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Abstract 

 

Approximately 90% of breast cancer radiation therapy patients experience skin toxicities 

that are difficult to classify and predict ahead of time. A prediction at the early stages of 

the treatment would provide clinicians with a prompt to intervene. The objectives of this 

study are to evaluate the correlation between the skin toxicity occurrences and radiomic 

features extracted from optical and infrared (thermal) images of skin, and to develop a 

model for predicting a patient’s skin response to radiation. Optical and infrared images of 

breast cancer patients' chest wall were acquired daily during the course of RT, as well as 

weekly on the three following weeks after treatment. Skin toxicity assessments were 

conducted weekly until the final visit. The trends of colour and temperature radiomic 

features of the skin on the treated area were analyzed, reduced, and used in a machine 

learning model to predict the patients’ skin toxicity grade.  A set of nine independent 

colour and temperature features with significant p-values were reduced from a series of 

108. The cross-validation accuracy of the machine learning model remained above 80% 

and AUC above 0.7 when reducing the input data to include only up to a biologically 

effective dose of 30 Gy (approximately the first third to first half of the treatment dose). 

The quantitative analysis of radiomic features was shown to be promising for predicting 

skin toxicities. This study will continue toward the development of a practical and 

efficient tool that can be used daily in the radiation therapy treatment room. 
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Chapter 1  Introduction 

 

1.1 Canadian Demographics of Cancer  

 

Cancer is an undesirable disease caused by mutations in genes that regulate the way cells 

grow and divide. Cancerous cells grow uncontrollably and may form masses known as 

tumours which can potentially spread to other organs in a process known as metastasis. 

Tumours are classified as either benign or malignant based on several characteristics. 

Benign tumours grow slowly, have a distinct border, and do not invade surrounding 

tissues. Malignant tumours may grow rapidly, may not have distinct borders, may invade 

surrounding tissues and may metastasize [1]. Cancer is the leading cause of death in 

Canada, with an estimated two in five Canadians diagnosed with cancer in their lifetime, 

and around one in four Canadians is expected to die from cancer [2].  Breast cancer is the 

most common cancer in Canadian women, contributing to an estimated 25% of cancer 

cases and 14% of all cancer deaths in 2022. Men will develop less than 0.01% of the total 

cases of breast cancer [3].  

 

1.2 Treatment of Breast Cancer with External Beam Radiation Therapy 

1.2.1 External beam radiotherapy  
 

Radiation therapy is an important component of cancer treatment, used to treat 

approximately 50% of all cancer patients [4]. It is the standard treatment for most cases 
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of breast cancer following breast conserving surgery in which the goal is to eliminate any 

microscopic remains of the tumour with radiation post-surgery [5], and reduce the risk of 

cancer recurrence, improving overall patient survival. Radiation therapy uses ionizing 

radiation to damage cancer cells by forming breaks in the DNA that prevent them from 

further growing and dividing. The absorbed dose is measured in units of gray (Gy), which 

reflects the amount of energy that ionizing radiation deposits in a material per unit mass. 

A dose of 1 Gy is equivalent to 1 joule/kilogram. 

  

In external beam radiotherapy, electrons are accelerated to high speeds in a clinical linear 

accelerator (LINAC) and collide with a heavy metal target, producing high-energy 

photons. The photons leaving the LINAC are directed towards the tumour in a particle 

beam arrangement. The LINAC is equipped with a multileaf collimator (MLC) made of 

series of tungsten leaves, which almost completely attenuate incident x-rays. Each leaf 

can move independently in different arrangements to block particles from passing, and 

shape the field of the beam. A picture a LINAC is shown in Figure 1.1 A), with a close-

up of the MLC in the LINAC head in B), specifically the one used to treat all patients in 

our study at the Nova Scotia Health (NSH) Cancer Center.  
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Figure 1.1. A) Medical LINAC and B) MLC on the LINAC at the NSH Cancer Center. 

 

Intensity-modulated radiation therapy (IMRT) is a radiation therapy technique that 

involves varying the intensity and the shape and orientation of multiple x-ray beams to 

conform to the shape of a tumor. Volumetric modulated arc therapy (VMAT) is a form of 

therapy that continuously delivers radiation while the LINAC rotates in a series of arcs 

around the patient [6] while the MLC shape, the dose rate and the gantry speed are varied 

in a predefined fashion. The intensity of the beam is shaped by the MLC and modulated 

at each point by adjusting the dose rate and rotation speed, producing a non-uniform 

distribution of radiation dose. The combination and overlap of fields from multiple angles 

of incidence during IMRT and VMAT allows a 3-dimensional dose distribution to be 

conformed to the tumour volume, while minimizing dose to the surrounding healthy 

tissues [7]. For breast cancer treatment, tangential field techniques are commonly used in 

order to provide sparing of main organs-at-risk, including the ipsilateral lung and heart. 

While early techniques involved fixed, parallel-opposed static fields, more modern 

A B 
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planning techniques may limit the intensity modulation to two opposing tangential fields  

or two opposing tangential arcs  The radiation dose distribution for a left-sided breast 

cancer patient is shown in Figure 1.2 for a) IMRT and b) VMAT plans, adapted from 

Karpf et., al [8]. 

 

 

Figure 1.2 a) IMRT and b) VMAT dose distribution for a patient with left-sided breast 
cancer using a deep inspiration breath hold (DIBH) technique. The t-IMRT plan for this 
case used 6 equally weighted beams and t-VMAT plan used four arcs, achieving 
coverage of 95% dose for 95% of the target volume [8]. 

 

The total radiation dose is split into a number of treatments called fractions. Delivering 

smaller doses of radiation over the span of multiple weeks allows for the normal cells to 

repair between treatments, to reduce side effects. Usually fractions are given five days a 

week (Monday – Friday) with no treatment over the weekend.  

 

1.2.2 Breast Cancer Staging, Treatment Selection and Fractionation Schemes 
 

Mammography is the most common imaging modality used for screening and detection 

of breast cancer. Mammography uses low-dose X-rays to examine the breast, producing 
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an image where cancerous masses appear brighter. After breast cancer has been detected, 

more detailed evaluations using other modalities, such as breast ultrasound, 

thermography, magnetic resonance imaging, and positron emission tomography may be 

performed [16]. A biopsy is then used after the screening to confirm the diagnosis. The 

diagnosis will help the oncologist decide a treatment approach that provides the best 

chance of cure and prevent recurrence. 

 

Once breast cancer has been diagnosed, the oncologist will establish the stage of the 

cancer using imaging techniques and once the primary tumor and lymph nodes have been 

removed. The stage will help determine the extent of the disease, and the best treatment 

approach. Staging is determined from information on the size of the primary tumor (T), 

presence of cancer in regional lymph nodes (N), and the spread of cancer beyond the 

lymph nodes, known as metastases (M). T is assigned a number between zero and four, 

with a higher number indicating a larger tumour size that has grown deeper into nearby 

tissues. N is assigned a number between zero and three, specifying the extent of spread, 

number and location of nearby lymph nodes containing cancer. Lymph nodes are 

structures in the lymphatic system that filter damaged cells, like cancer cells, from the 

lymphatic fluid, and contain immune cells to help fight infections [9]. Regional lymph 

nodes are the primary sites of lymphatic drainage from the breast, and therefore are 

considered to be a strong predictor of breast cancer recurrences and survival [10]. These 

lymph nodes are located under the arm (axillary lymph nodes), near the collarbone 

(supraclavicular lymph nodes), and near the breastbone (internal mammary lymph nodes) 

[11]. Figure 1.3 provides a labelled diagram of the regional lymph nodes of the breast.   
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Figure 1.3 Regional Lymph Nodes for Breast [12]. 

 
 

N is the clinical nodal stage based on all imaging and clinical examinations carried out 

before a surgery to remove the tumor. A pathologic nodal stage (pN) can be determined 

using microscopic information of tissue removed from surgery or a biopsy. The final 

component, M, is assigned either zero if the cancer has not spread, or one if it can be 

detected beyond the regional lymph nodes. The breast cancer-specific TNM assignments 

are compiled in  Table 1.1. [13]. 
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 Table 1.1 TNM grading guidelines for breast cancer, adapted from the AJCC 7th edition 
cancer staging manual [13]. Clinically detected (CD) indicates detected by imaging or 
clinical examination. 
 

 
Primary Tumour (T) 

 

 
Regional Lymph 

Nodes (N) 
Pathologic (pN) 

 
Distant Metastases 

(M) 

 
TX 

Primary tumor 
cannot be assessed. 

 
NX 

Cancer in regional 
lymph nodes cannot 

be assessed. 
 

 
pNX  

Regional lymph 
nodes cannot be 

assessed 
 

 
MX 

Metastasis cannot 
be measured. 

 
T0 

Primary tumor not 
found. 

 
N0 

No cancer in 
regional lymph 

nodes. 
 

 
pN0  

No regional lymph 
node metastasis 

identified 
histologically. 

 

 
M0 

No evidence of 
distant metastases. 

 
Tis  

Precancerous cells 
in a location where 

they were first 
formed 

 

 
 

  

 
T1 

Tumor ≤ 20 mm in 

greatest dimension. 

 
N1 

Metastases to 
movable level I, II 

axillary lymph 
node(s) 

 

 
pN1  

Metastases in 1–3 
axillary lymph 
nodes and/or in 

internal mammary 
nodes with 

metastases detected 
by sentinel lymph 

node biopsy but not 
CD.  

 

 
M1 

Cancer has spread to 
other parts of the 

body. 
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Primary Tumour (T) 
 

Regional Lymph 
Nodes (N) 

Pathologic (pN) 

 
Distant Metastases 

(M) 
 

 
T2 

Tumor >20 mm but  
≤ 50 mm in greatest 

dimension. 

 
N2 

Metastases in level 
I, II axillary lymph 

nodes, or in the 
internal mammary 

nodes in the absence 
of axillary lymph 
node metastases 

 

 
pN2  

Metastases in 4–9 
axillary lymph 
nodes or in CD 

internal mammary 
lymph nodes in the 
absence of axillary 

lymph node  
 

 

 
T3 

Tumor >50 mm in 
greatest dimension. 

 
N3 

Metastases in the 
level III axillary 
lymph node(s);  

or in the internal 
mammary lymph 

node(s) with level I, 
II axillary lymph 

node metastases; or 
in the 

supraclavicular 
lymph node(s) with 
or without axillary 

or internal 
mammary lymph 
node involvement 

 

 
pN3 

Metastases in ≥10 
axillary lymph 

nodes; or in level III 
axillary lymph 
nodes; or in CD  

ipsilateral internal 
mammary lymph 

nodes in the 
presence of positive 
level I, II axillary 

lymph nodes; or in 
≥3 axillary lymph 

nodes and in 
internal mammary 
lymph nodes with 

metastases detected 
by biopsy but not 

CD; or in ipsilateral 
supraclavicular 
lymph nodes   

 

 

 
T4 

Tumor of any size 
with direct 

extension to the 
chest wall and/or to 

the skin 
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The AJCC uses different combinations of T, N and M to assign the breast cancer status to 

nine stages (0, IA, IB, IIA, IIB, IIIA, IIIB, IIIC, and IV) [14]. Stage 0 is a non-invasive 

precancerous stage where the cancer remains within its original location, and stage IV is 

an invasive cancer that has spread outside the breast through the blood or lymphatic 

system to other parts of the body [15]. The TNM combinations for the nine staging 

assignments are presented in Table 1.2. 
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Table 1.2 The TNM combination assignments for the nine breast cancer stages, adapted 

from AJCC 7th edition [13]. 

Stage Primary Tumour  
(T) 

Regional Lymph 
Nodes  

(N) 

Distant Metastases 
(M) 

Stage 0 Tis N0 M0 

Stage IA T1 N0 M0 

Stage IB T0 
T1 

N1 
N1 

M0 
M0 

Stage IIA 
T0 
T1 
T2 

N1 
N1 
N0 

M0 
M0 
M0 

Stage IIB T2 
T3 

N1 
N0 

M0 
M0 

Stage IIIA 

T0 
T1 
T2 
T3 
T3 

N2 
N2 
N2 
N1 
N2 

M0 
M0 
M0 
M0 
M0 

Stage IIIB 
T4 
T4 
T4 

N0 
N1 
N2 

M0 
M0 
M0 

Stage IIIC Any T N3 M0 

Stage IV Any T Any N M1 

 

The selection for suitable breast cancer treatment is based on the stage of the cancer. 

 

Stage 0 Breast Cancer 

Approximately 20% of breast cancer cases are non-invasive (stage 0), the most common 

being Ductal carcinoma in situ (DCIS). DCIS begins in thin tubes in the breast that carry 
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milk, known as ducts. At this stage, the cancer cells have not spread to nearby tissues and 

are confined to the ducts [16]. The primary treatment for DCIS is breast-conserving 

therapy which involves surgery to remove the affected area of the breast and a margin of 

healthy surrounding tissue (lumpectomy), followed by radiation therapy. A commonly 

used dose fractionation for whole breast radiation therapy is 40 Gy delivered in 15 daily 

fractions [17]. Some clinics are increasingly offering whole breast short-course radiation 

therapy which uses 26 Gy in 5 daily fractions and has similar tumour control as that of 

standard fractionation [18].  Given that 44% to 86% of local recurrences occur close to 

the tumor bed [19], a partial breast treatment technique may be offered to patients with 

small tumours if there are no signs of cancer in the lymph nodes. Partial breast irradiation 

localizes the radiation specifically to the area from which the tumor was removed, with a 

margin, minimizing exposure to normal tissue. Candidates for partial breast irradiation 

may receive a dose of 38.5 Gy in 10 fractions. Surgery to remove the entire breast 

(mastectomy) is an option for patients if there is a reason to avoid radiotherapy such as 

receiving prior radiation to the same area, pregnancy, pre-existing conditions [17], as 

well as the inconvenience of needing to come in to the clinic e.g., if the patient lives far 

away. 

 

Stage I and II Breast Cancer 

Most patients with stage I and II breast cancer are candidates for breast conserving 

therapy [16]. This includes a lumpectomy as well as a lymph-node biopsy to determine 

whether cancer has spread beyond a primary tumour, followed by whole breast radiation 

therapy with a total dose of 40 Gy in 15 daily fractions, or partial breast irradiation for 
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patients with stage I breast cancer. Patients who have a large tumor relative to the breast 

size, are pregnant, or have concerns about resulting radiation toxicities might prefer to 

have a mastectomy and avoid radiation therapy [16, 20].  

 

Stage III and IV Breast Cancer 

Locally advanced breast cancer requires several modalities of treatment; chemotherapy, 

mastectomy and radiation therapy. For radiation therapy, the target volume should 

include the breast, chest wall and draining lymphatics [16]. A dose of 40 Gy in 15 daily 

fractions is delivered to these targets, and a boost of 10-12.5 Gy in 5 fractions may be 

delivered to the area where the primary tumor was located. The purpose of the boost is to 

destroy any remaining breast cancer cells that could lead to a recurrence, in some high 

risk patients (ie. age < 50 yrs, multiple risk factors for recurrence) [21]. An extended 

fractionation schedule of 50 Gy in 25 daily fractions or 50.4 Gy in 28 daily fractions 

could be recommended for patients with large breast size, or infections/inflammation 

[17].  
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1.2.3 Clinical Methodology of Breast Cancer Radiotherapy 
 

Before the radiation treatment begins, the patient will go through a treatment planning 

process called simulation. During the simulation, the patient will be set up in their 

treatment position, which in conventional whole breast radiation therapy, is the supine 

position (lying horizontally with the face and torso facing up) [22]. Tattoos will be 

marked on the patient’s skin to ensure the same position can be reproduced every day for 

treatment. A breast board, like the one shown in Figure 1.4 is used as an immobilization 

device to keep the patients arms out of the treatment field and limit movement during 

treatment. 

 

Figure 1.4 Supine breast board used for immobilization during breast cancer radiation 
therapy 

 

During the simulation a computed tomography (CT) scan, an imaging procedure that 

creates a detailed 3D anatomical model of the organs, tissues, bones and blood vessels 

from a series of x-ray images, is taken of the patient. The dosimetrist then delineates 
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organs in the CT, such as the breast, the lungs, heart liver, and spinal cord. There are 

three general tumour volumes; the gross tumour target volume (GTV), the clinical target 

volume (CTV) and the planning target volume (PTV) [23]. The GTV is the visible 

tumour mass that can be measured or palpated. Since patients have had their tumors 

removed, there is no GTV in the planning CT.  The CTV is the suspected microscopic 

extension of cancer around the visible tumour, including the entire ipsilateral breast, and 

it can also include regional lymph nodes when there is a microscopic spread to lymph 

nodes. The oncologist delineates the PTV which includes margins accounting for organ 

movement (internal margin), and uncertainties with patient positioning and the planning 

and treatment delivery (set-up margin). The margins of the PTV ensure that the desired 

therapeutic dose is delivered to the CTV [23]. The images from the CT scan, including 

the delineated target volumes and surrounding organs are used by the medical 

dosimetrists and physicists to plan the course of treatment and calculate the dose. The 

plan is developed in the treatment software where the appropriate energy, orientation, 

shaping, and intensity of the beams are established. A typical planning goal is for 95% of 

the PTV to receive 100% of the dose, with the total coverage of the PTV receiving at 

least 95% dose. The dose to the surrounding organs is kept as low as possible, and 

specific dose limits are usually specified by organ [16, 24].  

During each treatment session, the therapists position the patient on the treatment couch, 

often using the tattoos relative to wall and ceiling lasers, and employing the same patient 

set up and immobilization as was established in the simulation session. Image-guided 

radiotherapy (IGRT) involves patient imaging, commonly with an imaging system in the 

treatment room such as an electronic portal imaging device or cone beam CT (CBCT) 
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attached to the LINAC, during the treatment to accurately guide the radiation to the 

target. IGRT helps reveal and reduce errors in the displacement of the target position 

relative the treatment plan established on the initial CT simulation. In this process, the 

patient position is corrected as needed, and then re-verified. Once the anatomy and target 

volume is aligned, the radiation therapists initiate the treatment delivery and dose is 

delivered to the target [20]. The typical duration of the radiation delivery is only a few 

minutes, however the treatment session can take 15 to 45 minutes including the patient 

setup and IGRT. 

 

 

1.3 Radiation Induced Skin Toxicity  

 

Radiation therapy focuses the radiation dose on the tumour as precisely as possible to 

avoid destroying normal cells, however, normal tissues along the path of the radiation are 

still prone to a certain degree of damage and can result in a variety of side effects for the 

patient. In external beam radiotherapy, radiation unavoidably passes through the patient’s 

skin and may lead to an inflammatory skin response. Radiation induced skin toxicity (or 

radiation dermatitis) is defined as an inflammatory reaction occurring as a result of 

exposure to biologically effective levels of ionizing radiation, and is classified on a scale 

of 1–4 according to the Common Terminology Criteria for Adverse Events (CTCAE) 

v5.0 [25]. Approximately 90% of radiation therapy breast cancer patients experience at 

least CTCAE = 1. This grade corresponds to faint erythema or dry desquamation, which 

appears as a rash and may cause sensations of dryness, burning, itching, and discomfort 
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to the patient [26]. For over 30% of breast cancer patients, erythema progresses to 

become more severe and painful moist desquamation (CTCAE = 3) [27, 28], which is 

characterized by scaling, peeling, bleeding and blistering of the skin and increases the 

risk of infection. Moist desquamation is strongly associated with long term fibrosis and 

permanent skin damage, resulting in a decreased Quality of Life [29, 27]. In extreme 

cases, it can even interrupt the course of therapy, thereby compromising the probability 

of cure. Table 1.3 summarizes the CTCAE grades of radiation dermatitis [25].  

 

Table 1.3 CTCAE version 6.0, description of radiation dermatitis [25]. 

Grade 1 Faint erythema or dry desquamation 

Grade 2 Moderate to brisk erythema; patchy moist desquamation, 
mostly confined to skin folds and creases; moderate edema 

Grade 3 Moist desquamation in areas other than skin folds and 
creases; bleeding induced by minor trauma or abrasion 

Grade 4 
Life-threatening consequences; skin necrosis or ulceration of 
full thickness dermis; spontaneous bleeding from involved 

site; skin graft indicated 

Grade 5 Death 

 

An example of a patient’s skin condition worsening over the course of the treatment is 

shown in Figure 1.5. 
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Figure 1.5 Visible change in skin condition between image taken during A) the day of the 

first treatment session, and B) the day of the last treatment session. The patient’s skin 

toxicity grade assessments during these visits were A) CTCAE = 0 and B) CTCAE = 3. 

 

 

Moist desquamation occurs more frequently in the weeks after the end of treatment [27, 

30]. Figure 1.6 shows the incidences of skin symptoms over time, extracted from Pignol 

et., al, 2008 [27].  In this study, desquamation peaked during the week after the end of 

radiation therapy, and the cumulative frequency of erythema and desquamation was 

around 90% and 30%, respectively. The intensity and rate of skin reaction depends on the 

thickness and frequency of bolus used (e.g., in Pignol, 2015 [30], over 40% of post-

mastectomy radiation therapy patients treated with bolus experienced most 

desquamation). 

 

 

B A 
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Figure 1.6 A) Differential and B) cumulative incidences of Common Terminology 
Criteria for Adverse Effects for edema, erythema, desquamation and pain. The data 
shown begins from one week after the start of radiation therapy [27]. 

 

 

1.3.1 Clinical Difficulties in Pre-emptive Skin Toxicity Mitigation  
 

Each patient experiences a different skin toxicity based on many factors, including 

treatment parameters such as radiation dose, fractionation, target volume, and patient 

specific details like age, skin condition, and genetics factors [31]. The dependence of skin 

reaction on multiple physiological factors and treatment specifics makes it difficult to 

accurately classify and predict skin toxicity outcomes ahead of time in order to determine 

the best curative approach, or make adjustments in the treatment plan in extreme 

situations. In addition, there is currently no method, other than visual examination and 

subjective diagnosis and prognosis, to quantify and detect early skin reactions that may 

lead to painful moist desquamation, and eventually permanent side effects. A new 

automated method for monitoring, staging and ultimately predicting skin response is 

B A 
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needed. If skin toxicity could be predicted early in the course of radiotherapy, a number 

of options exist to intervene and lower the toxicity for the patient. For example, patients 

could be informed about their predicted outcomes and advised to begin skin care early on 

(ie. moisturizer and saline soaks), the clinician could choose to prescribe a steroid cream 

[32], or adjust or eliminate the use of bolus to lower superficial dose.  

 

1.3.2 Optical and Thermal Imaging in Early Detection of Skin Toxicity 
 

Multiple studies have shown that skin temperature, texture and colour changes are 

associated with the occurrence of skin toxicity in radiation therapy patients. In a study by 

Maillot et. al, (2018) [33], temperature rise was recorded for breast cancer patients 

undergoing treatment, and an association between skin toxicity and temperature increase 

at the end of radiotherapy was established. Patients who experienced a grade of skin 

toxicity greater than two had a significantly larger temperature difference between treated 

and non-treated areas on the skin, on their last treatment visit,  compared to patients with 

a skin toxicity of one or zero.  The temperature differences between the set of patients 

were most likely linked to the inflammatory reaction of the patients’ skin [33]. In an 

earlier study by Templeton et. al (2012) [34], thermal imaging was done to analyze 

thermal effusivity changes (a measure of temperature or heat change) in irradiated mice. 

The high grade skin toxicity group of mice showed an earlier and larger increase of 

relative average effusivity difference than the low grade group [34]. An increase in the 

average effusivity was present at each fraction for the high grade toxicity group, while 

the average effusivity varied and the rise was more gradual for the low grade toxicity 

group. The correlations demonstrated between visual and temperature changes of the skin 
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and radiation induced skin toxicity suggest that a daily optical and thermal imaging 

approach over the course of the patient’s treatment may provide quantitative biomarkers 

to predict skin response to therapy during early stages of treatment.  

 

Following the demonstration of thermal metrics for monitoring the occurrence of 

erythema in previous studies, Saednia et al [35] evaluated the predictive capabilities of 

thermal metrics using a random forest classifier. An accuracy of 0.87 on independent test 

data was achieved at the fifth fraction of treatment for predicting skin toxicity at the end 

of treatment [35]. However, there were several drawbacks in this work. The patients were 

only imaged at five-fraction intervals (a total of four images per patient), providing 

limited temporal resolution in imaging data. There could be fluctuations and outliers 

when only data from a single fraction is used, and it is difficult to assess the error and 

stability of those results. Imaging at each fraction would allow the analysis of skin 

condition trends over the course of treatment and reveal any short-term variations. In 

their study, skin toxicity assessments were performed once at the end of treatment, 

although it has been established that toxicity continues to evolve in the weeks following 

the end of treatment [30]. This methodology limited the correlation of their measurement 

with the eventual toxicities experienced by patients. With regard to imaging 

methodology, low-resolution thermal images were exclusively used in the algorithm, 

without incorporating optical imaging. Including high-resolution optical images would 

provide input for visual signs of erythema and more accurate metrics of the structure of 

skin abnormalities. Their study also involved a designated examination room, which 

could be inefficient to incorporate into the daily clinical workflow.  
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1.4 Optical and Thermal Imaging  

1.4.1 Optical and Thermal Image Acquisition 
 

In an optical camera, light rays entering the lens are redirected using mirrors to a single 

point on a digital camera sensor to create a sharp image. A Digital Single Lens Reflex 

(DSLR) camera uses a mirror mechanism to reflect light from the camera lens to an 

optical viewfinder, allowing the photographer to see the image before taking it. When the 

shutter is released, the mirrors swing out of the light’s pathway, and the light rays are 

incident upon the image sensor to capture the image [36]. Digital cameras use electronic 

a large number of square cells or pixels, containing light-sensitive sensors. The pixels 

form a rectangular array, and their number determines the resolution of a given camera 

and resulting image. Photons hitting a photo sensor create an electrical charge, and the 

accumulated charge is proportional to amount of light received by the sensor. Each pixel 

has three types of colour sensors in red, green and blue dyed cells arranged in a mosaic 

forming a colour filter array. The signals from the colour sensors are interpolated to 

achieve proper spatial synchronization between the colors. Combining the three color 

channels allows to recover the full color image [37, 38]. The camera processor converts 

the image information from the sensor into an appropriate format and writes it into a 

memory card. 

 

Thermal cameras detect the heat (infrared) energy emitted from an object. Inside of a 

thermal camera, there are measuring detectors called microbolometers in each pixel of 

the sensor array that capture infrared radiation. The camera processor takes the signal 

from the microbolometer and applies a mathematical equation to assign the temperature 
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in each pixel to an appropriate color, converting it into an electronic image. The resulting 

matrix of colours is written to memory as a thermal image.  The resolution of thermal 

images from infrared cameras is low in comparison to visible light image because 

infrared energy has much larger wavelengths than visible light, requiring larger and 

therefore, fewer sensor elements [39]. Two factors to keep in mind when choosing 

thermal cameras are and resolution, and thermal sensitivity. Thermal sensitivity is the 

ability to discriminate between temperature differences, measured in milliKelvins (mK). 

1.4.3 Digital Images 
 

An image is a grid (or matrix) of pixels, each having an (x, y) coordinates. In a greyscale 

image, each pixel is assigned to an intensity ranging from 0 (black) to 255 (white). In a 

colour image, each pixel is assigned three values corresponding to red, green and blue 

(RGB). The red, green and blue values of each pixel range from 0 (dark) to 255 (bright) 

and the combination of these three components can form any colour. For example, a red 

pixel would have values of R = 255 G = 0 and B = 0. Each colour image can be separated 

into R, G, and B matrices, known as colour channels [40].  

1.5 Radiomics 

Medical images (including optical and thermal images in our case) contain characteristics 

that may not be apparently visible to the naked eye. Uncovering quantitative metrics from 

the images can provide more information about the tissue of interest. Radiomics is a 

method that extracts and translates features from medical images using advanced 

mathematical algorithms to objectively and quantitatively describe observable 

characteristics [41]. The underlying assumption in oncology is that radiomic features 
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quantify observable characteristics that are specific to certain conditions. Radiomic 

features have shown potential in the prediction of response to cancer treatment [42]. 

 

The first step in the radiomics algorithm involves identifying a region of interest (ROI) in 

the images. Next, a large number of radiomic features are extracted from the ROI based 

on histogram, texture and shape properties, creating a high dimensional feature space. A 

schematic of this step in shown in Figure 1.7 [42]. Radiomic features can be subdivided 

into histogram-based (first order), texture-based (higher order), shape-based, and filtered-

based features. For the purpose of this study, we will focus on histogram-based and 

texture-based features. 

 

Figure 1.7 Schematic diagram of the radiomic feature extraction, such as shape/size-
based, histogram-based, filtered-based, and textural features [42].  
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Histogram-Based (First Order) Features 

The first order statistic features are based on the greyscale histogram that describes the 

distribution of pixel intensities in an image. These features include gray-level mean, 

maximum, minimum, variance, and percentiles, and more sophisticated features such as 

skewness and kurtosis, which describe the shape of the histogram distribution. 

Histogram-based features are called first order features because they are based on single-

pixel analyses [43]. 

 

Texture-Based (Higher Order) Features 

The first order features describe the distribution of pixel intensities, but do not provide 

any information about the inter-pixel relationships within the image. The relationship 

between pixels in an image can be quantified using texture matrices such as the Gray-

Level Co-occurrence Matrix (GLCM), Gray-Level Run Length Matrix (GLRLM), Gray-

Level Size Zone Matrix (GLSZM), and Gray-Level Dependence Matrix (GLDM). The 

spatial distribution of intensities within an image can then be described by features 

extracted from the texture matrices [43].  

 

The GLCM is constructed by considering the relationship between all pixel pairs in the 

ROI and the frequency of the intensity of each pair. The relationship of two pixels is 

characterized by the distance and angle between each other [41, 43]. GLCM effectively 

calculates how often pairs of pixel with specific values and in a specified spatial 

relationship occur in an image. The frequency of each pixel pair is recorded in the matrix 
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with positional elements (i,j) corresponding to the first number in the pair (i) and the 

second number in the pair (j).   

 

 GLRLM considers the number of neighbouring pixels (runs) that have the same gray 

level value (called the gray level run length) in any direction. The positional elements (i,j) 

in the matrix are the number of adjacent pixels (j) a gray level intensity value (i), appears 

in the image [41, 43]. GLSZM is similar to GLRLM, but instead of runs, the size of the 

area of neighbouring pixels with the same grey level value is evaluated [41, 43]. The 

schematic calculations from the original image matrix into the resulting GLCM, GLRLM 

and GLSZM are shown in Figure 1.8.  
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Figure 1.8 Calculation of texture matrices for A) GLCM, B) GLRLM, and C) GLSZM. 

 

GLDM computes the gray level dependencies which is the number of connected pixels 

that have pixel intensity differences less than a pre-defined value, i.e., a pixel with gray 

level intensity value j is dependent on its neighbour with a gray level intensity value i if 

|i-j|≤α  [38, 40]. The (i,j) positional elements describe the number of times a voxel with 

gray level i with j dependent voxels appears in the image. 
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An underlying issue in radiomics is a high dimensional feature space. A large number of 

features with limited sample size would add complexity to any model that uses features 

as predictors, and cause overfitting. This would negatively impact the predictive power of 

a model. From all radiomic features extracted, the most informative ones are selected and 

used to classify the data (e.g., into either positive or negative medical condition) [41]. 

Reduction of these features avoids the potential problem of data redundancy and 

overfitting, which would reflect noise in the image more than useful statistics [41]. 

 

1.6 Supervised Machine Learning 

 

Machine learning is a method that allows computers to detect patterns and “learn” from 

data to produce a generalized model that can be used to make predictions on previously 

unseen, unlabeled data. Supervised machine learning models make predictions based on 

labeled training data that includes both the input and a desired output [44]. The input data 

is comprised of a number of features, each representing one dimension of the feature 

space. In our case, the input data consist of radiomic features extracted from a series of 

optical and thermal images of patients’ skin. The value of a feature data point locates that 

point in its dimension in the feature space. The values of all features for that data point 

form a feature vector in the feature space. As an output, each vector in the feature space 

is assigned to either a numeric value (for a regression algorithm) or a label/class (for a 

classification algorithm) [44, 45]. A classification algorithm is used in our study since the 

maximum radiation skin toxicity CTCAE grade detected during the course of the study is 
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associated to the radiomic data for each patient. In our case, the CTCAE grades are used 

as labels in the classification.   

The goal of classification in machine learning is to categorize subjects, using their 

numeric input variables, into discrete output variables. Commonly, the input training data 

are split into smaller training datasets and a validation dataset that is similar to the test 

dataset to achieve generalizability [44]. The validation dataset is left out of the training 

data, and is fed into the model to provide an unbiased evaluation. The model sees the 

validation data set while training and uses it to fine-tune higher level hyperparameters, 

but never “learns” from it [46]. Lastly, a test dataset is used to evaluate the final models 

and test its performance on a general population. 

Support vector machine (SVM) is a widely used supervised learning algorithm for 

classification problems. Compared to other algorithms, SVM has a higher speed and 

performs better on a limited number of samples [47]. The goal of SVM is to find a 

decision line or hyperplane that separates points into classes in an N-dimensional feature 

space. The decision line separating the classes can either be linear or non-linear. For 

example, a linear SVM uses a first-degree polynomial to separate the classes, a quadratic 

SVM uses a second degree polynomial and a cubic SVM uses a third degree polynomial.  

The points from both classes that are closest to the line are called support vectors, and the 

distance between the support vectors and the separation line is called the margin. SVM 

maximizes the margin to achieve more robust classification decisions on unseen data with 

higher certainty [48].  Figure 1.9  Illustration of the SVM support vectors, optimal 

hyperplane (separation line), and maximized margin. Figure 1.9 shows a simple example 
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of separable data and the optimal hyperplane (separation line) defined by the support 

vectors. 

 

 

Figure 1.9  Illustration of the SVM support vectors, optimal hyperplane (separation line), 

and maximized margin [48]. 

 

SVM involves optimizing a cost parameter to determine the separation line and width of 

margin.  The cost parameter controls the trade-off between misclassifications and the 

width of the separation margin between classes [49]. It is a constant multiplied by the 

number of misclassifications in the machine learning optimization function. The 

algorithm attempts to minimize the number of misclassifications, while maximizing the 

margin width. When the cost parameter is large, the margin might be narrow enough to 

not make any misclassification on the training data, however the separation line will be 
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bias towards the current data. A smaller cost parameter allows for a degree of violation 

by the support vector at the margin to achieve a wider margin, and therefore a more 

generalizable separation line.  

 

Figure 1.10 demonstrates the influence of cost parameter value on the margin and 

surrounding support vectors. 

 

Figure 1.10 SVM produces a wide margin for a small cost parameter (C=1) and narrow 
margin for a large cost parameter (C=100) [50]. 
 

1.7 Study Objectives 

 

We expect trends in spatial, statistical and textural metrics extracted from daily optical 

images to correlate to changes in images of skin before visual changes are clinically 

apparent and before symptoms including pain start developing. The combined use of 

optical and thermal imaging to predict acute skin toxicity has not previously been 

assessed, nor have image data been acquired frequently enough in this setting to evaluate 

and utilize trends in the predictive models.  
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The goal of this study was to define and test a radiomic and machine learning based 

algorithm to predict maximum patient skin toxicity outcomes based on the assessment of 

skin color, texture and temperature from daily optical and infrared images taken during 

the initial few radiotherapy treatment sessions. 
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Chapter 2 Methods 

2.1 Ethical Aspects, Experiment Design, Instrumentation and Data Collection 

2.1.1 Ethical approval 
 

This study was registered under ClinicalTrials.gov on April 27th 2020 with 

ClinicalTrials.gov Identifier: NCT04363892, and approved by the Nova Scotia Health 

Research Ethics Board on September 25th 2020, assigned to REB File #: 1025729,  

2.1.2 Participants  
 

Patients receiving radiation therapy for breast and chest wall cancer of all ages, following 

breast conserving surgery or mastectomy, were eligible for the study. It was important to 

include a diverse group of patients in our study to produce a predictive algorithm that 

could be generalized to be effective for any breast cancer patient undergoing 

radiotherapy. The patients’ ages and treatment-specific details including the total number 

of fractions, total dose and adjuvant chemotherapy status (yes/no) are summarized in 

Table 2.1. The maximum CTCAE grades recorded weekly throughout the treatment and 3 

follow-up visits were used to classify patients having either minimal symptoms (CTCAE 

≤ 1) or moderate to severe symptoms (CTCAE ≥ 2). Only one patient (5%) in our study 

experienced moist desquamation (CTCAE = 3), considerably lower the expected 30% 

[27, 28], however our sample size may have not been large enough to be representative of 

moist desquamation incidences. 
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Table 2.1. Summary of the patient and treatment specific factors for all participants in the 
study. The p-values are computed from a two-sample student t-Test. 

Patient and Treatment 

Specific Details 

CTCAE ≤ 1 

(n = 6) 

CTCAE ≥ 2 

(n = 14) 

P-values 

Age 

Mean 

Median 

Maximum 

Minimum 

Standard Deviation 

 

52 

49 

75 

39 

13 

 

59 

60 

74 

37 

11 

0.22 

Total Fractions 

Mean 

Median 

Maximum 

Minimum 

Standard Deviation 

 

16 

15 

20 

15 

2 

 

17 

15 

33 

15 

5 

0.51 

Total Dose 

Mean 

Median 

Maximum 

Minimum 

Standard Deviation 

 

4375 

4000 

5250 

4000 

586 

 

4739 

5000 

6600 

4000 

739 

0.30 

Adjuvant Chemotherapy 

Yes 

No 

 

3 

3 

 

1 

13 

 

 

Men were excluded because they rarely develop this form of cancer (less than 1% of all 

cases). The presence of hair and a different skin complexion would challenge the 
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development of a texture characterization algorithm, so it was important to include only 

female patients. Patients with treatment-unrelated skin issues and locally advanced breast 

cancer were also excluded. While acknowledging that prediction of skin toxicity for 

patients with abnormal skin conditions and advance breast cancer are equally important, 

our initial focus was prediction for normal skin conditions first, leaving special cases for 

follow-up investigations. Any special case would require a dedicated screening of 

patients and might likely take longer to achieve a sample size sufficient for a proper 

statistical analysis. 

A new list of breast and chest wall cancer patients admitted for radiation therapy was 

produced weekly, and the primary radiation oncologist for each eligible patient was 

notified to approach and inform them of the study during their first appointment. If the 

patient was interested in participating, they were given a form outlining the details of the 

study to read. If the patient was still interested, at next appointment they signed an 

informed consent. Each patient participating in the study was given a unique identifier for 

the anonymization of all data collected. 

We had intended to recruit a large enough sample size to assess five factors among 

patients in a multivariate analysis: skin temperature, skin colour, skin structure, smoking 

habits, and diabetes. Ideally, having 10 events per factor would comfortably allow us to 

test and demonstrate its significance, and hence a total of 50 patients experiencing skin 

toxicities would provide a reliable basis for this factorization. Moist desquamation occurs 

in approximately one third of the patients, so we initially aimed to recruit 150 patients for 

assessing the significance of a correlation between each of the listed factors and radiation 

induced skin toxicity. 
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In total, over the time available and given limitations during the COVID pandemic, 25 

patients consented to the study. Five patients were removed from the study before starting 

or at different points of their treatment, resulting in a final sample size of 20. Reasons for 

removal included patients’ decision to not attend additional appointments following the 

treatment course, the oncologist’s decision to treat bilaterally (which does not allow 

imaging of an untreated side) or the decision by the oncologist to treat with a 

hypofractionated regimen, which would not allow sufficient data acquisition.  

2.1.3 Instructional or Intervention Materials 
 

A manual for the data acquisition procedure was prepared for radiotherapists to ensure 

that consistent conditions were maintained and required steps were properly followed. 

These instructions included the steps of setting up both cameras on the camera-holding 

crane over the patient’s chest wall, adjusting the room light settings, operating both 

cameras and adjusting their settings, technique for acquiring images, and storing images 

on a secure drive. 
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2.1.4 Instruments 
 

A thermal camera (Forward Looking Infrared FLIR One Pro with 160 x120 infrared 

thermal resolution and thermal sensitivity of 70 mK) paired and controlled with an iPad, 

was used to obtain infrared images, and an optical camera (Canon Rebel SL3 DSLR with 

24.1 MP resolution) was used to capture optical images of patients’ skin. While the 

thermal camera can also provide registered optical images, the evaluation of the camera 

performance conducted before the study suggested that the resolution may be too low for 

the purposes of this study. A plexiglass camera-positioning crane was designed to be 

secured to the patient couch and to extend over the patient’s chest wall 70 cm from the 

skin surface. For the optical imaging, a series of colour calibration steps were carried out, 

helping to compensate for any variations in changes in ambient light sources and surface 

lighting. As part of this procedure, a calibration strip, shown in Figure 2.1, was placed on 

the patient's skin to appear in a similar region in all images taken throughout the 

treatment. The colour calibration strips, each containing five colour squares: red, green, 

blue, black, and white, were printed on cardstock and taped to thin plastic backings to 

keep them flat to avoid ambient light reflection brightening the strips in images.  
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Figure 2.1 Colour calibration strip used for calibrating the intensity of the optical images. 

 

The respective parts of the images were used to calibrate the absolute intensity of each of 

the three colour channels (red, green, blue) of the optical images. In addition to thermal 

and optical images skin toxicity assessments were carried out using the CTCAE toxicity 

grading of skin dermatitis.  

Each patient was assigned a secure folder on a protected network drive where their 

anonymized images and questionnaires were stored. A lockbox attached to the control 

room wall was used for storing the FLIR/iPad and Canon cameras, while not in use. 

2.1.5 Data Collection 
 

Images were collected for patients enrolled in the study daily and throughout the course 

of their treatment, and weekly for three weeks following the end of treatment. All 

participants who consented for the study were scheduled to the same treatment room to 

reduce variability in room brightness and background in the images, as well as to ensure a 

uniform procedure among staff on the unit. Before the patient arrived for their 
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appointment, radiation therapists adjusted the size of the aperture on the optical camera to 

F-stop = 5.6, and sensitivity to ISO = 3600 to ensure consistent brightness and light 

responsivity. The shutter speed was left on an automatic setting to avoid motion blur. All 

lights in the treatment room were set to maximum brightness, allowing the optical camera 

to best detect any visual differences on the skin.  

After securing the camera-positioning crane to the treatment unit couch, radiation 

therapists set up the patient on the couch in in their treatment position.  The optical 

camera was attached to the crane and extended over the patient’s chest wall, oriented 

approximately orthogonal and at a distance of 70 cm from the skin surface to capture 

both ipsilateral and contralateral sides. The camera position was held fixed with respect 

to the treatment unit couch for the entire course of the study. The optical camera and 

iPad-thermal camera pair bolted to the attachments are shown in Figure 2.2, and the 

camera holding crane with the inserted attachments are shown in Figure 2.3. 
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Figure 2.2. (A) The FLIR One Pro camera paired to an iPad, and (B) Canon Rebel SL3 
DSLR camera  used to acquire thermal and optical images, respectively, bolted to 
plexiglass camera-holding mounts. (C) A close up view of the FLIR One Pro camera. 
 

 

 

A 

C 

B 
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Figure 2.3. The camera-holding crane attached to the end of a breast board with the (A) 
optical- and (B) thermal-camera attachments inserted. 

 

The colour calibration strip was placed below the patient’s chest wall within the field of 

view of the optical camera to assist with an absolute measurement of the color. Two 

optical images were acquired (duplication was required to provide both improved 

statistical robustness and backup in case if the first image was of poor quality) with the 

self-timer set to three seconds, allowing therapists to step away from the couch to 

minimize shadowing. Next, the optical camera was replaced with the thermal camera 

paired to an iPad, and two thermal images of the patient were acquired. A total of 676 

optical images and the same number of thermal images were collected for the study. All 

acquired images were uploaded to a secure folder on a protected network drive and 

deleted from the cameras immediately after the patient’s departure. The thermal camera, 

A B 
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iPad and optical camera were stored and charged within a lock box in the control room of 

the treatment unit, while not in use.  

On the last day of each treatment week and three weeks following the end of treatment, 

patient questionnaires and CTCAE-based skin toxicity assessments were carried out by 

radiation therapists.  

 

2.2  Data Processing 

 

As our goal of this work was to design and investigate a practical imaging system that 

could be implemented at the point of care, we needed to provide means of ensuring 

consistent colour representation across the optical images, even in the presence of 

possible variation of ambient light and camera exposure settings. Thus, a method was 

developed to calibrate all optical images acquired based on sampling of the calibration 

strip, which was present in all analyzed images.  

2.2.1  Automated calibration strip ROI identification 
 

An algorithm was developed for the automated identification of regions of interest (ROIs) 

for each square in the calibration strips. The sum of squared ratios (SSRs), as defined in 

equations (1)-(3), were computed for each pixel in the selected area.  
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𝑆𝑆𝑅𝑟𝑒𝑑 = (
𝐶𝑟𝑒𝑑

𝐶𝑔𝑟𝑒𝑒𝑛
)

2

+ (
𝐶𝑟𝑒𝑑

𝐶𝑏𝑙𝑢𝑒
)

2

 

 

(1) 

 
𝑆𝑆𝑅𝑔𝑟𝑒𝑒𝑛 = (

𝐶𝑔𝑟𝑒𝑒𝑛

𝐶𝑟𝑒𝑑
)

2

+ (
𝐶𝑔𝑟𝑒𝑒𝑛

𝐶𝑏𝑙𝑢𝑒
)

2

 

 

(2) 

 
𝑆𝑆𝑅𝑏𝑙𝑢𝑒 = (

𝐶𝑏𝑙𝑢𝑒

𝐶𝑟𝑒𝑑
)

2

+ (
𝐶𝑏𝑙𝑢𝑒

𝐶𝑔𝑟𝑒𝑒𝑛
)

2

 

 

(3) 

Where 𝑆𝑆𝑅X is the sum of square ratios for the colour channel of interest X, and CY is the 

spatially dependent pixel value of the Y colour channel.  

The SSRs represent the contribution of each colour channel to the total RGB value, 

relative to the two other colour channels. The colours on the strip were chosen to be red, 

green and blue were chosen for simple ROI detection using SSRs. For example, a red 

pixel will have a high red channel value, but low green and blue channel values, so 

𝑆𝑆𝑅𝑟𝑒𝑑 will be high for that pixel. However, a white pixel would have high red, green 

and blue channel values, so 𝑆𝑆𝑅𝑟𝑒𝑑 of the white pixel will be lower than that of the red 

pixel. 

Next, 𝑛 pixels with maximum SSR values for each colour channel were selected to cover 

a threshold of 0.04% of the area with the coordinates (𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑛, 𝑦𝑛). The 

maximum SSR coordinates were used to determine a strength field, defined in equation 

(4).  
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 𝑺(𝒙, 𝒚) = ∑ 𝒆−(√(𝒙−𝒙𝒊)𝟐+(𝒚−𝒚𝒊)𝟐)

𝒏

𝒊

 (4) 

Where 𝑆(𝑥, 𝑦) is the strength field of the pixel positioned at (𝑥, 𝑦)in the image grid, and 

{𝑥𝑖, 𝑦𝑖}𝑖
𝑛 is the set of coordinates with maximum SSR values. 

𝑆(𝑥, 𝑦) is greater for pixels located closest to a cluster of maximum SSR points. The 

points outlined by the contour line of 𝑆(𝑥, 𝑦) = 500 within each ROI were chosen to be 

used for the colour calibration. The 𝑆(𝑥, 𝑦) = 300 𝑎𝑛𝑑 500 contour lines are shown in 

Figure 2.4 for the A) red, B) green, and C) blue colour channels. The pixels with the 

lowest and highest combined RGB values were used to capture the darkest and lightest 

points from the black and white ROIs, respectively. 
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Figure 2.4 The contour lines of the strength field constructed from the SSRs of the A) 
red, B) green and C) blue colour channel, shown on the colour strip. 

A 

B 
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2.2.2  Colour calibration from selected ROIs on the Calibration Strip 
 

The median pixel value of the three colour channels within each of the five regions on the 

strip was taken, resulting in 15 calibration values per image (𝑋𝑌𝑖), where X indicates the 

colour of the ROI, Y indicates the colour channel of interest, and i = image index. Figure 

2.5 is a diagram of the calibration strip showing the 15 calibration values where the 

colour abbreviations replacing X and Y are R = red, G = green, B = blue, K = black, W = 

white.   

 

𝑹𝑹𝒊 

𝑹𝑮𝒊 

𝑹𝑩𝒊 

𝑮𝑹𝒊 
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Figure 2.5. Diagram depicting the calibration values extracted from each ROI in the 
calibration strip. 

 

The calibration values were averaged across all optical images to get fifteen reference 

calibration values for the whole image set, defined in equation (5). 

 𝑋𝑌𝑟𝑒𝑓 =
∑ 𝑋𝑌𝑖𝑖

𝑁
 (5) 

 

Where N is the number of images in the set. The correction multipliers (𝐶(𝑋𝑌𝑖)) were 

computed as the ratios of calibration values to the corresponding reference values, 
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defined by equation (6). Multiplying the RGB pixel values by this factor adjusts colour 

intensity to match that of the reference colour intensity. 

 𝐶(𝑋𝑌𝑖) =
𝑋𝑌𝑖

𝑋𝑌𝑟𝑒𝑓
 (6) 

Using the assumption that the correction multipliers should be the same among all ROIs 

and colour channels, a median absolute deviation rejection criterion was applied to 

remove any outliers from the 15 correction multipliers. The median absolute deviation 

(MAD) for each image (i) is defined by equation (7) where 𝐶(𝑋𝑌𝑖)̃  is the median of the 

15 correction multipliers.  

 𝑀𝐴𝐷𝑖 = 𝑀𝑒𝑑𝑖𝑎𝑛(|𝐶(𝑋𝑌𝑖) − 𝐶(𝑋𝑌𝑖)̃ |) (7) 

 

Any correction multipliers with absolute deviations greater than 4* 𝑀𝐴𝐷𝑖 were rejected. 

The remaining correction multipliers were averaged to get one single correction 

multiplier for each individual image, and calibrate it accordingly. Figure 2.6 shows the 

correction multipliers values from each ROI, with the colour of the points representing 

the corresponding colour channel (red, green, blue), and the rejected points marked with 

asterisks. This is one of the few images that were taken before the calibration strips were 

glued to the plastic backings, so the red square on the calibration strip displayed visible 

reflection from the room lights, and therefore gave inaccurate correction multipliers.  
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Figure 2.6. Correction multipliers derived from each colour box ROI on the calibration 
strip in a single image. The red, green and blue points represent the respective colour 
channels. A median absolute deviation of 4*MAD was used to reject outliers, shown in 
asterisks (in this case, the correction multiplier from the red ROI were all rejected). 

 

2.2.3  Thermal image calibration 
 

 Metadata including the pixel value to temperature conversion coefficients were extracted 

from the FLIR jpeg files and used to calibrate the arbitrary pixel values of each infrared 

image into the corresponding absolute temperature values. An accuracy test for the 

thermal camera was carried out using three wooden blocks and a small piece of carpet 

(materials with low thermal conductivity) on a flat surface. The relative temperature 

differences between each block and the piece of carpet were measured five times in stable 
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room conditions and the standard deviation of the measurements were computed. This 

test was repeated by increasing the distance from the camera to the surface of the blocks 

from 19 cm to 70 cm. The relative temperature differences and corresponding standard 

deviation variation across the tested distances are presented in Figure 2.7. 

 

Figure 2.7 A) Relative temperature differences between three wooden blocks and carpet 
measured five times when increasing the distance between the thermal camera and 
blocks. The standard deviation of the five back to back measurements are plotted in B) 
with increasing distance. 

 

The temperature differences between the blocks of wood and carpet within a single image 

should be close to constant at stable room conditions. The standard deviation of the 

relative temperature differences remained 0.08°C ± 0.06°C across all distances. Saednia 

et al reported an increase in mean skin temperature of 0.45°C ± 0.202°C for patients with 

a skin toxicity grade of CTCAE ≥ 2. The precision of the thermal camera used in our 

study allows for the detection of the expected relative thermal changes. 

  

A B 
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2.2.4  Image Registration 
 

To evaluate the optical and thermal skin changes in the same region of the patient’s chest 

at each point throughout the treatment, the images were aligned through a procedure 

called rigid image registration. This algorithm computes a mutual information metric 

from a joint probability distribution of two images, which is a function that describes the 

relationship between the intensities of corresponding pixels in two images. Image 

registration optimizes the mutual information metric by applying a series of geometric 

transformations to the image determine one that matches its intensity patterns or features 

with those of a reference image. The number of samples used to compute the probability 

density function and number of bins used to compute the mutual information metric were 

set to 500 and 50, respectively [44].  In our case, an affine transformation was used, 

allowing translation, rotation, scaling, and shearing of the image. For each patient, an 

optical and thermal region-of-interest around the patient’s entire chest was defined for co-

registering the images. One optical image in the image set was chosen as a reference to 

which all other images were rigidly co-registered to. The reference image was chosen to 

be at the halfway point of the treatment course to take into account the visual changes of 

the treated breast at later stages of treatment. The same co-registration procedure was 

applied to the thermal images. The transformation parameters were then used to align the 

patient images for each image type individually. Figure 2.8 shows the image 

transformation before and after affine image registration for both optical and thermal 

images of a patient taken during two separate visits. 
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Figure 2.8 A visible shift in the patient’s position in the overlaid A) optical and C) 
thermal images taken during two different visits. The corresponding images are aligned 
after an affine transformation is applied to the B) optical and D) thermal images. 

 

2.3  Data analysis 

2.3.1 Radiomic Feature Extraction  
 

An ROI on the ipsilateral (treated) side of the patient’s chest was defined corresponding 

to the area of skin in the direct field of the radiation beam, using the combined beam 

projections in the treatment planning system software as a reference. This ROI was used 

across the entire co-registered optical image set, and the same ROI identification was 

A B 

C D 
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repeated for the co-registered thermal image set. A control ROI was outlined on the 

contralateral (untreated) side, inferior to the patient’s clavicle where the colour and 

temperature appeared the most uniform for each image-type set, and used across the two 

co-registered image sets. Figure 2.9 is an example of the optical and thermal images for 

the first patient in the study, with the ipsilateral ROI outlined on the left side, and 

contralateral ROI outlined on the right side.  

 

Figure 2.9. The thermal (left) and optical (right) images of a patient’s chest with the 

ipsilateral and contralateral ROI’s outlined on each side. 

 

The Python Pyradiomics open-source toolbox was used to extract a series of 108 

radiomic features from the ipsilateral and contralateral ROIs on the patients’ skin for each 

image type, for both optical and thermal images. Average values were computed between 

the duplicate image for all features. Possible trends with biologically effective dose 

(BED) of these features were examined. BED for each fraction (equation (8)) was 

computed to allow for comparison between patients with different fractionation 

schedules. It is defined as a measure of the biological dose delivered by a particular 

combination of dose per fraction and total dose to a particular tissue characterized by a 

specific 𝜶/𝜷 ratio [51].  
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 𝑩𝑬𝑫 = 𝒏𝒅 (𝟏 +
𝒅

𝜶/𝜷
 ) (8) 

 

In equation (8), n is the number of fractions, d is the dose per fraction, and α/β is the 

ratio determining the sensitivity of a particular cell type to radiation. For skin erythema 

and desquamation, 𝛼/𝛽 =  10.8 Gy, determined by averaging the α/β values from 

different studies stated in a review article by Emami et al. [52]. 

All features were analyzed as function of BED, and their signal-to-noise-ratios (SNR) 

with respect to linear fit, were computed. In Figure 2.10 the mean gray level feature 

differences between the two ROIs is shown for a single patient as an example. The 

differences of the mean ROI values for the optical images show persistent trends as the 

skin conditions deteriorate when BED increases in Figure 2.10 A). The intensity with 

respect to the contralateral side declines, which indicates that the colour of the skin is 

darkening. Likewise, from the thermal images, the differences of the mean ROI values 

increase as shown in Figure 2.10 B), indicating a rise in temperature of the skin with 

increasing BED. The high level of variation between fractions (noise) in the thermal data 

could be due to challenges in executing perfect alignment in thermal image registration. 

Thermal images are not as detailed as detailed as optical images, and therefore there is 

more uncertainty when registering all images in the set to a single reference image. 
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Figure 2.10. The mean gray level ROI differences from (A) optical and (B) thermal with 
increasing BED corresponding to treatment fractions for the first patient in the study. The 
zero-intercept is used as a reference point. 

 

Figure 2.10 demonstrates one approach to the analysis of skin characterization. It was 

based on the assessments of the trends and strength of linear signal for each individual 

patient.  Another approach we followed was taking an ensemble of all patients for a 

specific feature with the zero-intercept used as the common reference point, and 

analyzing the probability distribution function for each dose value. This gave an idea of 

the overall skin response trend of the group, and allowed us to preliminarily group 

different features by visual comparison of their uniqueness and redundancy, helping to 

estimate reasonable thresholds for feature reduction. An example of this approach is 

shown in  

Figure 2.11. In each dose-feature value interval, the normalized probability density was 

computed as the number of cases in the bin divided by the sum of all cases corresponding 

to the same dose interval, divided by the feature interval size. Because we used the 
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normalized feature value ranging from zero to one, the feature bin size is equal to one 

divided by the total number of intervals. Therefore, the normalized probability density 

equals the number of cases in the dose-feature value interval divided by the sum of cases 

of that dose interval and multiplied by the number of feature intervals. The normalized 

feature range was reassigned to the original range for the probability distribution graphs. 

Using the normalized probability function allows comparison between different features.
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Figure 2.11 Normalized (zero to one range of corresponding feature value) probability 
distribution function of the median radiomic A) optical and B) thermal features. 
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The higher probability density shifts to lower median values in the optical images with 

increasing dose, indicating skin darkening over the course of treatment, On the contrary 

to that, the thermal median increases with dose, suggesting an increase of skin 

temperature of the treated area. At a BED of 50 Gy, the distribution becomes bimodal 

(the peaks in distribution splits), which is  apparent in both the optical and thermal 

median. This, as we later show, corresponds to the separation between high and low skin 

toxicity grade cases. As mentioned, this method allows to identify the characteristic 

behaviour of certain features. Figure 2.12 shows two more examples of a systematic 

change of probability density with dose, but somewhat different than the median feature.  
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Figure 2.12  Normalized probability distribution function of optical A) first order root 
mean squared and B) GLDM small dependence emphasis feature. 
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4.3.2 Feature Quality Evaluation  

 

SNR was defined in equation (9) as the percent of variance removed after subtracting a 

linear fit (yfitted) from the data points (y). This quantity determined how noisy the data 

was relative to the trend.    

 𝐒𝐍𝐑 = 𝟏𝟎𝟎%  −  
𝐯𝐚𝐫(𝐲 − 𝐲𝐟𝐢𝐭𝐭𝐞𝐝)

𝐯𝐚𝐫(𝐲)
∗ 𝟏𝟎𝟎% (9) 

Variance is defined as  

 𝐯𝐚𝐫(𝐱) =
𝟏

𝐍
∑ 𝒙 𝒊 − 𝝁

𝑵

𝒊=𝟏

 (10) 

 

Where N is the number of data points, and μ is the average of all xi data points.   

It was noted that in almost all cases, the SNR of the (ipsilateral – contralateral) ROI 

feature differences were larger than those of the treated ROI alone. However, the higher 

order thermal features were an exception to this, demonstrating smaller SNR for the 

ipsilateral - contralateral ROI feature differences than for the treated ROI features. This 

may be explained by the reliance of higher order features on high spatial resolution in 

images. Specifically, the error of the difference of higher order feature values computed 

for any two nonoverlapping ROIs in a low-resolution thermal image can be expressed as 

the sum of the random errors of the two feature values. These random errors include 

instrumental noise, effects of coarse resolution and sensitivity. The cumulative random 

error of the difference seemingly outweighed the signal of higher order features that is 
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essentially removed when the difference is taken between the (ipsilateral – contralateral) 

ROI values. The combined noise when taking differences between higher order features 

from two different ROIs in the low resolution thermal images outweighed the 

stabilization from the control ROI. Therefore, first order optical and thermal feature 

differences and higher order optical feature differences were used in the analysis, while 

higher order thermal features from the treated ROIs were used directly without 

performing subtraction of the control/contralateral ROI values. 

2.3.3 Feature Dimension Reduction  
 

Some radiomic features may not contribute useful information to the model and are 

frequently correlated with each other, indicating data redundancy. To avoid overfitting 

the model and increase classification accuracy, noisy features should be removed from 

the feature set and correlated features may be grouped and replaced with a representative 

feature. All shape features were first removed from the set of 108 features, resulting in a 

set of 83 histogram and textural features. Noisy features were then eliminated by 

thresholding the average SNR across patients to keep only the features with average SNR 

equal or greater than = 30% and 15% for optical and thermal images, respectively. This 

reduced the 83 features from both image types to 28 optical features and 21 thermal 

features. To help identify and further eliminate linearly dependent variables, the 

correlation coefficients between each of the feature value series were then computed for 

both SNR-based reduced image type sets individually. The absolute correlation 

coefficients are presented in Figure 2.13 (A) and (B) in the form of correlation-matrices 

of the SNR-based reduced optical and thermal features, respectively, for one patient. The 

features with higher correlation coefficient values are considered as closely linearly 
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dependent, and also exhibit similar row and column patterns within the matrix. Both 

matrices in Figure 2.13 show groups of dependent (highly correlated) features.  

 

 

Figure 2.13. The absolute correlation coefficient matrices of SNR-based reduced (A) 
optical and (B) thermal features for the first patient in the study. The cross-correlation 
coefficients are indicated in the colour bar, with higher values (red) corresponding to 
highly correlated features, and lower values (blue) to uncorrelated features. 
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Features that are highly correlated do not contribute additional useful model training data, 

cause overfitting of the machine learning model, and hence reduce the accuracy of the 

classification. To determine and reduce common groups of correlated features among 

patients, the cross-correlation matrices were discretized (i.e., replacing with binary values 

of 0, if the absolute correlation value was less than 0.75, and 1 otherwise) and the 

resulting binary cross-correlation matrices were summed across the patients. The 

matrices were sorted based on SNR and reordered, placing features of high correlation 

together for better visualization of dependent groups. The reordered significant 

correlation coefficients summed over all patients are shown in the matrices in Figure 2.14 

(A) and (B) for the SNR-based reduced optical and thermal features, respectively.  



62 
 

 

Figure 2.14. The reordered sum of significant correlation coefficient values of SNR-
based reduced (A) optical and (B) thermal features. The colour bar indicates the binary 
correlation value summed over all patients. Features with a coefficient sum criterion of c 
= 10 or greater were grouped together to identify and eliminate redundancy in the sets. 

 

A significance criterion (c = 10), outlined in Figure 2.14 was used in the summed matrix 

to group correlated features. Each row (feature) in the matrix was scanned successively to 

assemble the groups, and the feature with highest SNR was selected from each group. If 

A 

B 



63 
 

features below the row of interest were not added to the group but still correlated (c ≥ 10) 

to the highest SNR feature chosen from the group, then they were removed from the 

matrix to no longer be considered for subsequent grouping. This resulted in a reduced set 

of independent features. Figure 2.15 depicts the feature grouping and selection process 

using an example matrix of significant correlation coefficients summed across patients. 

When scanning the first row, two features exceed the c = 10 significance criteria: features 

1 and 4. If, hypothetically, feature 4 has the higher SNR, then it will be chosen as the 

representative feature from that group. Feature 4 is also correlated with feature 3, circled 

in Figure 2.15, so feature 3 will be removed from the matrix even though it was not 

considered for the first group. Features 2 and 5 are not correlated with any remaining 

features so they are inherently selected for groups 2 and 3.   
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Figure 2.15 Feature selection flowchart from matrix of reordered significant correlation 

coefficients summed over all patients. 
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As a final step in the dimensionality reduction routine, the relationship between reduced 

feature set and skin toxicity grade were assessed and used to eliminate features with no 

significant association to skin toxicity. The  Kendall Tau correlations between every skin 

toxicity grade recorded throughout the study, and corresponding change in feature values 

(with respect to the first therapy session) in the reduced set were computed to validate the 

selected group of features’ correspondence to toxicity, and hence their use in predicting 

skin toxicity. The Kendall Tau correlation is a non-parametric test, so it does not rely on 

strict assumptions of the data distribution, or require continuous data. Instead, it assesses 

the statistical associations between variables based on ranked and numbered data. The 

dependent variable of our data is ordinal (skin toxicity grade), so this test is valid for the 

analysis. Kendall Tau correlation is calculated based on concordant and discordant pairs, 

so it is less sensitive to error and discrepancies in data compared to similar non-

parametric rank tests like the Spearman correlation, which is calculated based on 

deviations.  

2.3.4 Toxicity Prediction using Machine Learning Classification   
 

Any features that demonstrated significant correlation to toxicity (based on the Kendall 

Tau p-values computed for the reduced feature set) were further used in various machine 

learning algorithms as predictors. Data from the end of the treatment were excluded using 

BED cut-offs of 50, 45, 40, 35, 30, 25, 20, 15 Gy, as well as no cut-off, to test the 

predictive capabilities of the images from earlier fractions. This is analogous to a 

situation where a patient is early on in their treatment and only a few images are 

available. The linear fit first order coefficients of the selected features (as function of 
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BED) were used as input data to train and test 25 machine learning models in Matlab’s 

Classification Learner. The Classification Learner is an interactive application that allows 

a selection of machine learning models to be trained back-to-back, including 3 decision 

tree models, 2 discriminant analysis models, logistic regression, two naive Bayes models, 

6 support vector machines, 6 nearest neighbor kernel approximation models, 5 

ensembles, and 3 neural networks. Once the training is complete, the accuracy scores, 

prediction performance and ROC curve among all models can be compared within the 

application, and the fitted model can be exported to a Matlab file. 

 

The maximum CTCAE skin toxicity grade that the patients experienced throughout the 

study was used as response variable in the machine learning training. Classes were 

constructed by converting the CTCAE grades into binary data: patients who experienced 

no skin reactions to low grade toxicity (CTCAE ≤ 1) were classified as zero, and those 

who experienced moderate to high grade toxicity (CTCAE ≥ 2) were classified as one. 

The data was partitioned into k = 4 groups for cross-validation testing. K-fold is a 

technique that splits data into k equal groups and uses one of the groups from the data as 

a test set, and the model is trained on the remaining k-1 groups. Next, the test set 

observations are fed to the trained model, and as an output, the corresponding predicted 

class labels are returned along with their probabilities of being classified either as zero or 

one. The accuracy is computed for that test set by dividing the number of correct 

predictions by the number of total predictions, defined by equation (11). 
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 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =  
𝐓𝐏 + 𝐓𝐍

𝐓𝐏 + 𝐓𝐍 + 𝐅𝐏 + 𝐅𝐍
∗ 𝟏𝟎𝟎% 

(11) 

 

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False 

Negatives. 

The model then is discarded, and the above procedure is repeated for the remaining 

subsets. The cross-validation accuracy is defined as the average accuracy across all k-

folds.  

 

Although accuracy is a simple metric to compute and understand, it might not be the best 

metric to evaluate the performance of the model if the data are imbalanced (e.g., more 

negative classes than positive). The receiver operating characteristic (ROC) curve 

provides a broader measure of the classifier’s performance since it considers all possible 

discrimination probability thresholds and evaluates the sensitivity and specificity of class 

prediction separately. Sensitivity is defined as the probability of correctly identifying 

patients with a disease, while specificity is the probability of correctly identifying 

patients without a disease. To produce an ROC curve, the True Positive Rate (TPR), or 

sensitivity, and False Positive Rate (FPR) or (1-speicificity), are computed (equations 

(12) and (13)). 

 

 𝐓𝐏𝐑 = 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐍
 (12) 

 𝐅𝐏𝐑 = 𝟏 − 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 =
𝐅𝐏

𝐅𝐏 + 𝐓𝐍
 (13) 
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An ROC curve is produced by plotting TPR as a function of FPR at different 

classification thresholds. From the ROC curve, the Area Under the Curve (AUC) 

provides a measure of the model’s performance. The higher the AUC value, the higher 

the probability that the model will rank a random positive case more highly than a 

random negative case (i.e., AUC = 1 would indicate perfect discrimination of classes 

regardless of the chosen threshold). Similar to the computation for accuracy, the AUC is 

calculated for each fold, and the mean value across all folds is the cross-validated AUC 

estimate.   

The Support Vector Machine (SVM) model sustained the highest cross-validation 

accuracy throughout all BED cut-offs compare to the other models tested in the 

Classification Learner.  SVM uses a subset of points (support vectors) to maximize the 

margin of the hyperplane separating classes. It is a justifiable classifier in our case 

because it performs well for data sets with a small sample and larger number of features. 

It is also robust to outliers since the margin separating classes depends only on a subset of 

points. We evaluated the performance of three SVM models (linear, quadratic, and cubic 

SVMs) using ROC curves and corresponding AUC scores. The cost parameters for the 

SVM models were tuned through optimization within the SVM algorithm.    
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Chapter 3  Results 

 

3.1  Radiomic Feature Redundancy Reduction 

The significant correlation values summed across patients, used as a metric to eliminate 

redundant features, resulted in a set of six optical features; GLCM joint entropy, GLSZM 

small area emphasis, GLSZM large area emphasis, GLDM large dependence emphasis, 

first order root mean square, GLCM difference average, and five thermal features; 

GLCM cluster shade, GLSZM zone variance, first order 10th percentile, GLCM 

correlation, and first order mean. The definitions of these features from Python’s 

documentation of Pyradiomics are assembled in Table 3.1 [53]. 
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Table 3.1 Definitions of the selected features extracted from the Pyradiomic 
documentation [53]. 

Selected Texture Features Definition 

First order root mean square 

The square-root of the mean of all the 
squared intensity values. It is another 

measure of the magnitude of the image 
values. 

GLCM joint entropy Measure of the randomness/variability in 
neighborhood intensity values 

GLSZM small area emphasis 

Measure of the distribution of small size 
zones, with a greater value indicative of 
more smaller size zones and more fine 

textures 

GLSZM large area emphasis 

Measure of the distribution of large area 
size zones, with a greater value indicative 
of more larger size zones and more coarse 

textures. 

GLDM large dependence emphasis 

A measure of the distribution of large 
dependencies, with a greater value 

indicative of larger dependence and more 
homogeneous textures 

GLCM difference average 

Measures the relationship between 
occurrences of pairs with similar intensity 

values and occurrences of pairs with 
differing intensity values 

GLCM cluster shade 
A measure of the skewness and uniformity 

of the GLCM. A higher cluster shade 
implies greater asymmetry about the mean 

GLSZM zone variance Measures the variance in zone size 
volumes for the zones 

First order 10th percentile The 10th percentile of the intensity 
histogram 

GLCM correlation 

A value between 0 (uncorrelated) and 1 
(perfectly correlated) showing the linear 
dependency of gray level values to their 

respective voxels in the GLCM 

First order mean The average gray level intensity within the 
ROI 
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The sum of significant correlation values of these features are shown in Figure 3.1. The 

high correlation values only reside along the diagonal, implying that the features in the 

matrix have been successfully reduced to an independent set, generalized to the patients 

in our study. The correlation coefficients between thermal and optical features were not 

analyzed. The thermal and optical features might be correlated to an extent but they can 

still hold information that differs from one another, as they represent different physical 

aspects of the skin. If this is the case then we would want to keep the features from both 

types of images and analyse them separately. 
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Figure 3.1. The sum of significant correlation coefficient values of (A) optical and (B) 
thermal features resulting from SNR-based reduction, followed by cross-correlation 
based reduction. The colour bar indicates the binary correlation value summed across all 
patients. 

 

A 

B 
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The Kendall Tau correlations coefficients and p-values between every skin toxicity grade 

recorded and the corresponding change in feature values from the initial fraction are 

presented in Table 3.2 for the reduced six optical and five thermal features. A p-value of 

p ≤ 0.05 suggests a statistically significant Kendall Tau correlation.  
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Table 3.2. The Kendall Tau correlation coefficient and p-values for the 11 SNR- and 
intrafeature correlation-reduced features. The significant Kendall Tau coefficients and p-
values are highlighted in the table. 

Radiomic Feature 
Kendall Tau  

Correlation Coefficient 
p-value 

Optical 

GLCM joint entropy 

GLSZM small area emphasis 

GLSZM large area emphasis 

GLDM large dependence emphasis 

 first order root mean square 

GLCM difference average  

 

  0.35 

- 0.27 

- 0.19 

- 0.39 

- 0.44 

  0.39 

 

7.3 x 10-8 

3.6 x 10-5 

0.003 

1.1 x 10-9 

6.6 x 10-12 

2.7 x 10-9 

Thermal 

GLCM cluster shade 

GLSZM zone variance 

first order 10th percentile 

GLCM correlation 

first order mean 

 

- 0.031 

  0.16 

  0.14 

- 0.062 

  0.24 

 

0.65 

0.016 

0.032 

0.33 

1.5 x 10-4 

 

All features except for thermal GLCM cluster shade and thermal GLCM correlation had 

significant Kendall Tau p-values (≤ 0.05). Figure 3.2 shows the correlation between the 

feature value difference (change in feature value from the first fraction) and 
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corresponding toxicity grade for all selected features, in the form of box and whisker 

plots.   

 

Optical GLCM Joint Entropy 

Optical GLSZM large area emphasis Optical GLDM large dependence emphasis 

Optical GLCM difference average 

Optical GLSZM small area emphasis 

Optical first order root mean square 
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Figure 3.2. Box and whisker plots of feature value differences (taken between the first 
fraction and each fraction with recorded toxicity) and the corresponding toxicities for all 
features from the reduced set. The line inside of each box is the feature difference median 
within that grade. The top and bottom edges of each box correspond to the 0.75 and 0.25 
quantile, respectively, and the whiskers correspond to the maximum and minimum 
values. The outliers (shown in circles) were computed using 1.5 x the interquartile range 
(0.75 - 0 .25), and were not included in the correlation computation. 

Thermal GLSZM Zone Variance 

Thermal first order 10th percentile 

Thermal GLCM correlation 

Thermal GLCM cluster shade 

Thermal first order mean 
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The box and whisker plots for the other seven features (not shown) presented a notable 

correlation between the feature value and corresponding toxicity grade. The thermal 

GLCM cluster shade and thermal GLCM correlation were removed from the feature set 

since they did not demonstrate significant correlation, and the remaining six optical and 

three thermal features (nine in total) were further used as predictors in training the SVM 

classifiers.  

3.2  Skin Toxicity Diagnostics  

The three SVM classifiers were trained in five repeated runs (to average over the 

experiments and obtain errors) for each of the nine BED cut-offs (50, 45, 40, 35, 30, 25, 

20, 15 Gy, and no cut-off). This resulted in 135 cross-validation accuracy values and 135 

ROCs curves used to evaluate the model’s performance. Two sample ROC curves for the 

linear SVM are displayed in Figure 3.3.  
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Figure 3.3. ROC curves for one of the five repetition runs of the linear SVM with BED 
cut-offs of A) 15 Gy and B) 50 Gy. A random classifier would give points on the ROC 
curve lying along the diagonal, whereas a classifier with good performance would 
produce a curve closer to the top left corner. 

The curves above were chosen as an example because they show the visual difference 

between poor discrimination and good discrimination in an ROC curve, and the effect on 

the resulting AUC values. An AUC of 0.53 suggests poor discrimination (Figure 3.3 A), 

while an AUC of 0.82 (Figure 3.3 B) provides good discrimination between classes.  

The accuracy and AUC values were averaged from the five repeated runs, and plotted for 

the three SVM models as a function of BED cut-off in Figure 3.4. ‘No cut-off’ was set to 

75 Gy as this was the maximum BED delivered in the study. 

A B 
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Figure 3.4. Cross-validation (k-fold = 4) linear, quadratic and cubic SVM accuracy and 
AUC for different image data BED cut-offs, both metrics averaged across five runs. The 
error bars on the accuracy and AUC are the standard deviation values from the five runs. 
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Chapter 4  Discussion 

4.1 Dependence of model performance on data distribution and signal 
robustness 
 

A BED-series of 216 radiomic features, extracted from optical and thermal images of the 

patients’ skin were filtered based on the SNR of the feature value-BED linear fit and 

intra-feature correlation, reducing them to a set of six optical and five thermal statistically 

dependent features. The Kendall Tau correlation values between the 11 features and 

toxicity grading were computed to justify the selection of those features for subsequent 

predictive model fitting. Kendall Tau correlation p-values of the reduced features were 

significant among all six optical features, but only three out of the five thermal features 

presented significant correlation to toxicity. A thermal camera with better characteristics, 

such as sensitivity, accuracy and spatial higher resolution, may allow for more sensitive 

changes to be detected with respect to the control ROI. So, although two thermal features 

were not deemed usable for the predictive model, the same routine repeated on images 

taken with a higher resolution camera would potentially result in a significant correlation 

to skin toxicity grade, and therefore avoid rejection of any of the SNR-based and intra-

feature correlation reduced features. 

Twenty-five different classification models were tested to choose those providing most 

accurate prediction. Out of all tested models, the linear, quadratic and cubic SVMs 

demonstrated the best performance across a range of BED cut-offs and their cross-

validation and AUC values were further analyzed and reported in this study. Although the 

accuracy is a simple metric to interpret, it is misleading for unbalanced data where the 

sample distribution is skewed more towards either the positive or negative class. Like in 
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our case, throughout the entire course of the study, only 6 patients experienced minimal 

symptoms (CTCAE ≤ 1) while 14 patients faced moderate to severe symptoms (CTCAE 

≥ 2). If, for example, a model is biased towards patients with CTCAE ≥ 2 and all patients 

with CTCAE ≤ 1 are misclassified, then it will not affect the accuracy in the same way as 

an evenly distributed sample. The AUC metric sweeps across different classification 

thresholds and evaluates sensitivity as a function of specificity, i.e., two metrics 

computed from the positive cases and negative cases separately. Therefore, even the class 

with the minority of cases will have a strong impact on the AUC value. This method is 

more appropriate for the analysis for our data because it is invariant to class distribution.  

To test predictability, robustness and representability of the SVM model, images were 

excluded from the end of the treatment using various BED cut-offs. The quadratic and 

cubic SVM showed superior predictive performance with cross-validation accuracy 

remaining above 80%, and the AUC stayed above 0.7 for all three models when reducing 

the input to 30 Gy BED, or equivalently, the first third or first half of treatment fractions, 

depending on the patient’s fractionation schedule. The AUC for the linear SVM 

outperformed the quadratic and cubic SVMs for no-cutoff and a 50 Gy cutoff, but as the 

more data was discarded from the end of treatment, the AUC of the quadratic and cubic 

SVMs increased. This could be due to the fact that the decision margin of the quadratic 

and cubic SVM is a polynomial function rather than straight line. Adding adjustable 

curvilinearity to the decision line allows producing a higher level of complexity of 

margins separating classes of the support vectors, when fitted with polynomial functions, 

therefore allowing a smaller margin. When computing the ROC metrics, the classification 

threshold is varied, so the probability scores of a tightly fit separation margin are more 
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likely to be misclassified. However, when points from the end of the feature-BED data 

are removed, there is more variability and uncertainty in the feature-BED trend line first 

order coefficients used as the input for the classification model. This would result in a 

more generalized and larger margin, with a more forgiving decision line. Therefore, we 

would expect fewer misclassifications when varying the threshold.  

 

Saedina et. al reported a test accuracy of 0.87, and test AUC of 0.98 for a random forest 

classifier using data from the fifth fraction (one third way through the course of 

treatment), however the error on these values were not reported [35]. Figure 3.4 shows 

margins of error as large as 15% for the test accuracy and 30% for the test AUC in our 

data, as well as a considerable margin of error variation at different fractions. This result 

signifies the importance of training the model at a number of different points throughout 

the treatment, and evaluating the model’s error when repeating runs for different 

partitions. Random variations in the data would have a larger effect on the prediction 

outcome if we only used images from one fraction to make predictions rather than the 

first order linear coefficients of the features over several fractions. The larger sample size 

in the Saedina et. al study (n=90) [35] could explain the superior accuracy and AUC 

compared with ours (from n=20). One of the strengths and unique aspects of this study is 

that the image acquisition used simple tools that could be used by the implemented at the 

point of care, with the patient in treatment position. This is in contrast to previous work 

[35] that required a separate room and setup for patients.  The methodology integrated 

smoothly into the workflow, allowing for acquisition of optical and thermal image data 

on every fraction. 
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We believe that improvements in our results would be possible with regard to the thermal 

imaging, with thermal features and metrics limited by the spatial resolution of the images. 

The FLIR One Pro did not have a high enough resolution in its thermal images to detect 

meaningful changes in higher order ipsilateral-contralateral features. To properly 

represent the details of skin structure when evaluating higher order features, a sufficient 

number of pixels covering the ROI and affected areas is required. The fewer the number 

of pixels, the coarser the level of detail in representation of the skin structure, adding 

uncertainty to the higher order features, so those metrics were only assessed from the 

ipsilateral side alone. This does not preclude using thermal images in future, but either a 

better camera with higher sensitivity, accuracy and spatial resolution, needs to be used, or 

the radiomic features adjusted to account for low resolution. 

 

Chapter 5  Conclusion 

 

5.1 Summary of Work 

 

One of the most recognized challenges in the field in radiation therapy is to limit damage 

to normal tissues in order to minimize toxicity, without compromising the success of the 

treatment in terms of tumor control. However, response to radiation therapy shows large 

variability among patients, with dependence on many factors, including treatment 

parameters and patient specific details, making it difficult to determine the best curative 

approach.  
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The 20 patients who were included in our study experienced a wide range of radiation 

skin reactions. For each patient, the differences in thermal and optical image properties 

between irradiated and unirradiated sides were analyzed as a function of increasing dose, 

with each patient serving as their own control.  The number of optical and thermal 

radiomic features from these patients’ images obtained as part of the initial analysis was 

automatically reduced using a procedure based on the SNR and cross-correlation feature 

sorting methods. The relationship between these sets of features and skin toxicity were 

analyzed using Kendall Tau correlation, and corresponding p-values were used to reduce 

the series further. The final set of features were trained in machine learning models to 

assess the predictive capabilities of optical and thermal images at early stages of 

treatment.  

A total of 676 images allowed effective training of a SVM; linear, quadratic and cubic 

SVMs were capable of providing an accuracy above 80%, and an AUC above 0.7 after 

imaging just 30 Gy BED, ranging from as few as one third to one half of the total 

treatment fractions. The results provided firm support for the association of skin toxicity 

with the selected radiomic features at the earlier stages of treatment.    

5.2 Future Work 

 

There were few lessons learned from the analysis of limitations and ways of further 

improvement experienced through the course of this project. Limitations can be 

subdivided in two categories; concerns the overall patient sample size and representation, 

and technical challenges encountered during the project. 
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With respect to the first category, one of the major limitations of this study is that it did 

not include a wide range of different skin colours. We also did not evaluate diabetes, 

smoking habits, and age as separate variables. The overall sample size was expected to be 

larger when planning the project, however, the restriction imposed by the COVID-19 

regulations made recruitment more problematic, challenging and overall slower than 

before the pandemic. Under these circumstances, even reaching 20% of the expected 

sample size was considered as a success by our research team. We strongly encourage a 

continuation of the study of various skin reactions on radiation treatment and prediction 

of skin toxicity using objective methods. The next step in this direction would be to 

include a larger and more diverse group of patients in any study similar to ours to capture 

the effects of various patient-related factors and skin characteristics on treatment outcome 

with a larger sample size. Such a continued study could be made multi-institutional by 

using identical equipment and unified procedures in two or more clinics as part of a joint 

collaborative study. This would allow development and testing of a more robust 

predictive algorithm than if basing all the work on data from a single clinic.  

With respect to the technical limitations that can likely be addressed in the future, while 

being satisfied with the optical image quality provided by a front-of-the-line camera, we 

found that the performance of the thermal imaging could be improved to allow a more 

comprehensive radiomic analysis. 

Overall, quantitative analysis of radiomic features acquired from optical and thermal 

images was shown to yield significant biomarkers for detecting and predicting skin 

toxicities. Future work will continue toward the development of a practical and efficient 

tool that can be used daily in the treatment room to predict skin toxicity.  
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