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Abstract

In this thesis, we deal with two extremely challenging issues that arise in a medical diagnosis

problem. Namely multi-class classification and integration of data from multiple sources.

Both are issues that arise in a wide variety of data analysis problems. We present simple

but effective methods for dealing with these issues that significantly improve performance in

an abdominal pain emergency diagnosis problem, and are widely applicable wherever these

issues arise.

For integrating data from multiple sources, such as various medical tests that might be

ordered for a patient, our method involves fitting separate predictors on the different sources

of data, then performing a linear combination of these predictors. We show that in common

cases, this method performs asymptotically better than analysing a single source of data.

We also show that the method performs well compared to the popular multiple imputation

approach. This very straightforward approach is applicable to a wide range of problems.

For the multi-class classification, we develop a hierarchical tree clustering of the diag-

noses, thus reducing the multiclass classification to a series of binary classifications. The

hierarchical tree is created using a mixture of data-driven methods based on posterior pre-

dictive probability and expert knowledge. We use a statistical learning method to combine

the outputs of the binary classifications into an overall output. We find that this works

better than multiplying the probabilities from the binary classifiers, which can be misled by

the conditional classifiers whose conditions are not met.
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Chapter 1

Introduction

Emergency departments are extremely busy and as a result, misdiagnoses are common,

sometimes with dangerous consequences for patients. Machine learning tools for assisting

physician diagnoses could be very helpful in preventing some of these misdiagnoses. This

thesis looks at the particular case of abdominal pathology, and builds a classifier for pre-

dicting diagnoses for patients presenting with abdominal pain. Abdominal pain is the most

common symptom among patients presenting at emergency departments. There are two ma-

jor statistical difficulties encountered in this project. These are common statistical problems

that arise in a number of problems in many different fields, so the methods developed in this

thesis are expected to have broad applicability.

The first challenge is the integration of different sources of data. All patients arriving

at the emergency department are assessed at triage, where a number of basic predictors

are recorded. However, further tests are ordered by the treating physician based on their

assessment of which tests are needed. This means that different clinical variables will be

available for each patient, and we need to fit models that make use of all variables available

for each patient.

The second challenge is multi-class classification. A number of popular classification

methods are either only available for binary classification problems, or have better perfor-

mance for binary classification problems. In the medical diagnosis problem, the diagnoses

can naturally be hierarchically clustered based on similarity of symptoms. This allows us to

arrange the diagnoses in a tree structure, reducing the multiclass classification problem into

a sequence of binary classifiers.

1.1 Background

Abdominal pain is a common medical condition, accounting for roughly a quarter of all

presentations to the emergency department (ED). The symptomatologys associated with

abdominal pathologies are unpleasant for the patient, and requires special attention in their

1
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evaluation (Clark and Kruse, 1990). It is challenging for the clinician to identify the source of

abdominal pain since it requires a thorough understanding of the pathogenesis of the various

abdominal diseases that cause pain, and the pathways over which it is transmitted. In fact,

in the busy environment of the emergency department (ED), up to 15% of all patients are

misdiagnosed (Burroughs et al., 2005).

Initial complaints of abdominal pain can be very nonspecific and only evolve to more

disease-specific symptoms over time (Macaluso and McNamara, 2012). This increases the

difficulty of an accurate identification of the cause of acute abdominal pain. The first step

in the diagnostic pathway is clinical evaluation. In daily practice, a preliminary diagnosis

will be made based on medical history, physical examination, and, in some cases, laboratory

parameters. After clinical assessment, the decision can be made to perform additional diag-

nostic investigations such as plain radiography, ultrasound, and computed tomography (CT)

to increase the certainty of the diagnosis (Gans et al., 2015). In addition to these difficul-

ties related to the diagnosis, there are concerns about misdiagnosis related to interruptions

during the course of a shift of the attending clinician (Monteiro et al., 2015).

While machine learning techniques have been widely applied in medicine, (e.g. (Shavlik

et al., 1990)) fully diagnosing patients involves integrating information from a large number

of sources in a way that exceeds the capabilies of current methods. We therefore aim to

develop a tool to assist the physician in making the diagnosis by providing a list of the most

plausible diagnoses. The physician can then examine the list to see whether there are any

likely possibilities that may have been overlooked. In addition to the list of most plausible

diagnoses, we will estimate the probability of each diagnosis, to further help the physician

confirm their diagnosis.

1.2 Data and Challenge

We analyse a dataset consisting of 116,008 presentations to emergency departments in Nova

Scotia during the period January 2010 to February 2015. We have restricted attention to

39 abdominal pathology diagnoses, excluding rare diagnoses for which there is not sufficient

data. The objective of the analysis is to predict the most likely diagnoses for each patient.

There are two major challenges in this dataset, that arise in a large number of statistical

problems. The first is the large number of classes. Methods such as neural networks, random

forest and boosted trees can be directly applied to multi-class classifications. However, the



3

performance is often better for binary classifications. Therefore, by restructuring the problem

as a series of binary classifiers, taking into account the relations between diagnoses, we can

substantially improve the accuracy of the model.

The second major statistical challenge is that results from various medical tests are

available only for certain cases, specifically for those patients for whom the physician ordered

that test. This is in one sense a data integration problem, where data are pooled from

multiple sources with different test results available for each patient. However, it can also

be viewed as a missing data problem, where the missing variables are arranged in blocks,

and each block is either present or missing. There are a number of available methods

for handling missing data, but these methods do not take advantage of the block-missing

structure in this dataset. Because the decision of what tests to order is based on the patient’s

symptoms and suspected diagnosis, this is considered missing not at random. In these

cases, by incorporating the non-random nature of the missing data into the model, it is

possible to improve prediction. However, in practice we want our diagnosis system to provide

preliminary diagnoses before the physician has finished ordering tests. We therefore want to

avoid using the information about which tests have been ordered in our prediction, so that

our method will generalise to this preliminary use.

1.3 Contribution

We propose a model combination method to deal with block missing data. We fit two models:

one using the complete cases, and one using the incomplete cases. For each patient, each

model gives a prediction. We then form the final prediction as a linear combination of these

two predictions, where the coefficients of the linear combination are based on the sample sizes

and the bias in the missing data. This coefficient can be found in general by cross-validation.

In the linear regression case, we also develop a plug-in estimator, which is more accurate and

easier to analyse theoretically. We prove that for linear regression, our combination method

is asymptotically better than the complete case method. It makes weak or no distribution

assumptions and our main interest lies in predictions. The model combination method can

be applied to both classification and regression problems using either linear or nonlinear

methods. We have developed the theory for linear regression but our method works well

empirically in other situations.
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For the multi-class classification problem, we build a hierarchical tree of diagnoses us-

ing a similarity measure based on the average predicted probability of each diagnosis. We

use expert knowledge to decide on the threshold for the clustering. We then combine the

diagnoses at this threshold and repeat the clustering.

We put the model combination method and the hierarchical tree together to build a

method for predicting the diagnosis of emergency department patients. Our method provides

a list of most likely diagnoses with the corresponding probabilities to assist the physician in

making a final diagnosis. The classifier is able to give preliminary predictions from the triage

results, then refine the results to incorporate new test results as they become available. This

adaptive method with the ability to update predictions as new test results become available

means that our method can be applied in practice to assist the physician at every step of

the decision-making process.

We develop an automated diagnosis system using hierarchical tree structures and model

combination techniques to help reduce misdiagnosis. Our proposed method employs a hier-

archical classification technique that mimics a typical triage process conducted by a trained

physician. The model could provide preliminary triage results into multiple different patholo-

gies with only a handful of variables, then it could refine the prediction given extra test

results. This unique property makes it very feasible for practical application and potentially

assisting physicians in every step of their decision-making process. For each patient, at each

stage (considering different medical tests), the model needs to output a posterior probability

vector for the diagnoses based on the current available variables.



Chapter 2

Literature Review on Missing Data and Class Binarization

In this chapter, we review different missing data mechanisms and their corresponding ap-

proaches for data analysis. We also review approaches to multi-class classification problems.

2.1 Missing Data Mechanisms

Rubin (1976) formalized the concept of missing-data mechanisms by treating the missing-

data indicators as random variables and assigning them a distribution. Specifically, let

Z = (Zij) denote a rectangular n× p data set; the ith row is Zi = (Zi1, ..., Zip), where Zij is

the jth observation for subject i. The missingness pattern of this dataset can be represented

by the missing indicator matrix M = (Mij) with the ith row Mi = (Mi1, ...,Mip), such that

Mij is 1 if Zij is missing and Mij is 0 if Zij is present. We use the notation

Zi = (Zi1, ..., Zip) ∼ f(Zi|θ)

Mi = (Mi1, ...,Mip) ∼ f(Mi|ϕ)

where (Zi,Mi), i = 1, ..., n are assumed to be independent and identically distributed. In

Rubin (1976), the joint distribution is factored as

f(Zi,Mi|θ, ϕ) = f(Zi|θ)f(Mi|Zi, ϕ)

where f(Zi|θ) represents the model for the data without missing values, f(Mi|Zi, ϕ)

models the missing data mechanism, and (θ, ϕ) denotes unknown parameters.

Three broad types of missingness mechanisms, moving from the simplest to the most

general, are:

2.1.1 MCAR: Missing completely at random

When missingness M is independent of the data Z, missing or observed, that is, if

5
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f(Mi|Zi, ϕ) = f(Mi|ϕ)

the data are called missing completely at random (MCAR). With the exception of some

planned missing-data designs, MCAR is a strong assumption. Missingness often depends on

the observed and/or unobserved data.

2.1.2 MAR: Missing at random

Let Zobs,i denote the observed component of Zi and Zmis,i the missing component. A less

restrictive assumption is that missingness depends only on the observed values Zobs,i, and

not on the missing values Zmis,i. That is,

f(Mi|Zi, ϕ) = f(Mi|Zobs,i, ϕ)

The missing-data mechanism is then called missing at random (MAR). For example in

a medical dataset, blood test results might be missing if the doctor did not consider them

necessary based on the available data for that patient.

The observed data consist of the values of the variables (Zobs,M) and the distribution of

the observed data is obtained by integrating Zmis out of the joint density of Z = (Zobs, Zmis)

and M . That is, for unit i,

f(Zobs,i,Mi|θ, ϕ) =
∫

f(Zobs,i, Zmis,i,Mi|θ, ϕ)dZmis,i

=

∫
f(Zobs,i, Zmis,i|θ)f(Mi|Zobs,i, Zmis,i, ϕ)dZmis,i

Under MAR, Mi|Zi = Mi|Zobs,i, so

f(Zobs,i,Mi|θ, ϕ) = f(Mi|Zobs,i, ϕ)

∫
f(Zobs,i, Zmis,i|θ)dZmis,i

∝
∫

f(Zobs,i, Zmis,i|θ)dZmis,i

= f(Zobs,i|θ)

The full likelihood of θ and ϕ is:

Lfull(θ, ϕ|Zobs,M) ∝
n∏

i=1

f(Zobs,i,Mi|θ, ϕ)
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This missing-data mechanism is also called ignorable, because when it is MAR and the

parameter space for (θ, ϕ) is a Cartesian product space, the Likelihood-based inferences for

θ can be based on

Lign(θ|Zobs) ∝
n∏

i=1

f(Zobs,i|θ)

Because the ignorable likelihood only depends on observed data Zobs, we don’t need to

build a model forM . If assuming missingness is MCAR or MAR, the missing-data mechanism

can be ignored and we only need to model the observed data Zobs to derive likelihood-based

inferences for θ.

2.1.3 MNAR: Missing not at random

The mechanism is called missing not at random (MNAR) if the distribution of M depends

on the missing values in the data matrix Z.

A common example is that people with higher income are less likely to reveal their income.

That is, the non-response probability for the income variable depends on values that can be

missing. An MNAR mechanism is often referred to as non-ignorable missingness because

the missing-data mechanism cannot be ignored for the inference. In other words, the valid

likelihood-based inferences require specification of the missing data mechanism. Analysing

MNAR data involves making assumptions about the missing pattern based on the particular

problem. In this chapter, we focus on reviewing methods for the MCAR and MAR datasets.

2.2 Handling Missing Data

A good method for handling missing data should

• Minimize bias: Missing data introduces bias into parameter estimates; a good method

should make that bias as small as possible.

• Maximize the use of available information: Avoid discarding any data, and use the

available data to produce parameter estimates that are efficient (i.e., have minimum

sampling variability).

• Yield optimal estimates of uncertainty: We want accurate estimates of standard errors,

confidence intervals and p-values.
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• Ideally accomplish all of the above without making unnecessarily restrictive assump-

tions about the missing data mechanism.

The so-called conventional methods are deficient in one or more of these goals, but

Maximum likelihood (ML) and multiple imputation (MI) do very well at satisfying these

criteria. Our idea of model combination also satisfies these for the particular problem of

block missingness (block missing at random).

2.2.1 Conventional approaches

The most common approaches to deal with MCAR and MAR data are

1. Complete case analysis: listwise deletion. The analysis is only run on cases which have

a complete set of data. An observation with a missing value in any variable would be

removed entirely (Baraldi and Enders, 2010).

2. Available case analysis: pairwise deletion. The analysis uses cases that contain some

missing data. We only choose to omit cases with a missing value on the variables we

are interested in, but not for other cases (Baraldi and Enders, 2010).

3. Single imputation that the missing value is replaced by a value (Myers, 2000):

• LOCF (Last Observation Carried Forward). Impute the missing data with the

value of the last observation with available data.

• Mean imputation. Impute the missing data using the mean of the non-missing

values.

• Hot-deck imputation (local imputation/Nearest neighbour). A missing case is

replaced with a case with similar characteristics.

• (Stochastic) regression imputation. Build a regression model with baseline char-

acteristics as predictors of the outcome cases using the available data. Then use

the model to predict the outcome for cases with missing values.

Broadly speaking, there are two general model-based approaches for handling nonignor-

able missingness (MNAR) that can be distinguished: selection models and pattern-mixture

models. These methods are based on the likelihood for a model and can be used in maximum

likelihood (ML) or fully Bayes modeling.
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2.2.2 Selection models

The joint distribution of Zi andMi can be written as the product of the marginal distribution

of Zi and the conditional distribution of Mi given Zi:

f(Zi,Mi) = f(Zi)f(Mi|Zi) (2.1)

This is a natural way of factoring the model, with f(Zi) the model for the data in the

absence of missing values, and f(Mi|Zi) the model for the missing-data mechanism that

determines what parts of Z are observed. Equation 2.1 is sometimes called a selection model

factorization of the joint distribution of (Zi,Mi) because of connections with the econometric

literature on selection bias (Heckman, 1976).

If the MAR assumption is plausible, the selection model formulation leads directly to

the ignorable likelihood — the distribution f(Mi|Zi) for the missing-data mechanism is not

needed for likelihood inferences, which can be based solely on the model for f(Zi).

f(Zobs,i,Mi) =

∫
f(Zobs,i, Zmis,i,Mi)dZmis,i

=

∫
f(Zobs,i, Zmis,i)f(Mi|Zobs,i, Zmis,i)dZmis,i

= f(Mi|Zobs,i)

∫
f(Zobs,i, Zmis,i)dZmis,i

∝
∫

f(Zobs,i, Zmis,i)dZmis,i

= f(Zobs,i)

The selection model factorization does not require full specification of the model for the

missing-data mechanism when the data are MAR, but it does if the data are MNAR.

2.2.3 Pattern-mixture models

Another factorization is also possible. Pattern-mixture models (Glynn et al., 1986), (Glynn

et al., 1993)) specify the marginal distribution of Mi and the conditional distribution of Zi

given Mi:

f(Zi,Mi) = f(Mi)f(Zi|Mi)
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The focus of these models is on the conditional distribution of the response variable given

that the data are available. In cases where missing values are not meaningful, rather than

unobserved, this model can be more natural. It can also be helpful in cases where we want

to use the missingness of variables as an additional predictor.

The distribution of the observed data is obtained as follows:

f(Zobs,i,Mi) =

∫
f(Zobs,i, Zmis,i,Mi)dZmis,i (2.2)

=

∫
f(Mi)f(Zobs,i, Zmis,i|Mi)dZmis,i (2.3)

= f(Mi)

∫
f(Zobs,i, Zmis,i|Mi)dZmis,i (2.4)

∝ f(Zobs,i|Mi) (2.5)

The pattern-mixture models, avoid specification of the model for the missing-data mech-

anism in MNAR situations, by directly modelling the conditional distribution of Z given the

missing status.

This way of modelling the data has advantages when performing imputation. Missing

values Zmis,i should be imputed from their predictive distribution given the observed data

including Mi, that is, f(Zmis,i|Zobs,i,Mi). Under MAR this equals f(Zmis,i|Zobs,i), which is a

conditional distribution derived from the selection model. However, if data are not MAR, the

predictive distribution of Zmis,i given Zobs,i andMi is modeled directly in the pattern-mixture

formulation as f(Zmis,i|Zobs,i,Mi).

2.2.4 Other approaches

Other methods for analysing missing data include:

1. Nonresponse weighting (Little and Rubin, 2002, Chapter 3) Roderick et al. (2002). It

gives weights for responses based on likelihood of response for complete case analysis,

often used in surveys.

2. Multiple imputation (MI), where missing values are replaced by multiple sets of plau-

sible values (Rubin, 1987; Little and Rubin, 2002, Chapter 5) Roderick et al. (2002).
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3. Weighted estimating equation (WEE) methods (Lipsitz, Ibrahim and Zhao, 1999) Lip-

sitz et al. (1999). The contribution to the estimating equation from a complete obser-

vation is weighted by the inverse probability of being observed.

Single imputation procedures, such as mean imputation, do not account for the uncer-

tainty in the imputations; once the imputation is completed. Analyses proceed as if the

imputed values were the known true values rather than imputed. This will lead to overly

precise results and the potential for incorrect conclusions. Maximum likelihood methods

are sometimes a viable approach for dealing with missing data (Graham, 2009). However,

these methods are primarily available only for certain types of models, such as longitudinal

or structural equation models, and can generally be run only using special software such as

Amos (SPSS, 2009a) and Lisrel (Scientific Software International, 2006).

2.3 Multiple Imputation

Multiple imputation involves filling in the missing values multiple times, creating multiple

“complete” datasets. Described in detail by Schafer and Graham (2002), the missing values

are imputed based on the observed values for a given individual and the relations observed in

the data for other participants. Multiple imputation procedures, particularly MICE, are very

flexible and can be used in a broad range of settings. Because multiple imputation involves

creating multiple predictions for each missing value, the analyses of multiply imputed data

take into account the uncertainty in the imputations and yield more accurate standard errors

estimates.

If there is not much information in the observed data (used in the imputation model)

regarding the missing values, the imputations will be very variable, leading to high standard

errors in the analyses. In contrast, if the observed data are highly predictive of the missing

values the imputations will be more consistent across imputations, resulting in smaller, but

still accurate, standard errors (Greenland and Finkle, 1995).

2.3.1 The Chained Equation Approach to Multiple Imputation

Two general approaches for imputing multivariate data have emerged: joint modeling (JM)

and fully conditional specification (FCS), also known as multivariate imputation by chained

equations (MICE). Schafer (1997) developed various JM techniques for imputation under the
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multivariate normal, the log-linear, and the general location model. JM involves specifying

a multivariate distribution for the missing data, and drawing imputation from their condi-

tional distributions by Markov chain Monte Carlo (MCMC) techniques. This methodology

is attractive if the multivariate normal distribution is a reasonable description of the data.

FCS specifies the multivariate imputation model on a variable-by-variable basis by a set of

conditional densities, one for each incomplete variable. Starting from an initial imputation,

FCS draws imputations by iterating over the conditional densities. A low number of itera-

tions (say 10 − 20) is often sufficient. This is much more flexible for modelling non-normal

variables, but is computationally very expensive.

Multivariate imputation by chained equations (MICE) is a particular multiple imputation

technique (Raghunathan et al., 2001), (Van Buuren, 2007)). MICE operates under the

assumption that given the variables used in the imputation procedure, the missing data are

Missing At Random (MAR).

In the MICE procedure a series of regression models are run whereby each variable with

missing data is modeled conditional upon the other variables in the data. This means

that each variable can be modeled according to its own distribution (not assumed a joint

normal distribution), with, for example, binary variables modeled using logistic regression

and continuous variables modeled using linear regression.

The MICE procedure fits a regression of each variable on all other variables within a

chosen subset of variables (for example in a regression problem, we might choose not to use

the response variable to impute missing values of predictors). For fitting this regression, the

missing values of the predictors are imputed using a basic method, such as mean imputation.

We then replace the values of the current variable by the new imputed predictions, and iterate

over all other variables. We repeat this until convergence of the imputed values. We assume

that there are p variables, of which k are subject to missing data and p−k are complete. The

algorithm is summarised in Algorithm 1. The process described in steps 3 and 4 is repeated

for several cycles to create one imputed data set. Standard software uses 5 to 20 cycles by

default. The imputed values obtained after the last cycle are used as the imputed values

for the first imputed data set. The entire process is then repeated M times to produce M

imputed data sets. The advantage of this approach over methods that assume a multivariate

normal distribution is that different values can be modelled using different distributions in

the regression. For example, {0, 1} valued variables can be modelled using logistic regression.
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Algorithm 1 MICE algorithm for multiple imputation

1: Specify an imputation model for each of the k variables that are subject to missing data.

2: For each of the k variables that are subject to missing data, fill in the missing values

with random draws from those subjects with observed values for the variable in question.

Note that these initial imputed values do not respect the multivariate relations in the

data and will be overwritten by better imputed values in later stages of the algorithm.

3: for the first variable that is subject to missing data: do

a. Regress this first variable on all the other variables using those subjects with complete

data on the first variable and observed or currently imputed values of the other variables.

b. The estimated regression coefficients and their variance-covariance matrix (and the

estimated variance of the residual distribution if a linear regression model was fit for a

continuous variable) are extracted from the regression model estimated in (a).

c. Using the quantities obtained in (b), randomly perturb the estimated regression

coefficients in a way that reflects the degree of uncertainty arising from the data.

d. Using the set of perturbed regression coefficients obtained in (c), the conditional

distribution of the first variable is determined for each subject with missing data on that

variable.

e. A value of the variable is drawn from this conditional distribution for each subject

with missing data on the first variable.

4: Repeat step 3 for each of the variables that is subject to missing data. Steps 3 and 4

form 1 cycle of the imputation process for creating 1 imputed data set.

5: Repeat steps 3 and 4 the desired number of times (suggested 5 to 20 cycles). The final

imputed values are used as the imputed values in first imputed data set.

6: Repeat steps 2-5 M times to produce M imputed data sets.
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2.3.2 Analyzing Multiply Imputed Data

Once the data have been imputed, each imputed data set is “complete” in the sense that

it has no missing values. Analyzing multiply imputed data involves running a standard

analysis such as regression on each of the imputed data sets and combining the estimates

from each data set to obtain the final result. In order to combine the results across m data

sets, first decide on the quantity of interest q to compute, such as a univariate mean, regres-

sion coefficient, predicted probability, or first difference (Buuren and Groothuis-Oudshoorn,

2011).

The variance estimates involve both the “within” variance calculated for each dataset

individually, as well as the “between” variance that reflects the uncertainty in the imputa-

tions—how variable the results are across the imputed datasets. We can combine directly

and use as the multiple imputation estimate of this parameter, q̄, the average of the m

separate estimates, qj(j = 1, ...,m):

q̄ =
1

m

m∑
j=1

qj

The variance of the point estimate is the average of the estimated variances from within

each completed data set, plus the sample variance in the point estimates across the data sets

(multiplied by a factor that corrects for the bias because m < ∞). Let SE(qj)
2 denote the es-

timated variance (squared standard error) of qj from the data set j, and S2
q =

∑m
j=1(qj − q̄)2

(m− 1)
be the sample variance across the m point estimates. The standard error of the multiple

imputation point estimate is the square root of

1

m

m∑
j=1

SE(qj)
2 + S2

q (1 + 1/m) = SE(q̄)2

.

2.4 Block Missing Methodology

Clearly, general methods for handling missing data may deliver sub-optimal performance for

block missing data, since they are not specifically designed for block missing data. There

are also direct attempts to tackle block missing data. e.g. incomplete Source-Feature Selec-

tion (iSFS) model proposed by Xiang et al. (2014) which partition the whole data set into
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multiple groups according to the availability of data sources to make both feature-level and

source-level analysis for feature selection. A hybrid approach proposed by Li et al. (2014)

focus on the inferences of regression coefficients. When the observations for some covariates

are complete, they use a Bayesian inference, and for the parameter with missing data, they

employ a frequentist method. Xue and Qu (2021) proposed a Multiple Blockwise Imputa-

tion (MBI) approach that creates multiple predictions for each missing value from multiple

modalities in order to utilize more observed information from incomplete case groups than

traditional imputation methods. However, block level imputations when the number of fea-

tures is high could still result in regressing many sub imputation models, rendering this

approach very computationally inefficient.

2.5 Multiclass Classification

The majority of classification methods were designed to solve binary classification problems.

Some of these methods can be naturally extended to the multi-class case. Others need

special formulations to be able to solve the latter case. The first category of algorithms

include decision trees, neural networks, k-Nearest Neighbor and Naive Bayes classifiers. The

second category include Support Vector Machines (SVM). Even for methods in the first

category, where there is a natural extension to a multiclass classification, this extension

can prove less accurate in some cases than the original binary classification method. It is

therefore often desirable to estimate a multi-class classification by aggregating the results of

a number of binary classifiers.

Class binarization strategies reduce a k-class problem into a series of binary problems

for classification. Two of the most common strategies in the literature are one-versus-one

(OVO) and one-versus-all (OVA) approaches (Rifkin and Klautau, 2004), also named one-

against-one (OAO) and one-against-all (OAA) (Lorena et al., 2008).

In the OVO or OAO strategy, for every pair of classes, a binary classifier is trained on

the subset of the data consisting of observations from those two classes. The outputs of the(
k

2

)
classifiers are combined for prediction.

In the OVA or OAA strategy, for each of the k classes, a binary classifier is trained on

the whole data set, with the chosen class as one class, and the other k-1 classes combined

to make a single alternative class. These classifiers are then combined to give the overall

classification. The OVA strategy requires fewer classifiers to be trained, but the training
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Figure 2.1: Taken from (Ng et al., 2014), three different classification strategies illustrated
with a 3-class problem (a) Simple multi-class classification; (b) One-versus-one (OVO) class
binarization; (c) One-versus-all (OVA) class binarization.

data for each of these classifiers consists of the whole data set, so is larger, and is often

unbalanced, whereas the OVO strategy involves fitting

(
k

2

)
classifiers, but each classifier is

trained on a smaller and more balanced dataset.

The differences among the formulations of multi-class classification are illustrated graph-

ically in Figure 2.1.



Chapter 3

Model Combination Method

In this chapter, we propose a model combination method to deal with block missing data.

Our method involves fitting separate models for the complete and incomplete cases, then

taking a linear combination of the predictions from the two models. Since both models

should give approximately unbiased predictions, the coefficients of the linear combinations

should sum to 1. We let α be the coefficient of the partial data model, and therefore 1 − α

be the coefficient of the complete-case model. There are two data-driven approaches for

choosing α from the data. Cross validation is a traditional approach for choosing a tuning

parameter related to the bias-variance trade-off. It is computationally intensive and difficult

to analyze from a theoretical perspective. For linear and logistic regression, we are able to

analytically solve for the optimal value of α, based on the variance structure of the data.

This allows a plug-in estimator where we replace the variances in this formula with estimates

from the data. This requires less computation and is theoretically more tractable.

We are dealing with estimation of a prediction function f that predicts our response

variable Y from a vector X of p1 covariates. Our training data is divided into two parts,

as shown in Figure 3.1. The first part, termed as full data, contains n1 observations of X

and Y . The second, partial data, contains n2 = n− n1 observations, but only of the first p2

covariates. We will use the following notation:

YT
1 = (y1, . . . ,yn1)

YT
2 = (yn1+1, . . . ,yn)

XT
1 = (X11,X12)

T = (x1, . . . ,xn1)

XT
21 = (xn1+1, . . . ,xn)

It is straightforward to estimate the predictor function f from either part of the training

data on its own. We can use any linear or non-linear predictive models including linear

or generalized linear models, random forest, support vector machine, neural networks, etc.

Thus we have two estimators f̂1 from the first part of the training data, (Y1,X1), and f̂2 from

17
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Figure 3.1: An illustration of a blockwise missing data problem with the two blocks of
variables represented in pink and blue, and the blank region represents the missing part of
the data. The data is partitioned into the full model and the partial model, as highlighted
by the dark blue boxes. The model combination method is the weighted mixture of these
two models.
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the second part of the training data, (Y2,X21). For prediction of future partially-observed

data points, we also fit a model f̂0 using all training observations, but only the variables

present in all observations. For prediction of fully observed data points, we will use the

following combined estimation which is a simple weighted average of two estimators:

f̂(x) = (1− α)f̂1(x) + αf̂2(x) (3.1)

for some suitably chosen scalar α, which we will estimate from the data. We will present

two approaches to estimating α.

The plug-in approach for linear regression is introduced in Section 3.1 and for a more

general loss function is given in Section 3.2. We present the leave-one-out cross-validation

estimate for α in Section 3.3. Finally we prove some asymptotic result for the model com-

bination method for linear regression models in Section 3.4.

3.1 Model Combination for Linear regression models

We first consider the linear regression model case. That is, we assume that

Y = Xβ + ϵ (3.2)

for some vector β of coefficients, where ϵ ∼ N(0, σ2
ϵ ). We will restrict f̂1 and f̂2 to be linear

functions, estimated by least squares. We let f̂1(x) = xT β̂1 and f̂2(x) = xT β̂2, where the ith

element of β̂2: (β̂2)i = 0 for i > p2. Now our combined estimator (3.1) can be rewritten as

f̂α(x) = xT β̂α (3.3)

where β̂α = (1− α)β̂1 + αβ̂2.

We will choose α in an attempt to minimise the expected squared error loss:

R(α) = Ex0E(X,Y )

[(
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

]2
(3.4)

= (1− α)2A+ α2B (3.5)

where A = Ex0E(X,Y )

(
f̂1(x0)− f(x0)

)2
and B = Ex0E(X,Y )

(
f̂2(x0)− f(x0)

)2
are the ex-

pected squared error for the full model and the partial model respectively. Because we are

assuming that the two parts of training data are independent, we have that β̂1 and β̂2 are
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independent, and β̂1 is unbiased, so the cross term from (3.4) vanishes to give (3.5).

Under the assumption that both A and B exist and are finite, the minimum of R(α) is

easily seen to be achieved for

α∗ =
A

A+B
. (3.6)

From standard linear regression theory, assuming the existence of (XTX)−1, we know

that the conditional expected squared error

Ex0EY |X

((
f̂1(x0)− f(x0)

)2)
= σ2

ϵ tr((X
TX)−1Ex0(x0x

T
0 ))

Although the estimates of the expected squared error with expectation over both training

and test data in linear regression has been widely discussed, it seems to have always been

the case that estimators for the above conditional expected squared error have been used

with an assumption that (XTX)−1 exists. The difficulty of further taking the expectation

over the distribution of X is that in general EX(X
TX)−1 doesn’t exist. However to develop

an unbiased plug-in estimator and to better study the asymptotic behaviour of our proposed

estimator, we need to analyze the asymptotic behaviour of the quantities A and B. We will

develop the theory for a bounded estimator under the normal assumptions for the predictor

variables as following.

Theorem 3.1.1. Assume the standard linear regression model assumptions that the rows in

data X and test data x0 are i.i.d. from Np1(0,Σ), and Y |X ∼ N(Xβ, σ2
ϵ ), where β is a p1×1

regression coefficient vector. Suppose the theoretical optimal predictor from the full data is

f1(x) = xβ and let f2(x) = xβ2 be the theoretical optimal predictor subject to the constraint

that the ith element of β2: (β2)i = 0 for all i > p2. Let the least square estimators be

f̂1(x) = xT β̂1 and f̂2(x) = xT β̂2, where the ith element of β̂2: (β̂2)i = 0 for i > p2, (p2 < p1).

As the sample sizes n1 and n2 tend to ∞,

A = Ex0E(X,Y )

((
f̂1(x0)− f(x0)

)2
∧ Cn1

)
= σ2

ϵ

(
p1
n1

+
p21 + p1

n2
1

+ o
( 1

n2
1

))
, (3.7)

B = Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
∧ Cn2

)
=
(
σ2
η − σ2

ϵ

)
+ σ2

η

(
p2
n2

+
p22 + p2

n2
2

+ o
( 1

n2
2

))
,

(3.8)
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where Cn is a sequence of constants, bounded below, satisfying Cn = o(n), and σ2
η is the

theoretical minimum MSE for a linear predictor using only the first p2 predictors. That is,

σ2
η − σ2

ϵ = (β − β2)
TE(x0x0

T )(β − β2).

The proof of Theorem 3.1.1 is given in Section 3.4.1.

Remark 1. When β ̸= β2, we have that σ2
η − σ2

ϵ > 0, so that B is bounded below by a

constant, while A → 0 as n1 → ∞. Thus α∗ → 0 as n1 → ∞.

Following Theorem 3.1.1, we now re-define a bounded version of the risk in the following

Corollary 3.1.1.1. Under the same model assumptions as in Theorem 3.1.1, for any

fixed value of α, we have the risk

R(α) = Ex0E(X,Y )

[((
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

)2
∧ Cn1∧n2

]
(3.9)

= (1− α)2A+ α2B + o((n1 ∧ n2)
−2) (3.10)

where Cn1∧n2 is a sequence of constants, bounded below, satisfying Cn1∧n2 = o(n1 ∧ n2) and

A and B are given by (3.7) and (3.8).

A plug-in estimator of α∗ can be easily obtained as α̂∗ =
Â

Â+ B̂
, where Â and B̂ can be

obtained by plugging estimators σ̂2
ϵ and σ̂2

η for σ2
ϵ and σ2

η in (3.7) and (3.8).

The unbiased estimators for σ2
ϵ and σ2

η are:

σ̂2
ϵ =

1

n1 − p1

n1∑
i=1

(yi − f̂1(xi))
2

σ̂2
η =

1

n2 − p2

n∑
i=1+n1

(yi − f̂2(xi))
2

We will show that with this estimator for α, our combination method performs asymptotically

better than using only the complete case data to estimate β.

3.2 General Loss Function with O
(
n− 1

2

)
Convergence

In this section, we assume that observations in the training data X1 and X2 are drawn i.i.d.

from some arbitrary distribution, and the conditional distributions of Y |X for different data
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points are independent and follow the same type of distribution. We have a general loss

function L : R × R → R that measures how close our estimates ŷ are to the true value, y.

We do not require the loss function to be minimised when ŷ = y, so we can use the loss

function to measure a transformed estimator. For example in a binary classification problem,

we could let

L(y, ŷ) = −
[
y log

(
exp(ŷ)

1 + exp(ŷ)

)
+ (1− y) log

(
1

1 + exp(ŷ)

)]
(3.11)

which is the negative log-likelihood of y under the assumption that the logistic transform of

the estimated P (y = 1) is ŷ.

We will assume that f1 and f2 are chosen from some class M of integrable functions. We

will let f1(x) be the function that minimises E(L(Y, f(X))), subject to f1 ∈ M. Similarly, we

will let f2(x) be the function that minimises E(L(Y, f(X))), subject to f2 ∈ M and for any

two points x and x′ with the same elements on the first p2 dimensions, we have f2(x) = f2(x
′).

We let f̂1(x) and f̂2(x) be the estimated functions from the full data (Y1, X1) and partial

data (Y2, X21) corresponding to their theoretical optimum f1(x) and f2(x) respectively, and

define E1(x) = f̂1(x)− f1(x), E2(x) = f̂2(x)− f2(x) and let η(x) = f2(x)− f1(x). It follows

that f̂α(x) = f1(x) + E1(x) + α(η(x) + E2(x) − E1(x)), and so if E1 and α are sufficiently

small, and M is closed under linear combinations, we have

E(L(y0, f̂α(x0)) = E(L(y0, f1(x0)) +
1

2
E
(

∂2

∂ŷ2
L(y0, f1(x0)) [E1(x0) + α (η(x0) + E2(x0)− E1(x0))]

2

)
+ o(E(E1(x0)

2)) + o(α2)

where the first derivative in the Taylor expansion vanishes because of the optimality of f1.

From this, we see that the asymptotically optimal value of α is

α∗ =
−E

(
∂2

∂ŷ2
L(y0, f1(x0))E1(x0) (η(x0) + E2(x0)− E1(x0))

)
E
(

∂2

∂ŷ2
L(y0, f1(x0)) (η(x0) + E2(x0)− E1(x0))

2
)

Since E1 and E2 are estimated from different data sets, we can assume they are independent,

so the covariance is zero, making the cross terms in the previous expression negligible. We

will also assume that E1 and E2 converge in L2-norm to zero, while η is a non-zero constant

function, so that asymptotically

α∗ =
E
(

∂2

∂ŷ2
L(y0, f1(x0))E1(x0)

2
)

E
(

∂2

∂ŷ2
L(y0, f1(x0))η(x0)2

) (3.12)
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This is similar to the linear case, where under the squared-error loss,
∂2

∂ŷ2
L(y0, f1(x0)) is a

constant, so the numerator becomes E
(
(f̂1(x0)− E(Y |x0))

2
)
, which we defined as A. The

denominator is approximately equal to E
(
(f̂2(x0)− E(Y |x0))

2
)
, which we defined as B.

Since A is asymptotically smaller than B, we have simplified the expression
A

A+B
from

Section 3.1, to
A

B
in (3.12). To obtain our plug-in estimator in the linear case, we used the

fact that the estimation error A is asymptotically proportional to the irreducible error. If

we make the similar assumption here

E(L(y0, f1(x0) + E1(x0)) = E(L(y0, f1(x0))

(
1 +

p1
n1

)
+ op

(
1

n1

)
then we can estimate E(L(y0, f1(x0)) from the validation loss function. That is, we divide

our training data into a sub-training sample and a validation sample. We let ntrain be the

number of samples in this sub-training set, and nval be the number of validation samples.

Then since f̂1 → f1, we have an estimator of E(L(y0, f1(x0)) as

1

nval

nval∑
i=1

L(yi, f̂1,train(xi)),

and thus an estimator for E
(

∂2

∂ŷ2
L(y0, f1(x0))E1(x0)

2

)
as

2p1
ntrainnval

nval∑
i=1

L(yi, f̂1,train(xi)).

For the denominator, we estimate the derivative from first principles. That is, we use

E
(
L(y0, f1(x0) + nval

− 3
2 (η(x0)))− L(y0, f1(x0))

)
≈ nval

−3

2
E
(

∂2

∂ŷ2
L(y0, f1(x0))η(x0)

2

)
so that

2n3
val

ntrain

ntrain∑
j=1

(
L(yj, f̂1,train(xj) + nval

− 3
2 (f̂2(xj)− f̂1,train(xj)))− L(yj, f̂1,train(xj))

)
is an estimator for

E
(

∂2

∂ŷ2
L(y0, f1(x0))η(x0)

2

)
This gives the estimator

α̂∗ =

p1
ntrainnval

∑nval

i=1 L(yi, f̂1,train(xi))

n3
val

ntrain

∑ntrain

j=1

(
L(yj, f̂1,train(xj) + nval

− 3
2 (f̂2(xj)− f̂1,train(xj)))− L(yj, f̂1,train(xj))

)
(3.13)
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3.3 Cross validation estimation

For cases where we do not want to make assumptions about the convergence of f̂1, an

alternative approach is to use cross-validation to estimate α. We use leave-one-out cross-

validation (LOOCV) to estimate the expected loss. That is, we let f̂1,(i) be the estimated

predictor from the training data with the ith observation removed, where i ∈ {1, 2, · · · , n1}.
We let ŷ1,(i) = f̂1,(i)(xi). We also have the partial model which are fitted on data (Y2, X21)

and predict on each observation in X1 ŷ2,i = f̂2(xi). We then select α̂cv as

α̂cv = arg minα∈[0,1]

n1∑
i=1

L(yi, (1− α)ŷ1,(i) + αŷ2,i)

The procedure is written out in detail in Algorithm 2.

Algorithm 2 CV estimation

1: Fit a model f̂2 on the partial data (xn1+1, yn1+1), . . . , (xn1+n2 , yn1+n2).

2: for i ∈ 1, . . . , n1 do

3: Fit a model f̂1,(i) on the data (x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn1 , yn1).

4: Let ŷ1,(i) = f̂1,(i)(xi).

5: Let ŷ2,i = f̂2(xi).

6: Fit α̂cv to minimise:

n1∑
i=1

L(yi, (1− α)ŷ1,(i) + αŷ2,i).

For linear regression with the squared error loss function, we don’t need to perform the

leave-one-out procedure to get α̂cv. More specifically, we have

n1∑
i=1

L(yi, (1− α)ŷ1,(i) + αŷ2,i) =

n1∑
i=1

(
yi − ((1− α)ŷ1,(i) + αŷ2,i)

)2
(3.14)

=

n1∑
i=1

(
(1− α)(yi − ŷ1,(i)) + α(yi − ŷ2,i)

)2
(3.15)

=

n1∑
i=1

(
(1− α)

(
yi − ŷ1,i
1− Aii

)
+ α(yi − ŷ2,i)

)2
(3.16)

where yi − ŷ1,(i) =
yi − ŷ1,i
1− Aii

(see e.g. p. 257 in Wood 2017), ŷ1,i is the predicted value for

the ith observation with the model fitted on all data (Y1, X1), and Aii is the ith diagnal

element of the projection matrix A = X1(X
T
1 X1)

−1XT
1 . Let ei1 = yi − ŷ1,i, ẽi1 =

ei1
1− Aii

,
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and ei2 = yi − ŷ2,i. A closed form solution can be given as α̂cv =

∑n1

i=1 ẽi1(ẽi1 − ei2)∑n1

i=1(ẽi1 − ei2)2
. A

similar argument as that in Wood (2017, page 260) can lead to a more stable GCV estimate

if we replace Aii by tr(A)/n1 = p1/n1, thus α̂gcv =

∑n1

i=1 ei1(ei1 −
n1−p1
n1

ei2)∑n1

i=1(ei1 −
n1−p1
n1

ei2)2
.

For logistic regression with the loss function given as the binomial negative log-likelihood

as defined in (3.11) on the logistic-transformed probability or equivalently the linear predictor

ŷ, we have

n1∑
i=1

L(yi, (1− α)ŷ1,(i) + αŷ2,i)

=−
n1∑
i=1

[
yi log

(
exp((1− α)ŷ1,(i) + αŷ2,i)

1 + exp((1− α)ŷ1,(i) + αŷ2,i)

)
+ (1− yi) log

(
1

1 + exp((1− α)ŷ1,(i) + αŷ2,i)

)]
Since ŷ1,(i) ≈ ŷ1,i − (zi − ŷ1,i)Aii/(1 − Aii), where zi is the working response for the ith

observation in the final stage of the IRLS fitting for logistic regression on full data (Y1, X1)

and Aii is the ith diagnal element of the corresponding weighted least square fitting projection

matrix (Page 262, Wood 2017). ŷ1,(i) can be easily approximated by fitting logistic regression

once on the full data. The linear predictor now is ŷ1,(i) + α(ŷ2,i − ŷ1,(i)). we can find α̂cv

by fitting a no-intercept logistic regression with off-set given by ŷ1,(i). Following the similar

argument for GCV, we can replace Aii/(1 − Aii) by p1/(n1 − p1) for a more stable GCV

estimate.

Since α is constrained to [0, 1], we set any negative values of α̂cv to 0, and any values of

α̂cv greater than 1 to 1 in the above procedures for estimating α.

Generally for nonlinear predictive models, such as neural networks, GBM or SVM etc.,

there is no short cut to get the CV estimation as for linear regression and logistic regression

cases. However, for random forest, if we can extract the out-of-bag (OOB) prediction for

each observation in the one time fitting on the full data (Y1, X1), then we can use the OOB

prediction for ŷ1,(i).

3.4 Theory

In this section, we show that under natural conditions, for the linear regression model, our

model combination method is asymptotically more accurate than the full-data model.

The following Theorems are proved in Section 3.4.1:
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Theorem 3.4.1. Under the standard linear regression model assumptions that the rows in

data X and test data x0 are i.i.d. from Np1(0,Σ), and Y |X ∼ N(Xβ, σ2
ϵ ), where β is

a p1 × 1 regression coefficient vector. Suppose the theoretical optimal predictor from the

full data is f1(x) = xβ and let f2(x) = xβ2 be the theoretical optimal predictor subject

to the constraint that the ith element of β2: (β2)i = 0 for all i > p2. Let the least square

estimators be f̂1(x) = xT β̂1 and f̂2(x) = xT β̂2, where the ith element of β̂2: (β̂2)i = 0 for i >

p2, (p2 < p1). Let α
∗ =

A

A+B
where A = Ex0E(X,Y )

((
f̂1(x0)− f(x0)

)2
∧ Cn1

)
and B =

Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
∧ Cn2

)
and Cn be a sequence of constants, bounded below,

satisfying Cn = o(n). Let α̂∗ =
Â

Â+ B̂
where Â = σ̂2

ϵ

(
p1
n1

+
p21 + p1

n2
1

)
, B̂ =

(
σ̂2
η − σ̂2

ϵ

)
+

σ̂2
η

(
p2
n2

+
p22 + p2

n2
2

)
, σ̂2

ϵ =
1

n1 − p1

n1∑
i=1

(yi − f̂1(xi))
2 and σ̂2

η =
1

n2 − p2

n∑
i=1+n1

(yi − f̂2(xi))
2.

With fixed p1 and p2 and σ2
η − σ2

ϵ > 0, we have

(1) 0 ≤ α∗ =
A

A+B
< 1

(2) lim
n1→∞

α∗ = 0, α∗ = O(n1
−1)

(3) E
(
(α̂∗ − α∗)2

)
= O(n−3

1 ) +O(n−2
1 n−1

2 )

From Theorem 3.4.1 (3), it is easily seen that the convergence rate of α̂∗ − α∗ → 0

is Op(n
−3/2
1 ) + Op(n

−1
1 n

−1/2
2 ), which is faster than the convergence rate of α∗ → 0. The

convergence rate of α∗ → 0 is O(n1
−1) which is faster than the convergence rate of β̂ → β

which is Op(n1
−1/2). It is also easily seen that the convergence rate of α̂∗ → 0 is also

Op(n1
−1).

Now we are ready to prove the risk of the model combination method with our plug-in

estimator of α∗ is asymptotically better than the risk of full model which is equivalent to

α∗ = 0. Recall the expected loss for a constant α is defined as

R(α) = Ex0E(X,Y )

[((
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

)2
∧ Cn1∧n2

]
= (1− α)2A+ α2B + o((n1 ∧ n2)

−2)

Theorem 3.4.2. Under the standard linear regression model assumptions that the rows in

data X and test data x0 are i.i.d. from Np1(0,Σ), and Y |X ∼ N(Xβ, σ2
ϵ ), where β is a p1×1

regression coefficient vector. Let the least square estimators f̂1(x) = xT β̂1 and f̂2(x) = xT β̂2,
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where the ith element of β̂2: (β̂2)i = 0 for i > p2, (p2 < p1). Let α̂
∗ =

Â

Â+ B̂
where Â =

σ̂2
ϵ

(
p1
n1

+
p21 + p1

n2
1

)
, B̂ =

(
σ̂2
η − σ̂2

ϵ

)
+ σ̂2

η

(
p2
n2

+
p22 + p2

n2
2

)
, σ̂2

ϵ =
1

n1 − p1

n1∑
i=1

(yi − f̂1(xi))
2

and σ̂2
η =

1

n2 − p2

n∑
i=1+n1

(yi − f̂2(xi))
2. With fixed p1 and p2 and σ2

η − σ2
ϵ > 0, for sufficient

large n1 and n2 and n2 > n1, we have

Rplugin = E(X,Y )Ex0

[(
((1− α̂∗)f̂1(x0)) + α̂∗f̂2(x0))− f(x0)

)2
∧ Cn1∧n2

]
< R(0).

3.4.1 Proof of Theorems for Linear Regression Case

Lemma 3.4.3. If X1 and X2 are i.i.d. standard normally distributed, then the moment

generating function of the product X1X2 is

MX1X2(t) =
(
1− t2

)− 1
2

Proof.

MX1X2(t) = E(etX1X2) = EX1(EX2|X1(e
tX1X2)) = EX1(MX2(tX1)) = EX1

(
e

t2X2
1

2

)
=

1√
2π

∫ ∞

−∞
e

t2x2

2
−x2

2 dx =
1√
2π

∫ ∞

−∞
e
− x2

2(1−t2)−1
dx =

(
1− t2

)− 1
2

Lemma 3.4.4. If

p∑
i=1

si =
1

2
and si > 0 for all i, then

p∏
i=1

(1− si) ⩾
1

2
.

Proof.

p∏
i=1

(1− si) = 1−
p∑

i=1

si +
∑
i̸=j

sisj −
∑

i,j,k distinct

sisjsk + · · ·

= 1− 1

2
+
∑
i̸=j

sisj

(
1−

∑
k ̸=i,j

sk

)
+ · · ·

⩾
1

2
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Lemma 3.4.5. If Y follows the linear model Y = Xβ +E, where E are i.i.d. normal vari-

ables with mean 0 and variance σ2, and x0 follows a random multivariate normal distribution

with mean 0 and variance Σ, then for fixed X, and a constant

C > σ2 tr((XTX)−1Σ)

Ex0EY |X

(([
xT
0 (β̂ − β)(β̂ − β)Tx0

]
− C

)
+

)
⩽ 8(1 +

√
2)Ce

−
√

C

2σ2 tr((XTX)−1Σ)

Proof. Let Z = XΣ− 1
2 and βZ = Σ

1
2β. Then our linear model is Y = ZβZ + E, and we

have tr
(
(XTX)−1Σ

)
= tr

(
Σ

1
2 (XTX)−1Σ

1
2

)
= tr

(
(ZTZ)−1

)
. Let z0 = Σ− 1

2x0, so Var(z0) =

Σ− 1
2ΣΣ− 1

2 = I.

Let M = (ZTZ)−1ZT . We have β̂Z = MY and E(Y |Z)β̂Z = βZ . Thus we want to bound

Ex0EY |Z

(([
zT0 (MY − βZ)(MY − βZ)

Tz0

]
− C

)
+

)
= Ez0EY |Z

((
(zT0ME)2 − C

)
+

)
E and z0 are independent, E ∼ N(0, σ2In), and z0 ∼ N(0, Ip). Let M = UDV T be the

singular value decomposition of M . Since U and V are orthogonal matrices, we have that

u = UTz0 ∼ N(0, Ip) and v = σ−1V TE ∼ N(0, In). Thus we want to bound

EuEv(((σu
TDv)2 − C)+) =

∫ ∞

C

P
(
(σuTDv)2 > a

)
da =

∫ ∞

C

2P

(
uTDv >

√
a

σ

)
da

Where we have used the fact that the distribution of uTDv is symmetric about 0, so that

P

(
uTDv < −

√
a

σ

)
= P

(
uTDv >

√
a

σ

)
.

Now uTDv =

p∑
i=1

diuivi, where ui and vi are independent standard normal random

variables. Therefore, the moment generating function of uTDv is

M(t) =

p∏
i=1

(
1− d2i t

2
)− 1

2

The Chernoff bound therefore gives, for t > 0,

P

(
uTDv >

√
a

σ

)
⩽ M(t)e−t

√
a

σ =
e
−
√

a

2σ2 ∑p
i=1

d2
i√∏p

i=1

(
1− d2i

2
∑p

i=1 d
2
i

)

where we have set t =

(
2

p∑
i=1

d2i

)−1/2

. Thus,

P

(
uTDv >

√
a

σ

)
⩽

√
2e

−
√

a

2σ2 ∑p
i=1

d2
i
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This gives

EuEv(((u
TDv)2 − C)+) =

∫ ∞

C

2P

(
uTDv >

√
a

σ

)
da

⩽
∫ ∞

C

2
√
2e

−
√

a

2σ2 ∑p
i=1

d2
i da

= 2
√
2

∫ ∞

√
C

2re
− r√

2σ2 ∑p
i=1

d2
i dr

= 4
√
2

−rσ

√√√√2

p∑
i=1

d2i e
− r

σ
√

2
∑p

i=1
d2
i

∞

√
C

+ σ

√√√√2

p∑
i=1

d2i

∫ ∞

√
C

e
− r

σ
√

2
∑p

i=1
d2
i dr


= 4

√
2

σ

√√√√2C

p∑
i=1

d2i e
−
√

C

2σ2 ∑p
i=1

d2
i + 2σ2

(
p∑

i=1

d2i

)
e
−
√

C

2σ2 ∑p
i=1

d2
i


⩽ 8(1 +

√
2)Ce

−
√

C

2σ2 ∑p
i=1

d2
i

The last inequality is obtained by substituting
∑
i

d2i = tr((ZTZ)−1) = tr((XTX)−1Σ).

Lemma 3.4.6. For any a > 0 and n satisfying an > 1/2 > a2

(i) If nX ∼ χ2
n, then P (|X − 1| > a) ⩽ 2e−

a2n
8 .

(ii) If X is the mean of n products of pairs of independent standard normal distributions, i.e.

X =
1

n

n∑
i=1

(Zi1Zi2) where Zij are all i.i.d. standard Normal, then P (|X| > a) ⩽ 2e−
a2n
4

Proof. (i) The moment-generating function of the chi-square distribution with n degrees of

freedom is M(t) = (1− 2t)−
n
2 , so X has moment generating function M(t) =

(
1− 2

t

n

)−n
2

.

We use the Chernoff bounds

P (X ⩾ 1 + a) ⩽ Mx(t)e
−(1+a)t for t =

an

4
> 0

P (X ⩽ 1− a) ⩽ Mx(t)e
−(1−a)t for t = −an

4
< 0

We have that − log(1− x)

x
−x is continuous and has only one local minimum in the interval[

0,
1

2

]
, so in particular, − log(1− x)

x
⩽ 1+x or equivalently (1−x)−

1
x ⩽ e1+x for 0 ⩽ x ⩽

1

2
.

Therefore,

M
(an

4

)
=
(
1− a

2

)−n
2
=

((
1− a

2

)− 2
a

)an
4

⩽ e(1+
a
2 )

an
4
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Substituting this in the Chernoff bound gives

P (X ⩾ 1 + a) ⩽ e(1+
a
2 )

an
4 e−(1+a) an

4 = e−
a2n
8

Similarly, setting t = −an

4
,
log(1 + x)

x
⩾ 1 − x, so (1 + x)

1
x ⩾ e1−x for 0 ⩽ x ⩽

1

2
,

meaning

M
(
−an

4

)
=
(
1 +

a

2

)−n
2
=

((
1 +

a

2

) 2
a

)−an
4

⩽ e−(1−
a
2 )

an
4

Thus, the Chernoff bound gives

P (X ⩽ 1− a) ⩽ e−(1−
a
2 )

an
4 e(1−a)an

4 = e−
a2n
8

(ii) By Lemma 3.4.3, the moment generating function for the average of n products of

i.i.d. standard normal distributions is M(t) =

(
1− t2

n2

)−n
2

setting t = an, gives

M(t) =
(
1− a2

)−n
2 ⩽ e(1+a2)a2n

2

so the Chernoff bound gives

P (X ⩾ a) ⩽ e(1+a2)a2n
2 e−a2n = e−

a2n
2 (1−a2) ⩽ e−

a2n
4

Since the product of independent standard normal distributions is symmetric, this gives the

results.

Lemma 3.4.7. If X is an n× p matrix whose rows are distributed according to i.i.d. mul-

tivariate normal distributions with mean 0 and invertible covariance matrix Σ, then

P

(∥∥∥∥Σ− 1
2
XTX

n
Σ− 1

2 − I

∥∥∥∥
∞

> A

)
⩽ 2p2e−

A2n
8

Proof. Let Z = XΣ− 1
2 . The elements of Z are i.i.d. standard normal, and we want to bound

P

(∥∥∥∥ZTZ

n
− I

∥∥∥∥
∞

> A

)
⩽

p∑
i,j=1

P

(∣∣∣∣∣
(
ZTZ

n
− I

)
ij

∣∣∣∣∣ > A

)

For i = j, we have that

(
ZTZ

n
− I

)
ij

=
1

n

n∑
k=1

Z2
ki − 1, which is a scaled, centred chi-square

distribution with n degrees of freedom, so by Lemma 3.4.6(i), we have

P

(∣∣∣∣∣
(
ZTZ

n
− I

)
ij

∣∣∣∣∣ > A

)
⩽ 2e−

A2n
8
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For i ̸= j, we have

(
ZTZ

n
− I

)
ij

=
1

n

n∑
k=1

ZkiZkj is a mean of n i.i.d. products of independent

standard normal distributions. By Lemma 3.4.6(ii), we have

P

(∣∣∣∣∣
(
ZTZ

n
− I

)
ij

∣∣∣∣∣ > A

)
⩽ 2e−

A2n
4

Putting these together gives

P

(∥∥∥∥Σ− 1
2
XTX

n
Σ− 1

2 − I

∥∥∥∥
∞

> A

)
⩽ 2p2e−

A2n
8

Lemma 3.4.8. For a p × p matrix M , if ∥M − I∥∞ ⩽ c for a constant c <
1

p
, then

tr(M−1) ⩽ p− 1 +
1

1− pc

Proof. Let Q = M − I. Since ∥Q∥∞ ⩽ c, we have that ∥Qk∥∞ ⩽ pk−1ck, and we have

M−1 = (I +Q)−1 = I −Q+Q2 −Q3 + · · · , so in particular

tr(M−1) = tr(I −Q+Q2 −Q3 + · · · ) ⩽ p(1 + c+ pc2 + · · · ) = p− 1 +
1

1− pc

Theorem 3.4.9. Under the standard linear regression model assumptions that the rows in

data X and test data x0 are i.i.d. from Np1(0,Σ), and Y |X ∼ N(Xβ, σ2
ϵ ), where β is a

p1 × 1 regression coefficient vector. Suppose the theoretical optimal predictor from the full

data is f1(x) = xβ and let f2(x) = xβ2 be the theoretical optimal predictor subject to the

constraint that the ith element of β2: (β2)i = 0 for all i > p2. Let the least square estimators

f̂1(x) = xT β̂1 and f̂2(x) = xT β̂2, where the ith element of β̂2: (β̂2)i = 0 for i > p2, (p2 < p1).

As the sample sizes n1 and n2 tend to ∞,

A = Ex0E(X,Y )

((
f̂1(x0)− f(x0)

)2
∧ Cn1

)
= σ2

ϵ

(
p1
n1

+
p21 + p1

n2
1

+ o
( 1

n2
1

))
, (3.17)

B = Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
∧ Cn2

)
=
(
σ2
η − σ2

ϵ

)
+ σ2

η

(
p2
n2

+
p22 + p2

n2
2

+ o
( 1

n2
2

))
,

(3.18)

where Cn is a sequence of constants, bounded below, satisfying Cn = o(n), and σ2
η is the

theoretical minimum MSE for a linear predictor using only the first p2 predictors. That is,

σ2
η − σ2

ϵ = (β − β2)
TE(x0x0

T )(β − β2).
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Proof. From standard linear regression theory, we know that the conditional expected MSE

is

Ex0EY |X

((
f̂1(x0)− f(x0)

)2)
= σ2

ϵ tr((X
TX)−1Σ)

The first step to proving (3.17) is to show that

Ex0E(X,Y )

((
f̂1(x0)− f(x0)

)2
∧ Cn1

)
= EX

(
σ2
ϵ tr((X

TX)−1Σ) ∧ Cn1

)
+ o(n−2

1 ) (3.19)

We do this by dividing into two cases:

Case 1

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

<
n−0.4
1

p1
,

Case 2

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

⩾
n−0.4
1

p1
.

It is convenient to define a random variable Z as an indicator for Case 1. That is Z = 1 in

Case 1 and Z = 0 in Case 2.

By Lemma 3.4.7, Case 2 has probability bounded by 2p21e
−

n−0.8
1 n1

8p21 = o(n−2
1 C−1

n1
). Since the

loss is bounded by Cn1 , it follows that the contribution of this case to the total expectation

is o(n−2
1 ). Therefore, we only need to prove (3.19) in Case 1.

From the general theory of bounded random variables:

E(X ∧ c) = E(X)− E((X − c)+)

we see that it is sufficient to prove that in Case 1,

Ex0EY |X

(((
f̂1(x0)− E(X,Y )f̂1(x0)

)2
− Cn1

)
+

∣∣∣∣Z = 1

)
= o(n−2

1 )

By Lemma 3.4.8, Case 1 implies

tr
(
(XTX)−1Σ

)
= tr

(
Σ

1
2 (XTX)−1Σ

1
2

)
<

p1 − 1 + 1
1−n−0.4

1

n1

<
p1 + 1

n1

so

tr((XTX)−1Σ) <
Cn1

σ2
ϵ

Thus, by Lemma 3.4.5:
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Ex0EY |X

(([
xT
0 (β̂ − E(X,Y )β̂)(β̂ − E(X,Y )β̂)

Tx0

]
− Cn1

)
+

∣∣∣∣Z = 1

)
⩽ 8(1 +

√
2)Cn1e

−
√

Cn1
σ2
ϵ tr((XTX)−1Σ)

⩽ 8(1 +
√
2)Cn1e

−
√

Cn1n1

σ2
ϵ (p1+1)

= o(n−2
1 )

This proves (3.19). We now need to show that

EX

(
σ2
ϵ tr((X

TX)−1Σ) ∧ Cn1

)
= σ2

ϵ

(
p1
n1

+
p21 + p1

n2
1

+ o
( 1

n2
1

))
We have shown that the probability of Case 2 is P (Z = 0) = o

(
n−2
1 C−1

n1

)
, so we may assume

Case 1, in which case, σ2
ϵ tr((X

TX)−1Σ) < Cn1 . Let Q =
Σ− 1

2 (XTX)Σ− 1
2

n1

− I. Case 1

assumes that ∥Q∥∞ <
n−0.4
1

p1
. It follows that

Σ− 1
2 (XTX)Σ− 1

2

n1

= I + Q is invertible with

inverse I −Q+Q2 − · · · . Therefore

tr(Σ
1
2 (XTX)−1Σ

1
2 ) = n−1

1 tr((I+Q)−1) = n−1
1 tr(I−Q+Q2−Q3+· · · ) = p1

n1

−tr(Q)− tr(Q2)

n1

+o(n−2
1 ).

We now have EX|Z=1

(
σ2
ϵ tr((X

TX)−1Σ) ∧ Cn1

)
= σ2

ϵEX|Z=1

(
p1
n1

− tr(Q)− tr(Q2)

n1

+ o(n−2
1 )

)
.

Thus we need to show EX|Z=1(− tr(Q) + tr(Q2)) =
p21 + p1

n1

+ o(n−1
1 ).

For the first term, we have EX(Q) = EX|Z=1(Q)P (Z = 1)+EX|Z=0(Q)P (Z = 0) = 0 and

P (Z = 0) = o
(
n−2
1 C−1

n1

)
, thus EX|Z=1tr(Q) = o(n−2

1 ).

Similarly for the second term we have EX(Q
2) = EX|Z=1(Q

2)P (Z = 1)+EX|Z=0(Q
2)P (Z =

0) = EX|Z=1(Q
2) + o(n−2

1 ).

By symmetry of the Q matrix, tr(Q2) =
∑
i,j

(Q2
ij). Since the rows of XΣ− 1

2 are i.i.d.

vectors, each follows N(0, I), we have for i = j, Qij follows a centred scaled chi-square

distribution, and so has variance
2

n1

. For i ̸= j, Qij is a mean of n1 independent products

of two standard normal random variables, so has variance
1

n1

. Thus

EXtr(Q
2) =

∑
i,j

Var(Qij) = p1
2

n1

+ p1(p1 − 1)
1

n1

=
p21 + p1

n1

This proves (3.17).

The proof of (3.18) is similar. We again have two cases
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Case 1

∥∥∥∥Σ− 1
2

11

(
XT

21X21

n2

)
Σ

− 1
2

11 − I

∥∥∥∥
∞

<
n−0.4
2

p2
, denoted by Z = 1.

Case 2

∥∥∥∥Σ− 1
2

11

(
XT

21X21

n2

)
Σ

− 1
2

11 − I

∥∥∥∥
∞

⩾
n−0.4
2

p2
, denoted by Z = 0.

where Σ11 is the p2×p2 block of the covariance matrix corresponding to the variables in X21,

Since P (Z = 0) = o(n−2
2 C−1

n2
), the contribution of Case 2 to the total expectation is

o(n−2
2 ). Thus

B = Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
∧ Cn2

)
= Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
∧ Cn2 |Z = 1

)
+ o(n−2

2 )

= Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
|Z = 1

)
− Ex0E(X21,Y2)

(((
f̂2(x0)− f(x0)

)2
− Cn2

)
+

|Z = 1

)
+ o(n−2

2 )

The same proof shows that the second term of the above is o(n−2
2 ). The first term above is

equal to EX21

((
Ex0EY2|X21

(
f̂2(x0)− f(x0)

)2)
∧ Cn2

)
. Since Ex0EY2|X21

(
f̂2(x0)− f(x0)

)2
=

σ2
η tr((X

T
21X21)

−1Σ11) + (σ2
η − σ2

ϵ ), we have

B = EX21

(
σ2
η tr((X

T
21X21)

−1Σ11) ∧ (Cn2 − (σ2
η − σ2

ϵ ))
)
+ (σ2

η − σ2
ϵ ) + o(n−2

2 )

and a similar proof leads to

EX21

(
σ2
η tr((X

T
21X21)

−1Σ11) ∧ (Cn2 − (σ2
η − σ2

ϵ ))
)
= σ2

η

(
p2
n2

+
p22 + p2

n2
2

)
+ o(n−2

2 )

which completes the proof.

Corollary 3.4.9.1. Under the same model assumptions as in Theorem 3.1.1, for any

fixed value of α, we have the risk

R(α) = Ex0E(X,Y )

[((
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

)2
∧ Cn1∧n2

]
(3.20)

= (1− α)2A+ α2B + o((n1 ∧ n2)
−2) (3.21)

Where Cn1∧n2 is a sequence of constants, bounded below, satisfying Cn1∧n2 = o(n1 ∧ n2) and

A and B are given by (3.7) and (3.8).



35

Proof. Similar to the proof for Theorem 3.1.1, we define an indicator variable as

Case 1

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

<
n−0.4
1

p1
and

∥∥∥∥Σ− 1
2

11

(
XT

21X21

n2

)
Σ

− 1
2

11 − I

∥∥∥∥
∞

<
n−0.4
2

p2
, de-

noted by Z = 1.

Case 2

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

⩾
n−0.4
1

p1
or

∥∥∥∥Σ− 1
2

11

(
XT

21X21

n2

)
Σ

− 1
2

11 − I

∥∥∥∥
∞

⩾
n−0.4
2

p2
, de-

noted by Z = 0.

From the proof for Theorem 3.1.1, we have P (Z = 0) ≤ o(n−2
1 C−1

n1
) + o(n−2

2 C−1
n2

), thus

the contribution of Case 2 to the total expectation is o(n−2
1 )+o(n−2

2 ) = o((n1∧n2)
−2). Thus

R(α) =Ex0E(X,Y )

[((
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

)2
∧ Cn1∧n2

]
=Ex0E(X,Y )

[((
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

)2
∧ Cn1∧n2 |Z = 1

]
+ o((n1 ∧ n2)

−2)

=EX

((
Ex0E(Y |X)

((
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

)2)
∧ Cn1∧n2

)
+ o((n1 ∧ n2)

−2)

=EX

((
(1− α)2Ex0E(Y |X)

(
f̂1(x0)− f(x0)

)
+ α2Ex0E(Y |X)

(
f̂2(x0)− f(x0)

)2)
∧ Cn1∧n2

)
+ o((n1 ∧ n2)

−2)

=(1− α)2A+ α2B + o((n1 ∧ n2)
−2)

The fourth line is because f̂1(x0)− f(x0) and f̂2(x0)− f(x0) are conditionally independent

given X, because f̂1 and f̂2 are estimated from independent data sets. The last equality

is true because for any non-negative random variables W1 and W2 and any constant C, we

have

E
(
W1 ∧

C

2
+W2 ∧

C

2

)
≤ E((W1 +W2) ∧ C) ≤ E(W1 ∧ C +W2 ∧ C)

SettingW1 = (1−α)2Ex0E(Y |X)

(
f̂1(x0)− f(x0)

)
andW2 = α2Ex0E(Y |X)

(
f̂2(x0)− f(x0)

)2
the proof of Theorem 3.1.1 gives that both sides of this inequality are equal to (1 − α)2A+

α2B + o((n1 ∧ n2)
−2).

Theorem 3.4.10. Assume the standard linear regression model assumptions that the rows

in data X and test data x0 are i.i.d. from Np1(0,Σ), and Y |X ∼ N(Xβ, σ2
ϵ ), where β is

a p1 × 1 regression coefficient vector. Suppose the theoretical optimal predictor from the
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full data is f1(x) = xβ and let f2(x) = xβ2 be the theoretical optimal predictor subject to

the constraint that the ith element of β2: (β2)i = 0 for all i > p2. Let the least square

estimators f̂1(x) = xT β̂1 and f̂2(x) = xT β̂2, where the ith element of β̂2: (β̂2)i = 0 for i >

p2, (p2 < p1). Let α
∗ =

A

A+B
where A = Ex0E(X,Y )

((
f̂1(x0)− f(x0)

)2
∧ Cn1

)
and B =

Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
∧ Cn2

)
and Cn be a sequence of constants, bounded below,

satisfying Cn = o(n). Let α̂∗ =
Â

Â+ B̂
where Â = σ̂2

ϵ

(
p1
n1

+
p21 + p1

n2
1

)
, B̂ =

(
σ̂2
η − σ̂2

ϵ

)
+

σ̂2
η

(
p2
n2

+
p22 + p2

n2
2

)
, σ̂2

ϵ =
1

n1 − p1

n1∑
i=1

(yi − f̂1(xi))
2 and σ̂2

η =
1

n2 − p2

n∑
i=1+n1

(yi − f̂2(xi))
2.

With fixed p1 and p2 and σ2
η − σ2

ϵ > 0, we have

(1) 0 ≤ α∗ =
A

A+B
< 1

(2) lim
n1→∞

α∗ = 0, α∗ = O(n1
−1)

(3) E
(
(α̂∗ − α∗)2

)
= O(n−3

1 ) +O(n−2
1 n−1

2 )

Proof. (1) By definition, A ≥ 0 and B > 0, so 0 ≤ α∗ =
A

A+B
< 1

(2) By Theorem 3.1.1, lim
n1→∞

A = 0 and B ≥ σ2
η − σ2

ϵ , thus lim
n1→∞

α∗ = 0.

From n1α
∗ =

σ2
ϵ

(
p1 +

p21+p1
n1

+ o(n−1
1 )
)

(
σ2
η − σ2

ϵ

)
+O(n−1

1 ) +O(n−1
2 )

= O(1), we have α∗ = O(n1
−1).

(3)

α̂∗ − α∗ =
Â

Â+ B̂
− A

A+B
=

ÂB − AB̂

(A+B)(Â+ B̂)

We therefore want to prove that

E

( ÂB − AB̂

(A+B)(Â+ B̂)

)2
 = O(n−3

1 ) +O(n−2
1 n−1

2 )

Since A ⩾ 0 and Â ⩾ 0, it is sufficient to prove

E

(ÂB − AB̂

BB̂

)2
 = O(n−3

1 ) +O(n−2
1 n−1

2 )
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From standard regression theory, we have that
σ̂2
ϵ

σ2
ϵ

and
σ̂2
η

σ2
η

follow scaled chi-squared

distributions with degrees of freedom n1−p1−1 and n2−p2−1 respectively. Let a =
σ2
η

σ2
η − σ2

ϵ

and b = a − 1 =
σ2
ϵ

σ2
η − σ2

ϵ

. By Lemma 3.4.6(i), P

(∣∣∣∣ σ̂2
ϵ

σ2
ϵ

− 1

∣∣∣∣ > 1

5b

)
⩽ 2e−

n1−p1−1

200b2 and

P

(∣∣∣∣ σ̂2
η

σ2
η

− 1

∣∣∣∣ > 1

5a

)
⩽ 2e−

n2−p2−1

200a2 . Since (α̂∗ − α∗)2 is bounded by 1, the effect of the low

probability events on the expectation is small. If

∣∣∣∣ σ̂2
ϵ

σ2
ϵ

− 1

∣∣∣∣ < 1

5b
and

∣∣∣∣ σ̂2
η

σ2
η

− 1

∣∣∣∣ < 1

5a
, then

∣∣∣∣∣ σ̂2
η − σ̂2

ϵ

σ2
η − σ2

ϵ

− 1

∣∣∣∣∣ =
∣∣∣∣∣a
(
σ̂2
η

σ2
η

− 1

)
− b

(
σ̂2
ϵ

σ2
ϵ

− 1

)∣∣∣∣∣ ⩽ a

∣∣∣∣∣
(
σ̂2
η

σ2
η

− 1

)∣∣∣∣∣+ b

∣∣∣∣∣
(
σ̂2
ϵ

σ2
ϵ

− 1

)∣∣∣∣∣ ⩽ 2

5

For large enough n1, n2, this implies B̂ >
B

2
. Thus, it is sufficient to prove

E

(ÂB − AB̂

B2

)2
 = O(n−3

1 ) +O(n−2
1 n−1

2 )

or equivalently

E

A2

B2

((
Â

A
− 1

)
−

(
B̂

B
− 1

))2
 = O(n−3

1 ) +O(n−2
1 n−1

2 )

We know that
A

B
= O(n−1

1 ), so we only need to show that E

(Â

A
− 1

)2
 = O(n−1

1 ),

E

(B̂

B
− 1

)2
 = O(n−1

2 )+O(n−1
1 ) and E

(
B̂

B
− 1

)(
Â

A
− 1

)
= O(n

−1/2
1 )O((n1∧n2)

−1/2) ≤

O(n−1
2 ) +O(n−1

1 ).

Since A = σ2
ϵ

p1
n1

+ O(n−2
1 ), we have

Â

A
− 1 =

σ̂2
ϵ
p1
n1

+O(n−2
1 )

σ2
ϵ
p1
n1

+O(n−2
1 )

− 1 =
σ̂2
ϵ

σ2
ϵ

(
1−O(n−1

1 )
)
− 1.

This means E

(Â

A
− 1

)2
 = E

((
σ̂2
ϵ

σ2
ϵ

(
1−O(n−1

1 )
)
− 1

)2
)
. Since

σ̂2
ϵ

σ2
ϵ

follows a scaled

chi-squared distribution, E

((
σ̂2
ϵ

σ2
ϵ

(
1−O(n−1

1 )
)
− 1

)2
)

= O(n−1
1 ) as required.

Similarly,
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E

(B̂

B
− 1

)2
 = E


 σ̂2

η

(
1 +

p2
n2

+
p22 + p2

n2
2

)
− σ̂2

ϵ

σ2
η

(
1 +

p2
n2

+
p22 + p2

n2
2

)
− σ2

ϵ

(
1−O(n−1

2 )
)
− 1


2
 = E

( σ̂2
η − σ̂2

ϵ

σ2
η − σ2

ϵ

− 1 +O(n−1
2 )

)2


and from
σ̂2
η − σ̂2

ϵ

σ2
η − σ2

ϵ

− 1 = a

(
σ̂2
η

σ2
η

− 1

)
− b

(
σ̂2
ϵ

σ2
ϵ

− 1

)
we get

E

( σ̂2
η − σ̂2

ϵ

σ2
η − σ2

ϵ

− 1

)2
 = a2E

( σ̂2
η

σ2
η

− 1

)2
+ b2E

((
σ̂2
ϵ

σ2
ϵ

− 1

))
= O(n−1

2 ) +O(n−1
1 )

The Cauchy-Schwartz inequality gives that E(AB) ⩽
√

E(A2)E(B2), thus

E

(
B̂

B
− 1

)(
Â

A
− 1

)
≤

√√√√√E

(B̂

B
− 1

)2
E

(Â

A
− 1

)2
 = O(n

−1/2
1 )O((n1 ∧ n2)

−1/2)

Now we are ready to prove the risk of the model combination method with our plug-in

estimator of α∗ is asymptotically better than the risk of full model which is equivalent to

α∗ = 0. Recall the expected loss for a constant α is defined as

R(α) = Ex0E(X,Y )

[((
(1− α)f̂1(x0) + αf̂2(x0)

)
− f(x0)

)2
∧ Cn1∧n2

]
= (1− α)2A+ α2B + o((n1 ∧ n2)

−2)

Lemma 3.4.11. Under the standard linear regression assumptions, if Z is a {0, 1}-valued

function of X, with Z = 1 ⇒
∥∥∥∥Σ− 1

2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

<
n−0.4
1

p1
then

E(X,Y )Ex0

[(
f̂1(x0))− f(x0)

)4
Z

]
= o(n−1

1 )

Proof. For fixed f̂1, we have that the conditional distribution of f̂1(x0) − f(x0) given β̂ is

normal with mean 0 and variance (β̂ − β)TΣ(β̂ − β), so

Ex0

[(
f̂1(x0)− f(x0)

)4]
= 3

(
(β̂ − β)TΣ(β̂ − β)

)2
= 3 tr

(
Σ

1
2 (β̂ − β)(β̂ − β)TΣ(β̂ − β)(β̂ − β)TΣ

1
2

)
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Recall that β̂ − β = (XTX)−1XTE is normal with variance σ2
ϵ (X

TX)−1. This gives

E(X,Y )Ex0

[(
f̂1(x0))− f(x0)

)4
Z

]
= 3E(X,Y )

((
(β̂ − β)TΣ(β̂ − β)

)2
Z

)
= 3EX

(
ZEY |X

(
(β̂ − β)TΣ(β̂ − β)

)2)
Let v = AΣ

1
2 (β̂−β) for some orthogonal matrix A. We have that vTv = (β̂−β)TΣ(β̂−β),

and v is multivariate normal with variance σ2
ϵAΣ

1
2 (XTX)−1Σ

1
2AT . If we choose A so that

AΣ
1
2 (XTX)−1Σ

1
2AT is a diagonal matrix Λ, then

E((vTv)2) = E

(
p∑

i,j=1

v2i v
2
j

)
=

p∑
i,j=1

E
(
v2i v

2
j

)
= σ4

ϵ

(∑
i̸=j

λiλj +

p∑
i=1

3λ2
i

)
= σ4

ϵ

([
tr
(
Σ

1
2 (XTX)−1Σ

1
2

)]2
+ 2 tr

(
Σ

1
2 (XTX)−1Σ(XTX)−1Σ

1
2

))
Thus

E(X,Y )Ex0

[
Z
(
f̂1(x0))− f(x0)

)4]
= 3σ4

ϵEX

(
Z

([
tr
(
Σ

1
2 (XTX)−1Σ

1
2

)]2
+ 2 tr

(
Σ

1
2 (XTX)−1Σ(XTX)−1Σ

1
2

)))

Recall that if Z = 1, then

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

<
n−0.4
1

p1
so tr

(
n1Σ

1
2

(
XTX

)−1
Σ

1
2

)
⩽

p1 + 1 by Lemma 3.4.8. Also,

Σ− 1
2

(
XTX

n1

)
Σ−1

(
XTX

n1

)
Σ− 1

2 − I =

(
Σ− 1

2

(
XTX

n1

)
Σ− 1

2 − I

)(
Σ− 1

2

(
XTX

n1

)
Σ− 1

2 + I

)
=

(
Σ− 1

2

(
XTX

n1

)
Σ− 1

2 − I

)(
Σ− 1

2

(
XTX

n1

)
Σ− 1

2 − I

)
+ 2

(
Σ− 1

2

(
XTX

n1

)
Σ− 1

2 − I

)

So
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∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ−1

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

⩽ p1

∥∥∥∥(Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

)∥∥∥∥2
∞

+ 2

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

⩽
n−0.8
1

p1
+ 2

n−0.4
1

p1

Therefore by Lemma 3.4.8, tr
(
n2
1Σ

1
2

(
XTX

)−1
Σ
(
XTX

)−1
Σ

1
2

)
⩽ p1 + 1 so

E(X,Y )Ex0

[(
f̂1(x0))− f(x0)

)4
Z

]
= o(n−1

1 )

Theorem 3.4.12. Assume the standard linear regression model assumptions that the rows in

data X and test data x0 are i.i.d. from Np1(0,Σ), and Y |X ∼ N(Xβ, σ2
ϵ ), where β is a p1×1

regression coefficient vector. Let the least square estimators f̂1(x) = xT β̂1 and f̂2(x) = xT β̂2,

where the ith element of β̂2: (β̂2)i = 0 for i > p2, (p2 < p1). Let α̂
∗ =

Â

Â+ B̂
where Â =

σ̂2
ϵ

(
p1
n1

+
p21 + p1

n2
1

)
, B̂ =

(
σ̂2
η − σ̂2

ϵ

)
+ σ̂2

η

(
p2
n2

+
p22 + p2

n2
2

)
, σ̂2

ϵ =
1

n1 − p1

n1∑
i=1

(yi − f̂1(xi))
2

and σ̂2
η =

1

n2 − p2

n∑
i=1+n1

(yi − f̂2(xi))
2. With fixed p1 and p2 and σ2

η − σ2
ϵ > 0, for sufficient

large n1 and n2 and n2 > n1, we have

Rplugin = E(X,Y )Ex0

[(
((1− α̂∗)f̂1(x0)) + α̂∗f̂2(x0))− f(x0)

)2
∧ Cn1∧n2

]
< R(0).

Proof. It is equivalent to show

E (R(α̂∗))−R(α∗) < R(0)−R(α∗).

where α∗ =
A

A+B
, where A = Ex0E(X,Y )

((
f̂1(x0)− f(x0)

)2
∧ Cn1

)
,

B = Ex0E(X21,Y2)

((
f̂2(x0)− f(x0)

)2
∧ Cn2

)
and Cn is a sequence of constants, bounded

below, satisfying Cn = o(n).

By Theorem 3.4.9 and Theorem 3.4.10, we have
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A = O(n1

−1)

B = (σ2
η − σ2

ϵ ) +O(n2
−1)

α∗ = O(n1
−1)

(3.22)

Therefore, the RHS is

R(0)−R(α∗) = (A+ o((n1 ∧ n2)
−2)− ((1− α∗)2A+ (α∗)2B + o((n1 ∧ n2)

−2)) (3.23)

= α∗
[
(2− α∗)A− α∗B

]
+ o((n1 ∧ n2)

−2)) = O(n−2
1 ). (3.24)

Next, consider the LHS, we first define an indicator variable as

Case 1

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

<
n−0.4
1

p1
and

∥∥∥∥Σ− 1
2

11

(
XT

21X21

n2

)
Σ

− 1
2

11 − I

∥∥∥∥
∞

<
n−0.4
2

p2
, de-

noted by Z = 1.

Case 2

∥∥∥∥Σ− 1
2

(
XTX

n1

)
Σ− 1

2 − I

∥∥∥∥
∞

⩾
n−0.4
1

p1
or

∥∥∥∥Σ− 1
2

11

(
XT

21X21

n2

)
Σ

− 1
2

11 − I

∥∥∥∥
∞

⩾
n−0.4
2

p2
, de-

noted by Z = 0.

The LHS is
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Rplugin −R(α∗)

= E(X,Y )Ex0

[(
((1− α̂∗)f̂1(x0)) + α̂∗f̂2(x0))− f(x0)

)2
∧ Cn1∧n2

]
− E(X,Y )Ex0

[(
((1− α∗)f̂1(x0)) + α∗f̂2(x0))− f(x0)

)2
∧ Cn1∧n2

]
= E(X,Y )Ex0

[(
((1− α̂∗)f̂1(x0)) + α̂∗f̂2(x0))− f(x0)

)2
Z

]
− E(X,Y )Ex0

[(
((1− α∗)f̂1(x0)) + α∗f̂2(x0))− f(x0)

)2
Z

]
+ o((n1 ∧ n2)

−2)

= E(X,Y )Ex0

[
(α̂∗ − α∗)

(
(α∗ + α̂∗ − 2)

(
f̂1(x0))− f(x0)

)2
+ 2(1− α∗ − α̂∗)

(
f̂1(x0)− f(x0)

)(
f̂2(x0)− f(x0)

)
+(α∗ + α̂∗)

(
f̂2(x0)− f(x0)

)2)
Z

]
+ o((n1 ∧ n2)

−2)

= 2E(X,Y )Ex0

[
(α̂∗ − α∗)

(
−
(
f̂1(x0))− f(x0)

)2
+
(
f̂1(x0)− f(x0)

)(
f̂2(x0)− f(x0)

)
+α∗

(
f̂2(x0)− f(x0)

)2)
Z

]
+ o(n−2

1 )

Thus, it is sufficient to show that

E(X,Y )Ex0

[
(α̂∗ − α∗)

((
f̂1(x0))− f(x0)

)2
Z

)]
= o(n−2

1 )

E(X,Y )Ex0

[
(α̂∗ − α∗)

((
f̂1(x0)− f(x0)

)(
f̂2(x0)− f(x0)

)
Z
)]

= o(n−2
1 )

E(X,Y )Ex0

[
(α̂∗ − α∗)

(
α∗
(
f̂2(x0)− f(x0)

)2)
Z

]
= o(n−2

1 )

The Cauchy-Schwartz inequality gives that E(AB) ⩽
√

E(A2)E(B2), so it is sufficient to

prove
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E(X,Y )Ex0

(
(α̂∗ − α∗)2

)
= O(n−3

1 ) (3.25)

E(X,Y )Ex0

[(
f̂1(x0))− f(x0)

)4
Z

]
= o(n−1

1 ) (3.26)

E(X,Y )Ex0

[
α∗2

(
f̂2(x0)− f(x0)

)4
Z

]
= o(n−1

1 ) (3.27)

E(X,Y )Ex0

[
(α̂∗ − α∗)

((
f̂1(x0)− f(x0)

)(
f̂2(x0)− f(x0)

)
Z
)]

= o(n−2
1 ) (3.28)

(3.25) is from Theorem 3.4.10; (3.26) is Lemma 3.4.11. (3.27) follows from the fact

that α∗ = O(n−1
1 ). For (3.28), because f̂1 and f̂2 are estimated on different data, they

are independent. Furthermore, since α̂∗ is estimated from the mean squared residuals of the

regression, and f̂1 and f̂2 are estimated from the mean of the regression, they are conditionally

independent given X. Therefore, for any X,

Ex0,Y |X

(
(α̂∗ − α∗)

(
f̂1(x0)− f(x0)

)(
f̂2(x0)− f(x0)

))
= Ex0,Y |X(α̂

∗ − α∗)Ex0,Y |X

(
f̂1(x0)− f(x0)

)
Ex0,Y |X

(
f̂2(x0)− f(x0)

)
Also, because f̂1 is an unbiased estimator, for any X, we have Ex0,Y |X

(
f̂1(x0)− f(x0)

)
=

0. Thus, we have

EX

(
ZEx0,Y |X(α̂

∗ − α∗)Ex0,Y |X

(
f̂1(x0)− f(x0)

)
Ex0,Y |X

(
f̂2(x0)− f(x0)

))
= 0

These asymptotic results showed that the model combination method in linear regression

models with the plug-in estimate for α gives more accurate prediction than the full data

model. More thorough comparisons will be needed to verify the model combination methods

for finite samples in both linear models and nonlinear models, missing at random and missing

not at random, which will be the content of next Chapter.



Chapter 4

Comparisons of Model Combination Methods and Multiple

Imputation Methods in Simulations and Real Data Analyses for

Two Blocks of Predictors

In this chapter we compare the model combination methods proposed in Chapter 3 with the

state-of-the-art multiple imputation method, and complete case approach for block missing

data with two blocks of predictors according to the predictive performance of the methods.

We simulate a range of scenarios for missing at random (MAR), including true models fol-

lowing linear regression models, logistic regression models and nonlinear regression models.

The details of the simulation design and results for these scenarios are included in Sec-

tion 4.1, Section 4.2 and Section 4.3 respectively. We also demonstrate the performance of

these methods for missing not at random (MNAR) in both regression and logistic regression

simulations in Section 4.4. Finally we compare the predictive performance of these methods

in two real data applications in Section 4.5.

4.1 Linear regression

We compare the performance of our method and other methods for dealing with missing

data on a simulation involving linear regression on multivariate Gaussian predictors with one

block of ten variables that are available in all samples, and another block of ten variables

that are available in only some samples. We study the effect of several different factors on

the performance of various methods: the level of correlation between predictors; the number

of true predictors in the missing block; and the number of complete and partial observations.

4.1.1 Simulation design

In order to simulate different levels of correlations between the predictor variables, we use

the following method to simulate the covariance matrix for a total of 20 predictor variables.

The covariance matrix is simulated from B = RTR, where R is a 20x20 upper triangular

44
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matrix. We fix the diagonal entries of R as 1 for the high correlation case; 15 for the

medium correlation case; and 30 for the low correlation case. We simulate the non-zero

off-diagonal entries of R as i.i.d. following a mixture of uniform distributions: Unif(−1, 1),

Unif(−10, 10), Unif(−0.5, 0.5) and Unif(10, 20) all with probability 1/4. We normalize B

though Σ = diag(B)−1/2Bdiag(B)−1/2 to have all ones on the diagonal.

Having generated a random covariance matrix Σ for each scenario of high, medium and

low correlations, we simulate the predictor matrix X with each row i.i.d. following a mul-

tivariate normal distribution with mean 0, and covariance matrix given by Σ. We first

simulate the complete X matrix, and later remove the observations to generate a block miss-

ing structure. We designate the first 10 predictors as the first block that are present in all

observations, and the last 10 predictors as the second block with some observations removed.

We study five scenarios for sample sizes (n1, n2), where n1 denotes the number of complete

observations and n2 denotes the number of partial observations: (A) n1 = 40, n2 = 60; (B)

n1 = 80, n2 = 20; (C) n1 = 40, n2 = 960; (D) n1 = 80, n2 = 920; (E) n1 = 200,

n2 = 800. The scenarios (A) and (B) are for small sample sizes with missing blocks relatively

large or small respectively. The scenarios (C) (D) and (E) are for larger samples with

partial observations dominant, which reflect more realistic cases for most of the real data

applications. These scenarios are illustrated in Figure 4.1.

We simulate the response variable y = xTβ+ ϵ with ϵ following a Gaussian distribution

and β given by one of the following three different sets of regression coefficients:

(I) β = (1, 1, 1, 1, 1, 0, · · · , 0) where the first 5 elements of β are all set to equal to one,

and the remaining 15 elements are all zero. In this case, the response is related only to the

first block of variables which are always present.

(II) β = (0, · · · , 0, 1, 1, 1, 1, 1), where the first 15 elements of β are all zero, only the last

5 elements of β are all set to equal to one. In this case, the response is related only to the

second block of variables with missing observations.

(III) β = (1, 1, 0, · · · , 0, 1, 1, 1), where the middle 15 elements of β are all zero. In this

case, the response is related to two variables that are always present from the first block and

three variables from the second block.

The random noise is ϵ ∼ N(0, σ2
ϵ In). We fix Signal-to-Noise ratio as SNR =

Var(Signal)

Var(Noise)
=

Var(xTβ)

Var(ϵ)
= 1, thus σ2

ϵ = Var(xTβ) = βT Var(x)β.

For each of these above 3 × 5 × 3 scenarios, we simulate 100 replicate data sets. For
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Figure 4.1: 5 data structure scenarios for the simulations: (A) and (B): 100 observations in
total with n1 = 40 and n1 = 80. (C), (D) and (E): 1000 observations in total with n1 = 40,
n1 = 80 and n1 = 200, respectively.
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each data set, we fit the following five models: (1) M0 fits models using all n = n1 + n2

observations with only the first block of predictors. The fitted regression coefficients have

the first 10 dimensions equal to the regression coefficients of this partial model and the

last 10 dimensions all equal to 0. (2) M1 fits models using the n1 full observations with

both blocks of variables, i.e. based on data (Y1, X1). (3) Mα(CV) fits models based on

the model combination method described in Section 3.3, using cross-validation to estimate

the combination parameter α. (4) Mα(plugin) fits models based on the model combination

method described in Section 3.1, using the plug-in method to estimate the combination

parameter α. (5) MI fits models based on the multiple imputation method described as

follows.

We apply MICE (Multivariate Imputation by Chained Equations) to do multiple impu-

tation in the simulation. MICE imputes incomplete multivariate data by chained equations.

The Bayesian linear regression methods as implemented in the MICE package in R is used

for imputation to create 20 imputation replicates for the missing data for each data set.

The quantities of interest in our problem are the regression coefficients β̂. For the ith

imputed replicate, we perform a standard linear regression to estimate the coefficient β̂
(i)
MI.

For the pooled estimate, we take the average β̂ave
MI =

β̂
(1)
MI + · · ·+ β̂

(20)
MI

20
as our overall estimate.

4.1.2 Performance assessment

We assess the performance of the fitted regression models using mean squared error (MSE)

for two different prediction scenarios. In the first scenario, we consider the complete case

prediction where the predictors are fully observed for future observations. In the second

scenario, we consider the incomplete case prediction where only the first block of variables

for the future observations are available.

For predictions on complete cases, the MSE is defined by MSE = E(Ŷ − f(X))2. For

the simulation, because we know the true distribution of x, instead of using a test data

set, we can directly calculate the MSE over the distribution. To make the notation clear,

the observed value, true value and prediction value are denoted by y, f(x) and ŷ = f̂(x)

respectively , where y = f(x) + ϵ, f(x) = xTβ and ŷ = xT β̂. Therefore, the MSE can be
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expressed as

Ex[(ŷ − f(x))]2 = Ex[(x
T β̂ − xTβ)2]

= (β̂ − β)TE(xxT )(β̂ − β)

= (β̂ − β)T Var(x)(β̂ − β)

where β̂ is the regression coefficient vector estimated from the data, β is the true coefficient

vector, and Var(x) is the covariance matrix used for the simulation. The MSEs can be easily

calculated from the simulation results for each scenario.

For predictions on incomplete cases, models M1, Mα(CV) and Mα(plugin) are all not

applicable, since these models all need the full predictor variables. The comparisons will be

focused on comparing the performance of modelM0 with the MI method. For the MI method,

a full predictor vector of dimension 20 will be fitted based on each of the 20 replicate imputed

training data sets, the mean of the 20 estimated coefficient vectors will be the final estimated

regression coefficient β̂MI . In principle, the predictions will be made also on the imputed

test data with the imputation model based on the training data. To make the assessment

comparible to other model results, we calculate the theoretical MSE as follows. From the

available full data, suppose the imputation model based on the multivariate regression of

X12 on X11 resulted in a coefficient matrix Â, then for each test case with available block of

variables x1, the imputed block (x̂2)
T = xT

1 Â. Thus the MSE can be calculated as:

Ex[(ŷ − f(x))2]

=Ex[((x
T
1 , x̂

T
2 )β̂MI − f(x))2]

=Ex[(x
T

[
I Â

0 0

]
β̂MI − xTβ)2]

=(β̂MI,inc − β)T Var(x)(β̂MI,inc − β)

where β̂MI,inc =

[
I Â

0 0

]
β̂MI .

For each scenario, we calculate the average RMSE and the associated SE over 100 repli-

cate data sets for all methods.
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4.1.3 Linear Regression Simulation Results

Table 4.1 and Table 4.2 show the average of RMSE and standard error (SE) over 100 replicate

data sets for complete case prediction and incomplete case prediction respectively. In order to

compare the performance of model combination methods (Mα(CV) and Mα(plugin)) versus

MI method, we conduct a one sample t-test on the RMSEs on the 100 replicate data sets to

compare Mα(CV) versus MI and Mα(plugin) versus MI.

From Table 4.1, our method has significantly smaller average RMSE than that of MI

in nearly all scenarios. For model scenario (I), the partial model has smaller RMSE. But

there is no significant difference between our method and the partial model. The model

combination method significantly outperforms MI in this case. Our method has not only

better RMSE, but also smaller SE than MI.

Another finding is that both the model combination method and MI perform better

when the variables are more correlated. This makes sense, because when the predictors are

correlated, the variables in the first block form strong surrogates for the true predictors, so

the blocks with missing data can produce better models than in the situations with lower

correlation. It might seem, intuitively that MI should show more improvement with higher

correlation, because this means that the imputed values are more accurate. However, the

higher accuracy of the imputed values also means that theM2 model (defined in Chapter 3 for

f̂2) is more accurate. Therefore, our method has similar improvement in the high correlation

case.

We also see that the difference between the methods gets smaller as the number of

complete cases increases. This makes sense, since with enough complete cases, our method,

MI and the complete-case model M1 will all converge to the true coefficients. On the other

hand, the number of incomplete observations causes a similar reduction in RMSE for our

method and MI, meaning that the difference between the methods’ performances is similar

in scenarios (A) and (C), and in scenarios (B) and (D).

The plug-in estimation and the cross validation estimation for α have comparable results

to each other under most scenarios. For a few large-sample scenarios with low correlation,

Mα(CV) performs significantly worse than Mα(plugin) and MI.

From Table 4.2, our model more consistently outperforms MI at prediction for incomplete

test data. Even when the number of complete cases gets larger, MI still underperforms. This

is because, in order to make predictions from incomplete data, MI must impute the missing
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variables, so the predictions depend on both the imputation model and the fitted model.

This involves estimating many more parameters, so leads to larger model variance.

Table 4.1: Theoretical RMSE and SE of the linear regression model on complete cases under
MAR for the partial model M0, the full model M1, the model combination method Mα

estimated by CV estimation and Plug-in estimation and the multiple imputation method
MI. The corresponding SEs are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(A) 0.739 2.336 0.957 0.857 1.414 1.431 1.992 1.314 1.190 1.404 1.392 2.514 1.405 1.277 1.734
(0.019) (0.055) (0.025) (0.019) (0.034) (0.010) (0.048) (0.023) (0.017) (0.036) (0.013) (0.061) (0.021) (0.015) (0.043)

(B) 0.744 1.299 1.141 1.095 1.094 1.432 1.139 1.017 0.969 1.003 1.409 1.462 1.244 1.163 1.302
(0.017) (0.023) (0.017) (0.018) (0.020) (0.009) (0.019) (0.016) (0.015) (0.017) (0.014) (0.028) (0.022) (0.021) (0.024)

(C) 0.226 2.230 0.382 0.223 1.086 1.226 2.053 1.140 1.017 1.204 1.084 2.621 1.118 0.998 1.418
(0.005) (0.059) (0.027) (0.005) (0.033) (0.001) (0.048) (0.018) (0.013) (0.026) (0.002) (0.062) (0.019) (0.008) (0.034)

(D) 0.226 1.272 0.312 0.226 0.764 1.228 1.127 0.894 0.838 0.863 1.086 1.507 0.963 0.881 1.002
(0.005) (0.024) (0.015) (0.005) (0.019) (0.001) (0.023) (0.014) (0.014) (0.018) (0.002) (0.030) (0.013) (0.011) (0.024)

(E) 0.225 0.731 0.268 0.230 0.495 1.228 0.641 0.563 0.592 0.556 1.085 0.827 0.670 0.720 0.644
(0.006) (0.013) (0.007) (0.006) (0.011) (0.001) (0.012) (0.010) (0.010) (0.012) (0.002) (0.015) (0.012) (0.013) (0.013)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(A) 0.865 2.648 1.179 1.051 1.793 1.859 2.213 1.608 1.469 1.777 1.807 3.104 1.794 1.636 2.292
(0.022) (0.056) (0.028) (0.021) (0.050) (0.012) (0.053) (0.025) (0.019) (0.040) (0.014) (0.073) (0.029) (0.019) (0.059)

(B) 0.864 1.505 1.337 1.272 1.294 1.845 1.279 1.162 1.109 1.203 1.799 1.630 1.431 1.358 1.461
(0.020) (0.028) (0.022) (0.020) (0.025) (0.010) (0.024) (0.021) (0.020) (0.020) (0.016) (0.031) (0.025) (0.024) (0.028)

(C) 0.261 2.817 0.516 0.257 1.582 1.636 2.265 1.420 1.282 1.628 1.482 3.068 1.468 1.318 1.981
(0.007) (0.069) (0.041) (0.006) (0.057) (0.001) (0.050) (0.021) (0.017) (0.036) (0.001) (0.067) (0.024) (0.013) (0.054)

(D) 0.271 1.534 0.355 0.274 0.915 1.639 1.274 1.056 0.993 1.153 1.482 1.675 1.204 1.112 1.215
(0.006) (0.031) (0.018) (0.005) (0.030) (0.001) (0.025) (0.024) (0.018) (0.001) (0.031) (0.017) (0.017) (0.014) (0.028)

(E) 0.258 0.872 0.319 0.269 0.555 1.635 0.709 0.670 0.648 0.829 1.482 0.952 0.838 0.791 0.835
(0.006) (0.013) (0.008) (0.006) (0.016) (0.001) (0.012) (0.011) (0.011) (0.011) (0.001) (0.015) (0.014) (0.013) (0.014)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(A) 0.814 2.555 1.119 0.993 1.747 2.186 2.269 1.714 1.588 1.856 2.016 2.850 1.881 1.721 2.222
(0.023) (0.059) (0.028) (0.023) (0.446) (0.010) (0.054) (0.029) (0.027) (0.039) (0.014) (0.064) (0.031) (0.022) (0.054)

(B) 0.824 1.453 1.269 1.201 1.331 2.188 1.303 1.230 1.176 1.234 2.010 1.681 1.529 1.440 1.585
(0.023) (0.025) (0.023) (0.022) (0.024) (0.012) (0.023) (0.020) (0.020) (0.023) (0.013) (0.030) (0.028) (0.024) (0.029)

(C) 0.241 2.654 0.465 0.240 1.535 1.959 2.428 1.586 1.466 1.780 1.713 2.861 1.623 1.443 2.021
(0.006) (0.070) (0.029) (0.006) (0.043) (0.001) (0.058) (0.027) (0.023) (0.043) (0.001) (0.063) (0.024) (0.017) (0.053)

(D) 0.257 1.509 0.331 0.257 0.948 1.956 1.284 1.132 1.066 1.067 1.711 1.662 1.260 1.187 1.244
(0.006) (0.026) (0.016) (0.006) (0.019) (0.001) (0.027) (0.020) (0.020) (0.023) (0.001) (0.030) (0.019) (0.018) (0.024)

(E) 0.244 0.839 0.296 0.252 0.600 1.958 0.762 0.722 0.700 0.661 1.711 0.966 0.883 0.848 0.780
(0.006) (0.014) (0.008) (0.006) (0.011) (0.001) (0.014) (0.014) (0.013) (0.012) (0.001) (0.015) (0.013) (0.013) (0.014)

Note: The underlined entry denotes the best performance for that particular setting, i.e. the
smallest value in that row. The red and blue colour indicate cases where the Mα model performs
significantly better and worse respectively than MI based on the one sample t-test.

4.2 Logistic regression

4.2.1 Simulation design

For Logistic regression, we use the same procedure to simulate the predictor matrices X as in

Section 4.1.1, but we are more focused on large sample cases, thus we only simulate scenarios
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Table 4.2: Theoretical RMSE and SE of the linear regression model on incomplete cases
under MAR for the partial model M0 (the model combination method Mα is equivalent to
the partial model) and the multiple imputation method MI. The corresponding SEs are
given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0(Mα) MI M0(Mα) MI M0(Mα) MI

(A) 0.777(0.019) 0.981(0.027) 1.431(0.010) 2.275(0.027) 1.392(0.013) 2.100(0.027)

(B) 0.707(0.017) 0.726(0.018) 1.432(0.009) 2.175(0.019) 1.409(0.014) 2.041(0.025)

(C) 0.226(0.005) 0.643(0.021) 1.226(0.001) 2.167(0.018) 1.084(0.002) 1.930(0.022)

(D) 0.226(0.005) 0.405(0.014) 1.228(0.001) 2.091(0.013) 1.086(0.002) 1.847(0.012)

(E) 0.222(0.006) 0.286(0.007) 1.228(0.001) 2.077(0.008) 1.085(0.002) 1.822(0.008)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0(Mα) MI M0(Mα) MI M0(Mα) MI

(A) 0.865(0.022) 1.006(0.027) 1.859(0.012) 2.495(0.026) 1.807(0.014) 2.337(0.032)

(B) 0.875(0.020) 0.897(0.021) 1.845(0.010) 2.358(0.022) 1.799(0.016) 2.248(0.027)

(C) 0.267(0.007) 0.666(0.023) 1.636(0.001) 2.361(0.023) 1.482(0.001) 2.164(0.025)

(D) 0.257(0.006) 0.339(0.008) 1.639(0.001) 2.281(0.011) 1.482(0.001) 2.020(0.014)

(E) 0.256(0.006) 0.278(0.007) 1.635(0.001) 2.268(0.007) 1.482(0.001) 1.993(0.008)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0(Mα) MI M0(Mα) MI M0(Mα) MI

(A) 0.866(0.023) 1.021(0.025) 2.186(0.010) 2.664(0.028) 2.016(0.014) 2.444(0.030)

(B) 0.819(0.023) 0.829(0.022) 2.188(0.012) 2.521(0.019) 2.010(0.013) 2.257(0.023)

(C) 0.248(0.006) 0.630(0.023) 1.959(0.001) 2.470(0.018) 1.713(0.001) 2.197(0.020)

(D) 0.256(0.006) 0.342(0.009) 1.956(0.001) 2.363(0.011) 1.711(0.001) 2.058(0.011)

(E) 0.246(0.006) 0.255(0.006) 1.958(0.001) 2.323(0.007) 1.711(0.001) 2.016(0.007)

Note: The underlined entry denotes the best performance for that particular setting, i.e. the
smallest value on that row. The red and blue colour indicate cases where the Mα model performs
significantly better and worse respectively than MI based on the one sample t-test.

(C), (D) and (E) in this simulation. We generate the response variable y following the logistic

model y|x ∼ Bernoulli(p(x)), where logit(p(x)) = xTβ. We use the same β setting as for

linear regression and there is no intercept (β0 = 0). For scenario (I), the first 5 elements of

the coefficient vector β are all set equal to one, and the remaining 15 elements are all zero.

For scenario (II), the first 15 elements of β are all zero, and the last 5 elements of β are

all set equal to one. For scenario (III), the middle 15 elements of β are all zero, while the

first two and last three elements of β are set to one. Therefore, xTβ also follows a Gaussian
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distribution with mean 0, thus each of the two classes contains around 50% of observations.

We calculate the results for model combination methods based on the plug-in method from

Section 3.2 and the GCV method from Section 3.3.

We assess the performance using negative log likelihood (NLL) as a loss function on the

test data. We simulate 1000 complete test observations for calculating test NLL for each

simulation. For incomplete case prediction, we evaluate test NLL using the predictions from

only the first block of predictors on the same test data set.

4.2.2 Results

Table 4.3 shows the average test data NLL values over 100 replicates and the standard error

of the mean NLL.

For complete case predictions (Table 4.3), the model combination method has a smaller

test NLL than any other method under most cases for model scenarios (II) and (III). As

expected, M0 has smaller NLL for model scenario (I). There is no significant difference

between the model combination method and the partial model in this case. Note that in real

applications, unless we know a priori that the second block predictors are not important,

we usually include them in the model. In terms of standard error, the variance of the model

combination method is always between that of the partial model M0 and the full model M1,

as we expected. This shows that the model combination method is practical and able to

produce better and robust results.

The model combination method Mα(CV) has significantly smaller NLL than that of MI

under most cases for model scenarios (II) and (III). Mα(plugin) gives better results when y

is not directly related to the missing predictors and worse results when y is directly related

to the missing predictors, even significantly worse than MI for model scenarios (II). While

Mα(CV) shows relatively better results in three cases, using LOOCV can be very time

consuming and sometimes unstable. In logistic simulation, we use GCV instead of LOOCV

as mentioned in Section 3.3 to obtain more stable and efficient results.

The difference between the model combination method and MI gets larger as the number

of complete cases increases. Our method converges to the true coefficient vector faster than

MI (scenario (E)).

For the incomplete case, the model combination method (which is equivalent to the

partial model) achieves smaller test NLL and SE, as shown in Table 4.4. This is particularly
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important for real-world data sets, where predictions will be made on a large number of

incomplete cases. This also shows that the model combination method is more flexible in

both complete and incomplete cases.

In summary, the overall performance of the model combination method is more stable

and accurate on block missing data for both linear regression and logistic regression.

Table 4.3: Test NLL and SE of the logistic regression model on complete cases under MAR
for the partial model M0, the full model M1, the combined model Mα estimated by CV esti-
mation and Plug-in estimation and the multiple imputation method MI. The corresponding
SE are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(C) 430.708 10376.635 439.196 431.296 432.414 631.329 11915.137 626.928 631.831 625.987 523.918 10693.76 522.863 524.106 520.805
(1.844) (240.374) (2.444) (1.866) (1.884) (1.212) (255.8) (2.338) (1.231) (1.271) (1.646) (213.984) (1.97) (1.646) (1.712)

(D) 430.07 3448.811 434.332 430.396 430.635 630.654 1486.93 589.675 631.238 615.733 523.784 1932.907 516.868 524.29 516.898
(1.685) (399.684) (2.214) (1.696) (1.714) (1.205) (220.563) (2.512) (1.211) (1.317) (1.529) (283.406) (1.704) (1.598) (1.582)

(E) 429.895 506.632 433.014 433.839 431.233 629.252 573.369 536.595 538.591 588.923 525.846 541.266 494.536 496.886 506.473
(1.501) (4.385) (1.548) (1.552) (1.542) (1.27) (3.838) (2.172) (2.291) (1.446) (1.916) (5.57) (2.567) (2.589) (1.962)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(C) 416.481 10162.391 422.284 417.085 417.424 641.656 11646.389 633.399 641.85 635.628 530.73 10687.321 526.95 530.901 528.316
(2.052) (200.133) (2.497) (2.041) (2.075) (1.173) (267.903) (2.292) (1.169) (1.279) (1.9) (241.41) (2.23) (1.925) (1.923)

(D) 421.227 3116.709 424.368 421.27 422.135 643.845 1661.215 596.299 644.467 627.783 534.172 1965.506 525.052 530.039 527.741
(1.86) (374.096) (1.996) (1.67) (1.891) (1.176) (259.559) (3.049) (1.18) (1.358) (1.551) (289.517) (1.761) (1.564) (1.587)

(E) 419.684 499.332 422.768 423.549 420.933 641.905 570.689 536.227 538.659 599.624 528.025 539.56 493.259 494.869 510.287
(1.846) (4.759) (1.951) (1.956) (1.848) (1.13) (4.141) (2.235) (2.173) (1.165) (1.783) (4.294) (2.337) (2.358) (1.894)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(C) 418.52 10081.796 427.478 419.097 419.292 673.717 11165.787 653.193 673.968 667.4 560.895 11178.427 545.353 561.083 558.549
(1.608) (241.096) (2.425) (1.594) (1.609) (0.726) (205.895) (3.036) (0.733) (0.954) (1.397) (212.121) (2.089) (1.401) (1.413)

(D) 419.032 2817.976 425.421 419.711 419.905 673.438 2057.823 596.867 673.795 654.302 558.948 2013.118 542.098 559.458 548.735
(1.859) (350.312) (3.43) (1.865) (1.895) (0.923) (296.214) (2.724) (0.906) (1.032) (1.579) (282.178) (2.803) (1.615) (1.606)

(E) 423.473 501.327 426.545 427.523 425.232 674.232 542.47 514.772 517.87 618.168 559.583 530.501 496.208 498.698 530.276
(1.741) (4.556) (1.876) (1.969) (1.782) (0.887) (4.014) (2.236) (2.21) (1.017) (1.337) (4.122) (2.077) (2.227) (1.403)

Note: The underlined entry denotes the best performance for that particular setting, i.e. the
smallest value on that row. The red and blue colour indicate cases where the Mα model performs
significantly better and worse respectively than MI based on the one sample t-test.

4.3 Non-linear target function

4.3.1 Simulation design

We now examine the performance of different methods where there is a non-linear relation

between the predictors and the response variable. We focus on large sample cases (D) and

(E) in this simulation. We generate two types of predictor variables. First simulate predictor

matrices X with multivariate Gaussian distribution using the same procedure as described

in Section 4.1.1.
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Table 4.4: Test NLL and SE of the logistic regression model on incomplete cases under
MAR for the partial model M0 (the model combination method Mα is equivalent to the
partial model) and the multiple imputation method MI. The corresponding SE are given
in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0(Mα) MI M0(Mα) MI M0(Mα) MI

(C) 430.708(1.844) 438.382(2.414) 631.329(1.212) 640.701(2.334) 523.918(1.646) 533.668(2.640)

(D) 430.07(1.685) 434.235(2.384) 630.654(1.205) 638.794(2.967) 523.784(1.529) 532.527(2.923)

(E) 429.895(1.501) 432.52(1.513) 629.252(1.27) 638.596(1.451) 525.846(1.916) 533.467(2.406)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0(Mα) MI M0(Mα) MI M0(Mα) MI

(C) 416.481(2.052) 418.35(2.061) 641.656(1.173) 643.603(1.148) 530.73(1.9) 532.865(1.928)

(D) 421.227(1.86) 422.709(1.892) 643.845(1.176) 646.281(1.18) 534.172(1.551) 535.475(1.565)

(E) 419.684(1.846) 421.344(1.907) 641.905(1.13) 648.598(1.302) 528.025(1.783) 532.342(1.852)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0(Mα) MI M0(Mα) MI M0(Mα) MI

(C) 418.52(1.608) 420.024(1.609) 673.717(0.726) 675.358(0.761) 560.895(1.397) 562.495(1.44)

(D) 419.032(1.859) 419.773(1.883) 673.438(0.923) 675.106(0.954) 558.948(1.579) 560.542(1.612)

(E) 423.473(1.741) 425.068(1.752) 674.232(0.887) 682.067(1.094) 559.583(1.337) 564.528(1.39)

Note: The underlined entry denotes the best performance for that particular setting, i.e. the
smallest value on that row. The red and blue colour indicate cases where the Mα model performs
significantly better and worse respectively than MI based on the one sample t-test.

In practice we seldom have normally distributed data, so it is necessary to examine

the non-linear model performances under non-normal predictors. To generate dependent X

predictors with non-normal distributions, we use the methods from the previous simulations

to generate multivariate normal predictors, then perform a univariate transformation on each

predictor to make its marginal distribution chi-squared with one degree of freedom. That is,

we use the following procedure to generate the predictor matrix X ′′.

• Step1. Generate X ∼ N(0,Σ).

• Step2. Let X ′
i = Fi(Xi) ∼ Unif([0, 1]), where Fi is the marginal distribution of function

Xi. That is, Fi is the c.d.f. of a normal distribution.

• Step3. Let X ′′
i = F−1

χ2
1
(X ′

i) ∼ χ2
1, where F−1

χ2
1

is quantile function of a chi-squared

distribution with one degree of freedom.
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Figure 4.2: Neural network model with one layer

We design the neural network model as non-linear target function shown in Figure 4.2,

yi = f(xi) + ϵi =
10∑
q=1

ωqziq + ϵi =
10∑
q=1

ωqσ(x
T
i βq) + ϵi where i = 1, ..., n and we set q = 10

for the additional layer ziq = σ(xT
i βq) with σ(xT

i βq) =
1

1 + e−(xT
i βq)

. β is a 10 × 20 matrix

with entries generated i.i.d. from a random normal distribution with mean 0 and standard

deviation 5. For scenario (I), the last ten values of every βq are set to zero. For scenario (II),

the first ten values of every βq are set to zero. ω is a 10× 1 vector where all 10 elements are

set equal to one.

We perform simulations with three different Signal-to-Noise-Ratios (SNR). To make the

results more comparable across these scenarios, we fix the irreducible error Var(ϵi) = 1 for

all scenarios and rescale the conditional mean. That is, we set yi = c · f(xi) + ϵi , so the

SNR is Var(c · f(xi))= c2 Var(f(xi)). In each scenario, we set c to achieve the desired SNR

(0.5, 1 or 2). We compute Var(f(xi)) for each scenario by simulating 10000 observations xi,

and computing the variance of the resulting signal f(xi).

In summary, we use the following steps to generate data. For each SNR scenario:

• Step1. Generate 10000 predictors X ∼ N(0,Σ) or χ2
1.

• Step2. Calculate truth Y ∗ = f(X) using X from Step1, and then estimate signal

variance by V ar(Y ∗).

• Step3. Calculate c =
√

SNR/V ar(Y ∗) for SNR = 0.5/1/2.
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For each replicate:

• Step4. Re-generate 1000 predictors X by the same procedure in the Step1.

• Step5. Generate noisy response Y by y = c · f(x) + ϵ with ϵ ∼iid N(0, 1) where

f(x) =
10∑
q=1

ωqσ(x
Tβq).

• Step6. Mask values in X to make data consistent with specific missing patterns.

We use random forest for fitting all models M0, M1, M2, Mα and MI. We use the

“tuning rf()” function from the sklean package, to perform a grid search to select the

tuning parameters for RF in this simulation. For a set of data by a given scenario, the 5-fold

CV is used to search for the tuning parameters with the best score. More specifically, we fix

the number of trees = 1000 (more trees), the fraction of features to consider when looking

for the best split = 0.2, minimum leaf size = 10, and 5-fold CV is used to select the best

“maximum depth” (maximum number of levels in each decision tree) parameter from the

grid (6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28) for each scenario.

We calculate the results for model combination methods based on 5 fold CV.

We assess the performance using average MSE and SE over 100 replicates test data

sets. For each scenario, we simulate 1000 complete test observations. For incomplete cases

prediction, we evaluate average test MSE using the predictions from only the first block of

predictors on the same test data set.

4.3.2 Results

The results for the normal predictor neural network model simulation are given in Tables

4.5, 4.6 and 4.7. The model combination method performs significantly better than MI when

SNR=2 for model scenario (II). There are no significant differences between the performance

of the model combination method and MI for the majority of scenarios for SNR=0.5 and

1. However, the model combination method outperforms MI in a significant majority of

scenarios, even if the individual scenarios are not significant based on 100 replicates. When

there is stronger signal, the model combination performs significantly better than MI for

more cases. For the non-normal χ2
1 predictor neural network model simulations in Table

4.8, the model combination method performs significantly better than MI in most scenarios
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under strong SNR. Since the imputation could be biased if the predictors do not follow a

multivariate normal distribution, the MI performs worse in this case.

Table 4.5: Test MSE and SE of neural network non-linear model with normal predictors,
SNR = 0.5 on complete cases under MAR for the partial model M0, the full model M1, the
model combination methodMα and the multiple imputation methodMI. The corresponding
SE are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.101(0.049) 1.199(0.051) 1.102(0.049) 1.113(0.049) 1.153(0.052) 1.083(0.05) 1.153(0.052) 1.125(0.052) 1.094(0.05) 1.163(0.053) 1.086(0.05) 1.121(0.052)

(E) 1.155( 0.049) 1.228(0.053) 1.157( 0.049) 1.168(0.05) 1.307(0.06) 1.218(0.054) 1.218(0.055) 1.28(0.058) 1.138(0.05) 1.190(0.052) 1.13(0.049) 1.162(0.05)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.182(0.054) 1.333(0.058) 1.186(0.054) 1.214(0.054) 1.168(0.05) 1.127(0.048) 1.141(0.049) 1.168(0.05) 1.221(0.053) 1.237(0.055) 1.221(0.054) 1.263(0.055)

(E) 1.073(0.046) 1.178(0.05) 1.078(0.046) 1.099(0.047) 1.239(0.055) 1.15(0.051) 1.141(0.05) 1.139(0.051) 1.226(0.059) 1.196(0.057) 1.208(0.058) 1.203(0.058)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.125(0.052) 1.34(0.058) 1.125(0.052) 1.213(0.054) 1.393(0.061) 1.337(0.058) 1.333(0.058) 1.348(0.059) 1.286(0.054) 1.282(0.052) 1.259(0.052) 1.26(0.052)

(E) 1.065(0.05) 1.142(0.051) 1.067(0.049) 1.078(0.05) 1.382(0.06) 1.117(0.05) 1.117(0.05) 1.192(0.054) 1.230(0.054) 1.236(0.053) 1.201(0.052) 1.203(0.052)

Note: The underlined entry denotes the best performance for that particular setting. The red
and blue colours indicate cases where the Mα model performs significantly better and worse
respectively than MI based on the one sample t-test.

Table 4.6: Test MSE and SE of neural network non-linear model with normal predictors,
SNR = 1 on complete cases under MAR for the partial model M0, the full model M1, the
model combination methodMα and the multiple imputation methodMI. The corresponding
SE are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.07(0.045) 1.213(0.051) 1.071(0.045) 1.11(0.048) 1.473(0.06) 1.582(0.065) 1.47(0.059) 1.472(0.059) 1.097(0.048) 1.32(0.06) 1.096(0.049) 1.128(0.051)

(E) 1.225(0.055) 1.347(0.062) 1.225(0.055) 1.301(0.059) 1.212(0.058) 1.086(0.051) 1.069(0.051) 1.139(0.056) 1.190(0.053) 1.183(0.054) 1.190(0.053) 1.162(0.052)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.201(0.054) 1.419(0.061) 1.213(0.054) 1.337(0.058) 1.322(0.059) 1.237(0.055) 1.346(0.058) 1.248(0.056) 1.613(0.066) 1.258(0.052) 1.258(0.052) 1.405(0.057)

(E) 1.164(0.051) 1.362(0.057) 1.165(0.051) 1.256(0.054) 1.37(0.057) 1.279(0.052) 1.276(0.052) 1.341(0.056) 1.453(0.062) 1.3(0.056) 1.299(0.056) 1.312(0.056)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.198(0.05) 1.511(0.063) 1.209(0.05) 1.387(0.058) 1.62(0.067) 1.404(0.058) 1.404(0.058) 1.464(0.061) 1.51(0.068) 1.512(0.066) 1.51(0.068) 1.45(0.064)

(E) 1.231(0.054) 1.424(0.063) 1.232(0.054) 1.374(0.061) 1.834(0.08) 1.404(0.061) 1.404(0.061) 1.511(0.068) 1.51(0.066) 1.367(0.063) 1.373(0.062) 1.388(0.062)

Note: The underlined entry denotes the best performance for that particular setting. The red
and blue colours indicate cases where the Mα model performs significantly better and worse
respectively than MI based on the one sample t-test.
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Table 4.7: Test MSE and SE of neural network non-linear model with normal predictors,
SNR = 2 on complete cases under MAR for the partial model M0, the full model M1, the
model combination methodMα and the multiple imputation methodMI. The corresponding
SE are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.521(0.065) 1.86(0.077) 1.543(0.066) 1.902(0.079) 1.731(0.079) 1.955(0.082) 1.715(0.078) 1.848(0.085) 1.474(0.066) 1.484(0.067) 1.438(0.065) 1.738(0.077)

(E) 1.125(0.055) 1.277(0.059) 1.154(0.054) 1.17(0.054) 2.34(0.107) 2.11(0.094) 2.106(0.095) 2.211(0.098) 1.298(0.063) 1.358(0.066) 1.256(0.061) 1.3(0.063)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.221(0.057) 1.742(0.075) 1.256(0.058) 1.365(0.062) 2.414(0.102) 2.195(0.096) 2.155(0.093) 2.191(0.093) 2.48(0.104) 2.413(0.1) 2.311(0.096) 2.191(0.096)

(E) 1.321(0.058) 1.443(0.063) 1.324(0.057) 1.473(0.065) 2.067(0.089) 1.652(0.07) 1.662(0.07) 1.746(0.074) 2.285(0.097) 1.889(0.076) 1.901(0.077) 1.97(0.082)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 2.012(0.093) 2.248(0.104) 2.044(0.093) 2.31(0.108) 3.0(0.118) 2.24(0.092) 2.24(0.092) 2.589(0.102) 1.897(0.079) 2.555(0.099) 1.909(0.078) 2.027(0.081)

(E) 1.479(0.061) 1.922(0.078) 1.479(0.061) 1.533(0.063) 3.839(0.151) 2.291(0.091) 2.291(0.091) 2.727(0.109) 2.419(0.109) 2.272(0.094) 2.253(0.099) 2.209(0.096)

Note: The underlined entry denotes the best performance for that particular setting. The red
and blue colours indicate cases where the Mα model performs significantly better and worse
respectively than MI based on the one sample t-test.

Table 4.8: Test MSE and SE of neural network non-linear model with χ2
1 predictors, SNR

= 2 on complete cases under MAR for the partial model M0, the full model M1, the model
combination method Mα and the multiple imputation method MI. The corresponding SE
are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 1.741(0.089) 2.658(0.016) 1.774(0.009) 2.428(0.015) 3.0(0.02) 3.005(0.017) 2.928(0.016) 2.978(0.017) 2.984(0.041) 3.376(0.043) 2.874(0.041) 3.013(0.042)

(E) 1.613(0.008) 2.065(0.011) 1.633(0.008) 1.855(0.01) 2.87(0.016) 2.207(0.011) 2.207(0.011) 2.477(0.013) 3.168(0.043) 2.933(0.034) 2.872(0.035) 2.915(0.037)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 2.17(0.012) 3.048(0.019) 2.267(0.014) 2.81(0.018) 3.115(0.019) 2.703(0.015) 2.68(0.017) 2.876(0.017) 2.95(0.039) 3.245(0.036) 2.808(0.038) 3.074(0.038)

(E) 1.898(0.011) 2.463(0.017) 1.948(0.012) 2.35(0.016) 2.491(0.015) 2.2(0.014) 2.2(0.014) 2.368(0.015) 3.071(0.051) 3.392(0.058) 3.095(0.052) 3.133(0.053)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα MI M0 M1 Mα MI M0 M1 Mα MI

(D) 2.351(0.02) 3.512(0.031) 2.411(0.02) 3.508(0.031) 3.66(0.026) 3.075(0.02) 3.075(0.02) 3.189(0.021) 3.498(0.076) 3.661(0.079) 3.49(0.077) 3.716(0.079)

(E) 2.308(0.016) 3.16(0.024) 2.409(0.017) 3.186(0.022) 3.539(0.022) 2.676(0.017) 2.676(0.017) 2.879(0.018) 4.01(0.075) 3.828(0.072) 3.745(0.073) 3.753(0.064)

Note: The underlined entry denotes the best performance for that particular setting. The red
and blue colours indicate cases where the Mα model performs significantly better and worse
respectively than MI based on the one sample t-test.

4.4 Simulations for Missing Not at Random (MNAR)

4.4.1 Simulation design

One of the assumptions behind our method is that the data are missing at random (MAR).

However, data which are missing not at random (MNAR) are very common, so it is important

to see how robust our method is to this assumption violation. We use the same settings as for
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the linear regression and logistic regression simulations above. However, instead of randomly

selecting a certain number of observations that are missing the second block of predictors,

we randomly select whether the second block is missing with probability depending on the

response variable Y. In logistic regression, we set 60% missing when Y= yes and 40% missing

when Y=no. In linear regression, we partition the Y value into 2 parts: values larger than

the median; and values less than the median, and setting 60% missing in the top half and

40% missing in the bottom half. We still use average theoretical RMSE for linear regression

and average test NLL for logistic regression over 100 replicate data sets. The sizes of the

test data are all 1000.

4.4.2 Results

The simulation results show that the model combination method under MNAR for both

linear and logistic regressions result in similar outcomes as in the provided by MAR case.

Table 4.9 shows the theoretical RMSE and SE of linear prediction on complete cases under

MNAR. The model combination method has significantly smaller average RMSE than that

of MI in nearly all scenarios. The model combination method performs significantly worse

than MI only when the variables are less correlated in large sample scenario (E) and model

scenarios (II) and (III). Table 4.10 shows the test NLL and SE of logistic prediction on

complete cases under MNAR. The model combination method Mα(CV ) has significantly

smaller NLL than that of MI in most cases for model scenarios (II) and (III). As expected,

M0 has smaller NLL for model scenario (I). There is no significant difference between the

model combination method and the partial model or the model combination method and

the MI method in this case. Therefore, we conclude that the model combination method is

still applicable under MNAR.

In summary, given that we can’t tell whether the missing data are MAR or MNAR,

when there are over 50% cases with large block of missing, we recommend using the model

combination method.
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Table 4.9: Theoretical RMSE and SE of the linear regression model on complete cases under
MNAR for the partial model M0, the full model M1, the combined model Mα estimated
by CV estimation and Plug-in estimation, the multiple imputation method MI. The corre-
sponding SE are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(A) 0.757 1.998 1.051 0.916 1.384 1.434 1.786 1.314 1.222 1.385 1.367 2.434 1.405 1.259 1.732
(0.016) (0.047) (0.025) (0.015) (0.033) (0.009) (0.036) (0.023) (0.016) (0.027) (0.014) (0.062) (0.021) (0.017) (0.042)

(B) 0.764 1.242 1.188 1.110 1.121 1.429 1.068 1.022 0.986 0.984 1.426 1.443 1.217 1.160 1.330
(0.018) (0.023) (0.020) (0.017) (0.020) (0.009) (0.020) (0.017) (0.017) (0.021) (0.015) (0.031) (0.025) (0.022) (0.031)

(C) 0.222 2.413 1.097 0.245 1.062 1.228 2.195 1.254 0.997 1.220 1.086 2.886 1.401 0.966 1.415
(0.005) (0.052) (0.005) (0.022) (0.033) (0.001) (0.055) (0.041) (0.012) (0.027) (0.002) (0.060) (0.046) (0.010) (0.034)

(D) 0.224 1.289 0.737 0.274 0.726 1.227 1.175 0.983 0.812 0.830 1.090 1.546 1.192 0.867 0.992
(0.006) (0.024) (0.022) (0.006) (0.019) (0.001) (0.023) (0.020) (0.014) (0.019) (0.002) (0.031) 3(0.027) (0.011) (0.023)

(E) 0.221 0.716 0.452 0.366 0.493 1.227 0.633 0.610 0.586 0.573 1.086 0.847 0.779 0.705 0.693
(0.006) (0.013) (0.012) (0.005) (0.012) (0.001) (0.012) (0.012) (0.012) (0.010) (0.02) (0.015) (0.014) (0.011) (0.013)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(A) 0.857 2.407 1.494 1.064 1.808 1.847 2.014 1.602 1.491 1.764 1.812 2.614 1.763 1.572 2.082
(0.020) (0.058) (0.034) (0.019) (0.045) (0.011) (0.046) (0.027) (0.021) (0.043) (0.017) (0.059) (0.035) (0.024) (0.051)

(B) 0.889 1.460 1.301 1.223 1.299 1.844 1.203 1.202 1.144 1.245 1.794 1.615 1.460 1.409 1.549
(0.019) (0.024) (0.020) (0.019) (0.023) (0.010) (0.021) (0.019) (0.019) (0.022) (0.015) (0.026) (0.022) (0.020) (0.029)

(C) 0.258 2.893 1.380 0.289 1.432 1.638 2.329 1.546 1.234 1.515 1.482 3.173 1.957 1.295 1.958
(0.006) (0.065) (0.047) (0.006) (0.042) (0.001) (0.045) (0.037) (0.018) (0.032) (0.002) (0.056) (0.048) (0.013) (0.060)

(D) 0.261 1.569 0.652 0.315 0.852 1.639 1.286 1.124 0.972 1.140 1.484 1.745 1.105 1.070 1.167
(0.006) (0.027) (0.024) (0.006) (0.026) (0.001) (0.026) (0.024) (0.017) (0.023) (0.002) (0.028) (0.024) (0.014) (0.027)

(E) 0.258 0.848 0.572 0.431 0.572 1.637 0.703 0.687 0.670 0.842 1.482 0.939 0.886 0.828 0.856
(0.007) (0.014) (0.012) (0.007) (0.008) (0.001) (0.013) (0.012) (0.012) (0.013) (0.001) (0.015) (0.013) (0.011) (0.018)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(A) 0.852 2.378 1.126 0.977 1.805 2.161 2.215 1.791 1.682 1.979 2.020 2.595 1.905 1.737 2.212
(0.017) (0.056) (0.034) (0.016) (0.045) (0.011) (0.044) (0.028) (0.024) (0.039) (0.015) (0.050) (0.031) (0.023) (0.045)

(B) 0.815 1.428 1.271 1.283 1.374 2.171 1.237 1.279 1.203 1.258 2.001 1.594 1.502 1.448 1.572
(0.019) (0.026) (0.020) (0.018) (0.024) (0.010) (0.022) (0.021) (0.022) (0.023) (0.011) (0.027) (0.022) (0.021) (0.029)

(C) 0.248 2.834 1.311 0.271 1.476 1.960 2.491 1.574 1.420 1.655 1.711 3.280 1.855 1.423 1.990
(0.006) (0.064) (0.059) (0.006) (0.047) (0.001) (0.051) (0.040) (0.020) (0.036) (0.001) (0.072) (0.052) (0.017) (0.048)

(D) 0.256 1.541 1.019 0.309 0.941 1.960 1.346 1.097 1.043 1.026 1.710 1.672 1.191 1.139 1.170
(0.006) (0.025) (0.024) (0.006) (0.022) (0.001) (0.024) (0.023) (0.019) (0.022) (0.001) (0.030) (0.028) (0.017) (0.026)

(E) 0.246 0.832 0.652 0.399 0.633 1.958 0.730 0.723 0.710 0.657 1.713 0.896 0.859 0.821 0.763
(0.005) (0.014) (0.012) (0.005) (0.014) (0.001) (0.013) (0.012) (0.012) (0.011) (0.001) (0.016) (0.015) (0.014) (0.013)

Note: The underlined entry denotes the best performance for that particular setting. The red
and blue colours indicate cases where the Mα model performs significantly better and worse
respectively than MI based on the one sample t-test.

4.5 Real data Application

4.5.1 Public school data

This application is an example of how the blockwise missing problem can occur naturally

when integrating data from multiple resources. In New York State, the grades 3-8 mathemat-

ics assessments measure the higher learning standards and reflect students’ progress toward

college and career readiness. We build a model to predict the average Math Score for a school

from its demographic and school survey data, shown in Figure 4.3. The mean scale Math
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Table 4.10: Test NLL and SE of the logistic regression model on complete cases under MNAR
for the partial model M0, the full model M1, the combined model Mα estimated by CV
estimation and Plug-in estimation, the multiple imputation method MI. The corresponding
SE are given in parentheses.

High correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(C) 431.101 9725.985 436.115 431.35 431.998 630.438 11828.015 626.349 628.39 624.693 522.055 10854.348 523.587 522.192 519.478
(1.756) (253.274) (2.223) (1.753) (1.79) (1.215) (245.236) (2.160) (1.473) (1.26) (1.457) (203.676) (1.767) (1.475) (1.506)

(D) 430.092 3229.793 433.38 432.115 431.039 628.78 1786.443 587.150 623.771 614.39 520.905 2340.815 516.483 520.942 514.029
(1.877) (401.059) (2.042) (1.963) (1.92) (1.324) (263.344) (2.682) (1.955) (1.372) (1.554) (309.124) (1.823) (1.624) (1.589)

(E) 431.701 524.821 437.301 438.662 433.046 629.149 584.614 540.005 626.119 590.951 521.875 541.643 489.755 521.235 502.669

(1.728) (3.856) (1.734) (2.036) (1.726) (1.168) (3.916) (2.115) (1.791) (1.243) (1.542) (4.271) (1.965) (1.829) (1.513)

Medium correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(C) 420.968 10130.977 428.4489 421.307 422.012 640.929 11569.196 633.281 638.844 634.847 527.408 10849.455 527.053 527.008 524.417
(1.478) (192.461) 9(2.21) (1.485) (1.513) (0.918) (223.227) (2.317) (1.677) (1.15) (1.788) (197.553) (2.086) (1.843) (1.907)

(D) 418.502 2671.105 424.445 419.551 419.693 642.169 1976.365 594.055 637.938 627.171 531.009 2507.309 523.706 530.566 524.246
(1.473) (326.686) (2.945) (1.54) (1.509) (1.074) (299.942) (2.587) (1.641) (1.25) (1.624) (348.096) (1.873) (1.721) (1.686)

(E) 420.285 510.549 425.797 429.554 421.865 642.44 581.612 538.921 637.849 600.766 526.916 548.385 493.572 526.186 509.731

(1.951) (4.482) (2.145) (2.559) (2.008) (1.052) (4.416) (2.333) (1.804) (1.132) (1.452) (3.939) (2.021) (1.832) (1.545)

Low correlation

(I) Y related to first block (II) Y related to second block (III) Y related to both blocks
M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI M0 M1 Mα(CV) Mα(plugin) MI

(C) 421.689 10177.69 429.37 422.005 422.618 672.568 11088.448 651.720 666.479 667.738 558.443 10903.738 552.992 557.795 555.099
(1.856) (239.005) (2.375) (1.851) (1.877) (0.694) (254.815) (2.196) (1.432) (0.869) (1.712) (199.633) (2.207) (1.825) (1.811)

(D) 421.68 4175.722 428.258 423.037 422.764 672.436 2143.496 594.246 662.96 652.282 559.813 2144.011 544.384 558.317 549.75
(1.879) (424.98) (2.211) (1.926) (1.899) (0.795) (308.093) (2.518) (2.055) (0.934) (1.425) (314.089) (2.396) (1.564) (1.475)

(E) 419.662 508.443 425.101 426.047 421.069 672.974 558.295 521.793 661.501 618.65 561.177 553.632 502.248 561.151 531.818
(1.771) (4.434) (1.996) (2.162) (1.803) (0.729) (4.58) (2.452) (2.036) (0.83) (1.452) (4.477) (2.372) (1.743) (1.445)

Note: The underlined entry denotes the best performance for that particular setting. The red
and blue colours indicate cases where the Mα model performs significantly better and worse
respectively than MI based on the one sample t-test.

Score (range 148-423) is calculated from all students in grades 3-8 for each school. Data are

from two resources: New York City Department of Education NYCDE (2017) and New York

State Education Department NYSED (2017). NYSED provides demographic predictors for

all schools in New York State such as total student enrollment in school, percentage of White,

Black, Hispanic and Asian, percentage of female, percentage of English Language Learners

and percentage of poverty. NYCDE provides extra information from the school survey.

These predictors are only available for schools in New York City. This information includes

percentage of disability, Collaborative Teachers Score, Effective School Leadership Score,

Rigorous Instruction Score, Supportive Environment Score, Strong Family-Community Ties

Score and Trust Score. The test results are correlated with both student characteristics (de-

mographic predictors) and the learning environment, school evaluations, student assessments

and other scores (school survey predictors), which utilizes feedback from students, teachers,

and parents received through the annual NYC School Survey. The data has 3107 rows and

16 predictors where 948 rows are New York City schools with all 16 predictors and 2159 rows
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are other schools in New York State with only 8 predictors. The predictors and response are

shown in Figure 4.4.

Figure 4.3: Predictors of demography and school survey.

We use stratified random train-test splitting taking 75% of complete and incomplete data

as training and the remaining 25% as testing. We still use LOOCV to estimate α and 20

imputation replicates in MI. The Math Score is the response variable and its scores range

from 148 to 423. We centered and scaled it between -2.3 and 3.3.

Because of the nonlinear relationship between predictors and the response, we fit the

regression model including both first and second order polynomials of the predictors with

their interaction terms. We perform ANOVA with F-test in order to determine whether

interaction terms are helpful to polynomial regression models. Model 1 has only the first

and second order terms. Model 2 adds interaction terms. We find that there is compelling

evidence that the polynomial with interaction terms is better than the polynomial without,

pvalue = 2.2 × 10−16 for partial model M0 and pvalue = 0.0031 for full model M1. The

polynomial regression result is also better than the linear model and the GAM (Generalized

Additive Models) model. Here is our regression model:

lmFit=lm(Math ˜ ( Total+White+Black+Hispanic+Asian+Female

+Engl i sh . Language . Learners+Poverty

+D i s a b i l i t y+Economic . Need . Index
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Figure 4.4: Histogram for the predictors and response

+Co l l abo ra t i v e . Teachers . Score

+E f f e c t i v e . School . Leadership . Score

+Rigorous . I n s t r u c t i o n . Score

+Support ive . Environment . Score

+Strong . Family . Community . Ties . Score

+Trust . Score )ˆ2

+I ( Total ˆ2)+ I (Whiteˆ2)+ I ( Blackˆ2)+ I ( Hispanic ˆ2)

+I ( Asianˆ2)+ I ( Femaleˆ2)+ I ( Engl i sh . Language . Learners ˆ2)

+I ( Povertyˆ2)+ I ( D i s a b i l i t y ˆ2)+ I ( Economic . Need . Index ˆ2)

+I ( Co l l abo ra t i v e . Teachers . Score ˆ2)

+I ( E f f e c t i v e . School . Leadership . Score ˆ2)

+I ( Rigorous . I n s t r u c t i o n . Score ˆ2)

+I ( Support ive . Environment . Score ˆ2)

+I ( Strong . Family . Community . Ties . Score ˆ2)
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Table 4.11: Test RMSE of public school data in New York State on all cases, complete cases
and incomplete cases for the partial model M0, the full model M1, the model combination
method Mα (CV estimation) and the multiple imputation method MI.

M0 M1 Mα MI
Testing data (complete cases) 0.744 0.914 0.612 0.960
Testing data (incomplete cases) 0.605 0.605 0.630
Testing data (all cases) 0.640 0.703 0.607 0.614

+I ( Trust . Score ˆ2) , data = TRAIN)

More predictors are introduced in the models by including the quadratic terms and interac-

tions, thus there are 44 predictors in M0 and 152 predictors in M1.

Polynomial regression is technically a special case of linear regression, so our theory from

Section 3.4 can be applied if MAR can be assumed. However, the MAR assumption is

doubtful here because obviously missingness happens on all schools not in New York city.

Table 4.11 illustrates the test RMSE results. The partial model M0 RMSE is derived by using

only first block of predictors, i.e. demographic predictors. The full model M1 RMSE for all

cases is derived by using M1 for complete case prediction and using M0 for incomplete case

prediction. The model combination method Mα RMSE for all cases is calculated by replacing

the full model by the combined model for complete cases. The MI RMSE is obtained using the

multiple imputation method, with the same polynomial regression model. The estimation of

the model combination parameter is 0.709. Table 4.11 demonstrates that model combination

prediction performs better than MI, the partial model M0 or the full model M1.

4.5.2 Abdominal pain diagnosis example

We have already demonstrated how model combination method performed in a regression

application. Now we apply the method to a subset of the abdominal pain diagnosis data set

in order to evaluate the model combination method for two blocks of predictors with block

missing in a classification application.

Abdominal pain can represent a spectrum of conditions from benign and self-limited dis-

eases to surgical emergencies. Evaluating abdominal pain requires an approach that relies

on the likelihood of disease, triage assessment and laboratory tests. Therefore, it is difficult

to distinguish some diagnoses. This data was abstracted from the Emergency Department
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Table 4.12: Test classification accuracy of abdominal pain data on all cases (complete cases
and incomplete cases) for the partial model M0, the full model M1, the model combination
method Mα (CV estimation) and the multiple imputation method MI.

Diagnosis M0 M1 Mα MI
Bleeding in early pregency vs. Incomplete abortion 0.853 0.853 0.857 0.855
Biliary Colic vs. Pancreatitis 0.706 0.729 0.731 0.727
Hematuria vs. Other urologic 0.830 0.831 0.832 0.818

Information System (EDIS) where the triage assessment is the first block of predictors in-

cluding gender, DBP (diastolic blood pressure), temperature, patients’ complaint, etc. The

complete blood count - a set of laboratory tests - is the second block of predictors including

WBC (white blood cells), RBC (Red blood cells), Hemoglobin, etc. All patients have triage

assessment, but only some of the patients have complete blood count results. We describe

the details of this data in Section 5.1.1.

We choose three pairs of diagnoses which are difficult to distinguish: Bleeding in early

pregency and Incomplete abortion from pelvic pathology; Biliary Colic and Pancreatitis from

general abdominal pathology; Hematuria and Other urologic from renal system pathology.

The sample sizes for these pairs are 2607, 1538 and 2142 respectively. For each pair, about

half of the patients have CBC results. We construct the M0 model for all observations with

triage variables and the M1 model for the observations with all variables (triage and CBC).

We use stratified random train-test splitting taking 75% of complete and incomplete data as

training and the remaining 25% as testing. We use GBM to fit all models and use LOOCV

to estimate α. We do 20 imputation replicates in the MI method.

The comparison in terms of test classification accuracy is summarized in Table 4.12. The

classification accuracy results based on all testing data include both complete cases and

incomplete cases as in Section 4.5.1. The partial model M0 accuracy is derived by using

only the first block of predictors. The full model M1 accuracy for all cases is derived by

using M1 to predict the complete cases and M0 to predict the incomplete cases. The model

combination methodMα accuracy for all cases is calculated by replacing the full model by the

combined model for complete cases. The MI method accuracy is obtained using the multiple

imputation method. In this dataset, the missing pattern is not at random, because tests

are ordered by doctors in cases where they believe the results will help them to diagnose

the patients. The results of four methods presented in Table 4.12 show that the model
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combination method performs better than either MI, the partial model or the full model on

test data.

More detailed application on the abdominal pain diagnosis problem by using the model

combination method with multi-block variables will be given in the next chapter.



Chapter 5

Application on the Abdominal Pain Diagnosis Problem

In this chapter, we apply the model combination method developed in this thesis to analyse

a real data set containing abdominal pain patients at emergency departments in Nova Scotia.

This data set presents a number of challenges beyond the standard block missing problem.

Firstly, this is a multiclass classification problem with 39 classes, which is challenging for

standard classification methods, so we develop a hierarchical tree structure over 39 diagnoses

based on a combination of the data and medical knowledge and thus divide a classification

problem for a large number of classes into many classification problems, each with a low

number of classes.

Secondly, there are multiple blocks of predictors, and patients can have different combi-

nations of blocks. The model combination method in Chapter 3 was designed to handle a

single block of missing predictors, so to apply it in this situation requires us to extend the

method to handle multiple missing blocks. After these modifications, our method is able to

make informative and accurate predictions of the probability of each diagnosis. Using this,

we are able to create a short list of most plausible diagnoses. This list is usually fairly short,

and has high coverage of the true diagnosis.

5.1 Abdominal Pain Data Analysis

5.1.1 Data Introduction

The present study is a retrospective review of 116,008 presentations to the Emergency de-

partments (ED) in Nova Scotia. These presentations were diagnosed with one of 39 ICD-9

physician diagnoses related to abdominal pathology. The data set was abstracted from the

Emergency Department Information System (EDIS) and includes four blocks of variables:

triage variables, complete blood count (CBC) variables, liver enzyme variables and radiology

variables with 42 predictors having both numeric and text values. The triage variables are

available for all patients, but the other blocks are available only if ordered by the physician.

67
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For a particular patient, any combination of these blocks might be available.

The variables in each block are as follows:

• Triage variables: patient age, patient gender, presenting ICD-9 complaint, Canadian

Triage and Acuity Scale (CTAS) Score, vitals on presentation (blood pressure, oxygen

saturation, respiratory rate, pulse rate, pain scale score, Glasgow Coma Scale (GCS)

score, temperature), time of year and time of day. Bullard et al. (2008)

• CBC (complete blood count) variables: RBC (red blood cells), WBC (white blood

cells), Hgb (hemoglobin), Plt (platelet count) and white blood cell differential (neu-

trophils, lymphocytes, monocytes, eosinophils and basophils), which are the relative

proportion of each leukocyte type in the blood.

• Liver enzyme variables: alanine aminotransferase (ALT) and aspartate aminotrans-

ferase (AST), gamma-glutamyl transpeptidase (GGT), bilirubin and alkaline phos-

phatase (ALP).

• Radiology variables: This consists of unstructured text giving radiologist reports from

various diagnostic imaging technologies: computed tomography (CT), ultrasound,

magnetic resonance imaging (MRI) and X-ray (radiography). In order to use the

text reports in our classifier, we need to convert them to numerical variables. Our

collaborators in the Computer Science department developed a method based on Con-

ditional Random Fields (Wallach, 2004) and structured perceptron (McDonald et al.,

2010) to convert the free text data into 1620 random variables with 4 levels: 0 = not

mentioned; -1 = explicitly described as not observed; 0.5 = observed but not critical;

and 1 = critical and observed.

The data was divided into training, validation and testing sets. The training set contains

71,396 cases from January 2010 to June 2013 (three and a half years), the validation set

16,669 cases from July 2013 to February 2014 (eight months), and the testing set 25,441

cases from March 2014 to February 2015 (one year).

5.1.2 Data exploration

From Figure 5.1, We see that the majority of patients are female, and this is true for nearly

all ages. We also see that patients tend to be younger, with the number of patients decreasing
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Figure 5.1: Gender & Age

Figure 5.2: Gender & Diagnosis

with age for both male and female patients.

Figure 5.2 and 5.3 summarises the diagnoses present in the training and test data set by

gender and Age. The frequency of different diagnoses varies a lot with gender, with several

diagnoses only affecting one gender. The most common diagnosis for both genders was Ab-

dominal Pain not yet diagnosed (NYD). The diagnoses which are most female-dominated

are reproductive system diseases, pelvic disease, pyelonephritis and cystitis. The most male-

dominated diagnoses are Epididymitis, Inguinal Hernia, Urinary Retention, Hematuria and

Perirectal Abscess. The frequency of various diagnoses also varies with age. While Abdom-

inal Pain NYD and Urinary Tract Infection are the most common diagnoses for all ages,

gastroenteritis is among the most common for young patients, and renal colic is one of the

most common conditions in middle-aged patients. For elderly patients, Constipation, Gas-

trointestinal Bleeding, Hematuria, and Urinary Retention were among the most common

diagnoses.



70

Figure 5.3: Age & Diagnosis

We next examine the predictor variables. Figure 5.4 shows the distribution of temper-

ature, CTAS and pain for each diagnosis. CTAS (Severity of the condition) is an overall

assessment of the patient’s condition. It is on an integer scale between 1 and 5, with lower

numbers indicating a more serious condition. Nearly all the patients in the dataset have

CTAS in the range 2-4. CTAS is clearly associated with Diagnosis, with Urinary Sepsis,

Gastrointestinal Bleeding, Ureteral Stones having lower average CTAS scores than other di-

agnoses. CTAS is also negatively correlated with temperature and pain score. Hyperthermia

is common for Urosepsis and Pyelonephritis, but rare for other diagnoses. Most patients have

a pain score in the range 5-8. However, Ureteral Calculus, Renal Colic and Crohn’s Disease

have higher pain scores, and other diagnoses such as Diarrhea, Rectal Bleeding, Acute Renal

Failure, Urinary Sepsis, and Gastrointestinal Bleeding, Vaginal Bleeding, Bleeding in Early

Pregnancy, Rectal Bleeding and Vomiting often have lower pain scores.

Figure 5.5 shows the distribution of Glasgow Coma Scale (GCS), and blood pressure

measurements for each diagnosis. The GCS, a score from 3 to 15, is a neurologic assessment

of a patient’s level of consciousness. It was designed to differentiate between coma and other

states of impaired consciousness. A GCS value of 15 indicates a fully awake patient, while

a GCS value of 3 indicates deep coma or a brain-dead state. In this data, we found that

the vast majority of patients in the data set have GCS of 15. However, for a few diagnoses,
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Figure 5.4: Temperature, CTAS (Severity of the condition) and Pain
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Figure 5.5: Glasgow Coma Scale (GCS), SBP and DBP

such as Urosepsis and Abdominal Pain NYD, lower GCS scores are occasionally observed.

Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) are two measurements

of a patient’s blood pressure. From Figure 5.5, we see that both are approximately normally

distributed, and the distributions are fairly similar across diagnoses. However, there are a

few diagnoses with lower average SBP and DBP, namely, Urosepsis, Acute Renal Failure,

Gastrointestinal Bleeding and Bleeding in Early Pregnancy.

Figure 5.6 shows the distribution of Respiration Rate (RR), Heart Rate (HR) and Blood

Sugar (Glucose) for all patients. RR (respiration rate) is the measure of how often an

individual breathes in a minute. The value is usually between 15-20. Urosepsis may feature

increased RR values because it causes inflammation in the lungs which results in more

rapid breathing. For most other diagnoses, RR has a fairly similar distribution - mostly

in the 15-20 range with a few large outliers. Glucose has a skewed distribution, which

varies somewhat between diagnoses, with Perirectal Abcess patients having high Glucose,

and diagnoses relating to pregnancy having lower Glucose levels. HR (heart rate) measures

the rate at which the heart beats. There are also about 1700 out of 116000 missing values

for this variable in the data. These are cases where it is impossible to record the patient’s

heart rate. We will treat these as missing at random.
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Figure 5.6: Respiration rate Glucose and Heart rate

Figure 5.7 shows the distributions of the main variables in the complete blood count.

These are often used by the physician to diagnose a number of conditions. From the figure

we see that Red Blood Cells (RBC) has a fairly normal distribution, that is similar for

most diagnoses, but is often lower for Gastrointestinal Bleeding or Acute Renal Failure.

White Blood Cells (WBC) has a slightly skewed distribution, with some outliers, and is

similar for most diagnoses, but is higher for Urosepsis, Pyelonephritis, Perirectal Abcess,

Pancreatitis, Epididymitis, Diverticulitis, Crohn’s Disease, Cholitis, Acute Cholecystitis and

Acute Appendicitis. Hemoglobin is fairly normally distributed with similar distributions for

most diagnoses, but reduced levels for Acute Renal Failure and Gastrointestinal Bleeding.

Figure 5.8 shows the distribution of other variables in the Complete Blood Count. These

all have skewed distributions with some outliers. The platelet count was lower in patients

with Urosepsis, and higher in patients with Crohn’s Disease. Lymphocytes and Neutrophils

are percentages, so are constrained to sum to at most 100. Indeed, in most cases, the total

of lymphocytes and neutrophils is very close to 100. The distribution of these percentages

varies between diagnoses. For example, Urosepsis patients mostly had, on average, a lower

percentage of lymphocytes and a higher percentage of neutrophils than other patients, while

patients with gynocological conditions tended to have higher lymphocyte percentages and

lower neutrophil percentages.
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Figure 5.7: RBC, WBC and Hemoglobin

Figure 5.8: Platelet, Lymphocytes and Neutro percent
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Figure 5.9: Glutamyl transpeptidase (GGT)

We next look at the liver enzyme variables. Figure 5.9 shows the distribution of Glutamyl

transpeptidase (GGT). GGT is a liver enzyme that can be increased as a result of certain

diseases. GGT is an enzyme found primarily in the liver and pancreas, and it is also found

in the bile ducts and the small intestine. The data shows that high GGT levels are present

in patients with Pancreatitis, Acute Cholecystitis, and Gallstones. Pathologically elevated

GGT levels are seen in obstructive diseases of the biliary tract, acute and chronic alcoholic

hepatitis, drug-induced hepatitis. Alcoholics may have decreased GGT levels after they

stop drinking. Pathologically elevated GGT can also indicate pancreatic tumors, prostate

tumors and other types of cancers. GGT is abnormal when it is greater than 50 U/L.

Except abdominal pain NYD, the top 10 diagnosis with abnormal GGT are gastrointestinal

pathology and urinary tract infection, shown in Figure 5.10.

In Liver function test results, normal total bilirubin is 3.42-20 µmol/L. Physiological

elevated levels of bilirubin can be observed in neonatal jaundice, while pathologically ele-

vated levels of bilirubin may be observed in a number of conditions including biliary tract

obstruction, viral hepatitis A and other types of viral hepatitis, cholestasis hepatitis, acute

alcoholic hepatitis and inherited abnormal bilirubin metabolism such as Gilbert syndrome.

Total bilirubin is abnormal when it is greater than 20 or less than 3.4. Figure 5.10 shows

the top 10 diagnosis with abnormal total bilirubin.

Normal Alkaline Phosphatase in females is 50-135 U/L, and in males is 45-125 U/L.

Pathologically elevated levels of the enzyme are seen in skeletal diseases such as rickets, bone

malignancies, and malignant bone metastases. It can also be seen with hepatic disease such as
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Figure 5.10: Left: Abnormal GGT diagnosis list (GGT>50 U/L). Right: Abnormal total
bilirubin diagnosis list (Bili Total<3.4 or Bili Total>20).

extrahepatic bile duct obstruction, liver cancer, cirrhosis, and capillary cholangiohepatitis.

Other causes include hyperparathyroidism or thyroid insufficiency in children. Pathology

decreased levels of alkaline phosphatase are seen in severe chronic nephritis and anemia. In

Figure 5.11, Except abdominal pain NYD, the top 10 diagnosis with abnormal Alk in females

are gastrointestinal pathology and urinary tract infection and in males are gastrointestinal

pathology and acute renal failure.

We also plot the correlation for each block variables in Figure 5.12. In triage variables,

CTAS was highly negatively correlated with pain rating data and DBP was highly posi-

tively correlated with SBP. In CBC variables, each cell count indicator is highly positively

correlated with its percentage indicator. Lymphocytes are highly negatively correlated with

Neutro percent. In liver enzyme variables, ALT and AST have high positive correlation.

GGT correlated strongly with alkaline phosphatase.

5.2 The Hierarchical Tree Structure

We deal with the multi-class classification problem by arranging the diagnoses into a hier-

archical tree structure, so that the multi-class classification can be achieved by a sequence

of conditional binary or ternary classification problems at each node of the tree. That is, at
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Figure 5.11: Left: Female abnormal diagnosis list (Alk phos<50 or > 135U/L). Right: Male
abnormal diagnosis list (Alk phos<45 or >125U/L)

Figure 5.12: Correlation for triage variables, CBC variables and Liver enzyme variables
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Figure 5.13: The tree-structured model framework

each node of the tree, we fit a classifier to predict which branch below that node the patient

should follow, conditional on the patient being below that node.

5.2.1 Constructing Hierarchical Tree

In order for this tree structure to work well, it should be relatively easy to separate the

higher nodes of the tree. Thus, we want to cluster the diagnoses that are most difficult to

distinguish together at each level of the tree.

We construct the tree layer by layer. We start with each diagnosis in its own group. We

then use the hierarchical clustering analysis (hclust function in R) to cluster the diagnosis

groups based on a similarity measure described in Section 5.2.2. (We recalculate the simi-

larity measure for each layer.) We consult with medical experts to decide where to cut the

clustering in each layer. The diagnosis groups in each cluster are then merged into a single

diagnosis group in the next layer and the process is repeated.
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5.2.2 Similarity Measure based on Posterior Predictive Probability

The hierarchical clustering method is based on a similarity measure between the diagnoses.

Our aim is to build a tree in which the diagnosis groups at higher nodes are easy to distin-

guish. To do this, we cluster diagnoses that are most difficult to distinguish. For each layer,

we start by fitting a gradient boosting algorithm (GBM) classifier on the triage variables in

the training data with a multi-class response having one class for each group of diagnoses in

the current layer. We use this method to predict the posterior probability of each diagnosis

for the validation data set. For the ith patient in the validation set, and the jth diagnosis,

let

Yij =

1 if the ith patient has diagnosis j

0 otherwise

and let Zij be the posterior probability assigned to diagnosis j by the gbm predictor for this

validation sample. We define our similarity matrix S by

Sjk =

nval

∑
i

ZijYik∑
i

Zij

∑
i

Yik

where nval is the total number of observations in the validation data set. The resulting

matrix is not symmetric, so we symmetrize it by averaging the matrix with its transpose.

Note that this measure is different from the percentage of mis-assigned patients from the

kth true diagnosis to the jth diagnosis.

The details of constructing the hierarchical tree are given in the following section.

5.2.3 Details of each Layer

Figures 5.14-5.22 show the heatmap of our similarity measure and the fitted dendrogram for

the hierarchical clustering for layers 1-9 respectively. We describe the clustering performed

at each layer.

1. The bottom layer shows all the 39 classes in the problem, in Figure 5.14.

2. Layer 2

From Figure 5.14, there are three clear clusters that can be created:

• Gynacological Problems(6+19)
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Figure 5.14: Dendrogram and Heatmap of the 1st layer
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Table 5.1: Class Reference

Class Diagnosis
1 ABDOMINAL PAIN NYD
2 ACUTE APPENDICITIS
3 ACUTE CHOLECYSTITIS
4 ACUTE GASTRITIS
5 BILIARY COLIC
6 BLEEDING IN EARLY PREGNANCY
7 CHOLELITHIASIS
8 COLITIS
9 CONSTIPATION
10 CROHN’S DISEASE
11 CYSTITIS
12 DIARRHEA
13 DIVERTICULITIS
14 DYSFUNCTIONAL UTERINE BLEEDING
15 EPIDIDYMITIS
16 GASTROENTERITIS
17 GASTROINTESTINAL BLEED
18 HEMATURIA
19 INCOMPLETE ABORTION
20 INGUINAL HERNIA
21 MENORRHAGIA
22 OTHER INTESTINAL
23 OTHER UROLOGIC
24 OVARIAN CYST
25 PANCREATITIS
26 PELVIC PAIN NYD
27 PERIRECTAL ABSCESS
28 PYELONEPHRITIS
29 RECTAL BLEEDING
30 REFLUX ESOPHAGITIS
31 RENAL COLIC
32 RENAL FAILURE ACUTE
33 SMALL BOWEL OBSTRUCTION
34 URETERAL CALCULUS
35 URINARY RETENTION
36 URINARY TRACT INFECTION
37 UROSEPSIS
38 VAGINAL BLEEDING
39 VOMITING
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Figure 5.15: Dendrogram and Heatmap of the 2nd layer

• Gynacological Problems(14+21+38)

• Intestinal Inflammation(17+29)

These are very clear-cut, based on our similarity measure, and were confirmed to make

sense medically. We therefore combine diagnoses within these groups to form the 2nd

layer.

3. Layer 3

In the dendrogram in Figure 5.15, the following small clusters are clear-cut in the

second layer. These clusters were confirmed to make medical sense.

• Gynacological Problems(6+19+14+21+38)

• Intestinal Inflammation(8+17+29)
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Figure 5.16: Dendrogram and Heatmap of the 3rd layer

• Urinary Infections(11+36)

• Vasitis(15+20)

• Gastrointestinal Problems(16+39)

• Ureter Problems(23+35)

• Kidney Problems(31+34)

• Urinary Infections(32+37)

4. Layer 4

In the dendrogram in Figure 5.16, we see several more clear-cut clusters, which our

medical collaborators confirm are medically reasonable.

• Pelvic pathology(24+26)
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Figure 5.17: Dendrogram and Heatmap of the 4th layer

• Ureter Problems(23+35+18)

• Urinary Infections(11+36+28+32+37)

• Gastrointestinal Problems(16+39+12)

• GI Chronic Inflammation and Infection(10+27)

• Intestinal Inflammation(8+17+29+22)

• Upper GI(4+30)

• Middle GI(25+33)

• Gallbladder pathology(3+7)

5. Layer 5

In Figure 5.17 the following clusters are clear-cut and medically reasonable:
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Figure 5.18: Dendrogram and Heatmap of the 5th layer with 11 classes

• Gynecological problem(6+19+14+21+38) & pelvic pathology(24+26) = pelvic

pathology(6+19+14+21+38+24+26)

• Vasitis(15+20) & Ureter problems(23+35+18) = Genitourinary pathology(15+20+23+35+18)

• Acute appendicitis 2 & GI Chronic Inflammation and Infection(10+27) = GI

Inflammation and Infection(10+27+2)

• Diverticulitis 13 & Middle GI(25+33) = Middle GI(13+25+33)

• Gallbladder pathology(3+7) & Biliary colic 5 = Gallbladder pathology(3+7+5)

• Gastrointestinal Problems(16+39+12) & Upper GI(4+30) = Gastrointestinal Prob-

lems(16+39+12+4+30)

6. Layer 6
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Figure 5.19: Dendrogram and Heatmap of the 6th layer

In Figure 5.18, we see the following clear-cut and medically reasonable clusters:

• Urinary infections(11+36+28+32+37) + genitourinary problems(15+20+23+35+18)

= Genitourinary pathology(11+36+28+32+37+15+20+23+35+18)

• Gastrointestinal problems(16+39+12+4+30) + intestinal inflammation(8+17+29+22)

= GI pathology(16+39+12+4+30+8+17+29+22)

• Gallbladder pathology(3+7+5) + middle GI(25+33+13) = Proximal Lower GI

pathology(3+7+5+25+33+13)

7. Layer 7

In Figure 5.19, the clusters are slightly less clear-cut. However, the following cluster

seems the most clear-cut and medically reasonable. Given that the clusters are not
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Figure 5.20: Dendrogram and Heatmap of the 7th layer with 6 classes

very clear-cut in this dendrogram, we only form a single cluster in this layer.

• Abdominal Pain NYD (1) + Proximal lower GI pathology (3+7+5+25+33+13)

+ GI inflammation and infection (2+10+27) = General abdominal pathology

(1+3+7+5+25+33+13+2+10+27)

8. Layer 8

The dendrogram in Figure 5.20 shows two clear-cut clusters, which are not medically

unreasonable:

• General abdominal pathology(1+3+7+5+25+33+13+2+10+27) + Constipation

9 = General abdominal pathology(1+3+7+5+25+33+13+2+10+27+9)
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Figure 5.21: Dendrogram and Heatmap of the 8th layer

• Genitourinary pathology(11+36+28+32+37+15+20+23+35+18) + Kidney prob-

lems(31+34) = Renal system pathology(11+36+28+32+37+15+20+23+35+18+31+34)

9. Layer 9

The dendrogram in Figure 5.21 shows one clear-cut cluster, which is not medically

unreasonable.

• General abdominal pathology(1+3+7+5+25+33+13+2+10+27+9) + GI pathol-

ogy(16+39+12+4+30+8+17+29+22) = General abdominal pathology

(1+3+7+5+25+33+13+2+10+27+9+16+39+12+4+30+8+17+29+22)

Finally, we have 3 classes at the very top level (Figure 5.22),
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• General abdominal pathology

(1+3+7+5+25+33+13+2+10+27+9+16+39+12+4+30+8+17+29+22)

• Pelvic pathology(6+19+14+21+38+24+26)

• Renal system pathology(11+36+28+32+37+15+20+23+35+18+31+34)

Figure 5.22: Dendrogram and Heatmap of the 9th layer

As shown in Figure 5.22, these are very easily distinguished clusters, and it does not

make medical sense to perform any further clustering on them. Combining all these 9 layers

of clusterings, we obtain the tree which provides our model framework in Figure 5.13.

5.3 Model Development

In this section, we describe four different methods that we will fit on the data. The first

method is a competitive baseline off-the-shelf method based on GBM. The second method

uses our hierarchical tree to split the 39-class classification problem into many binary or

ternary classification problems, each fitted by GBM. The third method only uses the model

combination idea, without using the hierarchical tree, to directly combine 39-class classifiers.

The fourth method combines the hierarchical tree structure with the model combination
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Table 5.2: LightGBM parameters

Parameter Value
boosting type gbdt
num boost round 200
num leaves 120
max depth 10
num iterations 200
early stopping rounds 20
min data in leaf 40
learning rate 0.01
feature fraction 0.9
bagging fraction 0.9
bagging freq 5
min gain to split 0.2

method so that model combination method is applied to combine binary or ternary classifiers

on each node of the hierarchical tree.

5.3.1 Benchmark Model Prediction

we use LightGBM as our benchmark GBM off-the-shelf method. GBM is able to deal with

multi-class classification and missing data (Ke et al., 2017). And a preliminary analysis of

the triage variables showed that it is competitive with other off-the-shelf methods. We use

the LightGBM package for fitting the GBM. This package has been shown to achieve high

prediction accuracy and efficient computation, which is an important practical consideration

for such a large data set. The optimized tuning parameters are in Table 5.2.

There are 4 boosting types in Light-GBM: ‘gbdt’, ‘rf’, ‘dart’ and ‘doss’. Among them,

‘gbdt’ has more stable results, and is most widely used. learning rate is the step length

of the change of the gradient. The default value is 0.1, and it is usually set in the range

0.05-2. In the experiment, when using smaller learning rate 0.01, the accuracy improves to

the best. num leaves is one of the most important parameters to control the calculation

complexity of the model. Higher num leaves could lead to higher accuracy, but also may

leads to overfitting. An appropriate value should be determined according to the size of the

dataset. This parameter is usually set to be less than 2(max depth), in which max depth is

another important parameter related to the complexity of the model. max depth controls the
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maximum depth of each tree. Higher values may lead to overfitting. num iterations controls

the number of iterations (the number of trees to be built). More trees may increase the

preciseness and the training time, and may lead to overfitting. If validation metrics did not

get improved after the last round, early stoppong rounds would stop training. According

to experience, this parameter is usually set to be 10% of the parameter num iteration.

Default value of min data in leaf is 20. This parameter can be used to deal with overfitting.

feature fraction means the feature score or sub-feature processing column sampling. Light-

GBM randomly selects feature subsets on each iteration (tree). For example, if it is set to be

0.6, Light-GBM will select 60% of the features before training each tree. In our model, we

select all features before training each tree. By bagging fraction, we could set the percentage

of rows used in the iteration of each tree. This means that random rows will be selected

to match each learner (tree). This not only improves the generalization ability, but also

improves the training speed.

5.3.2 Model using Hierarchical Tree Structure combined with GBM classifier

Next, we use our hierarchical tree structure to train the classifier. For each node in our tree,

we fit a GBM classifier to predict the conditional probability of an observation lying on each

branch, given that it is below this node. For a given diagnosis, the probability assigned to

that diagnosis is the product of the probabilities of the branches leading to that diagnosis.

5.3.3 Model Combination Method applied on 39-class classifiers

Unlike the model combination for regression models, where the linear combination operation

most naturally works on the linear predictors from different models, the model combination

for this classification problem can work in different ways. The most direct way is to use a

weighted mean of the predicted probabilities similar to that in Random forest. Alternatively

we can combine the models using the logistic transformed probabilities, as detailed in Chapter

3. We have tested both methods in the application and found generally the latter idea works

better. In addition, the optimization procedure to find the model combination weights also

works easily because the problem is naturally transformed into a logistic regression problem.

In this dataset, there are four blocks of variables: Triage, CBC, Liver enzymes, and

Radiology. Our model combination method was designed to handle only a single block of

missing variables. We need to extend our method to handle three blocks of missing variables.
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(Triage variables are never missing) With three missing blocks, there are eight models that

need to be fitted. In this dataset, we note that there are very few patients who have radiology

data, but who do not have both CBC and liver enzyme data. We therefore do not fit models

for these patients. This leaves five models, as shown in Figure 5.23. We label these models

M0, M1, M2, M3 and M4.

Figure 5.23: The data is partitioned into different models based on four groups of variables,
triage, CBC, Liver enzyme and radiology. M0 model fit on triage variables; M1 model fit on
triage and CBC variables; M2 model fit on triage and liver enzyme variables; M3 model fit
on triage, CBC and liver enzyme variables; M4 model fit on triage, CBC, liver enzyme and
radiology variables;

For each of the five models, M0, M1, M2, M3 and M4, we fit a Random Forest (RF) model

on the corresponding data to predict the probability of each of the 39 classes. We select the

tuning parameters of the RF classifier using 5-fold cross-validation on the training data.

We select best fit tuning parameters from the following candidates: the number of trees =

200, the number of features to consider when looking for the best split is
√
n features, the

minimum leaf size = (1, 5, 10), and the maximum number of levels in each decision tree =

(10, 20, 30, 40).

In addition to the need to estimate coefficient αi for the models Mi to obtain a com-

bined classifier for patients with complete data, it is also necessary to obtain coefficients

for classifiers from various combinations of partial data. For example, to predict the di-

agnosis for a patient with triage and CBC, we take a linear combination of the predic-

tions from M0 and M1. We will let αij denote the coefficient of model Mj in the clas-

sifier for patients with the blocks of variables for model Mi. For example, for a patient
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with CBC and liver enzyme variables, the logistic transformed probability of diagnosis k is

α30f̂0,k(x)+α31f̂1,k(x)+α32f̂2,k(x)+α33f̂3,k(x), where f̂j,k is the predicted logistic-transformed

probability of diagnosis k using the model Mj. There is no α34 coefficient, because the ra-

diology data are not available for this patient, so M4 cannot be used to make prediction

for this patient. We have a total of 13 coefficients to choose, but with the constraints∑
j

αij = 1 for i = 1, 2, 3 and 4, there are a total of 9 coefficients to be estimated.

For each i we estimate the αij to minimise the cross-entropy loss on the validation data

for model Mi,

argminα

∑
i=1

− logP (Y = Yi | α)

subject to the constraints that αij ≥ 0 and
∑
j

αij = 1.

5.3.4 Model using both Tree Structure and Model Combination method

Finally, we apply both the hierarchical tree structure and the model combination method to

predict the probability of each diagnosis.

The difficulty with freely estimating all the parameters αij is that for a particular i, the

validation set might be relatively small, and we may need to fit as many as four free model

parameters. This can lead to unstable estimates, and worse prediction accuracy. To avoid

this, we impose some consistency between the estimated αij.

We define all 13 αij as functions of 3 coefficients, α, β and γ. 1−α represents the relative

contribution of the model including CBC variables. That is, the contribution of M1 versus

M0 and of M3 versus M2. 1 − β is the relative contribution of models including the liver

enzyme variables. 1 − γ is the contribution of models including the radiology variables. So

the combined model for a full set of predictors is

Q = γβαM0

+ γβ(1− α)M1

+ γ(1− β)αM2

+ γ(1− β)(1− α)M3

+ (1− γ)M4

The idea is that we first apply our model combination to combine the models M0 and M1

and to combine the models M2 and M3, using the same combination coefficient α. We let
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Figure 5.24: Stagewise linear combination weighting

N0 and N1 denote the resulting combined models. Next, we find the coefficient β to combine

the models N0 and N1. Finally, we find the coefficient γ to combine the combination of N0

and N1 with the model M4. We demonstrate this process in Figure 5.24.

To determine the stagewise linear combination weight we first apply the previously pre-

sented method to calculate α for combining M0 and M1. We call this combined model

N0.

N0 = αM0 + (1− α)M1 (5.1)

For fitting this α, we fit M0 and M1 on all observations that have CBC variables, even if

they also have liver enzyme variables or radiology variables. Because these observations have

been used to fit α, it is reasonable to use the same α for combining the models M2 and M3.

This gives a new model N1 for all observations with Liver enzymes.

N1 = αM2 + (1− α)M3 (5.2)

We can now use our method to choose a coefficient β to combine N0 and N1.

P0 = βN0 + (1− β)N1 (5.3)

After combining N0 and N1, let the result be P0. Finally, we combine P0 with M4 in the

usual way:

Q = γP0 + (1− γ)M4 (5.4)
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The training steps for each node are listed below (Figure 5.25). The combination param-

eter α can be estimated as follows:

• Step one: use 5-fold CV to choose the best random forest (RF) parameters on the

training data

• Step two: Train models M0, M1, M2, M3 and M4. We get the corresponding logit of

predicted probability as f̂0, f̂1, f̂2, f̂3 and f̂4

• Step three: Solve α on the validation set of size n1 by minimizing the negative log

likelihood loss:

argminα

n1∑
i=1

L(y, αf̂0 + (1− α)f̂1)

which is a logistic regression with off-set without intercept.

Let N0 denote the combination αM0 + (1 − α)M1. This can be solved by performing

logistic regression with one predictor M1 −M0 and an offset M0 on the validation set which

consists of all patients with CBC variables. We use the same value of α to combine M2 and

M3. Let N1 denote the combination αM2 + (1− α)M3.

• Step four: solve β on the validation set of size n2 by minimizing the negative log

likelihood loss:

argminβ

n2∑
i=1

L(y, βf̂N0 + (1− β)f̂N1)

.

• Step five: solve γ on the validation set n3 by minimizing the negative log likelihood

loss:

argminγ

n3∑
i=1

L(y, γf̂P0 + (1− γ)f̂4)

This procedure is illustrated in Figure 5.25.

The combination model gives a posterior probability for each branch of the tree. In the-

ory, the probability of each diagnosis should be the product of all conditional probabilities

of branches above it. However, for branches not above the true diagnosis, these predicted

conditional probabilities are not meaningful, so the predictions can be strange. This can

lead to some strange results, where a particular diagnosis is given a high probability be-

cause the predicted conditional probability conditioning on a false group of diagnoses is very
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Figure 5.25: Model combination procedure

high. To stabilise our estimates, instead of multiplying the conditional probabilities, we use

a Multilayer Perceptron to learn an estimated final probability vector from the vector of

conditional probabilities at each node. A Multilayer Perceptron is a neural network with

non-linear input-to-output mapping. It has input and output layers, and multiple hidden

layers with many neurons stacked together (Bishop and Nasrabadi, 2006). Our purpose is to

fit a flexible model to better estimate the final posterior probabilities of 39 classes. Neural

network models (here Multilayer Perceptron model) with 39 output nodes is a convenient

method to achieve this purpose. More specifically, after we get all combined posterior prob-

abilities on 37 nodes, we use the output of these 37 combined posterior probability as input

and use Multilayer Perceptron to learn how to best combine the input predictions to make

a better output prediction. Practically we find it greatly improves the final prediction. In

Multilayer Perceptron we set three hidden layers with 100, 50 and 100 neurons separately.

The activation function is sigmoid. Learning rate is adaptive which is constant as long as

training loss keeps decreasing. Maximum number of iterations is 1000.

5.4 Prediction Results

We are comparing methods that estimate the probability of each diagnosis. The aim of

each method is to assign as much probability as possible to the true diagnosis. The natural

way to assess the performance of methods is with the average probability assigned to the

true diagnosis on test data. It is also possible to compare log probability assigned to the

true diagnosis, which is the log-likelihood. However, the log-likelihood can be influenced by

outliers where the method assigns a very low probability to the true diagnosis.
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Figure 5.26: Accuracy comparison

The comparison results for all the methods described in Section 5.3 are shown in Figure

5.26. The average predicted probability of the true diagnosis is 45.94% under benchmark. It

is 51.91% under the model combination method applied directly to the 39-class classification

problem. It is 55.45% using the hierarchical tree structure without model combination. It

is 56.7% using the hierarchical tree structure with model combination.

Based on these results, we see that the model combination and hierarchical tree methods

have greatly improved the accuracy of our classification.

The objective of this research is to provide a list of the most plausible diagnoses for

each patient, to allow the physician to check that they have not overlooked any plausible

diagnoses. In practice, the busy physician will only be able to examine several most likely

diagnoses, so it is important that the true diagnosis is fairly near the top of the list. We

therefore examine how often the true diagnosis appears in each position of the list. Table 5.3

and Figure 5.27 show the frequency with which the true diagnosis is among the n diagnoses

with highest predicted probability for n = 1, ..., 8. We see that by this measure, the model

combination and hierarchical tree methods have improved our prediction substantially. For

our method, the true diagnosis is within the 3 most probable diagnoses over 80% of the time,

and within the 5 most probable diagnoses over 90% of the time. Given that the literature

estimates a misdiagnosis rate of around 15% or higher, this level of accuracy means that our

method is likely to be of practical value in helping physicians to diagnose patients.
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Figure 5.27: Cumulative prediction accuracy

5.5 Performance Evaluation

Our method estimates a probability for each diagnosis. This is potentially very helpful for

the physician, indicating how plausible each diagnosis is, so the physician is not distracted

by implausible diagnoses. However, the predicted probability is only valuable if it is a

reliable estimate of the true probability. In this section, we therefore aim to assess the

reliability of these predicted probabilities. We do this via the following visualisations. For

each true diagnosis, we order all patients in the test data in decreasing order of the estimated

probability of that diagnosis. We then plot both the cumulative average estimated probability

Table 5.3: Cumulative prediction accuracy table

Rank Accuracy
1 0.567
2 0.720
3 0.817
4 0.876
5 0.912
6 0.923
7 0.951
8 0.960
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of that diagnosis, and the cumulative proportion of patients who have that diagnosis. If

the two curves are close together, it indicates that the estimated probabilities are a good

assessment of the true probabilities. That is, for those patients for whom the estimated

probability of diagnosis i is close to p, the proportion of those patients who actually have

diagnosis i is also close to p. On the other hand, if the curves are far apart, it indicates that

the estimated probabilities are unreliable, and may mislead the physician. Note that because

these are cumulative averages, there is much more variance on the left side of the curve, so

the curves usually do not match so well on that side. The shape of the curves indicates

the power of the method to distinguish between the diagnoses. Ideally, the left-hand part

of the curves would consist of a horizontal line of height 1, and the right hand part would

be a decreasing straight line. This indicates a method that assigns probability 1 to all cases

where diagnosis i is the true diagnosis, and 0 to all cases where it is not.

These plots are shown for all diagnoses in Figures 5.28. We see that in general, the

probabilities estimated by our method are fairly reliable. For most diagnoses the curves

start high, indicating a small number of patients confidently predicted, but then fall quickly,

indicating much more uncertainty about the diagnosis.

Figure 5.29 shows histograms of the predicted probability of each diagnosis for patients for

whom it is the true diagnosis, and patients for whom it is the false diagnosis. If our method is

good at distinguishing between diagnoses, we should expect to see a good separation between

the two histograms. If the histograms overlap, it indicates that this diagnosis is difficult to

predict. We see that there is some separation. In many cases, most predicted probabilities

are close to zero, indicating a rare diagnosis. In some cases, the data are sufficient to increase

the probability of the diagnosis, but in many cases, we are unable to overcome the low prior

probability of the diagnosis.

5.6 Producing a shortlist of diagnoses

In order to more efficiently present our predictions to the physician, instead of providing the

posterior probability for each diagnosis, it is more convenient to only provide the physician
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Figure 5.28: The running cumulative average prediction probability for each disease, versus
the running cumulative average of actual probability.
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Figure 5.29: The histogram of prediction probability between true cases and false cases for
each disease.
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with the most plausible diagnoses. To do this, we rank the diagnoses from highest to lowest

posterior probability, then present the physician with the top-ranked diagnoses. A natural

choice is to present enough diagnoses to ensure that the total predicted probability for the

listed diagnoses exceeds a certain threshold (e.g. 95%). We can think of this as being like

a 95% confidence interval. The length of this shortlist will vary between patients: in some

cases only a single diagnosis will be given, for very clear-cut cases; in other cases where the

diagnosis is very unclear, the list may contain a large number of diagnoses.

Table 5.4 shows the number of diagnoses in this list for each patient from the test data,

and the corresponding coverage. The average number of diagnoses in the list is 7, but the

length varies, with quite a few easy cases providing a short list, and some difficult cases

producing a much longer list. Because the length of the list must be an integer, we cannot

perfectly achieve 95% predicted coverage, but we see that the actual predicted coverage is

close to the target percentage. We also see that the true coverage of the list is slightly

higher than the predicted coverage, indicating that our method slightly overestimates the

probability of unlikely diagnoses. This means that our list is slightly conservative, including

more diagnoses than might be necessary.

This approach is based entirely on the predicted probability, with no consideration of the

cost of different misdiagnoses. For future work, we should consider modifying the ranking to

incorporate the clinical importance of different diagnoses. For example, it may be better to

rank a less likely but more severe diagnosis above a more likely but less dangerous diagnosis,

because of the greater cost of overlooking the severe diagnosis.

5.7 Conclusion

From the three evaluations of our model, we are confident in its ability to solve the huge

difficulties of block missing and unbalanced multi-class classification. With the use of hi-

erarchical tree structure, stagewise model combination and MLP ensemble techniques, it

provides high prediction accuracy for possible diagnosis.

We have tried many different machine learning models to explore the optimal potential

using hierarchical tree structure and model combination technique. Table 5.5 shows the

prediction accuracy from different kinds of models and what techniques they employed.

The results indicate that using hierarchical tree structure, stagewise model combination and

multilayer perceptron (MLP) ensemble leads to the highest accuracy. The top 1 accuracy is
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Table 5.4: The number of most likely diagnoses for each patient for their true diagnosis to
be included with an estimated probability of 0.95

Estimated No. to cover 95% Frequency Average Posterior coverage Actual coverage probability
1 552 0.955 0.960
2 1426 0.954 0.971
3 2114 0.959 0.964
4 2730 0.959 0.966
5 2966 0.957 0.960
6 3199 0.956 0.962
7 3222 0.956 0.962
8 2224 0.954 0.963
9 2886 0.955 0.962
10 1609 0.953 0.966
11 1083 0.954 0.972
12 680 0.953 0.982
13 427 0.953 0.977
14 195 0.953 0.969
15 89 0.953 0.978
16 31 0.953 0.968
17 5 0.953 1.000
18 2 0.954 1.000
19 1 0.954 1.000

56.7%, and top 5 accuracy is up to 91.2%, which illustrates a significant improvement of the

prediction accuracy.

Table 5.5: A summary of the different approaches attempted

Approaches Top 1 Top 3 Top 5
Tree + Extratree ensemble, without model combination 51.0 % 80.5 % 90.8 %
Tree + original model combination 52.4 % 80.5 % 90.8 %
Tree + original model combination + MLP ensemble 47.6 % 77.3 % 83.6 %
Tree + stagewise model combination + MLP ensemble 56.7% 81.7% 91.2%

To evaluate the performance of our classification model, in addition to cumulative pre-

diction accuracy, we apply three different measurements. First, we compare the running

cumulative average prediction probability for each disease, versus the running cumulative

average of actual probability. This indicates how well the model is performing on that par-

ticular diagnosis. If the classification model is accurate, the curve will drop slowly and exhibit

no systematic difference. This provides a means of indicating the diagnoses for which the

model prediction is inaccurate. The second way to evaluate whether the estimated posterior
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probability is close to the truth, is by comparing the histogram of prediction probability

between true cases and false cases for each disease. The bigger deviations or less overlaps

between two histograms indicate better classification performance. These two measurements

indicate that our model exhibits stable performance across all diseases without significant

deviations. Third, instead of using the first k assignments to assess the accuracy, we re-

port how many diagnosis are needed to cover 95% posterior probability. Having a flexible

length for the list of plausible diagnoses ensures that we only present plausible diagnoses

to the physician. The length of this list is an indication of how confident we are about the

predicted diagnoses. A long list indicates uncertainty over the true diagnosis.

For future work we will incorporate the clinical importance of different diagnoses into the

ranking. It may be better to rank a less likely but more severe diagnosis above a more likely

but less dangerous diagnosis because of the greater cost of overlooking the severe diagnosis.



Chapter 6

Discussion

This thesis has two major contributions. First, we provide a model combination method

to deal with cases where large blocks of the data are missing. We study the asymptotic

behaviour of the method for linear regression, and show that using the incomplete data

improves prediction accuracy over complete case analysis. In our experiments, the model

combination method improved the prediction accuracy on both simulations and real data

examples. Some advantages of our method: (1) All subjects, so long as at least one of the

block of predictors is available, can be used for the model combination method, and all

predictors can contribute to the model; (2) the difficulty of guessing unknowns is bypassed,

as the model combination method is only based on the data available; (3) computation time

is shorter for Plug-in estimation. In future work, we will assess more thoroughly how well

the model combination method works on problems with multiple missing blocks.

The second contribution is applying this model combination method and a hierarchical

tree structure on diagnoses to develop an automated diagnosis assistance tool for emergency

department abdominal pathology data. Our automated diagnosis tool will provide clinicians

with the most likely diagnoses with high accuracy. In future work, we will not only output

a posterior probability vector for the diagnoses based on the currently available variables,

but plan on using our model to predict how much a particular additional test results would

improve our ability to diagnose a particular patient. This can be used to help the physician

decide which additional tests (if any) to order. We also plan to extend our method to all

diagnoses in the emergency department, not just ones associated with abdominal pathology.
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