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ABSTRACT 

The potential of selected flavonoids in reducing carcinogen-induced reactive 

oxygen species (ROS) and DNA damage through the activation of nuclear factor erythroid 

2 p45 (NF-E2)-related factor (Nrf2)/antioxidant response element (ARE) pathway was 

studied in vitro. Dose-dependent effects of pre-incubated flavonoids on pro-carcinogen 4-

[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone (NNKAc)-induced ROS and 

DNA damage in human bronchial epithelial cells were studied in comparison to non-

flavonoids. The most effective flavonoids were assessed for the activation of Nrf2/ARE 

pathway. Genistein, procyanidin B2 (PCB2), and quercetin significantly suppressed the 

NNKAc-induced ROS and DNA damage. PCB2 significantly upregulated the activation of 

Nrf2 and protein kinase B through phosphorylation. Genistein and PCB2 significantly 

upregulated the phospho-Nrf2 nuclear translocation and catalase activity. In summary, 

quercetin, genistein, and PCB2 reduced the NNKAc-induced ROS and DNA damage in 

concert with activation of Nrf2. Further studies are required to understand the role of 

dietary flavonoids on the regulation of Nrf2/ARE pathway in relation to carcinogenesis. 

Keywords: Dietary flavonoids, DNA damage, lung epithelial cells, Nrf2/ARE pathway, 

Reactive oxygen species 
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CHAPTER 1: INTRODUCTION 

According to the World Health Organization (WHO), cancer is the second leading 

cause of death worldwide after deaths caused by heart diseases (1). In 2020, nearly 19.3 

million new cancer cases and 10 million cancer-related deaths occurred (2). Among 

observed cancers, breast, lung, colorectal, and prostate cancers were the most common (2). 

In 2020, breast and lung cancers were the leading cancers accounted for worldwide higher 

incidence and mortality rates, respectively (2). In Canada, it is estimated that nearly 23,000 

new cases and 85,000 deaths are related to cancers in 2022, and the prevalence of cancer 

among men is expected to be higher than among women in Canada (3). Even though there 

are many therapeutic approaches such as chemotherapy, radiation, and surgery to overcome 

cancers, these treatments are known to cause severe side effects (4–6). Even after 

therapeutic treatments on cancers, the recurrence and less than five-year net survival rates 

of several cancers such as lung cancer are common among cancer patients who have 

undergone treatments (3,7,8).  

WHO recommends regular eating of adequate fruits and vegetables to reduce the 

risk of cancer (1). Phytochemicals present in fruits and vegetables have been shown to 

reduce the prevalence of cancer in numerous studies (9–11). Therefore, dietary 

phytochemicals have been gaining attention in the prevention of cancers (12). The reported 

cancer prevention by dietary phytochemicals, especially (poly)phenols such as flavonoids, 

stilbenes, curcuminoids, and phenolic acids have been associated with their antioxidant 

properties (11). These phytochemicals can mitigate oxidative stress caused by the 

excessive generation of reactive oxygen species (ROS) (9–11). Cellular ROS generation 

can be induced by both endogenous and endogenous factors (13-17). The mitochondrial 
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electron transport chain is the primary endogenous source of ROS (13) while ionization 

radiation, hypoxia, smoking, xenobiotics, air pollutants, and atmospheric pressure plasmas 

can contribute to cellular ROS production as exogenous stimuli (14–17). ROS has the 

potential to damage cellular DNA, which can cause cancer if DNA repair is unsatisfactory 

(18–22). DNA damage can be reduced by dietary antioxidants (i.e., flavonoids) by different 

mechanisms such as scavenging ROS, metal ion chelating, oxidative enzyme inhibition, 

and providing antioxidant enzyme cofactors among others (12,23,24). Dietary antioxidants 

can also activate cellular signaling pathways such as the nuclear factor erythroid 2-related 

factor 2 (Nrf2)/antioxidant response element (ARE) pathway against oxidative stress 

(23,25–30). 

In general, the Nrf2/ARE pathway is activated by oxidative stress (25,31). The 

activation of this pathway plays a significant role in the prevention of DNA damage and 

possible carcinogenesis by managing oxidative stress via the expression of antioxidant 

defense enzymes and phase 2 detoxifying enzymes (25,31). Phytochemicals such as 

flavonoids can activate the Nrf2/ARE pathway and upregulate the expression of 

antioxidant and phase 2 detoxifying enzymes even at a stage devoid of oxidative inducers 

(32–34). However, limited studies have been carried out on flavonoids in carcinogen-

induced experimental models with respect to the reduction of ROS and DNA damage 

through the activation of the Nrf2/ARE pathway by the physiologically relevant 

concentrations in vitro.  

In this study, we employed an in vitro model of carcinogen-induced lung damage, 

in which we treated the normal bronchial epithelial cell line BEAS-2B with a known 

carcinogen in cigarette smoke, 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone 
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(NNKAc) (35). Furthermore, an emphasis was given to studying the activation of the 

Nrf2/ARE pathway by the most effective flavonoids in reducing carcinogen-induced ROS 

and DNA damage in bronchial epithelial cells at low concentrations. 

1.1 Hypothesis 

Flavonoids can reduce carcinogen-induced ROS and DNA damage in cultured normal 

bronchial epithelial cells through Nrf2/ARE activation. 

1.2 Research objectives 

Overall objective 

To identify dietary flavonoids, which can reduce carcinogen-induced ROS and DNA 

damage in cultured normal bronchial epithelial cells.  

Specific objectives 

1 To determines the efficacy of selected flavonoids in the reduction of carcinogen-

induced ROS and DNA damage in cultured bronchial epithelial BEAS-2B cells in 

comparison to flavonoid metabolites, phenolic acids, stilbenes, curcuminoids, and 

non-phenolics antioxidants. 

2 To study whether the reduction of carcinogen-induced ROS and DNA damage by 

the most effective flavonoids is through the activation of the Nrf2/ARE pathway in 

BEAS-2B cells. 
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CHAPTER 2: LITERATURE REVIEW 

The first paragraph of Section 2.2, Sections 2.1.1.2, 2.3.1, 2.3.2, 2.3.3, 2.3.3.1, and 

2.3.3.2 (except the last two paragraphs), Table 2, and Figure 4 are published in a peer-

reviewed open-access review article (Suraweera TL, Rupasinghe HPV, Dellaire G, and Xu 

Z. Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer 

Management? Antioxidants. 2020 Oct;9(10):973 [Impact factor of 6.313]). I wrote the first 

draft and the three co-authors who are my advisory committee members, have reviewed 

and provided suggestions and edits. 

2.1 Dietary antioxidants: Polyphenols and flavonoids 

2.1.1 Polyphenols 

Polyphenols are a group of naturally occurring phytochemicals exclusively 

synthesized in plants (36,37). These compounds are plant secondary metabolites and 

protect plants against biotic and abiotic stress caused by free radicals, ultraviolet radiation, 

aggressions from parasites, and pathogens in addition to their role in interactions with the 

environment such as attracting pollinators (36,38). They are also known to exert potential 

health benefits to consumers against several chronic diseases (i.e. certain cancers, diabetes, 

cardiovascular diseases, and neurodegenerative diseases) through different biological 

activities such as antioxidant, anti-inflammatory, anti-diabetic, and anti-cancer activities 

(37,39). Polyphenols are an essential part of the human diet and are abundant in most plant-

based diets (fruits, vegetables, cereals, wine, tea, coffee, chocolate, etc.) (39). However, 

the types and the amounts of polyphenols present in different plant sources differ from one 

to another (40,41).   
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Polyphenols contain one or multiple hydroxyl groups attached to at least one phenyl 

ring (42). Phenolic compounds can vary from simple water-soluble simple phenols and 

their glycosylated forms to condensed, polymerized, or combined high molecular weight, 

mostly water-insoluble, forms of polyphenols. (43).  Based on the chemical structure, 

polyphenols can be classified into phenolic acids, flavonoids, stilbenes, and lignans (Figure 

1)  (44).  

Phenolic acids are the simplest form of polyphenolic compounds (45,46). The basic 

structure of phenolic acid contains at least one carboxylic group and one phenolic ring 

(Figure 1) (45,46).  They can be further classified into hydroxycinnamic acids (derivatives 

of cinnamic acid) and hydroxybenzoate acids (derivatives of benzoic acid) based on the 

C6-C3 and C6-C1 backbones, respectively (45,46).  Phenolic acids are found primarily in 

commonly consumed fruits and vegetables, and particularly in the bran or hull of grains 

and seeds (41). Examples of the most common hydroxycinnamates are caffeic acid 

(sources: coffee, mushroom, and propolis), ferulic acid (sources: cereal grains, spinach, 

fruits, and mushrooms), sinapic acid (sources: berries, rye, and mustard), and p-coumaric 

acid (sources: coffee, garlic, tomato, carrot, grapes, and spinach) (47). In comparison to 

hydroxycinnamates, most of the hydroxybenzoate are available in low concentrations in 

most fruits and vegetables in addition to several exceptions such as gallic acid (sources: 

tea, wine, and grapes), and ellagic acid (source: berries), and found in considerable amounts 

(45–47). These acids are mainly found in conjugated form whereas hydroxycinnamates are 

found as esters of quinic acid (i.e. chlorogenic acid) or glucose and hydroxybenzoate are 

found as glycosylated products (48,49).   
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Stilbenes contain a chemical structure characterized by a C6-C2-C6 carbon skeleton, 

while two benzene rings are linked by a two-carbon methylene bridge (Figure 1) (45,50). 

Stilbenes are found in most food sources in low amounts (51). Resveratrol is one of the 

most studied stilbenes and is mostly found in berries, grapes, and peanuts (47).  

Lignans are diphenolic compounds characterized by the presence of two combined 

phenylpropane units (C6-C3) despite having different chemical structures (Figure 1) 

(39,47,51). Lignans are rich in linseed (i.e. lignanssecoisolariciresinol in high quantities 

and matairesinol in low quantities) (52). Flaxseeds and sesame are also sources of lignans 

(47).   
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Figure 1: Basic chemical structures of different classes of polyphenols   

(Adapted from Grgić et al., 2020, Durazzo et al., 2018, Gómez-Guzmán et al., 2018, 

Losada-Echeberria et al., 2017, and Mojzer et al., 2016  (53–57)) 

  

https://sciprofiles.com/profile/author/dXA3SlU1TUZsZ2N5QUhFQ25XQzNWejA4UTBUbEo3SDhTNWNEZ2ZDQmE3RT0=
https://sciprofiles.com/profile/462639
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2.1.1.1.Flavonoids: classification and dietary sources 

Flavonoids are the most abundant group of polyphenols in the plant kingdom and more 

than 8,000 compounds have been reported to date (47). These compounds are derivatives 

of benzo-γ-pyrone and are mainly present in plants as major pigments (58,59). 

Additionally, flavonoids are also found in most fruits (i.e., apples, berries, grapes, citrus 

fruits, and pears)  and vegetables (i.e., onions, cabbage, cauliflower, spinach, and celery), 

beverages (i.e., red wine, and tea), and legumes (47).  The basic structure of flavonoids is 

universal for each flavonoid characterized by the presence of a C6-C3-C6 carbon structure 

(Figure 1) (51). Based on the stereochemistry, bond between C and B rings, and 

substitutions in the C ring, flavonoids can be further classified into subgroups as flavonols, 

flavones, flavanones, isoflavones, flavanols (flavan-3-ols), anthocyanins, and chalcones 

(51).  The carbon backbone of flavonoids contains two C6 aromatic rings (A and B rings) 

linked to each other by a C3 ring (C ring) (Figure 2) (51). Except in chalcones, all other 

flavonoids have a heterocyclic C ring (51). Furthermore, structural differences within a 

sub-group can be observed due to processes such as hydroxylation, glycosylation, 

dimerization, methylation, and/or isoprenylation (39,60).  

Flavonols are characterized by the configuration of having a double bond between C2 

and C3 carbons, a hydroxyl group at C3, and a carboxylic group at the C4 position (Figure 

2) (47). This configuration of having three functional groups allows flavonols to react with 

different reactive substances (47). They are more ubiquitous in the human diet and are 

generally found as glycosides either with glucose or rhamnose (51). Quercetin and its 

derivatives (onions, apples, berries, and pear), kaempferol (cauliflower, cabbage, spinach, 
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and propolis), and myricetin (herbs, berries, and vegetables) are some of the common 

flavonols found in many dietary sources (47).   

Flavones are similar in structure to flavonols despite one main difference. The 

configuration of flavones consists of a double bond between the C2 and C3 carbons, and a 

carboxylic group at the C4 position but no hydroxyl group at C3 (Figure 2) (47). The free 

hydroxyl groups present in the A and B rings of flavones are mainly responsible for their 

biological activities such as antioxidant activities (47). Although flavones are not widely 

present in most fruits and vegetables, common flavones such as apigenin (parsley, celery, 

oregano, and spinach) and luteolin (broccoli, green peppers, and celery) are found in 

several dietary sources. (47,61).  

Flavanones are characterized by the presence of a carboxyl group at the C4 position 

and the absence of a double bond between the C2 and C3 carbons and the hydroxyl group 

at the C3 position (Figure 2) (47). These compounds are mainly found in citrus fruits and 

naringenin and hesperidin are two of the most commonly found flavanones (47). 

Isoflavones are the only flavonoid sub-group to have its aromatic B ring linked to the 

heterocyclic C ring at the C3 carbon position (Figure 2) (47,51). This configuration results 

in an estrogen-like structure allowing isoflavones to act as agonists or antagonists of 

estrogen receptor interactions (47). Additionally, a double bond between the C2 and C3 

carbons is also present in the isoflavone basic structure (51).  Isoflavones are exclusively 

found in legumes and genistein and daidzein are commonly found in soybean and soybean-

based food products (47). 



10 

 

Flavanols, also known as flavan-3-ols, can be found in food sources in monomeric, 

oligomeric (2-7 monomer), or polymeric forms (51,62). The monomers are called catechins 

while the oligomers and polymers are called proanthocyanins (51,62). Flavanols are 

characterized only by the presence of hydroxyl group in position C3 but no double bond at 

C2-C3 and a carboxyl group at the C4 position (Figure 2) (47). This configuration allows 

flavanols to have four possible non-identical stereoisomers due to the resulting chiral 

carbons (asymmetric carbon atoms bonded to 4 different substituents) at the C2 and C3 

positions (62). The configuration of monomeric flavanols can be cis or trans while 

epicatechins and catechins are the isomers of cis and trans configurations, respectively. 

(62). Both epicatechin and catechin can have two stereoisomers for each compound like (-

)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin (62). However, (-)-

epicatechins and (+)-catechins and their derivatives such as gallocatechin are mainly found 

in plant-based foods and are commonly found in tea and cocoa (62).   

Proanthocyanidins are also known as condensed tannins and are formed by linking 

several flavanol monomers through interflavanic bonds between an A ring of one monomer 

and the pyran ring of another monomer (Figure 2) (45,47,51). Based on these links, 

procyanidins can be further classified into 2 types of structures: A-type and B-type 

structures. A-type structures are characterized by C2-O-C7 or C2-O-C5 bonds and B-type 

structures are characterized by C4-C6 or C4-C8 bonds (62,63). Procyanidin A2 is an 

example of an A-type structure, while procyanidins B2 (Figure 2) and B5 are examples of 

a B-type structure (63). These compounds are commonly found in fruit sources, while 

grape seeds, plums, and berries (black currants, blueberries, strawberries, and cranberries) 

are among the top sources (64). 
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Anthocyanins are the derivatives of flavonols and consist of a hydroxyl group at C3 

carbon and two double bonds at C3-C4 position and an oxygen atom and C1 carbon but no 

carbonyl group at the C4 position (Figure 2) (45,50). This configuration results in a 

structure of a flavylium ion (45,50). Parts of many fruits and vegetables are colored by the 

presence of anthocyanins. These compounds can be commonly found as aglycone (i.e., 

cyanidin, delphinidin, malvidin, and pelargonidin) or glycosylated forms (i.e., cyanidin-3-

O-glucoside) in plants and are commonly found in berries, grapes, and purple carrot 

(47,65).  

Chalcones, precursors of flavonoids are characterized by the absence of a C ring and 

hence these compounds are known as open-chain flavonoids (Figure 2) (51,66). These 

compounds can be commonly found in apples, berries (i.e., bearberries and strawberries), 

tomatoes, and wheat. Phloretin, phloridzin, arbutin, and chalconaringenin are some of the 

common examples of chalcones (51). 
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Figure 2: Chemical structures of different sub-classes of flavonoids  

(Adapted from Dumitru et al., 2021, Nguyen et al., 2020, and Semwal et al., 2016 (67–

69)) 
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2.1.1.2 Hermetic effects of flavonoids 

Hormesis is the bi-phasic concentration/dose-response, often depicted as a U-

shaped dose-response curve of some dietary antioxidants, drugs, and toxins (70). 

Accordingly, at low concentrations/doses, biologically active molecules such as flavonoids 

exert beneficial effects such as stimulation for either adaptation or protection from a stress 

factor (70–73). At high concentrations/doses, they may exert either detrimental/inhibitory 

or toxic effects on the cells or tissue microenvironment (70,72–74). Hence, hormetic 

compounds act as antioxidants at low doses and prooxidants at high doses (9,75–78). For 

example, apigenin at low concentrations (6.25 µM) exerts stimulatory effects on nuclear 

factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway in 

human hepatocellular carcinoma HepG2 cells, significantly increasing mRNA and protein 

expression of Nrf2 and heme oxygenase 1 (HO-1) with activation of phosphatidylinositol-

3-kinase (PI3K)/protein kinase B (Akt) and extracellular signal-regulated protein kinase 

(ERK) 1/2 signaling (71). However, at high concentrations (50 and 100 µM), apigenin 

inhibits cancer promotion by reducing mRNA and protein levels of Nrf2, catalase activity, 

and intracellular glutathione levels in HepG2 cells (74). Similarly, at low concentrations 

(10 µM), luteolin increases the glutathione (GSH) protein expression in human epithelial 

colorectal adenocarcinoma Caco-2 cells, and at higher concentrations (above 15 µM) of 

luteolin decreases GSH expression, showing the hormetic effects (79).  

2.1.1.3 Bioavailability and biotransformation of dietary flavonoids 

Bioavailability is the proportion of a compound in its active form or active moiety 

absorbed by the body and available at the specific site of action (80). Despite numerous 

reported therapeutic effects, flavonoids are known to have low oral bioavailability and vary 
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between and within classes of flavonoids (Table 1) (81). The absorption and bioavailability 

of flavonoids depend on factors such as molecular weight, food matrix, glycosylation, 

metabolic conversion, and interactions between the intestinal microbiota (82,83). Better 

absorption and distribution to the site of action are necessary for flavonoids to have better 

therapeutic efficacy (81).   

Molecular weight affects the absorption and bioavailability of several flavonoids 

(82). Due to high molecular weight and structural complexity, polymeric 

proanthocyanidins are not absorbed from the small intestine but are absorbed from the 

colon into the bloodstream after colonic microbial degradation (83,84). In contrast, Shoi et 

al., 2006 showed that relatively low molecular weight apple proanthocyanidin oligomers, 

such as dimers and pentamers, can be absorbed from the male Wister rat intestine and are 

available in free unconjugated forms (85). The absorption and bioavailability of flavonoids 

also vary due to the nature of the food matrix in which they are present (82,86). For 

example, the absorption and bioavailability of anthocyanins can be enhanced by dissolving 

them in ethanol (i.e. ethanol in red wine) (86). Furthermore, co-administration of 

flavonoids (i.e., green tea catechins with sucrose and naringenin with sucrose) with 

carbohydrates increases flavonoid absorption and bioavailability (87,88).  Meanwhile, 

flavonoid intake with fatty matrixes (i.e., pomegranate anthocyanidins with sunflower oil 

and blueberry anthocyanidins fed with a high-fat diet) increases the clearance time of 

flavonoids (89–91). In contrast, co-administration of flavonoids with proteins reduces the 

bioavailability due to interactions of proteins with flavonoids (i.e., proteins bound with 

rutin and milk proteins bound by tea flavonoids) (89,92). 
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Dietary flavonoids are mainly available in the glycosylated form in the diet and 

when ingested they are mainly transformed to their aglycone form in the human small 

intestine before being absorbed  (93). In the human small intestine, near the brush border, 

lactase phlorizin (LPH) hydrolase hydrolyses the flavonoid glycoside (i.e., quercetin 3-O-

glucoside, quercetin 4ʹ-O-glucoside, and monoglucosides of isoflavones) and results in 

hydrolyzed sugars and the flavonoid aglycone (86,94). Subsequently, aglycones are taken 

up into intestinal epithelial cells by passive diffusion (86). Alternatively, polar glycosides 

(i.e., quercetin 4ʹ-O-glucoside, genistein 7-O-glucoside, and daidzein 7-O-glucoside) can 

be transported into epithelial cells via sodium-dependent glucose transporters; 

sodium/glucose cotransporter 1 (SGLT1) and hydrolyzed by the cytosolic β-glucosidase 

(94,95).  

Absorbed flavonoid aglycones are first conjugated after being taken up into 

epithelial cells of the small intestine by phase 2 enzymes before entering the bloodstream, 

followed by further conjugation in the liver to facilitate their excretion through urine or 

bile (96,97). Sulfates, glucuronides, and/or methylated metabolites of flavonoid aglycones 

are mainly found in the bloodstream due to the actions of sulfotransferases, uridine-5ʹ-

diphosphate-glucuronosyltransferases, and catechol-O-methyltransferases, respectively 

(96). Therefore, the levels of flavonoid aglycones or their natural forms present in the 

bloodstream are very limited, resulting in low physiologically relevant concentrations 

(Table 1) (97). Flavonoids that were not absorbed in the small intestine undergo structural 

modifications in the colon through interactions with colonic microflora. For example, non-

monoglucosides (quercetin-3-O-galactoside and rutin) cannot be hydrolyzed by small 

intestinal enzymes (98). Their sugar moieties undergo hydrolysis in the cecum and large 
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intestine by gut microbiota before the resulting aglycone is absorbed into the bloodstream 

(98). Additionally, flavonoid glucuronides that are being excreted with bile undergo 

microbial hydrolysis in the colon and re-enter the blood circulation (83,97).  Furthermore, 

aglycones can be further catabolized through colonic microbial interactions into low 

molecular weight compounds such as phenolic acids that can be easily absorbed and 

undergo phase 2 metabolism and excreted with urine (99). 
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Table 1: Bioavailability and physiological concentrations of flavonoids 

Group Compound Research 

model 

Physiological 

concentration 

(μM) 

Bioavailability 

(%) 

Ref. 

Flavone Luteolin Rats 0.35- 26.09 

(UN) 

4.1-26 (UN) (100,10

1) 

Chrysin Human 0.012-0.064 

(T) 

0.003-0.02 (T) (102) 

Rats 1.65-3.89 

(Un) 

 (103) 

Flavanone Naringenin Human 7.39 (UN) 5.81(UN) (104) 

Isoflavone Genistein Mice 0.2 – 

1.8 (UN)  

0.39-7 (T) 

5-23.4 (UN) (105–

107) 

Rats 0.08-2.77 

(UN) 

0.4-12.3 (T) 

6.8-33.5 (UN) 

29.14-62.34 

(T) 

(108–

112) 

Human 0.74-6 (UN)  (113–

115) 

Flavonol Quercetin Human 0.026-5 (UN) 0.54 -24 (UN) (116–

119) 

Rats 2.01-3.44 

(UN) 

16-27.5 (UN) (120–

122) 

Anthocyanins C3G Mice  1.7 (UG) 

3.3 (T) 

(123) 

Human 0.00063 (UG) 12.4 (T) (124,12

5) 

Flavan-3-ols Epicatechin Human 0.001-8.9 

(UN) 

44.3-82.5 (T) (126,12

7) 

Proanthocyanidi

n 

Procyanidin 

B2 

Rat 0.5-4.49 

(UD) 

8-11 (T) (128,12

9) 

Human 0.016-0.041 

(UD) 

 (130) 

Chalcones Phloretin Rat 1.14-3.85 

(UN) 

8.67 (UN) (131) 

Abbreviations; C3G: Cyanidin-3-O-glucoside, UN: unconjugated and free flavonoid 

aglycone in plasma or blood, UG: unconjugated and free flavonoid glucoside in plasma or 

blood and UD: unconjugated and free proanthocyanidin dimer in plasma or blood and T: 

combination of aglycone, conjugates and/or metabolites of the flavonoid in plasma or 

blood. 
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2.2 Oxidative stress, DNA damage, and carcinogenesis 

Several metabolic reactions that occur in the human body generate reactive oxygen 

species (ROS) (13). Excessive generation of ROS can lead to oxidative stress that causes 

over 40 non-communicable diseases including certain cancers, diabetes mellitus, 

neurodegenerative diseases, and accelerated aging (132). In addition to the primary ROS 

generation in the mitochondrial electron transport chain (13), exogenous stimuli such as 

air pollutants, cigarette smoke, ionization radiation, xenobiotics, atmospheric pressure 

plasmas, and hypoxia could induce ROS generation (14–17). Non-communicable diseases 

and rapid aging induced by oxidative stress are mainly due to unrecoverable damages that 

occurred to biological macromolecules such as nucleic acids, proteins, and membranes 

(14,133). For instance, DNA can be damaged in the form of single-strand or double-strand 

DNA breakage and stable modifications in nitrogen bases of the pentose-phosphate 

backbone of DNA due to ROS-induced oxidative stress (21,22). If these damages are not 

repaired, they could lead to epigenetic alterations in proto-oncogenes and tumor suppressor 

genes, somatic gene mutations, and genomic instability, which could initiate 

carcinogenesis (18–20,134).  

Carcinogenesis is a multi-step process involving several molecular and cellular 

alterations (135). This process can be classified into three major phases namely, initiation, 

promotion, and progression (136). Cancers can be initiated due to genomic instability 

(137,138). Genomic instability is caused by alterations such as mutations, changes in the 

number of chromosomes, and segments (rearrangements or deletions of segments) that 

occur in the genome due to processes such as alkylation, oxidation, or exposure to 

carcinogens (137,138). Among phases of carcinogenesis, initiation is a rapid phase that 
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could be completed in 1-2 days (139,140). During initiation, the cellular genome can 

undergo irreversible and/or epigenetic changes, either spontaneously or due to exposure of 

DNA to a carcinogen (139,141). Epigenetic modifications can include DNA methylation 

of promoter areas of tumor suppressor genes (135). Tumor suppressor genes are 

responsible for inhibiting, arresting, or suppressing cell division (142). Epigenetic 

modifications of tumor suppressor genes, therefore, prevent their transcription and 

eliminate their functions in tumor-suppressing (135). Moreover, cancer initiation can also 

be characterized by the conversion of proto-oncogenes into oncogenes by processes such 

as the formation of DNA adducts by chemical carcinogens (143). Activation of oncogenes 

disrupts normal cellular functions by deregulation of cell proliferation and suppression of 

apoptosis and therefore facilitates the process of carcinogenesis (144). Additionally, ROS-

induced mutagenic 8-hydroxydeoxyguanosine adducts in genomic DNA lead to 

conversions of guanosine to thiamine and these changes are common in tumor suppressor 

genes and oncogenes (135). 

Cancer promotion is the longest phase which could last for 10-20 years and may 

result in abnormal cell replication and the formation of preneoplastic cell foci (139,140). 

During this phase, tumor promoters can increase cell proliferation and/or inhibit apoptosis 

through changes in gene expression (135). Tumor promoters are not carcinogenic but can 

promote the actions of carcinogens and therefore low doses of carcinogens have the ability 

to generate cancerous cells (135).  Moreover, tumor promotion is a reversible phenomenon, 

and repeated or continuous exposure to tumor promoters is required for an initiated cell to 

grow clonally into a focal lesion (135).  
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The final stage of carcinogenesis is the progression which could be completed 

within less than one year (139,140). This phase is characterized by uncontrolled growth of 

a tumor, conversion of pre-neoplastic cells into neoplastic cells with an increased level of 

invasiveness, metastasis (development of secondary tumor growths at a distance organ 

from a primary organ of cancer), and angiogenesis (formation of new blood vessels) (140).  

2.2.2 NNKAC-induced carcinogenesis 

4-[(Acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone (NNKAc) is a 

commercially available carcinogen commonly used to mimic the carcinogenic effects of 4-

(methylnitrosamino)-1-( 3-pyridyl)-1-butanone (NNK) mainly in the experimental lung 

cancer models (35,145,146). NNK is an aromatic chemical compound that is the strongest 

tobacco-specific nitrosamines-based carcinogen present in tobacco smoke (147). NNK is 

mainly generated from the nitrosamines that are formed during processes such as curing, 

fermentation, the storage of tobacco leaves, or during smoking through N-nitrosation 

(148,149). NNK is a pro-carcinogen and requires to undergo several metabolic reactions 

to become activated to cause DNA damage (150). Within cells, NNK undergoes three 

major metabolic reactions, namely carbonyl reduction, hydroxylation, and pyridine 

nitrogen oxidation (Figure 3) (151). 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol 

(NNAL) is produced by carbonyl reduction of NNK (151,152).  NNAL and NNK undergo 

pyridine nitrogen oxidation which is a detoxification step and generate their respective 

nitrogen oxides (151,152). NNK and NNAL can also be converted into carcinogenic and 

mutagenic electrophilic mediators by cytochrome p450 (CYP) enzyme-mediated α-methyl 

hydroxylation (152–155). The electrophiles resulting from α-methyl hydroxylation could 

damage DNA by forming bulky pyridyloxobutyl DNA (POB-DNA) adducts (Figure 3)  
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(152,156). Meanwhile, electrophilic mediators produced by hydroxylated α-methylene 

NNK induce DNA damage by forming methylated DNA adducts (152). 

Several cytochrome P450 enzymes required for NNK activation are not present, 

and CYP activity is generally low in established cell lines such as bronchial lung epithelial 

BEAS-2B (157). Therefore, the use of NNK in such cell lines may not demonstrate the 

actual effects of NNK on DNA damage induction. Hence, NNKAc is commonly used to 

induce DNA damage in such cell lines (35,145,146).  For activation of NNKAc, CYP 

enzyme activity is not required but esterase enzyme activity is required (158). Once 

NNKAc is activated, it undergoes α-methyl hydroxylation and generates the intermediate 

metabolites generated by the α-methyl hydroxylation of NNK (158). Therefore, 

carcinogenesis caused by NNKAc is mainly explained by the formation of bulky POB-

DNA adducts (158). Moreover, NNK-induced carcinogenesis is associated with epigenetic 

and genetic changes in genes such as KRAS oncogenes and tumor suppressor TP53 

(150,159,160). Therefore, the formation of DNA adducts in TP53 and KRAS genes by the 

electrophilic reactive metabolites generated by NNK or NNKAc can produce cells with 

cancerous properties (156,161–163). 
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Figure 3: Cellular metabolism of NNK and NNKAc 

(1.) Carbonyl reduction, the metabolic reaction that converts NNK to NNAL; (2.) pyridine 

N oxidation, a detoxification step of both NNK and NNAL to their respective N-oxides. 

(3.) α-methyl hydroxylation of NNK by CYP enzymes and NNAL results in more reactive 

electrophilic metabolites. (4.)  α-methylene hydroxylation of NNK by CYP 450 enzymes 

to generate reactive electrophilic metabolites. (5.) Activation of NNKAc by esterase 
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enzymes. (6.) DNA pyridyloxobutylation, the formation of POB-DNA adducts. (151,164–

167) 

Abbreviations: NNK: 4-(methylnitrosamino)-1-( 3-pyridyl)-1-butanone, NNKAc: 4-

[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, NNAL: 4-(methylnitrosamino)-

1-(3-pyridyl)-1-butanol, 7-POB-dGuo: 7-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-

deoxyguanosine, O2-POB-dCyd: O2-[4- (3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytidine, O6-

POB-dGuo: O6-[4-(3-pyridyl)-4- oxobut-1-yl]-2′-deoxyguanosine, O2-POB-dThd: O2-[4-

(3- pyridyl)-4-oxobut-1-yl]thymidine, and CYP: cytochrome P450. (Adapted from, Ma et 

al., 2019, Hacht et al., 2016 and Peterson, 2010. Figure adapted form Hacht et al., 2016 

was done under Copyright 2022 American Chemical Society]  (151,164,166)) 
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2.3 Dietary antioxidants and cancer prevention 

Dietary antioxidants exert cancer-preventive properties at different stages of cancer 

via different mechanisms (139,140). During cancer initiation, dietary antioxidants such as 

polyphenols exert cancer-preventive properties mainly through their antioxidant activity 

(scavenging ROS directly or activating cellular antioxidant defense system), inhibition of 

phase 1 enzymes, activation of phase 2 drug detoxifying enzyme, and facilitating DNA 

damage repair (139,140). Furthermore, fruit (poly)phenols are known to exert cancer-

preventive properties during the cancer promotion phase through their anti-inflammatory 

activities, inducing apoptosis and cell cycle arrest and inhibiting cell proliferation (139). 

During cancer progression, polyphenols exert anti-angiogenesis activities in addition to 

inhibiting metastasis (139). Therefore, considering the complexity and effectiveness in 

preventing cancer, it would be vital to prevent or reduce the exposure of DNA to 

carcinogenic factors. 

2.3.1 Antioxidant defense systems in relation to cancer 

The cellular antioxidant defense system is the primary mechanism to protect biological 

macromolecules from oxidative stress (14). The enzymatic and non-enzymatic antioxidants 

of the antioxidant defense system are capable of neutralizing ROS, such as superoxide 

anion radical, hydrogen peroxide, and hydroxyl radical, and the secondary reactive species 

such as peroxyl, and alkoxyl radicals, generated by their further oxidation (14,168,169). In 

a cellular environment, superoxide anion radical is generated mainly due to the activities 

of lipoxygenase, nicotine adenine dinucleotide phosphate (NAD(P)H) oxidase, 

cyclooxygenase, cytochrome P450, and xanthine oxidase (170,171). This free radical is 

converted to hydrogen peroxide by superoxide dismutase (SOD) (172). Hydrogen peroxide 
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can also be produced by NAD(P)H oxidase (173), xanthine oxidase (174), and amino acid 

oxidase enzymes (175) or as a result of oxygen consumption in metabolic reactions happen 

in peroxisome (176). Hydrogen peroxides are further converted into water and oxygen by 

catalase (CAT) and glutathione peroxidase (GPx) (172,177). GPx needs secondary 

enzymes such as glutathione reductase (GR) and co-factors, reduced glutathione and 

NAD(P)H, to catalyze the conversion of hydrogen peroxide into water (172,177). If 

hydrogen peroxides are not neutralized by CAT and GPx enzymes, hydrogen peroxides 

can react with superoxide radical or undergo Fenton reaction or Haber-Weiss reaction in 

the presence of metal ions such as copper and iron to generate hydroxyl radical (178,179). 

Fenton reaction and Haber-Weiss reactions are given below. 

Fenton reaction: H2O2 + Cu+/Fe2+→ Cu2+/Fe3+ + OH- + •OH 

Haber-Weiss reaction: H2O2 + •O2- → O2 + OH- + •OH 

 Hydroxyl radicals cause severe oxidative damage to DNA, and inefficient repair of 

DNA can lead to the initiation of carcinogenesis (14,77). Therefore, it is essential to 

eliminate ROS to prevent oxidative stress-induced DNA damage (168,180). Hence, 

mechanisms that are activating the expression of proteins related to the antioxidant defense 

system and other cytoprotective genes are vital in managing oxidative stress-induced DNA 

damage in the prevention of cancer (168,180).  

2.3.2 Mechanisms of activation of the antioxidant defense system and other 

cytoprotective genes 

Activation of the antioxidant defense system and other cytoprotective genes, such as 

phase 2 detoxification enzymes, is mainly due to the activation of the nuclear factor 
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erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway in a 

cellular environment upon oxidative stress (181,182).  Briefly, activation of this pathway 

is initiated by a transcription factor Nrf2, which binds to the promoter region of the ARE, 

leading to the transcription of genes of antioxidant defense enzymes and phase 2 

detoxifying enzymes. Thereby, these proteins restore redox homeostasis by managing 

oxidative stress (25,32,183–185). 

For the initiation of this pathway, Nrf2, a basic leucine-zipper transcription factor, 

needs to be activated (9,186,187). Under normal cellular physiological conditions, Nrf2 is 

bound to Kelch-like ECH-associated protein 1 (Keap 1), which is an endogenous inhibitor 

of Nrf2, bound to actin fibers (9,186,187). Interactions between Keap 1 and Nrf2 via its 

motifs (Neh2 ETGE and DLG) lead to activating the Nrf2 ubiquitination process, which is 

mediated by Cullin 3 (Cul3) based E3 ligase complex (188). The degradation of Nrf2 is 

rapidly undertaken in 26S proteasome leading to low levels of Nrf2 in the cytoplasm 

(9,189–191). This avoids stabilization, phosphorylation, and nuclear translocation of Nrf2, 

resulting in 15-40 min of Nrf2 half-life time depending on the type of cell (9,189–191).  

However, oxidative stress or the presence of electrophilic compounds induces the 

activation of the Nrf2 pathway through canonical mechanisms (192–194). Herein, cysteine 

residues (Cys151, Cys257, Cys273, Cys288, and Cys297) in Keap-1 undergo 

conformational changes upon oxidation or alkylation and dissociates Nrf2 from Keap 1 

(192–194). In addition, non-canonical activation of  Nrf2 by the influence of proteins such 

as p62, p21, dipeptidyl peptidase III (DPP3), Wilms’ tumor gene on the X chromosome 

(WTX), BRCA1 (breast cancer gene 1) and partner and localizer of BRCA2 (PALB2) also 

leads to the cytoplasmic stabilization of Nrf2 (193). These proteins disrupt the direct 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/dipeptidyl-peptidase
https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nephroblastoma
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interactions of Keap 1 with Nrf2 either by binding to Keap 1 or Nrf2 (193). Collectively,  

canonical and non-canonical activation of Nrf2 results in a reduction of Nrf2 ubiquitination 

and degradation (193). The detached Nrf2 can be negatively regulated by several other 

proteins, such as glycogen synthase kinase 3 beta (GSK-3β) (187). Herein, GSK-3β-

mediated phosphorylation of specific serine residues such as Ser335 and Ser338 (numbers 

in mouse sequence) in the Neh6 domain of Nrf2 creates a degradation domain, which can 

be recognized by the ubiquitin ligase adapter E3 ubiquitin-protein ligase (187). Thereafter, 

proteasomal degradation of Nrf2 is facilitated via the Cul3-based E3 ligase complex (187). 

However, phosphorylation of serine 558 residue located in the canonical nuclear export 

signal of Nrf2 protein by 5′ adenosine monophosphate (AMP)-activated protein kinase 

(AMPK) leads to improved stability of Nrf2 protein facilitating the nuclear translocation 

(195,196). Once Nrf2 is translocated into the nucleus, it begins heterodimerization with 

another transcription factor called musculoaponeurotic fibrosarcoma (sMaf) (190,191). 

The resulted complex binds to ARE and initiates transcription of downstream genes 

belonging to the antioxidant defense system and phase 2 detoxifying enzymes (182). Once 

these proteins are expressed, functions such as oxidizing xenobiotics or drugs, conjugation 

of oxidized metabolites, and transportation of final metabolites out of the intracellular 

environment will ensure cytoprotection by restoring redox homeostasis (182). Therefore, 

the identification of endogenous and exogenous molecules that can activate Nrf2/ARE 

pathway presents potential protection against oxidative stress-mediated diseases. 
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Figure 4: Nrf2/ARE cell signaling pathway 

In normal cells, activation of the Nrf2/ARE pathway plays an important role in maintaining 

redox homeostasis. Under normal physiological conditions, activation of Nrf2 is inhibited 

by the interactions between Keap 1 and Nrf2 protein which facilitate Nrf2 ubiquitination 

followed by degradation. In the presence of oxidative stress or electrophilic compounds, 

Keap 1 protein undergoes conformational changes and releases Nrf2 protein. Detached 

Nrf2 protein undergoes phosphorylation for stabilization. Phosphorylated Nrf2 translocates 

to the nucleus and undergoes heterodimerization with sMaf transcription factor before 

binding to the antioxidant response element (ARE). Then activities of expressed ARE-

driven downstream genes such as antioxidant defense and phase 2 detoxifying enzymes 

will restore normal physiological conditions through mechanisms such as xenobiotic 

detoxification, drug transportation, and reactive species neutralization (197,198).  

Abbreviations:  Keap 1: Kelch-like ECH-associated protein 1; Nrf2: Nuclear factor 

erythroid 2 p45 (NF-E2)-related factor; sMaf: Small musculoaponeurotic fibrosarcoma 

protein; ARE: Antioxidant response element; GSH: glutathione; SOD: superoxide 

dismutase; CAT: Catalase; GPx: Glutathione peroxidase; ROS: Reactive oxygen species;  

ERK: Extracellular signal-regulated protein kinase; PKC: Protein kinase C; Akt: protein 
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kinase B; p38: Mitogen-activates protein kinase p38; p62: sequestosome 1; JNK: N-

terminal kinase   (Figure 4 was adapted from Suraweera et al., 2020 (198) which was 

originally adapted from Wu et al., 2019 (197)) 

2.3.3 Role of Nrf2/ARE pathway in cancer chemoprevention 

Activation of the Nrf2/ARE pathway in normal cells has been shown to possess cancer 

chemopreventive effects on non-malignant cells under normal physiological conditions 

(9,182,199). This can be mainly achieved by controlling redox homeostasis (200), which 

leads to genomic stability and cell survival that is facilitated by activities of antioxidant 

defense enzymes (SOD, catalase, GPx, GSH synthase, glutathione S-transferase, 

thioredoxin, and GSH reductase), phase 2 and 3 detoxifying enzymes (HO-1 and NAD(P)H 

quinone dehydrogenase 1 (NQO1), aldo-ketoreductase, multidrug resistance-associated 

proteins, P-glycoprotein, organic anion-transporting polypeptide, ATP-binding cassette, 

heat shock proteins, glycation defense enzymes, and ferritin) (20,182,185,201,202). These 

expressed proteins avoid oxidative stress-induced DNA damage by either reducing the 

exposure of DNA to carcinogens (exogenous or endogenous), inhibiting the activation of 

pro-carcinogens, or increasing the rate of detoxification of carcinogens (180,203,204). 

Therefore, the inactivation of the Nrf2/ARE pathway could increase oxidative stress by 

generating ROS, creating mutagenesis, and initiating carcinogenesis and tumor formation 

in normal cells (180,203,204). For example, decreased expression of the Nrf2 gene 

increases the risk of lung cancer among smokers (205). Furthermore, decreased levels of 

phase 2 enzymes such as HO-1 and Nrf2 proteins in Nrf2-knockout animal models such as 

female C57BL/6 mice increase the susceptibility towards 7,12-dimethylbenz(a)anthracene-

induced skin tumorigenesis (206). Therefore, many investigations propose the activation 
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of the Nrf2/ARE cell signaling pathway as a potential cellular mechanism of cancer 

chemoprevention (183). 

2.3.3.1 Activators of Nrf2/ARE pathway in non-cancer experimental models 

Investigations on the activation of the Nrf2/ARE pathway have shown that some 

vitamins and a diverse range of dietary phytochemicals, including flavonoids, 

sulforaphanes, alkaloids, polyphenols activate the pathway by different mechanisms in 

non-cancer experimental models (9) (Table 2). Further, several endogenous cell signaling 

molecules, such as PKR-like endoplasmic reticulum-resident kinase (PERK), N-terminal 

kinase (JNK), extracellular signal-regulated protein kinase (ERK), and p38 under normal 

conditions known to give similar results (207,208). Activation of Nrf2/ARE pathway 

mainly occurs through the disruption of Keap1 and Nrf2 interactions (either through 

canonical or non-canonical mechanisms) (193), Nrf2 phosphorylation (194), and 

prevention of Nrf2 ubiquitination (209). In addition, some of the activators facilitate Nrf2 

nuclear translocation and transcription of cytoprotective genes associated with ARE (209).  

Resveratrol, a stilbene derivative, and RTA-408 (omaveloxolone), a synthetic 

terpenoid activate the Nrf2 pathway through canonical mechanisms (194,210–213). 

Canonical activators that obstruct the interaction of the Keap1/Nrf2 system possess 

electrophilic properties and react with cysteine residues (i.e. Cys151, Cys257, Cys273, 

Cys288, and Cys297) of Keap 1 via either oxidation or alkylation in order to dissociate 

Nrf2 from Keap 1 (183,192,194,201). For example, in phase 3 clinical trial on chronic 

subclinical inflammation and redox status, 500 mg of resveratrol in a tablet/day up to 30 

days (Table 2) have shown to be interrupting the Nrf2-Keap 1 interactions by 

conformational changes. These changes occurred due to electrophilic modifications in 
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Keap 1-Cys151 thiol group (194,213). Cul3-based E3 ligase complex binds and interacts 

with Keap1 to facilitate Nrf2 polyubiquitination, which promotes Nrf2 degradation at 26S 

proteasome. Therefore, post-translational modifications in Cys151 lead to the dissociation 

of Cul3-based E3 ligase complex from Keap 1 and Nrf2 stabilization (189–191,194,210). 

Thereby, it prevents Nrf2 proteasomal degradation by ubiquitination and facilitates ARE-

mediated gene expression (209,214,215). Similar results were observed with RTA-408 

(omaveloxolone), a synthetic terpenoid in a clinical trial on inflammation and pain due to 

ocular surgery (1% ophthalmic suspension of RTA-408 twice a day for 14 days) as well 

(194,211).   

Sequestosome-1, an endogenous signaling molecule, activates the Nrf2 pathway via 

non-canonical mechanisms by blocking Nrf2 binding to Keap 1 (216) (Table 1). 

Sequestosome 1, also called p62, not only competes with Nrf2 to bind to Keap 1 and block 

the formation of Nrf2-Keap 1 complex, but also promotes the autophagic degradation of 

Keap 1 (193,216). For example, Nrf2 silencing downregulates p62 expression while 

upregulating Keap 1 expression at mRNA and protein levels in vascular smooth muscle 

cells (216). Conversely, p62 silencing dramatically upregulates Keap 1 and downregulates 

Nrf2 at mRNA and protein levels suggesting p62 may be effective in downregulating Keap 

1 protein via autophageal degradation (216).  

Most of the endogenous activators of Nrf2/ARE pathway act by stimulating the 

phosphorylation of Nrf2 which leads to the detachment of Nrf2 from Keap 1 (201). For 

example, PERK-mediated direct phosphorylation of Nrf2 in mouse embryonic fibroblasts 

results in the dissociation of Nrf2 from Keap 1 (Table 2) (207). Similarly, JNK 1 and 2, 

ERK2, and p38 phosphorylate Nrf2 at serine (Ser212, Ser400, Ser558, Ser577) and 
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threonine (Thre559) residues in human embryonic kidney HEK 293T cells (208). It is also 

suggested that above mentioned endogenous activators of the Nrf2/ARE pathway can be 

activated by phytochemicals such as diallyl sulfide (217). Diallyl sulfide phosphorylates 

ERK and p38 in human embryonic lung MRC-5 cells and facilitates dissociation of Nrf2 

from Keap 1 and nuclear translocation (217). 

Most of the endogenous activators of Nrf2 are protein kinases, which seem to facilitate 

the nuclear translocation of phosphorylated Nrf2 (195,218,219). Nrf2 phosphorylation 

mediated by AMPK, casein kinase 2, PERK, ERK, and p38 facilitates Nrf2 nuclear 

translocation (218). PI3K signaling is also involved in the activation of the Nrf2/ARE 

pathway through its downstream regulator Akt, which facilitates Nrf2 nuclear translocation 

and following ARE gene transactivation (220). Therefore, the influence of endogenous 

signaling molecules, phytochemicals, and synthetic chemicals on activation of Nrf2/ARE 

at different stages of the pathway will be vital in exerting chemopreventive effects upon 

activation of Nrf2/ARE pathway (9,194,207,208). 
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Table 2: Activators of the Nrf2/ARE pathway in non-cancer experimental models: Phytochemicals and other signal molecules 

Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Phytochemicals: Polyphenols (non-Flavonoids) 

Phenolic acid Caffeic acid 10 µM Human kidney 

epithelial HEK 293T 

cell line  

 Nrf2 (S40) phosphorylation. 

 GPx and HO-1 protein 

levels. 

(221) 

Gallic acid  

 

200 mg/kg of 

body weight up 

to 28 days orally 

Balb/c mice  total Nrf2 and HO-1 protein 

levels. 

(222) 

Ellagic acid 25-50 µM Human keratinocyte 

HaCaT cell line 
 total Nrf2 nuclear 

translocation. 

 SOD enzyme activity. 

(223) 

Chlorogenic acid 100 µM Human retinal 

pigment epithelial 

ARPE-19 cell line 

 mRNA expression of Nrf2 

and SOD. 

(224) 

500 mg/kg of 

body weight 

orally 

Sprague-Dawley rats  mRNA expression of Nrf2. 

 SOD and GSH activities. 

(225) 

Proanthocyanidin Procyanidin C 1 5-10 µM Mouse hippocampal 

neuronal HT22 cell 

line 

 total Nrf2 nuclear 

translocation. 

 HO-1 protein levels. 

(226) 

Procyanidin B2 20 µM Normal human colon 

epithelium NCM460 

cells 

 total Nrf2, NQO1 and HO-1 

protein levels. 

(227) 

2.5 µM Human endothelial 

progenitor cells 
 Nrf2, NQO1 and CAT 

mRNA and total protein levels.  

(228) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Proanthocyanidin Procyanidin B2 8.64 µM Cerebral cortical 

neurons of C57BL/6 

mice 

 total Nrf2, and HO-1 protein 

levels. 

(229) 

50 mg/kg of 

body weight up 

to 21 days orally 

C57BL/6 mice total Nrf2, CAT, SOD, and 

HO-1 protein levels. 

(230) 

10 µM Human umbilical vein 

epithelial and primary 

trophoblasts cells 

 total Nrf2 nuclear 

translocation. 

 

(231) 

Lignans Sesamin 100 mg/kg body 

weight 

intraperitoneally 

C57BL/6 mice  SOD and CAT activities. 

 GSH and total Nrf2 protein 

levels. 

(232) 

10 µM Primary chondrocytes   total Nrf2 and HO-1 protein 

levels. 

(233) 

Coumarins Fraxin 50 mg/kg of 

body weight up 

to 5 days orally 

Sprague–Dawley rats  cellular GSH levels. (234) 

Stilbenes Resveratrol 5 µM Primary human 

coronary artery 

endothelial cells 

 mRNA expression of NQO 

1. 

(235) 

500 mg in a 

tablet/day up to 

30 days in the 

morning fasting  

Phase 3 clinical trial 

on chronic subclinical 

inflammation and 

redox status 

 electrophilic modification of 

Keap1-Cys-151 

(194,213) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Stilbenes Resveratrol 215 mg in a 

tablet/day up to 

52 weeks 

Phase 2 clinical trials 

on Alzheimer's 

disease 

 electrophilic modification of 

Keap1-Cys-151 

(194,236) 

0.1 µM  Human umbilical vein 

epithelial cells 
 total Nrf2 nuclear 

translocation. 

 SOD protein levels.,  

(237) 

Curcuminoid Curcumin 5 µM Human extravillous 

trophoblast 

HTR8/Sveo cells 

 CAT and GSH activities. (238) 

400 mg/kg body 

weight/day 

orally up to 21 

days 

White Pekin ducklings  CAT, SOD and GPx 

activities. 

(239) 

800 mg/day in 

two capsules up 

to 7 days 

Phase 3 clinical on 

diabetic nephropathy 
 electrophilic modifications of 

Keap1-Cys-151 

(194,210) 

Curcuminoid Curcumin 15 µM Human retinal 

pigment epithelial 

ARPE-19 cell line 

 total Nrf2 protein levels. 

 HO-1 activity. 

(240) 

15-30 µM Porcine renal 

epithelial proximal 

tubule LLC PK1 cell 

line 

 ARE binding activity. 

 total Nrf2 protein levels. 

 HO-1 activity. 

(241) 

  10 µM Rat kidney epithelial 

NRK-52E cell line 
 ARE binding activity. (241) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Curcuminoid Curcumin 200 mg/kg body 

weight twice a 

week for 6 

weeks orally 

Kungming (KM) mice  total Nrf2 nuclear 

translocation. 

 HO-1 and NQO-1 protein 

levels.  

(242) 

200 mg/kg body 

weight for 30 

days orally 

Balb/c mice  Nrf2 mRNA and total 

protein levels. 

 SOD, CAT, NQO1, and HO-

1 mRNA levels 

↓ Keap 1 protein levels. 

 SOD, CAT, and GPx 

activities. 

(243) 

Phytochemicals: Polyphenols (Flavonoids) 

Flavone Luteolin 0.1 mg/kg body 

weight/day for 7 

days at two-time 

points orally. 

ICR mice  total Nrf2 nuclear 

translocation. 

 HO-1 and NQO-1 protein 

levels. 

(244) 

10 mg/kg body 

weight 

intracerebrally 

injected 

Sprague−Dawley rats   total Nrf2 nuclear 

translocation. 

 HO-1 and NQO-1 proteins. 

(245) 

5-10 µM Rat myoblast H9c2 

cell line 
 total Nrf2 protein.  

 mRNA expression of SOD, 

NQO-1 and HO-1. 

(197) 

5 µM Mouse testis sertoli 

TM4 cell line 
 total Nrf2 nuclear 

translocation. 

(246) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Flavone 3,5-di-O-Methyl 

Gossypetin 

10-25 µg/mL Human keratinocyte 

HaCaT cells 
 total Nrf2 nuclear 

translocation. 

 GSH, SOD and HO-1 protein 

levels 

(247) 

Baicalein 

 

 

160 mg/kg/day 

for 8 weeks 

orally 

T2DM Kunming mice  total Nrf2 nuclear 

translocation. 

 SOD, CAT, GSH protein 

(248) 

Baicalin 50 mg/kg body 

weight twice 

after 2 and 12 h 

of subarachnoid 

hemorrhage 

intraperitoneally 

Sprague-Dawley rats  SOD, GSH, NQO-1 and 

Nrf2 protein. 

 mRNA expression of HO-1. 

 

(249) 

75 µM Rat myoblast H9C2 

cell line  
 total Nrf2 and HO-1 protein 

levels. 

(250) 

450 mg/kg body 

weight/day up to 

7 days orally. 

Chicken  total Nrf2 and HO-1 protein 

levels. 

 mRNA expression of Nrf2 

and HO-1. 

(251) 

Apigenin 400 µM Human retinal 

pigment epithelial 

ARPE-19 cell line 

 mRNA expression of Nrf2. 

 total Nrf2 protein levels. 

 total Nrf2 nuclear 

translocation  

SOD, CAT, and GPx 

activities. 

(252) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Flavone Chrysin 10-25 µM Rat hepatocytes  total Nrf2 nuclear 

translocation via ERK2 

signaling. 

cellular GSH protein levels. 

 ARE binding ability 

(253) 

1-5 µM Bone marrow-derived 

mesenchymal stem 

cells of SD rats 

 total Nrf2 and HO-1 protein 

levels 

(254) 

Flavonol Myricetin 100 mg/kg/day 

for 6 weeks 

orally 

Kungming mice  total Nrf2 nuclear 

translocation. 

(255) 

Quercetin 30 µM Human keratinocyte 

HaCaT and BJ 

foreskin fibroblast cell 

lines 

 total Nrf2 protein levels.  (256) 

200 mg/kg body 

weight/day for 

20 days orally 

Broiler chicken  total Nrf2 protein levels. 

 total Nrf2 nuclear 

translocation 

 SOD and CAT protein 

levels. 

(257) 

100 µM Intestinal epithelial 

IEC-6 cell line 
 total Nrf2 nuclear 

translocation. 

(258) 

10 µM Human umbilical vein 

epithelial cells 
 total Nrf2 protein levels. (259) 

6.25-12.5 µM Human primary 

dermal fibroblasts. 
 total Nrf2 nuclear 

translocation. 

(260) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Flavonol Quercetin 6.25-12.5 µM Human primary 

epidermal 

keratinocytes 

 total Nrf2 nuclear 

translocation. 

 HO-1 mRNA levels 

(260) 

10-40 µM Human bronchial 

epithelial BEAS-2B 

cells 

 total Nrf2 and HO-1 protein 

levels. 

(261) 

Rutin 44 µM Human keratinocyte 

HaCaT cell line 
 mRNA expression of HO-1 

and NQO-1.  

(262)  

Flavanone Naringenin 80 µM Sprague-Dawley rat 

neuron cells 
 total Nrf2, HO-1 and NQO-1 

protein levels 

(263) 

70 mg/kg body 

weight/day up to 

4 days orally 

C57BL/6 mice  total Nrf2 protein levels. (264) 

Hesperidin 50 mg/kg 

bodyweight for 

28 days orally 

Sprague-Dawley rat  total Nrf2 and HO-1 protein 

levels. 

 mRNA expression of HO-1. 

(265) 

Flavan-3-ol Epicatechin 10-100 µM Primary astrocytes 

from WT and Nrf2 

deficient KO mice 

 total Nrf2 nuclear 

translocation. 

(266) 

Epigallocatechin-3-

gallate 

40 mg/kg body 

weight/day for 3 

days 

intraperitoneally 

Sprague-Dawley rat  total Nrf2 protein levels. (267) 

Isoflavones Genistein 1 mg/kg body 

weight 

intraperitoneally 

Sprague-Dawley rat  total Nrf2 nuclear 

translocation 

 HO-1 protein levels 

(268) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Isoflavones Genistein 5 or 15 mg/kg 

body weight 

intraperitoneally 

for 5 days 

Sprague-Dawley rat  total Nrf2, HO-1, NQO-1 

protein levels. 

↓ Keap 1 protein levels. 

 

(269) 

200 mg/kg body 

weight orally 

C57BL/6 mice  total Nrf2, and HO-1 protein 

and mRNA levels. 

(270) 

20 mg/kg body 

weight for 13 

weeks orally 

HY-line brown laying 

hens 
 total Nrf2, SOD, CAT, GPx, 

NQO-1and HO-1 mRNA and 

protein levels. 

↓ Keap 1 mRNA and protein 

levels. 

 

(271) 

Anthocyanidin Cyanidin-3-O-

glucoside (C3G) 

20-40 µM Human umbilical vein 

epithelial cells 
 total Nrf2 nuclear 

translocation. 

mRNA expression of NQO-1 

and HO-1 

(272)  

Chalcone Buteine 20 µM Human dental pulp 

cell line 
 total Nrf2 nuclear 

translocation. 

(273)  

Phloretin 50 mg/kg body 

weight for 2 

weeks orally 

Swiss albino mice  Nrf2 mRNA levels (274) 

Other phytochemicals (non-Polyphenols) 

Sulfur-containing Sulforaphane 5 µM Mouse skin JB6 P+ 

cells 
 total Nrf2 nuclear 

translocation. 

 HO-1 and NQO-1 protein 

levels 

(275) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Sulfur-containing Sulforaphane 6.25 µM Human primary 

dermal fibroblasts and 

epidermal 

keratinocytes. 

 total Nrf2 nuclear 

translocation. 

 NQO1 mRNA levels 

(260) 

Diallyl sulfide 15 µM Human embryonic 

lung MRC-5 cell line 

Dissociates Nrf2 from Keap 1 

through phosphorylated ERK 

and p38 interactions. 

 total Nrf2 nuclear 

translocation. 

(217) 

150 mg/kg body 

weight/day 

intraperitoneally 

for 6 days 

Wistar rats  total Nrf2 protein levels. 

SOD, CAT, GPx, GR, GST 

and quinone reductase 

activities. 

(276) 

Alkaloids Berberine 200 mg/kg body 

weight/day 

orally for 16 

weeks  

Wistar rats   mRNA expression of Nrf2. 

 

(277) 

Vitamins 

Fat-soluble 

vitamins 

Vitamin D 40 000 U/kg/we

ek of 

bodyweight 

intratracheally 

for 8 weeks 

C57BL/6 mice  mRNA expression Aldo-keto 

reductase family 1 member 

C1 (AKR1C1) and GCLM.  

 

(278) 

Vitamin E 100 mg/kg body 

weight/day 

intraperitoneally 

for 6 days 

Balb/c mice  total Nrf2 and HO-1 protein 

levels. 

(279) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Fat-soluble 

vitamins 

Vitamin A 100,000 U/kg 

body weight/day 

subcutaneously 

for 14 days 

Wistar rats   total Nrf2 nuclear 

translocation. 

 HO-1 and NQO 1 protein 

levels. 

(280) 

Water-soluble 

vitamins 

 

Vitamin C 27-65 mg/kg 

body feed twice 

a day for 8 

weeks 

Juvenile Sillago 

sihama  

 

 mRNA expression of Nrf2, 

CAT, SOD, GPx, GR and GST 

in intestine and liver cells.  

(281) 

Vitamin B2 30 mg/kg body 

weight/day 

intra-gastrically 

APP/PS1 double 

transgenic mice 
 SOD, CAT, GSH and GPx 

activities.  

 total Nrf2 expression. 

↓ Keap 1 expression. 

(282,283) 

Endogenous signaling molecules 

Protein kinases PI3K N/A Human retinal 

pigment epithelial 

RPE-19 cell line 

 total Nrf2 nuclear 

translocation. 

(220) 

JNK 1 & 2 N/A Human embryonic 

kidney HEK 293T cell 

line 

Phosphorylates Nrf2 at S212, 

S408, S558, S577 and T559. 

 

(208) 

p38 N/A Human embryonic 

kidney HEK 293T cell 

line 

Phosphorylates Nrf2 at Ser212, 

Ser408, Ser558, Ser577 and 

Thre559. 

 

(208) 

AMPK N/A Human embryonic 

kidney HEK 293T cell 

line 

Phosphorylates Nrf2 at the 

Ser558 residue.  

 total Nrf2 nuclear 

translocation 

(195) 
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Group Compound Effective 

concentration 

Experimental model Mode of action Ref. 

Protein kinases ERK2  N/A Human embryonic 

kidney HEK 293T cell 

line 

Phosphorylates Nrf2 at Ser212, 

Ser408, Ser558, Ser577 and 

Thre559.  

(208) 

Casein kinase 2 N/A Human embryonic 

kidney HEK 293T cell 

line 

 Nrf2 phosphorylation. 

 total Nrf2 nuclear 

translocation. 

(218) 

PKC 

 

N/A New Zealand white 

rabbits 
 total Nrf2 nuclear 

translocation. 

(219) 

PERK N/A Mouse embryonic 

fibroblasts 

Dissociates Nrf2 from Keap 1 

by phosphorylation of Nrf2 

(207) 

Autophagy-

substrate proteins 

Sequestosome 1 

(p62) 

N/A Human aortic smooth 

muscle cells 

Competes with Nrf2 to bind 

with Keap 1. 

(216) 

Synthetic compounds 

Synthetic 

triterpenoids 

Bradoxolone-

methyl (CDDO-

Me) 

25 -150 mg/day 

for 52 weeks 

Phase 2 clinical on 

diabetic nephropathy 
 electrophilic modification of 

Keap1-Cys-151 

(194,212) 

RTA-408 

(omaveloxolone) 

1% ophthalmic 

suspension for 

twice a day for 

14 days 

Phase 2 clinical trial 

on inflammation and 

pain following ocular 

surgery  

 electrophilic modification of 

Keap1-Cys-151 

(194,211) 

Synthetic lignans LGM2605 

(Secoisolariciresino

l diglucoside) 

50 µM Murine peritoneal 

macrophages derived 

from C57BL/6J mice 

 mRNA expression of GST 

and redoxin reductase 1. 

(284) 
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Abbreviations: HaCaT: human skin keratinocytes; ARPE-19: human retinal pigment epithelial cell line; BEAS-2B: human bronchial 

epithelial cell line; HT22: mouse hippocampal neuronal cell line; LLC PK1: porcine renal epithelial proximal tubule cell line; NCM460: 

normal human colon epithelial cell line; NRK-52E: rat kidney epithelial cell line; IEC-6: intestinal epithelial cell line; MRC5: human 

embryonic lung cell line; HTR8/Sveo: extravillous trophoblast cell line ; HEK 293T: human embryonic kidney 293T cell line; HT22: 

mouse neuronal cell line;  H9C2: rat myoblast cell line: TM4: mouse Sertoli cell line; T2DM  mice: type 2 diabetes mellitus mice; BJ: 

human foreskin fibroblast cell line; WT: wild type; KO: knock-out; JB6 P+: mouse skin cells; APP/PSI: ARTE1; GCLM: glutamate-

cysteine ligase modifier; GSH: glutathione; CAT: catalase; SOD; superoxide dismutase; Gpx: glutathione peroxidase; ARE: antioxidant 

response element; ERK: extracellular signal-regulated protein kinase; GSK-3β:  glycogen synthase kinase 3; Akt: protein kinase B; GR: 

glutathione reductase; NQO-1: NAD(P)H quinone dehydrogenase 1;  HO-1: heme oxygenase 1; GST- glutathione S-transferase; Ser212: 

serine residue 212; Ser408: serine residue; Ser558: serine residue 558; Ser577: serine residue 577; Thre559: threonine residue 559; 

PI3K: phosphorylation of phosphatidylinositol 3-kinase; JNK: N-terminal kinase; AMPK: 5′ adenosine monophosphate-activated 

protein kinase; PKC: protein kinase C; PERK: PKR-like endoplasmic reticulum-resident kinase; p62: sequestosome 1; Keap 1: Kelch-

like ECH-associated protein 1; Nrf2: Nuclear factor erythroid 2 p45 (NF-E2)-related factor; Ref: reference. (Table  2 was reproduced 

from Suraweera, et al., 2020 (198) with minor changes and updated with Lee, et al., 2011, Fan, et al., 2021, Gao, et al., 2021, Hu, et al., 

2021, Liu, et al., 2022, Ma, et al. , 2021, Singh, et al., 2021, Singla, et al., 2021, Zhou, et al., 2021, Zhu, et al., 2021, Wu, et al., 2021, 

Bhullar, et al., 2022, Li, et al., 2022, Rajnochova, et al., 2022, and Wang, et al., 2022 (222,227–231,237,243,260,261)). 
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2.3.3.2 Flavonoids: Nrf2/ARE activation in non-cancer experimental models 

Flavonoids are among the most noticeable dietary phytochemicals which activate the 

Nrf2/ARE pathway under normal physiological and induced conditions (Table 2). The sub-

class flavones (luteolin, baicalin, and apigenin) are more prominent in upregulating Nrf2 

protein expression in both in vitro and pre-clinical studies (197,249,252). For example, 

luteolin upregulates Nrf2 protein expression in relieving high glucose-induced cell injury 

in rat myoblast H9C2 cells at rat physiological concentrations (100,197). Baicalin also 

increases Nrf2 protein expression against hypoxia-induced apoptosis in rat myoblast H9C2 

cells, although the required concentration was higher than rat physiological concentrations 

(250,285). Furthermore, intraperitoneal administration of baicalin demonstrates a similar 

effect in male Sprague-Dawley rats after inducing subarachnoid hemorrhage by 

endovascular perforation (249,286). A study conducted by Xu and colleagues shows that 

apigenin increases Nrf2 protein level as a response to tert-butyl hydroperoxide (t-BHP)-

induced oxidative cell injury in human retinal pigment epithelial ARPE-19 cells at much 

higher concentrations compared to other flavones (252). However, the tested 

concentrations were much higher than the bioavailable apigenin levels in human plasma 

(287).   

Further, the upregulation of Nrf2 protein was observed in flavonols (quercetin), 

flavanones (naringenin, hesperidin), and flavan-3-ols (epigallocatechin-3-gallate) 

(256,263,265,267). Naringenin, a flavanone found in citrus fruits upregulates Nrf2 protein 

in hypoxia-induced neuron cells derived from neonatal Sprague-Dawley rats (263). 

However, comparatively at higher concentrations that may not be achievable in pre-clinical 

studies considering the limited bioavailability of naringenin in rats (263,288,289). 



46 

 

Quercetin upregulates Nrf2 protein expression in different human cell lines such as human 

skin keratinocytes HaCaT, BJ foreskin fibroblast, and human umbilical vein endothelial 

cells (HUVECs) but at concentrations higher than physiologically relevant concentrations 

considering the low bioavailability of quercetin through human diet (256,259,290,291). 

Also, oral administration of quercetin upregulates Nrf2 protein levels against 

lipopolysaccharide-induced intestinal oxidative stress in broiler chicken (257). 

Furthermore, pre-clinical studies on oral administration of naringenin show upregulation 

of Nrf2 protein in male C57BL/6 mice with 6-hydroxydopamine (6-OHDA)-induced 

neurotoxicity at a concentration that is not toxic (264,292). Also, both hesperidin (oral) and 

epigallocatechin-3-gallate (intraperitoneal) have shown that similar upregulations can be 

achievable at non-toxic concentrations in male Sprague-Dawley rats with methotrexate 

(MTX)-induced hepatotoxicity and cerebral ischemia-induced oxidative stress, 

respectively  (265,267,293,294). In contrast, mRNA levels of Nrf2 were upregulated only 

in flavones such as baicalin (chicken with Mycoplasma gallisepticum infection-induced 

oxidative stress) and apigenin (human retinal pigment epithelial ARPE-19 cells with t-

BHP-induced oxidative cell injury) in pre-clinical and in vitro models (251,252). However, 

the molecular mechanisms of flavonoid-mediated increase of cellular Nrf2 mRNA and 

protein levels remain unclear. 

Nuclear translocation of phosphorylated Nrf2 is a necessity in order to proceed with 

ARE-driven gene transcription (195,196). Many subclasses of flavonoids including 

flavones (luteolin, baicalein, chrysin, and apigenin), flavonols (myricetin and quercetin), 

flavanones (eriodyctiol), flavan-3-ols (epicatechin), isoflavones (genistein), 

anthocyanidins (cyanidin-3-O-glucoside [C3G]), and chalcones (buteine) promote Nrf2 
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nuclear translocation (Table 2). Luteolin and epicatechin upregulate the Nrf2 nuclear 

translocation in mice cells; mouse testis Sertoli TM4 (triptolide-induced apoptosis) and 

hemoglobin toxicity induced primary astrocytes of mice, respectively (246,266). Similarly, 

chrysin and quercetin upregulate the Nrf2 nuclear translocation in rat hepatocytes (t-BHP-

induced oxidative stress) and rat intestinal epithelial IEC-6 cells (253,295). Also, in rat 

hepatocytes, chrysin-mediated upregulation of the phosphorylated ERK1 increases the 

Nrf2 nuclear translocation (253). Therefore, ERK1-mediated influences may be due to the 

improved stability of Nrf2 upon Nrf2 phosphorylation, which prevents Nrf2 ubiquitination 

and degradation (296).  However, the tested concentrations of luteolin (mouse testis Sertoli 

TM4 cells), epicatechin (primary astrocytes from mice), quercetin (rat hepatocytes), and 

chrysin (IEC-6 cells) in above murine cells are higher than the achievable physiological 

concentrations in murine models upon oral administration (244,297–299). Also, cyanidin-

O-glucoside (C3G) upregulates Nrf2 nuclear translocation in HUVECs challenged with 

tumor necrosis factor-α (272). However, tested concentrations of C3G on HUVECs are 

much higher than the serum levels that can be achieved in humans upon oral uptake (300). 

Apigenin also facilitates nuclear translocation in human retinal epithelial ARPE-19 cells at 

concentrations higher than physiological in humans (252,287). Similarly, butein 

upregulates Nrf2 nuclear translocation against hydrogen peroxide-induced oxidative stress 

in human dental pulp cells (247,273). Further, due to the lack of availability of clinical data 

on the bioavailability of butein, the physiological relevance of tested concentrations of 

butein is mostly unknown.  

Furthermore, promising results on upregulation of Nrf2 nuclear translocation were 

observed in several pre-clinical studies (ICR mice, Sprague-Dawley rats, Kunming mice, 
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and broiler chicken) (244,245,248,255,257). Luteolin, baicalein, myricetin, quercetin, and 

genistein demonstrates their ability in upregulating Nrf2 nuclear translocation 

(244,245,248,255,257). Luteolin increases Nrf2 nuclear translocation in male Sprague-

Dawley rats with intracerebral hemorrhage-induced secondary brain damage 

(intraperitoneal administration)  and male ICR mice (oral administration) at concentrations 

that are not toxic (244,245,301–303). Similarly, oral administration of baicalein facilitates 

Nrf2 nuclear translocation in male type 2 diabetes mellitus (T2DM) Kunming mice with 

high glucose-induced oxidative stress at a concentration much lesser than the maximum 

toleratable levels for mice (248,304). Further, myricetin (oral administration) was effective 

in upregulating Nrf2 nuclear translocation against cuprizone-induced demyelination in 

male Kunming mice (255).  The concentration of myricetin tested on Kunming mice are 

much lesser than sub-lethal concentrations of myricetin in mice (255,305). Also, both 

quercetin (oral administration) and genistein (intraperitoneal administration) upregulate 

Nrf2 nuclear translocation in broiler chickens (lipopolysaccharide-induced intestinal 

oxidative stress) and male Sprague-Dawley rats (cerebral ischemia-induced oxidative 

stress) (257,268).  Further, tested concentrations of genistein on Sprague-Dawley rats are 

much lesser than concentrations that show toxic effects in mice (306).  

Downstream activation of Nrf2/ARE pathway at Nrf2 nuclear translocation by 

flavonoids has been demonstrated. Overexpression of antioxidant defense genes (GSH, 

SOD, GPx, and CAT) and phase 2 detoxifying genes (HO-1 and NQO-1) was observed 

due to flavones (luteolin, apigenin, baicalin, baicalein, chrysin), flavanones (naringenin, 

and hesperidin), flavonols (quercetin, rutin), anthocyanidins (C3G) and isoflavones 

(genistein) (Table 1). Chrysin upregulates cellular GSH proteins (antioxidant defense gene) 
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in relieving t-BHP-induced oxidative stress of rat hepatocytes (253). Baicalin and 

naringenin upregulate phase 2 detoxifying enzymes at the protein level against hypoxia-

induced oxidative stress or apoptosis in H9C2 (HO-1) and Sprague-Dawley neuronal cells 

(HO-1 and NQO-1), respectively (250,263). Although the concentrations tested were 

higher than the physiologically relevant range, rutin and C3G upregulate the expression of 

HO-1 and NQO-1 at mRNA levels in HaCaT and HUVECs, respectively 

(262,272,291,300). Further, apigenin enhances the activity of SOD, CAT, and GPx in 

human retinal epithelial ARPE-19 cells, but at much higher concentrations than can be 

achieved physiologically in humans (252,287). 

In preclinical studies, oral administration of baicalein and quercetin upregulates 

proteins related to antioxidant defense genes against relieving oxidative stress in high 

glucose-induced male T2DM Kunming mice (SOD, CAT, and GSH) and 

lipopolysaccharide-induced broiler chicken (SOD and CAT), respectively (248,257). In 

contrast, upregulation of both antioxidant defense (SOD and GSH) and phase 2 detoxifying 

genes (NQO-1 and mRNA HO-1) was observed with intraperitoneal administration of 

baicalin in male Sprague-Dawley rats after inducing subarachnoid hemorrhage (249). 

Luteolin upregulates phase 2 detoxifying enzymes (HO-1 and NQO-1) in male Sprague-

Dawley rats with intracerebral hemorrhage-induced secondary brain damage 

(intraperitoneal administration) and male ICR mice (oral administration) (244,245). In 

contrast, the upregulation of HO-1 was observed at the protein level against cerebral 

ischemia-induced oxidative stress in Sprague-Dawley rats with intraperitoneal 

administration of genistein (268). Also, oral administration of baicalin and hesperidin has 

upregulated HO-1 at both protein and mRNA levels against Mycoplasma gallisepticum 
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infection-induced oxidative stress in chicken and MTX-induced hepatotoxicity in male 

Sprague-Dawley rats, respectively (251,265). More importantly, the above upregulations 

of either or both antioxidant and phase 2 detoxifying enzymes by luteolin (ICR mice and 

Sprague-Dawley rats), baicalein (T2DM Kunming mice), baicalin (Sprague-Dawley rats), 

hesperidin (Sprague-Dawley rats) and genistein (Sprague-Dawley rats) were observed in 

concentration lesser than toxic or lethal in in vivo studies (286,293,301,302,304,306).  

Moreover, studies on activators of Nrf2/ARE pathway since the literature review by 

Suraweera et al., 2020 (198) further demonstrate the ability of compounds such as 

quercetin, genistein, and procyanidin B2 in activating Nrf2/ARE pathway in different non-

cancer experimental models (Table 2).  Genistein upregulated the Nrf2, antioxidant and/or, 

phase 2 detoxifying enzymes at transcriptional and/or translational levels in pre-clinical 

experimental models such as male C57BL/6 mice (oral administration; Nrf2, HO-l mRNA, 

and proteins), and HY-line brown laying hens (oral administration; Nrf2, SOD, CAT, GPx, 

HO-1) in physiological conditions, and pentylenetetrazol-induced male Sprague-Dawley 

rats (intraperitoneal administration; Nrf2, HO-1, and NQO-1 proteins) (269–271). 

Furthermore, downregulation of Keap 1 at mRNA and/or protein levels was observed with 

genistein treated HY-line brown laying hens and pentylenetetrazol-induced male Sprague-

Dawley rats (269,271). The tested concentrations of genistein in C57BL/6 mice and 

Sprague-Dawley rats were lesser than the toxic concentrations tested in mice 

(269,270,306). Furthermore, Rajnochova and colleagues (2022) (260) showed that 

quercetin can upregulate the Nrf2 nuclear translocation in both human primary dermal 

fibroblasts and epidermal keratinocytes under physiological conditions but at 

concentrations higher than human physiological concentrations. In addition to that, the 
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same study demonstrated the ability of quercetin treatments in upregulating HO-1 mRNA 

levels in human primary epidermal keratinocytes (116–119,260). Additionally, 

procyanidin B2 demonstrated the ability to upregulate Nrf2, antioxidant and/or phase 2 

detoxifying protein and/or mRNA levels in preclinical (male C57BL/6 mice under 

physiological conditions; Nrf2, CAT, SOD, HO-1 proteins) and in vitro experimental 

models such as cerebral cortical neurons of C57BL/6 mice (against cypermethrin induced 

neuronal injury; Nrf2 and HO-1), normal human colon epithelium NCM460 cells (against 

irradiation-induced oxidative stress; Nrf2, CAT, SOD, and  HO-1 protein), and human 

endothelial progenitor cells (against high glucose-induced oxidative stress; Nrf2, NQO-1, 

and HO-1 mRNA and proteins) (227,229,230). Upregulation of the Nrf2/ARE pathway in 

pre-clinical experimental models with procyanidin B2 was observed at non-toxic 

concentrations in rats (307).  Furthermore, procyanidin B2 was effective in facilitating Nrf2 

nuclear translocation in HUVECs and trophoblasts cells at physiological conditions at rat 

physiological concentrations (128,129,231).  

Even though numerous studies have demonstrated the ability of flavonoids to activate 

the Nrf2/ARE pathway in exerting cancer prevention, comprehensive studies carried out 

with respect to the concentrations similar or closer to physiological concentrations are 

mostly limited.  Additionally, it is important to identify the lowest effective concentrations 

that may have a positive effect on exerting cancer prevention considering the diet-related 

health benefits of flavonoids. Therefore, studies designed to determine the effects of 

flavonoids with respect to the activation of Nrf2/ARE pathway at physiological 

concentrations are a necessity considering the dietary intake of flavonoids through fruits, 

vegetables, and supplementation.   
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Antibodies, chemicals, and reagents. 

Anti-Nrf2 rabbit (Catalogue number [Cat]: ab62352) and anti-phospho-Nrf2 (Ser40) 

rabbit (Cat: ab76026) primary antibodies were purchased from Abcam Inc., (Toronto, ON, 

Canada). Anti-phospho-histone H2AX (ser139) mouse (Cat: 05-636) primary antibody was 

purchased from Sigma-Millipore (Etobicoke, ON, Canada). Anti-Akt rabbit (Cat: 92725), 

anti-phospho-Akt rabbit (Ser473) (Cat: 4060T) primary antibodies, horseradish peroxidase 

(HRP)-linked anti-rabbit secondary antibody (Cat: 7074P2) and HRP conjugated anti-β-

actin rabbit (Cat: 12620S) antibody were purchased from Cell Signalling Technology, Inc., 

(Danvers, MA, USA). Alexa Fluor® 594 donkey anti-mouse (Cat: A-21203) and Alexa 

FlourTM 488 goat anti-rabbit (Cat: A11034) secondary antibodies were purchased from 

Thermo Fisher Scientific (Chelmsford, MA, USA).   

Test compounds ascorbic acid (Cat:  A5960), beta carotene (Cat: 22040), caffeic acid 

(Cat: C0625), catechol (Cat: 135011), chlorogenic acid (Cat: C3878), chrysin (Cat: 95082), 

curcumin (Cat: C1386), cyanidin-3-O-glucoside (Cat: PHL89616), cyanidin chloride (Cat: 

528-58-5), dimethyl fumarate (DMF) (Cat: 242926), epicatechin (Cat: E1753), genistein 

(Cat: 4478-93-7), isorhamnetin  (Cat: 17794), luteolin (Cat: 491-70-3), methyl 4-

hydroxybenzoate (Cat: H5501), naringenin (Cat: 52186), phloretin (Cat: 60-82-2), 

phloridzin dihydrate (Cat: P3449), phloroglucinaldehyde (Cat: T65404), protocatechuic 

acid (Cat: 08992), quercetin (Cat: Q4951-109), quercetin-3-O-glucuronic acid (Cat: 

22688-79-5), resveratrol (Cat: R5010), and sulforaphane (Cat: 4478-93-7) were purchased 

from  Sgma-Aldrich (Oakville, ON, Canada). Procyanidin B2  (Cat: 29106-49-8) was 

purchased from Chengdu Alfa Biotechnology Co., Ltd (Pixian, Chengdu, China). 4-
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[(Acetoxymethyl) nitrosamino]-1-(3-pyridyl)-1-butanone (NNKAc) (Cat: 167550) was 

purchased from Toronto Research Chemicals (Toronto, ON, Canada). 

2-Mercaptoethanol (Cat: 21985-023), Dulbecco's modified eagle medium (DMEM) 

with no phenol red (Cat: 21063029), fetal bovine serum (FBS)(Cat: 12483-020), LHC-8 

growth medium (Cat: 12678017), phenylmethylsulfonyl fluoride protease inhibitor (Cat: 

329-98-6), Tris base (Cat: 77-86-1), Tris base/boric acid/ethylenediaminetetraacetic acid 

(EDTA) (TBE) buffer (Cat: B52), TrypLETM Express solution (Cat: 12604021), and 

Tween 20 (Cat: 9005-64-5) were purchased from Thermo Fisher Scientific (Chelmsford, 

MA, USA). 2' 7'-Dichlorofluorescein diacetate (DCFDA) (Cat: D6883), 0.25% trypsin – 

EDTA (Cat: T3924), bovine collagen type 1 (Cat: C4243), bovine serum albumin (BSA) 

(Cat: A8022), dimethyl sulfoxide (DMSO) (Cat: 276855), fibronectin human plasma (Cat: 

F2006), glycine (Cat: G8898), paraformaldehyde (Cat: P6148), penicillin-streptomycin 

(Cat: P0781), phenazine methosulfate (PMS) (Cat: P9625), polyvinylepyriilodone (Cat: 

P0930), protease inhibitor cocktail (Cat: P8340), sodium dodecyl sulfate (SDS) (Cat: 

D6750), and triton X-100 (Cat: T8787) were purchased from Sigma-Aldrich (Oakville, 

ON, Canada). Cell Titer 96® AQueous MTS reagent powder (Cat: G1111) was purchased 

from Promega (Madison, WI, USA). Vectashield® containing 4ʹ,6-diamidino-2-

phenylindol (DAPI) (Cat: H-1200) was purchased from Vector Laboratories Inc. 

(Burlingame, CA, USA). Dulbecco’s phosphate-buffered saline (PBS) (Cat: 02-0119-

1000) was purchased from VWR Life Sciences (Edmonton, AB, Canada). Precision Plus 

Protein™ Dual Color Marker (Cat: 161-0374) was purchased from Bio-Rad Laboratories 

Inc., Hercules, CA, USA). All the chemicals used in this study were of analytical grade 

and suitable for cell based-experiments. 
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3.2 Cell line and cell culture conditions 

The normal bronchial epithelial cell line, BEAS-2B (ATCC® CRL-9609TM) was 

purchased from the American Tissue Type Culture Collection (Manassas, VA, USA). The 

BEAS-2B cells were cultured in the LHC-8 medium supplemented with 5% FBS, 100 

U/mL penicillin, and 100 μg/mL streptomycin in T-75 polystyrene culture flasks (75 cm2) 

at 37 ºC and 5% CO2 in an incubator (VWR 3074, VWR International, LLC, Hampton, 

NH, USA) maintained at 100% humidity. Prior to use, culture flasks were coated with a 

mixture of fibronectin (0.01 mg/mL), BSA (0.01 mg/mL) and bovine collagen type 1 (0.03 

mg/mL) in PBS overnight. Sub-culturing was performed before reaching 80% confluence. 

A cell culture flask with a monolayer of BEAS-2B cells was rinsed with PBS after 

aspirating the medium. Trypsin-EDTA solution consisting of 0.5% polyvinylpyrrolidone 

was added to the culture flask and incubated for 5 min at 37 ºC, 5% CO2 until cells were 

detached from the flask. Detached cells were aspirated and transferred into a centrifuge 

tube after mixing cells with an additional volume of fresh LHC-8 medium in the flask. 

Then, a centrifuge tube containing cells was centrifuged at 1,000 × g for 5 min. The 

resultant cell pellet was resuspended in a fresh LHC-8 medium and cultured in a newly 

coated T-75 flask. Cells grown up to 80% confluence and cell passages between five and 

25 were used in the experiments. 

3.3 Evaluation of the protective effects of dietary antioxidants in the reduction 

of carcinogen-induced ROS generation in BEAS-2B cells 

In this study, for the initial screening, we evaluated the dose-dependent efficacy of 8 

subclasses of flavonoids (quercetin, epicatechin, naringenin, cyanidin chloride, cyanidin-

3-O-glucoside, genistein, chrysin, luteolin, phloridzin dihydrate, phloretin, and 
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procyanidin B2) and metabolites of flavonoids (isorhamnetin, quercetin-3-O-glucuronic 

acid, protocatechuic acid, and phloroglucinaldehyde) in reducing NNKAc-induced ROS in 

BEAS-2B cells. In addition, dose-dependent effects of vitamins (ascorbic acid), The US 

Food and Drug Administration approved Nrf2 activator (DMF), curcuminoids (curcumin), 

stilbene (resveratrol), sulfur-containing compounds (sulforaphane), simple phenolics 

(catechol), phenolic acids (caffeic acid, chlorogenic acid, and methyl 4-hydroxybenzoate) 

and carotenoids (beta-carotene) on NNKAc-induced ROS were also studied. 

3.3.1 Measurement of intracellular ROS 

The ROS levels in the BEAS-2B cells were determined following treatments according 

to the method described by Wang and Joseph (1999) (308). Cells were seeded in black 96-

well microplates at a density of 1×104 per well and incubated for 24 h at 37 ºC and 5% CO2 

in a humidified incubator (VWR 3074, VWR International, LLC, Hampton, NH, USA). 

Cells were pre-treated with six concentrations (0.1, 1, 5, 10, 25, and 50 µM) of selected 

compounds for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h to 

induce ROS generation. DMSO (0.1% or 0.4%) was used as the vehicle control. 

Subsequently, treatments were discarded, and cells were washed with PBS (× 1). Then, 

100 μL of 5 μM 2' 7'-dichlorofluorescein diacetate (DCFDA) dissolved in DMEM media 

with no phenol red supplemented with 1% FBS and 100 U/mL penicillin, and 100 μg/mL 

streptomycin was added to each well and incubated for 30 min at 37 ºC and 5% CO2 in a 

humidified incubator (VWR 3074, VWR International, LLC, Hampton, NH, USA).  

Following the treatments, the medium was discarded and washed three times with PBS 

(×1). After discarding PBS, fresh DMEM media with no phenol red was added to the wells, 

and the fluorescence intensity was measured at an excitation wavelength of 485 nm and an 
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emission wavelength of 535 nm using a microplate reader (Infinite® 200 PRO, Tecan 

Trading AG, Mannedorf, Switzerland).  

3.4 Evaluation of the protective effects of selected dietary antioxidants in the 

reduction of carcinogen-induced DNA damage in cultured lung epithelial 

cells 

The most effective tested compounds in section 3.3 for the reduction of NNKAc-

induced ROS at concentrations equal to or lesser than 25 µM were selected to evaluate 

further their cytoprotective ability against NNKAc-induced DNA damage. The effects of 

seven flavonoids (quercetin, naringenin, cyanidin chloride, genistein, chrysin, luteolin, and 

procyanidin B2), DMF, curcumin, resveratrol, catechol, and sulforaphane were tested for 

BEAS-2B cell viability using MTS assay and DNA protective effects using γ-H2AX 

immunofluorescence assay, comet assay, and DNA fragmentation enzyme-linked 

immunosorbent assay (ELISA). 

3.4.1 Cell viability by Cell Titer 96TM cell viability assay 

The cell viability of BEAS-2B was determined using the Cell Titer 96TM cell viability 

assay (MTS), as described by Wang et al., 2010. (309). Cells were seeded in a clear flat-

bottom 96-well microplate at a density of 1×104 cells per well and incubated for 24 h 

overnight at 37 ºC and 5% CO2 in a humidified incubator (VWR 3074, VWR International, 

LLC, Hampton, NH, USA). After 24 h, cells were pre-treated with 5 concentrations (0.1, 

1, 5, 10, and 25 µM) of selected compounds for 3 h. To induce ROS generation, pre-treated 

cells were exposed to 100 µm NNKAc for another 3 hours. DMSO (0.1% or 0.4%) was 

used as the vehicle control. Blanks for the experiment were conducted without cells but 

with tested treatment. Following treatments, the MTS reagent with PMS (20:1) was added 
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to each well (15 µL/well) and incubated for 3 hours in the dark.  Absorbance was measured 

at 490 nm using a microplate reader (Infinite® 200 PRO, Tecan Trading AG, Mannedorf, 

Switzerland). Results were expressed in terms of percentage cell viability using the 

following formula, A is the absorbance of the treated cells, B is the absorbance of medium 

control with cells, C is the absorbance of the blank of treated compounds, and D is the 

absorbance of medium without cells. 

 Percentage reduction of cell number = (
A−C

B−D
) × 100 

3.4.2 γ-H2AX immunofluorescence assay 

DNA damage at histone levels was measured using the immunofluorescence assay 

previously described by Ivashkevich et al., 2012 (310) by quantifying γ-H2AX foci in 

BEAS-2B cells. Initially, 1 × 105 cells per well were seeded on a sterilized coated coverslip 

placed in a clear flat-bottom 6-well plate followed by a 24-hour incubation. After 24 h, 

cells were treated with selected test compounds and NNKAc as explained before (section 

3.4.1). Following treatments, cells were thoroughly washed (3 times) with PBS (×1) and 

fixed with 3.7% paraformaldehyde for 20 min in the dark. Then, cells were washed three 

times with PBS (×1) for 5 min on a shaker and permeabilized with 0.5% Triton X-100 in 

PBS (×1) for another 15 min at room temperature. Then, Triton X-100 was removed, and 

cells were washed three times with PBS for 5 min. A filter paper wetted with distilled water 

was placed at the bottom of a 15 cm petri-dish to set up a humidifying chamber. After 

setting up the chamber, a parafilm sheet was placed on the wet filter paper inside the 

humidifying chamber. Blocking was performed by transferring coverslips with cells onto 

drops of 4% BSA (50 µL) on the parafilm sheet for 20 min at room temperature. After 
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blocking, coverslips were placed on 50 µL of anti-phospho-histone H2AX, the primary 

antibody dissolved in 4% BSA (1:250 ratio) and incubated for 1 h at room temperature. 

Subsequently, coverslips were transferred back to 6-well plates and washed three times 

with PBS for 5 min. Coverslips were then placed on 50 µL of secondary antibody (Alexa 

fluorophore® 594 donkey anti-mouse) dissolved in 4% BSA (1: 500 ratio) and incubated 

for another 45 min at room temperature in the dark. Once excessive secondary antibodies 

on coverslips were washed three times with PBS (×1) for 5 min, excessive PBS was blotted 

thoroughly from the coverslips. Then, wet mounting of coverslips onto glass slides was 

performed using Vectashield® containing 4ʹ,6-diamidino-2-phenylindol (DAPI), the wet-

mounting medium. Coverslips were sealed with clear nail polish and dried in the dark at 

room temperature. Images of slides were taken using a fluorescence microscope 

(EVOSTM FLoid Imaging System, Bothell, WA, USA) at 100× magnification. The 

number of phosphorylated histone-H2AX foci was quantified for at least 50 nuclei per 

treatment using “Find maxima” option at prominence greater than 7 available in ImageJ 

software (Version 1.53k, National Institute of Mental Health, Bethesda, MD, USA).  

3.4.3 Comet assay 

The DNA damage in BEAS-2B cells was determined by single-cell gel electrophoresis 

assay using the Comet SCGE assay kit (Cat: ADI-900-166, Enzo, New York, NY, USA). 

Initially, 1 × 105 cells per well were seeded in a clear flat-bottom 6-well plate followed by 

a 24 h incubation. After 24 h, cells were treated with selected compounds and NNKAc as 

explained before (section 3.4.1). Following treatments, cells were harvested and 

centrifuged at 1000 × g for 5 min. The cell pellet was suspended in 1 mL of ice-cold PBS 

(×1) after carefully washing it with ice-cold PBS (×1). Low melting point agarose (LMA) 
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were melted using boiling water and cooled down to 37 ºC in a water bath. The molten 

LMA agarose was mixed with 1 × 105 cells in 1 mL PBS at a ratio of 10: 1 by volume. 

Thirty microliters of each sample were inserted into a well in a 20-well comet slide (Cat: 

4252-500-01, R & D Systems, Minneapolis, MN, USA) immediately. The sample was 

spread to form a thin layer on the comet slide and was kept at 4 ºC under dark conditions 

for 20 min to solidify. The cold lysis buffer was used to immerse the slides for 45 min at 4 

ºC.  The slides were then subjected to an alkaline treatment (pH> 13) consisting of 300 

mM NaOH and 1 mM EDTA and incubated for 45 min in the dark at room temperature. 

The slides were washed once with 1× TBE buffer for 5 min and subjected to horizontal 

electrophoresis conditions of 1 V/cm for 11 min in 1× TBE buffer. Following 

electrophoresis, slides were immersed in ethanol (70%) for 5 min and air-dried. Slides were 

stained with CYGREEN® dye in a ratio of 1: 1000 and imaged using fluorescence 

microscopy (EVOSTM FLoid Imaging System; Bothell, WA, USA) at 100× 

magnification. The OpenComet plugin in ImageJ software (Version 1.53k, National 

Institute of Mental Health, Bethesda, MD, USA) was used to calculate the tail moment of 

the DNA. A minimum of 30 cells were quantified for each treatment. 

3.4.4 DNA fragmentation analysis 

Cellular DNA fragmentation ELISA kit (Ref # 11585045001, Roche Diagnostics, 

Mannheim, Berlin, Germany) (311) was used to determine the DNA fragmentation in 

BEAS-2B cells. Initially, 1 × 105 cells/mL were labeled with bromodeoxyuridine (BrdU) 

(10 μΜ) in the culture medium for 2 h in a humidified incubator (VWR 3074, VWR 

International, LLC, Hampton, NH, USA) at 37 ºC and 5% CO2. BrdU labeled cells in the 

culture medium were centrifuged at 1000 × g for 5 min, and the cell pellet was suspended 
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in a fresh culture medium. The cells were seeded in a clear flat-bottom 96-well microplate 

at a density of 1 × 104 cells per well and incubated for 24 h. After 24 h, cells were treated 

as mentioned before (section 3.4.1). Treated cells were centrifuged at 1000 × g for 5 min, 

and supernatants were carefully and thoroughly removed. The cells were treated with 

incubation buffer (200 μL/well) and incubated for 30 min at room temperature. Then, the 

microplate containing cells was centrifuged at 1000 × g for 5 min, and 100 μL of 

supernatants from each treatment were collected. A clear flat-bottom 96-well microplate 

was coated with the coating solution containing anti-DNA (100 μL/well) and incubated for 

1 h in an incubator (VWR 3074, VWR International, LLC, Hampton, NH, USA) at 37 ºC. 

After 1 h, the anti-DNA coating solution was removed, and the microplate was incubated 

for another 30 min at room temperature with the incubation buffer. The incubation buffer 

was then removed, and the anti-DNA coated plate was washed three times with the washing 

solution (200 μL/well) for 3 min using a shaker.  Then, 100 μL of supernatants from each 

treatment were transferred to anti-DNA coated microplates and incubated overnight at 4 

ºC. The supernatants were then removed, and wells were washed thrice for 3 min using 

washing buffer. Next, the microplate with 200 μL of washing buffer per well was subjected 

to microwave irradiation at 500 W for 5 min. Once the microplate was cooled down to 

room temperature, the anti-BrdU-peroxidase (POD) conjugate solution (100 μL/well) was 

added and incubated for 90 min at room temperature. Then, the microplate was washed 

thrice using washing buffer for 3 min followed by the addition of 100 μL substrate solution. 

The microplate was incubated for 5 min in the dark on a shaker for color development, and 

the stop solution (concentrated sulfuric acid) (25 μL/well) was added. After that, the 

microplate was incubated for another 1 min on the shaker, and the absorbance was recorded 
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using a microplate reader (Infinite® 200 PRO, Tecan Trading AG, Mannedorf, 

Switzerland) at a wavelength of 450 nm.  

3.5 Effects of quercetin, genistein, and procyanidin B2 on Nrf2/ARE 

pathway in BEAS-2B cells 

Among tested compounds in section 3.3, three flavonoids (quercetin, genistein, and 

procyanidin B2) were effective at low concentrations (0.1-1 μM) in reducing NNKAc-

induced DNA damage and were further studied for their potential mechanisms of activation 

of Nrf2/ARE pathway.  

3.4.2 Effect of quercetin, genistein, and procyanidin B2 on Akt and Nrf2 

phosphorylation in BEAS-2B cells 

Western blot analysis was performed to study the effect of quercetin, genistein, and 

procyanidin B2 on phosphorylation of Akt and Nrf2 as described by George and 

Rupasinghe, 2017 (1). The expression of phospho-Akt (p-Akt), total Akt, phospho-Nrf2 

(p-Nrf2), and total Nrf2 proteins at cellular levels were measured, and β-actin was used to 

normalize the protein expressions. 

Initially, 1 × 106 BEAS-2B cells were seeded in T-75 polystyrene culture flasks (75 

cm2) and incubated for 24 h in an incubator (VWR 3074, VWR International, LLC, 

Hampton, NH, USA). After 24 h, cells were pre-treated with two concentrations (1 and 25 

μM) of quercetin, genistein, and procyanidin B2 for 3 h. Pre-treated cells were then 

challenged with 100 μM NNKAc for another 3 h. The cells treated with 25 μM DMF, and 

10 μM hydrogen peroxide for 3 h were used as positive controls, and 0.1% DMSO was 

used as the vehicle control. Following the treatments, TrypLETM Express solution was used 

to harvest cells and centrifuged at 1000 × g for 5 min to obtain the cell pellet. One milliliter 
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of cold PBS (×1) was used to wash the cell pellet and centrifuged in a micro-centrifuge 

(Legend MICRO 21R, Cat: 75002446, Thermo Fisher Scientific, Osterode, Germany) at 4 

ºC for 5 min at 1000 × g followed by careful and thorough removal of PBS from the cell 

pellet.  For cell lysis, 50 μL of a mixture of radio-immunoprecipitation assay (RIPA) buffer 

(0.1% sodium dodecyl sulfate [SDS], 5 mM EDTA, 25 mM Tris-HCl [pH-7.6], 1% Triton 

X-100, 1 % sodium deoxycholate, and 150 mM NaCl) and protease inhibitor cocktail 

mixed at a ratio of 10:1 was added to the cell pellet. The cell pellet was incubated for 30 

min on ice followed by centrifugation at 12,000 × g for 20 min at 4 ºC using a micro-

centrifuge (Legend MICRO 21R, Cat: 75002446, Thermo Fisher Scientific, Osterode, 

Germany). After centrifugation, supernatants were carefully collected without disturbing 

the pellets of cell debris.    

Pierce™ Coomassie (Bradford) protein assay kit (Cat: 23200, Thermo Fisher 

Scientific, Rockford, IL, USA) was used to estimate the protein content in extracted 

proteins samples. BSA was used as the standard compound for protein estimation in cell 

extracts. A stock solution of 5 mg/mL BSA was used to prepare a solution of 0, 0.078125, 

0.15625, 0.3125, 0.625, 1.25, and 2.5 mg/mL to generate the standard solution series. A 

volume of 10 μL from BSA solutions and protein extracts (5× diluted) was mixed with 2 

mL of Coomassie blue solution and incubated for 30 min at room temperature. A volume 

of 200 μL from each sample was pipetted to a clear flat-bottom 96-well plate, and the 

absorbance was recorded at 595 nm in a microplate reader (Infinite® 200 PRO, Tecan 

Trading AG, Mannedorf, Switzerland). Protein content was estimated using the BSA 

standard curve. 



63 

 

Blue protein loading dye kit (Cat: B7703S, New England BioLabsTM Inc., Ipswich, 

MA, USA) was used to denature the extracted proteins as suggested by the manufacturer. 

Briefly, fresh 3× reducing blue protein loading dye was prepared by mixing 3× blue protein 

loading dye and 30× reducing agent at a 1:10 ratio. Protein extracts were then mixed with 

freshly prepared 3× reducing blue protein loading dye at a ratio of 2:1 and heated for 5 min 

at 96 ºC in a heat block. Denatured protein samples were further diluted with a mixture of 

RIPA buffer and 3× reducing blue protein loading dye (2:1 ratio) to obtain a similar protein 

concentration in each sample. 

SDS-PAGE gel electrophoresis was performed using BIO-RAD Mini PROTEAN® 

Tetra Cell and Bio-Rad PowerPac™ Universal Power Supply (Cat: 1658026, Bio-Rad 

Laboratories, Inc. Hercules, CA, USA). Polyacrylamide gels containing 10% 

polyacrylamide in the separating component (375 mM Tris (pH 8.8), 0.1 % SDS, 0.05% 

ammonium persulfate, and 0.05% tetramethyl ethylenediamine) and 4% polyacrylamide in 

the stacking component (125 mM Tris [pH 6.8], 0.1% SDS, 0.05% ammonium persulfate, 

and 0.05% tetramethyl ethylenediamine) were set with the running module of BIO-RAD 

Mini PROTEAN® Tetra Cell unit. The running module was then filled with 1× SDS 

running buffer (25 mM tris base. 192 mM glycine, and 0.1 % SDS) before loading 7 µL of 

Precision Plus Protein™ Dual Color Marker and protein extracts containing 20 µg of 

proteins. SDS-PAGE gel electrophoresis was performed for 1.5 h at 80 V. Proteins 

separated in SDS-PAGE gels were electro-transferred onto a polyvinylidene difluoride 

(PVDF) membrane (Cat: 88518, Thermo Fisher Scientific, Rockford, IL, USA) using a 

Trans-Blot® Turbo™ Transfer System (Cat: 1704150, Bio-Rad Laboratories, 

Inc. Hercules, CA, USA). PVDF membranes were immersed in 100% methanol for 5-10 
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seconds for activation. Then, both PVDF membranes and thick blotting papers (Cat: 

1703966, Bio-Rad Laboratories Inc., Hercules, CA, USA) were equilibrated in transfer 

buffer (pH-8.3, 25 mM tris, 192 mM glycine, and 20% methanol) by immersing and gently 

rocking membranes for 20 min in the transfer buffer. The trans-blot sandwich was set in 

the Trans-Blot® Turbo™ Transfer System by placing an SDS-PAGE gel on a PVDF 

membrane placed on a thick blotting paper followed by placing another thick blotting paper 

on the polyacrylamide gel. Electro-transfer of proteins from gels to PVDF membrane was 

carried out at 1 A and 20 V for 30 min. 

Electro-transferred PVDF membranes were then blocked with commercially available 

5% non-fat milk in 1× Tris-buffered saline (20 mM Tris-HCl, pH 7.6, 200 mM NaCl) 

containing 0.1% tween 20 (TBST) for 1 h at room temperature with gentle shaking on a 

rocker. Blocked PVDF membrane was probed overnight with gentle shaking at 4 ºC with 

specific primary antibodies dissolved in 5% BSA in TBST. Anti-phospho-Akt (Ser473), 

anti-Akt, and anti-Nrf2 rabbit primary antibodies were dissolved in 5% BSA in TBST at a 

ratio of 1:1000, and anti-phospo-Nrf2 (Ser40) rabbit antibody was dissolved in 5% BSA in 

TBST at a ratio of 1:5000. Following probing for primary antibodies, membranes were 

washed three times with TBST for 5 min and re-probed with the HRP-linked anti-rabbit 

secondary antibodies (1:2000) for 1 h with gentle shaking on a rocker. For β-actin, HRP 

conjugated anti-β-actin rabbit antibody was probed overnight. Probed PVDF membranes 

were then washed three times with TBST for 5 min.   

Clarity™ and Clarity Max™ Western ECL Substrates Kit (Cat: 1705060, Bio-Rad 

Laboratories Inc., Hercules, CA, USA) was used to develop the membranes for imaging 

using BIO-RAD Chemidoc MP™ imaging system (Universal hood III, Bio-Rad 
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Laboratories Inc., Hercules, CA, USA). Clarity™ Western ECL substrate solutions, 

peroxide solution, and luminol/enhancer solution were mixed at a ratio of 1:1 before adding 

to the membranes. After incubating the membrane for 5 min, membranes were imaged in 

signal accumulation mode. The membranes probed to study p-Akt and p-Nrf2 were used 

to probe their respective total protein antibodies after stripping off the anti-bodies from the 

membrane. The membrane was washed three times for 20 min with TBST after imaging 

and incubated with stripping buffer (pH-2.2) containing 1.5% glycine, 0.1% SDS, 1% 

Tween 20 for 10 min. After incubation, stripping buffer was discarded, and the membrane 

was washed twice with TBST solution for 10 min. Incubation with stripping buffer was 

continued for another two more rounds, followed by the washing with TBST two times for 

10 min. The stripped membranes were re-probed for the total protein contents, as 

mentioned before. Images were analyzed for band intensity using Image LabTM software 

(Version 6.0.1, Bio-Rad Laboratories Inc., Hercules, CA, USA). Protein expression of each 

band was normalized to their respective β-actin band intensity. Results were expressed as 

the phosphorylated protein expression: total protein expression relative to the control. 

3.5.2 Effect of quercetin, genistein, and procyanidin B2 on nuclear translocation of 

p-Nrf2 in BEAS-2B cells 

The effect of quercetin, genistein, and procyanidin B2 on p-Nrf2 nuclear translocation 

was evaluated using an immunofluorescence assay. The immunofluorescence assay 

protocol identified in section 3.3.5 was followed to study the level of p-Nrf2 nuclear 

translocation with minor modifications. Cells were treated as mentioned in the 3.4.1 

section. Anti-phospho-Nrf2 (Ser40) was used as the primary antibody at a ratio of 1:200 in 

4% BSA, and Alexa FlourTM 488 goat anti-rabbit secondary antibody was used at a ratio 
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of 1:500 in 4% BSA. Images of slides were taken using a fluorescence microscope 

(EVOSTM FLoid Imaging System, Bothell, WA, USA) at 100× magnification. The 

corrected total nuclear fluorescence (CTNF) values of at least 30 nuclei per treatment were 

measured using ImageJ software (Version 1.53k, National Institute of Mental Health, 

Bethesda, MD, USA). CTNF values were calculated using the following formula, A is the 

area of the selected nucleus while MC is the mean fluorescence value of the cell, and MB 

is the mean fluorescence value of the background. 

Corrected total nuclear fluorescence value (CTNF) = (A × MC) − (A ∗ MB) 

3.5.3 Effect of quercetin, genistein, and procyanidin B2 on antioxidant enzyme 

activity in BEAS-2B cells 

Antioxidant enzyme activities were evaluated in terms of superoxide dismutase 

(SOD), catalase, and glutathione peroxidase (GPx) activities in BEAS-2B cells. Initially, 1 

× 106  and 2 × 106 BEAS-2B cells were seeded in T-75 polystyrene culture flasks (75 cm2) 

and incubated for 24 h in an incubator (VWR 3074, VWR International, LLC, Hampton, 

NH, USA) for catalase and SOD activity assays, respectively. For the GPx assay, 2 × 105 

cells were seeded in clear flat bottom 6-well plates. After 24 h, cells were treated as 

described earlier (Section 3.4.1). TrypLETM Express solution was used to harvest cells and 

centrifuged at 1000 × g for 5 min to obtain the cell pellet. One milliliter of cold PBS (1 ×) 

was used to wash the cell pellet and centrifuged in a micro-centrifuge (Legend MICRO 

21R, Cat: 75002446, Thermo Fisher Scientific, Osterode, Germany) for 5 min at 1000 × g 

at 4 ºC followed by careful and thorough removal of PBS from the cell pellet. The cell 

pellets were kept on ice. 
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3.5.3.1 Superoxide dismutase activity 

Superoxide dismutase (SOD) activity assay kit (Cat: ab65354, Abcam Inc, Toronto, 

ON, Canada) was used to determine the SOD activity in BEAS-2B cells. After harvesting 

cells, the cells pellet was resuspended and homogenized in ice-cold 0.1 M Tris-HCL lysis 

buffer (pH 7.4, 0.5% Triton X-100, 5 mM 2-mercaptoethanol, and 0.1 mg/mL 

phenylmethylsulfonyl fluoride protease inhibitor). The lysis buffer containing cells was 

then centrifuged for 5 min at 4 ºC in a micro-centrifuge (Legend MICRO 21R, Cat: 

75002446, Thermo Fisher Scientific, Osterode, Germany) at 14,000 × g. After micro-

centrifugation, supernatants containing proteins in lysis buffer were carefully collected 

without disturbing the pellets of cell debris and kept on ice while using. A clear flat-bottom 

96-well plate was used to perform the assay. Reaction wells consisted of three types of 

blanks in addition to the sample wells. Blank 1 and blank 3 were loaded with 20 µL of 

deionized water, whereas both blank 2 and sample wells were loaded with 20 µL of 

extracted proteins in lysis buffer. Then, 200 µL of WST solution provided with the kit was 

added to each well, followed by the addition of 20 µL of dilution buffer to blanks 2 and 3. 

Twenty microliters of SOD enzyme solution were then added to sample wells and blank 1 

well. The reaction mixtures were incubated for 20 min at 37 ºC. The absorbance was 

recorded at 450 nm using a microplate reader Infinite® 200 PRO, Tecan Trading AG, 

Mannedorf, Switzerland). SOD activity in terms of percentage inhibition rate was 

calculated using the following formulae, whereas Ab1, Ab2, Ab3, and As are the 

absorbance values of blank 1, blank 2, blank 3, and samples, respectively. 

SOD activity (% inhibition rate) = (
(𝐴𝑏1 − 𝐴𝑏3) − (𝐴𝑠 − 𝐴𝑏2)

(𝐴𝑏1 − 𝐴𝑏3)
) × 100 
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3.5.3.2 Catalase activity 

The catalase activity assay kit (Cat: ab83464, Abcam Inc, Toronto, ON, Canada) was 

used to determine the catalase activity in BEAS-2B cells. After harvesting cells, the cell 

pellet was resuspended and homogenized in the ice-cold catalase assay buffer provided 

with the kit. The mixture was then centrifuged for 15 min at 4 ºC in a micro-centrifuge 

(Legend MICRO 21R, Cat: 75002446, Thermo Fisher Scientific, Osterode, Germany) at 

10,000 × g. After centrifugation, supernatants containing proteins in catalase assay buffer 

were carefully collected without disturbing the pellets of cell debris and kept on ice while 

using.  Hydrogen peroxide was used as the standard compound to determine the catalase 

activity. A stock solution of 20 mM hydrogen peroxide was used to prepare solutions of 0, 

2, 4, 6, 8, and 10 nmol/well to generate the standard solution series. A clear flat-bottom 96-

well plate was used to load the samples, whereas 90 µL/well of standard solutions and 5 

µL/well of protein extracts were loaded to sample wells (catalases active sample wells) and 

sample high control wells (samples that were inhibited for catalase activity). The volumes 

of sample wells and sample high control wells were then adjusted to 78 µL/well with 

catalase assay buffer. The stop solution (10 µL/well) was added to both hydrogen peroxide 

standard wells and sample high control wells and incubated at room temperature for 5 min 

to inhibit the catalase activity. Fresh 1 mM hydrogen peroxide (12 µL/well) was added to 

sample wells and sample high control wells and incubated for 30 min at room temperature. 

After incubation, 10 µL/well of stop solution was added to each sample well. Then, a 

volume of 50 µL/well of the developer mix containing HRP solution, OxiRed probe, and 

catalase assay buffer at a ratio of 1:1:23 was added to each well and incubated for 10 min 

at room temperature. The absorbance was recorded at 570 nm using a microplate reader 
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(Infinite® 200 PRO, Tecan Trading AG, Mannedorf, Switzerland). The standard curve was 

used to calculate the reacted hydrogen peroxide amount in the sample using the absorbance 

values obtained by subtracting the absorbance of sample wells from the sample high control 

wells. One unit of catalase activity represents the amount of catalases that decomposes 1 

µM of hydrogen peroxide per min at room temperature at pH 4.5. The catalase activity 

(mU/mL) of samples was calculated using the following formula, whereas B is the amount 

of hydrogen peroxide in the sample well calculated from the standard curve (nmol), 30 is 

the catalase reaction time (min), V is the sample volume added into the reaction volume 

(mL), and D is the dilution factor. 

Catalase activity = (
B

30 × V
) × D 

3.5.3.3 Glutathione peroxidase activity 

Glutathione peroxidase (GPx) activity assay kit (Cat: ab219926, Abcam Inc, Toronto, 

ON, Canada) was used to determine the GPx activity in BEAS-2B cells.  After harvesting 

cells, the cell pellet was resuspended and homogenized in ice-cold 0.1 M Tris-HCL lysis 

buffer (pH 7.4, 0.5% Triton X-100, 5 mM 2-mercaptoethanol, and 0.1 mg/mL 

phenylmethylsulfonyl fluoride protease inhibitor). The lysis buffer containing cells was 

then centrifuged for 5 min at 4 ºC in a micro-centrifuge (Legend MICRO 21R, Cat: 

75002446, Thermo Fisher Scientific, Osterode, Germany) at 13,000 × g. After 

centrifugation, supernatants containing proteins in lysis buffer were carefully collected 

without disturbing the pellets of cell debris and kept on ice while using. 

GPx enzyme was used as the standard compound to determine the GPx activity. A 

stock solution of 10 U/mL GPx was used to prepare solutions of 0, 0.625, 1.25, 2.5, 5, 10, 
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20, and 40 mU/mL to generate the standard solution series.  A black clear flat-bottom 96-

well plate was used to perform the assay, and 50 µL of PBS and 50 µL standard solutions 

were added to blank control wells and standard wells, respectively. The sample wells were 

loaded with 2 µL of extracted protein samples and adjusted the volumes of sample wells 

with PBS up to 50 µL.  Then, 50 µL of GPx assay mixture containing 100× GSH stock 

solution and enzyme mix solution at a ratio of 1:1 was added to each well. The reaction 

mixture was then incubated for 30 min in the dark at room temperature. After incubation, 

20 µL of NADP sensor probe in PBS (1:20 ratio) and 20 µL of NADP assay solution were 

added to each well. The reaction mixture was incubated for 10 min in the dark at room 

temperature. After 10 min, 15 µL of enhancer solution was added to the reaction volume, 

and fluorescence increase was measured at an excitation wavelength of 420 nm and an 

emission wavelength of 480 nm using a microplate reader (Infinite® 200 PRO, Tecan 

Trading AG, Mannedorf, Switzerland) in kinetic mode for every 2 min, for at least 30 min.  

The reaction rate (ΔRFU) was calculated as follows, whereas T1 and T2 are the chosen 

time points in minutes in the linear phase of the reaction progress curve. RFU1 and RFU2 

values are fluorescence values of the sample at T1 and T2 time points, and RFUb1 and 

RFUb2 are the fluorescence values of blanks at T1 and T2 time points.  

ΔRFU = [
(RFU2 − RFUb2 )– (RFU1 − RFUb1)

(T2 − T1)
] 

GPx activity (mU/mL) of the original samples was then calculated using the following 

equation, whereas B is the GPx activity in sample wells calculated using ΔRFU and GPx 

standard curve, Vw is the total volume of the well after reaction, Vs is the original sample 

volume added to the reaction mixture, and D is the dilution factor.  
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GPx activity = B × (
Vw

Vs
) × D 

3.6 Experimental design and statistical analysis 

A complete randomized design was used for all experiments. Results were presented 

as mean values with standard deviation (± SD) relative to medium control. Analysis of 

variance was performed using one-way analysis of variance (ANOVA), and mean 

comparison was performed using Tukey’s multiple mean comparisons at p <0.05 using 

Minitab 19 statistical software. Screening of polyphenols for the effects on NNKAc-

induced ROS was performed in triplicates and independently, two times. MTS assay, DNA 

fragmentation ELISA, catalase activity, GPx activity, and SOD activity assays were 

performed in duplicates and independently three times. All other experiments were 

performed in triplicates and independently, at least three times. 
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Figure 5: Research methodology that was followed in this thesis 

This investigation was carried out in three major phases. In phase 1, 25 dietary antioxidants 

representing selected flavonoids, flavonoid metabolites, phenolic acids, simple 

polyphenols, stilbenes, curcuminoids, and non-phenolics were investigated for their 

efficacy against NNKAc-induced ROS generation in cultured BEAS-2B cells. Among 

these 25 compounds, compounds that reduced NNKAc-induced ROS in BEAS-2B cells at 

concentrations equal to or less than 25 μM were selected for phase 2. In phase 2, 12 most 

efficacious antioxidant compounds were further investigated for their cytotoxicity and 

prevention of DNA damage induced by the NNKAc challenge. In phase 3, the three most 

efficacious antioxidant compounds at low concentrations that reduced NNKAc-induced 

ROS and DNA damage in BEAS-2B cells were further investigated for their possible 

mechanisms of activation of the Nrf2/ARE pathway. 

Abbreviations: Akt: protein kinase B, DCFDA: 2' 7'-dichlorofluorescein diacetate, ELISA: 

enzyme-linked immunosorbent assay), Nrf2/ARE: Nuclear factor erythroid 2 p45 (NF-E2)-

related factor/ antioxidant response element, SOD: superoxide dismutase  
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CHAPTER 4: RESULTS 

4.1 Effects of dietary antioxidants in the reduction of NNKAc-induced ROS 

generation in BEAS-2B cells 

The dose-dependent effects (0.1, 1, 5, 10, 25, and 50 µM) of selected 25 dietary 

antioxidants on NNKAc-induced intracellular ROS generation in BEAS-2B cells were 

studied using the DCFDA assay. NNKAc-treated BEAS-2B cells showed significantly 

increased (p < 0.05) ROS levels by 20-30% compared to DMSO control. BEAS-2B cells 

treated with different concentrations (0.1-50 µM) of dietary antioxidants alone did not 

influence ROS level (p > 0.05) when compared to the DMSO control. Among tested 

flavonoids, pre-exposure of BEAS-2B cells to 3-hydroxy flavonoids (Figure 6) such as 

quercetin (5-50 µM), cyanidin (25-50 µM), and procyanidin B2 (0.1-50 µM) and 3-deoxy 

flavonoids (Figure 7) such as luteolin (5-50 µM), chrysin (10-50 µM), naringenin (25-50 

µM), and genistein (1-50 µM) depicted significant reductions (p < 0.05) in NNKAc-

induced ROS levels. However, epicatechin, C3G, phloretin, and phloridzin did not prevent 

NNKAc-induced ROS generation. Among the tested flavonoid metabolites, isorhamnetin 

at 50 μM, significantly reduced (p < 0.05) ROS levels induced by NNKAc in BEAS-2B 

cells (Figure 8). BEAS-2B cells pretreated with curcumin (5-50 µM), resveratrol (10-50 

µM), and catechol (25-50 µM) showed significantly reduced (p < 0.05) ROS levels in 

NNKAc-treated cells (Figure 9). However, BEAS-2B cells pretreated with phenolic acids 

(i.e., caffeic acid, chlorogenic acid, and methyl 4-hydroxybenzoate) did not reduce (p > 

0.05) NNKAc-induced ROS levels (Figure 9). Furthermore, pretreated BEAS-2B cells 

with non-phenolic compounds (Figure 10) such as ascorbic acid (50 µM), sulforaphane (5-

50 µM), and dimethyl fumarate (25-50 µM) also showed significant reductions (p < 0.05) 
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in NNKAc-induced ROS levels at different concentrations. However, pre-exposure with 

beta-carotene was not effective in the reduction (p > 0.05) of NNKAc-induced ROS in 

BEAS-2B cells (Figure 5).   
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Figure 6: Effect of quercetin (A), cyanidin (B), cyanidin-3-O-glucoside (C), 

epicatechin (D), and procyanidin B2 (E) on reducing NNKAc-induced ROS in 

BEAS-2B cells 
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Cells were pre-treated with concentrations ranging from 0.1- 50 µM of 3-hydroxy 

flavonoids for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h to 

induce ROS generation. DMSO (0.1 or 0.4%) was used as the vehicle control. Effects on 

ROS levels were quantified using DCFDA fluorescence assay. Two independent studies 

(each done in triplicates) were performed, and results were expressed as mean ± standard 

deviation. Statistical analysis of data was performed by one-way ANOVA and mean 

comparison was done by Tukey’s mean comparison method (α=0.05) using Minitab 19 

statistical software. Mean values that do not share similar letters (i.e., a-e) in bar graphs are 

significantly different (p<0.05). Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-

1-(3-pyridyl)-1-butanone, ROS: reactive oxygen species, DCFDA: 2' 7'-

dichlorofluorescein diacetate, DMSO: dimethylsulfoxide, C3G: cyanidin-3-O-glucoside. 
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Figure 7: Effect of luteolin (A), chrysin (B), naringenin (C), genistein (D), phloretin 

(E), and phloridzin on reducing NNKAc-induced ROS in BEAS-2B cells 
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Cells were pre-treated with concentrations ranging from 0.1- 50 µM of selected 3-deoxy 

flavonoids and chalcones for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for 

another 3 h to induce ROS generation. DMSO (0.1%) was used as the vehicle control. 

Effects on ROS levels were quantified using DCFDA fluorescence assay. Two independent 

studies (each done in triplicates) were performed, and results were expressed as mean ± 

standard deviation. Statistical analysis of data was performed by one-way ANOVA and 

mean comparison was done by Tukey’s mean comparison method (α=0.05) using Minitab 

19 statistical software. Mean values letters that do not share similar letters (i.e., a-e) in bar 

graphs are significantly different (p<0.05). Abbreviations: NNKAc: 4-

[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DCFDA: 2' 7'-

dichlorofluorescein diacetate, ROS: reactive oxygen species, DMSO: dimethylsulfoxide. 
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Figure 8: Effect of isorhamnetin (A), quercetin-3-O-glucuronic acid (B), 

protocatechuic acid (C), and phloroglucinaldehyde (D) on reducing NNKAc-induced 

ROS in BEAS-2B cells 

Cells were pre-treated with concentrations ranging from 0.1- 50 µM of selected polyphenol 

metabolites for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h to 

induce ROS generation. DMSO (0.1% or 0.4%) was used as the vehicle control. Effects on 

ROS levels were quantified using DCFDA fluorescence assay. Two independent studies 

(each done in triplicates) were performed, and results were expressed as mean ± standard 

deviation. Statistical analysis of data was performed by one-way ANOVA and mean 

comparison was done by Tukey’s mean comparison method (α=0.05) using Minitab 19 

statistical software. Mean values that do not share similar letters (i.e., a- e) in bar graphs 

are significantly different (p<0.05). Abbreviations: NNKAc: 4-
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[(Acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DCFDA: 2' 7'-

dichlorofluorescein diacetate, ROS: reactive oxygen species, DMSO: dimethylsulfoxide, 

Q: quercetin, PCA: protocatechuic acid, PGA: phloroglucinaldehyde. 
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Figure 9: Effect of caffeic acid (A), chlorogenic acid (B), methyl 4-hydroxybenzoate 

(C), catechol (D), curcumin (E), and resveratrol (F) on reducing NNKAc-induced 

ROS in BEAS-2B cells 
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Cells were pre-treated with concentrations ranging from 0.1- 50 µM of selected phenolic 

acids and other polyphenols for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for 

another 3 h to induce ROS generation. DMSO (0.1%) was used as the vehicle control. 

Effects on ROS levels were quantified using DCFDA fluorescence assay. Two independent 

studies (each done in triplicates) were performed, and results were expressed as mean ± 

standard deviation. Statistical analysis of data was performed by one-way ANOVA and 

mean comparison was done by Tukey’s mean comparison method (α=0.05) using Minitab 

19 statistical software. Mean values that do not share similar letters (i.e., a-e) in bar graphs 

are significantly different (p<0.05). Abbreviations: M4H: methyl 4-hydroxybenzoate 

NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DCFDA: 2' 7'-

dichlorofluorescein diacetate, ROS: reactive oxygen species, DMSO: dimethylsulfoxide. 
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Figure 10: Effect of ascorbic acid (A), beta-carotene (B), dimethyl fumarate (C), and 

sulforaphane (D) on reducing NNKAc-induced ROS in BEAS-2B cells 

Cells were pre-treated with concentrations ranging from 0.1- 50 µM of selected non-

phenolic compounds for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 

3 h to induce ROS generation. DMSO (0.1% or 0.4%) was used as the vehicle control. 

Effects on ROS levels were quantified using DCFDA fluorescence assay. Two independent 

studies (each done in triplicates) were performed, and results were expressed as mean ± 

standard deviation. Statistical analysis of data was performed by one-way ANOVA and 

mean comparison was done by Tukey’s mean comparison method (α=0.05) using Minitab 

19 statistical software. Mean values that do not share similar letters (i.e., a-e) in bar graphs 

are significantly different (p<0.05).  
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Abbreviations: NNKAc: 4-[(Acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, 

DCFDA: 2' 7'-dichlorofluorescein diacetate, ROS: reactive oxygen species, DMSO: 

dimethyl sulfoxide. 

4.2 Effects of dietary antioxidants in the reduction of NNKAc-induced DNA 

damage in BEAS-2B cells 

To assess cytoprotective and genoprotective effects against NNKAc-challenged 

BEAS-2B cells, the dose-dependent effects of 12 selected compounds were assessed using 

5 different concentrations (0.1, 1, 5, 10, and 25 µM). The 12 compounds were selected 

based on their ability to reduce the NNKAc-induced ROS generation in BEAS-2B cells at 

concentrations equals or less than 25 µM.  The selected compounds include: 3-hydroxy 

(quercetin, cyanidin, and procyanidin B2) and 3-deoxy (luteolin, chrysin, naringenin, and 

genistein) flavonoids, simple polyphenols (catechol), stilbenes (resveratrol), curcuminoids 

(curcumin) and non-phenolic compounds (DMF and sulforaphane) that reduced NNKAc-

induced ROS in BEAS-2B cells at concentrations equal to or less than 25 μM were selected.  

4.2.1 Effects of dietary antioxidants on BEAS-2B cell viability. 

The effects of test compounds on cell viability under experimental conditions were 

studied using the MTS assay (Appendix 1 and 2).  The viability of BEAS-2B cells was 

reduced by 10-20% due to the exposure of 100 µM NNKAc but the reduction was not 

significant (p > 0.05) when compared to the DMSO control. The test compounds at 

concentrations of 0.1–25 μM did not impact (p > 0.05) on the viability of BEAS-2B cells 

when compared to the DMSO control.  
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4.2.2 Effects of dietary antioxidants on NNKAc-induced DNA damage in BEAS-2B 

cells 

The protective effects of selected test compounds on NNKAc-induced DNA damage 

in BEAS-2B cells were studied using γ-H2AX immunofluorescence assay (HIA; Figure 

11-13 and Table 3), comet assay (CA; Figure 14-16 and Table 3), and DNA fragmentation-

ELISA assay (DFEA; Figures 17 and 18 and Table 3). Effects on DNA double-strand 

breaks (DSBs) induced by NNKAc in BEAS-2B cells were evaluated by quantifying γ-

H2AX foci per nucleus using the immunofluorescence assay. Percentage tail moment of 

single BEAS-2B cells from comet assay was used to study the protective effects of tested 

compounds on both DNA single-strand breaks (SSBs) and DNA DSBs induced by NNKAc 

in BEAS-2B cells. For DNA fragmentation by ELISA assay, absorbance at 450 nm was 

recorded to measure the level of DNA fragmentation by spectrophotometry.  

BEAS-2B cells-treated with NNKAc showed significantly higher γ-H2AX foci per 

nucleus, percentage DNA tail moment, and DNA fragmentation levels (p<0.05) compared 

to DMSO control. BEAS-2B cells treated with different concentrations (0.1–25 μM) of all 

12 selected dietary antioxidants without NNKAc challenge showed no significant DNA 

damage (p > 0.05) in all three experiments compared to DMSO control. BEAS-2B cells 

pre-treated with 3-hydroxy flavonoids such as quercetin (1-25 μM) and procyanidin B2 

(0.1-25 μM) and 3-deoxy flavonoid genistein (0.1-25 μM) showed significant (p < 0.05) 

reductions in γ-H2AX foci per nucleus, percentage DNA tail moment, and DNA 

fragmentation levels in BEAS-2B cells against NNKAc challenge at both low and high 

concentrations. Meanwhile, significantly reduced (p < 0.05) NNKAc-induced DNA 

damage in BEAS-2B cells with pre-treatment with luteolin (HIA: 10-25 µM, CA:5-25 µM, 
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and DFEA: 5-25 µM), chrysin (HIA: 25 µM, CA: 10-25 µM and DFEA: 10-25 µM), 

naringenin (HIA: 25 µM, CA: 25 µM and DFEA: 25 µM) and cyanidin (CA: 25 µM and 

DFEA: 25 µM) was observed at comparatively higher concentrations than genistein, 

procyanidin B2, and quercetin. Interestingly, despite a dose-dependent reduction in 

NNKAc-induced DNA DSBs in BEAS-2B in terms of reduction of γ-H2AX foci per 

nucleus by cyanidin pretreatment, the observed reductions were not significant (p > 0.05). 

Meanwhile, non-flavonoids such as curcumin (DFEA: 5-25 µM, HIA: 10-25 µM, and 

CA:5-25 µM), catechol (DFEA: 25 µM, HIA: 25 µM, and CA: 25 µM), resveratrol (DFEA: 

10-25 µM, HIA: 10-25 µM, and CA: 10-25 µM), sulforaphane (DFEA: 10-25 µM, HIA: 

5-25 µM, and CA-5-25 µM), and dimethyl fumarate (DFEA: 25 µM, HIA: 25 µM, and 

CA: 25 µM) also significantly (p < 0.05) reduced NNKAc-induced DNA damage in BEAS-

2B cells compared to BEAS-2B cells treated with NNKAc at relatively higher 

concentrations. 
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Figure 11: Effect of luteolin (A-B), chrysin (C-D), naringenin (E-F), and genistein 

(G-H) on NNKAc-induced DNA damage in BEAS-2B cells measured by γ-H2AX 

immunofluorescence assay 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1%) 

was used as the vehicle control. Specific antibodies were used to label the phosphorylated 

histone γ-H2AX foci (Ser139) and DAPI was used to stain the nucleus. The foci/nucleus 

ratio was quantified using at least 50 nuclei per treatment. Nuclei were imaged by 

fluorescence microscopy (×100 magnification). The number of foci per nuclei was counted 

by ImageJ software. Three independent studies were performed, and results were expressed 

as mean ± standard deviation. Statistical analysis of data was performed by one-way 

ANOVA and mean comparison was done by Tukey’s mean comparison method (α=0.05) 

using Minitab 19 statistical software. Mean values that do not share similar letters (i.e., a-

e) in bar graphs are significantly different (p<0.05). Abbreviations: NNKAc: 4-

[(Acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DMSO: dimethyl sulfoxide. 
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Figure 12: Effect of quercetin (A-B), cyanidin (C-D), procyanidin B2 (E-F), and 

catechol (G-H) on NNKAc-induced DNA damage in BEAS-2B cells measured by γ-

H2AX immunofluorescence assay 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1% 

or 0.4%) was used as the vehicle control. Specific antibodies were used to label the 

phosphorylated histone γ-H2AX foci (Ser139) and DAPI was used to stain the nucleus. 

The foci/nucleus ratio was quantified using at least 50 nuclei per treatment. Nuclei were 

imaged by fluorescence microscopy (×100 magnification). The number of foci per nuclei 

was counted by ImageJ software. Three independent studies were performed, and results 

were expressed as mean ± standard deviation. Statistical analysis of data was performed by 

one-way ANOVA and mean comparison was done by Tukey’s mean comparison method 

(α=0.05) using Minitab 19 statistical software. Mean values that do not share similar letters 

(i.e., a-e) in bar graphs are significantly different (p<0.05). Abbreviations: NNKAc: 4-

[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DMSO: dimethyl sulfoxide. 
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Figure 13: Effect of resveratrol (A-B), catechol (C-D), and dimethyl fumarate (E-F) 

on NNKAc-induced DNA damage in BEAS-2B cells measured by γ-H2AX 

immunofluorescence assay 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1%) 

was used as the vehicle control. Specific antibodies were used to label the phosphorylated 

histone γ-H2AX foci (Ser139) and DAPI was used to stain the nucleus. The foci/nucleus 

ratio was quantified using at least 50 nuclei per treatment. Nuclei were imaged by 

fluorescence microscopy (×100 magnification). The number of foci per nuclei was counted 

by ImageJ software. Three independent studies were performed, and results were expressed 

as mean ± standard deviation. Statistical analysis of data was performed by one-way 

ANOVA and mean comparison was done by Tukey’s mean comparison method (α=0.05) 

using Minitab 19 statistical software. Mean values that do not share similar letters (i.e., a-

e) in bar graphs are significantly different (p<0.05). Abbreviations: NNKAc: 4-

[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DMF: dimethyl fumarate, 

DMSO: dimethyl sulfoxide. 

 

  



93 

 

Figure 14: Effect of luteolin (A-B), chrysin (C-D), naringenin (E-F), and genistein 

(G-H) on NNKAc-induced DNA damage in BEAS-2B cells measured by comet assay 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1%) 

was used as the vehicle control. Comets were imaged by fluorescence microscopy (×100 

magnification). Percentage tail moment using at least 30 comets per treatment was 

calculated by using the OpenComet plugin in ImageJ software. Three independent studies 

were performed, and results were expressed as mean ± standard deviation. Statistical 

analysis of data was performed by one-way ANOVA and mean comparison was done by 

Tukey’s mean comparison method (α=0.05) using Minitab 19 statistical software. Mean 

values that do not share similar letters (i.e., a-e) in bar graphs are significantly different 

(p<0.05). Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-

butanone, DMSO: dimethyl sulfoxide. 
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Figure 15: Effect of quercetin (A-B), cyanidin (C-D), procyanidin B2 (E-F), and 

catechol (G-H) on NNKAc-induced DNA damage in BEAS-2B cells measured by 

comet assay 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO was 

used as the vehicle control (0.1%). Comets were imaged by fluorescence microscopy (×100 

magnification). Percentage tail moment using at least 30 comets per treatment was 

calculated by using the OpenComet plugin in ImageJ software. Three independent studies 

were performed, and results were expressed as mean ± standard deviation. Statistical 

analysis of data was performed by one-way ANOVA and mean comparison was done by 

Tukey’s mean comparison method (α=0.05) using Minitab 19 statistical software. Mean 

values that do not share similar letters (i.e., a-e) in bar graphs are significantly different 

(p<0.05). Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-

butanone, DMSO: dimethyl sulfoxide. 
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Figure 16: Effect of resveratrol (A-B), curcumin (C-D), sulforaphane (E-F), and 

dimethyl fumarate (G-H) on NNKAc-induced DNA damage in BEAS-2B cells 

measured by comet assay 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1%) 

was used as the vehicle control. Comets were imaged by fluorescence microscopy (×100 

magnification). Percentage tail moment using at least 30 comets per treatment was 

calculated by using the OpenComet plugin in ImageJ software. Three independent studies 

were performed, and results were expressed as mean ± standard deviation. Statistical 

analysis of data was performed by one-way ANOVA and mean comparison was done by 

Tukey’s mean comparison method (α=0.05) using Minitab 19 statistical software. Mean 

values that do not share similar letters (i.e., a-e) in bar graphs are significantly different 

(p<0.05). Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-

butanone, DMF: dimethyl fumarate, DMSO: dimethyl sulfoxide. 
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Figure 17: Effect of luteolin (A), chrysin (B), quercetin (C), genistein (D), cyanidin 

(E), and procyanidin B2 (F) on DNA fragmentation level against NNKAc-induced 

DNA damage in BEAS-2B cells 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1% 

or 0.4%) was used as the vehicle control. Effects on the level of DNA fragmentation were 

quantified using DNA fragmentation ELISA assay. Three independent studies (each done 

in duplicates) were performed, and results were expressed as mean ± standard deviation. 

Statistical analysis of data was performed by one-way ANOVA and mean comparison was 

done by Tukey’s mean comparison method (α=0.05) using Minitab 19 statistical software. 

Mean values that do not share similar letters (i.e., a-e) in bar graphs are significantly 

different (p<0.05). Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-

pyridyl)-1-butanone, DMSO: dimethyl sulfoxide. 
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Figure 18: Effect of naringenin (A), resveratrol (B), curcumin (C), sulforaphane (D), 

catechol (E), and dimethyl fumarate (F) on DNA fragmentation level against 

NNKAc-induced DNA damage in BEAS-2B cells 

 



102 

 

Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1%) 

was used as the vehicle control. Effects on the level of DNA fragmentation were quantified 

using DNA fragmentation ELISA assay. Three independent studies (each done in 

duplicates) were performed, and results were expressed as mean ± standard deviation. 

Statistical analysis of data was performed by one-way ANOVA and mean comparison was 

done by Tukey’s mean comparison method (α=0.05) using Minitab 19 statistical software. 

Mean values that do not share similar letters (i.e., a-e) in bar graphs are significantly 

different (p<0.05). Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-

pyridyl)-1-butanone, DMSO: dimethyl sulfoxide. 
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4.3 Effects of quercetin, genistein, and procyanidin B2 on Nrf2/ARE signaling 

pathway in BEAS-2B cells 

To assess the effects on Nrf2/ARE pathway in NNKAc challenged and normal BEAS-

2B cells, the dose-dependent (1 and 25 µM) effects of the most effective flavonoids 

(quercetin, genistein, and procyanidin B2) in reducing NNKAc-induced ROS and DNA 

damage in BEAS-2B cells were studied.  

4.3.1 Effect of quercetin, genistein, and procyanidin B2 on the phosphorylation of 

Akt and Nrf2 in BEAS-2B cells 

Western blot analysis was used to assess the effects of quercetin, genistein, and 

procyanidin B2 on the activation of Nrf2 and its upstream kinase Akt through 

phosphorylation in BEAS-2B cells (Figure 19). BEAS-2B cells treated with NNKAc 

showed significantly (p < 0.05) higher p-Akt/Akt and p-Nrf2/Nrf2 ratios compared to 

DMSO control. In addition, two positive controls, namely DMF and hydrogen peroxide, 

were tested for their effects on Akt and Nrf2 phosphorylation in BEAS-2B cells. However, 

a significant increase (p < 0.05) compared to the DMSO control was observed only with 

the p-Nrf2/Nrf2 ratio but not with the p-Akt/Akt ratio after treatment of BEAS-2B cells 

with DMF or hydrogen peroxide.   

BEAS-2B cells were treated with quercetin or procyanidin B2, but genistein, showed 

a dose-dependent increase in the p-Akt/Akt ratio. Genistein treatment showed an increase 

in the p-Akt/Akt ratio in BEAS-2B cells at the lowest concentration (1 μM) tested, but the 

observed levels were not significantly different (p > 0.05) from the DMSO control. 

Exposure of BEAS-2B cells only to procyanidin B2 but not quercetin and genistein 

significantly increased (p < 0.05) the p-Nrf2/Nrf2 ratio in BEAS-2B. However, a 
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significant increase (p < 0.05) in the p-Nrf2/Nrf2 ratio compared to the DMSO control was 

only observed with procyanidin B2 treatment at its highest concentration tested (25 μM). 

A dose dependent reduction in the p-Akt/Akt and p-Nrf2/Nrf2 ratios was also observed in 

BEAS-2B cells pretreated with 1 and 25 μM quercetin, genistein, or procyanidin B2 

followed by NNKAc treatment. However, these observed reductions in the p-Akt/Akt and 

p-Nrf2/Nrf2 ratio were not significantly different (p > 0.05) from BEAS-2B cells treated 

with NNKAc alone. 
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Figure 19: Effect of quercetin (A), genistein (B), procyanidin B2 (C), and controls 

(D) on phosphorylation of Nrf2 and Akt proteins in BEAS-2B cells 
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Cells were pre-treated with 1 µM and 25 µM of quercetin, genistein, or procyanidin B2 for 

3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h to induce DNA 

damage. DMF (25 µM) and H2O2 (10 µM) were used as the positive controls and 0.1% 

DMSO was used as the vehicle control. The relative expression of p-Akt (Ser473) (E-H) 

and p-Nrf2 (Ser40) (I-L) protein levels to their respective total protein expressions were 

quantified using western blot analysis. At least 3 independent studies were performed, and 

results were expressed as mean ± standard deviation. Statistical analysis of data was 

performed by one-way ANOVA and mean comparison was done by Tukey’s mean 

comparison method (α=0.05) using Minitab 19 statistical software. Mean values that do 

not share similar letters (i.e., a-e) in bar graphs are significantly different (p<0.05). 

Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, 

DMF: dimethyl fumarate DMSO: dimethyl sulfoxide, H2O2: hydrogen peroxide, G: 

genistein, Q: quercetin, PCB2: procyanidin B2. 
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4.3.2 Effect of quercetin, genistein, and procyanidin B2 on p-Nrf2 nuclear 

translocation in BEAS-2B cells. 

The immunofluorescence assay was used to assess the effects of quercetin, 

genistein, and procyanidin B2 on the nuclear translocation of p-Nrf2 in BEAS-2B cells 

(Figure 20). BEAS-2B cells treated with NNKAc, DMF, or hydrogen peroxide showed 

significantly (p < 0.05) higher levels of p-Nrf2 nuclear translocation compared to DMSO 

control. BEAS-2B cells treated quercetin, genistein, or procyanidin B2 showed a dose-

dependent increase in nuclear p-Nrf2 levels. However, a significant (p < 0.05) increase in 

nuclear p-Nrf2 levels was observed only with genistein and procyanidin B2 treatments at 

all tested concentrations. Moreover, a dose-dependent reduction (p > 0.05) in nuclear p-

Nrf2 levels was observed with pretreatment of BEAS-2B cells with quercetin, genistein, or 

procyanidin B2 followed by the NNKAc treatment in comparison to cells treated with 

NNKAc alone.  
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Figure 20: Effect of quercetin (A, B), genistein (C, D), and procyanidin B2 (E, F) on 

p-Nrf2 nuclear translocation in BEAS-2B cells measured by immunofluorescence 

assay 
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Cells were pre-treated with 1 µM and 25 µM of quercetin, genistein, or procyanidin B2 for 

3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h to induce DNA 

damage. DMF (25 µM) and H2O2 (10 µM) were used as the positive controls and 0.1% 

DMSO was used as the vehicle control. Phosphorylated Nrf2 (Ser40) (p-Nrf2) was labeled 

with specific antibodies and nuclei were stained with DAPI. Nuclei were imaged by 

fluorescence microscopy (×100 magnification). The corrected nuclear fluorescence 

(CTNF) levels per nucleus were quantified using at least 30 nuclei per treatment to measure 

the level of p-Nrf2 nuclear translocation by immunofluorescence analysis. CTNF per 

nucleus was measured by ImageJ software. Three independent studies were performed, and 

results were expressed as mean ± standard deviation. Statistical analysis of data was 

performed by one-way ANOVA and mean comparison was done by Tukey’s mean 

comparison method (α=0.05) using Minitab 19 statistical software. Mean values that do 

not share similar letters (i.e., a-e) in bar graphs are significantly different (p<0.05). 

Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, 

DMF: dimethyl fumarate DMSO: dimethyl sulfoxide, H2O2: hydrogen peroxide, Q: 

quercetin, G: genistein, PCB2: procyanidin B2. 

 

  



110 

 

4.3.3 Effect of quercetin, genistein, and procyanidin B2 on antioxidant enzyme 

activities in BEAS-2B cells. 

Effects of quercetin, genistein, or procyanidin B2 on antioxidant enzyme activities in 

BEAS-2B cells were evaluated in terms of SOD (percentage inhibition of superoxide 

radical), catalase (mU/mL), and GPx (mU/mL) activities (Figure 21). BEAS-2B cells 

treated with NNKAc showed decreased SOD and catalase activities but slightly increased 

GPx activity compared to DMSO control. The reduction in catalase activity in NNKAc-

treated BEAS-2B cells was significantly (p < 0.05) different from DMSO control. 

However, the observed changes in SOD and GPx activities in NNKAc-treated cells were 

not significantly (p > 0.05) different from the DMSO control. In addition to that BEAS-2B 

cells treated with hydrogen peroxide showed a significant (p<0.05) increase in both 

catalase and GPx activities but not SOD activity compared to DMSO control. Furthermore, 

no significant changes (p > 0.05) were observed in the antioxidant enzyme activities of 

BEAS-2B cells treated with DMF compared to the DMSO control. 

BEAS-2B cells treated with 25 μM genistein or 25 μM procyanidin B2 showed a 

significant increase (p < 0.05) in the activity of catalase when compared with DMSO 

control. Also, no significant changes (p > 0.05) were observed in the SOD and GPx 

activities of BEAS-2B cells treated with quercetin, genistein, or procyanidin B2, even 

though the GPx activities were lower than those of the DMSO control.  

BEAS-2B cells pretreated with quercetin, genistein, or procyanidin B2 did not increase 

(p > 0.05) in SOD activity against NNKAc challenge. The observed increase in SOD 

activity by flavonoids against NNKAc treatment was similar to the levels of DMSO control 

but not significantly different (p > 0.05). Furthermore, quercetin, genistein, and 
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procyanidin B2 did not significantly increase (p > 0.05) the NNKAc-reduced catalase 

activity. However, a slight increase in NNKAc-reduced catalase activity was observed with 

pretreatment of BEAS-2B cells with quercetin (1 μM), genistein (1 and 25 μM), and 

procyanidin B2 (1 and 25 μM) which was not significantly different (p > 0.05) from DMSO 

control. Meanwhile, a dose-dependent reduction in GPx activity was observed in BEAS-

2B cells pretreated with quercetin, genistein, or procyanidin B2 against the NNKAc 

challenge. However, these observed reductions in GPx activity were not significantly 

different (p > 0.05) from BEAS-2B cells only treated with NNKAc or DMSO. 
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Figure 21: Effect of quercetin (A-C), genistein (D-F), and procyanidin B2 (G-I) on 

antioxidant enzyme (superoxide dismutase, catalase, and glutathione peroxidase) 

activities in BEAS-2B cells 

Cells were pre-treated with 1 µM or 25 µM of quercetin, genistein, or procyanidin B2 for 

3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h to induce DNA 

damage. DMF (25 µM) and H2O2 (10 µM) were used as the positive controls and 0.1% 

DMSO was used as the vehicle control. Effects of tested compounds on the activity of 

SOD, catalase, and GPx were assessed. Three independent studies (each done in duplicates) 

were performed, and results were expressed as mean ± standard deviation. Statistical 

analysis of data was performed by one-way ANOVA and mean comparison was done by 

Tukey’s mean comparison method (α=0.05) using Minitab 19 statistical software. Mean 

values that do not share similar letters (i.e., a-e) in bar graphs are significantly different 
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(p<0.05). Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-

butanone, DMF: dimethyl fumarate DMSO: dimethyl sulfoxide, H2O2: hydrogen peroxide, 

GPx: glutathione peroxidase, SOD: superoxide dismutase.
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Table 3: Summary of tested compounds on reduction of NNKAc-induced ROS and DNA damage in BEAS-2B cells 

Group Compound ROS-DCFDA assay γ-H2AX 

immunofluorescence 

assay 

Comet assay DNA 

fragmentation-

ELISA assay 

Test compound concentration (µM) + 100 µM NNKAc 

0.1 1 5 10 25 50 0.1 1 5 10 25 0.1 1 5 10 25 0.1 1 5 10 25 

Flavone Luteolin N N * * * * N N N * * N N * * * N N * * * 

Chrysin N N N * * * N N N N * N N N * * N N N * * 

Flavanone Naringenin N N N N * * N N N N * N N N N * N N N N * 

Isoflavone Genistein N * * * * * * * * * * * * * * * * * * * * 

Flavonol Quercetin N N * * * * N * * * * N * * * * N * * * * 

Anthocyanin Cyanidin N N N N * * N N N N N N N N N * N N N N * 

C3G N N N N N N                

Flavan-3-ols Epicatechin N N N N N N                

Proanthocyanidin Procyanidin 

B2 

* * * * * * * * * * * * * * * * * * * * * 

Chalcones Phloretin N N N N N N                

Phloridzin N N N N N N                

Flavonoid 

metabolites 

PCA N N N N N N                

PGA N N N N N N                

Isorhamnetin N N N N N *                

Quercetin-3-

O-glucuronic 

acid 

N N N N N N                

Simple phenols Catechol N N N N * * N N N N * N N N N * N N N N * 

Phenolic acids Caffeic acid N N N N N N                

Chlorogenic 

acid 

N N N N N N                
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Group Compound ROS-DCFDA assay γ-H2AX 

immunofluorescence 

assay 

Comet assay DNA 

fragmentation-

ELISA assay 

Test compound concentration (µM) + 100 µM NNKAc 

0.1 1 5 10 25 50 0.1 1 5 10 25 0.1 1 5 10 25 0.1 1 5 10 25 

Phenolic acids Methyl 4- 

hydroxy 

benzoate 

N N N N N N                

Curcuminoid Curcumin N N * * * * N N N * * N N * * * N N * * * 

Stilbenes Resveratrol N N N * * * N N N * * N N N * * N N N * * 

Sulfur-containing 

compounds 

Sulforaphane N N * * * * N N * * * N N * * * N N N * * 

Vitamins Ascorbic acid N N N N N *                

Carotenoids Beta-

carotene 

N N N N N N                

FDA approved 

Nrf2 activator 

Dimethyl 

fumarate 

N N N N * * N N N N * N N N N * N N N N * 

N and * represent non-significant (p > 0.05) and significant (p < 0.05) effects of tested compounds at selected concentrations on reducing 

NNKAc-induced ROS or DNA damage in BEAS-2B cells, respectively. The gray area in the table indicates that the parameters have 

not been determined. Abbreviations: C3G: cyanidin-3-O-glucoside, PCA: protocatechuic acid, PGA: phloroglucinaldehyde, NNKAc: 

4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DMSO: dimethyl sulfoxide. 
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Figure 22: Summary of tested flavonoids on the regulation of Nrf2/ARE pathway in 

BEAS-2B cells 

In BEAS-2B cells, the activation of Nrf2 in terms of Nrf2 phosphorylation (Ser40 residue) 

and phosphorylation of its upstream kinase Akt at Ser473 residue (non-canonical activator 

of Nrf2) was promoted by procyanidin B2 (1) treatment alone. Further, BEAS-2B cells 

treated only with procyanidin B2 (1) or genistein (2) facilitated the phospho-Nrf2 nuclear 

translocation followed by the increase of catalase activity. Meanwhile, BEAS-2B cells 

treated with quercetin was not effective in activation of Nrf2/ARE pathway. We tested the 

potential of flavonoids to activate Nrf2/ARE pathway in a carcinogen (NNKAc) induced 

BEAS-2B cell model. Interestingly, NNKAc (3) upregulated the Nrf2 phosphorylation, 

Akt phosphorylation and phosphor-Nrf2 nuclear translocation but reduced the catalase 

activity in BEAS-2B cells. Pre-treatment of BEAS-2B cells with procyanidin B2 (1), 

genistein (2), or quercetin prior to carcinogen insult did not significantly effect (p>0.05) 

the Nrf2/ARE pathway activation compared to the BEAS-2B cells treated with NNKAc 

(3) alone. 
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Abbreviations:  1: Procyanidin B2, 2: Genistein, 3: NNKAc (4-

[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone);, Keap 1: Kelch-like ECH-

associated protein 1; Nrf2: Nuclear factor erythroid 2 p45 (NF-E2)-related factor; sMaf: 

Small musculoaponeurotic fibrosarcoma protein; ARE: Antioxidant response element; 

GSH: glutathione; SOD: superoxide dismutase; CAT: Catalase; GPx: Glutathione 

peroxidase; Akt: protein kinase B. (Figure 22 was adapted from Suraweera et al., 2020 

(198) which was originally adapted from Wu et al., 2019 (197)) 
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CHAPTER 5: DISCUSSION 

Dietary antioxidants have received increasing interest among scientists, 

manufacturers, and consumers due to their potential health benefits against many non-

communicable diseases. Over the years, dietary polyphenols, particularly flavonoids, have 

been widely studied and reviewed for their physiological benefits, including their role as 

antioxidants in cancer chemoprevention (35,198,312–317). In this study, we investigated 

the efficacy of selected flavonoids in comparison to flavonoid metabolites, phenolic acids, 

simple polyphenols, stilbenes, curcuminoids, and non-phenolic antioxidants in reducing 

carcinogen-induced DNA damage in normal lung epithelial BEAS-2B cells. In addition, 

we also investigated whether the DNA damage reductions observed by the three most 

effective flavonoids are due to the activation of the antioxidant defense system via the 

Nrf2/ARE pathway. 

5.1 NNKAc-induced normal bronchial epithelial BEAS-2B cell model 

The in vitro carcinogen-induced normal bronchial epithelial BEAS-2B cell model 

developed by Amararathna, et al., 2020 (35) was used in this study. This carcinogen-

induced DNA damage experimental model has been developed taking into account the 

positive correlation between tobacco smoke and lung cancer (35). Cultured human 

bronchial epithelial BEAS-2B cells pre-treated with dietary antioxidants were exposed to 

NNKAc to induce DNA damage. NNKAc mimics the carcinogenic effects of NNK, the 

strongest nicotine-derived carcinogen present in tobacco smoke (147). For the activation 

and metabolism of NNK, the activities of CYP enzymes are required but the CYP activity 

in BEAS-2B cells is low (157). Therefore, the carcinogenic effects of NNK may not be 

expressed effectively in BEAS-2B cells (157). However, NNKAc is activated in a cellular 
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environment by esterase enzymes and CYP activities are not required (158). Therefore, to 

induce cyto- and geno-toxicity in BEAS-2B cells, NNKAc has been successfully used in 

numerous studies (35,145,146).   

5.2 Effects of dietary antioxidants in the reduction of NNKAc-induced ROS 

in BEAS-2B cells 

ROS generation is one of the factors contributing to DNA damage (21,134). In this 

study, NNKAc treatment generated ROS in BEAS-2B cells. Similarly, ROS generation in 

BEAS-2B cells upon NNKAc insult under similar experimental conditions has been 

demonstrated before (35,145). Even though the ROS levels induced by the NNKAc 

treatment in BEAS-2B cells are significantly higher (p < 0.05) than the vehicle control, the 

observed increase in this study is approximately 20-30%. Intracellular ROS levels in 

BEAS-2B cells were studied using DCFDA assay. The DCFDA assay detects ROS and 

reactive nitrogen species (RNS) such as hydroxyl radical, hydrogen peroxide, and nitrogen 

peroxides but not superoxide radicals (318). NNK generates higher levels of superoxide 

radicals in  BEAS-2B cells (318). Therefore, if NNKAc had generated significant levels of 

superoxide radicals in BEAS-2B cells, determining levels of ROS are an understatement. 

Among the many functional properties of polyphenols, antioxidant activities are 

widely studied to date (319,320). Mechanisms of antioxidant actions of polyphenols 

include ROS scavenging, metal ion chelation, inhibition of ROS-generating enzymes, and 

upregulation of antioxidant defense systems (319,320). The antioxidant activities of 

flavonoids involve most of the above-mentioned mechanisms including their combinations 

(321). The arrangement of functional groups in the carbon skeleton of the flavonoids is 

responsible for the different antioxidant activities of flavonoids (322,323). The number of 
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hydroxyl groups, configuration, and substitution pattern determines the antioxidant 

activities (i.e., ROS scavenging and chelating metal ions) of different classes of flavonoids 

(322,323).  

Pretreatment of BEAS-2B cells with flavonoids such as quercetin, cyanidin, 

procyanidin B2, luteolin, chrysin, naringenin, or genistein except for epicatechin, C3G, 

phloretin, and phloridzin effectively reduced the NNKAc-induced ROS in BEAS-2B cells 

in a dose-dependent manner. The employed concentrations of the tested antioxidants were 

determined based on literature that showed more than 80% cell viability (145,324–344). 

Among tested antioxidants, only quercetin, luteolin, genistein, or procyanidin B2 were able 

to reduce the NNKAc-induced ROS at physiologically relevant concentrations (Table 1 

and 3) (100,101,113–119,128,129). The ability of flavonoids such as quercetin, luteolin, 

chrysin, genistein, cyanidin, naringenin, and procyanidin B2 to reduce chemically induced 

ROS in different experimental models has been very well demonstrated (145,263,345–

351). The ability to reduce chemically induced ROS by quercetin, especially in BEAS-2B 

cells has been also previously demonstrated (145,345). Pratheeshkumar, and colleagues 

(2016) have demonstrated that pretreatment of quercetin reduces the chromium (VI)-

induced hydrogen peroxide in BEAS-2B cells by upregulating the catalase enzyme at 

physiologically relevant concentrations tested in the current study (116–119,345). 

Similarly, Merlin, et al., 2021 (145) showed that quercetin can reduce NNKAc- and 

methotrexate-induced ROS levels in BEAS-2B cells at 50 µM (the highest effective 

concentration tested in the current study). Quercetin is one of the most studied flavonoids, 

especially with respect to its ability to scavenge ROS, chelate metal ions, and induce signal 

transduction pathways (i.e., Nrf2/ARE, PI3K/Akt, and mitogen-activated protein kinase 
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(MAPK)/ Nuclear factor kappa B (NF-κB) signaling pathways, etc.) to exert antioxidant 

activities in numerous studies (352–355). The structural characteristics such as 3-hydroxyl 

group (OH) and 2-3 double bond in the C ring conjugated with the 4-oxo group are mainly 

contributing to the radical scavenging activities of quercetin as evident in numerous 

quantitative structure-activity relationship studies (352,353,356). The presence of the 4-

oxo group and 5-OH group in quercetin are also important for the metal ion chelation (356). 

Furthermore, blocking or removal of the 3-OH group from the quercetin structure is 

associated with reduced antioxidant activities (352,353,356). In this study, we also 

evaluated the effectiveness of two quercetin metabolites (isorhamnetin and quercetin-3-O-

glucuronic acid), only isorhamnetin was effective at its tested highest concentration. If the 

scavenging activities of quercetin have been contributing to the reduction of NNKAc- 

induced ROS in BEAS-2B cells, the inability of quercetin-3-O-glucuronic acid to reduce 

ROS levels may be due to the blocking of the 3-OH group by glucuronide group. 

Meanwhile, isorhamnetin, the 3ʹ methylated metabolite of quercetin was able to reduce 

NNKAc-induced ROS levels at higher concentrations compared to quercetin aglycone. The 

number and position of OH groups in the B ring are also contributing factors to the 

antioxidant activity of a flavonoid (353). Quercetin aglycone’s 3ʹ and 4ʹ hydroxyl groups 

are associated with higher cellular antioxidant activity demonstrated in hepatocellular 

carcinoma HepG2 cells (356). The requirement of a higher concentration of isorhamnetin 

compared to quercetin to reduce NNKAc-induced ROS could be due to blocking the 3ʹ -

OH group of quercetin aglycone by methylation.  

In comparison to flavonols such as quercetin, flavones are expected to exert low 

antioxidant activities in terms of radical scavenging activities (356). In the current study, 
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chrysin was effective in reducing NNKAc-induced ROS in BEAS-2B cells at 

comparatively higher concentrations than quercetin. This could be explained by the 

reduction of cellular antioxidant activity of chrysin due to the lack of hydroxyl groups in 

the B ring (3ʹ and 4ʹ hydroxyl groups) and 3-OH group in the C ring in comparison to 

quercetin (356). Furthermore, chrysin has also demonstrated its ability to attenuate high 

glucose-induced ROS levels in bone marrow mesenchymal cells through activation of 

PI3K/Akt/Nrf2 signaling (254). However, luteolin was able to reduce NNKAc-induced 

ROS levels at concentrations similar to quercetin. Pratheeshkumar, and colleagues (2014) 

have also demonstrated that pretreatment of luteolin reduces the chromium (VI)-induced 

hydrogen peroxide in BEAS-2B cells at effective concentrations tested in the current study 

(347). Also, the study conducted by Wolfe and Liu, (2008) showed that the ORAC of 

luteolin and quercetin are approximately similar to each other (356). Therefore, the 

effectiveness of luteolin at concentrations similar to quercetin may be due to their structural 

similarities despite not having a 3-OH group in luteolin (356).  

As per the quantitative structure-activity relationship (QSAR) studies, both 

isoflavones and flavanones are known to exert lesser antioxidant activities in comparison 

to flavonols (352,353,356). Naringenin, a flavanone was effective at higher concentrations 

compared to quercetin against NNKAc-induced ROS in BEAS-2B cells. This may be due 

to the comparatively reduced radical scavenging ability of naringenin due to the lack of 2-

3 double bond of C-ring, 3-OH, and 3ʹ-OH groups in comparison to quercetin structure 

(356). Furthermore, naringenin has also demonstrated its ability to attenuate LPS-induced 

ROS levels in neuron cells isolated from Sprague-Dawley rats through activation of the 

Nrf2/ARE pathway at concentrations similar to the current study (263). Interestingly, 
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genistein, an isoflavone tested in this study was found to be much more effective at 

comparatively low concentrations than quercetin. The ability to scavenge radicals by 

genistein is largely affected by the attachment of B-ring at 3-position of C ring (357). In 

general, the radical scavenging capacity of genistein is comparatively lesser than quercetin 

(357,358). However, the single 4ʹ -OH in the B ring and 5,7-dihydroxy groups in the A 

ring of genistein can contribute to the radical scavenging activity (357). Grossini and 

colleagues (2018) showed that genistein-mediated reduction of hydrogen peroxide-induced 

ROS levels in human visceral adipocytes was associated with Akt and AMPK activation 

at concentrations similar to the present study (346). Therefore, the effectiveness of 

genistein at low concentration in the current study could be due to indirect mechanisms of 

genistein such as effects on signal transduction pathways in addition to their ability to 

scavenge ROS.  

Cyanidin and C3G (glucoside of cyanidin) are two anthocyanidins tested to study 

the effects on NNKAc-induced ROS levels in BEAS-2B cells. Anthocyanidins such as 

cyanidin are as effective as flavonols (i.e. quercetin) in exerting in vitro antioxidant 

activities, mainly through radical scavenging activities as suggested by numerous QSAR 

studies (352,353,356).  The radical scavenging activities of cyanidin are mainly due to the 

presence of the 3-OH group in the C-ring and 3ʹ, 4ʹ -dihydroxy group in the B ring in 

addition to having a central anthocyanidin C-ring in cyanidin which allows conjugation 

(352). However, in this study, cyanidin was effective in reducing NNKAc-induced ROS in 

BEAS-2B cells at comparatively higher concentrations. Furthermore, C3G was not 

effective as its aglycone in reducing NNKAc-induced ROS levels in BEAS-2B cells at 

tested concentrations. Similarly, a study conducted by Gan, et al., 2020 (350) has 
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demonstrated that cyanidin aglycone is more effective than C3G in reducing 

myeloperoxidase (an enzyme that catalyzes the ROS generation) and nitric oxide levels 

against 2,4,6-trinitrobenzene sulfonic acid-induced mice colitis and LPS-induced 

inflammation in human epithelial colorectal adenocarcinoma Caco-2 cells, respectively. 

Furthermore, as previously reported the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical 

scavenging activity of cyanidin in vitro is slightly higher than those of its glucoside at 

similar concentrations (359). However, in a cellular environment, cell uptake of flavonoid 

aglycones is generally higher than its glycosides (360). Cyanidin uptake is higher than C3G 

in human epithelial colorectal adenocarcinoma Caco-2 BBe1 cells (360). The same study 

further revealed that increased cyanidin uptake is associated with passive diffusion and that 

C3G uptake was dependent on active transport by hexose transporters sodium/glucose 

cotransporter 1 and glucose transporter 2 (360). Therefore, the differences in the 

effectiveness of cyanidin aglycone and its glucoside against NNKAc-induced ROS in 

BEAS-2B may be due to differences in cellular uptake. 

Relative to flavonols such as quercetin, flavanol epicatechin shows lesser 

antioxidant activities (356,358). In the current study, epicatechin was not effective against 

NNKAc-induced ROS at tested concentrations. Epicatechin does not contain a 2-3 double 

bond in the C-ring and 4-oxo group which is important to radical scavenging but contains 

a 3-OH group and 3ʹ, 4ʹ -dihydroxy groups in the B-ring (356). Furthermore, epicatechin 

was associated with weak cellular antioxidant activity in HepG2 cells while flavanols with 

galloyl group (epicatechin gallate, epigallocatechin gallate) exhibited greater cellular 

antioxidant activities (356). Among monomeric and dimeric flavanols tested, only 

procyanidin B2 was effective in reducing NNKAc-induced ROS in BEAS-2B cells. The 
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study conducted by Zheng, et al., 2020 (351) showed that in vitro radical scavenging 

activities of procyanidin B2 in terms of  DPPH and 2,2′-azino-bis-(3-ethylbenzothiazoline-

6-sulfonic acid (ABTS) radical scavenging activities are greater than epicatechin. The same 

study further revealed that procyanidin B2 is greatly effective in alleviating oxidative stress 

induced by D-galactose in Kunming mice (female and male) through expressing 

antioxidant defense enzymes (SOD, CAT, and GPx) (351). The protective role of 

procyanidin B2 over epicatechin was further demonstrated in reducing acrylamide-induced 

ROS in the Caco-2 cell model (361).  Furthermore, studies by Steffen and colleagues in  

2007 (362) and 2008 (363) suggest that epicatechin metabolites ( (−)-epicatechin 

glucuronide, 3′-O-methyl epicatechin, and 4′-O-methyl epicatechin) and procyanidin B2 

except unconjugated epicatechin prevent the generation of superoxide radical by 

nicotinamide adenine dinucleotide phosphate (NAD(P)H)-oxidase enzyme inhibition in 

HUVECs (362,363). These studies further revealed that epicatechin primarily scavenged 

superoxide radical while procyanidin B2 scavenged superoxide radical in addition to 

inhibiting NAD(P)H-oxidase activity (362,363). The ability to increase NAD(P)H-oxidase 

activity and thereby increase superoxide radical levels by cigarette smoke extracts and 

NNK has previously been demonstrated in human pancreatic ductal HPDE6-c7 cells (364). 

However, the effects of NNKAc on NAD(P)H-oxidase remain to be explored. The effects 

of epicatechin and procyanidin B2 on superoxide radicals in the current study may have 

not been demonstrated as the DCFDA assay cannot measure the superoxide radicals (318).  

The observed difference between epicatechin and procyanidin B2 in the present study 

might be due to the strong scavenging activities and ability to upregulate antioxidant 

defense proteins by procyanidin B2 compared to epicatechin. 
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Phloretin and phloridzin (glucoside of phloretin) are two chalcones commonly 

found in apples tested to study the effects on NNKAc-induced ROS levels in BEAS-2B 

cells.  Chalcones containing 3-4 hydroxyl groups such as phloretin and phloridzin are 

known to exert better antioxidant activities in terms of radical scavenging activities but are 

less effective than flavanols (i.e., quercetin) (353). Protective effects of phloridzin (i.e., 

phorbol 12-myristate 13-acetate-induced ROS in bone marrow-derived macrophages 

isolated C57BL/6JOlaHsd mice and hydrogen peroxide-induced oxidative damage in 

HepG2 cells) and phloretin (i.e., palmitic acid-induced ROS levels in human umbilical vein 

endothelial cells and tumor necrosis factor-α (TNF-α)-stimulated ROS levels in BEAS-2B) 

in reducing chemically induced ROS in different experimental models has been 

demonstrated previously (333,365–367). In addition to that phloridzin, the glycoside of 

phloretin, exhibits lower antioxidant activities due to the glycosylation at the 2ʹ-OH group 

(in the A ring) compared to phloretin and requires a higher concentration to exert a similar 

effect to phloretin (368). However, both phloretin and phloridzin were not effective in 

reducing NNKAc-induced ROS in BEAS-2B cells at tested concentrations.  

In this study, tested phenolic acids (caffeic acid, chlorogenic acid, methyl-4-

hydroxybenzoate, and protocatechuic acid [PCA]) and phloroglucinaldehyde (PGA), 

aldehyde of PCA, were not effective in reducing NNKAc induced ROS levels in BEAS-

2B cells. In comparison to flavonoids, phenolic acids are weak radical scavengers (353). 

The lower efficiency of phenolic acids compared to flavonoids in scavenging free radicals 

is mainly due to the lower number of hydroxyl groups present in their structures (1-3 

hydroxyl groups) (353). In addition to scavenging ROS, phenolic acids such as caffeic acid, 

chlorogenic acid, and PCA has demonstrated their ability in exerting antioxidant effects 
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through indirect mechanisms such as activating antioxidant defense systems, and inhibiting 

ROS generating enzymes (i.e., caffeic acid and chlorogenic acid inhibit xanthine oxidase) 

(221,369–374). For example, caffeic acid reduced the hydrogen peroxide-induced ROS 

levels in human liver L-02 cells through activation of the ERK signaling pathway (369). 

Bhullar et al., 2022 also demonstrated the ability to activate Nrf2 through interactions of 

caffeic acid and ERK amino acid residues, aspartate (Asp) 106, and methionine (Met) 108 

(221). Furthermore, both caffeic acid and chlorogenic acid reduced the hydrogen peroxide-

induced ROS generation in Caco-2 cells through hydroxyl groups present in their catechol 

groups (373). Additionally, Pahlke, et al., 2021 (375) demonstrated that PCA was only 

effective in reducing hydrogen peroxide-induced oxidative stress in human epithelial 

colorectal adenocarcinoma Caco-2 2BBe1 cells at concentrations greater than 200 μM. In 

contrast, PGA exhibited a slight reduction in ROS levels at concentrations between 0.01 

and 0.1 μM but increased ROS levels at concentrations greater than 5 µM (375). 

Furthermore, the same study revealed that there were no effects from PCA and PGA on 

activation of the Nrf2/ARE pathway in hydrogen peroxide-induced Caco-2 2BBe1 cells 

(375). A similar trend was observed with PGA pretreatment in BEAS-2B cells against 

NNKAc-induced ROS in the current study, although the results were not significant (p > 

0.05) (Figure 8). Most in vitro studies related to caffeic acid, chlorogenic acid, and PCA 

have demonstrated their protective effects against chemical-induced ROS production at 

relatively high concentrations compared to the concentrations tested in the current study 

(370,373,375). Therefore, to reduce NNKAc-induced ROS in BEAS-2B cells, higher 

concentrations may be required. 
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The protective effects of methyl-4-hydroxybenzoate and catechol against cellular 

ROS stress are generally unclear in the literature. However, methyl-4-hydroxy benzoate is 

known to exert pro-oxidant effects due to the generation of ROS by autooxidation (376). 

Methyl-4-hydroxybenzoate exposed to sunlight induces oxidative DNA damage in calf 

thymus DNA due to ROS generated as a result of catechol autooxidation (376). In contrast, 

methyl-4-hydroxybenzoate increased ROS levels in male Nile tilapia (Oreochromis 

niloticus) fish (377). The long-term gavage of methyl-4-hydroxybenzoate to Nile tilapia 

fish has also facilitated adaptive responses through upregulating the expression of 

antioxidant defense enzymes (catalase, GPx, SOD, and GR) (377). In this study, methyl-

4-hydroxybenzoate did not reduce the NNKAc-induced ROS in BEAS-2B cells. 

Meanwhile, catechol reduced the NNKAc-induced ROS levels in BEAS-2B cells at tested 

high concentrations (25-50 µM). In vitro hydrogen peroxide scavenging activity and DPPH 

radical scavenging activity of catechol have been demonstrated in QSAR studies (378). 

Catechol exerts antioxidant activity through two hydroxyl groups present in its ortho 

positions which allows it to trap ROS such as peroxyl radicals (378,379). Observed 

reductions in NNKAc-induced ROS levels could be due to the direct antioxidant activities 

of catechol. However, catechol has also known to generate superoxide radicals because of 

autooxidation (380).  

Curcumin, resveratrol, and sulforaphane showed comparable effectiveness in 

reducing NNKAc-induced ROS levels in BEAS-2B cells to most of the tested flavonoids 

despite having different structures. These results were observed at concentrations higher 

than physiologically relevant concentrations of curcumin, resveratrol, and sulforaphane in 

humans (381–384). Curcumin, and resveratrol act as antioxidants through different 
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mechanisms including ROS scavenging, metal ion chelation, and activation of antioxidant 

defense systems (194,385,385). Curcumin chelates ferrous ions through its hydroxyl and 

methoxyl or oxo groups similar to the flavonoids with 4-oxo and 5-OH groups (385). 

Resveratrol chelates ferrous ions through its adjacent two OH groups (386). Radical 

scavenging activities of curcumin and resveratrol have been further demonstrated in terms 

of DPPH, hydrogen peroxide, superoxide anion, and ABTS radical scavenging activities 

(385,385). Curcumin mainly exerted scavenging activities from the active carbon 

positioned in the methandienone link between two methoxy phenol rings (385). The radical 

scavenging activities of resveratrol are mainly exerted through the 4ʹ -OH group (386). 

Even though sulforaphane has demonstrated weak radical scavenging activities (i.e. DPPH 

and ABTS), sulforaphane acts as an antioxidant mainly through activation of the Nrf2/ARE 

pathway (387–390). Curcumin, resveratrol, and sulforaphane have demonstrated their 

abilities in activating Nrf2 via Keap-1 cysteine (Cys-151) modifications in several clinical 

trials (Table 2) (194).  Kin et al., 2020 (263) have demonstrated the ability of curcumin in 

reducing urban particulate matter-induced ROS levels in human nasal fibroblast cells 

through upregulation of HO-1 and SOD2 enzymes at concentrations similar to the current 

study.  Similarly, curcumin reduced the benzo[a] pyrene-induced ROS levels in BEAS-2B 

cells at similar concentrations to the current study (391). Meanwhile, resveratrol also 

upregulated the HO-1 and downregulated the Keap-1 protein levels against hydrogen 

peroxide-induced ROS in human rheumatoid arthritis fibroblast-like synoviocytes at 

concentrations that were effective in the current study (392). Furthermore, sulforaphane 

activated the Nrf2/ARE pathway in human and rat lens epithelial cells in reducing UV B-

induced ROS levels through upregulating peroxiredoxin 6 (Prdx6), catalase and GST 
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enzymes in a dose-dependent manner at similar concentrations tested in BEAS-2B cells 

(393). The observed efficacy of curcumin, resveratrol, and sulforaphane in reducing 

NNKAc-induced ROS levels in BEAS-2B cells could be due to one or more of the above-

mentioned direct and/or indirect antioxidant mechanisms. 

Beta-carotene is a singlet oxygen quenching carotenoid due to its triplet lysing 

energy levels near singlet oxygen (394,395). In addition to that beta-carotene has 

demonstrated its ability to activate the Nrf2/ARE pathway in male, C57BL/6 mice against 

traumatic brain injury (upregulates mRNA levels of NQO-1 and HO-1 in addition to 

increasing SOD activity) (396). Furthermore, low concentrations (0.5-1 µM) of beta 

carotene reduced the Helicobacter pylori bacteria-induced ROS in gastric adenocarcinoma 

cells by suppressing NAD(P)H oxidase activity (397). However, beta-carotene was not 

effective in reducing NNKAc-induced ROS levels in BEAS-2B cells. The observed result 

with beta-carotene in NNKAc-induced BEAS-2B cells could be due to the inability of beta-

carotene to act on the type of ROS generated by NNKAc during the experiment duration. 

For a better understanding, the type of ROS generated by NNKAc and the effects of beta-

carotene on NNKAc-induced ROS in a time-dependent manner need to be further studied. 

DMF is an Nrf2 activator approved by the US-FDA to treat relapsing forms of 

multiple sclerosis (398). DMF significantly reduced (p < 0.05) the NNKAc-induced ROS 

levels in BEAS-2B cells but at concentrations higher than the physiological concentration 

in mice (399). The activation of Nrf2 protein is demonstrated in BEAS-2B cells with DMF 

treatment alone in terms of p-Nrf2/Nrf2 ratio using western blot analysis (Figure 19).  DMF 

exerts its antioxidant effects mainly through activation of the Nrf2/ARE pathway (400). 

DMF activates Nrf2 protein through modification of Keap 1 cysteine residues such as Cys-
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151, Cys-257, and Cys-273 and thereby inhibits the interactions between Keap-1 and Nrf2 

protein resulting release of Nrf2 from Keap 1 protein (401). The ability of DMF to induce 

SOD, HO-1, GST, and catalase enzymes against heme-induced oxidative stress in murine 

models (NY1DD and HbSS-Townes sickle cell disease mice) of sickle cell disease has 

been demonstrated before (400). Additionally, DMF upregulated the gene expression of 

GST, NQO-1, SOD2, sulfiredoxin 1 (Srxn1), and ferritin (Fth1) to alleviate hydrogen 

peroxide-induced oxidative DNA damage in neural stem/progenitor cells derived from rat 

embryonic E15-18 pups (402).  However, BEAS-2B cells treated with DMF did not show 

any significant changes (p > 0.05) in SOD, CAT, and GPx activities compared to DMSO 

control (Figure 21). Therefore, reductions of ROS levels and DNA damage in NNKAc-

induced BEAS-2B cells need further studies in terms of upregulation of phase 2 

detoxification enzyme expression by DMF.  

Vitamin C (L-ascorbic acid) is an antioxidant well known to exert cytoprotective 

effects against oxidative stress through different mechanisms such as ROS scavenging, 

vitamin E-mediated neutralization of lipid hydroxyperoxyl radicals, and prevention of 

protein alkylation from electrophilic lipid peroxidation products in addition to Nrf2/ARE 

pathway activation (281,403). Vitamin C reduced the NNKAc-induced ROS levels in 

BEAS-2B cells at a physiologically relevant concentration in humans (404–406). 

Similarly, Merlin, et al., 2021 showed that vitamin C reduced the NNKAc-induced ROS 

levels in BEAS-2B cells at similar concentrations tested in the current study (145). 

However, most of the tested flavonoids (quercetin, chrysin, luteolin, procyanidin B2, 

naringenin, cyanidin, and genistein) were much more effective at lower concentrations 

compared to vitamin C. Similarly, superior antioxidant activities of flavonoids (quercetin, 
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luteolin, apigenin, and kaempferol) over vitamin C has been previously demonstrated in 

human lymphocytes in terms of reduction of oxidative DNA damage (407). The protective 

effects of vitamin C have been previously demonstrated in human pulmonary fibroblast by 

reducing arsenic trioxide-induced ROS (408). Additionally, vitamin C reduced the UV-B-

induced ROS in HaCaT cells through upregulation of catalase and GSH protein levels 

(409). However, these studies required more vitamin C concentrations than the current 

study to exert a protective effect against ROS (408,409). The protective effects observed 

in this study by vitamin C could be due to its ability to scavenge ROS or indirect 

mechanisms such as upregulation of antioxidant defense enzymes. To assess the effects of 

vitamin C on the antioxidant defense system in NNKAc-induced BEAS-2B cells, further 

studies are required. 

5.3 Effects of dietary antioxidants on BEAS-2B cell viability 

Following the screening of 25 antioxidant compounds for ROS assay, the 

compounds that reduced NNKAc-induced ROS levels at concentrations equal to or lesser 

than 25 µM were selected for further studies. The studies of cell viability of selected test 

compounds from ROS assay and NNKAc revealed that tested concentrations were not 

cytotoxic to BEAS-2B cells. Test compounds maintained more than 80% cell viability in 

BEAS-2B up to 25 µM concentration under the experimental conditions (Appendix 1 and 

2).  

5.4 Effects of dietary antioxidants in the reduction of NNKAc-induced DNA 

damage in BEAS-2B cells 

The protective effects of selected flavonoids (quercetin, luteolin, chrysin, 

naringenin, genistein, cyanidin, and procyanidin B2), DMF, curcumin, sulforaphane, 
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resveratrol, and catechol in reducing NNKAc-induced DNA damage in BEAS-2B cells 

was studied. DNA damage was assessed using γ-H2AX immunofluorescence, alkaline 

comet, and DNA fragmentation ELISA assays since altered genetic stability is considered 

an early event in carcinogenesis (139,141). NNKAc cellular metabolism causes DNA 

damage, which can be characterized by DNA adduct formation and strand breaks 

(35,145,146,158). In this study, DNA damage in BEAS-2B cells was induced by NNKAc 

(100 µM) as observed by γ-H2AX immunofluorescence, comet and, and DNA 

fragmentations-ELISA assays (35,145,146). Post-translational modifications of histone 

H2AX are an early event of DNA DSBs (410). γ-H2AX foci in the nucleus are a 

measurement of DNA DSBs (411). Pre-treatment of BEAS-2B cells with test compounds 

reduced the NNKAc-mediated histone variant reorganization which regulates the DNA 

methylation (310). This could have resulted in the observed similarities between reduced 

levels of NNKAc-induced γ-H2AX foci and DNA fragmentation levels with pre-treatment 

of test compounds (146). DNA fragmentation is an irreversible phenomenon that leads to 

cell death (310). The levels of DNA fragmentation seen in untreated BEAS-2B cells could 

be due to normal cellular homeostatic mechanisms to remove large DNA fragments from 

dying cells (412). The alkaline comet assay is used to measure the effects of carcinogenic 

substances such as NNKAc on both DNA DSBs and SSBs (413).  NNKAc can damage all 

DNA bases (DNA base damage potential: guanine > adenine > cytosine > thymine) by 

forming bulky POB-DNA adducts and causes both SSBs and DSBs (145,414). 

Additionally, NNK induces oxidative DNA lesions (415). The study by Xu, et al., 1992 

showed increased levels of 8-oxodeoxyguanosine in female A/J mice and male F344 rat 

models with NNK treatment (415). However, there is no sufficient evidence of NNKAc-
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induced oxidative DNA damage in the literature. Therefore, levels of oxidative DNA 

damage markers such as 8-oxodeoxyguanosine with NNKAc treatment in BEAS-2B cells 

need to be explored.  

Polyphenols exert cancer chemoprevention through mechanisms such as 

modulation of phase 1/2 enzymes, inhibition of DNA damaging proteins, and activation of 

DNA damage repair pathways in addition to their direct and indirect antioxidant activities 

(20). The effects of phenolic compounds, including flavonoids on DNA damage response 

(DDR) mechanisms, have been demonstrated in numerous studies (20,416–418). 

Activation of proteins such as γ-H2AX, ataxia-telangiectasia mutated protein (ATM), 

ataxia telangiectasia and rad 3-related protein (ATR), checkpoint kinase 1 (Chk1), 

checkpoint kinase 2 (Chk2), breast cancer gene 1 (BRACA1) and tumor protein p53 are 

observed with cells showing DNA damage and replication stress (418). Merlin et al., 2021 

(145) have previously demonstrated that NNKAc treatment in BEAS-2B cells activated 

ATR/ Chk1 signaling and initiates the DNA damage repair through p53/ BRACA1/ γ-

H2AX signaling which facilitates DNA repair via homologous recombination. 

Furthermore, the same study revealed that quercetin together with a vitamin-containing 

antioxidant formula consisting of ascorbic acid, lipoic acid, beta-carotene, folate, and N-

acetyl cysteine significantly reduced (p < 0.05) the activation of ATR/Chk1 signaling and 

phosphorylation of DDR proteins (145). Similarly, George and Rupasinghe, 2017 showed 

that pretreatment of apple flavonoid fraction 4 rich with phloridzin, epicatechin, 

chlorogenic acid, cyanidin-3-O-galactoside, and quercetin glycosides with BEAS-2B cells 

reduced the NNKAc-induced DNA damage through downregulation of  ATR/Chk1 

signaling and initiating DNA repair mechanisms (146). Therefore, to better understand the 
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cancer preventive effects of test compounds in addition to studying their antioxidant 

mechanisms, studying their effects on DDR mechanisms against NNKAc-induced DNA 

damage is also important.  

Luteolin, chrysin, cyanidin, and non-flavonoid compounds curcumin in the current 

study were able to reduce the NNKAc-induced DNA damage in terms of both DNA DSBs 

and SSBs (alkaline comet assay) and DNA fragmentation levels at concentrations that 

reduced the NNKAc-induced ROS levels. However, for the significant reduction (p < 0.05) 

of NNKAc-induced phosphorylated γ-H2AX foci in BEAS-2B, comparatively higher 

concentrations of luteolin, chrysin, and curcumin were required. Furthermore, a significant 

reduction (p > 0.05) in NNKAc-induced phosphorylated γ-H2AX foci was not observed 

with cyanidin at the tested concentrations (p > 0.05). The observed differences between the 

comet and γ-H2AX immunofluorescence assays could be due to the effectiveness of 

chrysin, luteolin, cyanidin, and curcumin in reducing NNKAc-induced DNA SSBs at 

comparatively low concentrations. Since, the alkaline comet assay quantifies both SSBs 

and DSBs, to study the effects of chrysin, luteolin, cyanidin, and curcumin, the neutral 

comet assay that quantifies the DSBs should be further studied (419). Furthermore, DNA 

protective effects of compounds such as luteolin, chrysin, cyanidin, and curcumin against 

numerous carcinogenic factors via different mechanisms have been previously reported in 

numerous studies (420–423). For example, luteolin reduced UV B-induced DNA damage 

and ROS generation in human keratinocyte HaCaT cells through UV absorbent, and 

antioxidant activities (radical scavenging activities) (420). Chrysin (oral administration) is 

effective in reducing doxorubicin-induced oxidative DNA damage in male Wistar albino 

rat testes through upregulating catalase and GSH levels (423). Cyanidin demonstrated its 
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ability to reduce the lysine/methylglyoxal-induced oxidative DNA damage with or without 

the presence of copper ions in pUC19 plasmid derived from Escherichia coli through 

methylglyoxal trapping and radical scavenging activities (superoxide and hydroxyl 

radicals) (422). Meanwhile, oral intake of 500 mg twice/ day of curcumin reduced the 

oxidative DNA damage caused by chronic exposure to arsenic through DNA damage repair 

mechanisms (non-homologous end joining and base excision repair pathways) in a clinical 

study carried out with 116 human subjects who live in West Bengal in India (421).  

Furthermore, naringenin, procyanidin B2, and non-flavonoids such as DMF, 

resveratrol, catechol, and sulforaphane demonstrated reduced DNA damage determined by 

γ-H2AX, comet, and DNA fragmentation ELISA assays at concentrations similar to the 

concentrations that reduced NNKAc-induced ROS levels significantly (p < 0.05). 

Similarly, pre-treatment of naringenin to splenocytes derived from Swiss albino mice 

reduced the ionization radiation-induced ROS generation through ROS scavenging (424). 

Furthermore, the same study showed that reduction of ionization-induced oxidative DNA 

damage was associated with the reduction of DNA-dependent protein kinases (DNA-PK) 

and phosphorylated-γ-H2AX (424). Procyanidin B2 reduced the oxidative DNA damage 

induced by hydrogen peroxide in terms of reduction of 8-oxo-7,8-dihydro-2′-

deoxyguanosine in human leukemia HL-60 cells (425). Co-treatment of resveratrol with 

house dust mites reduced the house dust mites induced-ROS generation and oxidative DNA 

damage in human bronchial epithelial 16HBE cells (426). However, the underlying 

mechanism of ROS and DNA damage reduction in this study is not studied (426). The 

study conducted by Ding, et al., 2010 showed that sulforaphane reduced the 4-

aminobiphenyl-induced DNA damage in human bladder RT4 cells through activation of 
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the Nrf2 signaling pathway (427). The protective effects of sulforaphane were observed 

due to the transactivation of ARE-driven phases 2 detoxifying proteins such as NQO-1 and 

glutamate cysteine ligase (427). Furthermore, in the current study, both genistein and 

quercetin were able to reduce the NNKAc-induced DNA damage at concentrations lesser 

than the concentrations that reduced ROS levels in NNKAc-induced BEAS-2B cells 

significantly (p < 0.05). Quercetin has previously demonstrated its ability to repair 

oxidative DNA damage induced by hydrogen peroxide in terms of reducing human 8-

oxoguanine DNA glycosylase mRNA levels in Caco-2 cells at physiologically relevant 

concentrations tested in the current study. The same study further suggested that the time-

dependent reduction in DNA damage was independent of the direct antioxidant activities 

of quercetin on hydrogen peroxide (428). Therefore, the effectiveness of both quercetin 

and genistein in reducing the DNA damage at concentrations lesser than the concentrations 

reduced ROS levels could be due to the effects of quercetin and genistein on mechanisms 

such as activation of DNA damage repair pathways. 

Inhibition of esterase enzyme and detoxification of NNKAc and/or its electrophilic 

metabolites could play a pivotal role in reducing NNKAc-induced ROS generation and 

DNA damage (158,161,429,430). Activation of NNKAc into its carcinogenic forms is 

catalyzed by esterase enzymes (158). Chieli et al., 2009 previously demonstrated the in 

vitro inhibitory effects of polyphenols from mango bark extract, quercetin, mangiferin, 

gallic acid, and catechin on pure rabbit liver esterase enzymes (431). However, effects on 

esterase enzymes by polyphenols are limited to date. Therefore, the effects of the dietary 

antioxidants on esterase enzymes should be further investigated to better understand the 

reduction of NNKAc-induced ROS and DNA damage in BEAS-2B cells. Upregulation of 
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phase 2 detoxifying enzymes by flavonoids could play a pivotal role in reducing the ROS 

and DNA damage caused by NNKAc and/or its electrophilic metabolites (161,429,430). 

NNKAc generates similar electrophilic metabolites to the metabolites generated from α-

methyl hydroxylation of NNK by CYP enzymes (152–155). Phase 2 enzymes are involved 

in the detoxification of NNK and/or its electrophilic metabolites (161). For example, 

glucuronidation of NNAL which is produced from carbonyl reduction of NNK is catalyzed 

by uridine 5ʹ-diphospho-glucuronosyltransferase (UGT) (432). Glutathione-S-transferases 

(GST) are involved in the removal of electrophilic metabolites by conjugating to 

glutathione (433). Polyphenols have demonstrated the ability to upregulate phase 2 

enzymes such as UGT and GST before (429,430).  Quercetin has previously demonstrated 

its ability to upregulate UGT expression in Caco-2 cells (protein levels) and human 

intestinal tissues (mRNA levels) (434,435). Oral gavage of Cranberry extracts enriched 

with proanthocyanins and anthocyanins increased the UGT enzyme activity in hepatic 

tissues of male Wistar rats (429). Non-flavonoids such as resveratrol increased the UGT 

mRNA levels in Caco-2 cells (430). Furthermore, dietary intake of curcumin or quercetin 

increased the UGT activity in male Wistar rats (436).  Meanwhile, anthocyanins such as 

cyanidin, peonidin, and delphinidin induce GST activity in rat hepatic Clone 9 cells (437). 

Chrysin (intraperitoneal administration), a flavone upregulates the GST activity in 

streptozotocin-induced diabetic Wistar albino rats (male) (438). Furthermore, flavanols 

such as epigallocatechin gallate, epicatechin gallate, and epigallocatechin upregulated the 

GST activity against benzo[a]pyrene-diol epoxide-induced DNA damage in BEAS-2B 

cells (439). However, the mechanisms involved in detoxification of NNKAc and its 
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metabolites are yet to be explored and the effects of test compounds on phase 2 enzymes 

such as UGT and GST against NNKAc insult in BEAS-2B need to be further studied.  

5.5 Effects of quercetin, genistein, and procyanidin B2 on regulation of 

Nrf2/ARE pathway 

The activation of Nrf2/ARE pathway plays a significant role in the prevention of 

DNA damage and possible carcinogenesis by managing oxidative stress via the expression 

of antioxidant defense enzymes and phase 2 detoxifying enzymes (25,184). The effects of 

quercetin, genistein, and procyanidin B2 on Nrf2/ARE signaling was further investigated 

to determine if the observed ROS and DNA damage reductions are due to activation of the 

Nrf2/ARE pathway. From the studies on reductions in NNKAc-induced DNA damage in 

BEAS-2B cells, quercetin, genistein, and procyanidin B2 were effective in reducing 

NNKAc-induced ROS and DNA damage in lower concentrations compared to other tested 

compounds. Therefore, the effects of selected compounds on Nrf2 and its upstream kinase 

Akt phosphorylation, p-Nrf2 nuclear translocation, and antioxidant defense enzyme 

activities (SOD, catalase, and GPx) were studied.  

In general, the Nrf2/ARE pathway is activated by oxidative stress (25,31). 

However, Nrf2 protein can be activated from both canonical and non-canonical 

mechanisms (Table 2) (192,193,193,194). Akt is an upstream regulatory protein (non-

canonical activator) that plays an important role in cell survival, cell proliferation, cell 

growth, cell metabolism, and angiogenesis in a cellular environment (440,441). 

Phosphorylated Akt (p-Akt) activates Nrf2 protein by phosphorylating Nrf2 (p-Nrf2) at 

Ser40 residue (440,442–444). Phosphorylation of Ser473 residue is facilitated by either 

mammalian target of rapamycin (mTOR) 2  or DNA-PKs while Threonine (Thre) 308  is 
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phosphorylated by upstream kinases such as PI3K (441,445,446). Zheng et al., 2018 

demonstrated that activation of Akt-Nrf2 signalling protects rat embryonic ventricular 

H9c2 cells from oxygen glucose deprivation/re-oxygenation exposure (444). The same 

study demonstrated that protective effects were associated with Akt phosphorylation at 

Ser473 and Nrf2 phosphorylation at Ser40 and the blockage of Akt phosphorylation at 

Ser473 blocked the Nrf2 phosphorylation at Ser40 and the expression of HO-1  (444).   

Furthermore, Gong et al., 2016 showed that Akt-Nrf2 signaling is important for retinal 

pigment epithelial cell survival against UV-induced oxidative stress and apoptosis (440). 

The same study showed that cytoprotective effects of activation of the Nrf2/ARE pathway 

and upregulation of cytoprotective enzymes such as NQO-1 and HO-1 were associated 

with p-Akt (Ser473) mediated phosphorylation of Nrf2 protein at Ser40 (440). Li and 

colleagues (2016) also demonstrated the UV protective effects in human retinal pigment 

epithelial cells through upregulated levels of p-Akt (Ser473), which facilitated the 

Akt/mTORC1/Nrf2/HO-1 signaling (442). However, both Gong et al., 2016 and Li et al., 

2016 have used Ser40 to threonine mutation of Nrf2 to demonstrate that Ser40 

phosphorylation of Nrf2 is required for the expression of its downstream target proteins 

(440,442). However, there is no evidence on Ser40 to threonine mutation to be considered 

as a dominant negative mutation as it is a synonymous mutation to Ser40, which is still a 

substrate for Akt (447).   

DMF and hydrogen peroxide were used as positive controls to study their effects 

on activation of Nrf2/ARE pathway in BEAS-2B cells.  BEAS-2B cells treated only with 

positive controls, DMF, or hydrogen peroxide did not exhibit a significant (p > 0.05) 

increase (p < 0.05) of p-Akt/Akt ratio despite hydrogen peroxide treatment showing higher 
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levels of p-Akt/Akt ratio compared to DMSO control. In contrast, the p-Nrf2/Nrf2 ratio of 

cells treated with DMF, or hydrogen peroxide showed an increase compared DMSO 

control but not NNKAc-treated cells. As discussed previously, DMF activates Nrf2 protein 

through canonical mechanisms such as modification of Keap 1 Cys residues (401). 

Therefore, the DMF-mediated Nrf2 activation could be independent of Akt 

phosphorylation. However, Nrf2 phosphorylation at Ser40 can also be mediated by PKC 

(448). Moreover, the hydrogen peroxide-mediated phosphorylation of Nrf2 protein could 

be dependent on Akt phosphorylation. Zhuang, et al., 2019 have previously demonstrated 

the upregulation of p-Akt (Ser473), nuclear Nrf2 levels, and cellular HO-1 protein levels 

against hydrogen peroxide treatment in intestinal epithelial IEC-6 cells (449). However, 

the Akt phosphorylation can be bi-phasic with time which depends on the type of cell and 

the activator as demonstrated previously (450,451). Furthermore, increased levels of 

nuclear-translocated p-Nrf2 were observed with hydrogen peroxide and DMF similar to 

the NNKAc. The increased levels of nuclear p-Nrf2 could be due to the Nrf2 

phosphorylation followed by stabilization which suppresses the Nrf2 ubiquitination 

mediated degradation (187,194). Interestingly, exogenous hydrogen peroxide substantially 

upregulated the catalase and GPx activities but SOD activity in BEAS-2B cells. 

Antioxidant defense enzymes such as catalase and GPx are known to neutralize cellular 

hydrogen peroxide levels by converting them into water (172,177). However, to maintain 

the catalytic activity of GPx, several cofactors (reduced glutathione, and NAD(P)H) and 

glutathione reductase are required (172,177). The ability of hydrogen peroxide to 

upregulate antioxidant defense enzymes (i.e. catalase) has been previously demonstrated 

at comparatively low concentrations (< 50 µM) (452,453). However, at higher 
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concentrations, reduced levels of antioxidant defense enzyme levels have been reported in 

numerous studies (449,454,455). Meanwhile, DMF treatment maintained the SOD, 

catalase, and GPx activities in BEAS-2B cells at basal levels which indicates that DMF 

does not affect the redox balance under normal physiological conditions.  

In this study, the effects of quercetin, genistein, and procyanidin B2 on 

phosphorylation of Akt at Ser473 were studied. BEAS-2B cells treated only with quercetin 

or procyanidin B2 at the tested highest concentration (25 µM) exhibited a higher level of 

p-Akt/Akt ratio. However, higher levels of p-Akt/Akt ratio observed with quercetin were 

not significantly different (p > 0.05) from the DMSO control.  Lee and colleagues (2011) 

demonstrated that quercetin decreased cell viability (even at concentrations less than 20 

µM) and p-Akt levels in BEAS-2B cells compared to the control cells (261). However, this 

result was based on visual observations using western blot bands consisting of inconsistent 

bandwidths and intensities (261). Furthermore,  reduced cell viabilities are associated with 

downregulation of Akt mediated cell survival (261). However, the findings of the study 

conducted by Lee and colleagues in 2011 (261) are contradictory to the current study since 

BEAS-2B cell viability was not affected at tested concentrations in addition to the observed 

no difference (p > 0.05) in p-Akt/Akt ratio.  Supporting the findings of our study, Merlin, 

et al., 2021 have demonstrated that BEAS-2B cells treated with quercetin up to 100 µM (> 

95% cell viability) do not affect the cell viability (145). Furthermore, quercetin does not 

affect the human oral keratinocyte cell viability up to 100 µM and upregulates the 

PI3K/Akt pathway to attenuate the LPS-induced cell injury (456).  

However, the inhibitory effects of flavonoids such as quercetin on Akt protein have 

been demonstrated in numerous studies at different concentrations, experimental models 
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(cell and preclinical models), and treatment times which are mostly associated with reduced 

cell viabilities (261,457–459). Furthermore, the Akt inhibitory activities of flavonoids can 

be varied due to their structural differences (460). For example, the downregulation of Akt 

(Ser473) phosphorylation in human endothelial EA.hy926 cells is associated with the 

presence of the C2=C3 double bond in the C-ring, hydroxylation at 5, 6, and 7 positions in 

the A-ring, hydroxylation at 3ʹ and 4ʹ positions in B-ring in flavones and flavonols (460). 

However, the presence of a hydroxyl group at 3 positions in the C-ring (i.e. quercetin) and 

glycosylation of flavonoids suppress the inhibitory effects on Akt phosphorylation (460). 

Therefore, inhibitory effects that were not observed with quercetin in the current study 

could be due to the presence of the 3-OH group in the C-ring (460). Similarly, the monomer 

of procyanidin B2 (epicatechin) contains a 3-OH group, and it lacks a C2=C3 double bond 

but contains 4ʹ OH and 5-OH groups. In the current study, inhibitory effects on Akt 

phosphorylation with procyanidin B2 treatment were not observed but the p-Akt/Akt ratio 

was increased at the tested highest concentration. Similarly, upregulation of p-Akt (Ser473 

and Thre308) with procyanidin B2 treatment in human umbilical vein endothelial cells at 

physiological conditions has been reported previously (461).  In comparison, genistein also 

has functional groups similar to flavones and flavonols which exert down regulatory effects 

on Akt phosphorylation (i.e., C2=C3 double bond, 4ʹ OH and 5-OH group). However, 

Dirimanov and Högger, 2019 did not find any inhibitory effects on p-Akt (Ser473) with 

genistein treatment in human endothelial EA.hy926 cells (460). This could be due to the 

presence of the B ring at the 3 position of the C-ring which requires further studies.  In our 

study, even though genistein showed a non-significant (p > 0.05) increase in the p-Akt/Akt 

ratio at the tested lowest concentration, it was found to be reducing the increased levels 
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back to basal levels at tested highest concentration. The observed dose-dependent 

reductions of p-Akt/Akt levels with genistein treatment can be explained by the 

homeostatic effects of genistein reported previously (331).   

The ability of quercetin, genistein, and procyanidin B2 to activate the Nrf2/ARE 

pathway has been previously demonstrated in numerous experimental models (Table 2) 

(229,259,269–271). In this study, both quercetin and genistein treatments alone did not 

increase the p-Nrf2/Nrf2 ratio in BEAS-2B cells significantly (p > 0.05). In contrast, 

procyanidin B2 treatment alone was effective in increasing the p-Nrf2/Nrf2 ratio. Similar 

to the current study, procyanidin B2 has previously demonstrated its ability to upregulate 

Nrf2 proteins through upregulation of p-Akt levels in alleviating cypermethrin-induced 

oxidative stress in cerebral cortical neurons of C57BL/6 mice (229). Similar upregulation 

of Nrf2 at translational and/or transcriptional levels has been previously demonstrated by 

genistein in different experimental models (oral administration: male C57BL/6 mice and 

HY-line brown laying hens, and intraperitoneal administration: pentylenetetrazol-induced 

male Sprague-Dawley rats (Table 2) (269–271). Furthermore, the up regulatory effects of 

quercetin on Nrf2 protein expression (time-dependent), Nrf2 nuclear translocation, and 

HO-1 protein expression in BEAS-2B cells have been previously demonstrated (261). In 

our experimental model, BEAS-2B cells treated with quercetin were not effective in p-Nrf2 

nuclear translocation and antioxidant defense enzyme activities. Therefore, the inability of 

quercetin to activate the Nrf2/ARE pathway effectively in BEAS-2B cells could be due to 

the time-dependent effects of quercetin. However, in the literature, reported effects on Nrf2 

activation by quercetin, genistein, and procyanidin B2 were mostly limited to studying the 

total Nrf2 protein and/or mRNA levels (229,259,269–271).  
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In comparison to quercetin, both genistein and procyanidin B2 were able to 

upregulate the Nrf2 nuclear translocation and catalase activity in BEAS-2B cells. Since 

genistein and procyanidin B2 facilitated the p-Nrf2 nuclear translocation, the mechanisms 

of genistein and procyanidin B2 that facilitate Nrf2 nuclear translocation should be further 

investigated. GSK3β is a serine/threonine kinase that phosphorylates Nrf2 at Ser335 and 

Ser338 (mouse sequence) in the Neh6 domain which facilitates Nrf2 nuclear export in 

addition to the Nrf2 degradation (187). In contrast, AMPK facilitates Nrf2 nuclear 

translocation through phosphorylation of Nrf2 at Ser558 which improves the Nrf2 stability 

(195,196). As previously discussed, genistein-mediated reduction of hydrogen peroxide-

induced ROS levels in human visceral adipocytes was associated with activation of Akt 

and AMPK (346). Therefore, the effects of genistein and procyanidin B2 on inhibition of 

GSK3β and upregulation of AMPK should be further studied. As described previously, 

Nrf2 activation can be facilitated by PKC (448). Li, et al., 2018 showed that a methyl 

derivative of genistein (7-O-methylbiochanin A) mediated Nrf2 activation and 

upregulation of NQO-1 protein levels are associated with the activation of PI3K, MAPK, 

PKC, and PERK pathways (462). Joo, et al., 2016 also suggested that  PKC and AMPK 

could have a complementary effect on Nrf2 activation and nuclear translocation in vitro 

(195). Since a substantial effect on p-Akt level in genistein-treated BEAS-2B cells was not 

observed, the effects of genistein on PKC should be further investigated in a time-

dependent manner.   

The presence of a catechol group and higher oxidation potential of flavonoids are 

associated with the activation of Nrf2/ARE pathway and expression of phase 2 detoxifying 

enzymes such as HO-1 (463). Oxidation of catechol-containing flavonoids generates 
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quinones that can act as electrophilic compounds (463). Thereby, generated quinones can 

activate Nrf2 protein via Keap 1 cysteine residue modification (463). Quercetin and 

procyanidin B2 (and its monomer) contain catechol groups (463). Both quercetin and 

epicatechin, the monomer of procyanidin B2 have higher oxidation potential (463). 

Procyanidin B2 has demonstrated its ability to undergo autooxidation via conversion of 

catechol into quinone in primary cerebellar granule neurons harvested from 7-day-old 

Sprague-Dawley rat pups (both males and females) (464). Catechol groups can generate 

superoxide radicals through autooxidation (380). Later generated superoxide radicals can 

be converted to hydrogen peroxide by endogenous SOD (465,466). Furthermore, as 

reported previously, pyrogallol and pyrocatechol, two catechol-containing metabolites of 

proanthocyanidins generate hydrogen peroxide in cell-free culture media such as bronchial 

epithelial growth medium and minimum essential medium Eagle in a dose-dependent 

manner (467).  Therefore, increased catalase enzyme activity in BEAS-2B cells could be 

due to the accumulated hydrogen peroxide in cell culture media induced activation of Nrf2 

or the canonical activation of Nrf2 by electrophilic compounds generated from procyanidin 

B2 autooxidation. In comparison to procyanidin B2, genistein does not contain a catechol 

moiety in its structure. Compared to catechins, the oxidation potential of isoflavones is 

comparatively low (463). However, to better understand the effects of genistein and 

procyanidin B2 in upregulating the Nrf2/ARE pathway with special emphasis on catalase 

activity increase, the time-dependent effects of genistein and procyanidin B2 on hydrogen 

peroxide production in BEAS-2B cells and cell-free culture media should be further 

studied. Additionally, the effects of procyanidin B2, genistein, and their metabolites on 
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Keap-1-Nrf2 interactions should be further studied using molecular docking techniques to 

unveil other possible mechanisms of Nrf2/ARE activation. 

BEAS-2B cells treated with NNKAc upregulated the Nrf2/ARE pathway by 

increasing p-Akt /Akt and p-Nrf2/Nrf2 ratios and p-Nrf2 nuclear translocation. However, 

NNKAc treatment significantly reduced (p < 0.05) the activities of antioxidant defense 

enzymes (SOD, catalase, and GPx). The higher percentage of cell viability (> 80%) 

observed with NNKAc-treated BEAS-2B in this study could be due to the increased cell 

survival due to p-Akt mediated mechanisms such as suppression of cell apoptosis (440). 

Meanwhile, a dose-dependent non-significant reduction (p > 0.05) of NNKAc-induced p-

Akt/Akt and p-Nrf2/Nrf2 ratios and subsequent p-Nrf2 nuclear translocation was observed 

in BEAS-2B cells pretreated with quercetin, genistein, or procyanidin B2.  Furthermore, 

George and Rupasinghe, 2017 demonstrated that NNKAc can upregulate DNA-PK levels 

in BEAS-2B cells under similar experimental conditions (146). Therefore, the 

phosphorylation of Akt at the Ser473 position could be mediated by NNKAc-induced 

DNA-PK expression due to the activation of  DDR mechanisms (445). The same study 

further revealed that the reduction of NNKAc-induced DNA damage is associated with 

reduced expression of DNA-PK and other DDR proteins (146). Therefore, the observed 

reduction of p-Akt/Akt ratio with quercetin, genistein, and procyanidin B2 pre-treatment 

against NNKAc insult in BEAS-2B cells could be due to the reduction of DNA damage or 

facilitation of DNA damage repair by tested flavonoids. However, the mechanisms of 

NNKAc-dependent activation of Akt are yet to be explored even though NNK upregulates 

PI3K/Akt mediated cell survival, cell proliferation, and suppression of cell apoptosis in 

lung epithelial cells through inhibiting caspase 9 expression (161).  
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In addition to activation of Nrf2 by effects of NNKAc on Akt protein or its upstream 

kinases, Nrf2 can be activated through NNKAc-mediated canonical mechanisms as 

electrophilic compounds and ROS can activate the Nrf2 through modifying Keap 1 

cysteine residues either by alkylation or oxidation (192–194). Therefore, NNKAc-induced 

ROS and the electrophilic metabolites generated during NNKAc cellular metabolism could 

influence the Nrf2 activation (156,161–163). Furthermore, increased levels of ROS 

observed with NNKAc-induced BEAS-2B cells could be due to the reduced SOD, catalase, 

and GPx enzyme activities observed in the current study. Agreeing with our results, George 

and Rupasinghe, 2017 have also demonstrated the inhibitory effects of NNKAc on SOD, 

catalase, and GPx at protein levels in BEAS-2B cells (146). Therefore, observed non-

significant (p > 0.05) dose-dependent reductions of p-Nrf2/Nrf2 ratios and subsequent p-

Nrf2 nuclear translocation with pre-treating BEAS-2B cells with quercetin, genistein, or 

procyanidin B2 could be due to mechanisms involved in the reduction of ROS levels (ROS 

scavenging), reduction of Akt phosphorylation (via reducing the expression of DNA-PK), 

expression of phase 2 detoxification enzymes, and inhibiting esterase enzyme. However, 

to confirm these predictions, further studies are required.   

Pre-treatment of quercetin, genistein, or procyanidin B2 was not effective in 

upregulating the NNKAc-reduced catalase activity but increased the NNKAc-reduced 

SOD activity (p > 0.05). Also, cells pre-treated with quercetin, genistein or procyanidin B2 

dose-dependently reduced GPx activity with the presence of NNKAc treated cells but not 

significantly (p > 0.05).  However, BEAS-2B cells treated only with genistein or 

procyanidin B2 demonstrated a higher catalase activity at 25 µM. Additionally, a slight 

increase of NNKAc-reduced catalase activity in BEAS-2B cells pre-treated with quercetin 
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(only at 1 µM), genistein, and procyanidin B2 was observed which is significantly not 

different (p > 0.05) from the DMSO control. In comparison, NNKAc-reduced SOD 

activities were also found to be increased up to levels of DMSO with quercetin, genistein, 

or procyanidin B2 pre-treatment despite not having a significant difference (p > 0.05) 

among any treatment group. Similarly, Manna and colleagues (2015) demonstrated the 

ability of naringenin to partially restore the antioxidant defense proteins (SOD, catalase, 

and GSH) to basal levels against gamma radiation-induced oxidative DNA damage in 

murine splenocytes (424). The same study demonstrated that murine splenocytes treated 

with naringenin alone depicted a non-significant dose-dependent increase of SOD, 

catalase, and GSH protein levels as observed with procyanidin B2 and genistein in 

increasing catalase activity in BEAS-2B cells (424). Furthermore, Manna, et al., 2015 

further revealed that gamma-irradiation-induced ROS levels and oxidative DNA damage 

were attenuated through scavenging ROS, DDR mechanisms, suppressing gamma-

irradiation-induced cell cycle arrest and inflammation, and so forth (424). Therefore, the 

reduction of NNKAc-induced ROS and DNA damage in BEAS-2B cells by tested 

polyphenols including quercetin, genistein, and procyanidin B2 could involve multiple 

cellular mechanisms. Furthermore, in this study, the protective effects of dietary flavonoids 

in reducing NNKAc-induced ROS and DNA damage in terms of activation of Nrf2/ARE 

pathway is not clear which requires further studies.  
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CHAPTER 6: CONCLUSION 

The investigated flavonoids, genistein, quercetin, luteolin, chrysin, cyanidin, 

naringenin, and procyanidin B2, flavonoid metabolites (isorhamnetin), simple polyphenols 

(catechol), stilbenes (resveratrol), curcuminoids (curcumin), and non-phenolics 

(sulforaphane and DMF) protected normal lung epithelial BEAS-2B cells from in vitro 

carcinogen insult. Evaluation of the most effective flavonoids (quercetin, genistein, and 

procyanidin B2) on the mechanisms involved in protecting BEAS-2B cells revealed that 

genistein and procyanidin B2 but not quercetin activated the Nrf2/ARE pathway. The 

procyanidin B2 mediated activation of the Nrf2/ARE pathway in terms of Nrf2 

phosphorylation could be associated with the phosphorylation of Akt.  Both genistein and 

procyanidin B2 upregulated p-Nrf2 nuclear translocation and catalase activity in BEAS-

2B cells. However, pre-treatment of BEAS-2B cells with tested flavonoids showed that 

inhibitory effects of carcinogen insult on antioxidant defense enzyme activities cannot be 

restored. However, further studies are required to confirm the role of the Nrf2/ARE 

pathway in exerting protective effects on NNKAc-induced BEAS-2B cells.  

Future studies should be designed to study the mechanisms involved in protecting 

BEAS-2B cells against carcinogen insult while addressing the limitations of this research. 

The safe doses of tested compounds were determined using reported values in the scientific 

literature due to the higher number of compounds screened in this study and the time-

dependent effects of dietary antioxidants were not studied. The present experimental model 

should be improved to study the time-dependent effects of flavonoids in exerting their 

protective effects. The interactions between test compounds and cell-free culture media 

should be also studied with respect to the generation of ROS. Even though NNKAc mimics 
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the carcinogenic effects of NNK, a tobacco smoke carcinogen, it does not reflect the full 

spectrum of NNK-mediated carcinogenic effects on lung epithelial cells. Therefore, an 

NNK-induced animal experimental model can be suggested to study the effects of dietary 

flavonoids in exerting protective effects against the tobacco carcinogen. To study the 

protective effects of flavonoids on reducing carcinogen-induced ROS generation through 

activation of the Nrf2/ARE pathway, NNKAc is not suitable to be used as NNKAc was 

found to be an activator of Nrf2. Furthermore, the effects of NNKAc on oxidative DNA 

damage markers such as 8-oxodeoxyguanosine should be further studied to understand the 

role of NNKAc in causing oxidative DNA damage. Additionally, further studies are 

required to assess the role of the Nrf2/ARE pathway in exerting protective effects by 

flavonoids on carcinogen-induced BEAS-2B cells in terms of effects on phase 2 

detoxifying enzymes. In addition to that, the protective effects of flavonoids should be 

further studied with respect to the DDR mechanisms, effects on inhibiting cellular esterase 

enzyme, and Akt activation. More importantly, these effects should be studied time-

dependently. Furthermore, the effects of flavonoids on activation of Nrf2 through canonical 

(i.e., inhibition of Keap-1-Nrf2 interactions) and non-canonical (i.e., Nrf2 activation by 

PKC) mechanisms and mechanisms that facilitate Nrf2 nuclear translocations (i.e., effects 

on AMPK and GSK3β) need to be further studied to unveil the other possible mechanisms 

of Nrf2/ARE pathway activation in BEAS-2B cells. Moreover, consumption of diets rich 

in quercetin (i.e., onions, apples, and parsley), genistein (i.e., soy-based food), and 

procyanidin B2 (i.e., cocoa-based food, grape seeds, plums, and berries) could provide a 

protective effect against carcinogen-induced cancer. Since the protective effects of 

genistein, quercetin, and procyanidin B2 in BEAS-2B cells were also observed at 
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physiologically relevant concentrations, a flavonoid-inspired functional food and/or a 

nutraceutical using the effective physiologically relevant concentrations of quercetin, 

genistein, and procyanidin B2 can be developed and assessed to reduce the risk of cancer. 

Additionally, the ability of dietary flavonoids to activate Nrf2/ARE pathway in exerting 

protective effects against other chronic disorders such as neurodegenerative diseases and 

diabetes mellitus that are associated with oxidative stress should be further studied. 
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APPENDICES 

Appendix 1: Effect of luteolin (A), chrysin (B), quercetin (C), genistein (D), cyanidin 

(E), and procyanidin B2 (F) on cell viability against NNKAc in BEAS-2B cells 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1% 

or 0.4%) was used as the vehicle control. Effects on cell viability were quantified using the 

MTS assay. Three independent studies (each done in duplicates) were performed, and 

results were expressed as mean ± standard deviation. Statistical analysis of data was 

performed by one-way ANOVA and mean comparison was done by Tukey’s mean 

comparison method (α=0.05) using Minitab 19 statistical software. Mean values that do 

not share similar letters (i.e., a-e) in bar graphs are significantly different (p<0.05). 

Abbreviations: NNKAc: 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, 

DMSO: dimethyl sulfoxide. 

  



210 

 

Appendix 2: Effect of naringenin (A), resveratrol (B), curcumin (C), sulforaphane 

(D), catechol (E), and dimethyl fumarate (F) on cell viability against NNKAc in 

BEAS-2B cells 
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Cells were pre-treated with concentrations ranging from 0.1- 25 µM of selected compounds 

for 3 h. Pre-treated cells were exposed to 100 µM NNKAc for another 3 h. DMSO (0.1%) 

was used as the vehicle control. Effects on cell viability were quantified using the MTS 

assay. Three independent studies (each done in duplicates) were performed, and results 

were expressed as mean ± standard deviation. Statistical analysis of data was performed by 

one-way ANOVA and mean comparison was done by Tukey’s mean comparison method 

(α=0.05) using Minitab 19 statistical software. Mean values that do not share similar letters 

(i.e., a-e) in bar graphs are significantly different (p<0.05). Abbreviations: NNKAc: 4-

[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanone, DMSO: dimethyl sulfoxide. 
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Appendix 3: Copyright permission from ACS publications to adapt a figure 
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Appendix 4: Copyright permission from MDPI to use published literature review in 
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