
MEASUREMENT ERROR DECONVOLUTION METHODS AND
RANK SELECTION FOR NON-NEGATIVE MATRIX

FACTORIZATION WITH APPLICATIONS IN MICROBIOME
DATA

by

Yun Cai

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

August 2022

© Copyright by Yun Cai, 2022

Table of Contents

List of Tables . iv

List of Figures . vii

Abstract . xi

Acknowledgements . xii

Chapter 1 Introduction . 1

1.1 Organization of the Thesis . 7

Chapter 2 Learning Microbial Community Structures with Su-
pervised and Unsupervised Non-negative Matrix Fac-
torization . 9

2.1 Review of my MSc. thesis work . 9
2.1.1 The NMF model . 9
2.1.2 Supervised NMF . 11
2.1.3 Method for choosing the NMF rank 15
2.1.4 Prediction . 17
2.1.5 Graphical display of NMF results 18

2.2 Simulations . 19
2.2.1 Simulation Based on NMF 19
2.2.2 Simulation with outliers . 21
2.2.3 Simulation with zero inflated weight matrix 22
2.2.4 Simulation Based on Dynamic Ecology Models 23
2.2.5 Simulation for the performance of NMF as a clustering method

. 33

2.3 Real data results and discussion . 34
2.3.1 The mammal data . 34
2.3.2 The moving picture data . 37
2.3.3 The Qin data . 52

2.4 Conclusion . 56

Chapter 3 Deconvolution density estimation with penalized MLE 60

3.1 Introduction . 60

3.2 Deconvolution based on penalized log-likelihood 64

ii

3.3 Practical optimization Issues . 71
3.3.1 Choosing l and u . 72
3.3.2 Non-negativity constraints 73
3.3.3 Initial values . 73
3.3.4 Computational Singularity 73
3.3.5 Selecting λn . 74

3.4 Theory . 75
3.4.1 Preliminary Results . 78
3.4.2 Constructing g̃n . 88
3.4.3 Constructing f ∗

n . 90
3.4.4 Proving Consistency . 95

3.5 Simulations . 103
3.5.1 Simulation design . 103
3.5.2 Simulation Results . 105

3.6 Real data analysis . 116

3.7 Conclusion . 128

Chapter 4 Rank Selection for Non-negative Matrix Factorization130

4.1 Introduction . 130

4.2 Methods . 132
4.2.1 Likelihood ratio test . 132
4.2.2 Direct testing with bootstrapped null distribution (Boot-test)133
4.2.3 Testing with deconvolved bootstrap null distribution (Decon-

boot-test) . 134

4.3 Simulation . 137
4.3.1 Poisson data simulation . 139
4.3.2 Normal data simulation . 142
4.3.3 Conclusion of simulations 145

4.4 Real Data application . 146

4.5 Conclusion . 153

Chapter 5 Conclusion . 155

Bibliography . 157

iii

List of Tables

2.1 NMF mean misclassification test errors for 25 data sets (the
value before /) with the standard errors of the mean mis-
classification error (the value after /). The rows are the true
NMF rank for class 2 and the columns are the true NMF rank
for class 1. 21

2.2 RF mean misclassification test errors for 25 data sets (the
value before /) with the standard errors of the mean misclas-
sification error (the value after /). 22

2.3 SVM mean misclassification test errors for 25 data sets (the
value before /) with the standard errors for the mean mis-
classification errors (the value after /). 23

2.4 Simulation summary of the estimated numbers of types. For
example, the first entry 2/3.4 means when the true NMF
rank is 2 for class 1, 3 for class 2 and SNR = +∞, the mean
numbers of types our method chooses are 2 for class 1 and
3.4 for class 2. 24

2.5 Mean misclassification test errors (the value before /) and the
associated standard errors (the value after /) for simulation
with outliers. 24

2.6 NMF mean misclassification test errors (the value before /)
and the associated standard errors (the value after /) for sim-
ulation with zero-inflated weight matrix 25

2.7 RF mean misclassification test errors (the value before /) and
the associated standard errors (the value after /) for simula-
tion with zero-inflated weight matrix 25

2.8 SVM mean misclassification test errors (the value before /)
and the associate standard errors (the value after /) for sim-
ulation with zero-inflated weight matrix 26

2.9 Mean/standard deviation of the optimum loss scores for each
true subcommunity under two different methods, with 10 sim-
ulations for each sample size 30

2.10 Mean/standard error of the mis-clustering errors from the 30
replicates. 33

iv

2.11 Comparison of test errors for support vector machine with
linear kernel (SVM l), with polynomial kernel (SVM p), with
sigmoid kernel (SVM s), with radial basis kernel (SVM r),
RandomForest (RF), RandomForest with sparse variables re-
moved (RFrm) and Supervised NMF. The first four rows are
the misclassification errors on the test data. The Mammal
and Qin data include the mean misclassification errors and
standard deviations(below the means in brackets) for cross-
validation. Best prediction for each dataset is highlighted by
red color. 56

3.1 MISE of the estimates when the true distribution is normal . 106

3.2 MISE of the estimates when the true distribution is chi-squared
. 107

3.3 MISE of the estimates when the true distribution is beta . . 108

3.4 MISE of the estimates when the true distribution is Laplace 109

3.5 MISE of the estimates when the true distribution is mixture-
normal . 110

3.6 MISE of the estimates when the true distribution is mixture-
gamma . 111

3.7 MISE of the estimates when the true distribution is Cauchy . 112

3.8 Results with different λn . 113

3.9 Summary of outcomes for each scenario 114

3.10 Difference between empirical distribution and convolved esti-
mated distribution . 128

4.1 Total number of times the true rank is selected out of 50
replicates and the 50 rank estimates’ averages and standard
deviations when the true rank is 2 for Poisson NMF data
when bootstrap size is 50. 142

4.2 Computation time per replicate (average among the 50 repli-
cates) in hours when the true rank is 2 for Poisson NMF data
when bootstrap size is 50. 143

v

4.3 Total number of times the true rank is selected out of 50
replicates and the 50 rank estimates’ averages and standard
deviations when the true rank is 4 for Poisson NMF data
when bootstrap size is 50. 143

4.4 Computation time per replicate (average among the 50 repli-
cates) in hours when the true rank is 4 for Poisson NMF data
when bootstrap size is 50. 144

4.5 Total number of times the true rank is selected of 50 replicates
and the 50 rank estimates’ averages and standard deviations
when the true rank is 6, 8 and 10 for Poisson NMF data when
bootstrap size is 50. 144

4.6 Computation time per replicate (average among the 50 repli-
cates) in hours when the true rank is 6, 8 and 10 for Poisson
NMF data when bootstrap size is 50. 145

4.7 Total number of times the true rank is selected out of 50
replicates for Normal NMF data and the 50 rank estimates’
averages and standard deviations when bootstrap size is 50. . 145

4.8 Computation time per replicate (average among the 50 repli-
cates) in hours for Normal NMF data when bootstrap size is
50. 146

vi

List of Figures

2.1 Network used for community dynamics simulations. The red
nodes represent OTUs from cluster 1, blue nodes are OTUs
from cluster 2, green nodes are from cluster 3 and yellow
nodes are isolated OTUs not in any subcommunity. The
purple and cyan nodes are overlapping OTUs of cluster 1
and cluster 2, or cluster 2 and cluster 3, respectively. 28

2.2 NMF features extracted from data simulated under a Holling
type II model. 31

2.3 Co-occurrence network calculated from data simulated under
a Holling type II model. OTUs are colored the same as in
Figure 2.1. Two OTUs are linked by an edge if they are
significantly correlated. The sign of the correlation is not
considered in this plot. 32

2.4 Left: Unsupervised NMF can totally separate the carnivores
(blue) from the other three types of animals. The Foregut-
fermenting Herbivores (red), the Hindgut-fermenting Herbi-
vores (green) and Omnivores (orange) are largely separated
with a few mixed. Right: Supervised NMF for separation of
the carnivores from the herbivores. Both training carnivores
(dark blue) and testing carnivores (light blue) are easily sep-
arated from the herbivores. The model was not trained
to separate two types of herbivores, but a good degree of
separation is shown for the Foregut-fermenting Herbivores
(dark red for training and light red for testing cases) and
the Hindgut-fermenting Herbivores (dark green for training
and light green for testing cases). 35

2.5 Biosynthesis of 12-,14- and 16-membered Macrolides. Reac-
tions in red ellipses are those appearing in Herbivores’ fea-
tures. Reactions in blue rectangles are those appearing in
Carnivores’ features. 37

vii

2.6 Top row shows results from the gut dataset (with 6 type-
s/coordinates used for the unsupervised methods); second
row shows results from the tongue dataset (with 9 types
used for the unsupervised methods); third row shows re-
sults from the left palm (with 6 types/coordinates); fourth
row shows results from the right palm (with 6 types/coordi-
nates). Blue points are from person 1, green points are from
person 2. Left: unsupervised NMF; Middle: supervised
NMF on both training and testing data — darker blue and
green points are testing data; Right: UniFrac. 39

2.7 Outstanding OTUs in features of moving picture data: The
light and dark red bars are two features from Person 1 and
the blue bars are features from Person 2. The OTUs from
the same class are in the same block which is labeled by
their class name and the bars are labeled by the genus of
the OTUs. The two unlabeled bars in left palm data are
the same OTUs with these unlabeled bars in the right palm
plots. They are two different unclassified classes in Cyanobac-
teria phylum. 45

2.8 Major genera for Tongue feature matrix. The light and dark
red bars are two features from Individual 1 and the blue bars
are features from Individual 2. Each bar is labeled by the
name of the genus or family. 47

2.9 Gut and Tongue weight matrix time series plot for person
two. The top plot shows the gut weight matrix on the second
type (red line) and third type (blue line) from NMF with 3
types. The bottom plot shows the tongue weights on the
first type (red line) and the third type (blue line) from NMF
for tongue data with 4 types. 49

2.10 Class and phylum proportions in gut and tongue type ma-
trices. The left panels contain two types from person 2’s
gut data and the right panels are for his tongue data. The
top plots present the dominant types at the beginning in
the time series plot. The bottom plots present the dominant
types after the shift in the time series plot. Similar colours
in classes are from the same phylum. 50

2.11 Moving average of class proportions in gut and tongue ob-
servations. 52

viii

2.12 Gut and Tongue principle coordinates based on UniFrac time
series plot for person two. The top plot shows the gut
UniFrac matrix on the third principle coordinate (red line)
and fourth principle coordinate (blue line). The bottom plot
shows the tongue UniFrac matrix on the second principle co-
ordinate (red line) and the fifth principle coordinate (blue line). 53

2.13 Left: Unsupervised NMF based on 6 types. The blue points
are from IBD patients and the green ones are from healthy
people. Right: Supervised NMF on both training and test
data. The blue points are training data from patients and
green points are training data from healthy people, the dark
blue points are test data from patients and the dark green
points are test data from healthy people. 54

2.14 Qin data: The distribution of each type over major enzyme-
coding genes: IBD Type 2 typically represents a group of IBD
patients and Healthy Type 2 represents a group of healthy
individuals with these two types distributed very differently
over the enzyme-coding genes. 57

2.15 The weights distribution over each type for heathy individ-
uals (top for each bar) and IBD patients (bottom for each
bar): the IBD patients mainly have non-zero weights on IBD
Type1, IBD Type2, Healthy Type 1 and Healthy Type 2, and
healthy individuals mainly have non-zero weights on Healthy
Type 1, Healthy Type 2 and Healthy Type 4. 58

3.1 The black curve is the density of the contaminated data.
The green curve is the density of the underlying truth. . . . 61

3.2 Sample distribution of ISE for sample size 30 and SNR 4. . . 116

3.3 Sample distribution of ISE for sample size 30 and SNR 1. . . 117

3.4 Sample distribution of ISE for sample size 30 and SNR 0.25. 118

3.5 Sample distribution of ISE for sample size 100 and SNR 4. . 119

3.6 Sample distribution of ISE for sample size 100 and SNR 1. . 120

3.7 Sample distribution of ISE for sample size 100 and SNR 0.25. 121

3.8 Sample distribution of ISE for sample size 300 and SNR 4. . 122

3.9 Sample distribution of ISE for sample size 300 and SNR 1. . 123

3.10 Sample distribution of ISE for sample size 300 and SNR 0.25. 124

ix

3.11 Comparison of real data error distribution with a normal
distribution . 125

3.12 Real data results . 126

4.1 Null distribution of the likelihood ratio statistics for rank 4
NMF vs. rank 5 NMF. The data is generated from rank 4
Poisson NMF. The black curve is the kernel estimation of
bootstrapped null distribution when apply rank 4 and rank
5 NMF with single initial value for each bootstrap sample
with bootstrap size as 50. The green curve is the deconvolved
density of likelihood ratio statistic after applying P-MLE de-
convolution method to the 50 bootstrapped Likelihood ratios.136

4.2 Relative abundance of major genera for each type from Per-
son 1’s gut feature matrix T . The genera from the same
phylum are in the same block which is labeled by their phy-
lum names and the bars are labeled by the genus names or
higher level of taxonomic rank if it’s unclassified at genus
level. Each bar is colored according to its type. 147

4.3 Gut weight matrix time series plot for Person 1. For clarity,
we separate the 12 time series into two panels. The top plot
shows Person 1’s gut weight matrix on type 1, type 3, type
7, type 8, type 9, type 11 and type 12 from 12 rank NMF,
whose weights are more stable. The bottom plot shows the
weight matrix for other types with more fluctuating weights.
Each weight is colored the same as its corresponding type. . 148

4.4 Relative abundance of major genera for each type from Per-
son 2’s gut feature matrix T . The genera from the same
phylum are in the same block which is labeled by their phy-
lum name and the bars are labeled by the genus names or
higher level of taxonomic rank if it’s unclassified at genus
level. Each bar is colored according to its type. 149

4.5 Gut weight matrix time series plot for Person 2. The top
plot shows Person 2’s gut weight matrix normalized on type
3, type 4, type 5 and type 6 from 6 rank NMF. The bottom
plot shows the weight matrix for other types. Each weight
is colored the same as its corresponding type. 150

x

Abstract

Learning the structure of microbial communities is critical in understanding the
different community structures and functions of microbes in distinct individuals.
We view microbial communities as consisting of many subcommunities which are
formed by certain groups of microbes functionally dependent on each other. This
work studies the structure of microbial community data using the technique Non-
negative Matrix Factorisation (NMF).

The supervised NMF method for detecting the differences between microbial
communities was developed in my MSc. thesis. However, the interpretation of the
resulting factorizations were not considered, and the study of the performance of
the method was very limited. In Chapter 2 of this thesis, we review the supervised
NMF from my MSc. thesis, then perform extensive simulation studies and real
data analyses to better understand the interpretation and the performance of the
method under a wide range of scenarios.

One difficulty involved in using NMF is that there is not an accurate method to
select the rank for NMF. The rank corresponds to the number of subcommunities,
and is thus fundamentally important in interpreting the microbiome data. In order
to develop a suitable method to infer the number of ranks for NMF, we further
developed a deconvolution method to remove the convergence error in NMF results.

Chapter 3 develops a new method for the deconvolution problem. Deconvo-
lution is the problem of estimating the distribution of a quantity from a sample
with additive measurement error. Deconvolution has a wide number of applica-
tions, so this work is of very general interest. Our new deconvolution method
is based on maximizing log likelihood with a smoothness penalty (PMLE-decon).
We develop both the method and the associated asymptotic theory for PMLE
deconvolution, and provide an R package for general deconvolution distribution
estimation. Through simulations and real data examples, we show that our new
method has much better performance than existing methods, particularly for small
sample size or low signal-noise ratio. Our method can be applied both with known
or parametrically estimated error distribution, and with empirical error distribu-
tion, estimated from a pure error sample.

Finally, we develop a novel rank selection method based on hypothesis testing,
using a deconvolved bootstrap distribution to assess the significance level accu-
rately despite the large amount of optimisation error. Through simulations, we
demonstrate that our method is not only accurate at estimating the true ranks
for NMF but also efficient at computation compared with other methods, espe-
cially when the features are hard to distinguish. With the newly developed more
accurate rank selection method for NMF, we re-analyze the microbiome data we
worked on earlier and improve our understanding of microbial sub-communities.

xi

Acknowledgements

I first and foremost want to thank my supervisor Dr. Hong Gu and Dr. Toby

Kenney for their support and guidance during my graduate study. I would like to

thank Hong for her trust in my potential and offering an opportunity for me to work

on statistics. Her generous support in both time and finance allowed me to be fully

engaged in my research. She is not only an advisor in academic but also a mentor

in life who walk me through the journey of my master and PhD. program. Her

patience and optimism encouraged me to overcome all the difficulties I’ve met over

these years. I am also grateful for Toby’s inspiration in the thesis. He is objective

and inventive all the time during our weekly meetings and discussions. I am

always amazed by his talent in many fields including mathematics and statistics.

It’s impossible to finish my thesis without his extensive knowledge and unreserved

help, especially for the Theory section in Chapter 3, which is mainly led by him.

I owe a big thank for his hand-on supervision in the proof of the theorems.

I would also like to thank my committee members Dr. Edward Susko and Dr.

Andrew Irwin for reading my thesis and their insightful suggestions and comments.

Finally, I want to acknowledge my parents. They always support me in pursu-

ing my interest in statistics. They believe in me and are proud of me no matter

what choice I’ve made. Without their love and care, I will never achieve thus far.

xii

Chapter 1

Introduction

Microbes affect human physiology and global nutrient cycling, through the action

of microbial communities [2] [32] [93]. A microbial community usually consists

of hundreds or even thouands of different microorganisms [14] [35] which survive

through the interaction with each other and environments and form metabolically

integrated communities [86]. Although in some cases the abundance of a single

species can have a big effect on the overall state of the community, for example

some species of pathogens are believed to single-handedly cause illnesses, in many

cases, differences between different types of microbial communities (for example,

the communities in the guts of healthy and IBD people) are attributable to the

overall structure of the community. It is therefore critical to devise models which

take into account this overall structure.

Next generation sequencing has generated a large amount of microbial metage-

nomics data for the study of microbial diversity of different environments. These

data consist of either marker-gene data (counts of OTUs) or functional metage-

nomic data, i.e. counts of reaction-coding enzymes. The OTUs or gene counts will

be referred to as variables, and a sample will be also referred to as an observation

in this thesis. Considering the difficulty of collecting data and the large number of

variables, the data always consist of hundreds or even thousands of variables but

only a few observations, which means p ≫ n (p is the number of variables and n

is the number of observations). In addition, many species are only observed in a

few samples, thus the data are highly sparse [40] [54]. This makes it challenging

to apply classical statistical analysis methods.

Exploratory data analysis, such as PCA [90], based on the Euclidean distance

between samples, is not appropriate for count data and has largely been replaced

by clustering analysis or principal coordinates analysis based on Unifrac [72]. The

1

2

unifrac distance measures the abundance difference between two samples, incorpo-

rating phylogenetic tree information between the organisms. Although Unifrac is

widely used, it has some drawbacks. One is that it doesn’t address the heterogene-

ity between samples due to the different sequencing depths for different samples.

Sequencing depth in the high-throughput next generation sequencing (NGS) is

typically used to describe the total read of DNAs from a sample. Thus this quan-

tity is related to the total DNAs extracted from the sample, the configuration of

the sequencer and the upstream bioinformatics tools used to extract the counts

of different microbes. It is an unknown quantity which is different for different

samples, but most often being approximated by the total count of all microbes in

a sample in the down stream data analysis. Thus in this thesis we refer sequencing

depth to the total count of all microbes in a sample. Subsampling techniques are

sometimes used to attempt to remedy this problem, but these do not fully resolve

the problem and involve throwing away a large amount of information in the data

and so are not recommended [75]. Unifrac based methods are only applicable to

OTU data, not whole metagenome sequence data. Furthermore, Unifrac is an ad

hoc method in that it is not based on a probablistic model, thus does not provide

as much insight as an explicit statistical model-based approach.

Early work on the probabilistic modeling of microbial metagenomics data by

Holmes, Harris and Quince [44] has represented the data as multinomial samples

from an underlying multinomial distribution which in turn is generated from one

of several Dirichlet mixture components. The hyperparameters of each of the

Dirichlet mixture components have been assumed to follow a Gamma prior. This

Bayesian probability framework seemed to be reasonable, though some assump-

tions such as choice of prior are arbitrary; however the analysis results of the two

examples based on this probability framework in [44] are not totally convincing

in that the clustering results of lean and obese samples don’t really show clus-

tering patterns, and the method underperforms existing methods at classification.

Another Bayesian probabilistic framework models the contaminated sample as a

mixture of several known microbial community sources [55]. Recently a Bayesian

hierarchical mixed-membership model, called BioMiCo [95], for Bayesian inference

of microbial communities, has been developed. BioMiCo takes OTU abundances as

3

input, and models each sample as a two-level hierarchy of mixtures of multinomial

distributions which are constrained by Dirichlet priors. This model can be used to

infer both the mixing of OTUs within assemblages, and the mixing of assemblages

within samples relative to features shared by multiple samples. Unlike the Gamma

prior used in [44], the Dirichlet priors are used to control the sparsity of mixing

probabilities for both levels of the multinomial distributions which results in more

interpretable assemblages and a more parsimonious model.

Although the above probability frameworks have been mainly applied to marker-

gene data, in principle, they can be applied to metagenomic data as well. Unlike

the Unifrac based approach, the heterogeneity among samples due to the different

sequencing depths is incorporated into the likelihood. Some studies (for example

Leibold, Holyoak and Mouquet [65]) suggested that the assembly and structure

of bacterial communities should be based on functional genes rather than species.

However, directly applying the above models will not utilize the information of

the metabolic reactions that can be inferred from those metagenome sequences

that encode an enzyme. BiomeNet [96] is another Bayesian hierarchical mixed-

membership model to exploit abundance data for metabolic reactions inferred

from the metagenome sequences. The corresponding reactions are decomposed

into substrate-product pairs, with dependence modelled via shared membership

in a subnetwork. Metabolism is then modelled as a three-level hierarchy, with

components from one level (e.g., reactions) contributing to other structures (e.g.,

different subnetworks, metabosystems, and samples) to different degrees.

A common theme in these Bayesian probability modelling frameworks is that

each sample is modeled as a mixture of several typical “types”. These typical

“types” are mostly inferred from data by computational methods. The Bayesian

framework provides a natural vehicle for fitting complicated models, but the re-

sulting models are generally not easy to interpret and the computation usually

takes a very long time. In addition, the validity of Bayesian inference, just like the

likelihood based inference, highly relies on the model checking after calculating the

posterior distributions of the model parameters. Due to the high dimensionality

of the parameters in such a modeling framework, the model checking is actually

very difficult. Due to this, or for other reasons, model checking in the above cited

4

literature is generally lacking.

In order to provide an effective exploratory data analysis method that is suit-

able for both marker-gene and functional metagenomic data and is based on a

probability model that can capture the subcommunity structure information and

can address the issues of heterogeneity among samples, we explore the application

of Non-negative Matrix Factorization (NMF) to microbiome data in a likelihood

framework. NMF has been widely applied in many areas, such as image and nat-

ural language processing, and also has found many applications in computational

biology [25]. More recently, it was applied in the ocean microbes data to investi-

gate the biogeography of microbial function and its correlation to environmental

distance [48]. Conceptually, similar to the above Bayesian modeling frameworks,

NMF models each sample as a mixture of different types. These types represent the

structure of subcommunities. Instead of using a multi-level hierarchical structure

as in BioMiCo [95] and BiomeNet [96], NMF uses one level of subcommunities

as building blocks which makes the connection between the sample microbiome

composition and the OTUs or reaction-coding enzymes more direct, this will pro-

vide better interpretability for the analysis results. In addition, NMF is a natural

method to use for dimension reduction and feature selection in microbiome data.

The commonly used unsupervised learning methods such as PCA and vector quan-

tization (VQ) for reducing dimension and picking up the main features of the data

usually result in linear combinations with negative coefficients which are hard to

interpret naturally in this context. We want to find the main features (subcom-

munities) of the data and at the same time keep all the elements in these features

positive. As demonstrated by Lee and Seung [63], NMF also tends to identify

sparse features, and thus each sample is expressed as a non-negative linear combi-

nation of a few sparse features (types), which further facilitates the interpretation

of the results.

Like PCA or BiomeNet, NMF is an unsupervised method. Although NMF can

extract the main features from the data, it can’t guarantee that these features are

the best discriminant features to distinguish different classes. For example, if two

classes are described by similar features, NMF will extract an average of these

features to fit both classes, rather than separate features for the two classes. For

5

the purpose of identifying differences between different types of communities, we

developed a supervised version of NMF.

There are many off-the-shelf supervised learning methods that can perform a

classification directly on such data (a review is given by [54]). Since typically

p ≫ n (the number of predictor variables is substantially larger than the num-

ber of data points), we need to choose methods designed for the p ≫ n case.

Directly applying these classification methods often results in quite good classi-

fication. With some classification methods (for example random forest and the

elastic net), variable selection is also possible. However the selected variables

are often difficult to map back to some discriminating community level features

between classes, particularly if the true discriminating feature is not a single vari-

able. Some classification methods (such as support vector machine, boosted trees

or Neural network) can construct a very good classifier for such data, but without

any possibility of interpretation and thus can’t provide any insight for the under-

lying community structure. BioMiCo [95] builds a classifier on the discriminant

assemblages of the OTUs to predict the class labels with these assemblages showing

the subcommunity structures. The model complexity of BioMiCo is controlled by

the number of assemblages and the Dirichlet priors which are both pre-specified.

These pre-specified parameters in principle can be adapted to the data through

cross-validation on the training data, but running these Bayesian models needs a

long time for each run which hurts the wide applicability of BioMiCo to different

data.

Since we are interested in the community level features or systematic differ-

ences between different classes, we first use NMF to identify features from each

class, and then we build a classifier based on the weights distribution of each sam-

ple on the combined features from different classes. The features selected by this

method will describe the original data well and also contain classification infor-

mation. We can measure how well the features identified relate to the differences

between different types of communities by looking at the misclassification error of

classifiers. As mentioned above, the purpose of NMF is to provide insights into

the structural differences between different types of microbial communities, rather

than to produce the most accurate classification possible. Classification is however

6

a good measure to gauge the extent to which the subcommunities identified have

important biological roles in the overall community structure.

Supervised NMF has similar model structures to BioMiCo, but is fast to com-

pute and the only tuning parameters are the number of features that are extracted

from different classes. Unlike BioMiCo which controls the sparsity of the features

by the Dirichlet priors, the sparsity of NMF is decided by the number of features.

With fewer features used in the model, each feature tends to be less sparse and

conversely more features means each feature is more sparse. This flexibility of

NMF results means that there may be a range of proper values for the number of

features in the model. This makes the model more robust.

The only tuning parameter in the NMF algorithm is the rank of the feature

matrix k, which is also the number of features. The interpretation of k is the

number of underlying networks or subcommunities extracted from the data. The

selection of k not only affects the performance of NMF but also relates to the

interpretation of NMF results. Too small k value may lead to key features missing

and too large k value may have over-fitting issues. It is therefore necessary to select

an appropriate rank for the NMFmodel. We develop a goodness-of-fit test based on

the likelihood ratio statistic. Because NMF is not a standard unconstrained MLE,

the asymptotic distribution of the likelihood ratio statistic cannot be derived.

We therefore use a bootstrap to determine the critical value. Furthermore, the

optimisation in NMF is very unreliable, so our bootstrap values are subject to

convergence error. To obtain a better estimate of the null distribution, we perform

deconvolution to estimate the null distribution from the sample with measurement

error.

Most existing deconvolution techniques like decon [105] and deamer [49] are

based on Fourier transformation, whose division form can cause instability in the

estimates when the denominator is small. We develop a more stable deconvo-

lution method by maximizing the penalized log-likelihood (penalized MLE) with

the common smoothness penalty. Although we target on removing the conver-

gence errors in NMF rank selection procedure, the deconvolution method can also

be applied to remove additive measurement errors in several other areas, e.g. the

clinical research, bioinformatics and microscopy. Comte et al. [20] estimate the true

7

probability distribution of date of onset of pregnancy by applying deconvolution

method to date of pregnancies estimated by ultrasound. Mendelsohn and Rice [79]

consider to retrieve the true DNA distribution from the DNA content measure-

ments obtained by flow microfluorometry technique through deconvolution. They

are concerned that the true distribution is not the recorded distribution due to

error from variable stain absorption, light scattering and other sources. Odiachi

and Peirve [84] explore the idea of deconvolution for removing background noise

from light scattering intensity obtained in total internal reflection microscopy ex-

periments. In addition to use our penalized MLE deconvolution method to build

a new method for selecting the number of NMF types, we also show its general

application by an additional example in Chapter 3 to estimate the true density of

the male subjects’ blood pressure from the contaminated Framingham data [15].

1.1 Organization of the Thesis

Chapter 2 details the application of supervised and unsupervised NMF in micro-

biome data. We apply the existing unsupervised NMF method and the supervised

NMF method from my MSc. thesis for extracting interpretable information from

classification problems in real data. Then we compare the predictive accuracy for

classification of supervised NMF with Random Forest and Support Vector Machine

in both simulated and real data examples. We apply supervised NMF on three

real data sets: the whole metagenomes of various mammals [81], the time series

microbiome data from various human body sites [14] and whole metagenome data

of IBD patients and healthy controls [88]. Results of these real data analysis are

interpreted in terms of Biosynthesis pathways.

Chapter 3 proposes a new deconvolution method based on maximizing log-

likelihood with a smoothness penalty (P-MLE). Deconvolution is the problem of

estimating the distribution of a quantity from a sample of observations that are

subject to additive measurement error. Our approach is to apply penalized MLE

with penalty on the smoothness. We then show the consistency of the estima-

tors and compare our method with existing deconvolution methods in simulation

experiments and real data analysis.

In Chapter 4, we develop a goodness-of-fit test to select the rank of NMF based

8

on a deconvolved bootstrapping distribution. The null hypothesis is that the data

are drawn from an NMF with the current rank, while the alternative hypothesis is

that increasing the rank by 1 will improve the fit to the data. We use the likelihood

ratio statistic for this test. However, the null distribution cannot be obtained in

theory, so we obtain it via a parametric bootstrap. Because the optimisation

of NMF is unreliable, our bootstrap samples are subject to convergence error.

Assuming this convergence error is additive, we can use deconvolution to estimate

the null distribution of the test statistic with this convergence error removed.

We compare our method with a bootstrap without deconvolution for finding the

critical value, and with a cross-validated imputation method on a large number

of simulated datasets. We also applied the new rank selection method to real

microbiome data (e.g. OTU data and functional metagenomic data) in Section 4.4

and interpret the features captured.

Chapter 2

Learning Microbial Community Structures with

Supervised and Unsupervised Non-negative Matrix

Factorization

2.1 Review of my MSc. thesis work

This section is a necessary review for the methods developed in my MSc. thesis for

the completeness of the results presented in this chapter. We first give a review of

NMF. Then we describe the idea of supervised NMF based on unsupervised NMF,

with the computation of the weight matrix over the combined features, followed

by the method used to choose the tuning parameters for the supervised NMF.

2.1.1 The NMF model

Non-negative matrix factorization [63] is a dimension reduction method for non-

negative data. The idea is to represent each data point as a linear combination of

non-negative features which are computed from the data. Given a non-negative

p × n matrix X, we approximate X by TW through minimizing the Kullback-

Leribler divergence between distributions with mean as X and distributions with

mean as TW , where T is a non-negative p × k matrix, referred to as the type

(feature) matrix, and W is a non-negative k×n weight matrix. Each column of X

is approximated by a non-negative linear combination of the types (columns of T).

Here k is the NMF rank or number of features which determines the complexity

of the model. It is a tuning parameter in this context. Usually k is chosen such

that (p+ n)k ≪ np, so that we reduce the dimension significantly.

In our analysis, X is microbe data with counts of OTUs or genes. Specifically,

Xij is the number of times the ith OTU or gene is observed in the jth sample.

Thus each feature (column) in T describes a subcommunity and each column in

W contains the linear coefficients for the corresponding sample (column) in X.

9

10

The whole community in a sample is thus approximated by a mixture of the

subcommunities. For count data, such as our X, we model each element as a

conditional independent Poisson observation given its mean in the matrix TW ,

i.e. the dependency in data is expressed in matrix W and matrix T . Thus the

covariance structure between the variables in X is implicitly given by the patterns

in the type matrix T . The columns of the type matrix T are constrained to have

sum 1, and in this context each column in T can be interpreted as the composition

of OTUs or genes for each type. The different sequencing depths for the samples in

X are absorbed in the weight matrixW . To compute T and W we use an iterative

algorithm where we iterate between maximizing

L(T,W) =
∑
i,j

(Xij log(TW)ij − (TW)ij)

over W, holding T fixed and then maximizing over T holding W fixed [94],

In most literature (e.g. Lee and Seung [94]) Euclidean distance is used as

a criterion, which is appropriate when the observations are assumed to follow a

Gaussian distribution with the mean given by TW .

Many authors have extended NMF to include additional constraints. For ex-

ample, sparsity constraints are useful when the degree of sparseness in the T or

W matrix needs to be controlled [52].

There has been a large body of work on the computational issues of NMF.

The traditional NMF criterion depends only on the product TW . Even with the

requirement that T and W be non-negative, the solution is not always unique

because there can be many factorizations that give the same product [61]. X ≈
TW = TAA−1W where A is an invertible matrix. If there exists such invertible

matrix A that TA and A−1W are nonnegative matrices, the solution of NMF is

not unique. If TA and A−1W are nonnegative matrices only if A is a diagonal

matrix or a permutation matrix, then the solution of NMF is unique up to scaling

and permutation. Although the general theory on the uniqueness of the solution of

NMF is unknown, there exist different approaches to obtain unique NMF solutions

and most of them are based on the incorporation of additional constraints into

the NMF model. One approach is to add a sparseness penalty to the T and

W matrices [46]. Another popularly used constraint is the minimum volume.

11

The simplex volume determined by T is constrained to be the minimum among

all possible NMF outcomes [80]. Requiring each column in T to be orthogonal

has also been proved to achieve unique NMF results although the condition is

restrictive [28]. In this thesis, instead of adding constrains to the original NMF

model, we only consider the choice of NMF algorithm that have an effect on

the results of the analysis. The original multiplicative algorithms of Lee and

Seung [63] are reliable but slow. A number of authors have developed faster but

less reliable methods, for example: Gonzalez and Zhang [37], Lin [67], Hoyer [45]

and Shahnaz [97]. For a more thorough discussion of the algorithms available

and their merits, see Berry and Browne [7]. We used the R package NMF by

Renaud [33], which implements the algorithm of Lee and Seung [63].

Another challenge in applying NMF is to choose, k, the NMF rank. We develop

a new method for this in Chapter 4. For the current chapter, we use a simple

heuristic approach. Generally, the log-likelihood increases with k increasing. We

can plot the log-likelihood values versus k to find the “elbow point” after which

the log-likelihood increases more slowly. This means the increase in the NMF rank

will not add as much in modeling the data. Thus we should choose the k value

at the “elbow point”. This is equivalent to choosing k such that the loglikelihood

increase between K + 1 and K is smaller than some preset threshold value. In

cases where there is no such “elbow point”, exploring multiple different k values

by using an interactive data exploration tool, SimplePlot which is described later

in this section, could help to find the k value based on which some meaningful

data structure can be shown. While this is an ad-hoc method, we will develop a

more accurate rank selection method with solid statistical inference in Chapter 4.

2.1.2 Supervised NMF

For a supervised learning problem, we have observations from different classes. Our

objective is usually to find the differences between the structures from the different

classes. We will approach this by separately identifying the subcommunities in

each class first, and then combine them into a single matrix of subcommunities.

Each sample now can be expressed as a mixture of all these subcommunities. For

example, if we have data X from g classes,

12

X =
(
X(1), X(2), · · · , X(g)

)
where X(1), X(2), · · · , X(g) are g classes of observations. From X(i), we can calcu-

late the non-negative type matrix T (i) and weight matrix W (i) (i = 1, · · · , g)
by NMF, which uses the multiplicative update rule to minimize the distance

D(X∥TW) =
∑

ij(Xij log
Xij

(TW)ij
− Xij + (TW)ij) [94]. The algorithm update

each element in T and W by multiplying the current value by some factor that

depends on the quality of the approximation of X ≈ TW in each iteration. To get

the hidden structure of different classes in the whole data, we combine these type

matrices together and denote this combined type matrix for the whole data as

T = (T (1), T (2), · · · , T (g))

It is straightforward that T is non-negative since each T (i) is non-negative and

each column of T is normalized to have unit sum. For fixed T , to maximize the

Poisson log-likelihood for the whole dataX is equivalent to maximizing the Poisson

log-likelihood for each sample, because the weight vectors in W associated with

different samples are independent. Thus calculating the weight matrix W can be

reduced to performing a non-negative Poisson regression of each sample in X on

T .

Our purpose is to find the non-negative coefficients for a Poisson regression with

identity link and without intercept, by maximizing the Poisson log-likelihood. We

now focus on the regression of one sample Xj = (X1j, X2j, · · · , Xpj) on T . The

resulting coefficients Wj = (w1j, · · · , wkj) thus will be either positive or 0, with

0 coefficients corresponding to the variables in T removed from this regression.

We aim to find a list of positive coefficients with the corresponding variables,

so that adding another variable to the list cannot improve the likelihood and

still maintain the non-negative constraint. This is achieved through a backwards-

forwards Poisson regression procedure as follows.

We start by recursively fitting a Poisson regression on T and removing the

variables corresponding to the negative coefficients in Wj = (w1j, · · · , wkj) until

all the coefficients are positive. Using the remaining variables, we calculate the

13

log-likelihood value. Then we test each removed variable by adding it back with

a small positive coefficient. If this increases the log-likelihood value, we add this

variable back to the remaining variables and repeat the above steps, otherwise we

remove this variable and test the next one.

The algorithm follows these steps:

1. Fit a Poisson regression with identity link but without intercept on T with

the initial value of Wj set as the coefficients of linear least square regression

of Xj on T . Eliminate those variables corresponding to negative coefficients.

2. If any variables were removed, go back to step 1 until all the coefficients

are positive. In the end, the matrix consisting of remaining variables is T+
j .

Since X, T and W are all non-negative, the resulting T+
j cannot be empty

unless X is a zero vector.

3. Calculate the log-likelihood for T+
j .

L(T+
j) =

p∑
i=1

(
Xij log(T

+
j Wj)i − (T+

j Wj)i
)
,

where (T+
j Wj)i denotes the ith element of the vector T+

j Wj.

4. Add one variable in the removed pool to T+
j , denote the new feature matrix

as T+
j new

and calculate the log-likelihood again.

L(T+
j new

) =

p∑
i=1

(
Xij log(T

+
j new

Wjnew)i − (T+
j new

Wjnew)i

)
,

where Wjnew = (Wj(1 − ε), ε), ε is a very small positive number close to 0.

In our practice, we use 10−7 as the value of ε.

5. Compare L(T+
j) with L(T

+
j new

), if L(T+
j) < L(T+

j new
), use this new T+

j new

composed of T+
j and the new variable to repeat steps 1 to 5. Otherwise

remove this variable and try to add another variable in the removed pool to

T+
j and repeat steps 4 to 5, until all removed variables have been tested.

In step 4, we add back one removed variable each time into the positive T

matrix and calculate the new log-likelihood value. To decide if this variable should

14

be added back, we do not need to refit the Poisson regression when calculating

the new log-likelihood value. As the old coefficient matrix is a local maximization

for the log-likelihood function with the remaining variables, the derivative of the

log-likelihood at that point should be 0 with respect to all remaining variables.

When we add another variable with a small positive coefficient into the system,

if we are near to the original maximum, the log-likelihood for the new point will

either increase or decrease, depending whether the derivative with respect to the

newly added variable is positive or negative. So if we want to see whether a variable

could increase the log-likelihood, we can just add a very small weight ε for the new

variable, then calculate the new log-likelihood with the new rescaled weight matrix.

We need to rescale the Wj vector, so that W ′
jnew

1 = X ′
j1, where 1 = (1, · · · , 1).

This is because we assume the data follow the Poisson distribution, so the sum of

the observations Xj also follows a Poisson distribution with the mean given by the

sum of the mean vector TWj. As each column of T has unit sum, W ′
j1 = W ′

jT
′1.

Maximizing the Poisson loglikelihood is equivalent to maximizing the sum of a

multinomial loglikelihood and a Poission loglikelihood. Denote
(TW)ij
(TW)′j1

= Pi, we

have

p∑
i=1

(Xij log(TW)ij − (TW)ij) =

p∑
i=1

(
Xij logPi +Xij log((TW)′j1)− (TW)ij

)
=

p∑
i=1

Xij logPi +

(
p∑
i=1

Xij log(W
′
j1)−W ′

j1

)

The first term is the multinomial loglikelihood and the second term is the Poisson

loglikelihood on the total count of the vector Xj. Only the first term is related to

matrix T in the optimization. Rescaling vector Wj doesn’t influence the estimates

of Pi, thus by maximizing the second term only, we can get W ′
j1 = X ′

j1.

We compare this new log-likelihood value with the old one. If it decreases, the

derivative is negative which means points with positive weight on the new variable

will decrease the log-likelihood. Then the new variable should not be added. If

the new one is larger than the old one, add this variable into the positive T matrix

and do a Poisson regression on this new positive T matrix again and repeat the

15

above steps until no variable can be added. In this way, we can make sure that

each time we decide to add a new variable to the positive T matrix, the likelihood

becomes larger. This procedure keeps the log-likelihood function increasing under

the constraints that all elements in Wj remain non-negative.

To see that the algorithm will converge, a key point is that our algorithm is only

dealing with the discrete part of the optimization, and the Poisson regression takes

care of the continuous optimization. Since we are optimizing over a finite number

of possible sets of positive variables, convergence to at least a local optimum is

guaranteed by the fact that each step increases the likelihood.

2.1.3 Method for choosing the NMF rank

The NMF rank for each class of observations should be chosen to best describe its

own class but not to describe other classes or noise. For discrimination purposes,

the NMF rank for each class should be chosen to best separate the classes in

combination with the number(s) of types in other classes. The most direct way to

choose NMF rank for all classes is to find the model mis-classification errors on the

validation sets for each combination of the numbers of types for different classes.

However the computation burden is heavy in such an effort. Thus we propose to

choose the NMF rank for each class separately as below first and try the selected

combinations of NMF ranks for different classes if the results are not clear-cut.

In order to choose the best NMF rank for the first class, we will look at the

deviance statistics to see how well the chosen types will fit the first class better

than other classes. (Deviance is a measure of fit between data and model, given by

the difference in log-likelihood between the current model, and a saturated model.

Smaller deviance corresponds to better fit). Since the types are chosen from the

first class, to make the comparison objective, the deviance statistics need to be

calculated on a test set of the first class. We obtain one deviance statistic for each

data point in the test set. We use cross-validation, so that every data point is in

one test set. The deviance statistics are not normally distributed, thus we will use

the Wilcoxon Rank-Sum test [106] based on the deviance statistics to test how

well the classes are separated. The idea is to rank the deviance statistics from the

test data points. If there is no discrimination between the classes, then the ranks

16

should be distributed randomly between the classes. The Wilcoxon Rank-Sum

test computes a statistic which measures how unevenly the ranks are distributed

between the classes. This statistic is then standardised so that it (approximately)

follows a standard normal distribution under the assumption that the ranks are

randomly distributed between classes. We refer to this standardised statistic as a

Z-value. We obtain one Z-value for each fold of the cross-validation. Our overall

measure of difference is the sum of the Z-values for each fold, divided by
√
r,

where r is the number of folds. (Dividing by
√
r ensures that if the model is

equally good at fitting the data from the two classes, then this overall measure

follows a standard normal distribution.) We have one Z-value from each fold of

the cross-validation, so by calculating the standard deviation of these Z-values, we

are able to obtain a standard error for our overall statistic. For each class, we will

try a sequence of values for the NMF rank and find the best value to discriminate

this class from other classes.

We use a 2-class data case as an example to illustrate the ideas. We use an

r-fold cross-validation on training data for both classes. In each cross-validation,

we separate the training data into a training fold and a test fold. To choose the

NMF rank for class 1, we apply the following steps to a range of values for k:

1. For each fixed value k, fit k types on the training folds from class 1 to get

the type matrix T .

2. Fit the remaining test fold data from class 1 and one fold of data from class

2 on T .

3. Calculate the deviance for each fitting. (One deviance value for each data

point in the test folds).

4. Use a Wilcoxon Rank-Sum test on these deviances to get one Z-value for

each fold.

5. Sum the values of Z statistics from all different cross-validations and divide

by
√
r. Let Zall denote this statistic. This statistic should approximately

follow a normal distribution with mean of zero and standard deviation of 1

17

under the null hypothesis that the distributions of deviance values from both

classes are the same.

6. Choose the smallest k for which Zall is within one standard deviation of the

largest Zall-value, where the standard deviation is calculated as the sample

standard deviation of the Z-values from the different folds for each k.

Note that the purpose is to choose k such that the deviances from two classes

are best separated, not a hypothesis test to test the equality of means. Thus the

sample standard deviation of Zall is calculated from the different folds in the last

step, instead of using 1. By using r-fold cross-validation and combined Z-values,

we can effectively increase the power of this test, which is particularly important

when the number of observations is small.

When the classification problem is an easy one, there is a clear separation for

the deviances resulting from the class for which we are selecting the NMF rank

and that from other classes. The near complete separation often results in the

almost equal Z-values from the different folds, thus the sample standard deviation

of Zall is small. When the classification problem is hard, the resulting Z-values

from different folds tend to have larger variance. The rank selected in the easy

case usually is small and clear cut, the rank selected in the harder case usually

tends to be large. After we run the above procedure to select numbers of types for

all classes, we will fix the NMF rank for the easy case and select the best matching

NMF rank for the other class so that the misclassification error is minimized.

2.1.4 Prediction

For fixed T = (T (1), T (2), · · · , T (g)), we apply the non-negative Poisson regression

algorithm on training data to calculate the trainingW and on test data to calculate

the testW . After getting theW matrix, we have effectively reduced the dimension

from p to k, in the sense that for the fixed T feature matrix, each observation

is best approximated by the corresponding k vector in the W matrix. We can

use an off-the-shelf supervised learning method to predict the class labels since

k < n. Note that the sum of each column in the W matrix is the same as the

sum of the corresponding column in the X matrix, which means sequencing depth

18

in the microbes data. When we perform a supervised learning, the transpose

of the W matrix will be used as input for each observation. Geometrically this

corresponds to projecting all the data into the space spanned by the vectors in the

T matrix. The entries for different individuals on the same input vector of T are

not comparable due to the different sequencing depth for the original data. We

normalize theW matrix so that its column sum is 1 before performing a supervised

learning method. This makes the entries in each row of W comparable and also

makes it possible to show all the data in a plot. The normalization at this step

is different from the normalization on the X matrix directly, because different

sequencing depths result in heterogeneity in the original observations, and this

has to be taken care of in the likelihood calculation and in the estimation of T and

W .

We choose a suitable supervised learning method based on the graphical display

of NMF results as described below. In the following sections, we most often perform

a logistic regression on W . We choose logistic regression because our interactive

exploration of the data suggests that a linear classifier is appropriate for this

classification, and logistic regression is one of the simplest linear classification

methods. The trained logistic regression model can then be used to do prediction

on the test W .

2.1.5 Graphical display of NMF results

In both unsupervised and supervised NMF methods, we estimate the mean of each

observation by a linear combination of k types. Thus if we fix the positions of the

k types, the location of the mean of each observation can be fixed relative to the

positions of the types. To properly display the NMF results and better facilitate

the interactive exploration, a software package, SimplePlot, has been developed

by supervisor Toby Kenney. It is available from Toby Kenney’s website www.

mathstat.dal.ca/~tkenney/SimplePlot/. Using SimplePlot, we can manually

move the positions of the types (represented by crosses on the figure) around

the plane and watch how the relative positions of the means of the observations

change. We can get a snapshot of a satisfactory projection of the data when the

data show the best separation. The advantage of using interactive software is

www.mathstat.dal.ca/~tkenney/SimplePlot/
www.mathstat.dal.ca/~tkenney/SimplePlot/

19

that it is easier to identify non-linear separation if that is more appropriate for a

particular dataset.

2.2 Simulations

2.2.1 Simulation Based on NMF

The design for the simulation studies in section 2.2.1 and the NMF results were in

my MSc. thesis. Random Forest and Support Vector Machine simulation results

have been added during my PhD. study.

We perform simulations in this section to evaluate the performance of our

proposed method with regard to the NMF rank selected and prediction accuracy.

We use types estimated from the Qin data [88] to do the simulation. We simulate

data according to our proposed model. The data follows a Poisson distribution

with mean (TW)ij. To generate these data, we first generate the mean TW .

The mean is a linear combination of different features (different columns of T).

We fix T to be the features obtained by applying NMF to the two classes in the

Qin dataset [88].

We generate theW matrix by generating each entry from a uniform distribution

on [0, 1] then normalizing the column vectors so that the column sums of W are

equal to the column sums of the IBD data.

The product TW gives us the mean and we add four levels of noise to the

product TW . The noise is normally distributed with mean 0 and four different

standard deviations, to study the effects of different signal-noise ratios (SNR).

SNR = +∞ : sd0 = 0

SNR = 4 : sd1 = sd(T)/4

SNR = 2 : sd2 = sd(T)/2

SNR = 1 : sd3 = sd(T)

Here the sd(T) is a vector of standard deviations for each row of T . This is a

vector of length p (the number of genes or OTUs) which measures the variability

for each gene or OTU across different features in T .

20

The column of TW plus the noise is the Poisson mean we use in the simulation.

Each element of X is generated following an independent Poisson distribution with

the mean given by the mean matrix described above.

We simulate data with NMF ranks equal to 2, 5, 10 for class 1 and 3, 6, 9 for

class 2. So the number of different combinations is 9 in total. They are 2&3, 2&6,

2&9, 5&3, 5&6, 5&9, 10&3, 10&6, 10&9. Considering the different noise levels, we

have 36 scenarios. For each scenario, we simulate 25 replicates. In each replicate,

we simulate 200 observations for each class. Then we separate the data into two

parts: the first 200 observations (100 from each class) as the training data and the

other 200 as the test data.

We choose the NMF ranks from the training data using a 10-fold cross-validation.

After the NMF rank is chosen, we perform a prediction on the test data using the

trained logistic regression model on the training data based on the chosen NMF

rank for each simulated data set.

The NMF, RF and SVM misclassification errors are shown in Table 2.1, Ta-

ble 2.2 and Table 2.3 respectively for different noise levels. We find when the true

numbers of types get larger, the NMF misclassification errors tend to increase but

the RF misclassification errors tend to decrease. That may be because we have

more accurately estimated the NMF rank in the cases when the true numbers of

types are small. This can be expected as when the number of types increases,

the data is more complicated and estimating the ranks becomes much challenging.

But overall, the misclassification errors are quite small for all cases which means

our supervised NMF method works well in prediction. NMF performs better in

prediction than RF when rank value is small and better than SVM in all scenarios.

Table 2.4 summarizes the results of the NMF rank chosen. It shows that the

algorithm tends to output slightly larger values than the true NMF rank in most

scenarios, but the true numbers of types mostly are within one standard deviation

of the mean of the chosen NMF rank. Note also, the NMF ranks are chosen only

by performing the Wilcoxon Rank-Sum test as proposed earlier for each class,

the results are not modified through optimizing the classification results based on

combined types.

Table 2.4 also shows that in most replicates, when the noise level becomes

21

Table 2.1: NMF mean misclassification test errors for 25 data sets (the value before
/) with the standard errors of the mean misclassification error (the value after /).
The rows are the true NMF rank for class 2 and the columns are the true NMF
rank for class 1.

SNR
class 2

class 1
2 types 5 types 10 types

+∞

3 types

0.0002/0.0010 0.004/0.0066 0.0104/0.0126
4 0.0002/0.0010 0.0050/0.0085 0.0092/0.0102
2 0.0002/0.0010 0.0048/0.0071 0.0102/0.0104
1 0.0002/0.0010 0.0022/0.0041 0.0084/0.0079

+∞

6 types

0.0012/0.0036 0.0054/0.0071 0.0082/0.0089
4 0.0012/0.0030 0.0052/0.0076 0.0154/0.0114
2 0.0010/0.0029 0.0056/0.0082 0.0058/0.0067
1 0.0014/0.0037 0.0058/0.0081 0.0126/0.0107

+∞

9 types

0.0106/0.0132 0.0068/0.0084 0.0108/0.0126
4 0.0088/0.0102 0.0066/0.0100 0.0132/0.0100
2 0.0078/0.0101 0.0072/0.1011 0.0128/0.0110
1 0.0046/0.0058 0.0062/0.0092 0.0124/0.0089

higher, the difference between the mean and the true NMF rank will increase.

Nevertheless, these results demonstrate that our method is quite effective in finding

the appropriate NMF rank.

Further simulation results (not shown in this thesis) have shown that when we

apply NMF with the true NMF rank on the simulated data, the features computed

from the data can match very closely with the true features that were used to

generate the data. Applying NMF with the wrong number of features can recover

a space with the true features embedded in it. The study of consistency of the

NMF method is not a trivial topic and deserves further research.

2.2.2 Simulation with outliers

We designed this simulation to measure how our method performs when the data

contain outliers. We perform this simulation based on data generated in the last

section. We use the generated data from scenarios 2&3 types, 5&6 types and

10&9 types, with SNR = 1. We generate outliers by mislabeling the class of

observations in the training data. We run simulations with 5 percent, 10 percent

and 20 percent of observations in the training data mislabeled. We used the same

22

Table 2.2: RF mean misclassification test errors for 25 data sets (the value before
/) with the standard errors of the mean misclassification error (the value after /).

SNR
class 2

class 1
2 types 5 types 10 types

+∞

3 types

0.0024/0.0010 0.0012/0.0007 0.0012/0.0005
4 0.0014/0.0004 0.0002/0.0002 0.0012/0.0005
2 0.0016/0.0006 0.0016/0.0006 0.0006/0.0003
1 0.0018/0.0006 0.0008/0.0004 0.0010/0.0005

+∞

6 types

0.0022/0.0007 0.0026/0.0009 0.0008/0.0005
4 0.0020/0.0007 0.0018/0.0008 0.0010/0.0006
2 0.0020/0.0008 0.0014/0.0005 0.0010/0.0005
1 0.0020/0.0008 0.0024/0.0008 0.0006/0.0004

+∞

9 types

0.0028/0.0010 0.0014/0.0007 0.0010/0.0006
4 0.0022/0.0010 0.0014/0.0006 0.0014/0.0007
2 0.0022/0.0009 0.0010/0.0005 0.0008/0.0004
1 0.0022/0.0007 0.0008/0.0004 0.0010/0.0005

procedure as in the previous section to calculate the misclassification errors. The

results in Table 2.5 show that while RF is more robust in this simulation, NMF

still predicts fairly well when there are outliers in the data.

2.2.3 Simulation with zero inflated weight matrix

In the previous simulations, we generated the weight matrix of the Poisson mean

from the uniform distribution. The sparsity of the generated datasets is around

24 percent, which is less than is typically observed in practice. We therefore

use a Dirichlet distribution with all parameters 0.005 for the weights, in order to

generate zero-inflated data. This results in a sparsity (proportion of zeros in the

data) of around 39 percent. We follow the same steps from the first section of

the simulations, to generate 36 scenarios and 25 replicates in each scenario. The

misclassification errors and the associated standard errors of NMF, RF and SVM

are shown in Table 2.6, Table 2.7 and Table 2.8. The results show that NMF and

SVM are robust when the data become more sparse. RF performs worse in this

simulation than in the original simulation.

23

Table 2.3: SVM mean misclassification test errors for 25 data sets (the value before
/) with the standard errors for the mean misclassification errors (the value after
/).

SNR
class 2

class 1
2 types 5 types 10 types

+∞

3 types

0.1462/0.0173 0.1300/0.0167 0.1276/0.0156
4 0.1356/0.0176 0.1784/0.0169 0.1616/0.0153
2 0.1356/0.0176 0.1784/0.0168 0.1460/0.0124
1 0.1356/0.0176 0.1850/0.0151 0.1460/0.0125

+∞

6 types

0.1794/0.0180 0.1214/0.0146 0.1620/0.0154
4 0.1774/0.0191 0.1626/0.0154 0.1738/0.0164
2 0.1772/0.0191 0.1498/0.0147 0.1590/0.0172
1 0.1392/0.0173 0.1632/0.0154 0.1248/0.0151

+∞

9 types

0.1344/0.0193 0.1656/0.0179 0.1740/0.0177
4 0.1210/0.0158 0.1558/0.0166 0.1846/0.0162
2 0.1210/0.0158 0.1552/0.0181 0.1824/0.0177
1 0.1210/0.0159 0.1652/0.0198 0.1794/0.0178

2.2.4 Simulation Based on Dynamic Ecology Models

The interpretability of NMF is based on the assumption that the microbial com-

munity can be interpreted as a mixture of subcommunities. In this section, we

study the question of whether realistic community dynamics can give rise to this

assumption. Current knowledge of the community dynamics of the microbiome is

woefully inadequate; with a few available suggested models, none of which fit the

data very well. In this section, we simulate community dynamics under a Holling

type II model [43], given by

dMi

dt
=Mi

(
ri(1− ciMi) +

∑
j ̸=i

bijaijMj

1 + aijTHijMj

)
(2.1)

Here, for OTU i, ri is the intrinsic growth rate; ci is the coefficient of negative

intraspecific interaction, which is the inverse of the carrying capacity of this OTU

in isolation; aij is attack rate; THij is handling time; and bij is the interaction

coefficient between OTUs. When aijTHijMj is very small, the 1 term dominates the

denominator, so the derivative approximately follows generalised Lotka-Volterra

type dynamics for these OTUs; when aijTHijMj is large such that it dominates

the denominator of the fraction, then the term becomes approximately
bij
THij

, and

24

Table 2.4: Simulation summary of the estimated numbers of types. For example,
the first entry 2/3.4 means when the true NMF rank is 2 for class 1, 3 for class 2
and SNR = +∞, the mean numbers of types our method chooses are 2 for class
1 and 3.4 for class 2.

SNR
2 5 10

mean sd mean sd mean sd
+∞ 2.0/3.4 0.0/1.0 5.0/3.1 0.3/0.3 8.9/3.5 1.9/1.3
4 3 2.0/3.8 0.0/1.5 5.0/3.3 0.3/1.2 8.9/3.7 2.2/2.0
2 2.0/3.7 0.0/1.4 5.0/3.1 0.3/0.3 8.9/3.7 2.2/2.0
1 2.0/3.6 0.0/1.4 5.1/3.0 0.5/0.2 8.5/3.8 1.9/2.0

+∞ 2.0/6.4 0.0/0.8 5.0/6.4 0.5/0.7 9.8/6.6 1.2/1.2
4 6 2.0/6.4 0.0/0.6 5.2/6.6 0.8/0.9 9.5/6.4 1.3/0.6
2 2.0/6.4 0.0/0.6 5.2/6.6 0.5/0.8 9.4/6.3 1.5/0.5
1 2.0/6.3 0.0/0.6 5.0/6.6 0.5/0.8 9.4/6.2 1.1/0.5

+∞ 2.4/8.4 1.5/1.5 5.1/8.9 1.7/0.8 8.7/9.2 1.8/0.8
4 9 2.0/8.2 0.0/1.7 5.0/9.8 0.4/1.1 8.8/9.2 1.8/0.6
2 2.4/9.1 1.5/0.7 7.0/9.3 1.5/0.8 11.0/10.9 1.2/1.4
1 2.5/9.0 1.1/1.1 6.9/8.7 1.8/0.9 9.7/10.8 1.7/1.8

the influence of OTU j on OTU i is limited by this quantity.

The reason we choose the Holling Type II model, rather than the more com-

monly used generalised Lotka-Volterra dynamics is that the Holling model seems

to have more capacity for overlapping communities to coexist without influencing

one-another excessively, because the Holling type II model incorporates a limit on

the effect of one OTU on another. This makes intuitive sense when the interaction

consists of one OTU providing some metabolite to another OTU. We expect the

Table 2.5: Mean misclassification test errors (the value before /) and the associated
standard errors (the value after /) for simulation with outliers.

outliers proportion
NMF rank

method 2&3 types 5&6 types 10&9 types

5 percent
NMF 0.0150/0.0029 0.0396/0.0054 0.0582/0.0063
RF 0.0042/0.0012 0.0036/0.0009 0.0028/0.0009
SVM 0.1874/0.0102 0.1870/0.0117 0.2114/0.0145

10 percent
NMF 0.0266/0.0040 0.0564/0.0050 0.0890/0.0061
RF 0.0098/0.0024 0.0094/0.0020 0.0080/0.0018
SVM 0.2404/0.0101 0.2298/0.0120 0.2694/0.0126

20 percent
NMF 0.0750/0.0088 0.1424/0.0083 0.1610/0.0084
RF 0.0338/0.0037 0.0264/0.0042 0.0308/0.0036
SVM 0.3066/0.0110 0.3020/0.0147 0.3118/0.0158

25

Table 2.6: NMF mean misclassification test errors (the value before /) and the
associated standard errors (the value after /) for simulation with zero-inflated
weight matrix

SNR
class 2

class 1
2 types 5 types 10 types

+∞

3 types

0.0000/0.0000 0.0048/0.0016 0.0158/0.0023
4 0.0000/0.0000 0.0050/0.0016 0.0154/0.0023
2 0.0000/0.0000 0.0050/0.0016 0.0150/0.0024
1 0.0000/0.0000 0.0050/0.0016 0.0148/0.0021

+∞

6 types

0.0016/0.0009 0.0062/0.0017 0.0148/0.0025
4 0.0016/0.0009 0.0058/0.0076 0.0144/0.0024
2 0.0014/0.0008 0.0066/0.0018 0.0148/0.0024
1 0.0018/0.0010 0.0062/0.0016 0.0144/0.0025

+∞

9 types

0.0033/0.0013 0.0068/0.0017 0.0148/0.0024
4 0.0110/0.0018 0.0058/0.0015 0.0134/0.0022
2 0.0036/0.0013 0.0066/0.0015 0.0142/0.0026
1 0.0032/0.0011 0.0078/0.0024 0.0156/0.0023

Table 2.7: RF mean misclassification test errors (the value before /) and the
associated standard errors (the value after /) for simulation with zero-inflated
weight matrix

SNR
class 2

class 1
2 types 5 types 10 types

+∞

3 types

0.0072/0.0015 0.0062/0.0015 0.0046/0.0012
4 0.0054/0.0013 0.0026/0.0010 0.0042/0.0015
2 0.0048/0.0013 0.0058/0.0012 0.0044/0.0012
1 0.0068/0.0021 0.0056/0.0013 0.0050/0.0012

+∞

6 types

0.0074/0.0013 0.0122/0.0021 0.0082/0.0018
4 0.0090/0.0017 0.0118/0.0014 0.0066/0.0013
2 0.0112/0.0021 0.0148/0.0024 0.0076/0.0018
1 0.0080/0.0015 0.0122/0.0022 0.0070/0.0013

+∞

9 types

0.0102/0.0019 0.0150/0.0024 0.0118/0.0023
4 0.0110/0.0018 0.0168/0.0024 0.0104/0.0021
2 0.0104/0.0017 0.0150/0.0030 0.0122/0.0028
1 0.0100/0.0019 0.0126/0.0022 0.0140/0.0026

26

Table 2.8: SVM mean misclassification test errors (the value before /) and the
associate standard errors (the value after /) for simulation with zero-inflated weight
matrix

SNR
class 2

class 1
2 types 5 types 10 types

+∞

3 types

0.1224/0.0166 0.2022/0.0193 0.1622/0.0171
4 0.1130/0.0150 0.1776/0.0188 0.1884/0.0162
2 0.1324/0.0163 0.1690/0.0205 0.1948/0.0144
1 0.1222/0.0134 0.2040/0.0158 0.1896/0.0134

+∞

6 types

0.1246/0.0146 0.1818/0.0179 0.1596/0.0144
4 0.1254/0.0141 0.2048/0.0112 0.2200/0.0125
2 0.1262/0.0149 0.2088/0.0129 0.2366/0.0093
1 0.1206/0.0147 0.2084/0.0120 0.2058/0.0128

+∞

9 types

0.1744/0.0127 0.2274/0.0157 0.2230/0.0123
4 0.1750/0.0096 0.1472/0.0173 0.1794/0.0125
2 0.1858/0.0083 0.2130/0.0144 0.1882/0.0096
1 0.2070/0.0100 0.1664/0.0144 0.1742/0.0137

growth of an OTU to be limited by multiple metabolites, and when one metabo-

lite is used up, increasing the supply of another metabolite would not be expected

to have a significant increase on the growth rate. This limit on the effect allows

overlapping subcommunities to mix in an approximately linear way. We anticipate

that a detailed model based on flux balance equations could be developed which

would both model community dynamics more accurately and follow the assump-

tions behind NMF more closely. However, developing new models for the dynamics

of microbial ecology is beyond the scope of this thesis.

We use the fixed network structure shown in Figure 2.1 for the simulations.

We can see that the network used is made up from three overlapping clusters

(M1–M10, M9–M18 and M17–M26). The intuition is that for each cluster there

is a metabolic subcommunity, representing the stable state of the system when

restricted to that cluster, and that the overall community is made up as a mixture

of these subcommunities. For each black link in the network in Figure 2.1, we

simulate the species interaction coefficient bij as following a uniform distribution

between 0 and 0.008. For the blue links in the network, we simulate bij from a

uniform distribution between −0.002 and 0.008 and for the red ones we simulate

bij from a uniform between −0.08 and 0. We set THij around 10−5 by generating

27

1
THij

from 105×beta(5, 1). This scale of THij allows the Holling type II dynamics to

take effect — if THij is much larger, the effect of one OTU on another is limited, so

the OTUs become almost independent, losing the subcommunity structure. If THij

is much smaller, then the interspecific interaction term is approximately linear, so

we get gLV dynamics, which are less suited for overlapping clusters. We allow ri

and ci to vary between samples in each dataset, with ri simulated from a uniform

distribution between 0 and 1, and 1
ci
− 1 simulated from 99× beta(1, 2). The idea

is that these parameters are related to the suitability of the environment for OTU

i, so different samples would have different values. The other parameters are kept

fixed for all samples, since these represent the inherent ability of these OTUs to

interact, so should not be expected to vary greatly between environments. We

simulate 10 values of the parameters bij for the given network. For each of these

simulated values, we simulate one data set with 50 samples, one with 100 samples

and one with 200 samples. To construct each sample, we simulate values of ri and

ci for each OTU, and simulate the dynamics from Equation 2.1, using 1000000

iterations with a stepsize of 0.001.

For each dataset, we apply NMF with four types. We compare the fitted types

with the known subcommunities, both visually and using a formal loss function.

Results

We also calculate the co-occurrence networks [6] of the simulated data and compare

the results with NMF. The co-occurrence network is produced by calculating the

correlation of each pair of nodes in the simulated data. A null distribution for each

pair is generated by permuting the abundance of one of the pair and re-calculating

the correlation. The resampling is performed 1000 times and the distribution

is used to calculate p-values. The p-values are then corrected using Benjamini-

Hochberg [3] to control the false discovery rate and p-values less than p = 0.05

were considered to be statistically significant edges in the network. [6] We use the

same procedure described in [6] for comparison in this chapter. But considering

the tests are dependent, a more appropriate way to control the false discovery rate

is through Benjamini–Yekutieli [4].

Neither NMF nor co-occurrence networks are designed exactly to identify the

28

M1

M2
M3 M4

M5
M6

M7
M8

M9 M10

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20
M21

M22M23

M24

M25

M26

M27

M28

M29

M30

M31

M32

M33

M34
M35

M36

Figure 2.1: Network used for community dynamics simulations. The red nodes
represent OTUs from cluster 1, blue nodes are OTUs from cluster 2, green nodes
are from cluster 3 and yellow nodes are isolated OTUs not in any subcommunity.
The purple and cyan nodes are overlapping OTUs of cluster 1 and cluster 2, or
cluster 2 and cluster 3, respectively.

29

network structures or parameters of the Holling model. However, from the network

structure in Figure 2.1, we see that the network can be reasonably decomposed

as containing three large subcommunities (shown in red, blue and green in that

figure, with nodes in multiple subcommunities coloured in mixed colours, purple

and cyan). Both NMF and co-occurrence networks have some capacity to recover

these subcommunities. For NMF, these subcommunities would be recovered as the

most abundant OTUs in a type, while for co-occurrence networks, they would arise

as connected components in the networks. We can attempt to compare the extent

to which the two methods succeed at recovering these subcommunities. This extent

is somewhat subjective. For an NMF type, we form clusters of OTUs as the OTUs

with abundance above some threshold in that type. For co-occurrence networks, we

form clusters as the connected components of the network at a certain significance

level. We then choose unions of these clusters to recover the subcommunities used

for simulation. To allow comparison, we have defined the following loss function

for each true subcommunity to measure how far each such union is from the true

subcommunity.

• For each OTU in the subcommunity, but not in the union of clusters, the

loss is 1.

• For each OTU in the union of clusters, but not in the subcommunity, the

loss is 1.

• For each additional cluster after the first in the union, the loss is 1.

For example, the loss for the red, green and blue subcommunities in Figure 2.2 are

respectively 1, 1 and 5, and the loss for the red, green and blue subcommunities in

Figure 2.3 are respectively 6, 7 and 9 (the blue community being best approximated

by a singleton connected component). The abundance thresholds in the NMF type

and the significance levels in the co-occurrence networks are chosen to minimize

the total loss for each subcommunity. We allow different significance levels for

different connected components here. Note that the example calculation above

was meant to demonstrate how the loss function is calculated for a given set of

clusters, based on the single figure, not on clusters with different p-values, so the

values calculated may not be the actual loss function for that dataset.

30

Table 2.9: Mean/standard deviation of the optimum loss scores for each true
subcommunity under two different methods, with 10 simulations for each sample
size

sample size cluster M1−M10 M9−M18 M17−M26
n=50 NMF 3/1.8 7.2/2 2.4/1.9

Co-occurrence network 5.4/2.4 7.5/0.8 3.5/1.6
n=100 NMF 2.7/1.3 6.8/2.2 2.1/1.4

Co-occurrence network 6.7/2.2 6/1.6 4.5/1.7
n=200 NMF 2.7/0.9 6.1/2 1.5/1.2

Co-occurrence network 6.9/1.7 6.6/2.1 6.3/1.3

Table 2.9 shows that NMF most often is able to recover the subcommunities

used to simulate the data, especially when sample size is large. Note that the blue

subcommunity (M9–M18) has weaker interactions between OTUs, so is less clearly

a subcommunity, and is therefore not identified as well as the others. Since the loss

function is somewhat ad-hoc, Figure 2.2 and Figure 2.3 show typical examples of

the recovered types from one simulation with 200 data points, to allow more direct

comparisons visually. As we can see, NMF has done a better job in recovering the

subcommunities. It is also worth noting that co-occurrence networks tend to create

many small clusters, which gives the method an advantage over NMF for the above

defined loss function, particularly for subcommunities which are not identified well.

The fact that NMF is able to recover the true subcommunities in the simulated

data does not necessarily mean that the subcommunities found by NMF on real

data are genuine subcommunities, because the dynamics of the real microbial com-

munity could be different from those in this simulation. We have however shown

that vaguely realistic models of microbial community dynamics can produce sub-

community structures similar to those modeled by NMF. Given that NMF is able

to uncover these structures, we have better justification to support that the true

community dynamics might also be well represented in terms of the subcommuni-

ties identified by NMF, and that these subcommunities have meaningful biological

structure.

31

0 5 10 15 20 25 30 35

0.
00

0.
10

0.
20

0.
30

First type

Index

P
ro
po
rt
io
ns

M17

M18

M19
M20

M21

M23M24

M25

M26

0 5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

Second type

Index

P
ro
po
rt
io
ns

M9
M11

M12

M13 M16

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

Third type

Index

P
ro
po
rt
io
ns

M22

M23M24

0 5 10 15 20 25 30 35

0.
00

0.
10

0.
20

fourth type

Index

P
ro
po
rt
io
ns

M1
M2

M3

M4

M5

M6

M7

M8

M9
M10

M24

Figure 2.2: NMF features extracted from data simulated under a Holling type II
model.

32

M1

M2

M3

M4
M5

M6

M7

M8
M9

M10

M11 M12

M13

M14

M15

M16

M17

M18

M19

M20

M21

M22
M23

M24

M25

M26

M27M28
M29

M30

M31

M32

M33

M34

M35

M36

E.EE#g...

ARK

9: i. ⑧

F¥¥¥.*sa

¥FEFfm

E.¥ the
#

¥⇐
¥e..

#.⇐ M
'

* ④
⇐

Hk

⇒*
.

For

Figure 2.3: Co-occurrence network calculated from data simulated under a Holling
type II model. OTUs are colored the same as in Figure 2.1. Two OTUs are linked
by an edge if they are significantly correlated. The sign of the correlation is not
considered in this plot.

33

2.2.5 Simulation for the performance of NMF as a clustering method

We construct the simulation following the method in McMurdie and Holmes sim-

ulation A [76]. The variables from real microbial data ocean and feces of the

GlobalPatterns dataset are used to get two basic sets of multinomial probabilites.

We then produce new multinomial probabilites for two classes as linear mixtures of

the original two sets. The ratio of these mixtures is determined by the parameter

effect size, se ⩾ 1. One class mixes the basic sets in the ratio 1 : se, the other

mixes them in the ratio se : 1. When se = 1, the classes are identical, so we expect

no separation. As se increases, the difference between the classes becomes larger,

so the clustering problem becomes easier. In the simulation, the sequencing depth

for each sample is fixed to be 10000 and we simulate 200 samples for each class

with effect size set to 1.01, 1.05, 1.1, 1.5 and 2. For each value of the effect size,

we simulate 30 replicates.

For each simulated data set, we calculate 2 types NMF weight matrix on the

original count data and then calculate the Euclidean distance between samples

based on NMF weight matrix. For comparison, we also calculate Bray-Curtis dis-

similarity, Euclidean distance, weighted UniFrac and rarefied Unweighted UniFrac

on proportional data. We perform clustering analysis method Partitioning Around

Medoids (PAM) with number of clusters fixed as two to measure the performance

of these methods. The mis-clustering errors are shown in Table 2.10.

Table 2.10: Mean/standard error of the mis-clustering errors from the 30 replicates.

method
effect size

1.01 1.05 1.1 1.3 1.5

NMF 0.4732/0.0042 0.134/0.0104 0.0003/0.0002 0/0 0/0
weighted UniFrac 0.469/0.0035 0.0195/0.0012 0/0 0/0 0/0

unweighted UniFrac 0.4827/0.0034 0.4798/0.0025 0.4887/0.0077 0.4916/0.0082 0.2823/0.0203
Bray-Curtis 0.4683/0.0033 0.2411/0.0128 0.0089/0.0020 0/0 0/0
Euclidean 0.4596/0.0053 0.1607/0.0084 0.0053/0.0010 0/0 0/0

From the table, we see that NMF performs generally better than other methods

except the weighted UniFrac. But the NMF use the OTU table only and the rank

for NMF is set to be 2 without tuning. This shows that the dimension reduction

by NMF could help to filter out the noise and retain the major dissimilarity signals

of the data.

34

2.3 Real data results and discussion

2.3.1 The mammal data

The unsupervised and supervised NMF results are calculated in my master thesis.

The comparisons and the interpretations are completed during my PhD program.

The mammal dataset [81] contains gut metagenomes extracted from n = 39

mammals. The metagenomes include 1239 different types of genes (categorized by

EC number). The mammals can be classified into four types: Carnivore, Foregut

fermenting Herbivore, Hindgut fermenting Herbivore and Omnivore. There are 21

herbivores, 11 omnivores and 7 carnivores.

Unsupervised NMF results for mammal data

We calculate the log-likelihood for a range of k values and then observe how the

log-likelihood changes with the k values. We choose the NMF rank for the mammal

data as nine and apply unsupervised NMF on the data. A snapshot of the projected

data on a plane is shown on the left panel of Figure 2.4. From the plot, we can

see that the carnivores can be totally separated from others and the other three

types are mostly separated with a few overlapping points. The dimension of the

data is reduced from 1239 to 9 in this analysis.

Supervised NMF results for mammal data

In order to find the most important discriminant features between herbivores and

carnivores, we apply supervised NMF only on the carnivores and herbivores from

the mammal dataset [81]. So the data we use here contain metagenomic sequencing

of fecal samples from 28 mammals: 7 carnivores and 21 herbivores. As the number

of observations is small, we perform a 7-fold cross-validation on the whole data.

Each time we use 6-folds as training data and the remaining observations as test

data.

We find 2 types suitably describe both classes. Then we calculate 2 types

on each class using the training data and combine them to get the type matrix

T . Fixing the type matrix, we obtain the weight matrices for the training cases

and test cases by the non-negative Poisson regression method. We fit a logistic

35

The mammal data

Hindgut_fermenting_Herbivore
Carnivore
Omnivore
Foregut_fermenting_Herbivore

⑨ ⑧

⑥

⑧

⑧ ⑧

⑧

÷
⑧

Do

%

(a) A SimplePlot for unsupervised NMF

Carnivore
Foregut_fermenting_Herbivore
Hindgut_fermenting_Herbivore
Carnivore_te
Hindgut_fermenting_Herbivore_te
Foregut_fermenting_Herbivore_te

(b) A SimplePlot for supervised NMF

Figure 2.4: Left: Unsupervised NMF can totally separate the carnivores (blue)
from the other three types of animals. The Foregut-fermenting Herbivores (red),
the Hindgut-fermenting Herbivores (green) and Omnivores (orange) are largely
separated with a few mixed. Right: Supervised NMF for separation of the car-
nivores from the herbivores. Both training carnivores (dark blue) and testing
carnivores (light blue) are easily separated from the herbivores. The model was
not trained to separate two types of herbivores, but a good degree of separation is
shown for the Foregut-fermenting Herbivores (dark red for training and light red
for testing cases) and the Hindgut-fermenting Herbivores (dark green for training
and light green for testing cases).

36

regression using the training data weight matrices and perform a prediction on the

test data.

The projections of both training and test data in one fold of the 7-fold cross-

validation, relative to the positions of 4 types calculated from the training data,

are plotted in the right panel of Figure 2.4. It shows that both training carnivores

and test carnivores could be well separated from herbivores. Also from the plot,

we can see that although we did not supervise the distinction between the two

types of herbivores, there is some reasonable degree of separation between these

two classes.

Both the training and test errors are 0 in each fold of the 7-fold cross-validation

data split. The misclassification errors are all 0 meaning our algorithm could

separate the two classes of mammals perfectly. The huge number of variables in

the original data could be reduced to 4 features (2 for each class), which means

the classes of mammals can be easily determined by four features.

To compare the supervised NMF with support vector machine and random

forest, we choose the best tuning parameters for SVM by the same 7-fold cross-

validation as in supervised NMF. The best cost value for all kernels is 1. The best

gamma value for polynomial kernel is 0.01, for sigmoid kernel 0.001 and for radial

basis kernel 0.1. We also compare with Random Forest with the sparse variables

removed. (We remove 50% variables with lower abundance in all samples.) The

mean and standard deviation of misclassification errors for models with these best

tuning parameters on different folds are summarized in Table 2.11. The table

shows that supervised NMF is among the methods which perform perfectly on the

mammal data.

Interpretation of the features in the Mammal Data

We map the features extracted separately from herbivores and carnivores to the

Metabolic pathways in KEGG by allocating abundant reactions in each feature to

their corresponding pathways. We find that most of the features from herbivores

and carnivores involve the same metabolic pathways except that herbivores have

more reactions in the biosynthesis of Macrolides pathway, shown in Figure 2.5.

The most significant difference is found in one of the features of Herbivores, which

37

Figure 2.5: Biosynthesis of 12-,14- and 16-membered Macrolides. Reactions in red
ellipses are those appearing in Herbivores’ features. Reactions in blue rectangles
are those appearing in Carnivores’ features.

corresponds to the feature (cross) in the upper left corner of the right panel of Fig-

ure 2.4. (This feature has been highlighted in purple on this plot). Macrolides are

a group of drugs belonging to the polyketide class of natural products. Macrolides

are not to be used on non-ruminant herbivores, they rapidly produce a reaction

causing fatal digestive disturbance [34]. That explains the results that 8 out of 10

herbivores which have heighest weight on this feature are non-ruminants. These

correspond to the 8 hindgut-fermenting herbivores (green) in Figure 2.4(b). This

shows that the inferred differences in the microbial communities of mammals relate

well to the known different phenotypes for different mammals.

2.3.2 The moving picture data

The unsupervised and supervised NMF results are calculated in my master thesis.

The comparisons and the interpretations are completed during my PhD program.

The moving picture data [14] is the most detailed investigation of temporal

microbiome variation to date. It consists of a long-term sampling series from two

human individuals at four body sites: gut, tongue, right and left palm. Person 2

38

was measured for a longer time than Person 1 (336–373 samples from each body

site for Person 2 over a period of 443 days, compared to 131–135 samples from

each site for Person 1 over a period of 186 days). The total number of variables

(different OTUs) across all samples was more than 15000. After removing all 0’s,

the total number of different OTUs for the gut data is around 3000, for the tongue

data is around 2000, for the left palm data and right palm data are around 13000.

In spite of this extensive sampling, no temporal core microbiome was detected,

with only a small subset of OTUs reoccurring at the same body site across all

time points [14].

Unsupervised NMF results for gut data in the moving picture data

First we apply NMF to the gut data. The gut data consists of 131 observations

from person 1 and 336 observations from person 2. We find the NMF rank is 6

based on the plot of log-likelihood values versus NMF rank values. And we see that

the data from two individuals can be well separated — see the left panel of Figure

2.6. It can be seen 4 types seemed to be used to mainly describe individual 2 and

2 types are mainly related to individual 1. It also shows that the observations for

individual 2 are separated into 2 groups, the reason for which will become clear

later in this chapter.

Supervised NMF results for gut data in the moving picture data

As the gut data is time based, we choose the first 70 time points’ observations out

of 131 observations of person 1 and the first 170 time points out of 336 observations

of person 2 as training data. If the system changes slowly, we might expect samples

from the same individual separated by only a short time might be more closely

related. By choosing this separation into training and test data, we minimize

the correlation between training and test data, ensuring that we only test the

method’s ability to pick up long-term microbial signatures of each individual. A

10-fold cross validation with the training data split into 10 folds sequentially over

time is applied for choosing the NMF rank and we find 2 types for each person is

the best according to our method. This is an easy classification problem: based

on two types for person 1, all deviance values for person 2 are much larger than

39

NMF and Unifrac results on the moving picture data

FECES1
FECES2_be
FECES2_af

(a) Gut NMF

FECES1_tr
FECES2_tr
FECES1_te
FECES2_te

(b) Gut Supervised NMF

FECES1
FECES2

(c) Gut UniFrac

tongue1
tongue2

(d) Tongue NMF

tongue1_tr
tongue2_tr
tongue1_te
tongue2_te

(e) Tongue Supervised NMF

tongue1
tongue2

(f) Tongue UniFrac

L_palm1
L_palm2

(g) L.Palm NMF

L_palm1_tr
L_palm2_tr
L_palm1_te
L_palm2_te

(h) L.Palm Supervised NMF

L_palm1
L_palm2

(i) L.Palm UniFrac

R_palm1
R_palm2

(j) R.Palm NMF

R_palm1_tr
R_palm2_tr
R_palm1_te
R_palm2_te

(k) R.Palm Supervised NMF

R_palm1
R_palm2

(l) R.Palm UniFrac

Figure 2.6: Top row shows results from the gut dataset (with 6 types/coordinates
used for the unsupervised methods); second row shows results from the tongue
dataset (with 9 types used for the unsupervised methods); third row shows results
from the left palm (with 6 types/coordinates); fourth row shows results from the
right palm (with 6 types/coordinates). Blue points are from person 1, green points
are from person 2. Left: unsupervised NMF; Middle: supervised NMF on both
training and testing data — darker blue and green points are testing data; Right:
UniFrac.

40

the deviance values from person 1. A total separation is almost achieved for each

fold of the cross-validation for any value of k (k ≥ 2). This is the same based

on 2 types for person 2. Thus we choose 2 types for each person. Then we fit

a logistic regression model on the training W matrix, and perform a prediction

on the test data. The results are shown in the right panel of Figure 2.6 and the

misclassification error is 0 for the test data.

We see that both training and test data are almost perfectly separated between

the two individuals which means the distinguishing features of the gut data are

included in a matrix consisting of 4 features. These 4 features contain sufficient

information for classification and will be examined in detail in the interpretation

section together with the features computed from the tongue data from these two

individuals, because some interesting connections between the tongue data features

and gut data features can be detected within individual 2.

Unsupervised NMF results for tongue data in the moving picture data

Next we apply NMF to the tongue data. For the tongue data, there are 135

observations from person 1 and 373 observations from person 2.

It’s not obvious what the appropriate value for the NMF rank should be by

looking the plot of log-likelihood versus number of types. We try NMF on 9 types

and 10 types. Neither achieves good separation between samples from the two

individuals. A SimplePlot for unsupervised NMF for 9 types is shown Figure 2.6(d)

as an example. Here we see that samples from the two individuals are somewhat

separated, but there is a lot of mixing: we cannot achieve a great classification

from these features.

Although standard NMF works for the animal dataset and the gut dataset,

it does not perform as well on the tongue dataset. The reason is that with un-

supervised methods, the signal that is identified is not always the signal we are

interested in. Using supervised NMF, we will be able to identify the different fea-

tures for different classes. This allows us to more easily distinguish samples from

different classes.

41

Supervised NMF results for tongue data in the moving picture data

For the tongue data, as above, we choose the first 70 time points’ observations out

of 135 observations of person 1 and the first 190 time points out of 373 observations

of person 2 as training data. The remaining data are test data. We split the

training data over time and perform a 10-fold cross-validation on the training data

to find the NMF rank for both individuals. Our method shows that 2 types are

appropriate for Person 1, but is not so clear for Person 2 (possibly suggesting

9 types). Fixing 2 types for Person 1, and comparing cross-validated error, we

choose 3 types for Person 2. This results in a test error of 0.04.

For illustration purposes, we show the SimplePlot of both training and test data

based on 2 types for person 1 and 3 types for person 2 in Figure 2.6(f). Through

these 5 features, most of the observations in tongue data could be correctly clas-

sified according to which individual they come from.

Unsupervised NMF results for left palm data in the moving picture

data

For the left palm data, there are 134 observations from person 1 and 365 obser-

vations from person 2. We try NMF for several different types on the left palm

data. None of them achieve good separations between samples from the two indi-

viduals. A SimplePlot for unsupervised NMF for 6 types is shown in Figure 2.6(g)

as an example. Here we see that samples from the two individuals are somewhat

separated with a considerable amount of mixing.

Standard NMF does not perform well on the left palm dataset. Using super-

vised NMF allows us to more easily distinguish samples from different classes.

Supervised NMF results for left palm data in the moving picture data

For the left palm data, we choose the first 67 time points’ observations out of 134

observations of person 1 and the first 183 time points out of 365 observations of

person 2 as training data. The remaining data are test data. Using the same

procedure as for the tongue data, we find 2 types for person 1 and 3 types for

person 2 can best separate the two individuals.

42

We show the SimplePlot of both training and test data based on 2 types for

person 1 and 3 types for person 2 in Figure 2.6(h). Most of the observations in

left palm data could be correctly classified with a test error of 0.092.

Unsupervised NMF results for right palm data in the moving picture

data

For the right palm data, there are 134 observations from person 1 and 359 obser-

vations from person 2. Similar to the results for the left palm, there is not a good

seperation between samples from the two individuals. A SimplePlot for unsuper-

vised NMF for 6 types is shown in Figure 2.6(j) as an example. Here we see that

most samples from the two individuals cannot be seperated using these features.

Supervised NMF results for right palm data in the moving picture

data

For supervised NMF on right palm data, we choose the first 67 time points from

person 1 and the first 180 time points from person 2 as training data. The remain-

ing data are test data. We find 2 types for each person can best separate the two

individuals.

We show the SimplePlot of both training and test data based on 2 types for

each person in Figure 2.6(k). Most of the observations in the right palm data

could be correctly classified according to which individual they come from with a

test error of 0.179.

Comparisons with other methods

These datasets have also been extensively analysed by BioMiCo [95]. To enable

comparison with their results, we reran our analysis with individual months as

training data. (Rerunning BioMiCo with our splits into training and test data is

infeasible due to its excessive running time).

We train supervised NMF on different months and predict the identity of the

two individuals for all other months. The NMF rank used for each dataset is the

same as we mentioned above. Even though a smaller number of samples are used

to train the model, we still get very high-classification accuracy. The accuracy is

43

between 98.1% and 99.8% when using the gut dataset and 85.4% and 92.9% when

using the tongue dataset. This is almost the same as BioMiCo’s accuracy, between

98.6% and 99.3% for the gut dataset and between 85% and 93% for the tongue

dataset. However, we also get very high accuracy when using the palm data,

between 88.9% and 93% when using left palm dataset and between 77.8% and

83% when using right palm dataset. This is significantly higher than BioMiCo’s

results (40% to 75%). Palm data are more challenging because human palms are

exposed to the external environment. The comparison with BioMiCo concludes

that the supervised NMF is not only efficient in terms of computation, but also

better at finding discriminant features of individuals even with very noisy data.

We also compared supervised NMF with support vector machine, random forest

and random forest with sparse variables removed on this moving picture data. We

split each body part’s data in the same way as that in supervised NMF. A 10-

fold cross-validation is applied to the training part to calculate the best tuning

parameters. Models with the best tuning parameters then are trained on the

whole training data and used to predict the test data. The results are summarized

in Table 2.11. The comparison for moving picture data shows that supervised

NMF gives comparable or better classification results than other methods except

for the left and right palm dataset. For the left palm dataset, the random forest

with sparse variables removed performs a little better than NMF and for the right

palm dataset, random forest has smaller misclassification error.

UniFrac is a widely used unsupervised method. To compare the separation of

two individuals, we project the samples on principle coordinates of the unweighted

UniFrac distance matrix (based on rarefied samples) in the right-hand column of

Figure 2.6 with the numbers of the principle coordinates equal to the numbers of

types we have used for each case, presented using SimplePlot. We can see a clear

separation of the two individuals from the gut dataset. Plots of tongue data and

palm data show separations to some degree, but not as clear as in our unsupervised

NMF plots (left panels in Figure 2.6). This shows NMF is an alternative and

possibly more useful data exploratory method for such data. In addition, NMF

has a natural interpretation in terms of mixtures of communities, but the results

from UniFrac are hard to interpret, as they cannot show what causes the grouping

44

effects or where the differences in microbime composition lie.

Interpretation of the results

To examine the main aspects of the features identified, we plot the relative abun-

dance of OTUs for different features in Figure 2.7. The feature vectors are of

the same dimension as the original observations. A natural side effect of NMF is

that the resulting feature vectors are usually sparse. The feature vectors consist

of non-negative elements with each vector sum equal to 1. The non-zero values

can be interpreted as the percentages of the OTU composition in a particular fea-

ture. To get a better illustration, we use a cut-off of 3% for each feature vector in

Figure 2.7. That is, only those OTUs with above 3% composition in at least one

feature are included in the plot.

Figure 2.7(a) shows the main OTUs for the gut data. We find only 17 out of

more than three thousand OTUs are larger than the cut-off of 3%. Among these

major OTUs, the two features within each individual bear some similarities. But

the features between two different individuals are quite different. This is reflected

by the fact that several of the most common OTUs in individual 1’s features are

not present in individual 2’s features and vice versa. Since each individual’s data

can be best represented by his/her own two features and their two features are

largely different, this partially explains why the classification of two individuals

based on the gut data is an easy problem.

Figure 2.7(b) shows the main OTUs for the tongue data. There are only

around 20 OTUs in tongue features above the cut-off of 3%. Again the type

matrix of the tongue data is highly sparse. Unlike the features of the gut data,

the features of the tongue data for these two individuals are more similar. By

looking at the compositions of the most dominant OTUs in each feature, we can

easily see similarities between person 1’s type 1 and person 2’s type 1. Also person

1’s type 2 is similar to person 2’s type 2 for OTUs in the classes Fusobacteria

and Gammaproteobacteria and similar with person 2’s type 3 for OTUs in the

class Bacilli. This suggests that there are similar variation patterns between the

two individuals, with the same groups of OTUs increasing or decreasing together.

Naturally the classification for the tongue data is a harder problem.

45

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
OTU

pro
po

rtio
n

p1_type 1
p1_type 2
p2_type 1
p2_type 2

 B

ac
ter

oid
ia

Ba
cte

roi
de

s

Ba
cte

roi
de

s

Ba
cte

roi
de

s

Ba
cte

roi
de

s

Ba
cte

roi
de

s

Ba
cte

roi
de

s

Ba
cte

roi
de

s

Pre
vo

tel
la

Ba
cte

roi
da

les
(or

de
r)

Po
rph

yro
mo

na
s

Ph
as

co
lar

cto
ba

cte
riu

m

Fa
ec

alib
ac

ter
ium

Fa
ec

alib
ac

ter
ium

Pe
pto

nip
hilu

s

Fin
eg

old
ia

Ak
ke

rm
an

sia

Es
ch

eri
ch

ia

 C

los
trid

ia

 V

err
uc

om
icro

bia
e

 G

am
ma

pro
teo

ba
cte

ria

(a) Outstanding OTUs in features of gut data

0.0

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
OTU

pro
po

rtio
n p1_type 1

p1_type 2
p2_type 1
p2_type 2
p2_type 3

Ne
iss

eri
a

Ne
iss

eri
a

 Be

tap
rot

eo
ba

cte
ria

Pa
ste

ure
llac

ea
e(f

am
ily)

Ha
em

op
hilu

s
 G

am
ma

pro
teo

ba
cte

ria

Ha
em

op
hilu

s

Str
ep

toc
oc

cu
s

Str
ep

toc
oc

cu
s

Str
ep

toc
oc

cu
s

Str
ep

toc
oc

cu
s

Str
ep

toc
oc

cu
s

 Ba

cill
i

Po
rph

yro
mo

na
s

Pre
vo

tel
la

Pre
vo

tel
la

Pre
vo

tel
la

Fu
so

ba
cte

riu
m

Ro
thi

a

Ac
tin

om
yce

s

Ve
illo

ne
lla

Ve
illo

ne
lla

 C
los

trid
ia

 A
ctin

ob
ac

ter
ia

 Fu

so
ba

cte
ria

 Ba

cte
roi

dia

(b) Outstanding OTUs in features of tongue data

0.0

0.1

0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
OTU

pro
po

rtio
n p1_type 1

p1_type 2
p2_type 1
p2_type 2
p2_type 3

Un
cla

ssi
fie

d

Un
cla

ssi
fie

d

 C

ya
no

ba
cte

ria
(ph

ylu
m)

Sta
ph

ylo
co

ccu
s

Str
ep

toc
oc

cu
s

Str
ep

toc
oc

cu
s

Str
ep

toc
oc

cu
s

 B

ac
illi

Pa
ste

ure
llac

ea
e(f

am
ily)

Ps
eu

do
mo

na
s

Ps
eu

do
mo

na
s

Ha
em

op
hilu

s

Ac
ine

tob
ac

ter

Co
ryn

eb
ac

ter
ium

Co
ryn

eb
ac

ter
ium

Ac
tin

om
yce

s

Ne
iss

eri
a

Ne
iss

eri
a

Fu
so

ba
cte

riu
m

 F

us
ob

ac
ter

ia

 B

eta
pro

teo
ba

cte
ria

 A

ctin
ob

ac
ter

ia

 G

am
ma

pro
teo

ba
cte

ria

(c) Outstanding OTUs in features of left palm data

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7 8 9 10 11 12 13
OTU

pro
po

rtio
n

p1_type 1
p1_type 2
p2_type 1
p2_type 2

Sta
ph

ylo
co

ccu
s

Str
ep

toc
oc

cu
s

Str
ep

toc
oc

cu
s

Co
ryn

eb
ac

ter
ium

Co
ryn

eb
ac

ter
ium

Ac
ine

tob
ac

ter

Pa
ste

ure
llac

ea
e(f

am
ily)

Ps
eu

do
mo

na
s

Ps
eu

do
mo

na
s

Un
cla

ssi
fie

d

Un
cla

ssi
fie

d

Co
ma

mo
na

da
ce

ae
(fa

mil
y)

Fle
cto

ba
cill

us

 B

ac
illi

 A

ctin
ob

ac
ter

ia

 G

am
ma

pro
teo

ba
cte

ria

 C

ya
no

ba
cte

ria
(ph

ylu
m)

 B

eta
pro

teo
ba

cte
ria

 S

ph
ing

ob
ac

ter
ia

(d) Outstanding OTUs in features of right palm data

Figure 2.7: Outstanding OTUs in features of moving picture data: The light and
dark red bars are two features from Person 1 and the blue bars are features from
Person 2. The OTUs from the same class are in the same block which is labeled
by their class name and the bars are labeled by the genus of the OTUs. The two
unlabeled bars in left palm data are the same OTUs with these unlabeled bars in
the right palm plots. They are two different unclassified classes in Cyanobacteria
phylum.

46

Figure 2.7(c) shows the main OTUs for the left palm data. 17 out of more

than twelve thousand OTUs in the left palm features are larger than the cut-off of

3%. Among these major OTUs, the two features within individual 1 have OTUs

present and absent together with some variations in their values. The features

within individual 2 show a different pattern with each OTU mainly represented

by one of the three features. Left palm features within each individual are quite

different because the palm’s microbial environment is more variable. Features

between individuals are also quite different for most of these major OTUs. Several

OTUs in individual 2’s features are not present in individual 1’s features. This

may explain why the left palm data can achieve high classification accuracy but

lower than the gut data.

Figure 2.7(d) shows the main OTUs for the right palm data. There are only

13 OTUs in right palm features above the cut-off of 3%. The patterns of features

within each individual are similar to their left palm data. But features between

individuals are more similar except for differences in the two unlabeled OTUs.

This explains the difficulty in separating two individuals from the right palm data.

We also find major OTUs in the right palm features are nearly all present in the

left palm features. We do not find the same situation in gut and tongue features.

This may be because an individual’s left and right hands are usually exposed to

the same environment. It could also be caused by contact between the two hands.

In many of the examples NMF can act like a variable selection method —

identifying individual reactions or OTUs which show different abundances in the

two groups of samples. However, in the moving picture tongue dataset, we do

not obtain such good classification by looking at individual OTUs. Instead, we

look more deeply at the community structure identified by NMF. By examining

community-level differences we were able to classify the individuals with a very

high degree of accuracy. We now look in more detail at the communities involved,

in an attempt to understand why unsupervised NMF was less effective in this case,

and why supervised NMF was able to resolve this problem. This also demonstrates

more of the range of interpretability offered by NMF. In addition to highlighting

individual OTUs or reactions that differ between the two classes, it is able to

isolate bacterial subcommunities from which the microbiome is built up, and offer

47

insights into the different structures of these communities.
0.
0

0.
1

0.
2

0.
3

0.
4

Individual 1 Type 1

Genera

N
ei
ss
er
ia

P
as
te
ur
el
la
ce
ae
(f
am
ily
)

H
ae
m
op
hi
lu
s

S
tr
ep
to
co
cc
us

P
or
ph
yr
om
on
as

P
re
vo
te
lla

F
us
ob
ac
te
riu
m

R
ot
hi
a

A
ct
in
om
yc
es

V
ei
llo
ne
lla

0.
0

0.
1

0.
2

0.
3

0.
4

Individual 1 Type 2

Genera

N
ei
ss
er
ia

P
as
te
ur
el
la
ce
ae
(f
am
ily
)

H
ae
m
op
hi
lu
s

S
tr
ep
to
co
cc
us

P
or
ph
yr
om
on
as

P
re
vo
te
lla

F
us
ob
ac
te
riu
m

R
ot
hi
a

A
ct
in
om
yc
es

V
ei
llo
ne
lla

0.
0

0.
1

0.
2

0.
3

0.
4

Individual 2 Type 1

Genera

N
ei
ss
er
ia

P
as
te
ur
el
la
ce
ae
(f
am
ily
)

H
ae
m
op
hi
lu
s

S
tr
ep
to
co
cc
us

P
or
ph
yr
om
on
as

P
re
vo
te
lla

F
us
ob
ac
te
riu
m

R
ot
hi
a

A
ct
in
om
yc
es

V
ei
llo
ne
lla

0.
0

0.
1

0.
2

0.
3

0.
4

Individual 2 Type 2

Genera

N
ei
ss
er
ia

P
as
te
ur
el
la
ce
ae
(f
am
ily
)

H
ae
m
op
hi
lu
s

S
tr
ep
to
co
cc
us

P
or
ph
yr
om
on
as

P
re
vo
te
lla

F
us
ob
ac
te
riu
m

R
ot
hi
a

A
ct
in
om
yc
es

V
ei
llo
ne
lla

0.
0

0.
1

0.
2

0.
3

0.
4

Individual 2 Type 3

Genera

N
ei
ss
er
ia

P
as
te
ur
el
la
ce
ae
(f
am
ily
)

H
ae
m
op
hi
lu
s

S
tr
ep
to
co
cc
us

P
or
ph
yr
om
on
as

P
re
vo
te
lla

F
us
ob
ac
te
riu
m

R
ot
hi
a

A
ct
in
om
yc
es

V
ei
llo
ne
lla

Figure 2.8: Major genera for Tongue feature matrix. The light and dark red bars
are two features from Individual 1 and the blue bars are features from Individual 2.
Each bar is labeled by the name of the genus or family.

Figure 2.8 shows the profiles of the types extracted from the two individu-

als, with graphs of abundance of each genus in that type. For individual 1, we

see that Type 1 contains higher abundances of Neisseria, Haemophilus, Porphy-

romonas, Fusobacterium and the unclassified genus from the Pasteurellaceae fam-

ily, while Type 2 includes higher abundance of Streptococcus, Prevotella, Rothia,

Actinomyces and Veillonella. This may well be associated with the action of Por-

phyromonas. One species, Porphyromonas gingivalis, has been shown in [22] to

48

manipulate the host immune system, allowing pathogens to colonise the commu-

nity. While the OTU from the genus Porphyromonas in this dataset is unclassified

at species level, it could have a similar effect to the studied species P. gingivalis.

This would seem consistent with type 1 having higher levels of various Proteobac-

teria and Fusobacteria closely related to known pathogens. When we look at the

features for individual 2, we see a similar picture, with types representing vary-

ing levels of Porphyromonas. Again, we see with increased Porphyromonas, we

have an increase in Neisseria, Haemophilus, Fusobacterium, and the unclassified

genus of the Pasteurellaceae family, and a corresponding decrease in Streptococ-

cus, Prevotella, Actinobacteria and Veillonella. Type 2 may show that the effect

of Porphyromonas is non-linear with Prevotella actually increasing in abundance

with low levels of Porphyromonas.

We also examine the types in the absence of Porphyromonas (type 2 for in-

dividual 1 and type 3 for individual 2). For both individuals, we see that these

types are dominated by Streptococcus, Prevotella and Veillonella. However, Fig-

ure 2.7(b) shows the differences between these types. We see that individual 2 has

more Actinomyces, and a different distribution between OTUs within the genus

Veillonella. Similarly, there are subtle differences between the types with high

abundance of Porphyromonas (type 1 for both individuals). Individual 1’s type

1 has higher levels of Streptococcus than individual 2’s. This might be partially

explained by the use of 3 types to model individual 2, allowing separate types to

model both high and low levels of Streptococcus in cases with high levels of Por-

phyromonas. However, in Figure 2.7(b), we see the presence of higher abundance

of a second OTU from the genus Neisseria in individual 2’s type 1. This cannot be

explained by the different numbers of types used to analyse the two individuals.

Supervised NMF is able to identify these subtle differences and use them to iden-

tify the individuals, even in situations where the large-scale community structure

varies a lot between samples within each individual.

We also consider the idea that the types correspond to communities of microbes.

When we look at the type without Porphyromonas, we can see the makings of a

community structure, with a number of microbes (such as Prevotella, Strepto-

coccus and Actinobacteria) that metabolise glucose into pyruvate, which is later

49

metabolised into lactate, and other microbes such as Veillonella which metabolise

lactate.

Temporal Dynamics

2009 2010

0.
0

0.
6

gut weight matrix for person two

time

w
ei
gh
t 2009−08−14

2009 2010

0.
0

0.
6

tongue weight matrix for person two

time

w
ei
gh
t 2009−08−10

Figure 2.9: Gut and Tongue weight matrix time series plot for person two. The
top plot shows the gut weight matrix on the second type (red line) and third type
(blue line) from NMF with 3 types. The bottom plot shows the tongue weights on
the first type (red line) and the third type (blue line) from NMF for tongue data
with 4 types.

To investigate the temporal dynamics of the four body sites’ microbiomes, the

weight matrices for the gut data and the tongue data are plotted in Figure 2.9.

When we apply NMF to person 2 with three types for the gut data (see the upper

panel of Figure 2.9), there is a clear shift at around 2009-08-14. This timepoint

is highlighted in Figure 2.9. For the gut weight matrix, the dominant weight is

initially type 2 and changes to type 3 after this time. For person 2’s tongue data,

this shift is not very clear when we use only three types. However with four types

we can identify a more apparent shift in their weight matrix time series plots.

For this data one more feature can bring out more details in the variation of the

data. In the lower panel of Figure 2.9, the weight matrix time series plots for

50

the tongue data relative to these two features show that type 1 is consistently

more represented than type 3 in the early part of the study although not always

dominant due to the effects of types 2 and 4, type 3 is more represented than

type 1 after the changing point (highlighted on the plot). The shift occurs first in

the tongue weight matrix and then can be detected about four days later in the

gut weight matrix. This suggests that some significant change has taken place in

person 2’s system at around this time, and that the change has influenced both

the gut and the tongue microbiomes.

type 3

type 2

0.00 0.25 0.50 0.75 1.00

Person 2's gut

type 3

type 1

0.00 0.25 0.50 0.75 1.00

Person 2's tongue

Others
Proteobecteria
Fusobacteria
Actinobacteria
Firmicutes
Bacteroidetes
Betaproteobacteria
Gammaproteobacteria
Fusobacteria
Actinobacteria
Clostridia
Bacilli
Bacteroidia

Figure 2.10: Class and phylum proportions in gut and tongue type matrices. The
left panels contain two types from person 2’s gut data and the right panels are for
his tongue data. The top plots present the dominant types at the beginning in the
time series plot. The bottom plots present the dominant types after the shift in
the time series plot. Similar colours in classes are from the same phylum.

In order to compare the changes which we have identified as taking place in

these microbiomes, the distributions of different phyla and classes of OTUs in each

feature are presented in Figure 2.10. The top features in this plot are the ones

that are more represented in the earlier part of the data (i.e. type 2 for the gut

data, and type 1 for the tongue data). The bottom features in this plot are those

that are more represented in the later part of the data.

51

Figure 2.10 shows a similar shift of composition between the two features for

both gut and tongue. In both cases, the type which was more represented in the

earlier part of the study has a lower proportion of Bacteroidia and a higher propor-

tion of Clostridia. The proportion of Bacteroidia increases and the proportion of

Clostridia decreases for both representative features of gut and tongue data in the

later part of the study. The consistency of these changes between the two datasets

gives further support to our conjecture that this represents a systematic change at

this time. The differences between the types are more pronounced in the tongue

data. This could be because the tongue is more exposed to external influences,

so its microbiome may be more variable. It might also be because we were using

four types to model the tongue data and only three for the gut data. Fitting more

types gives the types more room to spread out, allowing for more extreme types,

and amplifying the differences between the fitted types.

We see that the changes shown in Figure 2.10 are consistent with the earlier

interpretation of the types in Figure 2.8. We used four types here to model the

microbiome, but we can see in Figure 2.10 that the dominant type after the transi-

tion includes much higher abundances of Bacteroidetes (including Porphyromonas

and Prevotella, which has been associated with Periodontal disease [21]) and Pro-

teobacteria (including Neisseria and Haemophilus) and lower levels of Firmicutes

(including Streptococcus and Veillonella) and Actinobacteria (including Rothia and

Actinomyces). Note that the types in Figure 2.8 are fitted from the training data,

which is entirely before the state change in person 2.

Having identified the state change using NMF, we ask whether NMF was a

necessary tool for identifying the change. First we compare a naive examination

of the composition of the microbiome by class. Figure 2.11 shows the smoothed

proportion of each class over time in person 2’s gut and tongue microbiomes. We

see that there are no clear changes in composition at this level, indicating that

this is not an obvious change to identify.

For comparison, we also use UniFrac and PCoA for person 2’s gut and tongue

data. We see from Figure 2.12 that the first 3 principle coordinates for the gut

data and the first 4 coordinates for the tongue data do not reveal this change. It

is only when we examine the 4th principle coordinate for the gut data and the

52

2009 2010

0.
0

0.
6

smoothed classes in gut observations for person two

time

pr
op
or
tio
n 2009−08−14

2009 2010

0.
0

0.
3

smoothed classes in tongue observations for person two

time

pr
op
or
tio
n 2009−08−10

others
Betaproteobacteria
Gammaproteobacteria
Fusobacteria
Actinobacteria
Clostridia
Bacilli
Bacteroidia

Figure 2.11: Moving average of class proportions in gut and tongue observations.

5th principle coordinate for the tongue that we are able to detect the changes.

The difficulty of finding this explains why this pattern was not found in the many

previously published analyses of these data. This is made more difficult by the

common practice of examining only the first three principal coordinates. It is

possible to find the pattern using UniFrac, if one knows what to look for, but

NMF certainly makes the pattern much easier to find.

2.3.3 The Qin data

The unsupervised and supervised NMF results are calculated in my master thesis.

The comparisons and the interpretations are completed during my PhD program.

The Qin dataset [88] contains human gut metagenome samples extracted from

99 healthy people and 25 IBD patients. The data include 2804 different reactions.

Unsupervised NMF results for Qin data

We choose the NMF rank for the Qin data as six and apply unsupervised NMF

on the data. A projection of the data onto a plane is shown on the left panel

53

2009 2010

−
0.
15

0.
05

gut PCoA for person two

time

P
C
oA

2009−08−14

2009 2010

−
0.
1

0.
1

tongue PCoA for person two

time

P
C
oA

2009−08−10

Figure 2.12: Gut and Tongue principle coordinates based on UniFrac time series
plot for person two. The top plot shows the gut UniFrac matrix on the third
principle coordinate (red line) and fourth principle coordinate (blue line). The
bottom plot shows the tongue UniFrac matrix on the second principle coordinate
(red line) and the fifth principle coordinate (blue line).

of Figure 2.13. From the plot, we can see that about 19 of the IBD patients

can be separated from healthy people. The seperation is similar to the results of

BiomeNet [96]. The plot shows that two of these features are more related to IBD

patients and the other four more related to healthy people. This is consistent with

what we find using supervised NMF.

Supervised NMF results for Qin data

The sample size of patients is much smaller than the sample size of healthy people.

So we perform a classification giving the patients a weight of 4 to balance the class

sizes. (For supervised NMF, these weights don’t affect the fitted matrices T and

W , only the classifier applied to the weight matrix W .) This means that the

classifier that assigns all samples to one class will have an accuracy of about 50%.

We perform a 10-fold cross-validation on the whole data. Each time we use 9-folds

as training data and the remaining observations as test data.

We find 2 types are enough for patients and 4 types for healthy people. We

54

Qin data

(a) Unsupervised NMF (b) Supervised NMF

Figure 2.13: Left: Unsupervised NMF based on 6 types. The blue points are from
IBD patients and the green ones are from healthy people. Right: Supervised
NMF on both training and test data. The blue points are training data from
patients and green points are training data from healthy people, the dark blue
points are test data from patients and the dark green points are test data from
healthy people.

perform supervised NMF and fit a logistic regression using the training data weight

matrices (with patients given weights of 4) and perform a prediction on the test

data. The average of the weighted misclassification error over the 10 folds is 0.233

with a standard error of 0.0487.

The projections of both training and test data in one fold of the 10-fold cross-

validation are plotted in the right panel of Figure 2.13. It shows a quite good

separation between these two groups. The classification is not perfect, but is an

improvement upon previous methods, such as BiomeNet [96].

The comparisons with support vector machine and random forest methods are

summarized in Table 2.11. The dataset is split to the same 10 folds as supervised

NMF. The best parameters are tuned by a 10-fold cross-validation on the whole

dataset. The best cost parameter in SVM is 3 for radial basis kernel and 1 for

the other three kernels. The best gamma parameter is 10−4 for radial basis ker-

nel, 0.1 for polynomial kernel and 0.001 for sigmoid kernel. No method performs

significantly better than supervised NMF.

55

Interpretation of the results

The six type vectors are highly sparse with each vector sum equal to 1. We use

a cut-off of 0.5% for each type to find the distribution of each type over the ma-

jor reaction groups. Here each reaction group includes the different reactions that

correspond to the same enzyme-coding gene, thus each category can also be under-

stood as corresponding to one enzyme-coding gene. The type distribution over 17

enzyme-coding genes or reaction groups is shown in Figure 2.14. We can observe

that the IBD Type 2 is quite different from other types, with large abundance on

the fourth and fifth enzyme-coding genes and that both IBD types have weight

zero on the second enzyme-coding gene. Each individual’s metagenome profile is

expressed as a linear combination of these six types, the weight distribution over

each type is shown in Figure 2.15, where the top part of each bar presents the

distribution of the weights for healthy individuals for the corresponding type, and

the bottom part of each bar is for the weight distribution of IBD patients with

each patient counted as 4 times to make the results comparable to the healthy

individuals. From Figure 2.15, we can see the IBD patients mainly have non-

zero weights on IBD Type1, IBD Type2, Healthy Type 1 and Healthy Type 2, and

healthy individuals mainly have non-zero weights on Healthy Type 1, Healthy Type

2 and Healthy Type 4. It seems that the IBD Type 2 typically represents a group

of IBD patients and Healthy Type 2 represents a group of healthy individuals with

these two types distributed very differently over the enzyme-coding genes shown

in Figure 2.14.

According to Figure 2.14, the first three reaction groups contribute more to

healthy types and the fourth and fifth reaction groups contribute more to IBD

patients (mainly to IBD Type 2). Reactions in the first group are all in macrolide

biosynthesis. Macrolides are protein synthesis inhibitors and can be used as an

antibiotics treatment of inflammatory diseases including inflammatory bowel dis-

ease [98] [78] [57]. The second reaction group is involved in polycyclic aromatic

hydrocarbon degradation and the third group is in carotenoid biosynthesis. Poly-

cyclic aromatic hydrocarbons (PAHs) are one family of ubiquitous environmental

toxicants. This family has contribution significantly to development of Colorec-

tal cancer (CRC), a disease highly linked to IBD [27]. Carotenoids can enhance

56

the human immune system’s effectiveness [47]. As IBD is a kind of autoimmune

disease, this could explain why these two compounds are lower in IBD patients’

features. The fourth group in IBD Type 2 is involved in ascorbate and aldarate

metabolism and the fifth group in amino sugar and nucleotide sugar metabolism,

fructose and mannose metabolism, glycolysis and gluconeogenesis and additional

pathways. These are concordant with BiomeNet’s findings in subnetworks 38, 64

and 73. Comparing our reaction groups with the three subnetworks, we notice that

reaction group 4 can be found in subnetwork 64 and group 5 has some overlaps

with subnetwork 38 and subnetwork 73. These three subnetworks were discovered

to have a larger contribution to IBD samples than healthy ones.

Table 2.11: Comparison of test errors for support vector machine with linear ker-
nel (SVM l), with polynomial kernel (SVM p), with sigmoid kernel (SVM s),
with radial basis kernel (SVM r), RandomForest (RF), RandomForest with sparse
variables removed (RFrm) and Supervised NMF. The first four rows are the mis-
classification errors on the test data. The Mammal and Qin data include the mean
misclassification errors and standard deviations(below the means in brackets) for
cross-validation. Best prediction for each dataset is highlighted by red color.

dataset SVM l SVM p SVM s SVM r RF RFrm Supervised NMF

Gut 0 0.2335 0 0.0661 0 0 0

Tongue 0.0202 0.2694 0.0202 0.0484 0.0081 0.0173 0.0040

Left Palm 0.1245 0.2691 0.1446 0.2691 0.1285 0.0916 0.0924

Right Palm 0.3455 0.2724 0.3455 0.1667 0.0732 0.0560 0.1789

Mammal 0.0714 0.1428 0.0714 0.1071 0.1429 0.1071 0
[0.0461] [0.0505] [0.0461] [0.0504] [0.0504] [0.0504] [0]

Qin 0.3178 0.3359 0.2592 0.2853 0.2299 0.2299 0.2333
[0.0567] [0.0530] [0.0516] [0.0494] [0.0573] [0.0467] [0.0515]

2.4 Conclusion

The NMF analysis can provide a range of interpretable conclusions about the data

sets. For metagenomic data, the features extracted can be mapped to metabolic

pathways. For OTU data, the features correspond to communities of OTUs, and

can be studied in terms of the proportion of each phylum, class or genus. In any

case, looking at the results of the NMF can reveal important patterns or differences

between individuals that are not apparent from the original data. We were able to

57

0.
00

0
0.

00
4

0.
00

8

IBD Type 1

enzyme−coding genes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
00

0
0.

00
4

0.
00

8

IBD Type 2

enzyme−coding genes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
00

0
0.

00
4

0.
00

8

Healthy Type 1

enzyme−coding genes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
00

0
0.

00
4

0.
00

8

Healthy Type 2

enzyme−coding genes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
00

0
0.

00
4

0.
00

8

Healthy Type 3

enzyme−coding genes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
00

0
0.

00
4

0.
00

8

Healthy Type 4

enzyme−coding genes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 2.14: Qin data: The distribution of each type over major enzyme-coding
genes: IBD Type 2 typically represents a group of IBD patients and Healthy Type
2 represents a group of healthy individuals with these two types distributed very
differently over the enzyme-coding genes.

58

IBD Type 1

Weight

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

60

IBD Type 2

Weight

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80
12
0

Healthy Type 1

Weight

F
re
qu
en
cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
20

40
60

80

Healthy Type 2

Weight

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

Healthy Type 3

Weight

F
re
qu
en
cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0
15
0

Healthy Type 4

Weight

F
re
qu
en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80
12
0

Figure 2.15: The weights distribution over each type for heathy individuals (top
for each bar) and IBD patients (bottom for each bar): the IBD patients mainly
have non-zero weights on IBD Type1, IBD Type2, Healthy Type 1 and Healthy
Type 2, and healthy individuals mainly have non-zero weights on Healthy Type 1,
Healthy Type 2 and Healthy Type 4.

59

identify this type of pattern in all three real data sets — the difference in macrolide

synthesis pathways for the non-ruminant herbivores; the change in composition of

the gut and tongue microbiomes for person 2 in the moving picture data; and the

differences in various pathways for the Qin data.

The simulation results show that supervised NMF can recover the right NMF

rank values based on which a good classification result can be achieved. Super-

vised NMF can effectively reduce the dimensionality of the data to a non-negative

and most often sparse data matrix, which contains sufficient discriminative infor-

mation for classification purposes. In addition to the accuracy for classification,

these typical features are the community signatures for each class of objects and

their interpretation can often uncover important information about the differences

between different classes of objects. Simulations of community dynamics under

a Holling type II model show that plausible models of community dynamics can

lead to the type of additive subcommunity structure assumed by NMF, and that

in such a case, NMF is able to identify biologically meaningful types representing

the subcommunities.

Chapter 3

Deconvolution density estimation with penalized MLE

3.1 Introduction

Measurement error is a common problem with data. It occurs when the apparatus

measuring a variable is not perfect, and the value it returns is a random variable,

based on the true value. A simple example is additive measurement error, where

the recorded value is the true value (which is itself a random variable) plus a

random error. More formally, the observed value is given by Y = X + E, where

X is the true value and E is a random measurement error. This can happen

with a lot of measurement apparatus. It can also happen when Y is an estimated

quantity (such as an MLE estimate from a particular model or a test statistic on

some data) for which there is no analytic solution. In this case, the estimates Y

are subject to convergence error, which behaves like measurement error. This is

the motivating situation that we discuss in Chapter 4.

In this chapter, we look at the problem of estimating the density of the under-

lying variable X from a sample of observations with measurement error. This is

referred to as deconvolution. Figure 3.1 shows an example of this problem. The

green curve is the density function of interest: it follows a scaled chi-squared dis-

tribution with 4 degrees of freedom. The black curve is the density of variable Y

with measurement error following a scaled beta distribution. We see that the dis-

tribution with measurement error is very different from the original distribution,

so some method is needed to correct for this difference.

Formally, we have a sample of observations Y1, . . . , Yn given by the additive

error model Yj = Xj+ ϵj, where ϵj are i.i.d. The latent variables Xj are i.i.d. with

density fx, but are not observed. We are interested in estimating the density fx

from this data, and either a known error distribution for ϵj, or a separate sample

from the error distribution (for example obtained by repeated measurements of

one observation).

60

61

0 5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

de
ns
ity

ob

truth

Figure 3.1: The black curve is the density of the contaminated data. The green
curve is the density of the underlying truth.

62

There have been a number of methods developed for this problem, mostly based

on the characteristic function χX(t) = EeiX . The key to these methods is that

the convolution that gives the distribution of Y becomes pointwise multiplication

of characteristic functions. That is, if Y has distribution function given by the

convolution FY (y) =
∫∞
−∞ fx(x)Fϵ(y − x) dx, then the characteristic function is

given by elementwise multiplication χY (t) = χX(t)χϵ(t). Elementwise multiplica-

tion is easily inverted by elementwise division, i.e. χX(t) = χY (t)
χϵ(t)

, so if we know

the characteristic functions of Y and ϵ, then we can calculate the characteristic

function of X. Different deconvolution methods in the literature are based on

different estimators for the characteristic function of Y (and sometimes ϵ), and

different regularisation and correction (the estimated χX is not guaranteed to be

the characteristic function of a distribution). This formulation in terms of the char-

acteristic function also highlights the difficult cases — when χϵ(t) is very small, the

quotient becomes much larger, so estimation errors in the characteristic function

are magnified. In cases where χϵ(t) converges quickly to zero as t→∞, the error

distribution is called supersmooth, and the deconvolution problem is particularly

challenging.

One widely used method is developed by Liu and Taylor [71]. They use a kernel

density estimator for the characteristic function χY , a known error distribution,

and a method based on minimising mean squared error (MSE) to select the bound-

ary and bandwidth. They prove the method is consistent in cases where the error

distribution and kernel function are symmetric.

Assuming the error distribution as known is unrealistic. A more reasonable

approach is to model the error distribution parametrically or nonparametrically.

Delaigle and Gijbels [23] used the moment estimators for the parametric error

distribution parameters in their example, with the main contribution of the paper

being a bootstrap bandwidth selection method for the deconvolution kernel density

estimation of fx. The R package decon [105] implements their method for Gaussian

or Laplace error, using either direct computation or a fast Fourier transform (FFT).

The error distribution can be nonparametrically estimated from repeated ob-

servations of the contaminated variable Y , see for example, Delaigle et al. [24],

Comte et al. [20] and Susko et al. [102]. Alternatively it can be estimated from a

63

pure error sample (which can be obtained through repeated measurements of the

same quantity which is independent of the observed sample of Y). For example,

Kerkyacharian et al. [51] used the empirical characteristic function from a pure

error sample for estimating χϵ. There are a few other approaches to deconvolution

with a pure error sample, mainly differing in details such as bandwidth selection.

The R package deamer [49] implements several deconvolution methods based

on the FFT algorithm, including situations for known error density; for unknown

error density with an auxiliary sample of i.i.d. pure errors (method by Comte

and Lacour [18]) which is only proven consistent under the assumption that fx

is ordinary smooth or supersmooth; and for unknown error density with replicate

observations for variable Y with the assumption that the error distribution is

symmetric around zero (methods by Delaigle et al. [24] and Comte et al. [20]).

While the Fourier-based methods are mathematically elegant, estimation of

the characteristic function is much more challenging than estimation of other dis-

tributional quantities, and because of the division by χϵ(t), values where χϵ(t) is

small can cause instability in the estimates. The methods in the literature get

around this by limiting the range of t. This hard limitation can result in poor es-

timation. Another source of significant errors comes in the correction stage where

the estimate χ̂X(t) =
χ̂Y (t)
χ̂ϵ(t)

is adjusted to become the characteristic function of a

distribution. Because of these difficulties, existing methods perform very poorly

unless the sample size and the signal-noise ratio (SNR) are both large.

Another way for estimating the deconvoluted density function is by maximiz-

ing the log-likelihood of the data with a smoothness penalty for the estimated

density. (It was shown by Laird [58] that without the penalty, the MLE estimate

is a discrete distribution.) Most methods use the EM algorithm to optimize this

likelihood. The “M” step is computationally challenging for this problem, and the

methods of Silverman [99] and Green [38] do not fully overcome these challenges

for deconvolution problems. Liu et al. [70] developed a functional EM algorithm

(FEM) with the M-step being equivalent to solving a fourth order ordinary dif-

ferential equation (ODE). Instead of the commonly used penalty given by the

smoothness of the estimated density, FEM used the penalty given by the smooth-

ness of the logarithm of the density function. This removes the non-negativity

64

constraint on the density function. The drawback is that there is no analytic so-

lution to the ODE, so they use numerical solutions to the case where the function

is restricted to lie in a lower dimensional space generated by B-splines. Other pe-

nalized likelihood approaches also restrict to a lower dimensional space to simplify

computation, for example Kuusela and Panaretos [56] and Wood [107].

Here, we develop a completely new method to maximize the penalized log-

likelihood with the common smoothness penalty on fx. We also provide a proof of

on the convergence and consistency of the deconvolution density estimation based

on the penalized likelihood methods. To the best of our knowledge, this is the first

general proof of consistency of penalized maximum likelihood for deconvolution.

The closest existing proof appears to be provided by Madrid-Padilla et al. [73],

which proves consistency but not convergence rate of the maximum likelihood

estimate subject to a constraint on the penalty function, when the true density

is restricted to a space satisfying a set of hard-to-parse conditions, and the error

distribution is continuous, has finite entropy, and its density is Lipschitz.

Our method can overcome both the instability problems associated with the

Fourrier-based methods, and the restriction of the estimated function lying in a

lower dimensional space spanned by a particular set of basis functions in the FEM

method. Our method (termed P-MLE) can produce better estimates, particularly

when the sample size is small, or the signal-noise ratio is low.

The outline of this chapter is as follows. In Section 3.2, we introduce our

method and define the estimator. In Section 3.3, we explain the procedures used

to solve the challenges occur in implementation of the method. In Section 3.4, we

discuss the theoretical convergence properties of our method with proofs. In Sec-

tion 3.5, we compare P-MLE with decon, deamer and FEM on simulated datasets.

In Section 3.6, we apply our method to real data and compare the performance

with decon, deamer and FEM. The chapter finishes with the conclusions in Sec-

tion 3.7.

3.2 Deconvolution based on penalized log-likelihood

We want to estimate the density function fx(x) of a continuous random variable

X from a sample {y1, y2, . . . , yn} of the random variable Y = X + ϵ, where ϵ is a

65

random variable independent from X. For simplicity, we will start with the case

where the distribution of ϵ is known. If the distribution of ϵ is unknown, but we

have a pure error sample, {e1, e2, · · · , eM}, then we may apply our method with

the empirical distribution of ϵ from this sample. We will also assume that X has

finite support [l, u]. In theory, we could set the support to be (−∞,∞), but this

causes practical challenges with the optimization.

The density function fy is obtained via the convolution

fy(y) = Eϵ(fx(y − ϵ))

so the log-likelihood of our data for a particular density function fx is

n∑
i=1

log fy(yi) =
n∑
i=1

log

(∫ u

l

fx(x)dµϵ(yi − x)
)

where µϵ is the probability measure of the error distribution. (We need to assume

that X has a continuous distribution, but our method has no problems with ϵ

having a discrete or mixed distribution.)

Our method is to minimize the negative log-likelihood function of {y1, y2, · · · , yn}
plus a penalty term on the smoothness of function fx. The smoothness penalty

ψ(fx) is given by

ψ(fx) = ⟨f ′′
x , f

′′
x ⟩ =

∫ u

l

f ′′
x (x)

2dx

where ⟨., .⟩ denotes the inner product on the Hilbert space L2[l, u]. This penalty

is widely used in the smoothing splines method [39]. This gives us the penalized

negative log-likelihood function:

J = −
n∑
i=1

log

(∫ u

l

fx(x)dµϵ(yi − x)
)
+ λn⟨f ′′

x , f
′′
x ⟩ (3.1)

where λn is the smoothness penalty tuning parameter used to control the smooth-

ness of fx. To minimize J , instead of using the EM algorithm, we use integration

by parts twice to express the log-likelihood as a function of f ′′
x . We can then solve

for the optimal function f ′′
x and obtain fx by integrating twice.

66

Using integration by parts twice to compute the integral defining fy(yi), we get

fy(yi) =

∫ u

l

fx(x)dµϵ(yi − x)

=[−fx(x)Fϵ(yi − x)]ul +
∫ u

l

Fϵ(yi − x)f ′
x(x)dx

=[−fx(x)Fϵ(yi − x)]ul − [f ′
x(x)H(yi − x)]ul +

∫ u

l

f ′′
x (x)H(yi − x)dx (3.2)

where Fϵ denotes the cumulative distribution function of fϵ andH(v) =
∫ v
−∞ Fϵ(u)du.

(If ϵ has a particularly heavy-tailed distribution, we can change the lower limit of

the integral, so that H is well-defined.)

We assume that fx is a density function which is twice differentiable on R
and [l, u] contains the positive support of fx, so without loss of generality we let

fx(l) = f ′
x(l) = 0 and fx(u) = f ′

x(u) = 0. The first two terms in (3.2) vanish,

giving

fy(yi) =

∫ u

l

f ′′
x (x)H(yi − x)dx = ⟨f ′′

x , hi(x)⟩

where hi(x) = H(yi − x).

Using this inner product, our objective function (3.1) becomes

J = −
n∑
i=1

log(⟨f ′′
x , hi⟩) + λn⟨f ′′

x , f
′′
x ⟩ (3.3)

We want to minimize this J subject to the constraints:

fx(l) = f ′
x(l) = 0, (3.4)

fx(u) = f ′
x(u) = 0, (3.5)

∀r ∈ (l, u), fx(r) ⩾ 0, (3.6)∫ u

l

fx(r)dr = 1. (3.7)

Constraint (3.4) gives a unique solution for fx given f ′′
x . Constraint (3.4) and

(3.5) are boundary conditions needed to integral back to fx from f ′′
x . The condi-

tions (3.5)-(3.7) can be rewritten as conditions on f ′′
x .

67

For Condition (3.5), note that

⟨f ′′
x (r), 1⟩ =

∫ u

l

f ′′
x (r)dr = f ′

x(u)− f ′
x(l)

and

⟨f ′′
x (r), r⟩ =

∫ u

l

f ′′
x (r)rdr = [f ′

x(r)r]
u
l −
∫ u

l

f ′
x(r)dr = f ′

x(u)u−f ′
x(l)l−fx(u)+fx(l)

With Condition (3.4), we have

⟨f ′′
x , 1⟩ = 0⇐⇒ f ′

x(u) = 0

and

⟨f ′′
x , r⟩ = 0⇐⇒ fx(u) = 0

From Constraints (3.4), (3.5) and (3.7), we get

⟨f ′′
x (r), r

2⟩ = [f ′
x(r)r

2]ul − 2

∫ u

l

f ′
x(r)rdr = −2[fx(r)r]ul + 2

∫ u

l

fx(r)dr = 2

Under Constraints (3.4) and (3.5), the above condition is equivalent to (3.7).

For the non-negativity constraint, (3.6), we integrate f ′
x(r) by parts to get the

following inner products.

fx(r) =

∫ r

l

f ′
x(s)ds = [f ′

x(s)(s− r)]rl −
∫ r

l

f ′′
x (s)(s− r)ds = ⟨f ′′

x (s), (r − s)+⟩

(3.8)

fx(r) = −
∫ u

r

f ′
x(s)ds = −[f ′

x(s)(s− r)]ur +
∫ u

r

f ′′
x (s)(s− r)ds = ⟨f ′′

x (s), (s− r)+⟩

(3.9)

We can also take any affine combination of Equations (3.8) and (3.9) to evaluate

fx(x). That is fx(x) = λ⟨f ′′
x (r), (x− r)+⟩+ (1− λ)⟨f ′′

x (r), (r − x)+⟩ for any λ. In
particular, it is convenient to set

68

bx(r) =
(u− x)2((u− x) + 3(x− l))

(u− l)3
(x− r)+ +

(x− l)2((x− l) + 3(u− x))
(u− l)3

(r − x)+ − 2
(u− x)2(x− l)2

(u− l)3

so that

⟨bx(r), 1⟩ =
(u− x)2((u− x) + 3(x− l))

(u− l)3

∫ x

l

(x− r) dr + (x− l)2((x− l) + 3(u− x))
(u− l)3

∫ u

x

(r − x) dr

− 2
(u− x)2(x− l)2

(u− l)3

∫ u

l

1 dr

=
1

2

(
(u− x)2((u− x) + 3(x− l))

(u− l)3
(x− l)2 + (x− l)2((x− l) + 3(u− x))

(u− l)3
(u− x)2

)
− 2

(u− x)2(x− l)2

(u− l)2

= 0

⟨bx(r), r⟩ = ⟨bx, r − x⟩

=
(u− x)2((u− x) + 3(x− l))

(u− l)3

∫ x

l

(r − x)(x− r) dr + (x− l)2((x− l) + 3(u− x))
(u− l)3

∫ u

x

(r − x)(r − x) dr

− 2
(u− x)2(x− l)2

(u− l)3

∫ u

l

(r − x) dr

=
1

3

(
−(u− x)2((u− x) + 3(x− l))

(u− l)3
(x− l)3 + (x− l)2((x− l) + 3(u− x))

(u− l)3
(u− x)3

)
− (u− x)2(x− l)2

(u− l)3
((u− x)2 − (x− l)2)

=
(u− x)2(x− l)2

(u− l)3

(
1

3

(
3(u− x)2 − 3(x− l)2

)
− ((u− x)2 − (x− l)2))

)
= 0

And the non-negativity constraint is ⟨f ′′
x , bx∗(r)⟩ ⩾ 0 for all x∗ ∈ (l, u).

Thus we have converted the constraints in the minimization problem from (3.3)

to Hilbert Space inner product conditions on f ′′
x :

69

J = −
n∑
i=1

log(⟨f ′′
x , hi⟩) + λn⟨f ′′

x , f
′′
x ⟩ (3.10)

⟨f ′′
x , 1⟩ = 0 (3.11)

⟨f ′′
x , r⟩ = 0 (3.12)

⟨f ′′
x , r

2⟩ = 2 (3.13)

⟨f ′′
x , bx∗(r)⟩ ⩾ 0,∀x∗ ∈ (l, u) (3.14)

Recall that hi is calculated from Fϵ. When the distribution function of ϵ is

unknown, hi can be calculated from the empirical distribution of the random

sample {e1; e2; · · · ; eM}. Without loss of generality, we assume e1 ⩽ e2 ⩽ · · · ⩽ eM ,

the empirical distribution of ϵ is a step function

F̂ϵ(ϵ) =
1

M

M∑
m=1

1{em⩽ϵ}(ϵ)

Here 1{em⩽ϵ}(ϵ) is the indicator function, which is 1 when {em ⩽ ϵ} and 0 otherwise.

Thus Ĥ(v) =
∫ v
−∞ F̂ϵ(u)du = 1

M

∑
v>em

(v−em) is a piecewise linear function. Then

ĥi(x) = Ĥ(yi − x) =
1

M

∑
x<yi−em

(−x+ yi − em)

or

ĥi(x) =

yi − x− 1

M

∑M
m=1 em if x < yi − eM

k(yi−x)
M
− 1

M

∑k
m=1 em if yi − ek+1 ⩽ x < yi − ek(k =M − 1, · · · , 1)

0 if x ⩾ yi − e1
(3.15)

So our penalized MLE method can also be applied to deconvolution with unknown

error distribution but a pure error sample, with hi(x) replaced by ĥi(x).

When only an auxiliary sample of replicate observations Y ∗ = X + ϵ∗ inde-

pendent from Y ∗ is available, where ϵ∗ is independent from ϵ, we can estimate

the true density of X from the average of the two contaminated observed sam-

ples Y+Y ∗

2
with error as ϵ+ϵ∗

2
. Under the assumption that the error distribution is

70

symmetric, which is true for most measurement errors, ϵ+ϵ∗

2
and ϵ−ϵ∗

2
follow the

same distribution. So we can obtain the pure error sample as the difference of the

two observations divided by two Y−Y ∗

2
= ϵ−ϵ∗

2
. An application of this procedure is

shown in the real data analysis section.

The advantage of writing the optimization problem in this way is that in

the Hilbert space L2 ([l, u]), we can decompose f ′′
x as a linear combination of

{hi|i = 1, . . . , n}, 1, r, r2, and {bx|x ∈ (l, u)} plus a function orthogonal to all these

elements. If we let f0 be the linear combination of these elements, and let f⊥ be

the orthogonal part, we see that f⊥ only affects the penalty term ⟨f ′′
x , f

′′
x ⟩, and

because of the orthogonality, ⟨f ′′
x , f

′′
x ⟩ = ⟨f0, f0⟩ + ⟨f⊥, f⊥⟩ is clearly minimized

when f⊥ = 0, so we have shown that the optimal solution is a linear combina-

tion of {hi|i = 1, . . . , n}, 1, x, x2, and {bx|x ∈ (l, u)}. Thus, we have reduced the

constrained optimization over the whole Hilbert space L2([l, u]) to a constrained

optimization of the coefficients in this basis. This is still infinite dimensional. How-

ever, we can get a good approximate solution to the problem by only requiring a

finite subset of the non-negativity constraints. After we restrict to this condition,

the problem has become a standard finite-dimensional constrained optimization

problem.

More precisely, suppose we choose k − 3 basis functions of {bx|x ∈ (l, u)},
corresponding to k−3 values for x, denoted by xn+4, . . . , xn+k, as constraint values,

and want to minimize the objective function J subject to fx(l) = f ′
x(l) = 0,

conditions (11)-(13) and condition (14) for i = n + 4, . . . , n + k. Let the basis

functions be given by

ki(r) =

hi(r) if i = 1, . . . , n

1 if i = n+ 1

r if i = n+ 2

r2 if i = n+ 3

bxi(r) if i = n+ 4, . . . , n+ k

(3.16)

From the above argument, we know that the solution to the optimization problem

71

is given by

f ′′
x (r) =

n+k∑
i=1

αiki(r) (3.17)

for some coefficients α1, . . . , αn+k. If we form a matrix of inner products of these

basis terms by

Aij = ⟨ki, kj⟩ (3.18)

then the optimization problem from Equations (3.10)–(3.14) can be rewritten as:

minimize

J = −
n∑
i=1

log

(
n+k∑
j=1

Aijαj

)
+ λn

n+k∑
i=1

n+k∑
j=1

Aijαiαj (3.19)

subject to

n+3∑
j=1

A(n+1)jαj = 0 (3.20)

n+3∑
j=1

A(n+2)jαj = 0 (3.21)

n+k∑
j=1

A(n+3)jαj = 2 (3.22)

(∀i ∈ {n+ 4, . . . , n+ k})
n+k∑
j=1

Aijαj ⩾ 0 (3.23)

A is a positive definite matrix so this is a convex programming problem which

guarantees a unique solution. We have implemented this method in the R package

pmledecon [13], which is available from CRAN. Our implementation uses the optim

function from the stat package.

3.3 Practical optimization Issues

While the optimization problem in Equations (3.19)–(3.23) looks like a fairly stan-

dard multidimensional optimization problem, it is not completely straightforward.

There are a number of choices that need to be made for the optimization. Our im-

plementation of the method uses the Nelder-Mead method [83] in the optim func-

tion from the stats package in R. This is a simplex-based optimization method.

72

It has the advantage of being robust. This is particularly useful for our problem

because the log-likelihood function is only defined for values of the parameters such

that the convolved density is positive, so less robust methods sometimes produce

invalid parameter values.

In addition to choice of optimization method, there are a number of particu-

lar challenges present in this problem. In this section, we discuss the approach

taken to deal with the following challenges: what values to set for l and u; which

non-negativity constraints to impose; initial values for parameters; computational

singularity; and selection of tuning parameter.

3.3.1 Choosing l and u

In theory, as l and u tend to −∞ and∞ respectively, we should expect the solution

to converge to the solution for support (−∞,∞). However, in practice, ensuring

the non-negativity constraints all hold becomes more difficult when the support

is large and far from the observed data. Also, setting a narrower support reduces

the computational difficulty of calculating the necessary inner products Aij.

We initially set the support by first taking the empirical support Y(1), Y(n) of

the observed n data points, and the empirical support e(1), e(m) of the m pure error

sample, where Y(1), Y(n) and e(1), e(m) indicate the order statistics. Then, we use

l = Y(1) − e(m) and u = Y(n) − e(1) as our initial estimate for the support of fx. If

the error distribution is known, we use the 0.0001 quantile of the distribution as le

and 0.9999 quantile of the distribution as ue. Then e(1) and e(m) can be replaced

by le and ue for estimating the initial support of fx.

When we fit the P-MLE for this support, it often happens that f̂x is negative

near the boundaries and positive away from the boundaries. We then use an

adaptive method to shrink the boundaries so that f̂x is positive on (l, u). Suppose

our current estimate for the support is (lk, uk), and f̂x is negative on the interval

(lk, wk) with a minimum at mk, and on the interval (vk, uk) with a minimum at

nk. Then our next estimate for the support is
(
lk+mk

2
, nk+uk

2

)
.

73

3.3.2 Non-negativity constraints

To ensure the non-negativity of density function, a large number of constraints will

be involved in the optimization problem. This may cause numerical singularity

of matrix Aij and make the computational issues nontrivial. So for simplicity, we

choose 30 evenly spaced points to cover the full range on the support of fx. With

the smoothness penalty, the estimated function will often be non-negative on the

whole support.

3.3.3 Initial values

Random starting points are commonly used in many optimization problems.

However, in our case, random coefficients often do not produce valid density func-

tions to satisfy the non-negative constraints. When the estimated density is neg-

ative somewhere, the log-likelihood cannot be computed. As a result, we need a

better method to find the appropriate starting points. We take a kernel density

estimate for fY as our starting point. We use a Gaussian kernel, with bandwidth

estimated using Silverman’s rule-of-thumb [99], in our implementation. We then

project this estimated kernel density of fY orthogonally into the space spanned by

our basis functions to get the initial coefficients. This can be easily achieved by

evaluating the functions of fY and all basis functions at a large number of values

over the support and solving a regression problem.

Recall that under our adaptive method for setting the boundaries l and u, we

sometimes need to repeat the optimization procedure with different values for l

and u if the result is not non-negative. In this case, we find the initial solution

by projecting the solution of the optimization problem with the previous values lk

and uk onto the new basis for the reduced support [lk+1, uk+1].

3.3.4 Computational Singularity

A large number of basis functions are translations of the function H. When H is

a relatively smooth function, and when there are a lot of observed points, these

74

translations can become close to be linearly dependent, which can cause numer-

ically unstable solutions, or convergence problems and even sometimes incorrect

results. We alleviate this problem using a subsampling approach on the basis. We

choose a subsample of size S such that for a sample of S observation points, the

translations hi are not computationally singular. We then solve the optimization

problem for this subsample of basis elements (note that we use the whole data

set to compute log-likelihood). In our experience, S = 30 usually works well. We

repeat this for a number of subsamples, and average the results. To improve the

reliability, the subsamples are stratified by dividing the support of Y into S in-

tervals and selecting one sample point from each interval. This ensures that the

subsample points are well spread-out, reducing the computational instability. We

take enough subsamples to ensure that with high probability, the majority of basis

elements have been used in at least one subsample. Even with this subsampling,

it occasionally still happens that the optimization fails for some subsamples. In

these cases, a replacement subsample is drawn.

3.3.5 Selecting λn

The smoothness parameter λn needs to be selected. This is a tuning parameter,

so the usual approach is via cross-validation. We divide the data into a training

set and a validation set, use the training set to fit fx, then evaluate the likelihood

on the validation data, where the log-likelihood is
∑

j log((f̂x ∗ f̂e)(yj)). We then

choose λn to maximize this cross-validated log-likelihood.

In cases where computation time is limited, and we need to fit our method

more quickly (for example in the simulations in Section 3.5), we have used the

following heuristic approach to quickly select λn.

The role of λn is to find a reasonable balance between the log-likelihood and

the smoothness penalty. For a given sample size, the right balance should be

based on controlling the relative size of the two terms. Thus, we take the initial

density estimate (before optimization, which uses the initial values calculated from

Section 3.3.3, since we need to choose λn before we can optimize) and compute the

derivatives of the log-likelihood and derivatives of the smoothness penalty terms

with respect to all the coefficients. We then set λn = R
∑n+k
i=1

∣∣∣ ∂l(fx;y)∂αi

∣∣∣∑n+k
i=1

∣∣∣ ∂⟨f ′′x ,f ′′x ⟩
∂αi

∣∣∣ for some

75

constant R. From experience, we found that the following values for R work well.

Sample size R

30 104

100 105

300 106

3.4 Theory

In this section, we discuss the theoretical large-sample performance of our method.

For typical deconvolution problems, theoretical performance is controlled by the

identifiability of the deconvolution problem. The Fourier coefficient at each fre-

quency of the convolved density is equal to the product of the Fourier coefficients

of the deconvolved density and the error distribution. If one of the Fourier coef-

ficients in the error distribution is zero, the Fourier transformation of the decon-

volved density at that frequency is arbitrary. Then the deconvolution problem is

not identifiable, since adding the appropriate Fourier term to a “true” distribu-

tion does not change its convolution. In practice, distributions rarely have zero

Fourier coefficients, so the method is not completely unidentifiable, but when the

error distribution is super-smooth, then its Fourier coefficients quickly converge to

zero, which makes the problem practically unidentifiable. We resolve this issue by

studying the error in the convolved side, rather than the deconvolved side. That

is, we can show that f̂x ∗ fe → fy under general circumstances. This allows us

to avoid worrying about ordinary smooth and super-smooth error distributions.

We are able to show that P-MLE consistently produces a valid solution to the

deconvolution problem. If there are multiple valid solutions, then the choice made

by P-MLE may or may not be the truth. We are able to show that

Theorem 1. Let the true density fx be twice continuously differentiable, and let

the convolved density be fy = fx ∗ fe. Let f̂x be the P-MLE estimate for fx and

f̂y = f̂x ∗ fe. If the smoothness penalty parameter for each estimate is given by

λn = C1n
7
8 log(n)

1
8

√
|u− l|, for a certain constant C1, then almost surely, for all

sufficiently large n, ∥f̂y − fy∥∞ < C2n
− 1

32 |u − l| 18 log(n) 1
32 for some constant C2.

76

The constants C1 and C2 are given by

C1 =
2

31
203−

1
105

3
20

ψ(fx)
4
5ψ(fy)

1
10

C2 =

1 +

√
1 +

3
2
5

16

1
4

2
179
80 3

9
405

27
80ψ(fx)

1
4ψ(fy)

− 1
40

In this section, we change the notation slightly to avoid excessive subscripts.

For a twice differentiable function f with support S, let ψ(f) =
∫
S
(f ′′(x))2 dx

be the smoothness penalty. Our estimator is the function f̂n that maximizes the

penalized log-likelihood.

n∑
i=1

log
((
f̂n ∗ fe

)
(xi)

)
− λnψ

(
f̂n

)

We want to prove consistency of f̂n. That is, more formally, suppose we have a

sequence of i.i.d. observations x1, x2, . . . from a distribution with density function

f ∗ fe, where f is twice continuously differentiable with finite smoothness. We

use the notation fe for the density of the error distribution, but this is a slight

abuse of notation, because the proof works equally well for non-continuous error

distribution. Let (λn)n=1,... be a chosen sequence of penalty terms and S1 ⊆ S2 ⊆
· · · be a chosen increasing sequence of measurable subsets of R with union R. Let
f̂n be the twice continuously differentiable function with support Sn that maximizes

the penalized log-likelihood function

n∑
i=1

log((f̂n ∗ fe)(xi))− λnψ(f̂n)

for the first n observations. We want to prove that f̂n converges to f . Because of

the difficulties that can arise when fe is supersmooth, we will show that f̂n ∗ fe
converges to f ∗ fe. That is, we will show that for some γ, ξ > 0, and some ζ, with

probability 1, there is some N such that for all n > N we have ∥(f̂n− f) ∗ fe∥∞ <

γn−ξ|Sn|ζ .

In addition to the smoothness assumptions needed to state the problem, we will

77

assume that g = f ∗fe has only a finite numberM of local maxima. This eliminates

a number of pathological distributions without eliminating any distributions of real

interest. It simplifies the proof, but we believe that the method is still consistent

without this assumption. This assumption is needed for Proposition 1, which

allows a relatively simple proof of Proposition 5. However, we believe that a

version of Proposition 5 (possibly with the lower bound changed slightly) is true

without the need for this assumption.

In our proof, we will change between working on the noiseless scale of the

underlying distribution we are trying to estimate, and working on the convolved

scale, with the noise distribution added. We will consistently use f to represent

densities on the noiseless scale, and g to represent densities on the convolved scale

so for example g = f ∗ fe refers to the convolved density of the true distribution.

Similar notation will be used throughout. For example ĝn = f̂n ∗ fe is the convo-

lution of the penalized MLE estimate with the error distribution. For this proof,

we will assume that fe is known.

We will use the notation g for densities that are related to the convolved den-

sities, even if they do not themselves arise as convolutions with fe. For example,

in the proof, we will introduce a density g̃n, where we use the notation g because

it is an estimator for the convolved density g = f ∗ fe, but the density g̃n does not

necessarily arise as a convolution of any density function with fe.

To prove consistency, we will first note that the Dvoretzky-Kiefer-Wolfowitz [29]

inequality gives that for any i.i.d. sample from a distribution with c.d.f. G, the

c.d.f. Gn of the empirical distribution satisfies

P
(√

n∥Gn −G∥∞ >
√

log(n)
)
< Cn−2

for some positive constant C (later, Massart [74] showed that C = 1), so according

to the Borel-Cantelli Lemma [30], with probability 1, there is some N such that

for all n > N we have ∥Gn − G∥∞ ⩽
√

log(n)
n

. In our case, we have that G is the

c.d.f. for g = f ∗ fe, and Gn is the empirical c.d.f. of the observed sample.

Our approach for proving consistency will follow this outline:

1. Construct a sequence of estimators g̃n(x) for g (we use kernel density estimators)

78

such that the following conditions hold whenever ∥Gn −G∥∞ ⩽
√

log(n)
n

.

(a) ∥g̃n − g∥∞ < C3
ψ(g)

1
5 log(n)

1
4

n
1
4

for some constant C3.

(b) For any density function g∗L that is Lipschitz with constant L and has

support Sn, and has g∗L(xi) ⩾ ϵ for i = 1, . . . , n,∣∣∣∣∣ 1n
n∑
i=1

log(g∗L(xi))−
∫
Sn

g̃n(x) log(g
∗
L(x)) dx

∣∣∣∣∣ < log(n)
1
4L

C3ψ(g)
1
5n

1
4 ϵ

Intuitively, this is saying that the empirical mean of log(g∗L(x)) is close to

the mean over the distribution g̃.

2. Construct a sequence of distributions f ∗
n that converge to f , (based partly on

the data, and partly on the true function f) with the following properties:

(a) ψ(f ∗
n) ⩽ 2ψ(f)

(b) Whenever, ∥Gn−G∥ <
√

log(n)
n

, and n is sufficiently large, 1
n

∑n
i=1 log(g

∗
n(xi)) >

−H(g)− 4Mn− 1
2 log(n)

3
2 , where H(g) is the entropy −

∫∞
−∞ g(x) log(g(x)).

3. Since the penalized likelihood of f̂n is bounded below by the penalized likelihood

of f ∗, using property 1(b), we can bound the likelihood of ĝn, which allows us

to prove ψ(f̂n) < 3ψ(f) for all sufficiently large n.

4. Having found a uniform Lipschitz constant for all ĝn, we will bound
∑n

i=1 log (ĝn(xi))

as a function of ∥ĝn − g∥∞, and deduce that ∥ĝn − g∥∞ → 0 almost surely.

3.4.1 Preliminary Results

We begin with some general inequalities and results about the smoothness penalty

that will be necessary for proving our main results.

Smoothness and L∞ norms

Lemma 1. If g is a density function, then ψ(f ∗ g) ⩽ ψ(f).

79

Proof.

ψ(f ∗ g) =
∫ ∞

−∞
((f ∗ g)′′(x))2 dx

=

∫ ∞

−∞

(
d2

dx2

∫ ∞

−∞
g(t)f(x− t) dt

)2

dx

=

∫ ∞

−∞

(∫ ∞

−∞
g(t)

d2f(x− t)
dx2

dt

)2

dx

=

∫ ∞

−∞

(∫ ∞

−∞
g(t)f ′′(x− t) dt

)(∫ ∞

−∞
g(s)f ′′(x− s) ds

)
dx

=

∫ ∞

−∞

∫ ∞

−∞
g(t)g(s)

∫ ∞

−∞
f ′′(x− t)f ′′(x− s) dx ds dt

⩽
∫ ∞

−∞

∫ ∞

−∞
g(t)g(s)

∫ ∞

−∞
f ′′(x− t)2 dx ds dt

= ψ(f)

Remark 3.4.1. It is straightforward to modify this proof in the case where the

error distribution is not continuous.

Lemma 2. For any twice continuously differentiable density function g, ∥g∥∞ ⩽(
54ψ(g)
3×212

) 1
5

Proof. Suppose g attains its maximum at x = 0. (Since ∥g∥∞ and ψ(g) are

translation invariant, there is no loss of generality). We first prove the result

under the assumption that g is symmetric about 0.

For any constant c > 0, the function h(x) = cg(cx) satisfies
∫∞
−∞ h(x) dx =∫∞

−∞ g(x) dx, so h is a twice continuously differentiable density function. We have

that ∥h∥∞ = h(0) = cg(0) = c∥g∥∞, and h′′(x) = c3g′′(cx), so ψ(h) = c5ψ(g).

This means that ∥g∥∞ψ(g)−
1
5 = ∥h∥∞ψ(h)−

1
5 . Thus, in trying to maximize

∥g∥∞ψ(g)−
1
5 , we may without loss of generality assume that

∫ 1

0
g(x) dx = 0.4g(0).

Let m = sup g(x) = g(0). Let a = g(1), b = g′(1). We have
∫ 1

0
g(x) dx = 0.4m,

g(0) = m and g′(0) = 0. Now on the Hilbert space L2([0, 1]), we have

80

⟨g′′, x2⟩ =
∫ 1

0

x2g′′(x) dx = [x2g′(x)]10 − [2xg(x)]10 + 2

∫ 1

0

g(x)dx = b− 2a+ 0.8m

(3.24)

⟨g′′, x⟩ = [xg′(x)]10 −
∫ 1

0

g′(x)dx = b+m− a (3.25)

⟨g′′, 1⟩ = b (3.26)

⟨xα, xβ⟩ = 1

α + β + 1
(3.27)

Subject to conditions 3.24-3.26, in the Hilbert space L2 ([0, 1]), we can decompose

g′′ as a linear combination of 1, x and x2 plus a function orthogonal to all these

elements. If we let g0 be the linear combination of these elements, and let g⊥ be

the orthogonal part, because of the orthogonality, ⟨g′′, g′′⟩ = ⟨g0, g0⟩ + ⟨g⊥, g⊥⟩ is
clearly minimized when g⊥ = 0, so we have shown that ∥g′′∥2 is minimized by

setting g′′ to be a linear combination β0+β1x+β2x
2. Let v = (β0, β1, β2)

T and let

M =

1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

be given by Mij = ⟨xi−1, xj−1⟩ and 3.27. Then our equations become Mv = w,

where w = (b, b+m− a, b− 2a+ 0.8m)T . We have

M−1 =

9 −36 30

−36 192 −180
30 −180 180

Thus ∥g′′∥22 ⩾ vTMv = wTM−1MM−1w = wTM−1w. Let t = (m, a, b)T . Then

w = Bt where

B =

0 0 1

1 −1 1

0.8 −2 1

81

This gives

∥g′′∥22 ⩾ tTBTM−1Bt = (m, a, b)

19.2 24 0

24 192 −36
0 −36 9

m

a

b

For fixed a, ∥g′′∥2 is minimized when b = 4a. In this case tTBTM−1Bt is an increas-

ing function of a for all non-negative a. Since a ⩾ 0, tTBTM−1Bt is minimized

when a = b = 0. Thus ∥g′′∥22 ⩾ 19.2m2.

Now since g is an even function, we have
∫ 1

−1
g(x) dx = 0.8m ⩽ 1. It follows that

m ⩽ 1.25 and ψ(g) ⩾ 2tTBTM−1Bt ⩾ 38.4m2 ⩾ 38.4m5

1.253
= 3×212

54
m5. Therefore,

∥g∥∞ψ(g)−
1
5 ⩽

(
54

3×212

) 1
5
.

We have proved the result when g is symmetric about 0. Suppose g is not sym-

metric about 0. Let s+(x) =
g(|x|)
c+

and s−(x) =
g(−|x|)
c−

be the symmetric density

functions obtained by reflecting the positive and negative parts of g respectively

in the y axis, and rescaling. The positive constants c+ and c− are chosen so

that
∫∞
−∞ s+(x) dx = 1 and

∫∞
−∞ s−(x) dx = 1. That is, c− = 2

∫ 0

−∞ g(x) dx and

c+ = 2
∫∞
0
g(x) dx. It is easy to see that s+ and s− are twice continuously differ-

entiable density functions (because g′(0) = 0), and are symmetric, so applying the

result for symmetric functions, we get ψ(s+) ⩾ 3×212

54
∥g∥5∞
c+5 and ψ(s−) ⩾ 3×212

54
∥g∥5∞
c−5 .

Also, we have ψ(g) = 1
2
(c−

2ψ(s−) + c+
2ψ(s+)) ⩾ 3×211

54
∥g∥5∞

(
1
c−3 +

1
c+3

)
. Since∫∞

−∞ g(x) dx = 1, we have c− + c+ = 2, so c−
−3 + c+

−3 is minimized when

c− = c+ = 1. Thus, the result holds for any g.

Corollary 1. For any density function f and any distribution, fe, ∥f ∗ fe∥∞ ⩽(
54ψ(f)
3×212

) 1
5

Proof. This is immediate from Lemma 1 and Lemma 2

Lemma 3. If a density function g : R → R⩾0 is twice continuously differentiable

and has finite support, then ∥g′∥∞ ⩽
(

125ψ(g)2

144

) 1
5

Proof. Translating if necessary, we may assume that |g′(x)| is maximized by x = 0.

By reflecting in the line x = 0 if necessary, we may also assume g′(0) > 0. We may

also rescale (that is, replace g by h(x) = cg(cx) as in the proof of Proposition 2: it

82

is easy to check that ∥g′∥∞ψ(g)−
2
5 = ∥h′∥∞ψ(h)−

2
5) so that g(1) = g′(1) = 0. We

will prove the result by finding a suitable function h that minimizes ψ(h) subject

to the constraints

(i) ∥h′∥∞ = h′(0) = s > 0

(ii)
∫ 1

−∞ h(x) dx ⩽ 1,

(iii) h is twice continuously differentiable everywhere except for one value x ⩽ 0

at which h(x) = 0.

Since these conditions on h are slightly weaker than the conditions for g in the

proposition, any g satisfying the conditions of the proposition also satisfies the

conditions for h. It follows that ψ(g)−
2
5∥g′∥∞ ⩽ ψ(h)−

2
5∥h′∥∞, so if this h satisfies

the inequality in the proposition, the result will be proved.

Let

k(x) =

0 if x < − h(0)

h′(0)

h′(0)x+ h(0) if − h(0)
h′(0)

⩽ x < 0

h(x) if x ⩾ 0

That is, k is a linear extension of the restriction of h to positive real numbers.

By inspection, ∥k′∥∞ ⩽ h′(0) = s, so k satisfies Condition (i); also by the mean

value theorem, k(x) ⩽ h(x) for all x, so
∫ 1

0
k(x) dx ⩽

∫ 1

0
h(x) dx ⩽ 1, so k satisfies

Condition (ii). Finally, Condition (iii) is obvious on all intervals,
(
−∞,− h(0)

h′(0)

]
,(

− h(0)
h′(0)

, 0
]
and (0,∞), so the condition only needs to be tested at 0. At 0, we

obviously have k′(0) = h′(0) = s, and k′′(0) = h′′(0) = 0 because h′(x) attains its

maximum value at x = 0.

Since k satisfies the same conditions as h, we have ψ(k) ⩾ ψ(h). On the

other hand |k′′(x)| ⩽ |h′′(x)| for all x, so ψ(k) ⩽ ψ(h). Therefore, k
(
x+ h(0)

h′(0)

)
is an alternative minimizer of ψ(k) subject to Conditions (i)–(iii), and it satisfies

the additional condition that k(0) = 0. Thus, we may assume w.l.o.g. that h′ is

maximized by a value x such that h(x) = 0. By translating, we may assume x = 0.

Now since h(0) = 0, h′(0) = s, h(1) = 0, h′(1) = 0 and
∫ 1

0
h(x) dx = r ⩽ 1, we

have

83

⟨h′′, 1⟩ =
∫ 1

0

h′′(x) dx = h′(1)− h′(0) = −s

⟨h′′, x⟩ = [h′(x)x]10 −
∫ 1

0

h′(x) dx = h′(1)− (h(1)− h(0)) = 0

⟨h′′, x2⟩ = [h′(x)x2]10 − 2[h(x)x]10 + 2

∫ 1

0

h(x) dx = 2r ⩽ 2

It is easy to see that subject to these conditions, ψ(h) is minimized by setting

h′′ as a linear combination of 1, x and x2. Let h′′(x) = a+ bx+ cx2. Then we have
1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

a

b

c

 =

−s
0

2r

which gives

a

b

c

 =

9 −36 30

−36 192 −180
30 −180 180

−s
0

2r

and ψ(h) = 9s2 − 120sr + 720r2.

Recall that by rescaling, we are aiming to minimize

ψ(h)∥h′∥−
5
2∞ = 9s−

1
2 − 120rs−

3
2 + 720r2s−

5
2

It is easy to see that this is minimized when s is a solution to

−1

2
9s−

3
2 + 120

3

2
rs−

5
2 − 720

5

2
r2s−

7
2 = 0

−s2 + 40rs− 400r2 = 0

s = 20r

For s = 20r, we have

ψ(h)2

s5
=

(3600− 2400 + 720)2r2

205r5
=

19202

205r3
=

144

125
r−3

84

Since r ⩽ 1, we deduce ψ(h)2

∥h′∥5∞
⩽ 144

125
.

General Inequalities and probability theory

We start by showing that for any random variable, there is at least one point at

which it has positive density.

Lemma 4. For any random variable Z, there is some b, δ > 0 and ϵ > 0 such

that for any t < δ, P (|Z − b| < t) > ϵt.

Proof. Pick a finite interval [l0, u0] such that E has positive probability p on the

interval [l0, u0], and let d = p
u0−l0 . Let m0 be the midpoint of [l0, u0], For the

intervals [l0,m0] and [m0, u0], we have P (Z ∈ [l0,m0]) + P (Z ∈ [m0, u0]) = p, so

one of P (Z ∈ [l0,m0]) and P (Z ∈ [m0, u0]) must be at least p
2
. Without loss of

generality, suppose P (Z ∈ [l0,m0]) ⩾
p
2
. We now let l1 = l0 and u1 = m0 to create

a new interval whose average density is at least p
u0−l0 . Repeating this interval

bisection, we get a decreasing sequence of intervals [lk, uk] whose intersection is a

single point b. We will show that this b with δ = (u0 − l0) satisfies the result. To

do this, for any t < δ, note that there is some k such that [lk, uk] ⊆ [b − t, b + t]

and for this choise, uk − lk >
t
2
. It will follow that P (|Z − b| < t) ⩾ P (Z ∈

[lk, uk]) ⩾ d(uk − lk) ⩾ d t
2
. For t ⩾ max(u0 − b, b − l0), k = 0 obviously satisfies

the conditions. Otherwise, since lk → b and uk → b, there must be some smallest

k such that [lk, uk] ⊆ [b − t, b + t]. By minimality of this k, we have that either

lk−1 < b− t or uk−1 > b+ t. In either case, uk − lk = uk−1−lk−1

2
> t

2
.

Proposition 1. Let g be a twice continuously differentiable function with support

[l, u] and with at most M local maxima. Let r > 0 and set b(x) = g(x) ∨ r. Then∫ u

l

∣∣∣∣b′(x)b(x)

∣∣∣∣ dx ⩽
2M

5
log

(
54ψ(g)

3× 212r5

)

Proof. Let the local maxima of g(x) be at a1 < a3 < . . . < a2M−1, and let the local

85

minima be at a2 < a4 < . . . < a2M−2, and let a0 = l, a2M = u. We have

∫ u

l

∣∣∣∣b′(x)b(x)

∣∣∣∣ dx =
M−1∑
i=0

(∫ a2i+1

a2i

b′(x)

b(x)
dx−

∫ a2i+2

a2i+1

b′(x)

b(x)
dx

)

=
M−1∑
i=0

(2 log(b(a2i+1))− log(b(a2i))− log(b(a2i+2)))

⩽ 2
M−1∑
i=0

log

(
b(a2i+1)

r

)

By Lemma 2, we have ∥g∥∞ ⩽
(

54ψ(g)
3×212

) 1
5
, so log(b(a2i+1)) ⩽ log

((
54ψ(g)
3×212

) 1
5

)
This gives ∫ u

l

∣∣∣∣b′(x)b(x)

∣∣∣∣ dx ⩽
2M

5
log

(
54ψ(g)

3× 212r5

)

Kulback-Leibler Divergence

Lemma 5. If g and h are density functions and h(x) > g(x) + ϵ for all x ∈
[x0 − δ, x0 + δ], where ϵ > 0 and δ > 0, then the Kulback-Leibler divergence is

bounded below by
∫
g(x) log

(
g(x)
h(x)

)
dx > 2δ2ϵ2

Proof. Let h(x) = k(x) + l(x), where

l(x) =

{
ϵ if |x− x0| < δ

0 otherwise

Since h(x) > g(x) + ϵ for all x ∈ [x0 − δ, x0 + δ], it follows that k(x) > g(x) for all

x ∈ [x0 − δ, x0 + δ]. Now log(h(x)) = log(k(x)) + log
(
1 + l(x)

k(x)

)
, so

∫
g(x) log(h(x)) dx =

∫
g(x) log(k(x)) dx+

∫ x0+δ

x0−δ
g(x) log

(
1 +

ϵ

k(x)

)
dx

⩽
∫
g(x) log(k(x)) dx+

∫ x0+δ

x0−δ
g(x) log

(
1 +

ϵ

g(x)

)
dx

86

To bound the first integral, note that k(x)
1−2δϵ

is a density function, so

∫
g(x) log(k(x)) dx =

∫
g(x)

(
log

(
k(x)

1− 2δϵ

)
+ log(1− 2δϵ)

)
dx

⩽
∫
g(x) (log (g(x)) dx+ log(1− 2δϵ)

Thus∫
g(x) log(h(x)) dx ⩽

∫
g(x) log (g(x)) dx+ log (1− 2δϵ) +

∫ x0+δ

x0−δ
g(x) log

(
1 +

ϵ

g(x)

)
dx

⩽
∫
g(x) log (g(x)) dx+ log (1− 2δϵ) + 2δϵ

⩽
∫
g(x) log (g(x)) dx− 2δ2ϵ2

Lemma 6. If g and h are density functions and h(x) < g(x)− ϵ for all x ∈ [x0 −
δ, x0+δ], then the Kulback-Leibler divergence is bounded below by

∫
g(x) log

(
g(x)
h(x)

)
dx >

2δ2ϵ2 − 8
3
δ3ϵ3

Proof. Let h(x) = k(x)− l(x), where

l(x) =

{
ϵ if |x− x0| < δ

0 otherwise

Since h(x) < g(x)− ϵ for all x ∈ [x0 − δ, x0 + δ], it follows that k(x) < g(x) for all

x ∈ [x0 − δ, x0 + δ]. Now log(h(x)) = log(k(x)) + log
(
1− l(x)

k(x)

)
, so

∫
g(x) log(h(x)) dx =

∫
g(x) log(k(x)) dx+

∫ x0+δ

x0−δ
g(x) log

(
1− ϵ

k(x)

)
dx

⩽
∫
g(x) log(k(x)) dx+

∫ x0+δ

x0−δ
g(x) log

(
1− ϵ

g(x)

)
dx

87

To bound the first integral, note that k(x)
1+2δϵ

is a density function, so

∫
g(x) log(k(x)) dx =

∫
g(x)

(
log

(
k(x)

1 + 2δϵ

)
+ log(1 + 2δϵ)

)
dx

⩽
∫
g(x) (log (g(x)) dx+ log(1 + 2δϵ)

Thus∫
g(x) log(h(x)) dx ⩽

∫
g(x) log (g(x)) dx+ log (1 + 2δϵ) +

∫ x0+δ

x0−δ
g(x) log

(
1− ϵ

g(x)

)
dx

⩽
∫
g(x) log (g(x)) dx+ log (1 + 2δϵ)− 2δϵ

⩽
∫
g(x) log (g(x)) dx− 2δ2ϵ2 +

8

3
δ3ϵ3

Corollary 2. If density functions g! and g are both Lipschitz with constant L, and

∥g! − g∥∞ > ρ, where ρ <
√
2L, then the Kulback-Leibler divergence is bounded

below by
∫
g(x) log

(
g(x)
g!(x)

)
dx > ρ4

48L2

Proof. Since ∥g! − g∥∞ > ρ, there is some x0 such that |g!(x0) − g(x0)| > ρ. By

the Lipschitz condition, if we let δ = ρ
4L
, then for x ∈ [x0 − δ, x0 + δ], we have

ρ < |(g!(x0)− g(x0))| = |(g!(x0)− g!(x)) + g!(x)− g(x) + (g(x)− g(x0))|

⩽ L|x− x0|+ |g!(x)− g(x)|+ L|x− x0|

so |g!(x)− g(x)| > ρ− 2Lδ = ρ
2
. By Lemma 5 and Lemma 6, we therefore have

∫
g(x) log

(
g(x)

g!(x)

)
dx > 2

(
ρ2

8L

)2

− 8

3

(
ρ2

8L

)3

It is easy to see that for ρ <
√
2L, this is bounded below by ρ4

48L2 .

88

3.4.2 Constructing g̃n

The function g̃n is constructed as a kernel density estimate of g with uniform kernel

and bandwidth δn =
(

log(n)
n

) 1
4
(

3
ψ(g)

) 1
5
20.95−0.3. That is

g̃n(x) =
1

2nδn

∣∣{i ∈ {1, . . . , n}∣∣|xi − x| < δn
}∣∣ = 1

2δn

(
Gn(x+ δn)−Gn(x− δn)

)
We want to show that g̃n has properties (a) and (b), which are

(a) ∥g̃n − g∥∞ < C3
ψ(g)

1
5 log(n)

1
4

n
1
4

for some constant C3.

(b) For any density function g∗L that is Lipschitz with constant L and has support

Sn, and has g∗L(xi) ⩾ ϵ for i = 1, . . . , n,∣∣∣∣∣ 1n
n∑
i=1

log(g∗L(xi))−
∫
Sn

g̃n(x) log(g
∗
L(x)) dx

∣∣∣∣∣ < log(n)
1
4L

C3ψ(g)
1
5n

1
4 ϵ

Intuitively, this is saying that the empirical mean of log(g∗L(x)) is close to the

mean over the distribution g̃.

Proposition 2. If ∥Gn − G∥∞ ⩽
√

log(n)
n

, then ∥g̃n − g∥∞ < C3ψ(g)
1
5

(
log(n)
n

) 1
4

where C3 = 20.13−0.250.3.

Proof. By Lemma 3, g is Lipschitz with constant L = 5
3
5 ψ(g)

2
5

3
2
5 2

4
5

. Since g̃n(x) =

89

1
2δn

(
Gn(x+ δn)−Gn(x− δn)

)
, For any x,

|g̃n(x)− g(x)| =
∣∣∣∣ 1

2δn

(
Gn(x+ δn)−Gn(x− δn)

)
− g(x)

∣∣∣∣
⩽

∣∣∣∣ 1

2δn

(
(Gn(x+ δn)−G(x+ δn))− (Gn(x− δn)−G(x− δn))

)∣∣∣∣
+

∣∣∣∣ 1

2δn

(
(G(x+ δn))−G(x− δn)

)
− g(x)

∣∣∣∣
⩽
∥Gn −G∥∞

δn
+

∣∣∣∣ 1

2δn

∫ δn

−δn
g(x+ t) dt− g(x)

∣∣∣∣
⩽

1

δn

√
log(n)

n
+

∣∣∣∣ 1

2δn

∫ δn

−δn
(g(x+ t)− g(x)) dt

∣∣∣∣
⩽

1

δn

√
log(n)

n
+

1

2δn

∫ δn

−δn
L|t| dt

=
1

δn

√
log(n)

n
+
Lδn
2

In particular, since δn =
(

log(n)
n

) 1
4
(

3
ψ(g)

) 1
5
20.95−0.3, we get

|g̃n(x)− g(x)| ⩽ 20.150.33−0.2ψ(g)0.2
(
log(n)

n

) 1
4

Proposition 3. If ∥Gn−G∥∞ ⩽
√

log(n)
n

, then for any function g∗L that is Lipschitz

with constant L, has support Sn, and has g∗L(xi) ⩾ ϵ > 0,

1

n

n∑
i=1

log(g∗L(xi))−
∫
Sn

g̃n(x) log(g
∗
L(x)) dx < C3

−1ψ(g)−0.2

(
log(n)

n

) 1
4

ϵ−1L

90

Proof. We have

1

n

n∑
i=1

log(g∗L(xi))−
∫
Sn

g̃n(x) log(g
∗
L(x)) dx

=
1

n

n∑
i=1

log(g∗L(xi))−
1

2δn

∫
Sn

(
1

n

n∑
i=1

1{|xi−x|<δn}

)
log(g∗L(x)) dx

=
1

n

n∑
i=1

1

2δn

∫ xi+δn

xi−δn
(log(g∗L(xi))− log(g∗L(x))) dx

⩽
1

n

n∑
i=1

1

2δn

∫ xi+δn

xi−δn
log

(
1 +

L|x− xi|
g∗L(x)

)
dx

⩽
1

n

n∑
i=1

1

2δn

∫ xi+δn

xi−δn

L|x− xi|
g∗L(x)

dx

⩽
δnL

2ϵ

3.4.3 Constructing f ∗
n

Controlling the P-MLE is based on finding a lower bound for the penalized max-

imum likelihood. We do this by exhibiting a good candidate density function

that gives high penalized likelihood. A first attempt is the true density function f .

However, f can have low likelihood because of a small number of outliers with very

low likelihood. To correct for this, we will take a mixture of the true likelihood f

and a data-driven likelihood f †
n that guarantees g†n(xi) > ϵn for i = 1, . . . , n.

The easiest way to get an estimator with likelihood bounded below on observed

data points is with a kernel density estimate. Since we are trying to find a de-

convolved density estimator, this approach does not work — there is no guarantee

that the kernel density estimator arises as a convolution with the error distribution.

However, by Lemma 4, there is a basepoint b for the error distribution, and an

ϵ > 0, such that for all δ < c, P (|E − b| < δ) > δϵ. We let f † be a kernel estimate

from xi− b. Using the condition from Lemma 4, we get that if there is an interval

about x0 such that f †(x) > a for all x ∈ [x0 − δ, x0 + δ], then g†(x0 + b) > ϵδa.

91

We want to control the smoothness penalty ψ(f †). To do this, we set the kernel

kδ(x) = δ−4

3δ(x+ δ)2 − 2(x+ δ)3 if − δ < x ⩽ 0

3δ(x− δ)2 + 2(x− δ)3 if 0 < x < δ

0 otherwise

It is easy to check that this kernel has the following properties:

Lemma 7. (i)
∫∞
−∞ kδ(x) dx = 1.

(ii) ψ(kδ) = 24δ−5

(iii) kδ(0) = δ−1

Proof. (i) By symmetry, the positive and negative parts of kδ have the same

integral, so ∫ ∞

−∞
kδ(x) dx = 2δ−4

∫ 0

−δ

(
3δ(x+ δ)2 − 2(x+ δ)3

)
dx

= 2δ−4

∫ δ

0

(3δt2 − 2t3) dt

= 2δ−4

[
δt3 − 1

2
t4
]δ
0

= 2δ−4

(
δ4 − 1

2
δ4
)

= 1

(ii) We have

kδ
′′(x) = δ−4

6δ − 12(x+ δ) if − δ < x ⩽ 0

6δ + 12(x− δ) if 0 < x < δ

0 otherwise

92

so

ψ(kδ) =

∫ ∞

−∞
(kδ

′′(x))2 dx

= δ−8

∫ δ

−δ
(6δ − 12|x|)2 dx

= 36δ−8

∫ δ

−δ

(
δ2 − 4δ|x|+ 4x2

)
dx

= 36δ−8

(
2δ3 − 4δ3 +

8

3
δ3
)

= 24δ−5

(iii) This is immediate by evaluating kδ(0).

We can now define f †
n(x) =

1
n

∑n
i=1 kδn(x− xi+ b) for some suitably chosen δn.

We obtain the following properties of f † for sufficiently large n.

Lemma 8. If ∥Gn −G∥∞ ⩽
√

log(n)
n

, and n is sufficiently large, then

(i)
∫∞
−∞ f †(x) dx = 1.

(ii) ψ(f †) ⩽ 48
(

54ψ(g)
12

) 1
5
δ−4

(iii) For all i = 1, . . . , n, g†(xi) ⩾ ϵ
4n

Proof. (i) This is obvious, since f † is a mixture of kδ.

(ii)

ψ(f †) = ⟨f †′′, f †′′⟩

=

〈
1

n

∑
k′′δ,xi−b,

1

n

∑
k′′δ,xi−b

〉
=

1

n2

n∑
i=1

n∑
j=1

〈
k′′δ,xi−b, k

′′
δ,xj−b

〉

93

For all i, j,
〈
k′′δ,xi−b, k

′′
δ,xj−b

〉
⩽ ψ(kδ) = 24δ−5. On the other hand, if |xi −

xj| ⩾ 2δ, then k′′δ,xi−b and k
′′
δ,xj−b have disjoint supports, so ⟨k

′′
δ,xi−b, k

′′
δ,xj−b⟩ =

0. Thus

ψ(f †) ⩽
24

n2δ5
|{(i, j)||xi − xj| < 2δ}|

=
24

nδ5

n∑
i=1

(Gn(xi + 2δ)−Gn(xi − 2δ))

⩽
24

nδ5

n∑
i=1

(G(xi + 2δ)−G(xi − 2δ) + 2∥Gn −G∥∞)

⩽
24

nδ5

n∑
i=1

(4δ∥g∥∞ + 2∥Gn −G∥∞)

⩽
24

nδ5

n∑
i=1

(
δ

(
54ψ(g)

12

) 1
5

+ 2

√
log(n)

n

)

For large enough n, 2
√

log(n)
n

⩽
(

54ψ(g)
12

) 1
5
δ, so ψ(f †) ⩽ 48

(
54ψ(g)

12

) 1
5
δ−4

(iii) For x ∈
[
xi − b− δ

2
, xi − b+ δ

2

]
, we have f †(x) ⩾ 1

n
kδ(x − (xi − b)) ⩾

1
n
kδ
(
δ
2

)
= δ−1

2n
. Therefore g†(xi) ⩾ ϵ δ

2
δ−1

2n
= ϵ

4n
.

Now we define f ∗
n(x) = (1− γn)f(x) + γnf

†
n(x), where

γn =
2M
√

log(n)
√
n+ 2M

√
log(n)

(3.28)

and δn is the solution to

γn =
(√

2− 1
)
δ2n

√√√√√ ψ(f)

48
(

54ψ(g)
12

) 1
5

(3.29)

Proposition 4. For the above definition of f ∗
n(x), if ∥Gn−G∥∞ <

√
log(n)
n

and n

is sufficiently large, we have

(i) ψ(f ∗
n) ⩽ 2ψ(f).

94

(ii) For i = 1, . . . , n, g∗n(xi) ⩾ (1− γn) (g(xi) ∨ rn), where

rn =
ϵγn
4n

(3.30)

Proof. (i)

ψ(f ∗
n) ⩽ (1−γn)2ψ(f)+2γn(1−γn)

√
ψ(f)ψ(f †)+γ2nψ(f

†) ⩽
(
γn
√
ψ(f †) +

√
ψ(f)

)2
Substituting γn =

(√
2− 1

)
δ2n

√
ψ(f)

48
(

54ψ(g)
12

) 1
5

and ψ(f †) ⩽ 48
(

54ψ(g)
12

) 1
5
δ−4

(from Lemma 8) gives

γn
√
ψ(f †) ⩽ (

√
2− 1)

√
ψ(f)

so ψ(f ∗
n) < 2ψ(f).

(ii)

g∗n(xi) = γng
†(xi) + (1− γn)g(xi)

⩾
γnϵ

4n
∨ (1− γn)g(xi)

= (1− γn)
(
g(xi) ∨

γnϵ

4n(1− γn)

)
⩾ (1− γn)

(
g(xi) ∨

γnϵ

4n

)

This means that

1

n

n∑
i=1

log(g∗n(xi)) ⩾ log(1− γn) +
1

n

n∑
i=1

log (b(xi))

where bn(x) = g(x) ∨ rn where rn = γnϵ
4n

.

Proposition 5. Whenever, ∥Gn −G∥ <
√

log(n)
n

, and n is sufficiently large

1

n

n∑
i=1

log(g∗n(xi)) > −H(g)− 3

5
M log(n)

3
2n− 1

2

95

where H(g) is the entropy −
∫∞
−∞ g(x) log(g(x))

Proof. We set bn(x) = g(x)∨rn, so that for all i = 1, . . . , n, g∗n(xi) ⩾ (1−γn)bn(xi).

1

n

n∑
i=1

log(bn(xi)) = log(rn)−
∫ ∞

−∞
Gn(x)

(
d

dx
log(bn(x))

)
dx

= log(rn)−
∫ ∞

−∞
Gn(x)

(
b′n(x)

bn(x)

)
dx

= log(rn)−
∫ ∞

−∞
G(x)

(
b′n(x)

bn(x)

)
dx+

∫ ∞

−∞
(G(x)−Gn(x))

(
b′n(x)

bn(x)

)
dx

=

∫ ∞

−∞
g(x) log(bn(x)) dx+

∫ ∞

−∞
(G(x)−Gn(x))

(
b′n(x)

bn(x)

)
dx

⩾ −H(g)− ∥G(x)−Gn(x)∥∞
∫ ∞

−∞

∣∣∣∣b′n(x)bn(x)

∣∣∣∣ dx
1

n

n∑
i=1

log(g∗n(xi)) ⩾ −H(g) + log(1− γn)− ∥G(x)−Gn(x)∥∞
2M

5
log

(
54ψ(g)

3× 212rn5

)

⩾ −H(g) + log(1− γn)−
2M

5
log

(
54ψ(g)

3× 212rn5

)√
log(n)

n

where the last line is by Proposition 1. Substituting γn = cn
1+cn

where cn =

2
5
M
√

log(n)
n

, and letting Kn =
(

54ψ(g)
3×212

) 1
5
rn

−1, this inequality becomes

1

n

n∑
i=1

log(g)∗n(xi)) ⩾ −H(g)− cn log(Kn)− log(cn + 1)

We have log(cn + 1) ⩽ cn, and for large enough n, we have n3 > e2Kn
2, so

log(Kn) + 1 < 3 log(n)
2

Thus, the inequality becomes

1

n

n∑
i=1

log(g∗n(xi)) ⩾ −H(g)− 3cn log(n)

2

3.4.4 Proving Consistency

In this section, we use the g̃n and f ∗
n defined in the previous sections to show

that provided |Sn| log(n)
1
4

n
1
4

→ 0, when we set λn = C1n
7
8 log(n)

1
8

√
|Sn|, where C1 =

96

2
31
20 3−

1
10 5

3
20

ψ(fx)
4
5 ψ(g)

1
10
, our method is consistent.

Lemma 9. If g and h are density functions with support S, and a > 0 then∫
S
g(x) log(h(x) ∨ a) dx ⩽ −H(g) + a|S|.

Proof. ∫
S

g(x) log(h(x) ∨ a) dx+H(g) =

∫
S

g(x) log

(
h(x) ∨ a
g(x)

)
dx

⩽
∫
S

g(x)

(
h(x) ∨ a− g(x)

g(x)

)
dx

⩽
∫
S

(h(x) + a− g(x)) dx

= 1 + a|S| − 1 = a|S|

Proposition 6. If ∥Gn −G∥ ⩽
√

log(n)
n

, and n is sufficiently large, then ψ(f̂n) ⩽

3ψ(f).

Proof. By Propositions 5 and 4(i), the penalized likelihood of f ∗
n is at least

−n
(
H(g) + 3M log(n)

3
2n− 1

2

)
− 2λnψ(f)

Since f̂n maximizes the penalized likelihood, we have that

n∑
i=1

log(ĝn(xi))− λnψ(f̂n) ⩾ −n
(
H(g) + 3M log(n)

3
2n− 1

2

)
− 2λnψ(f) (3.31)

By Lemmas 1 and 3, ĝn is Lipschitz with constant L =
(
125
144

) 1
5 ψ(f̂n)

2
5 . By Propo-

sition 3, we have that for any 0 < a < 1,

n∑
i=1

log(ĝn(xi)) ⩽
n∑
i=1

log(ĝn(xi) ∨ a)

⩽ n

∫
Sn

g̃n(x) log(ĝn(x) ∨ a) dx+
n

3
4 log(n)

1
4

C3ψ(g)
1
5a
L (3.32)

Meanwhile, we have

97

∫
Sn

g̃n(x) log(ĝn(x) ∨ a) dx =

∫
Sn

(g(x) + g̃n(x)− g(x)) log(ĝn(x) ∨ a) dx

⩽
∫
Sn

g(x) log(ĝn(x) ∨ a) dx+ |Sn|∥g̃n − g∥∞ sup(| log(ĝn(x) ∨ a)|)

⩽ −H(g) + a|Sn|+ |Sn|∥g̃n − g∥∞ (log(sup(ĝn(x))) ∨ (− log(a))))

Since ĝn is Lipschitz with constant L, the equation
∫∞
−∞ ĝn(x) dx = 1 gives sup ĝn(x) ⩽

√
L, and by Proposition 2, ∥g̃n − g∥∞ ⩽ C3ψ(g)

1
5

(
log(n)
n

) 1
4
so

log(sup(ĝn(x))) ∨ (− log(a)) ⩽ log
(√

L ∨ a−1
)
=

1

2
log
(
L ∨ a−2

)
Therefore,

∫
Sn

g̃n(x) log(ĝn(x)∨a) dx ⩽ −H(g)+a|Sn|+
C3

2
ψ(g)

1
5 |Sn|

(
log(n)

n

) 1
4

log
(
L ∨ a−2

)
Substituting this into (3.32), and substituting the result into (3.31) gives

−n
(
H(g) + 3Mn− 1

2 log(n)
3
2

)
− 2λnψ(f) ⩽ n

(
−H(g) + a|Sn|+

C3

2
ψ(g)

1
5 |Sn|

(
log(n)

n

) 1
4

log
(
L ∨ a−2

))

+
n

3
4 log(n)

1
4

C3ψ(g)
1
5a
L− λnψ(f̂n)

−3Mn
1
2 log(n)

3
2 − 2λnψ(f) ⩽

n

2
|Sn|

(
2a+ C3ψ(g)

1
5

(
log(n)

n

) 1
4 (

log
(
L ∨ a−2

)))

+
n

3
4 log(n)

1
4

C3ψ(g)
1
5a
L− λnψ(f̂n) (3.33)

Since a is arbitrary here, we can set a =
(

log(n)
n

) 1
8

√
L

ψ(g)
1
10
√
C3|Sn|

so that an|Sn| +

n
3
4 log(n)

1
4

C3ψ(g)
1
5 a
L = C4n

7
8 log(n)

1
8

√
L
√
|Sn|, where C4 = 2ψ(g)−

1
10C3

− 1
2 . Also, if ψ(f̂n) ⩽

3ψ(f), then the proposition is true. Otherwise, a−2 = n
1
4 ψ(g)

1
5C3|Sn|

L log(n)
1
4

⩽ n
1
4 ψ(g)

1
5C3|Sn|

(125
144)

1
5 (3ψ(f))

2
5 log(n)

1
4

.

For large enough n, we have a−2 > L, so we rearrange (3.33) to get

98

ψ(f̂n)− 2ψ(f)

⩽
1

λn

C3ψ(g)
1
5

2
n

3
4 |Sn| log(n)

1
4

log

 C3ψ(g)
1
5 |Sn|n

1
4(

125
16

) 1
5 ψ(f)

2
5 log(n)

1
4

+ 3Mn
1
2 log(n)

3
2 + C4n

7
8 log(n)

1
8

√
L
√
|Sn|

Substituting L =
(
125
144

) 1
5 ψ(f̂n)

2
5 and rearranging gives

ψ(f̂n)− αnψ(f̂n)
1
5 ⩽ βn + 2ψ(f)

where

αn =
C4n

7
8 log(n)

1
8

√
|Sn|

λn

(
125

144

) 1
10

βn =
C3ψ(g)

1
5

2λn
n

3
4 |Sn| log(n)

1
4 log

 C3ψ(g)
1
5 |Sn|n

1
4(

125
16

) 1
5 ψ(f)

1
5 log(n)

1
4

+
3Mn

1
2 log(n)

3
2

λn

We have defined λn to satisfy λn = 2C4

ψ(f)
4
5
n

7
8 log(n)

1
8

√
|Sn|

(
125
144

) 1
10 , so that αn =

ψ(f)
4
5

2
and βn → 0, so for large enough n, βn <

(
1− 1

2
× 3

1
5

)
ψ(f), so we have

ψ(f̂n)
ψ(f)
− 1

2

(
ψ(f̂n)
ψ(f)

) 1
5
< 3− 1

2
× 3

1
5 , which gives ψ(f̂n) < 3ψ(f).

This proves that f̂n is Lipschitz. Under this Lipschitz condition, we can show

that if ĝn is too far from g, then its penalized likelihood will be less than the

penalized likelihood of g∗n, contradicting the maximality.

Proposition 7. If ∥gL − g∥∞ ⩾ ρn, where g and gL are both Lipschitz density

functions with constant L, and ∥Gn −G∥∞ <
√

log(n)
n

, then

1

n

n∑
i=1

log(gL(xi)) ⩽ −H(g)− ρn
4

1536L2
+

(
log(n)

n

) 1
4

|Sn|

(
1536L3

C3ψ(g)
1
5ρn4

+ C3ψ(g)
1
5 log

(
1536|Sn|L

5
2

ρn4

))

99

Proof. By Proposition 3, we have that for any a > 0,

1

n

n∑
i=1

log(gL(xi)) ⩽
1

n

n∑
i=1

log(gL(xi) ∨ a)

⩽
∫
Sn

g̃n(x) log(gL(x) ∨ a) dx+
log(n)

1
4L

C3ψ(g)
1
5n

1
4a

We use Proposition 2 to show∫
Sn

g̃n(x) log(gL(x) ∨ a) dx =

∫
Sn

(g(x) + g̃n(x)− g(x)) log(gL(x) ∨ a) dx

⩽
∫
Sn

g(x) log(gL(x) ∨ a) dx+ |Sn|∥g̃n − g∥∞ log

(
supx∈Sn(gL(x)) ∨ 1

a

)
⩽
∫
Sn

g(x) log(gL(x) ∨ a) dx

+ C3ψ(g)
1
5

(
log(n)

n

) 1
4

|Sn| log
(
supx∈Sn(gL(x)) ∨ 1

a

)

Let
∫
Sn
gL(x) ∨ a dx = c. Clearly 1 ⩽ c ⩽ 1 + a|Sn|. Let b(x) = gL(x)∨a

c
. By

definition, b(x) is a density function, and is Lipschitz with constant L, and ∥b −
g∥∞ ⩾ ρn − ((c− 1)∥gL∥∞ ∨ a), since for any x,

|b(x)−gL(x)| =
∣∣∣∣gL(x) ∨ ac

− gL(x)
∣∣∣∣ =

{ (
1− 1

c

)
gL(x) if gL(x) > a

a
c
− gL(x) if gL(x) ⩽ a

⩽ (c− 1) gL(x)∨a

Since ∥gL − g∥∞ ⩾ ρn, there is some x for which |gL(x) − g(x)| ⩾ ρn. For this x,

|b(x)− g(x)| ⩾ |gL(x)− g(x)| − |gL(x)− b(x)| ⩾ ρn − ((c− 1)∥gL∥∞ ∨ a). Now by

Corollary 2,∫
Sn

g(x) log(gL(x) ∨ a) dx =

∫
Sn

g(x) log (cb(x)) dx

=

∫
Sn

g(x)(log(b(x)) + log(c)) dx

⩽ −H(g)− (ρn − ((c− 1)∥gL∥∞) ∨ a)4

48L2
+ log(c)

Thus, using the fact that (c−1)∥gL∥∞ ⩽ a|Sn|∥gL∥∞, and |Sn|∥gL∥∞ ⩾
∫
Sn
gL(x) dx =

100

1, we get

1

n

n∑
i=1

log(gL(xi)) ⩽ −H(g)− (ρn − a(|Sn|∥gL∥∞))4

48L2
+ log(1 + a|Sn|)

+ C3ψ(g)
1
5

(
log(n)

n

) 1
4

|Sn| log
(
supx∈Sn(gL(x)) ∨ 1

a

)
+

log(n)
1
4L

C3ψ(g)
1
5n

1
4a

for any a > 0. In particular, we choose a = ρn4

1536L2|Sn| . Since

ρn ⩽ ∥gL − g∥∞ ⩽ ∥gL∥∞ + ∥g∥∞ ⩽ 2
√
L < 768

1
3

√
L ⩽

(
768L2

∥gL∥∞

) 1
3

(because ∥gL∥∞ ⩽
√
L, by the Lipschitz condition), it follows that a ⩽ ρn

2|Sn|∥gL∥∞
,

so we have (ρn−a|Sn|∥gL∥∞)4

48L2 ⩾ ρn4

768L2 and log(1 + a|Sn|) ⩽ ρn4

1536L2 , so that

1

n

n∑
i=1

log(gL(xi)) ⩽ −H(g)− ρn
4

1536L2
+

1536 log(n)
1
4 |Sn|L3

C3ψ(g)
1
5n

1
4ρn4

+ C3ψ(g)
1
5

(
log(n)

n

) 1
4

|Sn| log
(
1536|Sn|L2

ρn4

(
sup
x∈Sn

gL(x) ∨ 1

))

By the Lipschitz condition, ∥gL∥∞ ⩽
√
L, so for L ⩾ 1,

1

n

n∑
i=1

log(gL(xi)) ⩽ −H(g)− ρn
4

1536L2
+

(
log(n)

n

) 1
4

|Sn|

(
1536L3

C3ψ(g)
1
5ρn4

+ C3ψ(g)
1
5 log

(
1536|Sn|L

5
2

ρn4

))

This allows us to show

Theorem 2. If ∥Gn −G∥∞ <
√

log(n)
n

and λn = C1n
7
8 log(n)

1
8

√
|Sn|, where Sn is

the support of f̂n and C1 =
2C4

ψ(f)
4
5

(
125
144

) 1
10 = 2

31
20 3−

1
10 5

3
20

ψ(fx)
4
5 ψ(g)

1
10
, then for sufficiently large

n, ∥ĝn − g∥∞ < C2n
− 1

32 |Sn|
1
8 log(n)

1
32 for some constant C2 (depending on ψ(f)

and ψ(g)).

101

Proof. By Proposition 6 and Lemma 3, g and ĝn are both Lipschitz with constant

L =
(
125
16

) 1
5 × ψ(f) 2

5 . Let ρn = ∥ĝn − g∥∞. By Proposition 7,

1

n

n∑
i=1

log(ĝn(xi)) ⩽ −H(g)− ρn
4

1536L2
+

(
log(n)

n

) 1
4

|Sn|

(
1536L3

C3ψ(g)
1
5ρn4

+ C3ψ(g)
1
5 log

(
1536|Sn|L

5
2

ρn4

))

If ρn > n−1
(
1536|Sn|L

5
2

) 1
4
, we have log

(
1536|Sn|L

5
2

ρn4

)
< 4 log(n), so

1

n

n∑
i=1

log(ĝn(xi)) ⩽ −H(g)− ρn
4

1536L2
+

1536 log(n)
1
4 |Sn|L3

C3ψ(g)
1
5n

1
4ρn4

+ 4C3ψ(g)
1
5
log(n)

5
4

n
1
4

|Sn|

On the other hand, by Proposition 5,

1

n

n∑
i=1

log(ĝn(xi))−
λn
n
ψ(f̂n) ⩾

1

n

n∑
i=1

log(g∗n(xi))−
λn
n
ψ(f ∗

n) ⩾ −H(g)−3M log(n)
3
2n− 1

2−2λn
n
ψ(f)

Thus we have

− ρn
4

1536L2
+

1536 log(n)
1
4 |Sn|L3

C3ψ(g)
1
5n

1
4ρn4

+ 4C3ψ(g)
1
5
log(n)

5
4

n
1
4

|Sn| −
λn
n
ψ(f̂n) ⩾ −3M log(n)

3
2n− 1

2 − 2λn
n
ψ(f)

ρn
4

1536L2
−1536 log(n)

1
4 |Sn|L3

C3ψ(g)
1
5n

1
4ρn4

⩽ 4C3ψ(g)
1
5
log(n)

5
4

n
1
4

|Sn|+3M log(n)
3
2n− 1

2+
λn
n
(2ψ(f)−ψ(f̂n))

For large enough n, n− 1
4 log(n)

1
4 |Sn|−1 < C3ψ(g)

1
5

3M
, so

ρn
4

1536L2
− 1536 log(n)

1
4 |Sn|L3

C3ψ(g)
1
5n

1
4ρn4

⩽ 5C3ψ(g)
1
5 log(n)

5
4n− 1

4 |Sn|+
λn
n
(2ψ(f)− ψ(f̂n))

With

λn =
2C4

ψ(f)
4
5

n
7
8 log(n)

1
8

√
|Sn|

(
125

144

) 1
10

for large enough n, and since ψ(f̂n) > 0, we deduce

λn
n
(2ψ(f)− ψ(f̂n)) ⩽

2λnψ(f)

n
= 2C4ψ(f)

1
5n− 1

8 log(n)
1
8

√
|Sn|

(
125

144

) 1
10

102

so

ρn
4

1536L2
− 1536 log(n)

1
4 |Sn|L3

C3ψ(g)
1
5n

1
4ρn4

⩽ 5C3ψ(g)
1
5 log(n)

5
4n− 1

4 |Sn|+ C5n
− 1

8 |Sn|
1
2 log(n)

1
8

where C5 = 2C4ψ(f)
1
5

(
125
144

) 1
10 . For sufficiently large n, the first term on the

right-hand side is much smaller than the second, so we get

ρn
4

1536L2
− 1536 log(n)

1
4 |Sn|L3

C3ψ(g)
1
5n

1
4ρn4

⩽ 2C5n
− 1

8 |Sn|
1
2 log(n)

1
8

Rewriting this as an(ρn)
8 − bn(ρn)4 − cn ⩽ 0 where

an =
1

1536L2

bn = 2C5n
− 1

8 |Sn|
1
2 log(n)

1
8

cn =
1536 log(n)

1
4 |Sn|L3

C3ψ(g)
1
5n

1
4

we deduce

(ρn)
4 ⩽

bn +
√
bn

2 + 4ancn
2an

= 768L2

(
2C5n

− 1
8 |Sn|

1
2 log(n)

1
8 +

√(
2C5n

− 1
8 |Sn|

1
2 log(n)

1
8

)2
+

4 log(n)
1
4 |Sn|L

C3ψ(g)
1
5n

1
4

)

= 768L2n− 1
8 |Sn|

1
2 log(n)

1
8

(
2C5 +

√
4C5

2 +
4L

C3ψ(g)
1
5

)

Thus

ρn ⩽ C2 log(n)
1
32 |Sn|

1
8n− 1

32

103

where, plugging in all the constants,

C2 =

1 +

√
1 +

3
2
5

16

1
4

2
179
80 3

9
405

27
80ψ(f)

1
4ψ(g)−

1
40

From this, and the Dvoretzky-Kiefer-Wolfowitz inequality, Theorem 1 follows

immediately.

3.5 Simulations

In this section, we compare the performance of our method with three of the most

popular methods in the literature: deamer [49], decon [105] and FEM [70]. For

decon, we compare with both their methods with and without FFT. We compare

the performance under a range of true and error distributions, including common

examples from Comte and Lacour [18] and Comte, Rozenholc and Taupin [19]. We

simulate with a range of different sample sizes and SNRs, including many cases

with smaller sample size and SNR, which are often excluded from simulations in

the literature, because they highlight a particular weakness of existing methods.

3.5.1 Simulation design

To cover a large range of scenarios of interest, we simulate all combinations from

seven true distributions, three error distributions, three SNRs, and three sample

sizes. The true distributions used in the simulation are:

Normal distribution. X ∼ N(0, 1)

Chi-square distribution. X ∼ χ2(4)/
√
8

Beta distribution. X ∼
√
39.2Beta(2, 5)

Laplace distribution. fx(x) =
1√
2
exp(−

√
2|x− 1|)

Mixed normal distribution. X ∼ 2√
29
(0.5N(−3, 1) + 0.5N(2, 1))

Mixed gamma distribution. X ∼ (0.4Γ(5, 1) + 0.6Γ(13, 1))/
√
25.16

Cauchy distribution. fx(x) = (1/π)/(1 + x2)

These distributions cover a range of situations including heavy tails, light tails,

104

symmetric and skew distributions, unimodal and bimodal distributions, and differ-

ent levels of smoothness. With the exception of the Cauchy distribution (which has

infinite variance), these densities have all been normalized to have unit variance.

These distributions have previously been used in the literature [19]. However, the

standardization used in the literature was incorrect for the mixture distributions,

so we have corrected the standardization constants here.

For the pure error sample, we generate independent error samples from the

following three distributions, scaled by a factor C. When the true distribution has

finite variance (i.e. when it is not Cauchy), C2 is the inverse of the SNR.

Laplace noise. fϵ(ϵ) =
1√
2
exp(−

√
2|ϵ|)

Gaussian noise. fϵ(ϵ) =
1√
2π

exp(−0.5ϵ2)
Beta noise. fϵ(ϵ) = 30

√
39.2ϵ(1− ϵ)4

We choose these three distributions because they have different levels of smooth-

ness. The normal distribution is super smooth and the Laplace distribution is

ordinary smooth. Both the normal distribution and the Laplace distribution are

often used in the literature on measurement error. The beta distribution often

arises as convergence error, so will be particularly important in Chapter 4. The

parameters of the three distributions are chosen to ensure the error distribution

has unit variance. Because the decon package only permits a limited number of

chosen distribution families, which does not include the beta distribution, we were

unable to compare its performance in the beta noise simulations. We also only

compare FEM’s performance in normal and laplace noise simulations.

In our simulation we study three sample sizes: 30, 100 and 300. In each case,

we use the same sample size for the noisy data and for the pure error sample.

Note, however, that because the decon package and FEM require a known error

distribution family, we provide the true error distribution to them, which gives

some unfair advantage to these methods.

In each scenario, we simulate 100 replicates.

Because we are running a large number of simulations and computation time

is a factor, we have used the heuristic approach from Section 3.3to quickly select

λn.

105

3.5.2 Simulation Results

We use Mean Integrated Squared Error (MISE) to evaluate the performance of

the estimators in each scenario. This measure is defined by MISE = E
∫
(f̂x(x)−

fx(x))
2dx. Here the MISE is computed as the empirical mean of the approxi-

mated ISE
∫
(f̂x(x)−fx(x))2dx over 100 simulation replicates. This is a traditional

method for evaluating the performance of deconvolution methods that is widely

used in the literature [19]. We calculate the integral over an interval which con-

tains both the support of the underlying true distribution from the 0.01% quantile

to the 99.99% quantile and the estimated boundaries. Deamer and FEM do not

give estimated boundaries for the true density, so we calculate their ISE on the

same interval used for P-MLE. We numerically calculate the integral using the

rectangle rule with the squared error evaluated at evenly-spaced points, where the

spacing is chosen for each method so that there are 1000 (or 1024 for decon with

FFT, 1500 for FEM) points within the interval returned by the method. We found

that changing the number of points used to estimate the ISE did not noticeably

affect the results. For decon, we recorded the better of the estimates with and

without FFT in each scenario. For FEM, we run the algorithm with a sequence of

smoothness penalty parameter values provided by Liu, Levine and Zhu [70] and

record the best estimates as final results.

MISE for each method in each scenario is given in Tables 3.1–3.7. We see

that P-MLE significantly outperforms all other methods in 76 out of 189 scenar-

ios. P-MLE significantly outperforms deamer in 159 out of 189 scenarios; deamer

significantly outperforms P-MLE in 16 out of 189 scenarios, and there are 14 sce-

narios where there is no significant difference between deamer and P-MLE. Decon

does not significantly outperform P-MLE in any scenario, despite the fact that

decon uses the true error distribution with estimated parameters, but there are

6 scenarios where P-MLE significantly outperforms deamer but not decon. P-

MLE significantly outperforms FEM in 45 out of 126 scenarios (FEM could not be

compared on the samples with beta error); FEM significantly outperforms P-MLE

in 36 scenarios and there are 45 scenarios where there is no significant difference

between FEM and P-MLE. Recall that FEM has an unfair advantage in these simu-

lations, because it was given the true error distribution family, and the smoothing

106

Table 3.1: MISE of the estimates when the true distribution is normal

The best overall performance in each simulation is highlighted in yellow if it is
significantly better than other methods and in orange otherwise.

normal-normal n=30 n=100 n=300
mean se mean se mean se

SNR=4

P-MLE 0.0193 0.0015 0.0085 0.0007 0.0055 0.0004
FEM 0.0383 0.0028 0.0114 0.0009 0.0033 0.0003
deamer 0.0486 0.0021 0.0097 0.0006 0.0029 0.0003
decon 0.0283 0.0016 0.0147 0.0007 0.0081 0.0004

SNR=1

P-MLE 0.0232 0.0018 0.0121 0.0011 0.0068 0.0007
FEM 0.0597 0.0052 0.0196 0.0018 0.0065 0.0005
deamer 0.1104 0.0025 0.0622 0.0014 0.0353 0.0004
decon 0.0636 0.0018 0.0375 0.0012 0.0245 0.0009

SNR=0.25

P-MLE 0.0726 0.0025 0.0360 0.0019 0.0198 0.0021
FEM 0.0831 0.0076 0.0315 0.0025 0.0121 0.0010
deamer 0.1973 0.0001 0.1782 0.0032 0.1247 0.0002
decon 0.1066 0.0032 0.1030 0.0015 0.0836 0.0011

normal-laplace

SNR=4

P-MLE 0.0187 0.0015 0.0072 0.0006 0.0046 0.0004
FEM 0.0372 0.0029 0.0096 0.0008 0.0030 0.0002
deamer 0.0455 0.0019 0.0075 0.0005 0.0029 0.0003
decon 0.0526 0.0052 0.0506 0.0065 0.0391 0.0050

SNR=1

P-MLE 0.0241 0.0017 0.0123 0.0009 0.0064 0.0008
FEM 0.0540 0.0050 0.0179 0.0017 0.0054 0.0004
deamer 0.0974 0.0029 0.0462 0.0017 0.0156 0.0005
decon 0.1083 0.0121 0.1142 0.0141 0.0902 0.0091

SNR=0.25

P-MLE 0.0682 0.0025 0.0412 0.0017 0.0217 0.0015
FEM 0.0781 0.0072 0.0324 0.0026 0.0107 0.0010
deamer 0.1814 0.0030 0.1265 0.0015 0.0900 0.0026
decon 0.2186 0.0263 0.2251 0.0236 0.2042 0.0185

normal-beta

SNR=4
P-MLE 0.0307 0.0038 0.0157 0.0012 0.0145 0.0008
deamer 0.0518 0.0020 0.0101 0.0057 0.0032 0.0002

SNR=1
P-MLE 0.0572 0.0049 0.0463 0.0022 0.0431 0.0021
deamer 0.1111 0.0024 0.0641 0.0013 0.0411 0.0006

SNR=0.25
P-MLE 0.0824 0.0055 0.0515 0.0048 0.0414 0.0032
deamer 0.1966 0.0008 0.1784 0.0317 0.1242 0.0002

107

Table 3.2: MISE of the estimates when the true distribution is chi-squared

The best overall performance in each simulation is highlighted in yellow if it is
significantly better than other methods and in orange otherwise.

chisq-normal n=30 n=100 n=300
mean se mean se mean se

SNR=4

P-MLE 0.0453 0.0025 0.0268 0.0013 0.0175 0.0007
FEM 0.0551 0.0040 0.0276 0.0018 0.0171 0.0008
deamer 0.0704 0.0025 0.0412 0.0012 0.0268 0.0006
decon 0.0994 0.0024 0.0672 0.0014 0.0480 0.0009

SNR=1

P-MLE 0.0737 0.0028 0.0631 0.0024 0.0488 0.0015
FEM 0.0869 0.0067 0.0458 0.0030 0.0290 0.0012
deamer 0.1424 0.0033 0.0993 0.0020 0.0750 0.0011
decon 0.1429 0.0019 0.1034 0.0016 0.0826 0.0010

SNR=0.25

P-MLE 0.1412 0.0028 0.1037 0.0028 0.0706 0.0029
FEM 0.1389 0.0100 0.0768 0.0048 0.0503 0.0020
deamer 0.2600 0.0024 0.2195 0.0034 0.1962 0.0002
decon 0.1870 0.0027 0.1779 0.0013 0.1551 0.0011

chisq-laplace

SNR=4

P-MLE 0.0446 0.0026 0.0260 0.0014 0.0144 0.0005
FEM 0.0491 0.0031 0.0246 0.0016 0.0151 0.0006
deamer 0.0684 0.0027 0.0369 0.0009 0.0206 0.0006
decon 0.0750 0.0060 0.0564 0.0058 0.0404 0.0036

SNR=1

P-MLE 0.0722 0.0025 0.0516 0.0018 0.0394 0.0011
FEM 0.0794 0.0051 0.0401 0.0025 0.0250 0.0020
deamer 0.1244 0.0033 0.0773 0.0019 0.0505 0.0010
decon 0.1322 0.0126 0.1318 0.0130 0.1151 0.0102

SNR=0.25

P-MLE 0.1314 0.0028 0.1035 0.0024 0.0781 0.0026
FEM 0.1312 0.0094 0.0675 0.0042 0.0453 0.0020
deamer 0.2350 0.0039 0.1811 0.0026 0.1351 0.0017
decon 0.2114 0.0170 0.2874 0.0279 0.2968 0.0354

chisq-beta

SNR=4
P-MLE 0.0659 0.0040 0.0497 0.0044 0.0532 0.0034
deamer 0.0702 0.0022 0.0423 0.0012 0.0279 0.0007

SNR=1
P-MLE 0.0874 0.0043 0.0727 0.0035 0.0895 0.0038
deamer 0.1435 0.0027 0.0986 0.0019 0.0724 0.0010

SNR=0.25
P-MLE 0.1412 0.0054 0.0803 0.0047 0.0744 0.0048
deamer 0.2632 0.0020 0.2137 0.0032 0.1948 0.0006

108

Table 3.3: MISE of the estimates when the true distribution is beta

The best overall performance in each simulation is highlighted in yellow if it is
significantly better than other methods and in orange otherwise.

beta-normal n=30 n=100 n=300
mean se mean se mean se

SNR=4

P-MLE 0.0212 0.0015 0.0114 0.0007 0.0074 0.0004
FEM 0.0382 0.0030 0.0143 0.0010 0.0070 0.0004
deamer 0.0328 0.0013 0.0168 0.0006 0.0096 0.0002
decon 0.0646 0.0016 0.0395 0.0009 0.0257 0.0005

SNR=1

P-MLE 0.0341 0.0022 0.0248 0.0020 0.0158 0.0011
FEM 0.0612 0.0050 0.0281 0.0021 0.0150 0.0009
deamer 0.0803 0.0023 0.0474 0.0013 0.0311 0.001
decon 0.0987 0.0018 0.0616 0.0009 0.0439 0.0007

SNR=0.25

P-MLE 0.0821 0.0025 0.0456 0.0020 0.0359 0.0021
FEM 0.0938 0.0075 0.0469 0.0033 0.0260 0.0015
deamer 0.1540 0.0027 0.1479 0.0029 0.1334 0.0002
decon 0.1259 0.0028 0.1186 0.0010 0.0972 0.0009

beta-laplace

SNR=4

P-MLE 0.0200 0.0014 0.0111 0.0007 0.0061 0.0003
FEM 0.0364 0.0026 0.0140 0.0008 0.0070 0.0004
deamer 0.0319 0.0014 0.0154 0.0007 0.0082 0.0003
decon 0.0560 0.0052 0.0458 0.0048 0.0334 0.0033

SNR=1

P-MLE 0.0327 0.0021 0.0191 0.0011 0.0127 0.0006
FEM 0.0550 0.0041 0.0245 0.0018 0.0112 0.0007
deamer 0.0685 0.0022 0.0347 0.0014 0.0246 0.0007
decon 0.1012 0.0103 0.1117 0.0121 0.1145 0.0011

SNR=0.25

P-MLE 0.0759 0.0024 0.0481 0.0016 0.0336 0.0016
FEM 0.0902 0.0070 0.0413 0.0033 0.0204 0.0012
deamer 0.1656 0.0037 0.1147 0.0026 0.0758 0.0013
decon 0.1973 0.0189 0.2104 0.0240 0.2657 0.0359

beta-beta

SNR=4
P-MLE 0.0255 0.0021 0.0127 0.0007 0.0082 0.0006
deamer 0.0336 0.0014 0.0172 0.0006 0.0097 0.0003

SNR=1
P-MLE 0.0501 0.0038 0.0386 0.0030 0.0316 0.0018
deamer 0.0592 0.0023 0.0480 0.0014 0.0311 0.0010

SNR=0.25
P-MLE 0.0811 0.0042 0.0436 0.0031 0.0400 0.0026
deamer 0.1944 0.0026 0.1437 0.0027 0.1292 0.0014

109

Table 3.4: MISE of the estimates when the true distribution is Laplace

The best overall performance in each simulation is highlighted in yellow if it is
significantly better than other methods and in orange otherwise.

laplace-normal n=30 n=100 n=300
mean se mean se mean se

SNR=4

P-MLE 0.0441 0.0020 0.0282 0.0011 0.0282 0.0011
FEM 0.0487 0.0034 0.0194 0.0011 0.0108 0.0005
deamer 0.1012 0.0024 0.0496 0.0008 0.0285 0.0003
decon 0.0734 0.0016 0.0504 0.0012 0.0351 0.0008

SNR=1

P-MLE 0.0723 0.0024 0.0545 0.0020 0.0414 0.0015
FEM 0.0684 0.0059 0.0341 0.0021 0.0201 0.0009
deamer 0.1767 0.0028 0.1267 0.0019 0.0955 0.0010
decon 0.1247 0.0019 0.0920 0.0014 0.0728 0.0011

SNR=0.25

P-MLE 0.1343 0.0024 0.0969 0.0023 0.0548 0.0032
FEM 0.0927 0.0086 0.0551 0.0039 0.0345 0.0019
deamer 0.2664 0.0013 0.2479 0.0033 0.1965 0.0007
decon 0.1745 0.0035 0.1715 0.0016 0.1523 0.0013

laplace-laplace

SNR=4

P-MLE 0.0427 0.0021 0.0250 0.0011 0.0157 0.0006
FEM 0.0405 0.0030 0.0191 0.0013 0.0101 0.0005
deamer 0.0986 0.0027 0.0437 0.0010 0.0221 0.0004
decon 0.0704 0.0062 0.0674 0.0084 0.0421 0.0044

SNR=1

P-MLE 0.0700 0.0026 0.0477 0.0018 0.0332 0.0014
FEM 0.0708 0.0052 0.0335 0.0022 0.0179 0.0009
deamer 0.1576 0.0032 0.1030 0.0017 0.0658 0.0009
decon 0.1283 0.0123 0.1256 0.0134 0.1006 0.0097

SNR=0.25

P-MLE 0.1332 0.0027 0.1021 0.0024 0.0673 0.0028
FEM 0.1152 0.0103 0.0606 0.0040 0.0324 0.0019
deamer 0.2501 0.0032 0.1971 0.0013 0.1604 0.0027
decon 0.2231 0.0194 0.2996 0.0446 0.2972 0.0294

laplace-beta

SNR=4
P-MLE 0.0758 0.0042 0.0604 0.0036 0.0441 0.0036
deamer 0.1040 0.0027 0.0520 0.0009 0.0293 0.0004

SNR=1
P-MLE 0.1068 0.0069 0.1100 0.0049 0.1361 0.0037
deamer 0.1804 0.0026 0.1282 0.0017 0.0946 0.0010

SNR=0.25
P-MLE 0.1478 0.0059 0.1096 0.0064 0.1129 0.0063
deamer 0.2667 0.0012 0.2534 0.0030 0.1952 0.0002

110

Table 3.5: MISE of the estimates when the true distribution is mixture-normal

The best overall performance in each simulation is highlighted in yellow if it is
significantly better than other methods and in orange otherwise.

mixnormal-normal n=30 n=100 n=300
mean se mean se mean se

SNR=4

P-MLE 0.1145 0.0027 0.0780 0.0025 0.0412 0.0049
FEM 0.0784 0.0049 0.0669 0.0025 0.0578 0.0010
deamer 0.1565 0.0019 0.1145 0.0018 0.0800 0.0016
decon 0.1466 0.0015 0.1292 0.0008 0.1041 0.0009

SNR=1

P-MLE 0.1372 0.0022 0.1501 0.0048 0.1245 0.0040
FEM 0.1754 0.0010 0.1589 0.0060 0.1414 0.0030
deamer 0.2108 0.0022 0.1642 0.0012 0.1388 0.0004
decon 0.1681 0.0018 0.1464 0.0009 0.1365 0.0006

SNR=0.25

P-MLE 0.1724 0.0022 0.1456 0.0014 0.1800 0.0046
FEM 0.2226 0.0073 0.1923 0.0060 0.1766 0.0038
deamer 0.2942 0.0010 0.2731 0.0034 0.2240 0.0007
decon 0.2069 0.0030 0.2023 0.0014 0.1849 0.0010

mixnormal-laplace

SNR=4

P-MLE 0.1085 0.0033 0.0646 0.0017 0.0462 0.0054
FEM 0.0818 0.0058 0.0553 0.0018 0.0461 0.0008
deamer 0.1475 0.0024 0.0848 0.0025 0.0404 0.0014
decon 0.1010 0.0055 0.0771 0.0058 0.0429 0.0041

SNR=1

P-MLE 0.1360 0.0021 0.1305 0.0032 0.0983 0.0045
FEM 0.1481 0.0093 0.1222 0.0040 0.1049 0.0020
deamer 0.1986 0.0028 0.1524 0.0015 0.1252 0.0006
decon 0.1735 0.0103 0.1555 0.0121 0.1206 0.0091

SNR=0.25

P-MLE 0.1674 0.0020 0.1486 0.0014 0.1531 0.0029
FEM 0.2020 0.0085 0.1751 0.0050 0.1558 0.0028
deamer 0.2819 0.0029 0.2253 0.0012 0.1989 0.0026
decon 0.3090 0.0307 0.3337 0.0341 0.3521 0.0281

mixnormal-beta

SNR=4
P-MLE 0.1601 0.0041 0.1527 0.0030 0.1312 0.0026
deamer 0.1561 0.0022 0.1159 0.0014 0.0747 0.0015

SNR=1
P-MLE 0.1747 0.0031 0.2095 0.0063 0.1921 0.0033
deamer 0.2129 0.0021 0.1679 0.0008 0.1385 0.0004

SNR=0.25
P-MLE 0.1866 0.0033 0.1776 0.0032 0.1978 0.0034
deamer 0.2951 0.0007 0.2812 0.0029 0.2281 0.0003

111

Table 3.6: MISE of the estimates when the true distribution is mixture-gamma

The best overall performance in each simulation is highlighted in yellow if it is
significantly better than other methods and in orange otherwise.

mixgamma-normal n=30 n=100 n=300
mean se mean se mean se

SNR=4

P-MLE 0.0328 0.0016 0.0221 0.0009 0.0161 0.0008
FEM 0.0498 0.0039 0.0271 0.0014 0.0187 0.0007
deamer 0.0412 0.0015 0.0258 0.0005 0.0209 0.0002
decon 0.0756 0.0017 0.0458 0.0006 0.0335 0.0004

SNR=1

P-MLE 0.0381 0.0021 0.0362 0.0028 0.0267 0.0012
FEM 0.0815 0.0053 0.0491 0.0030 0.0321 0.0012
deamer 0.0789 0.0024 0.0494 0.0012 0.0358 0.001
decon 0.1020 0.0018 0.0655 0.0010 0.0497 0.0005

SNR=0.25

P-MLE 0.0780 0.0026 0.0469 0.0014 0.0462 0.0018
FEM 0.1080 0.0060 0.0635 0.0033 0.0422 0.0016
deamer 0.1908 0.0029 0.1428 0.0026 0.1314 0.0005
decon 0.1232 0.0028 0.1191 0.0010 0.0990 0.0094

mixgamma-laplace

SNR=4

P-MLE 0.0321 0.0015 0.0210 0.0008 0.0133 0.0005
FEM 0.0472 0.0029 0.0242 0.0011 0.0157 0.0005
deamer 0.0394 0.0013 0.0252 0.0005 0.0209 0.0002
decon 0.0650 0.0052 0.0519 0.0059 0.0433 0.0039

SNR=1

P-MLE 0.0356 0.0017 0.0301 0.0011 0.0243 0.0013
FEM 0.0726 0.0042 0.0395 0.0018 0.0259 0.0010
deamer 0.0698 0.0022 0.0418 0.001 0.0322 0.0005
decon 0.1101 0.0119 0.1141 0.0114 0.0988 0.0104

SNR=0.25

P-MLE 0.0766 0.0023 0.0523 0.0016 0.0417 0.0019
FEM 0.1075 0.0068 0.0591 0.0028 0.0380 0.0013
deamer 0.1599 0.0039 0.1140 0.0025 0.0873 0.0104
decon 0.2709 0.0446 0.2323 0.0285 0.2703 0.0254

mixgamma-beta

SNR=4
P-MLE 0.0423 0.0020 0.0315 0.0011 0.0246 0.0007
deamer 0.0394 0.0012 0.0259 0.0005 0.0209 0.0002

SNR=1
P-MLE 0.0644 0.0030 0.0614 0.0029 0.0503 0.0016
deamer 0.0802 0.0021 0.0505 0.0014 0.0420 0.0010

SNR=0.25
P-MLE 2 0.0884 0.0041 0.0623 0.0035 0.0565 0.0022
deamer 0.1927 0.0026 0.1403 0.0024 0.1344 0.0013

112

Table 3.7: MISE of the estimates when the true distribution is Cauchy

The best overall performance in each simulation is highlighted in yellow if it is
significantly better than other methods and in orange otherwise.

cauchy-normal n=30 n=100 n=300
mean se mean se mean se

C=0.5

P-MLE 0.0294 0.0024 0.0142 0.0007 0.0100 0.0004
FEM 0.0425 0.0033 0.0141 0.0010 0.0056 0.0003
deamer 0.0513 0.0012 0.0354 0.0014 0.0106 0.0003
decon 0.0244 0.0010 0.0187 0.0016 0.0196 0.0027

C=1

P-MLE 0.0389 0.0080 0.0153 0.0007 0.0092 0.0003
FEM 0.0571 0.0053 0.0179 0.0016 0.0063 0.0004
deamer 0.0649 0.0013 0.0369 0.0008 0.0239 0.0004
decon 0.0368 0.0010 0.0803 0.0064 0.0315 0.0056

C=2

P-MLE 0.0473 0.0032 0.0285 0.0010 0.0228 0.0007
FEM 0.0880 0.0081 0.0263 0.0021 0.0147 0.0009
deamer 0.0944 0.0001 0.0903 0.0004 0.0658 0.0018
decon 0.0505 0.0016 0.2189 0.0221 0.0494 0.0034

cauchy-laplace

C=0.5

P-MLE 0.0308 0.0025 0.0135 0.0006 0.0104 0.0004
FEM 0.0403 0.0027 0.0130 0.0009 0.0061 0.0004
deamer 0.0503 0.0012 0.0347 0.0016 0.0110 0.0005
decon 0.0535 0.0050 0.0521 0.0047 0.0472 0.0061

C=1

P-MLE 0.0330 0.0048 0.0146 0.0006 0.0093 0.0004
FEM 0.0541 0.0046 0.0186 0.0015 0.0078 0.0006
deamer 0.0631 0.0014 0.0337 0.0006 0.0202 0.0003
decon 0.0833 0.0073 0.1286 0.0173 0.1016 0.0096

C=2

P-MLE 0.0354 0.0016 0.0236 0.0009 0.0173 0.0009
FEM 0.0880 0.0065 0.0317 0.0024 0.0126 0.0010
deamer 0.0934 0.0005 0.0695 0.0019 0.0523 0.0005
decon 0.1822 0.0180 0.2157 0.0266 0.3105 0.0581

cauchy-beta

C=0.5
P-MLE 0.0428 0.0041 0.0164 0.0007 0.0108 0.0004
deamer 0.0783 0.0020 0.0357 0.0004 0.0108 0.0003

C=1
P-MLE 0.0557 0.0049 0.0297 0.0013 0.0217 0.0010
deamer 0.0899 0.0017 0.0349 0.0007 0.0238 0.0004

C=2
P-MLE 0.0708 0.0062 0.0532 0.0022 0.0516 0.0011
deamer 0.0914 0.0001 0.0901 0.0005 0.0620 0.0016

113

Table 3.8: Simulation Results for some Scenarios with different heuristic values for
λn.

Significantly better results are highlighted in yellow. Results that are not signifi-
cantly different are highlighted in orange.

Scenario Best Old New Deamer Decon FEM
Truth Error n C Heuristic λn MISE (SE) MISE (SE) MISE MISE MISE
cauchy normal 30 1 1,000 0.0389(0.0080) 0.0314(0.0015) 0.0368(0.0010)
mixnormal beta 100 1 10,000,000 0.2095(0.0063) 0.1670(0.0054) 0.1679(0.0054)
mixgamma beta 100 1 1,000,000 0.0614(0.0029) 0.0506(0.0032) 0.0505(0.0014)
normal laplace 300 0.5 100,000 0.0046(0.0004) 0.0028(0.0002) 0.0029(0.0003) 0.0030
chi-squared beta 300 1 10,000,000 0.0895(0.0038) 0.0800(0.0048) 0.0724(0.0010)
mixgamma beta 300 1 10,000,000 0.0503(0.0016) 0.0410(0.0015) 0.0420(0.0010)
laplace beta 300 1 100,000 0.1361(0.0037) 0.1010(0.0034) 0.0946(0.0010)
normal beta 300 1 10,000,000 0.0431(0.0021) 0.0345(0.0012) 0.0411(0.0006)
beta beta 300 1 10,000,000 0.0316(0.0018) 0.0250(0.0019) 0.0311(0.0010)

penalty was chosen based on the true distribution.

It is also worth noting that because of the scale of the simulations, we used the

heuristic approach to selecting the penalty parameter λn. For analyzing a single

data set, we would select λn more carefully using cross-validation, which would be

expected to lead to better results. To see how much potential improvement could

be made by choosing λn more carefully, we reran a number of scenarios where

P-MLE was not the best method with a range of different values of λn. We found

that better choices of λn could improve the results to a modest extent. Details of

these simulations are in Table 3.8.

For the simulations, we wanted to know how much the results could be improved

with a better choice of the smoothness penalty λn. We reran the scenarios where P-

MLE did not outperform the other methods using different ratios for the heuristic

method of setting λn. We ran each scenario using values 1000, 10000, 100000,

1000000, and 10000000 for the ratio in the heuristic for setting λn. We then

looked at the best results in each scenario. In 9 of the scenarios, there was a

difference from the outcome reported in Table 3.9. This is selecting the value of

λn which performs best on the data, so is not a completely reliable estimate of

performance. However, it shows that there is potential to improve performance

with a better choice of λn. Furthermore, these results are using the same heuristic

for λn for all simulations in each scenario, rather than tuning the value of λn for

each simulation. It is therefore possible that more careful tuning could improve

the performance of P-MLE still further.

114

Table 3.9: Summary of outcomes for each scenario
A — P-MLE significantly outperforms all other methods.
B — P-MLE significantly outperforms both deamer and decon.
C — P-MLE significantly outperforms deamer but not decon.
D — No significant difference between P-MLE and deamer.
E — Deamer significantly outperforms P-MLE.
F — P-MLE significantly outperforms FEM.
G — FEM significantly outperforms P-MLE.
H — No significant difference between P-MLE and FEM.

Outcome A B C D E F G H

True distribution

Normal 12 21 0 4 2 9 3 6
Chi-squared 5 23 0 2 2 0 8 10
Beta 16 26 0 1 0 8 2 8
Laplace 6 23 0 1 3 0 14 4
Mixnormal 11 18 3 2 4 9 4 5
Mixgamma 17 22 0 1 4 13 0 5
Cauchy 11 21 3 3 0 6 5 7

Error distribution
Normal 19 55 5 2 1 24 18 21
Laplace 19 58 1 3 1 21 18 24
Beta 40 NA NA 9 14 NA NA NA

SNR
C = 0.5 20 40 2 11 10 17 10 15
C = 1 27 52 2 3 6 18 9 15
C = 2 31 61 2 0 0 10 17 15

Sample size
30 38 56 4 3 0 23 4 15
100 25 53 1 4 5 14 13 15
300 13 44 1 7 11 8 19 15

115

Table 3.9 gives a breakdown of these simulation outcomes. We see that P-MLE

outperforms deamer and decon for all true distributions, but the level of outper-

formance is less when the true distribution is a mixture of normal distributions.

This is not surprising, since the mixture of normal distributions is bimodal, so the

smoothness penalty will be larger. However, even in this more challenging case,

P-MLE still outperforms deamer and decon in most scenarios.

P-MLE outperforms FEM except when the true distribution is chi-square or

Laplace. Recall that the penalty for FEM is the smoothness of the log-density

function. For the Laplace distribution, the log-density is piecewise linear, so the

smoothness penalty on the log-density is small, meaning that FEM has a bias to-

wards a Laplace distribution. P-MLE has a similar bias towards a spline density

function with a small number of knots, but we did not include any such distri-

butions in our simulation study. For the chi-square distribution, the log-density

smoothness penalty is small for the right tail, and tends to infinity near zero. This

means that FEM will distort the left-tail of the density close to zero. However,

because the density is small here, this distortion has relatively little effect on the

density function.

The distribution of the noise has an influence on the comparison with deamer

and decon, with deamer performing relatively better when the noise follows a beta

distribution. SNR is another important factor, with P-MLE performing much

better than deamer and decon in the low SNR case.

Finally, sample size is important for comparisons with all other methods, with

P-MLE performing relatively better in scenarios with low sample size. This might

be explained by the hard thresholding of other methods. The Fourier-based meth-

ods deamer and decon use hard-thresholding of the Fourier transform of the density

to regularize the estimates. To achieve sufficient regularization, for small sample

sizes, the threshold must severely limit the space of possible functions. By contrast,

the penalized likelihood approach of P-MLE is better able to find a compromise

between smoothness and likelihood.

We also compare the distribution of the integrated squared error (ISE) for

different methods in each scenario. Figure 3.2–3.10 compare boxplots of the ISE

for the five methods for each combination of true and error distributions(both

116

−1.00
−0.75
−0.50
−0.25
0.00

no
rm
al

0.00

0.05

0.10

0.15

0.000
0.025
0.050
0.075
0.100
0.125

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.20

0.000

0.025

0.050

0.075

0.100

la
pl
ac
e

0.00

0.05

0.10

0.15

0.20

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.00
0.05
0.10
0.15
0.20

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.00

0.05

0.10

normal

be
ta

0.0

0.2

0.4

chi−square
0.00

0.05

0.10

0.15

beta
0.0

0.1

0.2

0.3

laplace
0.0

0.1

0.2

0.3

mixnormal
0.0
0.1
0.2
0.3
0.4

mixgamma
0.00
0.05
0.10
0.15
0.20

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Bianconi .

Kaa

Woo - .

mama.

- my

Figure 3.2: Sample distribution of ISE for sample size 30 and SNR 4.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

decon methods with or without FFT are displayed). From these plots, we can see

that although there are some outliers, and sometimes larger variances, the MISE

results given in Tables 3.1–3.7 are mostly consistent with the results shown in

Figure 3.2–3.10, rather than being caused by a few outliers.

3.6 Real data analysis

We apply our P-MLE method to a real data set. The Framingham data [15]

records the systolic blood pressure measured for 1615 male subjects. Each sub-

ject’s blood pressure was measured twice at a first visit and twice at a second

visit eight years later. We use the measurements at the second visit only. Let

SBP21 and SBP22 denote the two observations at the second visit. Let SBP2

be the average of SBP21 and SBP22. We estimate the density of the underlying

true blood pressure X from SBP2. Let e21 and e22 be the measurement errors of

SBP21 and SBP22 respectively. Now SBP2 = X + e, where e = e21+e22
2

. Also,

117

0.0

0.1

0.2

0.3

n
o
rm
a
l

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.05

0.10

0.15

0.20

0.25

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

la
p
la
c
e

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.0

0.5

1.0

1.5

0.0

0.1

0.2

normal

b
e
ta

0.0

0.1

0.2

0.3

chi−square
0.00

0.05

0.10

0.15

beta
0.0

0.1

0.2

laplace
0.0
0.1
0.2
0.3
0.4
0.5

mixnormal
0.00
0.05
0.10
0.15
0.20

mixgamma
0.00

0.05

0.10

0.15

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.3: Sample distribution of ISE for sample size 30 and SNR 1.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

118

0.0

0.1

0.2

0.3

0.4

n
o
rm
a
l

0.0

0.5

1.0

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.00

0.05

0.10

0.15

0.20

la
p
la
c
e

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.00

0.03

0.06

0.09

0.00

0.05

0.10

0.15

0.20

normal

b
e
ta

0.0

0.1

0.2

chi−square
0.0

0.1

0.2

beta
0.0

0.1

0.2

0.3

laplace
0.0

0.1

0.2

0.3

0.4

mixnormal
0.00
0.05
0.10
0.15
0.20
0.25

mixgamma
0.00

0.05

0.10

0.15

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.4: Sample distribution of ISE for sample size 30 and SNR 0.25.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

119

0.00

0.01

0.02

0.03

0.04

n
o
rm
a
l

0.00

0.02

0.04

0.06

0.08

0.00

0.01

0.02

0.03

0.04

0.000

0.025

0.050

0.075

0.05

0.10

0.15

0.02

0.04

0.06

0.08

0.00

0.02

0.04

0.06

0.00

0.01

0.02

0.03

la
p
la
c
e

0.00

0.05

0.10

0.00

0.01

0.02

0.03

0.04

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

normal

b
e
ta

0.0

0.1

0.2

0.3

0.4

chi−square
0.00
0.01
0.02
0.03
0.04

beta
0.0

0.1

0.2

laplace
0.00

0.05

0.10

0.15

0.20

mixnormal
0.00

0.02

0.04

0.06

mixgamma
0.00

0.01

0.02

0.03

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.5: Sample distribution of ISE for sample size 100 and SNR 4.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

120

0.000

0.025

0.050

0.075

0.100

n
o
rm
a
l

0.04

0.08

0.12

0.16

0.00

0.03

0.06

0.09

0.12

0.05

0.10

0.15

0.1

0.2

0.3

0.4

0.04

0.08

0.12

0.16

0.00

0.02

0.04

0.06

0.000

0.025

0.050

0.075

0.100

la
p
la
c
e

0.000

0.025

0.050

0.075

0.100

0.125

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.000

0.025

0.050

0.075

0.100

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

normal

b
e
ta

0.00

0.05

0.10

0.15

chi−square
0.00

0.05

0.10

beta
0.0

0.1

0.2

0.3

0.4

laplace
0.0

0.1

0.2

0.3

0.4

mixnormal
0.00

0.05

0.10

0.15

mixgamma
0.00

0.02

0.04

0.06

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.6: Sample distribution of ISE for sample size 100 and SNR 1.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

121

0.00

0.05

0.10

0.15

0.20

n
o
rm
a
l

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.20

la
p
la
c
e

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.20

normal

b
e
ta

0.0

0.1

0.2

chi−square
0.00

0.05

0.10

0.15

0.20

beta
0.0

0.1

0.2

0.3

laplace
0.0

0.1

0.2

0.3

mixnormal
0.00

0.05

0.10

0.15

0.20

mixgamma
0.00

0.03

0.06

0.09

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.7: Sample distribution of ISE for sample size 100 and SNR 0.25.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

122

0.000

0.005

0.010

0.015

0.020

n
o
rm
a
l

0.00

0.01

0.02

0.03

0.04

0.05

0.000

0.005

0.010

0.015

0.020

0.00

0.01

0.02

0.03

0.00

0.05

0.10

0.00

0.01

0.02

0.03

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

la
p
la
c
e

0.00

0.01

0.02

0.03

0.04

0.000

0.005

0.010

0.015

0.020

0.025

0.00

0.01

0.02

0.03

0.000

0.025

0.050

0.075

0.100

0.125

0.00

0.01

0.02

0.03

0.04

0.00

0.01

0.02

0.03

0.04

0.000
0.005
0.010
0.015
0.020
0.025

normal

b
e
ta

0.00
0.01
0.02
0.03
0.04
0.05

chi−square
0.000

0.005

0.010

0.015

beta
0.00

0.02

0.04

0.06

laplace
0.00

0.05

0.10

0.15

0.20

mixnormal
0.00
0.01
0.02
0.03
0.04
0.05

mixgamma
0.000
0.005
0.010
0.015
0.020

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.8: Sample distribution of ISE for sample size 300 and SNR 4.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

123

0.00

0.02

0.04

n
o
rm
a
l

0.03

0.06

0.09

0.000

0.025

0.050

0.075

0.100

0.125

0.000

0.025

0.050

0.075

0.100

0.1

0.2

0.3

0.4

0.025

0.050

0.075

0.100

0.125

0.00

0.01

0.02

0.03

0.04

0.00

0.02

0.04

0.06

0.08

la
p
la
c
e

0.00

0.02

0.04

0.06

0.08

0.00

0.01

0.02

0.03

0.04

0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

0.20

normal

b
e
ta

0.00

0.04

0.08

0.12

chi−square
0.00

0.03

0.06

0.09

0.12

beta
0.00
0.05
0.10
0.15
0.20
0.25

laplace
0.0

0.1

0.2

0.3

mixnormal
0.00

0.05

0.10

0.15

mixgamma
0.00

0.02

0.04

0.06

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.9: Sample distribution of ISE for sample size 300 and SNR 1.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

124

0.00

0.05

0.10

n
o
rm
a
l

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.0

0.1

0.2

0.15

0.20

0.25

0.30

0.05

0.10

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

la
p
la
c
e

0.00

0.05

0.10

0.15

0.20

0.000

0.025

0.050

0.075

0.100

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.00

0.05

0.10

0.15

0.20

normal

b
e
ta

0.00

0.05

0.10

0.15

0.20

chi−square
0.00

0.05

0.10

0.15

beta
0.0

0.1

0.2

laplace
0.0

0.1

0.2

mixnormal
0.00

0.05

0.10

mixgamma
0.000

0.025

0.050

0.075

cauchy
methods Decon1 Decon2 Deamer FEM P−MLE

Figure 3.10: Sample distribution of ISE for sample size 300 and SNR 0.25.
Each columnn corresponds to one of the seven true distributions in the simulation.
Rows correspond to the error distribution. The decon package only allows a
limited selection of error families, so could not be compared for simulations with
a beta error. Some outliers where decon produced a large ISE are truncated from
these plots. No P-MLE results have been truncated.

125

(a)
Histogram

D
en
si
ty

−30 −20 −10 0 10 20 30

0.
00

0.
02

0.
04

0.
06

0.
08

(b)
Q-Q plot

−3 −2 −1 0 1 2 3

−
20

−
10

0
10

20
30

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.11: Comparison of real data error distribution with a normal distribution

SBP21−SBP22

2
= e21−e22

2
. Assume that the error distribution is symmetric, which is

a common assumption for measurement error. Then e21+e22
2

and e21−e22
2

follow the

same distribution. Therefore, we can use SBP21−SBP22

2
as the pure error sample

for P-MLE and deamer. For decon, we assume the error distribution is normal

with mean zero and estimated variance. Similarly, for FEM, we assume the error

distribution is normal with estimated mean and variance. Figure 3.11 shows the

observed error distribution compared with an estimated normal density. We see

that the normal assumption is not unreasonable for this distribution, though the

error distribution appears to have heavier tails than the normal distribution.

The variance of the error sample is 29.274, and the variance of the observed

sample is 395.6506. This suggests an SNR of about 12.5154.

Figure 3.12(a) shows the estimated true distributions by P-MLE and by deamer,

decon and FEM. We see that P-MLE and deamer both select a much sharper peak

and lower variance than the observed data, which is what we should expect to

see, since adding noise should increase the variance and produce a less sharp peak.

The density estimated by decon is extremely close to the observed data, suggest-

ing that decon has not removed most of the measurement error. FEM is the only

method that estimates a bimodal density for the true SBP.

To give a better sense of how well the methods estimate the latent true dis-

tribution, we convolve the estimated distributions with the error distribution and

126

(a)
Deconvolved estimate for density of distribution of SBP. A kernel density estimate of the observed
values is shown for comparison, but this is with measurement error, so estimates close to the
data estimate have not adequately removed the measurement error.

50 100 150 200 2500.
00
0

0.
01
0

0.
02
0

0.
03
0

SBP

data
P−MLE
deamer
decon
FEM

(b)
Estimated density of SBP distribution convolved with error distribution, compared with a kernel
density estimate from the observed data.

50 100 150 200 2500.
00
0

0.
01
0

0.
02
0

SBP

data
P−MLE+empirical
P−MLE+normal
deamer+empirical
deamer+normal
Decon+empirical
Decon+normal

data
P−MLE+empirical
P−MLE+normal
deamer+empirical
deamer+normal
Decon+empirical
Decon+normal
FEM+empirical
FEM+normal

data
P−MLE+empirical
P−MLE+normal
deamer+empirical
deamer+normal
Decon+empirical
Decon+normal
FEM+empirical
FEM+normal

data
P−MLE+empirical
P−MLE+normal
deamer+empirical
deamer+normal
Decon+empirical
Decon+normal
FEM+empirical
FEM+normal

data
P−MLE+empirical
P−MLE+normal
deamer+empirical
deamer+normal
Decon+empirical
Decon+normal
FEM+empirical
FEM+normal

Figure 3.12: Real data results

127

compare the results with a kernel density estimate from the observed data. Fig-

ure 3.12(b) compares the convolved estimated distribution for each method, con-

volving with both a normal measurement-error distribution, and the empirical

error distribution. As can be seen, the distributions estimated by P-MLE and

deamer, when convolved with the empirical error distribution, produce something

close to the original data. The convolved distribution estimated by FEM is shifted

right from the original data. Decon estimated a density much closer to the ob-

served data, and as a result, the convolved estimator has higher variance than the

observed data. We also see that when a normal error is used, the right tail of the

distribution is estimated well by all methods, but the left tail is more challenging.

To give a quantitative measurement of the performance, we calculate the dis-

tance between the observed data and the estimated convolved distribution. We

use both the Anderson-Darling (AD) distance and the Kolmogorov-Smirnov (KS)

distance for measuring the difference. We also calculate the integrated squared

difference between the estimated densities and the kernel density estimate from

the real data in Figure 3.12(b). Because deamer and decon do not guarantee that

the deconvolved “densities” returned have integral 1, we need to rescale them so

that the AD and KS distances can be computed. We do not use Kullback-Leibler

divergence because P-MLE directly optimizes likelihood, so choosing a quantity so

closely related to the objective function of P-MLE might be considered an unfair

advantage to P-MLE, particularly considering that these results are on training

data, so there is potential overfitting. The results are in Table 3.10. We see that,

as expected, decon produces bad results, and that convolving with the empirical

error distribution gives a closer result to the observed data than convolving with

the normal distribution. For the empirical error distribution, deamer, P-MLE and

FEM perform similarly with P-MLE being better by some measures and deamer

better under other measures. This is consistent with the simulation results, where

for larger sample sizes, the difference in performance between deamer, FEM and P-

MLE was small. We also see that the density functions estimated by P-MLE, FEM

and deamer are quite different, but that the convolutions with the error density

are much closer. This is the identifiability issue in the convolution problem, with

two distributions having a very similar convolution with the measurement error

128

Table 3.10: Difference between empirical distribution and convolved estimated
distribution

Normal Error Empirical Error
A.D. K.S. ISE A.D. K.S. ISE

P-MLE 2.632 0.0267 0.0135 0.778 0.0085 0.0051
Deamer 3.140. 0.0302 0.0168 0.974 0.0071 0.0056
Decon 4.602 0.0228 0.0272 10.598 0.0412 0.0330
Decon (with FFT) 4.722 0.0237 0.0277 10.648 0.0414 0.0331
FEM 4.196 0.0329 0.0185 0.285 0.0101 0.0087

distribution.

3.7 Conclusion

We have developed a deconvolution method for additive error based on maximum

penalized log-likelihood estimation with a smoothness penalty on the estimated

density. The smoothness penalty we use has previously been used to good effect

in smoothing spline fittings. Our method is applicable to either continuous or

discrete error distributions. In cases where the error distribution is unknown, this

allows us to substitute the empirical distribution from a pure-error sample.

We have proved that our P-MLE method is consistent. We have also provided

methods to address the practical optimization difficulties which arise. In extensive

simulation studies, and a real-data example, we have shown that our method has

much better performance than existing methods, particularly when sample size and

SNR are small. If faster computation is necessary, we provided a quick heuristic

to choose the tuning parameter without cross-validation, and showed that with

this heuristic, P-MLE produces good results, but with additional time to tune the

penalty parameter λn by cross-validation, it will perform even better.

There are a number of directions in which the method can potentially be im-

proved in future. Firstly, for practical purposes, we replaced the infinite number

of non-negativity constraints by a finite subset of non-negativity constraints at a

set of evenly spaced points. The solution to this constrained optimization problem

might not satisfy all the non-negativity constraints. It seems likely that with care-

fully chosen constraints, we should be able to ensure that the estimated density

satisfies all the non-negativity constraints. If this is the case, then it should be

129

possible to develop an adaptive algorithm for choosing the correct points at which

to impose non-negativity constraints.

Another issue that could be studied in the future is truncation. From the theory

developed, we see that convergence depends upon the estimated support |u − l|
not increasing too fast as n → ∞. For common light-tailed distributions, this

will almost surely happen. However, for heavy-tailed distributions, the estimated

support could grow too fast to achieve consistency. This problem could be resolved

via an appropriate truncation method where certain data points are removed from

the sample so that the rate of growth of the estimated support is controlled.

This would be expected to improve large-sample performance in cases where the

underlying true distribution is heavy-tailed. Given that P-MLE performed well

in the Cauchy simulation results in Table 3.7, it seems that this is more of a

theoretical issue than a practical concern.

Chapter 4

Rank Selection for Non-negative Matrix Factorization

4.1 Introduction

From Chapter 2, we know the only tuning parameter in the NMF algorithm is the

rank of the feature matrix, k, which is the number of features. The interpretation

of k is the number of underlying sub-structures or subcommunities extracted from

the data. The selection of k not only affects the performance of NMF but also

relates to the interpretation of NMF results. Too small k may lead to key features

missing and too large k value may have overfitting issues. It is therefore necessary

to select an appropriate k value for the data. The purpose of this chapter is to

develop a new method for selecting this rank k.

The usual approach to NMF rank selection is to use expert knowledge [36].

However, for many analyses in practice, no-one has the insight needed to select the

rank. Even if there are experts with a good intuition of what rank is appropriate,

being able to support the choice with statistical evidence is valuable.

When the expert knowledge is unavailable, a popular approach for rank selec-

tion is to compute some model measures for a range of rank values and choose the

rank value according to the measure’s criteria. Cophenetic correlation coefficient

and Dispersion are the most commonly used measurements [82]. The Cophenetic

correlation coefficient method measures the reproducibility of the clustering of ob-

servations based on the weight matrix of NMF for many runs with different initial

values. Because of the multimodality of the likelihood or squared errors, runs of

NMF with different initial values can produce different results. The idea is that for

the appropriate number of features, there should be a clear optimum, so runs with

different initial values should give the same solution. If the number of features

is too large, then the optimal likelihood or mean squared error will vary between

runs, leading to a smaller Cophenetic correlation. The method selects the rank

130

131

value where the Cophenetic correlation has a steep drop off [11]. The Disper-

sion method uses a similar procedure to the Cophenetic coefficient method but

calculates Dispersion coefficients instead [53]. These two methods both measure

the robustness of the clustering analysis results, instead of the goodness-of-fit of

the NMF results to the data, thus could lead to suboptimal solutions [31]. Other

ideas include comparing residuals, sparseness and Description Length [101]. These

methods are all ad hoc in that they select the rank according to the plots based

on intuition instead of a solid statistical inference results. The results will be

inaccurate when a clear drop off point is not available.

Another popular approach is to use cross-validation. For example, using 2-fold

cross-validation to split the data randomly into two halves and apply NMF to

the two parts separately. The rank minimizing the average reconstruction error

between the two parts is selected for NMF [100]. Lin [69] introduces a rank selec-

tion method based on imputation. They randomly delete 30% of the data entry

from the original data each time and treat them as missing values in the NMF

procedure. The rank is chosen by minimizing the mean square errors of the recon-

struction of the missing entries. Their NMF algorithm to handle missing values is

available in the R package NNLM [69]. Compared with the Cophenetic correlation

coefficient method, Dispersion method and 2-fold cross validation method, the

NNLM imputed mean squared error method estimates the rank more accurately

when applied to Normal synthetic data with different properties [82].

There are also some other rank selection methods such as the Bayesian method

[41] and singular value decomposition. The Bayesian method requires an assump-

tion that the rank should be small [41], which is not necessarily true for real data.

Singular value decomposition chooses the rank where the singular values become

small [36]. The challenge of the method arises when there isn’t a clear drop to

zero singular value among all ranks. Moreover, the rank of singular values is not

closely related to the rank of non-negative matrix factorization.

In this chapter, we develop a goodness-of-fit test based on a deconvolved boot-

strap distribution and use the test to choose an appropriate rank for NMF. The

application of deconvolution to bootstaps with optimisation error appears to be

novel. We then compare our rank selection method with bootstrap distribution

132

without deconvolution and NNLM on a range of simulated data and real data. We

find that our method produces accurate and stable estimation of ranks for NMF.

4.2 Methods

Our rank selection for NMF is based on sequentially performing the following

hypothesis test:

H0: the rank of the feature matrix is k.

Ha: the rank of the feature matrix is at least k + 1.

After applying the goodness-of-fit test, if H0 is rejected, let k = k + 1 and

repeat the test until H0 can not be rejected at the given significance level.

4.2.1 Likelihood ratio test

Suppose L(k) is the likelihood of the factorization using rank k NMF and L(k+1)

is the likelihood of the rank k + 1 NMF results. We construct a likelihood ratio

test. Under null hypothesis H0, the test statistic is given by:

λLR = −2 ln
(

supL(k)

supL(k + 1)

)
= −2(ln (supL(k))− ln (supL(k + 1)))

(4.1)

Here sup denotes the supremum and ln represents natural logarithm.

According to standard statistical theory, under certain conditions, the likeli-

hood ratio statistics asymptotically follow a chi-squared distribution. However,

because of the non-negative boundary, the conditions for the asymptotic null chi-

squared distributions are not met. Moreover, due to the computational difficulty,

it is most common that the global maximization of the likelihood is not achieved

by applying the NMF algorithm with a single set of initial values. Thus, the results

of a given run of the NMF algorithm are subject to computational measurement

errors for the likelihood ratio statistic. For the first difficulty, we can use a boot-

strap method to compute a correct null distribution. However, the computational

measurement error in the likelihood ratio statistic for the bootstrap samples makes

133

the hypothesis testing method lose its power due to the long tail in the null dis-

tribution. We develop a method to get a measurement error deconvolved test

to improve the power for the likelihood ratio test in NMF rank selection. This

work is an application of our work on a general method for measurement error

deconvolution density estimation using penalized likelihood in Chapter 3

4.2.2 Direct testing with bootstrapped null distribution (Boot-test)

For our hypothesis test, we can use a parametric bootstrap to obtain the null

distribution of the test statistic. Under the null hypothesis, the data is a realization

of a random sample from a distribution F with mean a linear combination of the

k features. The k features and their coefficients are estimated by rank k NMF of

the original data. In the bootstrap, samples of random datasets are drawn from

F̂ . These samples have the same dimension as the original data. When the data is

Poisson distributed, the mean is the only parameter of the distribution. For Normal

data, assuming each entry of the data is independently Normally distributed and

shares the same variance, both mean and variance need to be estimated from the

original data. The variance can be estimated from the residuals of the k rank

NMF model. For example, if the rank k NMF gives X ≈ Tp×kWk×n. TW is the

estimated mean parameter for the Poisson or Normal distributions. The variance

of the Normal distribution can be estimated by 1
np

∑
i,j(X − TW)2ij. The negative

entries in the bootstrapped sample are replaced by 0 for Normal distributed data.

We apply rank k and rank k + 1 NMF on each bootstrapped sample to get the

test statistic λ∗, from which the empirical null distribution of λ can be obtained.

Unfortunately, this hypothesis test with bootstrapped null distribution does

not perform well at selecting the rank of NMF since the likelihood surface for

NMF is often multimodal, and it is common for the algorithm to converge to a

suboptimal factorization. This creates noise in the bootstrapped null distribution,

thus reducing the power of the test.

To improve the performance, we can rerun the algorithm with multiple starting

values on the original data to choose the best log-likelihood. The mean F̂ is

estimated as the result of NMF that has the best log-likelihood. For Normal data,

the variance is the average of variances estimated from each run of NMF to avoid

134

overfitting. We also run NMF with multiple initial values on each bootstrap sample

and choose the best log-likelihoods to build the null distribution. The procedure

is shown in Algorithm 1.

Algorithm 1 Pseudocode for Boot-test

k ← 0
while p-value is significant do

k ← k + 1
for m different initial values do

apply rank k NMF and rank k + 1 NMF to the original data
end for
l0(k)← largest loglikelihood of all rank k NMF results;
l0(k + 1)← largest loglikelihood of all rank k + 1 NMF results;
compute T0 and W0 when rank k NMF has loglikelihood l0(k)
λ← −2(l0(k)− l0(k + 1))
sample bootstrap datasets from distribution with mean T0W0 (and variance

estimate if data are assumed to be Normal)
for all bootstrap datasets do

for m different initial values do
apply rank k NMF and rank k + 1 NMF to the bootstrap data

end for
compute λ∗ as negative two times the difference of the best loglikelihood

of all rank k NMF results and the best loglikelihood of all rank k+1 NMF results
end for
get p-value;

end while

The simulation results for this method with different numbers of initial values

and different true rank values are shown in Section 4.3.

4.2.3 Testing with deconvolved bootstrap null distribution

(Decon-boot-test)

The major problem with the method described above is that to ensure a good

bootstrap distribution, we need to fit each bootstrap sample with a large number

of different initial values, which is computationally expensive. We therefore develop

a new approach to more efficiently compute the bootstrap distribution. The idea

is to treat the convergence error as measurement error in the log-likelihood ratio

statistic. We can then use a well-developed deconvolution method to estimate

the null distribution of the statistic. Deconvolution is a method to estimate a

135

distribution from data with additive measurement error. In our case, if we run only

one set of initial values for NMF for each bootstrap sample for each fixed k, then

we can directly compute the estimated maximum loglikelihood l(k) = l0(k)+e(k),

where l0(k) is the globally maximized log-likelihood value (unobserved) and e(k)

is the measurement (convergence) error. Thus

λ∗ = λ∗0 + e (4.2)

= −2(l0(k)− l0(k + 1) + e(k)− e(k + 1))

= −2(l0(k)− l0(k + 1)) + {−2[e(k)− e(k + 1)]} (4.3)

where λ∗0 is the true likelihood ratio statistic without convergence error and

e = −2(e(k)− e(k+1)). The deconvolution method will estimate the distribution

of λ∗0 when λ∗0 is not observable but λ∗0 + e is available.

Most deconvolution approaches are based on the Fourier transformation. While

its mathematical solution is very neat, estimation of the characteristic function

from data is somewhat unstable, and division by possibly small Fourier coeffi-

cients for the error data can greatly magnify errors. So in this chapter, we use the

P-MLE deconvolution method developed in Chapter 3 which is based on maxi-

mizing a penalized log-likelihood of the data (here λ∗) with a smoothness penalty.

P-MLE also has the advantage over many other competing methods that its im-

plementation can estimate the measurement error distribution non-parametrically

from a pure measurement error sample (see Page 68 Section 3.2). This is important

because the convergence error is unlikely to follow a standard parametric family

of distributions.

Figure 4.1 shows an example of null distribution of likelihood ratio statistic

without deconvolution and after deconvolution. The deconvolved distribution of

likelihood ratio statistic has a much smaller vairance than the bootstrapped null

distribution of likelihood ratio statistic when NMF with single initial value applied

to each bootstrap sample as convergence error is removed by deconvolution.

The sampling procedure for bootstrapped datasets is the same as in Section 2.2.

However, for each sampled data, rank k NMF and rank k + 1 NMF are run only

once to get λ∗0+e. In order to get a pure error sample, we perform rank k and rank

136

0 1000 2000 3000 4000 5000

0
.0

0
0

0
0

.0
0

0
5

0
.0

0
1

0
0

.0
0

1
5

0
.0

0
2

0
0

.0
0

2
5

0
.0

0
3

0
0

.0
0

3
5

Distributions of the likelihood ratio statistics before and after deconvolution

Likelihood ratio statistic

D
e
n
s
it
y

Boot-test

Decon-boot-test

Figure 4.1: Null distribution of the likelihood ratio statistics for rank 4 NMF vs.
rank 5 NMF. The data is generated from rank 4 Poisson NMF. The black curve
is the kernel estimation of bootstrapped null distribution when apply rank 4 and
rank 5 NMF with single initial value for each bootstrap sample with bootstrap size
as 50. The green curve is the deconvolved density of likelihood ratio statistic after
applying P-MLE deconvolution method to the 50 bootstrapped Likelihood ratios.

137

k+1 NMF with multiple initial values for an additional bootstrap sample. Since we

are trying to maximize the log-likelihood, we will assume that the largest likelihood

from multiple runs of different initial values is the true maximum likelihood. If the

number of different initial values is large enough, this should be close to be true.

The measurement error samples of e(k) and e(k + 1) can be obtained from the

largest loglikelihood among different initial values minus the loglikelihoods of all

NMF runs. The pure error sample for e can be obtained as negative two times the

difference between e(k) and e(k+1) for all different pairs of e(k) and e(k+1). Our

method is implemented in the R package for Decon-boot-test, which is available

on CRAN with the name DBNMFrank [12].

A complete description of the procedure is given in Algorithm 2:

The computation time for each hypothesis test mainly consists of two parts:

the NMF calculation part and the deconvolution part. For the deconvolution part,

the computation time is fixed for different data. As the time complexity of NMF

multiplicative update algorithm [94] is #iterations × O(npk) [68], where n is the

sample size, p is the number of variables and k is the rank value, the computation

time for the NMF part is proportional to the sample size and number of variables

of the data. Also, when the true rank increases, more rounds of hypothesis tests

will be applied, which will lead to longer computation time.

4.3 Simulation

In this section, we compare the performance of Boot-test and Decon-boot-test in-

troduced in Sections 4.2.2 and 4.2.3 and NNLM [69] which is based on missing

data imputation, on Poisson NMF data, Normal NMF data and non-NMF struc-

ture data. NNLM minimizes Kullback-Leibler divergence loss to estimate Poisson

data’s factorization and square error loss to estimate Normal data’s factorization.

In the simulation, following the suggestions from [69], we randomly set 30% of the

data entries as NA and apply NNLM with a sequence of rank values from 1 to

50 to impute the missing data. The procedure is repeated 10 times and the rank

value that minimizes the average loss (KL divergence for Poisson data and MSE

for Normal data) of the imputed part is selected as the rank for the data.

For the Boot-test and Decon-boot-test methods, we find that the bootstrap size

138

Algorithm 2 Pseudocode for Decon-boot-test

k ← 0
while p-value is significant do

k ← k + 1
for m different initial values do

Applying rank k NMF and rank k + 1 NMF to original data
end for
l0(k)← largest loglikelihood of all rank k NMF results;
l0(k + 1)← largest loglikelihood of all rank k + 1 NMF results;
compute T0 and W0 when rank k NMF has loglikelihood l0(k)
λ← −2(l0(k)− l0(k + 1))
sample bootstrap datasets from distribution with mean T0W0 (and variance

estimate if data are assumed to be Normal)
for all bootstrap datasets do

compute λ∗ by applying rank k NMF and rank k+ 1 NMF on bootstrap
datasets.

end for
for m different initial values do

compute li(k) by applying rank k NMF on a bootstrap sample;
compute lj(k + 1) by applying rank k + 1 NMF on the same bootstrap

sample;
end for
for i ← 1 to m do

ei(k)← (maxi(li(k)))− li(k) ;
end for
for j ← 1 to m do

ej(k + 1)← (maxj(lj(k + 1)))− lj(k + 1) ;
end for
e← −2(ei(k)− ej(k + 1)) for all i and j;
compute null distribution of λ∗0 by applying P-MLE on λ∗ and e;
get p-value;

end while

139

doesn’t affect the rank estimates too much on the simulation data. We only show

the simulation results when bootstrap size is 50 in this section. Also, NMF with

50 different initial values consistently converges to the optimal likelihood when

running from simulated data. So for the Boot-test, we follow procedure 1 and set

m = 1, m = 3, m = 10, m = 30 and m = 50 for each dataset and each bootstrap

sample. For the Decon-boot-test, we follow procedure 2 and set m = 50.

We generate 50 replicates for each scenario. For the generated NMF data,

the feature matrix is fixed in each scenario and the weight matrix is randomly

generated in each replicate. All three methods are applied to the same data in

each replicate. The significance level used for Boot-test and Decon-boot-test in

the simulations is 0.1.

4.3.1 Poisson data simulation

We simulate a range of Poisson NMF scenarios with true rank equal to 2, 4, 6, 8,

10 and 30, and a scenario where there is no NMF structure. For true rank 2, 4, 6,

8 and 10, we simulate 100 observations, while for the true rank 30, we simulate 300

observations. For the no NMF structure scenarios, we simulate 131 observations.

For rank 2 and rank 4, we simulate five scenarios to assess the sensitivity of the

methods when one of the types is close to a non-negative linear combination of

the others. For the higher true ranks, we simulate one scenario for each true

rank. For ranks 6, 8 and 10, all features used in the simulation are estimated

from the healthy individuals in the Qin dataset [89], using Poisson NMF with the

given rank. One feature for the true rank 2 simulation and three features for the

true rank 4 simulation are also estimated from the healthy individuals in the Qin

dataset using NMF with ranks 1 and 3 respectively. The Qin data, as mentioned

in Chapter 2, is a human gut metagenomic dataset extracted from 99 healthy

people and 25 IBD patients. For rank 30, the features used in the simulation are

calculated by applying rank 30 NMF to Person 2’s gut data in the moving picture

data [14] which also used in Chapter 2. After removing rows consisting of all 0’s,

the total number of different OTUs is 3131 for Person 2’s gut data. Each feature

is normalized to sum to one for all scenarios.

For the rank 4 simulations, the fourth feature is chosen in the space spanned

140

by the other three features and a unit vector with all elements the same, such

that the perpendicular from the fourth feature to the plane of the other three

features passes through the centroid of these three features. We vary the distance

of this fourth type from the plane of the other three to assess the sensitivity of the

methods in cases where one type is almost a linear combination of the other three.

For rank 2 simulations, the second feature is on the line in the space spanned by

the first feature and a unit vector with all elements the same and in the direction

from the first feature to the unit vector.

For rank 2 and rank 4, the further the distance is, the more distinct these

features are. The distances are set to be 0, 0.0005 0.0008, 0.001, 0.0015 and 0.002.

When the distance is 0, the feature matrix degenerates to a lower rank matrix.

Thus, the rank 4 feature matrix degenerates to a rank 3 feature matrix and the

rank 2 feature matrix becomes rank 1.

For all Poisson NMF data simulations, columns of the weight matrix are gen-

erated independently from a uniform distribution from 0 to 1. We adjust each

column of the weight matrix to have a fixed sum sampled from the column sums

for the healthy group of the Qin data for true NMF rank 2, 4, 6, 8 and 10. The

weight matrix is rescaled to have fixed sum sampled from the column sums for

Person 2’s gut data of the moving picture data for true NMF rank 30. For micro-

biome data, these column sums are referred to as sequencing depth. Multiplying

the feature matrix and the weight matrix, we get the parameters for the Pois-

son distribution. Each entry of the data matrix simulated for the Poisson NMF

data is generated from a Poisson distribution with the Poisson mean given by the

corresponding entry of TW . The estimated results of Boot-test, Decon-boot-test

and NNLM in 50 replicates of different scenarios are summarized in Table 4.1,

Table 4.3 and Table 4.5. To compare the computational costs of the Boot-test and

Decon-boot-test, we recorded the average time required to calculate the estimated

rank for 50 replicates in each scenario in Table 4.2, Table 4.4 and Table 4.6. Both

methods are coded in R (64-bit 4.0.3) and run on 1 node of the Graham Compute

cluster of Canada with 1 Intel Xeon at 2.1Ghz with 2G of RAM and 1 core. The

NNLM method is not compared here as it uses a different NMF algorithm while

estimating the rank. The efficiency of the NMF algorithm is closely related to the

141

computation cost of the rank selection method.

To compare the ability of Decon-boot-test and NNLM to detect Poisson data

without NMF structure, we design a no NMF structure Poisson data simulation.

The dimension of the no NMF structure Poisson data is the same as Person 1’s

gut data from the moving picture dataset, which has 1864 variables and 131 obser-

vations. In each replicate, each row of the mean of the no NMF structure Poisson

data is generated from a log-multivariate Normal distribution. The mean of the

multivariate Normal is a vector of length 1864 whose entries are independently

simulated following a Normal distribution with mean 4 and standard deviation 3.

For each sample from the multivariate Normal distribution, the mean is rescaled

so that the sum of all means is equal to the log of the total sequencing depth from

the corresponding sample in Person 1’s gut data. The covariance matrix of the

multivariate Normal is generated by 1864 eigenvalues evenly spaced from 3× 10−7

to 1 and orthogonal eigenvectors uniformly distributed over the 1863-dimensional

sphere. If the Poisson data doesn’t have NMF structure (which can be thought of

as having rank equal to sample size), then rank selection methods should select a

high rank (which doesn’t satisfy the NMF rank selection rule k < n×p
n+p

[63]). The

average estimated ranks and standard deviations for the 50 replicates of the two

methods are shown in Table 4.5.

The Boot-test results in these tables indicate that for Poisson NMF data, the

accuracy of Boot-test estimates increases with the number of initial values used for

each NMF when d = 0.0005 and d = 0.0008 and is stable in most other cases. The

computation time of Boot-test is positively related to the number of different initial

values used for each NMF (m). Decon-boot-test’s computation time is between

the time spent by m = 3 and m = 10 Boot-test. But Decon-boot-test estimates

the ranks more accurately than Boot-test in all scenarios except for true rank 4

with d = 0.0005. When the true rank is 4 and d = 0.0005, the fourth type is

very closed to the plane of the other three types, which means the 3 types can

explain the data almost as good as four types. As the Decon-boot-test is more

conservative and Boot-test tends to over-estimate the rank, Boot-test chooses rank

4 in more replicates while Decon-boot-test chooses rank 3 in more replicates in this

scenario. In Table 4.1 and Table 4.3, the Decon-boot-test selects the true ranks in

142

more replicates than NNLM especially when the distance from one feature to other

features is small, for example d = 0.0005 and d = 0.0008. In Table 4.5, Decon-

boot-test is comparable with the NNLM method when the NMF rank is low. For

the high rank case, summaries of the estimated ranks show that both methods

underestimate the rank, but Decon-boot-test gives a fairly close estimate for the

rank, while NNLM estimates a very low rank. When there is no NMF structure,

Decon-boot-test selects a high rank, while NNLM selects 1 for all replicates, which

is somewhat misleading.

Table 4.1: Total number of times the true rank is selected out of 50 replicates and
the 50 rank estimates’ averages and standard deviations when the true rank is 2
for Poisson NMF data when bootstrap size is 50.

d 0 0.0005 0.0008 0.001 0.0015 0.002
m = 1 47 1.06(0.24) 17 1.54(0.68) 22 2.04(0.75) 31 2.00(0.62) 44 2.00(0.35) 46 2.06(0.37)
m = 3 46 1.08(0.27) 28 2.16(0.65) 39 2.10(0.46) 45 2.12(0.39) 40 2.20(0.40) 42 2.16(0.37)

Boot-test m = 10 47 1.06(0.24) 43 2.20(0.53) 45 2.08(0.28) 44 2.06(0.25) 43 2.14(0.41) 47 2.06(0.24)
m = 30 47 1.06(0.23) 43 2.16(0.42) 45 2.12(0.39) 44 2.12(0.33) 46 2.08(0.27) 45 2.10(0.30)
m = 50 47 1.06(0.24) 40 2.28(0.54) 46 2.08(0.27) 44 2.14(0.40) 45 2.16(0.55) 45 2.04(0.20)

Decon-boot-test 50 1.00(0.00) 50 2.00(0.00) 50 2.00(0.00) 50 2.00(0.00) 50 2.00(0.00) 50 2.00(0.00)
NNLM 50 1.00(0.00) 39 2.12(0.52) 43 2.02(0.38) 44 2.04(0.35) 48 2.04(0.18) 47 2.06(0.24)

m: number of different initial values used for each NMF.
d: distance from one feature to a linear combination of other features.
First column for each value of d in grey: the number of times the true rank is
selected out of 50 replicates.
Second column for each value of d: the average of the 50 estimated ranks
(before the bracket) and the standard deviation of the 50 estimates (in the
bracket).
The most accurate estimates are highlighted in yellow.

4.3.2 Normal data simulation

We generate Normal NMF data with true rank equal to 2, 3, 4, 6, 8 and 10. For

each scenario, we simulate 50 replicates.

Each element in the feature matrix for the Normal NMF data is independently

sampled from a gamma distribution with shape parameter 3 and rate parameter 2,

then multiplied by a Bernoulli random variable with parameter 0.7 to control the

sparsity of the feature matrix. All replicates in the same scenario share the same

143

Table 4.2: Computation time per replicate (average among the 50 replicates) in
hours when the true rank is 2 for Poisson NMF data when bootstrap size is 50.

d 0 0.0005 0.0008 0.001 0.0015 0.002
m = 1 0.2 0.3 0.4 0.5 0.4 0.5
m = 3 0.8 1.2 1.0 1.3 1.7 1.6

Boot-test m = 10 1.8 4.6 3.3 3.1 4.2 3.3
m = 30 5.3 9.3 9.5 9.0 8.5 9.2
m = 50 9.0 22.8 17.5 18.4 19.0 17.2

Decon-boot-test 1.0 2.0 1.3 1.4 2.0 2.0

m: number of different initial values used for each NMF.
d: distance from one feature to a linear combination of other features.

Table 4.3: Total number of times the true rank is selected out of 50 replicates and
the 50 rank estimates’ averages and standard deviations when the true rank is 4
for Poisson NMF data when bootstrap size is 50.

d 0 0.0005 0.0008 0.001 0.0015 0.002
m = 1 45 3.10(0.30) 10 3.28(0.54) 14 3.66(0.85) 18 4.00(0.81) 35 4.20(0.57) 42 4.14(0.45)
m = 3 45 3.12(0.39) 16 3.48(0.65) 31 4.24(0.62) 38 4.22(0.51) 43 4.14(0.35) 43 4.14(0.35)

Boot-test m = 10 39 3.22(0.42) 30 3.92(0.63) 34 4.26(0.44) 34 4.28(0.50) 39 4.17(0.38) 42 4.16(0.37)
m = 30 40 3.24(0.52) 35 4.24(0.69) 39 4.28(0.57) 41 4.20(0.45) 42 4.16(0.37) 41 4.18(0.39)
m = 50 42 3.22(0.58) 39 4.24(0.59) 38 4.28(0.54) 37 4.28(0.50) 42 4.20(0.49) 43 4.16(0.42)

Decon-boot-test 50 3.00(0.00) 27 3.54(0.50) 50 4.00(0.00) 50 4.00(0.00) 50 4.00(0.00) 50 4.00(0.00)
NNLM 50 3.00(0.00) 18 3.76(0.77) 37 4.14(0.50) 43 4.06(0.37) 49 4.02(0.14) 48 4.04(0.20)

m: number of different initial values used for each NMF.
d: distance from one feature to a linear combination of other features.
First column for each value of d in grey: the number of times the true rank is
selected out of 50 replicates.
Second column for each value of d: the average of the 50 estimated ranks
(before the bracket) and the standard deviation of the 50 estimates (in the
bracket).
The most accurate estimates are highlighted in yellow.

feature matrix. The dimension of the features is 2780 initially. After removing

rows with all zero elements in the feature matrix, there are 2544 rows remaining

in the type 2 feature matrix and 2721 rows in the feature matrices for other ranks.

The 100 columns of the weight matrix W are generated independently from a

Dirichlet distribution with parameters all set to be 1.5 and rescaled by a factor of

10.

Each entry of the data matrix is simulated following a Normal distribution with

mean given by the corresponding entry in the matrix product TW and variance

1. Negative entries in the data are replaced by 0 to generate nonnegative data.

Table 4.7 shows for Normal NMF data, the boot-test’s accuracy increases when

144

Table 4.4: Computation time per replicate (average among the 50 replicates) in
hours when the true rank is 4 for Poisson NMF data when bootstrap size is 50.

d 0 0.0005 0.0008 0.001 0.0015 0.002
m = 1 0.6 0.7 0.8 0.8 1.0 1.2
m = 3 2.0 2.1 2.6 2.5 2.2 2.2

Boot-test m = 10 9.0 9.4 13.2 13.4 12.0 11.8
m = 30 26.4 31.2 32.4 28.4 27.7 28.0
m = 50 44.0 53.0 55.3 55.1 56.2 54.0

Decon-boot-test 6.4 8.6 10.5 9.0 11.2 10.4

m: number of different initial values used for each NMF.
d: distance from one feature to a linear combination of other features.

Table 4.5: Total number of times the true rank is selected of 50 replicates and the
50 rank estimates’ averages and standard deviations when the true rank is 6, 8
and 10 for Poisson NMF data when bootstrap size is 50.

rank 6 8 10 30 nonNMF
m = 1 43 6.16(0.42) 41 8.18(0.39) 36 10.24(0.48)
m = 3 43 6.14(0.35) 38 8.24(0.43) 41 10.18(0.39)

Boot-test m = 10 41 6.18(0.39) 39 8.22(0.42) 44 10.12(0.33)
m = 30 34 6.32(0.47) 37 8.26(0.44) 38 10.24(0.43)
m = 50 38 3.32(2.95) 34 8.32(0.47) 40 10.20(0.40)

Decon-boot-test 50 6.00(0.00) 50 8.00(0.00) 47 10.06(0.24) 0 25.04(1.40) 39.69(8.61)
NNLM 50 6.00(0.00) 45 8.10(0.30) 50 10.00(0.00) 0 2.76(1.76) 1.00(0.00)

m: number of different initial values used for each NMF.
First column under each rank in grey: the number of times the true rank is
selected out of 50 replicates. (first column is not available for nonNMF data)
Second column under each rank: the average of the 50 estimated ranks (before
the bracket) and the standard deviation of the 50 estimates (in the bracket).
The most accurate estimates are highlighted in yellow.

more sets of initial values are used for each NMF. Both the Decon-boot-test and

NNLM estimate the true ranks for Normal NMF data more accurately than Boot-

test. Decon-boot-test and NNLM are both extremely accurate at estimating the

rank for all scenarios. Table 4.8 shows the average time required by Decon-boot-

test to calculate the estimated rank for the 50 replicates in each Normal NMF

data scenario is usually between the computational expense of m = 3 and m = 10

Boot-test.

145

Table 4.6: Computation time per replicate (average among the 50 replicates) in
hours when the true rank is 6, 8 and 10 for Poisson NMF data when bootstrap
size is 50.

rank 6 8 10
m = 1 2.8 3.6 6.0
m = 3 6.0 11.5 20.0

Boot-test m = 10 19.2 37.0 55.2
m = 30 63.9 102.0 207.6
m = 50 101.3 209.9 323.5

Decon-boot-test 8.5 33.0 35.5

m: number of different initial values used for each NMF.

Table 4.7: Total number of times the true rank is selected out of 50 replicates for
Normal NMF data and the 50 rank estimates’ averages and standard deviations
when bootstrap size is 50.

rank 2 3 4 6 8 10
m = 1 47 2.10(0.46) 40 3.02(0.14) 39 4.22(0.42) 40 6.20(0.40) 42 8.16(0.37) 43 10.14(0.35)
m = 3 41 2.22(0.55) 38 3.24(0.43) 42 4.18(0.44) 44 6.12(0.33) 41 8.18(0.39) 46 10.08(0.27)

Boot-test m = 10 42 2.20(0.49) 40 3.12(0.33) 42 4.16(0.37) 42 6.16(0.37) 47 8.06(0.24) 41 10.18(0.39)
m = 30 44 2.14(0.40) 40 3.22(0.46) 42 4.16(0.37) 43 6.16(0.42) 45 8.10(0.30) 43 10.14(0.35)
m = 50 46 2.08(0.27) 42 3.16(0.37) 46 4.08(0.27) 43 6.14(0.35) 42 8.16(0.37) 42 10.16(0.37)

Decon-boot-test 50 2.00(0.00) 49 3.02(0.14) 50 4.00(0.00) 50 6.00(0.00) 49 8.02(0.14) 50 10.00(0.00)
NNLM 50 2.00(0.00) 50 3.00(0.00) 50 4.00(0.00) 50 6.00(0.00) 50 8.00(0.00) 50 10.00(0.00)

m: number of different initial values used for each NMF.
First column under each rank in grey: the number of times the true rank is
selected out of 50 replicates.
Second column under each rank: the average of the 50 estimated ranks (before
the bracket) and the standard deviation of the 50 estimates (in the bracket).
The most accurate estimates are labeled as yellow.

4.3.3 Conclusion of simulations

The simulation results show that Decon-boot-test is better than Boot-test in esti-

mation accuracy for both Poisson data and Normal data. By using a large number

of starting points, Boot-test can achieve similar accuracy to Decon-boot-test, but

is far more computationally expensive with no benefit in accuracy. When the true

rank is small, the performance of Decon-boot-test for Normal data is comparable

with NNML, and for Poisson data, its performance is better than NNML, espe-

cially when the features are hard to distinguish from each other. When the rank

is large, both methods fail to find the true rank but Decon-boot-test’s estimated

rank is much closer to the true rank. When the data is not NMF structured,

146

Table 4.8: Computation time per replicate (average among the 50 replicates) in
hours for Normal NMF data when bootstrap size is 50.

rank 2 3 4 6 8 10
m = 1 0.1 0.5 0.5 1.0 2.1 3.5
m = 3 0.4 1.3 1.3 3.0 7.8 10.2

Boot-test m = 10 2.7 2.5 4.2 10.0 25.8 33.5
m = 30 3.6 6.3 11.7 28.7 69.7 95.7
m = 50 5.7 12.9 23.0 53.6 104.0 186.5

Decon-boot-test 2.0 2.5 3.0 8.3 23.5 33.5

m: number of different initial values used for each NMF.

Decon-boot-test selects very large rank, while NNLM selects rank 1 for all repli-

cates. Thus, Decon-boot-test gives a much clearer indication of the lack of NMF

structure, which can be used to better interpret the data.

4.4 Real Data application

We apply our NMF rank selection method to moving picture data [14]. These

data sets have previously been analysed using NMF in Section 2.3.2 Chapter 2,

but without a good way to select the rank, it is possible that there are undetected

biologically important patterns in the data that can be discovered by reanalysing

the data using the number of types selected by the Decon-boot-test method. We

therefore apply our method to the gut data from both individuals to choose the

number of types, and examine the fitted types and weights to obtain biological

insights that were not observed in previous analyses of the data using a different

number of types. Our method selects NMF rank as 12 for Person 1’s gut data and

NMF rank as 6 for Person 2’s gut data. The computation time is 22.3 hours for

Person 1’s gut data and 9.3 hours for person 2’s gut data.

To examine the microbiome community structure of the gut from the NMF

results, we plot the relative abundance of each genus in each feature in Figure

4.2 for Person 1’s gut and Figure 4.4 for Person 2’s gut. The elements of each

feature sum to 1 so the coefficients can be interpreted as the proportions of each

OTU in that feature. As the NMF results are usually highly sparse, we use a

cut-off of 3% for each type. That is, only those genera with OTUs above 3%

composition in at least one type are shown in the plot. The outstanding OTUs

147

La
ch

no
sp

ira
ce

ae
(fa

m
ily

)

B
la

ut
ia

Fa
ec

al
ib

ac
te

riu
m

F
in

eg
ol

di
a

La
ch

no
sp

ira

La
ct

ob
ac

ill
us

P
ha

sc
ol

ar
ct

ob
ac

te
riu

m

R
os

eb
ur

ia

S
ta

ph
yl

oc
oc

cu
s

B
ac

te
ro

id
es

P
re

vo
te

lla

B
ac

te
ro

id
al

es
(o

rd
er

)

C
or

yn
eb

ac
te

riu
m

A
lc

al
ig

en
ac

ea
e(

fa
m

ily
)

E
sc

he
ric

hi
a

F
us

ob
ac

te
riu

m

A
kk

er
m

an
si

a

F
irm

ic
ut

es

B
ac

te
ro

id
es

A
ct

in
ob

ac
te

ria

P
ro

te
ob

ac
te

ria

F
us

ob
ac

te
ria

Ve
rr

uc
om

ic
ro

bi
a

0.0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
OTU

pr
op

or
tio

n
by

 g
en

er
a

type 1

type 2

type 3

type 4

type 5

type 6

type 7

type 8

type 9

type 10

type 11

type 12

Figure 4.2: Relative abundance of major genera for each type from Person 1’s gut
feature matrix T . The genera from the same phylum are in the same block which
is labeled by their phylum names and the bars are labeled by the genus names
or higher level of taxonomic rank if it’s unclassified at genus level. Each bar is
colored according to its type.

148

Nov Jan Mar May

0.0
0.2

0.4
0.6

0.8
1.0

time

we
igh

t

type 1
type 3
type 7
type 8
type 9
type 11
type 12

10−27

10−22 12−02 12−17 01−01 01−30

Nov Jan Mar May

0.0
0.2

0.4
0.6

0.8
1.0

time

we
igh

t

type 2
type 4
type 5
type 6
type 10

Figure 4.3: Gut weight matrix time series plot for Person 1. For clarity, we separate
the 12 time series into two panels. The top plot shows Person 1’s gut weight matrix
on type 1, type 3, type 7, type 8, type 9, type 11 and type 12 from 12 rank NMF,
whose weights are more stable. The bottom plot shows the weight matrix for
other types with more fluctuating weights. Each weight is colored the same as its
corresponding type.

149

Fa
ec

al
ib

ac
te

riu
m

F
in

eg
ol

di
a

La
ch

no
sp

ira

P
ep

to
ni

ph
ilu

s

R
um

in
oc

oc
cu

s

S
ta

ph
yl

oc
oc

cu
s

S
tr

ep
to

co
cc

us

Ve
ill

on
el

la

A
lis

tip
es

B
ac

te
ro

id
es

P
ar

ab
ac

te
ro

id
es

P
or

ph
yr

om
on

as

P
re

vo
te

lla

B
ac

te
ro

id
al

es
(o

rd
er

)

P
as

te
ur

el
la

ce
ae

(fa
m

ily
)

E
sc

he
ric

hi
a

H
ae

m
op

hi
lu

s

N
ei

ss
er

ia

F
us

ob
ac

te
riu

m

A
kk

er
m

an
si

a

F
irm

ic
ut

es

B
ac

te
ro

id
es

P
ro

te
ob

ac
te

ria

F
us

ob
ac

te
ria

Ve
rr

uc
om

ic
ro

bi
a

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
OTU

pr
op

or
tio

n
by

 g
en

er
a

type 1

type 2

type 3

type 4

type 5

type 6

Figure 4.4: Relative abundance of major genera for each type from Person 2’s gut
feature matrix T . The genera from the same phylum are in the same block which
is labeled by their phylum name and the bars are labeled by the genus names or
higher level of taxonomic rank if it’s unclassified at genus level. Each bar is colored
according to its type.

150

2009 2010

0.0
0.2

0.4
0.6

0.8
1.0

time

we
igh

t

type 3
type 4
type 5
type 6

11−22
12−10

02−03 07−27
08−14

2009 2010

0.0
0.2

0.4
0.6

0.8
1.0

time

we
igh

t

type 1
type 2

04−07 06−13 10−22

Figure 4.5: Gut weight matrix time series plot for Person 2. The top plot shows
Person 2’s gut weight matrix normalized on type 3, type 4, type 5 and type 6 from
6 rank NMF. The bottom plot shows the weight matrix for other types. Each
weight is colored the same as its corresponding type.

151

for features of both persons’ guts are from the phyla Firmicutes, Bacteroides,

Actinobacteria, Proteobacteria, Fusobacteria and Verrucomicrobia. Most of the

features have abundant Firmicutes and Bacteroides which is consistent with the

fact that Firmicutes and Bacteroidetes constitute 90% of the gut microbiota, while

Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia contribute to

the microbial population to a lesser extent [92].

Figure 4.2 shows the abundance of the main genera in Person 1’s gut features.

We find only 30 out of more than eighteen hundred OTUs are larger than the

cut-off of 3%. These 30 OTUs are from 17 genera. From the plot, we see Type 2,

4, 5 and 6 share similar compositions at genus level. They all have extremely high

abundance of Bacteroides and much lower abundance of other genera. These types

differ in the compositions of other genera. In particular, the secondary genus in

the community is Faecalibacterium in Type 4, Phascolarctobacterium in Type 2,

an unclassified genus from order Bacteroides in Type 5 and Escherichia in Type 6.

Type 10 is dominated by Akkermansia rather than Bacteroides. As lean individu-

als have more Bacteroides, while obese individuals have more Firmicutes in their

intestinal microbiota and the abundance of Akkermansia is negatively correlated

to human’s weight [103] [108], Type 2, Type 4, Type 5, Type 6 and Type 10 may

be healthy communities with regard to body weight. Type 1 mainly consists of

Escherichia and an unclassified genus from order Bacteroidales. We know that a

number of species of Escherichia are pathogenic [42], so this type may be associ-

ated with infection with pathogens. While the species of the OTUs in Escherichia

are not classified in the gut data, further research is needed to draw the conclu-

sion. Type 8’s major genus is Prevotella whose increased abundance is linked to

inflammatory disorders in emerging studies, suggesting that at least some strains

exhibit pathobiontic properties [59]. After an intervention with a Mediterranean

diet and a low-fat diet, increased Prevotella and Bacteroides levels have also been

observed [87], so Type 8 could be associated with a short-term change of diet.

Less abundant genera in Type 8 such as Finegoldia, Staphylococcus, Lactobacil-

lus, Corynebacterium and Fusobacterium have, on rare occassions, been found to

cause human infection [17] [64] [91] [5] [1]. So Type 8 could also be associated with

infection. Type 3 consists of Bacteroides, Lachnospira and Akkermansia. Type

152

7 has high proportions of Faecalibacterium and an unclassified genus from family

Lachnospiraceae. Type 11 and Type 12 also have high proportions of Faecalibac-

terium while Type 11 has fairly abundant Lachnospira and Type 12 has fairly

abundant Roseburia. Previous studies suggest that Roseburia and Lachnospira

are strongly associated with vegetable diets, and also negatively associated with

the omnivore diet [104]. Also, Faecalibacterium and Roseburia may be two major

proponents of weight loss [16]. This suggests that Type 3, Type 7, Type 11 and

Type 12 may all be related to low-fat diets. Type 9 has fairly abundant Phasco-

larctobacterium which has been found to increase under high fat diet and to be

positively correlated to a positive mood and body weight [66] [62].

To investigate the temporal dynamics of the Person 1’s gut microbiome, the

weight matrix is plotted in Figure 4.3. The weights for each time point are nor-

malized to sum to 1. We see that there is substantial short-term fluctuation for

all types. Types 6 and 8 have consistently low weights, with the exception of

single-day spikes. One explanation could be Types 6 and 8 are associated with

short-term infections, but more information about the OTUs’ species is needed for

this assumption. It could also be consistent with Type 8 being associated with

diet, if the association is short-term, then the spikes might correspond to the indi-

vidual eating particular foods. Type 9 is dominant with a relatively stable weight

for around one week at end of December which would be consistent with the diet

change and happy mood. Other types show elevated levels for time periods of

weeks or months, indicating changes to the microbial community over time. This

seems plausible dynamics for healthy types.

Figure 4.4 shows the abundance of the main genera in Person 2’s gut features.

33 out of 3131 OTUs have larger than 3% proportions in at least one feature.

These 33 OTUs are from 20 genera. Person 2’s Type 3, Type 5 and Type 6 are

similar. They are all dominated by Bacteroides with the next most abundant

genera, Faecalibacterium and Parabacteroides, appearing in much smaller pro-

portions. Type 4 has high proportions of Bacteroides and Akkermansia. Type

1 is more diverse, with no genus exceeding 20% of the total abundance of this

type. The most abundant genera are Prevotella, Escerichia, Finegolida and Por-

phyromonas. Many species from these genera have previously been associated

153

with periodontitis [77]. Although the species in this dataset are not the ones pre-

viously associated with periodontitis, it seems plausible that this type might be

associated with periodontic infections. Type 2 consists of Streptococcus (gordonii

species and oralis species), Prevotella (nanceiensis species, melaninogenica species

and an unclassified species), Neisseria (subflava species) and a lower abundance

of Staphylococcus (epidermidis species), Veillonella (parvula species and an un-

classified species), an unclassified genus from family Pasteurellaoeae, Haemophilus

(parainfluenzae species) and Fusobacterium (unclassified species). The Prevotella

species in Type 2 are different from the species in Type 1. S. gordonii, V. parvula

and Fusobacterium are known to be opportunistic pathogens that can cause pe-

riodontitis [85] [8] [9]. Also, S. gordonii, V. parvula, H. parainfluenzae and N.

subflava are recognized in opportunistic infections such as endocarditis and menin-

gitis [8] [9] [60] [26] [50]. P. melaninogenica is also an important human pathogen

in various anaerobic infections, often mixed with other aerobic and anaerobic bac-

teria [10]. Thus, Type 2 might also be associated with infection.

Figure 4.5 shows the weights of each type in Person 2’s gut over time. We see

that Types 1 and 2 are usually very low abundance, but have occasional spikes.

This is consistent with these types corresponding to infections. The other features

show much more stability over time, having similar abundance levels over long

periods of time (when normalised with respect to the total of these four types, with

Types 1 and 2 excluded). There are some very abrupt changes to the abundance

levels of these types at various times during the study. This is consistent with

these types representing small variations on a healthy community.

4.5 Conclusion

We have developed an NMF rank selection method based on hypothesis testing

using a deconvolved bootstrap to estimate the null distribution. The simulations

show that our rank selection method can estimate the rank accurately for both

Poisson and Normal NMF data when the true rank is small. When the NMF

features are close or the true NMF rank is large, our method has better performance

than NNLM. We applied our method to a microbiome data set. With the number

of ranks selected, we were able to gain new insights beyond previous analyses of

154

the same data. The new insights are biologically extremely plausible, and will

hopefully lead to new research in the field.

There are a number of directions for future research. Firstly, the sequential

nature of the test means that we need to recompute the null distribution for

each rank, which is computationally very expensive. The test could be made

computationally more efficient for large ranks by using a more efficient search.

Instead of increasing the tested rank by 1 each time, we could increase it by more.

If the test does not reject the null hypothesis, it would then be necessary to perform

the tests for lower ranks. This would increase computation when the rank is low,

but could decrease it significantly for higher rank. More heuristics could be added

to decide which hypothesis tests to perform for maximum efficiency.

Another issue is that a single failure to reject the null hypothesis can cause the

method to select the current rank. It might be possible to develop a more robust

method that combines the output of additional hypothesis tests to estimate the

rank more reliably.

Another direction for future research is estimation of variance for the paramet-

ric bootstrap in the Normal case. The variance is estimated from the residuals

of the model. However, because the model is fitted to the data, these residuals

will be smaller when the rank is larger. For linear regression, there is a correction

to get an unbiased estimate for the variance. However, for NMF, the nonnega-

tivity constraint means that this correction is not applicable, so another method

is needed to obtain a more stable estimate for the variance. This will make the

critical value the test based on from the parametric bootstrap more accurate.

The application of deconvolution to deal with optimization errors in bootstrap

samples has potential applications in any field where full optimization is compu-

tationally expensive. This is common for discrete optimization problems such as

variable selection, clustering, phylogenetics and many other areas. Applying the

deconvolved bootstrap in these areas could prove a very fruitful topic for future

research.

Chapter 5

Conclusion

There are two main research contributions in this thesis. First a general mea-

surement error deconvolution method based on the penalized likelihood and the

associated asymptotic theory is developed. An R package pmledecon is available

through [13]. Building on this new measurement error deconvolution method based

on the penalized likelihood, we further developed a general method for the rank

selection for NMF.

The comparison results of supervised NMF with existing methods in Chapter

2 Section 2.2 and Section 2.3 show that supervised NMF can effectively reduce the

dimensionality of the data to a non-negative and most often sparse data matrix,

which contains sufficient discriminative information for classification purposes and

NMF is able to identify biologically meaningful types representing the subcommu-

nities. NMF is a very useful and effective method for analyzing the microbiome

data.

Chapter 3 develops a deconvolved density estimation method (pmledecon)

which can be used to estimate the true underlying density for variable contami-

nated with additive error. The pmledecon method is based on maximizing penal-

ized log-likelihood estimation with a smoothness penalty on the estimated den-

sity. We prove the consistency of our method and show the strong point of our

method at estimating the deconvolved density by comparing with other deconvo-

lution methods in both simulation and real data application. Deconvolution is an

important problem which arises in a large number of real-world experiments, so

this method should have broad applicability, in addition to being a key component

of the method developed in Chapter 4.

Chapter 4 provides an NMF rank selection method (Decon-boot-test) based on

hypothesis testing using a deconvolved bootstrap to estimate the null distribution.

The simulations show that Decoon-boot-test can estimate the true NMF ranks

155

156

accurately for both Poisson and Normal data. Application of NMF with Decon-

boot-test estimated rank on the same microbiome data used in Chapter 2 brings

more biologically plausible insights than previous results in Chapter 2.

NMF is a powerful tool for identifying the key features of microbial communi-

ties. With the NMF rank estimated appropriately by Decon-boot-test, the iden-

tified features are very interpretable and can lead to important biological insights

into the structure of the communities. In addition, the low-dimensional represen-

tation of NMF applied on the extremely complex microbial data allows a number

of analyses to be performed more easily—for example, searching for temporal pat-

terns in the microbiome.

Bibliography

[1] Kevin Afra, Kevin Laupland, Jenine Leal, Tracie Lloyd, and Daniel Gregson.
Incidence, risk factors, and outcomes of fusobacterium species bacteremia.
BMC infectious diseases, 13(1):1–6, 2013.

[2] Kevin R. Arrigo. Marine microorganism and global nutrient cycles. Nature,
437:349–355, 2005.

[3] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. Journal of the Royal
statistical society: series B (Methodological), 57(1):289–300, 1995.

[4] Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate
in multiple testing under dependency. Annals of statistics, pages 1165–1188,
2001.

[5] Kathryn Bernard. The genus corynebacterium and other medically relevant
coryneform-like bacteria. Journal of clinical microbiology, 50(10):3152–3158,
2012.

[6] David Berry and Stefanie Widder. Deciphering microbial interactions and
detecting keystone species with co-occurrence networks. Frontiers in micro-
biology, 5:219, 2014.

[7] M.W. Berry and M. Browne. Algorithms and applications for approximate
nonnegative matrix factorization. Computational statistics & data analysis,
52:155–173, 2007.

[8] GPA Bongaerts, BW Schreurs, F Verduyn Lunel, JAM Lemmens,
M Pruszczynski, and MAW Merkx. Was isolation of veillonella from spinal
osteomyelitis possible due to poor tissue perfusion? Medical hypotheses,
63(4):659–661, 2004.

[9] Marissa Broadley and Steven J Schweon. Get the facts about fusobacterium.
Nursing2020, 47(5):64–65, 2017.

[10] Itzhak Brook. Anaerobic infections: diagnosis and management. CRC Press,
2007.

[11] Jean-Philippe Brunet, Pablo Tamayo, Todd R Golub, and Jill P Mesirov.
Metagenes and molecular pattern discovery using matrix factorization. Pro-
ceedings of the national academy of sciences, 101(12):4164–4169, 2004.

157

158

[12] Yun Cai, Hong Gu, and Toby Kenney. Dbnmfrank: Rank selection for non-
negative matrix factorization. https://CRAN.R-project.org/package=

DBNMFrank, 2021.

[13] Yun Cai, Hong Gu, and Toby Kenney. pmledecon: Deconvolution density
estimation with penalised mle. https://CRAN.R-project.org/package=

pmledecon, 2021.

[14] J Gregory Caporaso, Christian L Lauber, Elizabeth K Costello, Donna Berg-
Lyons, Antonio Gonzalez, Jesse Stombaugh, Dan Knights, Pawel Gajer,
Jacques Ravel, Noah Fierer, et al. Moving pictures of the human micro-
biome. Genome biology, 12(5):1–8, 2011.

[15] R.J. Carroll, D. Ruppert, L.A. Stefanski, and C.M. Crainiceanu. Measure-
ment Error in Nonlinear Models: A Modern Perspective, Second Edition.
Chapman & Hall/CRC Monographs on Statistics & Applied Probability.
CRC Press, 2006.

[16] Chandra Kanti Chakraborti. New-found link between microbiota and obe-
sity. World journal of gastrointestinal pathophysiology, 6(4):110, 2015.

[17] Fernando Cobo. Infections caused by anaerobic microorganisms. 2021.

[18] Fabienne Comte and Claire Lacour. Data-driven density estimation in the
presence of additive noise with unknown distribution. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 73(4):601–627, 2011.

[19] Fabienne Comte, Yves Rozenholc, and Marie-Luce Taupin. Penalized con-
trast estimator for adaptive density deconvolution. Canadian Journal of
Statistics, 34(3):431–452, 2006.

[20] Fabienne Comte, Adeline Samson, and Julien J Stirnemann. Deconvolution
estimation of onset of pregnancy with replicate observations. Scandinavian
Journal of Statistics, 41(2):325–345, 2014.

[21] Massimo Costalonga and Mark C Herzberg. The oral microbiome and
the immunobiology of periodontal disease and caries. Immunology letters,
162(2):22–38, 2014.

[22] RP Darveau, G Hajishengallis, and MA Curtis. Porphyromonas gingivalis as
a potential community activist for disease. Journal of dental research, page
0022034512453589, 2012.

[23] Aurore Delaigle and Irène Gijbels. Bootstrap bandwidth selection in kernel
density estimation from a contaminated sample. Annals of the Institute of
Statistical Mathematics, 56(1):19–47, 2004.

[24] Aurore Delaigle, Peter Hall, Alexander Meister, et al. On deconvolution with
repeated measurements. The Annals of Statistics, 36(2):665–685, 2008.

https://CRAN.R-project.org/package=DBNMFrank
https://CRAN.R-project.org/package=DBNMFrank
https://CRAN.R-project.org/package=pmledecon
https://CRAN.R-project.org/package=pmledecon

159

[25] Karthik Devarajan. Nonnegative matrix factorization: an analytical and in-
terpretive tool in computational biology. PLoS Comput Biol, 4(7):e1000029,
2008.

[26] Gustavo Deza, Gemma Martin-Ezquerra, Julià Gómez, Judit Villar-Garćıa,
August Supervia, and Ramon M Pujol. Isolation of haemophilus influenzae
and haemophilus parainfluenzae in urethral exudates from men with acute
urethritis: a descriptive study of 52 cases. Sexually transmitted infections,
92(1):29–31, 2016.

[27] Deacqunita L Diggs et al. Polycyclic aromatic hydrocarbons and digestive
tract cancers: a perspective. Journal of Environmental Science and Health,
Part C, 29(4):324–357, 2011.

[28] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnega-
tive matrix t-factorizations for clustering. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 126–135, 2006.

[29] Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax
character of the sample distribution function and of the classical multinomial
estimator. The Annals of Mathematical Statistics, pages 642–669, 1956.

[30] M Émile Borel. Les probabilités dénombrables et leurs applications
arithmétiques. Rendiconti del Circolo Matematico di Palermo (1884-1940),
27(1):247–271, 1909.

[31] Attila Frigyesi and Mattias Höglund. Non-negative matrix factorization for
the analysis of complex gene expression data: identification of clinically rel-
evant tumor subtypes. Cancer informatics, 6:CIN–S606, 2008.

[32] Kei E Fujimura, Nicole A Slusher, Michael D Cabana, and Susan V Lynch.
Role of the gut microbiota in defining human health. Expert review of anti-
infective therapy, 8(4):435–454, 2010.

[33] Renaud Gaujoux and Cathal Seoighe. The package NMF: manual pages,
2015. R package version 0.20.6.

[34] S. Giguere, J. F. Prescott, J. D. Baggot, R. D. Walker, and P. M. Dowling.
Antimicrobial Therapy in Veterinary Medicine (4th ed.). Wiley-Blackwell,
USA, 2006.

[35] J.A. Gilbert, J.A. Steele, and J.G. Caporaso. Defining seasonal marine mi-
crobial community dynamics. The ISME journal, 6:298–308, 2012.

[36] Nicolas Gillis. The why and how of nonnegative matrix factorization. Regu-
larization, optimization, kernels, and support vector machines, 12(257):257–
291, 2014.

160

[37] E. Gonzalez and Y. Zhang. Accelerating the lee-seung algorithm for non-
negative matrix factorization. Dept. Comput. & Appl. Math., Rice Univ.,
Houston, TX, Tech. Rep. TR-05-02, 2005.

[38] Peter J Green. On use of the em algorithm for penalized likelihood esti-
mation. Journal of the Royal Statistical Society: Series B (Methodological),
52(3):443–452, 1990.

[39] Peter J Green and Bernard W Silverman. Nonparametric regression and
generalized linear models: a roughness penalty approach. Crc Press, 1993.

[40] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learn-
ing: Data mining, inference, and prediciton. The Mathematical Intelligencer,
27:83–85, 2005.

[41] Matthew D Hoffman, David M Blei, and Perry R Cook. Bayesian nonpara-
metric matrix factorization for recorded music. In ICML, 2010.

[42] C Michael Hogan. Bacteria. Encyclopedia of Earth. Washington DC: Na-
tional Council for Science and the Environment, 2010.

[43] C. Holling. Some characteristics of simple types of predation and parasitism.
The Canadian Entomologist, 91:385–398, 1959.

[44] I Holmes, K Harris, and C Quince. Dirichlet multinomial mixtures: Gener-
ative models for microbial metagenomics. PLos One, 7:e30126, 2012.

[45] P. Hoyer. Non-negative matrix factorization with sparseness constraints. The
Journal of Machine Learning Research, 5:1457–1469, 2004.

[46] Patrik O Hoyer. Non-negative matrix factorization with sparseness con-
straints. Journal of machine learning research, 5(9), 2004.

[47] David A Hughes. Effects of carotenoids on human immune function. Pro-
ceedings of the Nutrition Society, 58(03):713–718, 1999.

[48] Xingpeng Jiang, Morgan GI Langille, Russell Y Neches, Marie Elliot, Si-
mon A Levin, Jonathan A Eisen, Joshua S Weitz, and Jonathan Dushoff.
Functional biogeography of ocean microbes revealed through non-negative
matrix factorization. PloS one, 7(9):e43866, 2012.

[49] Fabienne Comte. Contribution from Claire Lacour Julien Stirnemann, Ade-
line Samson. Deconvolution density estimation with adaptive methods for a
variable prone to measurement error, 2012. R package version 1.0.

[50] Jeffrey B Kaplan and Daniel H Fine. Biofilm dispersal of neisseria subflava
and other phylogenetically diverse oral bacteria. Applied and Environmental
Microbiology, 68(10):4943–4950, 2002.

161

[51] Gérard Kerkyacharian, Thanh Mai Pham Ngoc, Dominique Picard, et al.
Localized spherical deconvolution. The Annals of Statistics, 39(2):1042–
1068, 2011.

[52] H. Kim and H. Park. Sparse non-negative matrix factorizations via alter-
nating non-negativity-constrained least squares for microarray data analysis.
Bioinformatics, 23:1495–1502, 2007.

[53] Hyunsoo Kim and Haesun Park. Sparse non-negative matrix factorizations
via alternating non-negativity-constrained least squares for microarray data
analysis. Bioinformatics, 23(12):1495–1502, 2007.

[54] D. Knights, E.K. Costello, and R. Knight. Supervised classification of human
microbiota. FEMS microbiology reviews, 35:343–359, 2011.

[55] D Knights, J Kuczynski, and E S Charlson. Bayesian community-wide
culture-independent microbial source tracking. Nat Methods, 8:761–3, 2011.

[56] Mikael Kuusela and Victor M Panaretos. Statistical unfolding of elementary
particle spectra: Empirical bayes estimation and bias-corrected uncertainty
quantification. The Annals of Applied Statistics, 9(3):1671–1705, 2015.

[57] B Kwiatkowska and M Maślińska. Macrolide therapy in chronic inflamma-
tory diseases. Mediators of inflammation, 2012, 2012.

[58] Nan Laird. Nonparametric maximum likelihood estimation of a mixing dis-
tribution. Journal of the American Statistical Association, 73(364):805–811,
1978.

[59] Jeppe Madura Larsen. The immune response to prevotella bacteria in chronic
inflammatory disease. Immunology, 151(4):363–374, 2017.

[60] Yevgeniy Latyshev, Aswin Mathew, Jeffrey M Jacobson, and Eron Sturm.
Purulent pericarditis caused by haemophilus parainfluenzae. Texas Heart
Institute Journal, 40(5):608, 2013.

[61] Hans Laurberg, Mads Græsbøll Christensen, Mark D Plumbley, Lars Kai
Hansen, and Søren Holdt Jensen. Theorems on positive data: On the unique-
ness of nmf. Computational intelligence and neuroscience, 2008, 2008.

[62] Virginie Lecomte, Nadeem O Kaakoush, Christopher A Maloney, Mukesh
Raipuria, Karina D Huinao, Hazel M Mitchell, and Margaret J Morris.
Changes in gut microbiota in rats fed a high fat diet correlate with obesity-
associated metabolic parameters. PloS one, 10(5):e0126931, 2015.

[63] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788–791, 1999.

162

[64] Ezra Lee and Fatima Anjum. Staphylococcus epidermidis. In StatPearls
[Internet]. StatPearls Publishing, 2021.

[65] M A Leibold, M Holyoak, and N Mouquet. Bacterial community assembly
based on funcional genes rather than species. PLos Natl Acad Sci, 108:14288–
93, 2011.

[66] L Li, Qiang Su, B Xie, L Duan, W Zhao, D Hu, R Wu, and Hong Liu.
Gut microbes in correlation with mood: case study in a closed experimental
human life support system. Neurogastroenterology & Motility, 28(8):1233–
1240, 2016.

[67] C J Lin. On the convergence of multiplicative update algorithms for non-
negative matrix factorization. Neural Networks, IEEE Transactions on,
18:1589 – 1596, 2007.

[68] Chih-Jen Lin. On the convergence of multiplicative update algorithms for
nonnegative matrix factorization. IEEE Transactions on Neural Networks,
18(6):1589–1596, 2007.

[69] Xihui Lin and Paul C Boutros. Optimization and expansion of non-negative
matrix factorization. BMC bioinformatics, 21(1):1–10, 2020.

[70] Lei Liu, Michael Levine, and Yu Zhu. A functional em algorithm for mix-
ing density estimation via nonparametric penalized likelihood maximization.
Journal of Computational and Graphical Statistics, 18(2):481–504, 2009.

[71] Ming Chung Liu and Robert L Taylor. A consistent nonparametric density
estimator for the deconvolution problem. Canadian Journal of Statistics,
17(4):427–438, 1989.

[72] Catherine Lozupone, Manuel E Lladser, Dan Knights, Jesse Stombaugh, and
Rob Knight. Unifrac: an effective distance metric for microbial community
comparison. The ISME journal, 5(2):169, 2011.

[73] Oscar-Hernan Madrid-Padilla, Nicholas G Polson, and James Scott. A decon-
volution path for mixtures. Electronic Journal of Statistics, 12(1):1717–1751,
2018.

[74] P. Massart. The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequal-
ity. The Annals of Probability, 18(3):1269 – 1283, 1990.

[75] Paul J McMurdie and Susan Holmes. Waste not, want not: why rarefying
microbiome data is inadmissible. PLoS Comput Biol, 10(4):e1003531, 2014.

[76] Paul J McMurdie and Susan Holmes. Waste not, want not: why rarefying mi-
crobiome data is inadmissible. PLoS computational biology, 10(4):e1003531,
2014.

163

[77] Feng Mei, Mengru Xie, Xiaofei Huang, Yanlin Long, Xiaofeng Lu, Xiaoli
Wang, and Lili Chen. Porphyromonas gingivalis and its systemic impact:
Current status. Pathogens, 9(11):944, 2020.

[78] A Mencarelli, E Distrutti, B Renga, and et al. Development of non-antibiotic
macrolide that corrects inflammation-driven immune dysfunction in models
of inflammatory bowel diseases and arthritis. European journal of pharma-
cology, 665(1):29–39, 2011.

[79] John Mendelsohn and John Rice. Deconvolution of microfluorometric his-
tograms with b splines. Journal of the American Statistical Association,
77(380):748–753, 1982.

[80] Lidan Miao and Hairong Qi. Endmember extraction from highly mixed data
using minimum volume constrained nonnegative matrix factorization. IEEE
Transactions on Geoscience and Remote Sensing, 45(3):765–777, 2007.

[81] B. D. Muegge et al. Diet drives convergence in gut microbiome functions
across mammalian phylogeny and within humans. Science, 332:970–974,
2011.

[82] Laura Muzzarelli, Susanne Weis, Simon B Eickhoff, and Kaustubh R Patil.
Rank selection in non-negative matrix factorization: systematic comparison
and a new mad metric. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2019.

[83] R Nelder, John A.and Mead. A simplex method for function minimization.
The Computer Journal, 7(308):13, 1965.

[84] Paul C Odiachi and Dennis C Prieve. Removing the effects of additive
noise from tirm measurements. Journal of colloid and interface science,
270(1):113–122, 2004.

[85] Ok-Jin Park, Yeongkag Kwon, Chaeyeon Park, Yoon Ju So, Tae Hwan Park,
Sungho Jeong, Jintaek Im, Cheol-Heui Yun, and Seung Hyun Han. Strepto-
coccus gordonii: Pathogenesis and host response to its cell wall components.
Microorganisms, 8(12):1852, 2020.

[86] V. V. Phelan, W. T. Liu, K. Pogliano, and P. Dorrestein. Microbial metabolic
exchange—the chemotype-to-phenotype link. Nat Chem Biol, 8:26–35, 2012.

[87] Gabriela Precup and Dan-Cristian Vodnar. Gut prevotella as a possible
biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive
literature review. British Journal of Nutrition, 122(2):131–140, 2019.

[88] J. Qin et al. A human gut microbial gene catalogue established by metage-
nomic sequencing. nature, 464:59–65, 2010.

164

[89] Junjie Qin, Ruiqiang Li, Jeroen Raes, Manimozhiyan Arumugam, Kristof-
fer Solvsten Burgdorf, Chaysavanh Manichanh, Trine Nielsen, Nicolas Pons,
Florence Levenez, Takuji Yamada, et al. A human gut microbial gene cat-
alogue established by metagenomic sequencing. nature, 464(7285):59–65,
2010.

[90] Alban Ramette. Multivariate analyses in microbial ecology. FEMS Microbi-
ology Ecology, 62(2):142–160, 2007.

[91] Franca Rossi, Carmela Amadoro, and Giampaolo Colavita. Members of
the lactobacillus genus complex (lgc) as opportunistic pathogens: a review.
Microorganisms, 7(5):126, 2019.

[92] Emidio Scarpellini, Gianluca Ianiro, Fabia Attili, Chiara Bassanelli, Adri-
ano De Santis, and Antonio Gasbarrini. The human gut microbiota and
virome: Potential therapeutic implications. Digestive and Liver Disease,
47(12):1007–1012, 2015.

[93] Inna Sekirov, Shannon L Russell, L Caetano M Antunes, and B Brett Finlay.
Gut microbiota in health and disease. Physiological reviews, 90(3):859–904,
2010.

[94] H Sebastian Seung and Daniel D Lee. Algorithms for non-negative matrix
factorization. Advances in neural information processing systems, 13:556–
562, 2001.

[95] M. Shafiei, K.A. Dunn, E. Boon, S.M. MacDonald, D.A. Walsh, H. Gu,
and J.P. Bielawski. Biomico: a supervised bayesian model for inference of
microbial community structure. Microbiome, 3(1):1, 2015.

[96] M. Shafiei, K.A. Dunn, H. Chipman, H. Gu, and J.P. Bielawski. Biomenet:
A bayesian model for inference of metabolic divergence among microbial
communities. PLoS Computational Biology, 10:e1003918, 2014.

[97] F. Shahnaz, M. Berry, and R. Plemmons. Document clustering using
nonnegative matrix factorization. Information Processing & Management,
42:373–386, 2006.

[98] M Shinkai, M O Henke, and B K Rubin. Macrolide antibiotics as im-
munomodulatory medications: proposed mechanisms of action. Pharma-
cology & therapeutics, 117(3):393–405, 2008.

[99] BW Silverman, MC Jones, JD Wilson, and DW Nychka. A smoothed em
approach to indirect estimation problems, with particular reference to stere-
ology and emission tomography. Journal of the Royal Statistical Society:
Series B (Methodological), 52(2):271–303, 1990.

165

[100] Aristeidis Sotiras, Jon B Toledo, Raquel E Gur, Ruben C Gur, Theodore D
Satterthwaite, and Christos Davatzikos. Patterns of coordinated cortical re-
modeling during adolescence and their associations with functional special-
ization and evolutionary expansion. Proceedings of the National Academy of
Sciences, 114(13):3527–3532, 2017.

[101] Steven Squires, Adam Prügel-Bennett, and Mahesan Niranjan. Rank selec-
tion in nonnegative matrix factorization using minimum description length.
Neural computation, 29(8):2164–2176, 2017.

[102] Edward Susko and Robert Nadon. Estimation of a residual distribution with
small numbers of repeated measurements. Canadian Journal of Statistics,
30(3):383–400, 2002.

[103] Peter J Turnbaugh, Ruth E Ley, Michael A Mahowald, Vincent Magrini,
Elaine R Mardis, and Jeffrey I Gordon. An obesity-associated gut micro-
biome with increased capacity for energy harvest. nature, 444(7122):1027–
1031, 2006.

[104] Mirco Vacca, Giuseppe Celano, Francesco Maria Calabrese, Piero Portincasa,
Marco Gobbetti, and Maria De Angelis. The controversial role of human gut
lachnospiraceae. Microorganisms, 8(4):573, 2020.

[105] Xiao-Feng Wang and Bin Wang. Deconvolution estimation in measurement
error models: the r package decon. Journal of statistical software, 39(10),
2011.

[106] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics bul-
letin, pages 80–83, 1945.

[107] Simon N Wood. Inferring uk covid-19 fatal infection trajectories from daily
mortality data: Were infections already in decline before the uk lockdowns?
Biometrics, 2021.

[108] Qi Zhou, Yanfeng Zhang, Xiaoxia Wang, Ruiyue Yang, Xiaoquan Zhu, Ying
Zhang, Chen Chen, Huiping Yuan, Ze Yang, and Liang Sun. Gut bacteria
akkermansia is associated with reduced risk of obesity: evidence from the
american gut project. Nutrition & metabolism, 17(1):1–9, 2020.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Organization of the Thesis

	Learning Microbial Community Structures with Supervised and Unsupervised Non-negative Matrix Factorization
	Review of my MSc. thesis work
	The NMF model
	Supervised NMF
	Method for choosing the NMF rank
	Prediction
	Graphical display of NMF results

	Simulations
	Simulation Based on NMF
	Simulation with outliers
	Simulation with zero inflated weight matrix
	Simulation Based on Dynamic Ecology Models
	Simulation for the performance of NMF as a clustering method

	Real data results and discussion
	The mammal data
	The moving picture data
	The Qin data

	Conclusion

	Deconvolution density estimation with penalized MLE
	Introduction
	Deconvolution based on penalized log-likelihood
	Practical optimization Issues
	Choosing Lg and Lg
	Non-negativity constraints
	Initial values
	Computational Singularity
	Selecting Lg

	Theory
	Preliminary Results
	Constructing Lg
	Constructing Lg
	Proving Consistency

	Simulations
	Simulation design
	Simulation Results

	Real data analysis
	Conclusion

	Rank Selection for Non-negative Matrix Factorization
	Introduction
	Methods
	Likelihood ratio test
	Direct testing with bootstrapped null distribution (Boot-test)
	Testing with deconvolved bootstrap null distribution (Decon-boot-test)

	Simulation
	Poisson data simulation
	Normal data simulation
	Conclusion of simulations

	Real Data application
	Conclusion

	Conclusion
	Bibliography

