the turbulence model

employed in this study, the mixture model, tends to slightly underestimate the clear

liquid height compared to the turbulence model settings used in Krishna’s CFD work.

Therefore, the different boundary conditions utilized in this study and Krishna’s CFD

work are the major contributor to the differences in simulation results.
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Figure 4.6: Clear liquid heights at different weir heights for experimental-scale sieve
tray simulations with the superőcial gas velocity of 0.7m s−1 and the liquid load per
weir length of 8.25× 10−4m3s−1m−1.
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Figure 4.7: Clear liquid heights at different liquid loads for experimental-scale sieve
tray simulations with the weir height of 0.8m and the superőcial gas velocity of
0.7m s−1.



Chapter 5

Commercial-Scale Tray Simulation

The developed simulation technique was applied to a commercial-scale tray to test its

capacity to make reasonable predictions when scaling from pilot-scale to large-scale

systems. The results were validated with experimental data from the work Solari

and Bell [45] and CFD simulation results from the work of Gesit et al. [10]. The

simulation procedure and results are presented in this chapter.

5.1 Case setup

5.1.1 Simulation geometry and mesh

The design parameters of the simulated commercial-scale sieve tray are presented in

Table 5.1. These parameters are based on the tray properties of the experimental

work from Solari and Bell [45], which was again adopted in the CFD simulation work

of Gesit et al. [10].

Table 5.1: Design parameters of the commercial-scale sieve tray.

Design Parameter Value

Tray diameter 1.213m
Tray spacing 0.61m
Weir length 0.925m
Weir height 0.05m
Downcomer clearance 0.038m
Hole diameter 0.0127m
Fractional hole area to bubbling area 5%

In this work, one of the challenges is modeling the gas inlet holes because of their

large quantity and small sizes. Instead of modelling the actual size and number of

holes as used in the experiment, a reduced number of 90 holes was modelled and the

fractional hole area to bubbling area was kept the same as that of the actual number

82
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of holes. Although this means that there are fewer point sources of gas on the tray, it

does ensure that the gas velocity exiting each hole matches the true condition. Gesit

et al. [10] reported that this simpliőcation on gas inlet holes gives simulation results

that are in good agreement with the results of simulations using the actual number

of holes. Furthermore, Solari and Bell have observed symmetric ŕow patterns with

respect to the tray center in their experimental work [45]. Thus, only half of the tray

was modeled in the present simulations to save the computational cost. This method

was also been utilized in the CFD simulation work of Gesit et al. [10].

Figure 5.1 shows the layout and computational grid used in the simulations of the

commercial-scale tray. Water phase enters through the liquid inlet patch, which is

marked yellow in the őgure, and leaves through gas outlet patch, which is marked

green in the őgure. Air enters through the gas inlet patch located on the tray ŕoor,

which is marked blue, and leaves through the gas outlet patch located on top of the

tray, which is marked green. The center plane of the tray is modelled as a symmetry

plane and the rest of the patches are modelled as walls, which are marked grey. This

grid contains 54 456 hexahedral cells. The size of cells are no larger than the one used

in the simulation work of Gesit et al. [10], which has passed their grid sensitivity test.
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Figure 5.1: Flow geometry and computational grid for commercial-scale sieve tray
simulations.
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5.1.2 Boundary and initial conditions

It is noticeable that the computational grid for the commercial-scale tray simulation

is similar to the one used for the base case described in Chapter 3, with the exception

of two patches: the liquid outlet, and the gas outlet.

On the boundary patch of liquid outlet, the following boundary conditions were

speciőed for each ŕow variable:

• alpha.air: inletOutlet boundary condition with the inlet value speciőed to

be pure liquid.

• p_rgh: fixedFluxPressure condition.

• U.air: A no-slip wall boundary condition. Therefore, it is assumed that the

gas phase does not penetrate the liquid outlet boundary.

• U.water: matchedFlowRateOutletVelocity condition. This boundary con-

dition corrects the extrapolated velocity on the patch to match the ŕow rate of

a speciőed patch that provides an inlet ŕow rate. In this case the corresponding

inlet patch is the liquid inlet patch.

On the boundary patch of gas outlet, the following boundary conditions were

speciőed for each ŕow variable:

• alpha.air: inletOutlet boundary condition with the inlet value speciőed to

be pure gas.

• p_rgh: prghTotalPressure condition.

• U.air: pressureInletOutletParSlipVelocity condition.

• U.water: A no-slip wall boundary condition. Therefore, it is assumed that the

liquid phase does not penetrate the gas outlet boundary.

Mehta et al. [33] developed a criterion for selecting the appropriate boundary

condition for the liquid inlet velocity proőle based on the value of a ŕow parameter,

Flv, calculated as follows:

Flv =
QL

QG

√
ρL
ρG

(5.1)
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where QL and QG are the volumetric ŕow rates for liquid and gas, and ρL and ρG are

liquid density and gas density. Mehta et al. [33] suggest that the liquid inlet velocity

proőle could be assumed to be uniform if the value of Flv is less than 0.25. Otherwise,

it should be modelled as a parabolic curve.

On the boundary patch of liquid inlet, the following boundary condition for

U.water was thus speciőed:

• If Flv ≥ 0.25, the velocity is calculated as follows:

UL,in =







1.5QL

hapLw
[1− ( 2y

Lw
)2]

0

0







(5.2)

• If Flv < 0.25, the velocity is calculated using the following expression:

UL,in =







QL

hapLw

0

0







(5.3)

where hap is the downcomer clearance, Lw is the weir length, and y is the y-coordinate

(see Figure 5.1).

The boundary condition described in equation (5.2) is not readily available in

OpenFOAM®. Thus, it was implemented as a user-speciőed boundary condition

using a utility named codedFixedValue that allows the user to implement complex

boundary conditions without extensive C++ programming effort. The equivalent of

equation (5.2) was implemented using the codedFixedValue utility, and the code is

presented in Figure 5.2.

In the code presented in Figure 5.2 it should be noted that due to the orientation

of the modelled geometry, a negative sign was added to the x component of the

velocity vector to ensure that the ŕow ŕux pointed towards the inside of the computing

domain.

The boundary conditions applied to other boundary patches are in consistent with

the type of boundary conditions applied on the corresponding boundary patches in

the base case simulation, but the numerical values were adjusted according to the

operating conditions of the commercial-scale tray. The tested operating parameters

are summarized in Table 5.2.
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1 inletL

2 {

3 type codedFixedValue;

4 value uniform (0 0 0);

5

6 redirectType parabolicInlet;

7

8 code

9 #{

10 const fvPatch& boundaryPatch = patch();

11 const vectorField& Cf = boundaryPatch.Cf();

12 vectorField& field = *this;

13

14 const scalar QL = 0.0178;

15 const scalar hap = 0.03812;

16 const scalar Lw = 0.92508;

17

18 forAll(Cf, faceI)

19 {

20 const scalar y = Cf[faceI].y();

21 field[faceI] = vector(-(1.5*QL)/(hap*Lw)*(1-pow((2*y)/Lw,2)), 0,

0);

22 }

23 #};

24 }

25

Figure 5.2: User-coded boundary condition using codedFixedValue.
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Table 5.2: Speciőcations of operating parameters for commercial-scale tray simula-
tions.

Operating parameter Tested values

Superőcial gas velocity

0.421m s−1

0.730m s−1

0.925m s−1

1.334m s−1

Liquid load
6.94× 10−3m3 s−1

1.24× 10−2m3 s−1

1.78× 10−2m3 s−1

In this study, the tray was initially őlled with a water and air mixture from the

bottom of the tray up to the height of 0.1m above the tray ŕoor. The volume fraction

of air in this region was set to be a őxed value calculated using equation (2.22). The

lower one third of the downcomer region was initially őlled with pure water phase.

The rest of the computational domain was őlled with pure air phase. The velocity

őelds of both phases within the computing region were initialized to be stationary.

5.1.3 Solver setup

The speciőcations for physical properties and other sub-models employed for the

commercial-scale tray simulations are the same ones used for the base case as de-

scribed in Section 3.1.4.

The discretization schemes used for all of the commercial-scale tray simulations

are summarized in Table 5.4. The scheme used for gradient terms is cellMDLimited

leastSquares 0.5, which has second-order accuracy and suppresses numerical os-

cillation on the gradient computation. This scheme requires an explicitly speci-

őed coefficient with a value between 0 and 1, where 1 provides the strongest lim-

iting. In this study, the coefficient was speciőed to be 0.5. For the divergence term

div(phi,alpha.air), which denotes the term ∇ · (Uαair) in the discretized mass

conservation equations, the Gauss limitedLinear01 1 scheme was used. This

scheme is specially formulated to bound the values of underlying variablesÐe.g, phase

fraction αÐbetween 0 and 1. This scheme requires an explicitly speciőed coefficient

with a value between 0 and 1, where 1 provides the strongest limiting. In this study,
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the coefficient was speciőed to be 1. The limited corrected 0.333 scheme was

applied to surface normal gradient calculation and the surface normal gradient com-

ponent of the Laplacian terms. This scheme maintains second-order accuracy on

non-orthogonal grids by introducing an explicit non-orthogonal correction to the or-

thogonal component. This scheme also requires an explicitly speciőed coefficient with

a value between 0 and 1, where 0 offers relatively best stability and 1 offers relatively

best accuracy. In this study, the coefficient was speciőed to be 0.33.

The linear solver speciőcations are the same as those shown in Table 4.3.

For all commercial-scale tray simulations, nOuterCorrectors and nCorrectors

of the SIMPLE algorithm were set to be 3 and 2, respectively. Because the mesh is

not fully orthogonal, the nNonOrthogonalCorrectors was set to be 1. No under-

relaxation was applied to the system of equations.

A őxed time step was employed for the commercial-scale tray simulations. The

size of the time step was calculated using the tray operating conditions to give a

Courant number that is no greater than 0.4. A őxed time step was used because, for

these large-scale simulations, using the variable time stepping method caused unstable

simulations even if the maximum allowed Courant number was set to be 0.4.

All simulations in this chapter were executed after running renumberMesh and

carried out using parallel computing on 16 processors.
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Table 5.3: Speciőcations of discretization schemes for the commercial-scale tray simulations.

Category Syntax of related terms in the equations Discretization scheme

Time ddt() Euler

Gradient grad() cellMDLimited leastSquares 0.5

Divergence div(phi,alpha.air) Gauss limitedLinear01 1

Divergence div(phir,alpha.air) Gauss vanLeer

Divergence* div(alphaRhoPhi,U)

div(phi,U)
Gauss limitedLinearV 1

Divergence*

div(alphaRhoPhi,(h|e))

div(alphaRhoPhi,K)

div(alphaPhi,p)

div(alphaRhoPhi,(k|epsilon))

div(phim,(k|epsilon)m)

Gauss limitedLinear 1

Divergence* div((alpha*rho*nuEff)*dev2(T(grad(U)))) Gauss linear

Laplacian laplacian() Gauss linear limited corrected 0.333

Interpolation N/A linear

Surface normal gradient snGrad() limited corrected 0.333

* These schemes apply to equation terms for both phasesÐe.g. div(phi.air,U.air) and div(phi.water,U.water)Ðthe suffixes are omitted
for simplicity.
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5.2 Results and discussions

A series of commercial-scale sieve tray simulations was conducted using the speciőed

settings. Figure 5.3 shows the time-averaged overall liquid holdup in the system over

time for a representative case of the commercial-scale tray simulations. This speciőc

simulation is deemed to have converged to a quasi steady state after 60 seconds of

simulated time. Figure 5.4 shows the liquid phase fraction proőle of this speciőc

simulation at the quasi-steady-state. Clearly, most of the liquid phase is present in

the region near the tray ŕoor. From the tray ŕoor to the weir height, regions above the

gas inlet holes have relatively higher gas phase fractions compared to the surrounding

tray ŕoor regions. The liquid phase fraction diminishes rapidly from the weir height

up, leaving most of the tray space to be őlled with gas phase only.

Clear liquid height was determined by multiplying the overall liquid phase fraction

at the quasi-steady-state by the tray spacing. The predicted results of clear liquid

height were compared against the CFD simulation results of Gesit et al. [10] and

validated using the experimental data of Solari and Bell [45], as shown in Figure 5.5

and Figure 5.6. It is noticeable that, within the tested range, the results obtained

from the present simulations were in excellent quantitative agreement with the CFD

simulation results of Gesit et al. [10] at conditions with relatively lower superőcial

gas velocities. The predicted clear liquid height obtained in the present simulations

showed improved accuracy compared to the CFD simulation results of Gesit et al.

[10] at conditions in which the superőcial gas velocities were relatively larger. Since

the drag model and boundary conditions are largely the same in both CFD works,

the deviations between the present simulation results and those of Gesit et al. [10] are

mostly likely introduced by the different turbulence models and numerical settings

employed in each work.

The local velocity proőles were compared against the reference CFD simulations

[10] as well as experimental measurements [45].

In the experimental work of Solari and Bell [45], a set of probes was placed on

a plane 0.038 m above the tray ŕoor, as shown in Figure 5.7. The average linear

liquid velocities were calculated by dividing the distance between probe 5 and probe

9 by the time required for the dye indicator to travel through these two probes. This

procedure was repeated for probes 6 and 10, probes 7 and 11, and probes 8 and 12.
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Figure 5.3: Time-averaged overall liquid hold-up over the time range from t = 0 s
to time t for a commercial-scale sieve tray simulation case with the superőcial gas
velocity of 0.421m s−1 and the liquid load of 17.8× 10−3m3 s−1.
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Figure 5.4: Liquid phase fraction proőle on the YZ plane 0.01 m from the tray center
for an commercial scale sieve tray simulation at quasi-steady-state with the superőcial
gas velocity of 0.421m s−1, the liquid load of 17.8× 10−3m3 s−1. Averaged over time
range from t = 0 s to t = 60 s.
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Figure 5.5: Clear liquid height as a function of superőcial gas velocity for the
commercial-scale sieve tray with the liquid load of 17.8× 10−3m3 s−1.
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Figure 5.6: Clear liquid height as a function of liquid load for the commercial-scale
sieve tray with the superőcial gas velocity of 0.421m s−1.
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The results yielded a velocity distribution, namely the upstream proőle. In the same

manner, a downstream proőle was determined between the line composed of probes

9 to 12 and the line composed of probes 13 to 16.

In the CFD work of Gesit et. al. [10], the upstream velocity proőle was determined

by integrating the liquid velocity component in the primary ŕow directionÐi.e, the

x direction in Figure 5.1Ðover the plane region between the line composed of probes

5 to 8 and the line composed of probes 9 to 12. The downstream velocity proőle

determined in the same manner over the region between the line composed of probes

9 to 12 and the line composed of probes 13 to 16.

The same method was adopted in the present study as well, the results were

compared against the reference CFD simulations [10] as well as experimental mea-

surements [45], as shown in Figure 5.8 and Figure 5.9. The predictions are in good

agreement with the CFD simulation of Gesit et al. [10] and the experimental data. It

was observed that at locations close to the wall of the tray, where the dimensionless

coordinate in the transverse direction is approaching to 1, the predicted x-component

of liquid velocity was negative, indicating the existence of reverse ŕow.
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Figure 5.7: Probe positions in the experimental work of of Solari and Bell [45].



98

Figure 5.8: Upstream liquid velocity proőle for a commercial-scale sieve tray simula-
tion at quasi-steady-state with the superőcial gas velocity of 0.421m s−1, the liquid
load of 17.8× 10−3m3 s−1.
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Figure 5.9: Downstream liquid velocity proőle for a commercial-scale sieve tray simu-
lation at quasi-steady-state with the superőcial gas velocity of 0.421m s−1, the liquid
load of 17.8× 10−3m3 s−1.
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Table 5.4: Speciőcations of discretization schemes for the commercial-scale tray simulations.

Term Scheme

Time Euler

Gradient cellMDLimited leastSquares 0.5

Divergence

Gauss limitedLinear01 1

Gauss vanLeer

Gauss limitedLinearV 1

Gauss limitedLinear 1

Gauss linear

Laplacian Gauss linear limited corrected 0.333

Interpolation linear

Surface normal gradient limited corrected 0.333

* These schemes apply to equation terms for both phasesÐe.g. div(phi.air,U.air)
and div(phi.water,U.water)Ðthe suffixes are omitted for simplicity.



Chapter 6

Conclusion and Future Work

In this study, a method to perform CFD simulations of sieve tray hydrodynamics using

the software package OpenFOAM® was developed and systematically documented.

The work started with constructing the governing equations that describe the

physics of the gas-liquid mixture on a sieve tray. An Euler-Euler two-ŕuid model was

selected to treat both phases as interpenetrating continua sharing the same pressure

őeld. A correlation for drag force established by Krishna et al. [23] was employed

as the closure model for the interphase momentum transfer term. The mixture k − ϵ

model developed by Behzadi [2] was selected as the closure model for the Reynolds

stress term.

The governing equations were solved using OpenFOAM® version 6, with the

interphase momentum transfer closure model implemented as a user-deőned model.

The method was tested and optimized for sieve tray simulations using a series of

test cases with a quasi 2D sieve tray geometry to reduce the computational cost. A

set of boundary conditions was selected that successfully handles the critical phase

fraction-velocity-pressure coupling relationship on the outlet boundary, where the

ŕow conditions are normally not well characterized. It has been shown that the

implemented mixture k− ϵ model [2] eliminates the numerical instability induced by

phase inversion. Furthermore, it was proved that the modiőcation applied to the drag

model [22] is essential because it provides better predictions on drag force calculation

and improves the stability of the simulation, as claimed by Krishna et al. [22]. It has

been shown that the instantaneous ŕow variables oscillate in a chaotic but bounded

manner and time-averaged properties converge to a quasi steady state eventually.

The developed method was applied to an experimental-scale tray simulations.

The predicted clear liquid heights at various operating conditions were compared

with reference CFD simulations and experimental data [22], and good quantitative

agreements were observed. Simulations were conducted on an industrial-scale sieve

101



102

tray geometry as well. It was shown that a őxed time step, instead of varying time

steps limited by the Courant number, provides more stable simulations. Proper dis-

cretization schemes were selected to ensure the boundedness of the ŕow variables and

the overall stability of simulations. Macroscopic results (i.e., clear liquid heights) as

well as localized results (i.e., velocity proőles) were computed and validated against

the results of CFD simulations [10] and experimental data [45], and good quanti-

tative agreement was observed. The results of this work show that the developed

OpenFOAM® methodology is capable of predicting sieve tray hydrodynamics and

can be used as a tool for analysis and design.

Future studies could be conducted on the following areas:

• Incorporate interphase mass transfer model to study the tray efficiency.

• Investigate the effect of other interfacial forces, e.g, lift force, virtual mass force.

• Implement and explore new discretization schemes and linear solvers.
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Appendix A

Description of Finite Volume Discretization Schemes in

OpenFOAM

In OpenFOAM®, the governing partial differential equations are discretized in space

using a őnite volume method (FVM) for collocated arbitrary polyhedral grids [20].

A typical control volume VQ with cell center Q, as represented in Figure A.1, has an

arbitrary number of faces that are shared with neighbouring control volumes. For

example, the face f is the common face shared with a neighbour control volume with

cell center N . sf represents the normal vector of surface f , which has a magnitude

equal to the face surface area, and df represents the distance vector from cell center

Q to N .

Figure A.1: A polyhedral control volume. Source: [20].
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The deőnition of the cell center is given by the following equation:
∫

VQ

(x− xQ) dV = 0 (A.1)

where x denotes a location inside the control volume, and xQ is the location of the

control volume center. The value of an arbitrary quantity ϕ at any given location

inside the control volume can be obtained using the following expression:

ϕ(x) = ϕQ + (x− xQ) · (∇ϕ)Q (A.2)

Integrating ϕ(x) expressed in equation (A.2) over the volume of VQ yields the

following equation:
∫

VQ

ϕ(x)dV =

∫

VQ

[ϕQ + (x− xQ) · (∇ϕ)Q] dV

=

∫

VQ

ϕQdV + (∇ϕ)Q ·
∫

VQ

(x− xQ)dV

= ϕQVQ

(A.3)

Equation (A.3) indicates that the space dependent values of a variable ϕ(x) can be

stored at the center of the control volume VQ as a constant value ϕQ. Therefore, any

properties of interest inside a given control volume can be stored as constant proőles

at the center of the control volume.

Neighbouring control volumes exchange information through the common faces

between each other. To obtain information of properties at the surface, the Gauss

theorem is employed to convert the volume integral of the divergence of a vector őeld

into the surface integral of that vector őeld over the closed surface of a control volume.

This conversion relationship is given by the following expression:
∫

VQ

(∇ · ϕ)dV =
∑

f

[sf · (ϕ)f ] (A.4)

Recall the general conservation equation of an arbitrary quantity ϕ:

∂ (ρϕ)

∂t
︸ ︷︷ ︸

accumulation term

= − ∇ · (ρvϕ)
︸ ︷︷ ︸

convection term

+∇ · (Γ∇ϕ)
︸ ︷︷ ︸

diffusion term

+ Sϕ
︸︷︷︸

source term

(2.1 revisited)

This equation can be integrated over a control volume as follows:
∫

VQ

∂(ρϕ)

∂t
dV = −

∫

VQ

∇ · (ρvϕ)dV +

∫

VQ

∇ · (Γ∇ϕ)dV +

∫

VQ

Sϕ(ϕ)dV (A.5)
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The Gauss theoremÐi.e., equation (A.4)Ðcan be applied to the convection and dif-

fusion terms:
∫

VQ

∂(ρϕ)

∂t
dV = −

∑

f

[sf · (ρvϕ)f ] +
∑

f

[sf · (Γ∇ϕ)f ] +
∫

VQ

Sϕ(ϕ)dV (A.6)

The next step is to convert the integral form PDE into a set of linear algebraic

equations by using suitable linearization schemes on each terms. Using equation (A.6)

as an example, the schemes used to treat each term and the results are demonstrated

below:

• Accumulation term: Using the Euler scheme gives the following expression.
∫

VQ

∂(ρϕ)

∂t
dV =

(ρQϕQ)
n − (ρQϕQ)

o

∆t
VQ (A.7)

where superscript o and n denote the variable values at the old time and new time

steps, respectively. For the rest of the terms of equation (A.6) the linearization is

applied to the new time step value only (i.e., using an implicit time integration),

so superscripts will be omitted for simplicity.

• Convection term: Using the central differencing scheme gives the following equa-

tion.

∑

f

[(ρv)fsf · ϕf ] =
∑

f

[fxSf · (ρv)Q]ϕQ +
∑

f

[(1− fx)(Sf · (ρv)NϕN ] (A.8)

where fx = fN/QN represents the ratio of the distance between the face center

f and cell center N to the distance between cell center Q and cell center N .

It should be noted that equation (A.8) needs to be summed over all control

volumes that share a common face with cell VQ, and the value of fx also needs

to be evaluated based on the individual distance between cell centers.

• Diffusion term: When the grid is orthogonal, df is parallel to sf and the gradient

term can be discretized to give the following expression:

∑

f

[Γfsf · (∇ϕ)f ] =
∑

f

Γf |sf |
ϕN − ϕQ

|df |
(A.9)

In case of non-orthogonal grid, an explicit correction term needs to be intro-

duced [20].
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• Source Term: When the source term is a non-linear function of the unknown

ϕ, it is not possible to obtain discretized linear algebraic equations directly. To

solve this problem, a widely adopted method is to locally linearize the source

term őrst [20]:

Sϕ(ϕ) = Su(ϕ) + Sp(ϕ)ϕ (A.10)

It should be noted that Su() and Sp() may or may not be ϕ dependent [20].

Therefore, the discretized source term can be written as follows:
∫

VP

Sϕ(ϕ)dV = SuVQ + SpVQϕQ (A.11)

Combining like terms in the discretized linear algebraic equations, (A.7) to (A.11),

gives the following expression:

aQϕQ +
∑

f

aNϕN = SuVQ +
(ρQϕQ)

oVQ
∆t

(A.12)

where aQ and aN are simply the summation of coefficients belonging to variables ϕQ

and ϕN , respectively.

Equation (A.12) is the linearized result of equation (A.6) and can be solved al-

gebraically. If this discretization process is performed on governing PDEs over each

control volume in the grid, the result is a system of linear algebraic equations that

can be represented as a large-scale sparse matrix:

[A][φ] = [b] (A.13)

where [φ] and [b] are the column vectors of unknowns and sources, respectively, and

[A] is the square coefficient matrix.

During the process of discretization in OpenFOAM® each term of the PDEs is

individually evaluated through functions grouped into two namespaces [13]:

• fvm (Finite Volume Method): Contains functions that evaluate terms of PDEs

implicitly based on unknown values and return an fvMatrix<Type> (i.e., mod-

iőcation of [A] in equation (A.13))

• fvc (Finite Volume Calculus): Contains functions that evaluate terms of PDEs

explicitly based on known values and return a geomertricField<Type> (i.e.,

modiőcation of [b] in equation (A.13)).
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1 (

2 fvm::ddt(rho,phi)

3 + fvm::div(rho,U,phi)

4 - fvm::laplacian(Gamma,phi)

5 ==

6 + fvm::SuSp(S,phi)

7 );

8

Figure A.2: A source code that represents (2.6) in OpenFOAM® syntax.

Some of the most commonly used functions for PDE discretization in OpenFOAM®

are summarized in Table A.1.

The syntax in OpenFOAM® is designed to resemble its corresponding mathemat-

ical form. This provides a convenient way to read, modify, or create new source code.

For example, an OpenFOAM® style source code that represents equation (2.6) is

presented in Figure A.2
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Table A.1: Common functions in namespace fvm and fvc in OpenFOAM®.

PDE term description Implicit/Explicit Math expression fvm::/fvc:: functions

Time derivative Implicit/Explicit ∂(ρϕ)/∂t ddt(rho,phi)

Laplacian Implicit/Explicit ∇ · (Γ∇ϕ) laplacian(Gamma,phi)

Convection Implicit/Explicit ∇ · (ψϕ) div(psi,phi)

Divergence Explicit ∇ · χ div(chi)

Gradient Explicit ∇ · χ grad(chi)

Source Implicit ρϕ Sp(rho,phi)

Explicit Su(rho,phi)

Implicit/Explicit SuSp(rho,phi)

1 ρ: scalar, volScalarField; φ: vol<Type>Field; Γ: scalar, surfaceScalarField, volTensorField,
surfaceTensorField; ψ: surfaceScalarField; χ: surface<Type>Field, vol<Type>Field.

2 fvm::SuSp performs implicit discretization if the sign of ρ is negative, otherwise the source is
discretized explicitly.

3 Source: [13]



Appendix B

Description of Mixture k − ϵ Model in OpenFOAM

In OpenFOAM® version 6, a built-in turbulence model named mixtureKEpsilon is

provided. The source code can be found in the OpenFOAM-6/src/TurbulenceMod

els/phaseCompressible/RAS/mixtureKEpsilon directory. The source code is

not exactly the same as the model provided by Behzadi [2] in Section 2.3. Therefore,

the differences and important modiőcations are discussed in this section.

First, the density of the dispersed phase is correlated with virtual mass taken into

account. The effective density rhogEff of the dispersed phase is calculated using

the method shown in line 16 of Figure B.1. This correlation is usually employed to

improve numerical stability in simulations where there is signiőcant density difference

and relative acceleration between phases [39]. Based on the deőnition of virtual

mass introduced in Section 2.2, this modiőcation does not need to be applied to the

continuous phase, as shown on line 6 of Figure B.1, because the returned continuous

phase effective density rholEff is unchanged from the regular deőnition. In this

study, the only interphase force being modeled is the drag force only and no virtual

mass model has been employed.

With Cvm being set to be zero, the effective densities in the mixtureKEpsilon

model are essentially the same as the regular densities, and the other mixture prop-

erties are calculated in the same manner as displayed in equations (2.36) to (2.41).
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1 template<class BasicTurbulenceModel>

2 tmp<volScalarField> mixtureKEpsilon<BasicTurbulenceModel>::rholEff() const

3 {

4 const transportModel& gas = this->transport();

5 const twoPhaseSystem& fluid = refCast<const twoPhaseSystem>(gas.fluid());

6 return fluid.otherPhase(gas).rho();

7 }

8

9 template<class BasicTurbulenceModel>

10 tmp<volScalarField> mixtureKEpsilon<BasicTurbulenceModel>::rhogEff() const

11 {

12 const transportModel& gas = this->transport();

13 const twoPhaseSystem& fluid = refCast<const twoPhaseSystem>(gas.fluid())

;

14 const virtualMassModel& virtualMass =

15 fluid.lookupSubModel<virtualMassModel>(gas, fluid.otherPhase(gas));

16 return gas.rho() + virtualMass.Cvm()*fluid.otherPhase(gas).rho();

17 }

18

Figure B.1: The deőnition of effective density in mixtureKEpsilon.C.

The source code used to evaluate the turbulence response coefficient Ct is displayed

in Figure B.2.

In Figure B.2, line 21 corresponds to equation (2.46), line 22 corresponds to equa-

tion (2.45), and the code between line 15 to 20 correspond to equations (2.47) to

(2.50) with the modiőcation that equation (2.48) has been replaced with equation

(2.67) to prevent singularity problems and to account the swarm correlation as well.

It should be mentioned that Ct
2 is returned by the code instead of Ct simply because

Ct
2 is the only form used when the value of Ct is called in (2.38) to (2.42).

The source code for the turbulent kinetic energy transport equation and related

codes of the mixtureKEpsilion model are shown in Figure B.3.

The code related to turbulent kinetic energy equation in Figure B.3 can be trans-

lated into the following equation:

∂km
∂t

+∇ · (Φmkm)− km∇ · (Φm)−∇2 (Dk,eff (νt,m)km)

= Gm −
(
2

3
km∇ ·Um

)

−
(
ϵm
km

km

)

+ Skm + SfvOptions,km (B.1)

The differences between equation (B.1) and the original formula presented in equa-

tion (2.34) are summarized as follows:
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1 template<class BasicTurbulenceModel>

2 tmp<volScalarField> mixtureKEpsilon<BasicTurbulenceModel>::Ct2() const

3 {

4 const mixtureKEpsilon<BasicTurbulenceModel>& liquidTurbulence =

5 this->liquidTurbulence();

6

7 const transportModel& gas = this->transport();

8 const twoPhaseSystem& fluid = refCast<const twoPhaseSystem>(gas.fluid())

;

9 const transportModel& liquid = fluid.otherPhase(gas);

10

11 const volScalarField& alphag = this->alpha_;

12

13 volScalarField magUr(mag(liquidTurbulence.U() - this->U()));

14

15 volScalarField beta

16 (

17 (6*this->Cmu_/(4*sqrt(3.0/2.0)))

18 *fluid.Kd()/liquid.rho()

19 *(liquidTurbulence.k_/liquidTurbulence.epsilon_)

20 );

21 volScalarField Ct0((3 + beta)/(1 + beta + 2*gas.rho()/liquid.rho()));

22 volScalarField fAlphad((180 + (-4.71e3 + 4.26e4*alphag)*alphag)*alphag);

23

24 return sqr(1 + (Ct0 - 1)*exp(-fAlphad));

25 }

26

Figure B.2: The deőnition of the turbulence response coefficient in
mixtureKEpsilon.C.
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1 // Lahey model

2 tmp<volScalarField> bubbleG

3 (

4 Cp_

5 *liquid*liquid.rho()

6 *(

7 pow3(magUr)

8 + pow(drag.CdRe()*liquid.nu()/gas.d(), 4.0/3.0)

9 *pow(magUr, 5.0/3.0)

10 )

11 *gas

12 /gas.d()

13 );

14 return bubbleG;

15 }

16

17 ...

18

19 template<class BasicTurbulenceModel>

20 tmp<fvScalarMatrix> mixtureKEpsilon<BasicTurbulenceModel>::kSource() const

21 {

22 return fvm::Su(bubbleG()/rhom_(), km_());

23 }

24

25 ...

26

27 // Mixture flux

28 surfaceScalarField phim("phim", mixFlux(phil, phig));

29

30 ...

31

32 // Turbulent kinetic energy equation

33 tmp<fvScalarMatrix> kmEqn

34 (

35 fvm::ddt(km)

36 + fvm::div(phim, km)

37 - fvm::Sp(fvc::div(phim), km)

38 - fvm::laplacian(DkEff(nutm), km)

39 ==

40 Gm

41 - fvm::SuSp((2.0/3.0)*divUm, km)

42 - fvm::Sp(epsilonm/km, km)

43 + kSource()

44 + fvOptions(km)

45 );

46

47 ...

48

49 volScalarField Cc2(rhom/(alphal*rholEff() + alphag*rhogEff()*Ct2_()));

50 kl = Cc2*km;

51 kl.correctBoundaryConditions();

52 epsilonl = Cc2*epsilonm;

53 epsilonl.correctBoundaryConditions();

54 liquidTurbulence.correctNut();

55

56 Ct2_() = Ct2();

57 kg = Ct2_()*kl;

58 kg.correctBoundaryConditions();
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• rhom: This term represents the effective density ρm (deőnition is given in Figure

B.1) of the mixture. ρm is extracted from the coded turbulence transport equa-

tions for the mixture and reintroduced into the calculation during the evaluation

of turbulence properties for individual phases. The relevant code is shown at

lines 49 and 50 in Figure B.3. The likely reason for this treatment is because

the signiőcant density difference between the phases would introduce numerical

difficulty if the equation were solved in terms of ρmkm instead of km.

• phim: This term represents volumetric mixture ŕux Φm and the deőnition is

given at line 28 in Figure B.3. This term is equivalent to Um.

• DkEff(): This term represents a function Dk,eff (), which returns the value of

effective diffusivity for k. The value of Dk,eff (νt,m) is ((µt,m/Scϵ,m)/ρm) with

the compressibility correction part removed.

• fvm::SuSp((2.0/3.0)*divUm, km): This term represents the compressibil-

ity correction term ((2/3)km∇ ·Um), which is separated from the effective dif-

fusivity term.

• fvm::Sp(fvc::div(phim),km): This term, km(∇·Φm), is introduced into the

equation through the following process:

Um · ∇km = ∇ · (Umkm)− km∇ ·Um (B.2)

This numerical treatment helps maintain boundedness of the solution of km

and promotes convergence for steady-state simulation. For transient simulation

using the PIMPLE algorithm, this treatment is also beneőcial for intermediate

iterations in the SIMPLE loop.

• kSource(): This term accounts for additional sources of km. More speciőcally,

bubble-induced turbulence can be included, which is modeled using the model

of Lahey [25]. The deőnition of the Lahey model is given at lines 2 to 15 in

Figure B.3. In this study, this term is omitted by setting the coefficient Cp to

be zero.
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• fvOptions(km): This term accounts for other sources for km that can be in-

cluded by the user at run time. No additional sources were considered in this

study.

The treatments for the turbulence kinetic energy dissipation rate equation are

similar and not reported here for simplicity.
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