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ABSTRACT 

Despite the advances in modern technology, one of the most challenging tasks remains the 

identification of stressed and/or diseased crops at the field scale. A wide range of precision 

agriculture (PA) technologies with the integration of remote sensors, Global Positioning System 

(GPS) and Geographic Information System (GIS), are continuously serving the agriculture 

industry. Though PA technologies are still evolving, there are some limitations to efficiently apply 

PA solutions at the field scale, including high computational cost, high complexity, low image 

resolution, and low GPS accuracy. While Field Programmable Gate Array (FPGA)-based flexible 

hardware solutions can be a cost-effective and simple alternative to the current multiprocessor 

systems, it is not widely used in PA. On the other hand, Real-time Kinematic GPS (RTK-GPS) 

provides the opportunity to achieve cm level accuracy for geographical data collection purposes. 

Therefore, this study is based on the integration of FPGA-based real-time image processing 

system, along with highly accurate RTK-GPS data to develop a real-time crop monitoring system. 

The result is a decision support system that delivers a heat map to the end-users based on the 

intensity of the detected parameter from the field of interest to assist in site specific farm 

management solutions. Through this study, the developed system proved its potentiality to resolve 

some of current PA limitations to provide on-the-spot decisions by combining FPGA-based image 

acquisition and processing along with high positional accuracy. 

 

Keywords: Real-time, image processing, FPGA, RGB, RS232, and color ratio filter, G-ratio, 

RTK-GPS, high-resolution, accuracy, heat map. 
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CHAPTER 1. INTRODUCTION  

The global population has been increasing, whereby it has grown from 1.65 billion to 6 

billion during the 20th century alone (Worldmeters, 2019). The latest report from the Food and 

Agriculture Organization (FAO) regarding food security and nutrition has shown an increasing 

trend for the number of people affected by hunger around the world since 2014 (FAO, 2021). 

Furthermore, based on the Food Insecurity Experience Scale (FIES), there has been an increase of 

49.2 million undernourished people from 2014 to 2018, (FAO, 2021).  

While global food insecurity is a major concern, there has been a growth in the overall 

amount of cropland that has been recorded in Canada (Statistics Canada, 2018). Furthermore, 

traditional methods of cultivation using manual labor has become expensive due to the increased 

average hourly wage rate for workers in sectors related to natural resources and agriculture (i.e., 

the average hourly wage rate in Canada for workers in natural resources, agriculture and related 

production has increased to 32.08% in the last decade; Statistics Canada, 2021). Consequently, the 

majority of farm operators (55 years and over) in Canada has been using various technologies for 

their farm operations (Statistics Canada, 2017). In addition, the proportion of farms in Canada 

using computers and/or laptops for farm management has also increased (Statistics Canada, 2018). 

Feeding the rising population has become a challenge for the crop industry; yet the global 

agricultural employment has reduced from 44% to 28% during 1991 to 2019 (Worldbank, 2019). 

This indicates the need for precision agriculture (PA) technologies, such as Global Positioning 

System (GPS), Geographic Information System (GIS), miniaturized computing, advanced 

information processing, and telecommunications to facilitate reduced agricultural inputs, higher 
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resource efficiency, and sustainable agricultural management using digital technologies (Zhang et 

al., 2002). Sustainable crop production intensification has been providing a great support for the 

crop production optimization per unit area (FAO, 2021). For instance, the Integrated Weed 

Management (IWM) techniques have applied a diverse suite of weed control methods, such as 

grazing, herbicide application, land fallowing, and biological control, to reduce crop losses due to 

weeds (FAO, 2021).  

Technological innovation in the agriculture sector have included agricultural robots or 

‘agrobots’ (Valle, 2020). This technology can be equipped with automated, variable rate (VR) 

sprayers with the integration of controllers, computer systems, and remote sensing devices, such 

as ultrasonic sensors and mounted cameras for the site-specific application of agrochemicals in 

wild blueberry fields (Esau et al., 2014). The agriculture sector is currently being served by PA 

and remote sensing technologies to support weed mapping, vegetation growth monitoring, crop 

health assessments, irrigation management, yield estimation, and crop spraying by offering easy, 

fast, and cost-effective solutions (Tsouros et al., 2019). However, imagery has been the most 

common part of these PA technologies, whereby Esau et al. (2014) used digital color cameras to 

determine plant leaf areas for spot application of fungicide; Rehman et al. (2018) developed an 

image acquisition Graphical User Interface (GUI) system to control the spray nozzles of a VR 

sprayer for agrochemical savings during spot application; and Dorj et al. (2017) used digital color 

camera to detect orange color for yield estimation in citrus orchards. 

Farmers need faster processing and real-time actionable information about their field 

analyses (Myers, 2020). For this reason, they require a feasible PA imaging technology to ensure 

the optimal use of their agricultural inputs for maximum crop growth while minimizing money 
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and time (Ling & Bextine, 2017). Processing speed and cost-effectiveness may be some of the 

major obstacles for current PA image processing techniques to be applied in real-time at the field-

scale (Burgos-Artizzu et al., 2011).  

As a part of current reconfigurable computing technology, field programmable gate array 

(FPGA) is an ideal approach for image processing applications (Ramirez‐Cortes et al., 2013) with 

its high processing speed, inherent parallelism of running multiple tasks simultaneously, and cost-

effectivity (Ramirez‐Cortes et al., 2013; Johnston et al., 2004; AlAli et al., 2014; Price et al., 2006; 

Zhai et al., 2011). Therefore, the main goal of this study is to address the current PA limitations of 

computational complexity and develop cost-effective efficient solutions for field-scale farm 

management applications. 

The remainder of this thesis is organized as to discuss about the literature review of current 

image processing trends in PA including FPGA in chapter 2. Chapter 3 mentions the research 

objectives and Chapter 4 describes the materials and methods of this study including the 

experimental test setup. The outcome of the developed system and the test results are described in 

chapter 5 along with the necessary discussion. The last chapter of this dissertation is the summary 

of this research as a conclusion. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Automation in Agriculture 

The agricultural sector has been increasingly challenged to feed the rising population, 

where there is a clear need for the optimization and sustainable intensification of global crop 

production (FAO, 2021). However, the conventional means of agriculture rely upon manual labor, 

which is not only physically intensive (Statistics Canada, 2018), but also expensive (Statistics 

Canada, 2021) to carry out. During this digital era, agriculture has continued to evolve toward the 

use of data-driven technologies, often involving the use of GPS, GIS, and PA to inform seeding 

and harvesting practices, as well as the application of agricultural inputs (Statistics Canada, 2017). 

 

Fig. 2.1: Automation in agriculture (variable rate sprayer; Esau et al., 2014). 

PA constitutes a suite technology that can capture and analyze field data to inform the 

targeted management of farms while increasing cost-efficiency and productivity and minimizing 

environmental impacts (Tsouros et al., 2019). For example, the real-time and site-specific 

management of the cultivated lands can lead to productivity growth by using PA technologies for 
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the targeted application of agrochemicals at optimal frequencies and amounts (Tsouros et al., 

2019). Among the evolution of various technologies for agricultural automation, image processing 

is a tremendous inclusion to understanding the insights of the field parameters. 

2.2 Image Processing in Agriculture 

One important area of research in PA involves digital image analyses, which provides the 

means to detect, recognize, and describe objects to support management decisions (Schellberg et 

al., 2008). These image processing techniques are often based on the color, shape, and geometric 

features of target objects (Saxena & Armstrong, 2014; Vibhute & Bodhe, 2012). Depending on 

the need to acquire real-time farm data, the techniques for digital image analyses may be used in 

applications, such as crop row detection, canopy measurement, weed detection, fruit sorting and 

grading (Saxena & Armstrong, 2014; Vibhute & Bodhe, 2012). Digital image analyses also play 

an important role for monitoring the plant growth and fruit defects, and the measurement of 

vegetative indices (Saxena & Armstrong, 2014; Vibhute & Bodhe, 2012). 

The use of image processing techniques might be incompatible for some real-time field 

applications due to the limitations caused by computational time (Burgos-Artizzu et al., 2011) that 

leads to the urgence for local processing during the collection of images (Saddik et al., 2021). For 

example, based on color, shapes, and texture analyses, the discrimination of crops and weeds may 

be computationally complex and unsuitable for real-time field applications (Burgos-Artizzu et al., 

2011; Saddik et al., 2021). Despite the fact that image processing is a significant technology for 

crop monitoring purposes, the analytical incompetence of this technique becomes a tough part for 

real-time remote sensing purposes (Saddik et al., 2021). 
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2.3 Real-time Remote Sensing Imagery 

Through managing, analyzing, and processing a large amount of farmland data, PA has 

been providing farm management services to help farmers in decision-making (Zhang, 2016). 

These services have included the delineation of management zones for VR operations and crop 

health monitoring (Zhang, 2016). With the help of real-time remote sensing imagery (though the 

primary idea of this research was the development of an image processing technique to mitigate 

the analytical incompetence of real-time remote sensing imagery, due to time limitation, the 

developed technique has been tested using a ground-based monitoring system rather than aerial 

monitoring system), crop health monitoring has been assisting in identifying the affected crop 

areas due to insects, weeds, fungal infestations, or weather-related damage (Al-Gaadi et al., 2016; 

Statistics Canada, 2015). Here, remote sensing imagery, often serves as a source of data to support 

PA (Zhang, 2016). To provide PA farm management solutions to the farmers, not only the 

spatiotemporal data collection, but also the data processing, analysis, management, and storage are 

important (Zhang, 2002). 

To generate quantitative PA mapping products, geometric and spectral processing are often 

applied on the remote sensing imagery (Guo et al., 2012). Guo et al. (2012) found that the crop 

growth status can be monitored by following the vegetation indices along with the state-of-art GPS 

location information from the crop stress maps. In addition, the real-time remote sensing data can 

lead to improved decision-making in PA if high spatial and spectral resolution data are used 

(Mulla, 2013). Therefore, Real-time control over the farmlands has been maintained using the 

latest high-performance multiprocessor data computing systems, such as clusters of networks of 

central processing units (CPUs; Caballero et al., 2020). However, the time gap between data 
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acquisition and crop information distribution, has become a critical factor for real-time crop 

management or damage prevention (Statistics Canada, 2015). 

To address this limitation, a study proved that FPGA-based, on-chip systems can respond 

to the real-time constraints of a monitoring system by providing high resolution, consuming less 

energy, improving processing time, and the number of images processed per second compared to 

the conventional CPU/GPU-based systems (Saddik et al., 2021). For instance, Kestur et al. (2010) 

tested the performance and energy efficiency of the FPGA, CPU, and GPU based on the basic 

linear algebra subroutines, where FPGAs offer comparable performance as well as 2.7 to 293 times 

better energy efficiency among all three platforms. Hence, FPGAs are an easier alternative to these 

multiprocessor systems for real-time onboard processing of remotely sensed data (Gonzalez et al., 

2011), that has not been applied on the crop monitoring purposes yet. Therefore, to fill the gap 

between the computational efficiency of remote sensing imagery and real-time crop management, 

this study focuses on the integration of FPGA-based image processing in agricultural crop 

monitoring purposes using remote sensing. 

2.4 FPGA-based Image Processing in Agriculture 

An FPGA is composed of multiple logic blocks connected with programmable interconnect 

that allows users to implement multi-level logics (Trimberger, 1994). On-board, processing 

systems, based on FPGAs are reconfigurable, low-cost, and lightweight, which might be used for 

real-time object identification and tracking (Ramirez‐Cortes et al., 2013; Johnston et al., 2004; 

MacLean, 2005; Bannister et al., 2005; Price et al., 2006). FPGAs are flexible, whereas a wide 

range of devices are integrated together to reduce the amount of hardware and increase the cost-

effectiveness of the system (MacLean, 2005). Furthermore, FPGAs are also described as 
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reconfigurable hardware because the same device can be reused by downloading a new program 

for different purposes (Ramirez-Cortes et al., 2013). FPGAs only require hours to carry out the 

design-implement-test-debug cycle; in comparison, application-specific integrated circuit designs 

require days to complete all the processing (MacLean, 2005; Bannister et al., 2005). This also has 

the ability to implement parallel processing that ensures simultaneous multiple local operations, 

which is necessary for image processing techniques (MacLean, 2005; Price et al., 2006). 

 

Fig. 2.2: Potential advantages of using FPGA in remote-sensing data processing (Gonzalez et al., 2011). 

FPGA implementations do not have widespread acceptance in the image processing 

community yet (MacLean, 2005; Seagusa et al., 2008; Asano et al., 2009; Tlelo-Cuautle et al., 

2015), although a few studies have been done on unmanned aerial vehicle-based cars and land 

vehicles identification (Moshnyaga et al., 2008). FPGAs have also been used for real-time, license 

plate localization (Zhai et al., 2011) and human presence detection systems (Moshnyaga et al., 

2008). Though FPGAs have been used in remote sensing (Gonzalez et al., 2011; El-Medany & El-

Sabry, 2008; González et al., 2013), it has not been applied for agricultural applications 

specifically. However, for image processing purposes, FPGAs have been tested on a wide range 

of low-resolution dimensions; for example, 180 × 180 pixels to 600 × 600 pixels (Price et al., 

2006); 128 × 128 pixels (Ramirez-Cortes et al., 2013); 256 × 256 pixels (Bannister et al., 2005); 
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640 × 480 pixels (Cointault et al., 2012; Zhai et al., 2011); and 816 × 600 pixels (Dou et al., 2019), 

while it has the potential to be applicable for high-resolution dimensions. Hence, the development 

of real-time image acquisition and processing system based on FPGA hardware for crop 

monitoring purposes is one of the two major focuses of this research. Another major focus of this 

research is the integration of GPS technology with high positional accuracy, as this is another 

significant part of crop monitoring (Guo et al., 2012). 

2.5 Georeferencing in Agriculture 

GPS and GIS technologies have been integrated with the remote sensing technique to 

determine long-term farm management decisions, such as assessment of tillage systems (Sood et 

al., 2015). For this purpose, comprehensive, georeferenced, real-time, or almost real-time data 

have been the predominant building blocks (Sood et al., 2015). Hence, a farmer may quickly locate 

the problematic area in his field by following the georeferenced data (Statistics Canada, 2015).  

For site-specific crop management decisions, Rub and Brenning (2010) established the 

spatial relationships between geographical data, soil parameters, and crop properties. However, 

georeferencing using a GPS with a positional accuracy of <1 m is needed for monitoring plant 

canopy status, yield mapping, weed mapping, and weed detection techniques to construct the most 

accurate map in VR PA applications (Lamb & Brown, 2001; Zude-Sasse et al., 2016). To address 

this issue, real-time kinematic (RTK)-GPS may achieve a few cm-scale positional accuracy, 

whereby Sun et al. (2010) proved its feasibility through automatically mapping the transplanted 

row crops. Henceforth, to fill the gap of high positional accuracy requirement for crop monitoring 

purposes, this study includes the integration of RTK-GPS along with the FPGA-based real-time 

image acquisition and processing for the basis of real-time crop monitoring. 
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CHAPTER 3. RESEARCH STATEMENT 

3.1 Research Problem 

From the literature review of current image processing techniques in PA, it was found that 

processing images on-board while collecting images has some computational limitations (Burgos-

Artizzu et al., 2011; Sddik et al., 2021; Bhakta et al., 2019). Whereas FPGA hardware provides 

the flexibility to perform both operations on a single processor (Moshnyaga et al., 2008; Zhai et 

al., 2011), it has not been tested for the agricultural crop monitoring applications yet (Gonzalez et 

al., 2011; El-Medany & El-Sabry, 2008; González et al., 2013). Consequently, the application of 

PA farm management solutions in practical field requires more accurate GPS data (i.e., a few 

centimeters positional accuracy) to construct the most accurate map (Lamb & Brown, 2001). 

3.2 Research Objectives 

Therefore, this study proposes a computationally efficient and cost-effective real-time crop 

monitoring system which includes a real-time FPGA-based image processing system that is RFIP 

with high resolution imagery and an RTK-GPS with a few cm positional accuracy. The specific 

objectives of this study are listed below:  

(1) to develop a high-resolution RFIP system; 

(2) to develop a system for transferring the processed image data in real-time;  
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(3) to develop the real-time crop monitoring system that includes an RFIP and an RTK-

GPS to identify plant leaf areas in a Romaine lettuce (Lactuca sativa L. var. longifolia) 

crop field;  

(4) to develop a real-time data collection and post-processing system to find the pixel area 

detected as plant leaf areas;  

(5) to evaluate the performance of the real-time crop monitoring system in lab, outdoor, 

and field environment. 

The research hypothesis of this study are: if the real-time image processing system is 

developed using the reconfigurable and parallel FPGA hardware, the crop monitoring will be 

computationally competent; as well as, if the RTK-GPS with a few cm positioning accuracy is 

added with the real-time image processing, the crop monitoring system will be able to provide the 

most accurate map of the field including crop assessment results. 
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CHAPTER 4. MATERIAL AND METHODS 

To summarize the methods of this study, image acquisition was performed using a mobile 

industry processor interface (MIPI)-based D8M camera board (Terasic Inc.; Hsinchu City, 

Taiwan), with a resolution of 800 × 600 pixels. The captured imagery was processed using a DE2-

115 FPGA development board from the Altera Cyclone IV FPGA family (Intel Inc.; Santa Clara, 

California, USA). Real-time processing utilized various module blocks of the Altera Cyclone IV 

processor, which applied three different color ratio filters, and a threshold filter. The processed 

data consisted of the number of pixels detected, whereby the detected pixel area was transferred 

to another computing device, in real-time, by following a serial communication protocol. The 

performance of the proposed system was evaluated both in the lab, outdoor, and field environment, 

where the real-time data was compared with manually processed images of the same target, 

captured by a digital single-lens reflex (DSLR) camera, as a reference for the lab environment, and 

a web camera, as a reference for the outdoor and field environment. Also, Google Earth Pro 

software (Google Inc.; Mountain View, California, United States) was used to visualize the 

performance of the RTK-GPS. 

4.1 Overview of the Real-time Crop Monitoring System 

The overall functionality of the real-time crop monitoring system is depicted in Fig. 4.1. 

Firstly, the RFIP system is developed with a DE2-115 FPGA board and a D8M camera board to 

acquire and process the real-time images. An RTK high accuracy solution from the u-blox NEO-

M8P-2 module, C94-M8P application board, (u-blox Inc.; Thalwil, Switzerland) is configured for 

an 8 cm accuracy. The RFIP and RTK-GPS are the real-time data collection devices that are 
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combined and referred to as the real-time data collection unit (RDCU) in this study. The data 

collection units were maintained to record data from a ground height of 3.5 ft to 4 ft. One of the 

principal goals of this study was to test the system on a robotic vehicle but due to time limitation 

the RDCU was developed to collect data in a standstill position. Here, one personal computer (PC), 

connected with the output ports of the RDCU, serves as a data storing unit (DSU). The Python 

programming Tool (Python Software Foundation Inc.; Wilmington, Delaware, USA) is installed 

in the DSU to read the RDCU output ports and geotag the real-time field data using the 

AVERMEDIA Live Streamer CAM 313 (AVerMedia Inc.; New Taipei City, Taiwan) web camera 

reference images. To analysis the performance of the RFIP system and visualize the real-time field 

data, the collected real-time georeferenced images are fed to the post-processing unit (PPU). The 

PPU consists of the same PC and programming language as DSU, but the processing does not 

require real-time data acquisition.  

 

Fig. 4.1: Block diagram of the real-time crop monitoring system. 

4.2 Real-Time Data Collection Unit 

One of the major components of this research is the RDCU, which is the prototype of an 

agile, real-time, FPGA-based, and lightweight data collection system. For development and testing 

purposes, the necessary hardware and devices are installed on a horizontal T-shaped wooden 

frame. After installation, the custom-built wooden frame is attached with metal and screw on top 
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of a tripod that has adjustable legs which can be extended to 5 feet in length, as well as rotatable 

in left or right directions.  

The tripod set up includes the following (Fig. 4.2): (1) one of two identical RTK boards, 

which is configured as rover having two antennas global navigation satellite system (GNSS) and 

UCF; (2) the RFIP system consisted of the FPGA board, and D8M camera board to acquire and 

process images; and transfer detected pixel area in real-time; (3) one liquid crystal display (LCD) 

monitor that is connected to the VGA output port of the FPGA development board to display the 

output images following some switching logics; (4) a web camera to geotag the GPS location and 

the detected pixel area; (5) a battery source with a 400 W power inverter to supply power to the 

FPGA device and the LCD monitor; (6) one PC to supply power to the USB web camera, to supply 

power to the RTK rover, and to download the Quartus Prime (Intel Inc.; Santa Clara, California, 

USA) program configuration file to the FPGA board, which is connected to the RS232 serial output 

port of RFIP system; and (7) one blue painted wooden frame having an area of 30 × 22.5 cm to 

maintain a consistent camera projection at a fixed ground resolution over the selected spots. 

 

Fig. 4.2: Overview of the required devices, hardware, and connections for the real-time data collection system. 
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4.2.1. RFIP sensing system  

The Altera Cyclone IV 4CE115 FPGA device, DE2-115 development board was chosen 

as the main controller of the RFIP system (Fig. 4.3). It has a universal serial bus (USB) blaster 

(onboard) port to download programs for specific applications. Furthermore, a part of the 2MB 

static random-access memory (SRAM) and 128MB synchronous dynamic random-access memory 

(SDRAM) memory buffers was used primarily to store the camera sensor outputs that needed to 

be processed. In addition, a few pushbuttons and slide switches were used to control the algorithms 

for image processing. To display the processed image, video graphics array (VGA) and 8-bit high-

speed triple digital to analog converter integrated circuits (ICs) with VGA-out connector were used 

as output pipelines. A Recommended Standard 232 (RS232) transceiver IC with a 9-pin connector 

and flow control were used to transfer the detected pixel area in real-time. Another important 

component of the DE2-115 development board was a 40-pin expansion header with diode 

protection and a General-Purpose Input/Output (GPIO) interface to communicate with the camera 

board. 

 

Fig. 4.3: FPGA development board, DE2-115. 
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The overall functionality of this RFIP system is depicted in Fig. 4.4. Firstly, the system is 

acquiring the real-time camera sensor input by using look-up tables. Following this, the 10-bit 

serial image stream is written to the SDRAM memory buffer and read using an application-specific 

image resolution mask. The read image frame from the memory buffer is then buffered again using 

horizontal and vertical control signals in the SRAM line buffer. Next, a high-level control signal 

is used to convert the raw 10-bit image data from the line buffer into a 24-bit RGB image. To read 

pixels of the image frame, The control signal depends on the VGA clock, vertical synchronization 

signal, and read request control signal generated from the VGA controller system.  

The image processing unit utilized the 24-bit RGB images and processes them in two steps 

by using the R/G/B ratio filter and the thresholding filter. As the image processing system uses 

three different basic color detection algorithms (R-ratio, G-ratio, and B-ratio filters), a switching 

logic was developed with the combination of four switches from the development board to provide 

four different output images. Finally, the processing unit provides two different outputs: the 

original or binary images on the VGA monitor; and the number of pixels, detected as red, green, 

or blue, to the external computing device for data analyses. 

 

Fig. 4.4: Block diagram of the RFIP system. 
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The software packages used to design, program, and extract the image data were needed 

for developing the RFIP system (Fig. 4.5). Once a design was completed, the Quartus Prime (Intel 

Inc.; Santa Clara, California, USA) software was used to generate an SRAM object file (SOF) in 

a file directory. The SOF contains the data for configuring all SRAM-based, Altera devices, 

supported by the Quartus Prime software. The USB blaster circuitry provided the program 

download interface to the Altera device’s processor using a Type A-B USB cable. Finally, the 

FPGA hardware was configured to the developed design by using the Programmer Tool.  

  

Fig. 4.5: FPGA configuration chain using Quartus Prime programmer. 

4.2.1.1. Image Acquisition Unit 

The image acquisition hardware consisted of an 8-megapixel digital camera development 

package (Fig. 4.6), D8M, which included a MIPI camera module and a MIPI decoder that provided 

10-Bit parallel Bayer pattern image data. The MIPI camera module outputs 4 lanes of MIPI 

interface image data, which can be converted to parallel data by passing through the MIPI decoder 

IC to the GPIO interface. The D8M board was connected to the DE2-115 FPGA development 

board via a 2 × 20 GPIO pin connector. Both the MIPI camera module and MIPI decoder of the 

D8M camera were controlled by the FPGA using an inter-integrated circuit (I2C) communication 

protocol. 
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Fig. 4.6: Block diagram of the D8M board. 

The D8M board was equipped with an 8-megapixel MIPI image sensor, OV8865, with a 

lens size of 1/3.2” and pixel size of 1.4 μm × 1.4 μm (OmniVision Inc.; Santa Clara, California, 

USA). The OV8865 sensor acquired image at a 3264 × 2448 pixels resolution, at 30 frames per 

second, with a 70° view angle. It should be noted that the sensor has additional flexibility in 

acquiring imagery at multiple resolutions using windowing and cropping functions, while 

maintaining the corresponding field of view. 

For programming the real-time image acquisition unit, the Verilog programming language 

was used in the Quartus Prime Lite 18.0 software tool. To change the output image resolutions, 

the OV8865 needed to be configured via I2C so the camera could output the desired image format. 

Furthermore, the analog gain, digital gain (i.e., red, green, and blue channel gain), and exposure 

gain were chosen by several experiments and adjustments for the required 800 × 600 pixels 

resolution. The required clock frequency needed for the acquisition of the imagery was determined 

by adjusting the parameters from the Quartus Prime’s IP resources. For this study, an output clock 

of 40MHz was used to achieve the acquisition of 800 × 600 pixels resolution imagery at 40 frames 

per second. 
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4.2.1.2. Image Processing Unit 

The hardware for image processing consisted of the DE2-115 development board. No 

additional hardware was used for the processing except for the image processing filter pipeline 

between the raw image to RGB converter and the VGA display controller. The raw image to RGB 

converter receives 10-bit raw image data output from the D8M camera board and converts that 

into 24-bit RGB images. 

 

Fig. 4.7: DE2-115 development board connected with D8M camera board. 

After establishing the communication between the D8M camera board and the DE2-115 

FPGA board (Fig. 4.7), the raw image data is converted to RGB image data, consisting of three 

different color components: red (R), green (G), and blue (B). Using high-level, logic control 

derived from the VGA display controller module. These three-color components are used to 

display the original RGB image of the object, which is placed in front of the D8M camera board, 

on the VGA display monitor. The image processing unit inputs the 24-bit RGB image data (i.e., 

8-bit R component, 8-bit G component, an 8-bit B component of the color image) and applies the 

color ratio filter (i.e., R-ratio, G-ratio, or B-ratio filter) followed by threshold filter on the R, G, 

and B color components. However, one out of four processing operations: original RGB image; 

binary image of red objects; binary image of green objects; and binary image of blue objects, can 

be performed at a time by following the developed switching logic. A sample of the original object, 

its original RGB image, and the detected binary image is shown in Fig. 4.8. 
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Fig. 4.8: Binary image of the region of interest (ROI) using the color filter and image acquisition hardware. 

Previous studies have used the G-ratio formula: (255 × G) / (R + G + B) for 24-bit RGB 

image analysis from wild blueberry fields for spot-application of granular fertilizer (Chattha et al., 

2014). Therefore, the formula was modified to perform R-ratio and B-ratio filter analysis as 

follows: (255 × R) / (R + G + B) and (255 × B) / (R + G + B), respectively. , A threshold of 

intensity 90 was selected for each of the color ratio filters to produce the binary image with the 

detected area as white by setting the processed R, G, and B output color components (Ro, Bo, and 

Go) at the maximum intensity, 255. Lastly, the final formulas for the real-time image processing 

unit for the three-color detection techniques are shown in Eqs. 1-3: 

𝑅 − 𝑟𝑎𝑡𝑖𝑜: 𝐼𝑓 𝑅 > 0 &
255 × 𝑅

𝑅 + 𝐺 + 𝐵
> 90,  𝑅𝑜 ,  𝐵𝑜 ,  𝑎𝑛𝑑 𝐺𝑜 = 255,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 (Eq. 1) 

 

𝐺 − 𝑟𝑎𝑡𝑖𝑜: 𝐼𝑓 𝐺 > 0 &
255 × 𝐺

𝑅 + 𝐺 + 𝐵
> 90,  𝑅𝑜 ,  𝐵𝑜 ,  𝑎𝑛𝑑 𝐺𝑜 = 255,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 (Eq. 2) 

 

𝐵 − 𝑟𝑎𝑡𝑖𝑜: 𝐼𝑓 𝐵 > 0 &
255 × 𝐵

𝑅 + 𝐺 + 𝐵
> 90,  𝑅𝑜 ,  𝐵𝑜 ,  𝑎𝑛𝑑 𝐺𝑜 = 255,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 0 (Eq. 3) 
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The developed switching logic uses four switches to select one image processing operation 

among four (Table 4.1). For displaying the original RGB image of the ROI, all four switches are 

set to low. To select any of the R, G, and B color detection techniques, switch 3 and one of the 

corresponding switches 0, 1, or 2 should be set to high. 

Table 4.1: Switch control logic for the desired output. 

Index Switch3 Switch0 Switch1 Switch2 Filtered Output 

1 0 0 0 0 Original Color Image 

2 1 1 0 0 Detected Binary Image of Red Object 

3 1 0 1 0 Detected Binary Image of Green Object 

4 1 0 0 1 Detected Binary Image of Blue Object 

4.2.1.3. Real-Time Data Transfer Unit 

The number of pixels detected as R, G, or B, determined from their respective color ratio 

filters was needed to be determined from the system. Each time a pixel from an image frame 

satisfies the specified color detection formula (Eqs. 1-3), the corresponding pixel is modified from 

a color pixel to a white pixel and counted as a detected pixel inside the ROI. When a pixel does 

not satisfy the specified color detection formula, the pixel is considered as black pixel; hence, a 

binary image of the ROI is produced. After completing the real-time processing on one frame, the 

image processing unit provides two types of data for two different outputs. Firstly, the R, G, and 

B components of the binary images that are controlled by the VGA controller are displayed on the 

VGA monitor. Secondly, the total number of pixels counted from an image frame that satisfies the 

specific color detection formula are determined. 

A real-time data transfer unit was developed to transfer the total number of detected pixels 

to an external processor to record the percentage of an area that is detected as R, G, or B. Here, the 

universal asynchronous receiver and transmitter (UART) communication protocol, along with the 
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RS232 standard for serial communication, was used. The Cyclone IV FPGA family was provided 

with the ZT3232 transceiver chip, which was used for the real-time RS232 serial data transfer. 

Therefore, the number of pixels detected inside the ROI for one frame are transmitted via the 

RS232 port of the DE2-115 FPGA board. A field laptop with an Intel® Core™ i7 CPU @2.70 

GHz processor, 4.00 GB RAM, and 64-bit Windows operating system (OS) was used to receive 

the serial pixel data and save the pixel area detected for further analyses. The functional block 

diagram for the real-time transfer unit is explained in Fig. 4.9. 

  

Fig. 4.9: The UART communication channel for real-time data transfer. 

The transmitter software was designed using the Quartus Prime Lite 18.0 programming 

tool in a PC with Intel® Core™ i7-3770 CPU @3.40GHz processor, 16.00 GB RAM, and 64-bit 

Windows 10 OS. For this communication channel, two different modules, Transmit Trigger and 

RS232 Transmitter, were created in the same project directory as the image acquisition and image 

processing units. The detected pixel area from the image processing unit is a six digits number. 

The Transmit Trigger module inputs these six digits as six bytes and sends it to the RS232 Transmit 

module, one by one, and maintaining a one-byte time interval. As the FPGA baud rate was selected 
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as 115,200 for this study, and the UART module was running with a 50MHz clock, one bit required 

(50 × 106) / 115200 = 434 clock pulses. As a result, each byte (8-bits) from the six-digit pixel data, 

along with a start and stop bit, was sent at (8 + 1 + 1) × 434 = 4340 clock pulses apart. Transferring 

the parallel bytes as a stream of serial data was controlled using two flag control registers (e.g., 

buffer control flag and data done flag) to avoid a data overflow error. Consequently, the RS232 

transmitter module sends the received byte to the receiver PC on a bit-by-bit basis by following an 

interval of 434 clock pulses. The receiver software was designed using the Python programming 

language that was installed on the receiver PC by using the Anaconda navigator. The same Python 

programming interface was used to launch several Conda packages, such as Spyder and PySerial.  

4.2.2. RTK-GPS System 

The geolocation information (i.e., latitude and longitude) are an important factor of the 

decision support system that helps end-users to apply site-specific farm management solutions in 

the practical field. From the literature review of current PA solutions, it has been found that the 

accuracy of GPS is within a few meters, which is sometimes inefficient for weed patch 

identification and mapping on a field scale (Lamb & Brown, 2001). Hence, another component of 

this study was to focus on improving the real-time GPS, so the accuracy is within a few 

centimeters. For this purpose, two identical RTK boards from u-blox’s M8 high precision 

positioning module were configured to serve as the RTK rover, and the RTK base station. Each 

board required the following three connections (Fig. 4.10): the GNSS patch antenna that responds 

to the radio signals from GNSS satellites to compute the position; the UHF whip antenna that 

provides maximum flexibility to assess GPS signals in the high-frequency range; and the micro-

USB to provide both the 5-volt supply power and the configuration setup. 
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Fig. 4.10: The C94-M8P application board with necessary connections. 

At first, the RTK base station was configured in the TIME mode by using the self-survey 

in facility of u-center 21.05 (u-blox Inc.; Thalwil, Switzerland) software with the minimum 

observation time of 86,400 sec (1 day) and required position accuracy 0.08 m (8 cm). However, 

the true observation time used to achieve 8cm accuracy was 178,964 sec (2 d, 1 hr, 42 min, 44 

sec). Then, the RTK base station’s radio link port was configured with a baud rate of 19,200. This 

radio link provided radio technical commission for maritime services (RTCM) correction 

messages to the RTK rover for GPS + globalnaya navigazionnaya sputnikovaya sistema 

(GLONASS) GNSS configuration. Once the base station was configured, one of the two identical 

RTK boards were covered inside a waterproof box, which included the waterproof antenna 

connection for both the GNSS and UHF. The waterproof box was installed on the wooden roof of 

the balcony of the treehouse building (45.374856152374974, -63.26396593073179) inside the 

campus area, which was situated at a distance less than 100 m from the selected test field. Finally, 

the RTK rover radio link port configuration with baud rate 19,200 was used to receive the RTCM 

correction messages from the RTK base station.  

During field data collection with the RTK base station running on TIME mode, the RTK 

rover required several minutes to go into primarily RTK FLOAT mode, and finally RTK FIXED 

mode after receiving RTCM corrections and resolving carrier ambiguities. During the data 
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collection time, it was important for the RTK rover to be in the FIXED mode to provide accurate 

latitude and longitude. The functionality of the RTK-GPS is shown in Fig. 4.11. 

 

Fig. 4.11: The communication among RTK base station, RTK rover, and the satellites. 

4.3 Data Storing Unit 

Among the necessary components of this real-time crop monitoring system, the DSU plays 

a significant role in establishing the software communication between the different hardware units 

using the physical ports from the PC (Fig. 4.12). The DSU is a laptop with an Intel® Core™ i5-

8250U CPU @ 1.60 GHz-1.80 GHz x64-based processor running on the Windows 10 64-bit 

operation system. Python is the core programming language used to design and run the DSU to 

accumulate real-time data from the serial output of RFIP hardware, and RTK rover, and then 

geotags them with corresponding reference images of resolution 1920 × 1080 pixels using the USB 

connection with the web camera. The piexif, PIL, cv2, pynmea2, serial, and fractions Python 

packages were used. A free integrated development environment, Spyder from the Anaconda 

navigator desktop GUI, was used to write and run the Python scripts for data accumulation and 

storage. 
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Fig. 4.12: Data storing PC with necessary connections. 

The functional design of the DSU software included two different sub-functions, along 

with the main function. One of the subfunctions was designed to parse the GPS data and organize 

it in the specified format for geotagging with latitude and longitude metadata; whereby another 

was designed to maintain the 1920 × 1080 pixels web camera image resolution while saving the 

georeferenced field images. The main function was designed to read two serial ports (RFIP 

hardware unit and RTK rover) at different baud rates (115,200 and 19,200), which corresponded 

to the specified hardware units; and to run the web camera image stream simultaneously. Finally, 

the detected plant leaf area inside the 30 cm × 22.5 cm wooden frame along with the latitude and 

longitude of that specific plant was geotagged as metadata during the field imagery. The 

georeferenced images of the selected spots were stored in a specified folder on the PC. 

4.4 Post-Processing Unit 

The PPU is needed to provide the farm management decision support results to the farmers. 

In most of the current, real-time, crop monitoring services, this step is time-consuming when 

analyzing field data. However, in this research, the RFIP prototype was developed to not only 

acquire the field images, but also process to the images and deliver the processed result in real-

time. Therefore, the PPU only extracts the image metadata from the georeferenced field images 
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and stores the detected area with the corresponding GPS location in a specified format to be utilized 

by the WVL. 

The PPU consists of the same PC and programming language as the DSU but uses different 

Python packages. The software component of the PPU is simpler than the DSU and was designed 

using only two Python packages: piexif and PIL. Furthermore, the script did not have multiple 

functions or layers. The saved image’s Exif metadata was read and saved as a comma-separated 

value (CSV) file. 

4.5 Performance Analysis and Visualization 

The last section of the design was to analysis the performance of the RFIP system and 

visualize the geographic latitude and longitude collected using the RTK-GPS. For this purpose, 

the georeferenced data from the field monitoring were extracted in a specified format through the 

PPU. The detected pixel areas were compared with the reference data for performance analysis 

and the Google Earth Pro software was used to visualize the geolocations. 

4.6 Testing of the System 

4.6.1. Testing of the RFIP System – Lab Environment 

The experimental setup for the lab evaluation of the RFIP system comprised of the DE2-

115 FPGA development board, D8M camera board, the receiver PC, a VGA display monitor, a 

custom-built wooden frame, one additional DC light source with SMD2835 light-emitting diode 

(Vision Global Media Group Inc.; Waterloo, ON, Canada), and a digital lux meter from 

Aoputtriver® (Fig. 4.14). The wooden frame consisted of a 122 cm × 61 cm base to place the test 
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object on, and a 152.4 cm × 5 cm vertical board to embed the DE2-115 FPGA board along with 

the D8M camera board. 

 

Fig. 4.14: Experimental setup of the RFIP system for lab evaluation. 

To ensure a consistent lighting condition, the DC light and the AC light, installed in the lab 

ceiling, were used. Before testing the system, the same light intensity for each object was ensured, 

which was 600-601 Lux with a room temperature of 21-22°C. For evaluation purposes, several 

objects with different structures were formed using 28 cm × 22 cm color sheets. Here, the colors 

included re-entry red, gamma green, and blast-off blue (Astrobrights Inc.; Alpharetta, Georgia, 

USA; Fig. 4.15). 

  

Fig. 4.15: Different shapes considered for objects to be detected. 
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To test the image processing unit, 16 objects with different shapes were made by resizing 

the three-color sheets (Table 4.2). In this experiment, rectangle (RA), triangle (T), circle (C), 

square (S), diamond (D), and oval (O) shaped objects were used with three different colors (R, G, 

and B) for all (Abbadi & Saad, 2013).  

Table 4.2: Objects formation with shapes and colors for the performance evaluation of R-ratio, G-ratio, and B-ratio 

filter. 

Objects Shapes 

1 a 

2 b 

3 c 

4 a, b, c 

5 d 

6 e 

7 f 

8 d, e, f 

9 a, g, m 

10 b, h, n 

11 c, i, o 

12 a, g, m, b, h, n, c, i, o 

13 d, j, p 

14 e, k, q 

15 f, l, r 

16 e, j, r 

4.6.1.1. Data Collection using the RFIP System 

The RFIP system was mounted at 99 cm above the flat surface of the custom-built wooden 

frame for the data collection, where the different objects were placed for imaging. The D8M 

camera had an 800 × 600 pixels resolution, while the area covered on the ground was 27.5 cm × 

21.5 cm. During the data collection period, 10 sets of pixel data were recorded for each 16 objects 

that resulted in 160 values for each color detection algorithm.  
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The data acquisition software was designed using Python programming language. Python 

script was written using a conditional while loop and a specific color detection formula to record 

10 data samples from one object. The real-time processed data were saved in a text file. 

4.6.1.2. Acquisition of Reference Data 

To compare the performance of the developed RFIP system, a Canon EOS Rebel T3i EOS 

600D DSLR camera with a Canon EFS Lens EF-S55-250 mm f/4-5.6 IS II was used (Canon Inc.; 

Ota City, Tokyo, Japan). During the acquisition of the reference images, the same experimental 

setup as the RFIP data collection was maintained. Here, the F-stop, exposure time, and ISO speed 

of the camera were maintained at f/5.6, 1/30 sec, and ISO-200, respectively. 

After collecting all the reference images, they were cropped and resized to match the ROI 

area and resolution of the RFIP imaging system. Here, the Adobe Photoshop CC 2019 software 

(Adobe Inc.; San Jose, California, USA) was used to make the modifications so they matched the 

27.5 cm × 21.5 cm ground area and the 800 × 600 pixels image resolution.  Finally, all the 

reference images were saved in a file directory for data analyses. Lastly, the Python programming 

language was used to apply the corresponding color detection formulas on the 160 reference 

images to determine the reference pixel areas and save in a text file.  

4.6.2. Testing of the RFIP System – Outdoor Environment 

To evaluate the effectiveness of the RFIP system in the outdoor environment, the system 

was tested at the Agricultural Campus of Dalhousie University, Truro, Canada (45.374°N, 

63.264°W). The data collection unit was placed as stationary unit, which included the following: 
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the RFIP system, installed on the custom-built T-shaped wooden frame and placed on top of a 

tripod; the battery and inverter to supply power; the PC to store collected data; the live streamer 

CAM 313 (PW313) 1080p web camera (AverMedia Inc.; New Taipei City, Taiwan) to collect the 

reference images; and other necessary cables (Fig. 4.16). The D8M camera was placed 29 cm 

down from the tripod top, and 121 cm above the object, and the web camera was placed 82 cm 

down from the tripod top and 68 cm above the object. Two legs of the tripod were 152.4 cm, and 

one was 139.70 cm in length. The size of the container that carried the objects was 34.29 cm × 

29.21 cm, and the wooden frame used to maintain 800 × 600 pixels image resolution of the RFIP 

system from 121 cm was 30 cm × 22.5 cm, in size. 

The date by which the system was tested was selected based on the weather conditions. 

The test occurred on a day with a clear, and bright day with a temperature of 15°C, a wind speed 

of 17 km/h, a humidity of 72%, and an atmospheric pressure of 100.6 kPa. A location was selected 

where there was consistent shade and lighting intensity of 3900-4000 Lux. 

 

Fig. 4.16: Field data collection setup to validate RFIP system in the outdoor environment. 
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For data collection purposes, 22 Romaine lettuce live plants were collected from the field 

and placed inside the container having soil on the same data collection date to create a field 

prototype and avoid system movements in the primary validation stage. From each plant using the 

python programming tool, a total of 10 data samples were collected as the RFIP detected pixel 

area using the G-ratio detection formula, and 10 reference images using the web camera. Finally, 

220 processed data from the RFIP system were saved in a text file. Next, the 220 reference images 

were cropped by using the custom-built blue frame to match with the same ground resolution as 

the RFIP system and processed using the same formula as used by the RFIP system to detect plant 

leaf area, to generate the same set of 220 reference data for performance evaluation. A sample of 

object detection procedure is pictorially depicted in Fig. 4.17. 

 

Fig. 4.17: Sample of object selection and detection technique. 

4.6.3.  RTK-GPS Accuracy 

The experiment performed in this case was to check the accuracy of the RTK-GPS system 

in the 8 cm scale by collecting the real-time geographic locations from the selected spots. Though 
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the total system needed to be carried and placed on the selected field points, the data were recorded 

in the stationary mode to avoid human errors. 

To see the positioning accuracy of the RTK rover at 50 cm, 30 cm, 25 cm, and 20 cm after 

responding to the correction messages from the RTK base, four spots were selected (Fig. 4.18) 

within 50 m distance from the RTK base station. The GPS data of RTK rover were recorded using 

u-center 21.05 GNSS evaluation software, ensuring the FIXED status on the rover. Later, Google 

kml files were generated from the four recorded data files using the u-center software to visualize 

the recorded GPS data on a real-time Google map through Google Earth Pro software. 

 

Fig. 4.18: The test spots (with scale to assist measurements) for RTK rover's 8 cm accuracy evaluation. 

4.6.4. Testing of the Real-time Crop Monitoring System 

To test the real-time crop monitoring system, Dalhousie University’s Demonstration 

Garden (45.3755°N, 63.2631°W) was used as a testing site, which was located within the 100 m 

range of the RTK base station. For the field experiment, 21 Romaine lettuce plants were selected 

from three crop rows (7 plants in each row; Fig. 4.19). Due to the automatic exposure control 
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limitation of the RFIP system, field data was acquired when the weather status showed conditions 

that were clear, mainly sunny, or with few clouds. To avoid the effects of cloud on the plants and 

maintain a consistent brightness during the data collection period, an umbrella was used to provide 

shade for all the sample points. Accordingly, the analog gain, digital gain, and exposure gain 

parameters were chosen to deliver the best detection results under the sun with shading provided 

by the umbrella. 

 

Fig. 4.19: Selected site for field data collection inside the Dal-AC. demonstration garden. 

According to the primary outdoor data collection prerequisites from the RFIP system’s 

evaluation in the outdoor environment, several important factors were considered during field data 

collection. Firstly, by keeping track of the weather status, a mainly sunny day was chosen 

(temperature: 4°C; wind: 14 km/h NW; wind gust: 30 km/h). Secondly, a large outdoor umbrella 

(7.5 ft), and a small rain umbrella were chosen to create a consistent shade and mitigate the cloud 

effects over the plant areas. For the field evaluation, the RTK-GPS was added with the RFIP 
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system. The complete system (Fig. 4.20) was moved and adjusted by changing the lengths and 

angles of the tripod’s three legs to maintain the same ground resolution of 30 cm × 22.5 cm with 

800 × 600 pixels image resolution for each of 21 data points. From each data point, a total of 7 

samples were collected which resulted in a total data set of 147 samples. 

 

Fig. 4.20: Field data collection setup for the validation of real-time crop monitoring system. 

The field data were collected from two serial outputs: the latitude and longitude with the 

RTK rover in FIXED mode; and the pixel area detected as a plant. These data were geotagged as 

image metadata with the web camera reference image of corresponding data points by maintaining 

1920 × 1080 pixels resolution to facilitate the cropping and resizing of the reference images to 

match with the RFIP imagery. The cropped and resized reference images were processed to find 

147 reference pixel areas using the NumPy and cv2 packages in Python. The Python script was 

written to perform mathematical operation on the reference images, pixel by pixel by following 

the G-ratio formula.  
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After the field monitoring, the RFIP data and the RTK-GPS data were extracted from the 

geotagged reference images and saved as a CSV file. The RFIP data from the CSV file were 

compared with reference data collected using the web camera for the performance evaluation. On 

the other hand, the latitude and longitude values from the CSV file were used by the Google Earth 

Pro software to visualize the selected data points for field evaluation on the Google map. 

4.7 Performance Evaluation of the System 

4.7.1. Performance Evaluation of the RFIP System in the Lab and the Outdoor 

Environment 

The DSLR and Web Camera imagery were used to compare and evaluate the performance 

of RFIP system, as these two image acquisition sources have been widely used in real-time image 

processing systems over the past few years (Das, 2020; Rehman, et al., 2018; Shin, et al., 2020). 

Since this research focused on providing cheaper, faster, and reliable real-time image processing 

system alternative, the performance of the developed system was compared with high end image 

acquisition systems. Statistical analysis related to the acquired data were carried out in Minitab 19 

(Minitab Inc., State College, Pennsylvania, USA), Excel (Microsoft Inc.; Redmond, Washington, 

USA) and Python. Basic statistical analysis was performed to evaluate the developed system, 

whereby the mean, standard deviation (SD), and the percentage root mean square error (RMSE) 

of the detected pixel area (Eq. 4) were the main metrics for comparison. 

(%𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸 𝑖𝑛 𝑃𝑖𝑥𝑒𝑙

𝑇𝑜𝑡𝑎𝑙 𝑃𝑖𝑥𝑒𝑙 𝐴𝑟𝑒𝑎 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑
× 100%) (Eq. 4) 
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For the lab evaluation of the RFIP system, there were 10 samples per 16 objects, resulting 

in a total of 160 samples from the RFIP system and 160 samples from the DSLR reference system 

for each of the three corresponding ratio algorithms. The RFIP data and DSLR data were averaged 

using 10 samples for each object in a total of 48 combinations were computed for the RFIP data 

and DSLR data respectively including three color ratio algorithms (16 × 3 = 48). For the outdoor 

evaluation of the RFIP system, there were 10 samples per 22 plants, resulting in a total of 220 

samples from the RFIP system and 220 samples from the web camera reference system. The RFIP 

data and web camera data were averaged using 10 samples for each plant to get 22 samples for 

each system. These data were analyzed and compared using the G-ratio algorithm for the real-time 

detection in the outdoor environment. 

The detected areas determined from the RFIP system were correlated with the areas 

detected using the DSLR and the web camera via regression analysis. Lin's concordance 

correlation coefficient (CCC) from the lab and outdoor test results were calculated and used to 

measure the accuracy between the RFIP data and the reference data (Lin, 1992). For hypothesis 

testing, Lin (1992) indicates that rather just testing whether CCC is zero, it is more logical to test 

whether CCC is greater than a threshold value, CCC0. The threshold was calculated using the 

following equation (Eq. 5), where Xa is the measure of precision (calculated using the formula 

mentioned in Eq. 6, where υ and ω were the functions of mean and standard deviation), ρ2 

represents the R-squared achieved when the RFIP data was regressed on the reference data, and d 

is the % loss in precision that can be tolerated (Lin, 1992).  

𝐶𝐶𝐶0 = 𝑋𝑎√𝜌2 − 𝑑 Eq. 5 
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𝑋𝑎 =
2

𝜐2 + 𝜔 +
1
𝜔

 
Eq. 6 

This is analogous to a non-inferiority test of CCC. The null and alternative hypotheses are 

H0: CCC≤CCC0 (there is no significant concordance between the RFIP data and the reference 

data) and H1: CCC>CCC0 (there is a significant concordance between the RFIP data and the 

reference data). If CCC>CCC0, the null hypothesis is hence rejected, and the concordance of the 

new test procedure is established. Also, the RMSE was calculated and used to compare the 

performance of the RFIP system with the reference systems using same algorithms. As the RFIP 

system was a combination of image acquisition and image processing systems, the reference 

images acquired were processed pixel by pixel using Python by applying the same algorithms used 

in the RFIP system’s image processing unit. 

4.7.2. Performance Evaluation of the RFIP System in the Field Environment 

To evaluate the RFIP system during the field trial, the same analytical tools and metrics 

were used. Before the performance comparison of the RFIP system with the web camera reference 

system from the field experiment, an empirical correction factor was used on the RFIP detected 

areas, to compensate for the effects of illumination conditions, observation geometry, and 

atmospheric phenomena on the spectral signatures of objects (Teillet, 2007). An empirical 

correction factor can be applied on a data set to provide the best estimate of the acquired data with 

a minimized error (Davies, 2001). Here, an empirical correction factor of 0.6 was used to find the 

corrected RFIP area from the detected RFIP area during field trial (Ogier et al., 2007).  
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For the field evaluation of the RFIP system, there were 7 samples per 21 plants, resulting 

in a total of 147 samples from the RFIP system and 147 samples from the web camera reference 

system. The RFIP data and web camera data were averaged using 7 samples for each plant to get 

21 samples for each system. The data were analyzed and compared using the G-ratio algorithm for 

real-time detection in the field environment. The detected areas in pixels collected using the RFIP 

system were corrected using the selected empirical correction factor and the corrected RFIP areas 

were correlated with the areas detected by web camera using regression analysis. Lin’s CCC was 

calculated to measure the accuracy between the corrected RFIP data and the reference data in the 

field environment. For the hypothesis testing, the CCC was compared with the CCC0 as stated in 

section 4.7.1 from the field test results to find the significant concordance between the corrected 

RFIP data and the reference data in the field environment (Lin, 1992). To compare the field 

performance of the RFIP system, RMSE was also calculated and used. The reference images 

acquired from field monitoring were processed pixel by pixel using Python by applying the same 

algorithm used in the RFIP system’s image processing unit. 
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CHAPTER 5. RESULTS AND DISCUSSION 

5.1 Results 

The results of the prototype were the plant leaf areas detected from the ROIs and the 

corresponding geolocations of the selected spots from field monitoring. The geographic locations 

of all selected points along with the detected pixel areas on those locations were geotagged during 

field monitoring by using the real-time crop monitoring system. The geolocations were acquired 

using the RTK-GPS with 8 cm positional accuracy and the detected pixel areas were acquired 

using the serial data transfer module of the RFIP system. The geotagged data were extracted from 

the field images during post-processing for the performance evaluation and visualization. The 16 

color objects were selected for lab experiment, 22 Romaine lettuce plants were selected for outdoor 

experiment, and 21 Romaine lettuce plants were selected for field experiment.  

5.1.1.  Experimental Results of Lab Evaluation 

The outputs of the RFIP system from the lab experiment consisted of the number of pixels 

detected as R, G, or B by applying color detection algorithms. The detected pixel areas were 

compared with the pixel areas detected from the reference images captured by the DSLR camera 

maintaining the same experimental setup as the RFIP system. The numerical representation of the 

complete data with all the resulting numbers is shown in Table 5.1 for the three ratio filters.  
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Table 5.1: Number of pixels detected from the ROI area along with the SD for 16 objects using three-color ratio 

filters. 

Object/ 

Algorithm 

Red Ratio Green Ratio Blue Ratio 

RFIP Data DSLR Data RFIP Data DSLR Data RFIP Data DSLR Data 

1 
134151.80± 

834.41 

130136.40± 

585.13 

129375.30± 

117.15 

128983.70± 

416.84 

125053.40± 

224.35 

128860.60± 

522.42 

2 
95945.29± 

559.21 

90020.60± 

433.29 

91250.84± 

180.95 

89730.70± 

430.43 

87393.63± 

210.37 

89642.60± 

243.12 

3 
83379.30± 

724.86 

76736.70± 

239.39 

78565.35± 

58.75 

76243.10± 

185.45 

73506.82± 

4204.90 

76120.40± 

226.45 

4 
85048.98± 

150.66 

77680.10± 

242.57 

80049.29± 

112.62 

77401.80± 

491.16 

75687.72± 

123.49 

77395.10± 

346.25 

5 
88135.14± 

544.02 

80491.30± 

316.36 

83603.98± 

257.07 

80598.40± 

213.01 

79938.65± 

408.07 

81393.40± 

466.21 

6 
58291.06± 

846.56 

49540.60± 

403.84 

54033.82± 

74.60 

50168.00± 

137.73 

48966.72± 

85.94 

49049.80± 

141.46 

7 
52463.82± 

936.82 

43343.50± 

314.96 

47350.33± 

49.76 

43074.30± 

197.56 

43262.76± 

82.77 

42958.90± 

143.41 

8 
177685.10± 

456.34 

173227.40± 

594.43 

174745.90± 

640.63 

173506.00± 

705.79 

169075.20± 

1092.86 

173244.60± 

703.39 

9 
33582.16± 

664.40 

23505.40± 

153.50 

28999.28± 

206.07 

23541.60± 

112.58 

24382.31± 

182.88 

23467.50± 

131.55 

10 
42318.15± 

1218.94 

29399.40± 

285.42 

35727.60± 

69.68 

29252.10± 

104.37 

30478.85± 

296.90 

29380.90± 

193.23 

11 
36895.99± 

1985.01 

24987.20± 

642.13 

30869.18± 

342.36 

24572.70± 

120.14 

25698.35± 

321.88 

24722.00± 

92.57 

12 
87487.72± 

1109.38 

77107.80± 

471.15 

81759.20± 

940.22 

76909.40± 

356.59 

76172.50± 

311.27 

77492.80± 

352.62 

13 
90208.14± 

521.19 

80244.90± 

337.83 

84924.05± 

518.82 

80535.10± 

343.73 

79265.16± 

1394.427 

81525.50± 

522.96 

14 
60431.49± 

750.09 

49255.30± 

187.37 

54687.74± 

278.97 

49952.10± 

287.92 

48963.39± 

1543.55 

48928.50± 

198.09 

15 
53714.00± 

271.81 

43303.30± 

246.39 

48004.31± 

397.67 

43184.10± 

143.53 

43602.31± 

993.33 

43300.30± 

224.30 

16 
60697.53± 

74.67 

49413.80± 

241.26 

84488.80± 

844.14 

80210.20± 

343.71 

44202.75± 

248.94 

43158.60± 

164.38 
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From the statistical analysis, the variability in SD of the 16 objects from RFIP system was 

found to be considerably low (0.074%<SD<5.72%), which implied the consistent behavior of the 

imagery system. Thus, during the lab trials using the controlled luminance conditions (600-601 

Lux) with a constant height from the objects, the RFIP system performed well in terms of plain 

color object detection (See Table 5.2 for the representation of the variation of SD using three 

different color ratio filters). 

Table 5.2: Percentage of deviation for three-color ratio filters. 

Ratio Filter 
SD (% w.r.t the total ROI) 

Minimum Maximum 

Red 0.123 5.38 

Green 0.074 1.15 

Blue 0.163 5.72 

The results from lab evaluation are shown as bar charts in Figs. 5.1, 5.2, and 5.3. The bar 

charts of three different color ratio filters explain the consistent performance of the RFIP system’s 

image sensor compared to the DSLR reference system for R, G, and B color objects detection from 

a defined ROI with minimal noise. 

  

Fig. 5.1: Comparison between pixels detected as red using the RFIP system and the DSLR reference imaging 

system. 
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Fig. 5.2: Comparison between pixels detected as green using the RFIP system and the DSLR reference imaging 

system. 

  

Fig. 5.3: Comparison between pixels detected as blue using the RFIP system and the DSLR reference imaging 

system. 

 The performance of the RFIP system was compared with the DSLR based system for R-

ratio, G-ratio, and B-ratio algorithms using regression analysis. The detected area using the RFIP 

system was found to have a strong correlation with the DSLR imagery-based system 

(RFIP=1.0327 DSLR; R2=0.9956; RMSE=6019.9230 Pixels; n=480; p-value<0.05), which 

implies that the RFIP system could be used to explain 99.56% variability in the area detected using 

the DSLR (Fig. 5.4) with a substantial accuracy (CCC = 0.9873). Also, a 1:1 trend line was 

generated in Fig. 5.4 to visualize the performance of the RFIP system and compare it with the ideal 

system. It was shown that the RFIP system performed considerably well for color object detection 

from a selected ROI.  
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Fig. 5.4: Correlation between ground truth detected area using the DSLR and actual detected area using the RFIP 

system (RFIP=1.0327DSLR; R2=0.9956; RMSE=6019.923 Pixels; n=480; P<0.05). 

The RMSE was used to measure the deviation between the observed area (i.e., pixel area 

detected using the web camera system) versus the predicted area (i.e., pixel area detected using 

RFIP system) using three color detection algorithms (i.e., R-ratio, G-ratio, and B-ratio). Here, the 

RMSE for detected pixel area was only 1.25% of the total pixel area considered, which also 

explains a better fit of the model. From the hypothesis testing using Eqs. 5 and 6, CCC0 is 0.9665 

with a tolerable 5% loss of precision, whereas Lin’s CCC = 0.9873 with the confidential interval 

95% (0.9852; 0.9893). As the lower limit of CCC>CCC0, the test is statistically significant, and 

the null hypothesis is hence rejected. Therefore, the results from the lab trials depicts that the RFIP 

system can be used to predict the area detected using DSLR system. 
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5.1.2. Experimental Results of Outdoor Evaluation 

The outputs of the RFIP system from the outdoor experiment consisted of the number of 

pixels detected as Romaine lettuce plant leaf area by applying the green color detection algorithm. 

The detected plant leaf areas were compared with the detected areas from the reference images 

captured by the web camera, which maintained the same experimental setup as the RFIP system 

(Table 5.3).  

Table 5.3: Number of pixels detected using the RFIP system and the Web Camera imaging system from the ROI 

area along with the SD for 22 objects (Romaine lettuce plants). 

Objects 
Green Ratio 

RFIP_Area Web Camera_Area 

1 49166.00±161.66 47486.00±444.48 

2 77899.00±201.11 55160.10±157.08 

3 56169.30±184.08 87778.30±806.07 

4 59309.40±244.86 59048.50±253.32 

5 103772.50±284.45 66557.00±130.09 

6 62601.40±111.62 123096.60±560.73 

7 55114.70±185.37 69735.30±252.44 

8 111721.70±288.07 62462.10±136.29 

9 54093.70±165.00 125856.40±418.17 

10 109164.80±251.19 59904.00±192.54 

11 75281.00±267.19 124714.70±523.44 

12 54974.80±184.18 84839.10±359.07 

13 73511.60±310.23 61213.60±285.60 

14 52212.20±129.06 81856.70±304.31 

15 51257.60±208.61 56741.80±240.93 

16 75015.70±236.80 58214.80±255.57 

17 75490.70±209.60 82448.20±368.71 

18 78750.50±215.44 84037.70±464.33 

19 73722.60±222.06 89323.70±358.14 

20 91987.70±245.64 84770.30±259.95 

21 51590.80±228.49 102659.20±257.67 

22 49166.00±161.66 56940.80±189.22 
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From the statistical analysis, the variability in SD of the 22 objects (Romaine lettuce plants) 

from the RFIP system were found to be considerably low (0.023%<SD<0.064%). The minor 

variability in the RFIP imagery system for the outdoor environment also implied the same 

consistent behavior as the lab environment. Thus, during the outdoor trials, the RFIP system 

performed well in terms of plant leaf area detection. 

The results from outdoor evaluation are shown as bar chart in Fig. 5.5. The bar chart 

explains the consistent performance of the RFIP system’s image sensor compared to the web 

camera reference system for plant leaf area detection from a defined ROI with minimal noise. 

  

Fig. 5.5: Comparison between pixels detected as green (the plant leaf area) using the RFIP system and the Web 

Camera reference imaging system. 

The performance of the RFIP system was compared with the web camera reference system 

for G-ratio algorithm (as the green plant leafage area detection is our concern) using regression 

analysis. The area detected by RFIP system had a strong correlation with the web camera system 

(RFIP=0.8868 Web Camera; R²=0.9994; RMSE=9409.5910 Pixels; n=220; p-value<0.05) which 

showed that the RFIP system could explain 99.94% variability in area detected using the web 

camera (Fig. 5.6) with a moderate accuracy (CCC = 0.9101). Similar to the hypothesis testing for 

lab evaluation using Eqs. 5 and 6, CCC0 is 0.8894 with a tolerable 5% loss of precision for the 

outdoor evaluation, whereas Lin’s CCC = 0.9101 with the confidential interval 95% (0.8945; 
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0.9257). As the lower limit of CCC>CCC0, the test is statistically significant, and the null 

hypothesis is hence rejected. Therefore, the concordance of the new procedure is established.  

 

 

Fig. 5.6: Correlation between ground truth detected area using the Web Camera and actual detected area using the 

RFIP system (RFIP=0.8868 Web Camera; R2=0.9994; RMSE=9409.591 Pixels; n=220; P<0.05). 

A low RMSE, 1.96% of the total pixel area was observed for detected pixel area in the 

outdoor experiment. This was only 0.7% higher than the RMSE found in the lab experiment. This 

could have been caused by pixel noise in images captured by the RFIP’s image sensor due to the 

exposure and brightness adjustments. The movement of leaves due to outdoor wind effect may be 

another reason for this. There may also have influences related to illumination conditions, 

observation geometry, atmospheric phenomena, and topographic variations on the spectral 

signatures of objects (Tillet, 2007).  
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5.1.3. Visualization of the Data Collected using RTK-GPS  

The RTK-GPS data collected from the selected four spots during experiment were 

visualized using Google Earth Pro software to see the performance of the RTK-GPS in the 8 cm-

scale. The spots were selected at the distances of 20 cm, 25 cm, 30 cm, and 50 cm. From the 

Google Earth Pro map visualization in Fig 5.7, the selected lines and squares from the experimental 

setup can be identified easily, which shows that the configured RTK-GPS showed a great 

performance to locate geographical places.  

 

Fig. 5.7: The GPS data from four spots was recorded and utilized to visually represent the spots which are 

practically situated in the cm-scale. 

5.1.4. Experimental Results of Field Evaluation 

The outputs from the real-time crop monitoring system during field trial were the detected 

plant leaf areas using the RFIP system and the corresponding geolocations acquired by the RTK-

GPS. The geolocations of 21 Romaine lettuce plants selected for field evaluation were visualized 

using Google Earth Pro software (Fig. 5.8) and the RFIP detected areas (i.e., after applying the 

empirical correction factor) were compared with the reference images captured by the web camera 

(Table 5.4).  
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Fig. 5.8: The geolocations recorded using RTK-GPS with 8 cm accuracy. 

From the statistical analysis, the variability in SD of the 21 objects (Romaine lettuce plants) 

from the RFIP system were found to be low (0.16%<SD<9.13%). The minimal variability of the 

RFIP imagery system when tested in the field also implied the same consistent behavior as the 

outdoor test. Thus, during the field trials, the RFIP system performed well in terms of plant leaf 

area detection. 

Table 5.4: Number of pixels detected from the ROI area along with the SD using G-ratio filter. 

Objects 
Green Ratio 

RFIP Area_C# Web Camera Area 

1 99500.86±2975.46 112202.14±3355.28 

2 133251.58±1853.85 150261.14±2090.49 

3 149574.40±2806.92 168667.57±3165.22 

4 87973.35±3253.62 99203.14±3668.95 

5 187911.15±3949.76 211898.00±4453.95 

6 149632.68±4542.97 168733.29±5122.88 

7 90462.21±2361.17 102009.71±2662.57 

8 131113.63±2294.10 147850.29±2586.95 

9 97023.14±5792.45 109408.14±6531.86 

10 84748.44±2119.82 95566.57±2390.41 

11 116169.91±39988.54 130999.00±45093.08 

12 195786.56±43865.01 220778.71±49464.38 

13 97729.65±1204.94 110204.83±1358.75 

14 155712.58±1865.83 175589.29±2104.00 
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15 118727.57±2032.01 133883.14±2291.39 

16 99896.88±2989.09 112648.71±3370.65 

17 103515.78±2545.09 116729.57±2869.97 

18 103127.87±3014.13 116292.14±3398.89 

19 132469.68±2011.39 149379.43±2268.15 

20 101992.89±1573.79 115012.29±1774.68 

21 167663.98±785.23 189066.29±885.47 

#To compensate for the discrepancies during field experiment, RFIP 

Area_C data set was predicted from the RFIP Area data set, using an 

empirical correction factor (Ogier et al., 2007). 

The results are shown as bar chart in Fig. 5.9. The bar chart also shows the consistent 

performance of the RFIP system’s image sensor when compared to the web camera reference 

system for detecting plant leaf area in the field. 

 

Fig. 5.9: Comparison between pixels detected as green (the plant leaf area) by the RFIP system and the Web Camera 

reference imaging system. 

Similar to the outdoor evaluation, the area detected by the RFIP system (i.e., after applying 

the empirical correction factor) had a strong correlation with the web camera reference system 

(RFIP_C=0.9608 Web Camera; R2= 0.9566; RMSE=30281.6600; n=147; p-value<0.05), which 

showed that the RFIP system could explain 95.66% variability in area detected using the web 

camera (Fig. 5.10) with a least moderate accuracy (CCC = 0.8236) during field monitoring. From 
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the hypothesis testing for field evaluation using Eqs. 5 and 6, CCC0 is 0.8521 with a tolerable 5% 

loss of precision, whereas Lin’s CCC = 0.8236 with the confidential interval 95% (0.7876; 0.8595). 

As the upper limit of CCC>CCC0, it rejects the null hypothesis and established the concordance 

of the new procedure. 

 

 

Fig. 5.10: Correlation between ground truth detected area using the Web Camera and predicted detected area using 

the RFIP system (RFIP_C=0.9608 Web Camera; R2=0.9566; RMSE=30281.66 Pixels; n=147; P<0.05). 

From the field trial, an RMSE of 6.31% was measured for detected plant leaf area using 

the empirical correction factor, whereas 13.34% was measured without correction. Hence, a 

reduction of 7.03% in the RMSE was achieved by applying the empirical factor to the detected 

RFIP area during field trial.  
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5.2 Discussion 

The RFIP system was able to acquire imagery at a higher resolution (800 × 600 pixels) 

during the lab, outdoor, and field trials than previous literature (Bannister et al., 2005; Cointault et 

al., 2012; Price et al., 2006; Ramirez‐Cortes et al., 2013; Zhai et al., 2011). Furthermore, the 

integration of image acquisition and processing on a lightweight FPGA platform for PA crop 

monitoring purposes was effective in meeting current needs of local processing for real-time farm 

management decision support systems (Saddik et al., 2021). The RFIP demonstrated its 

effectiveness by providing 98.73% accuracy during the lab test, 91.01% accuracy during the 

outdoor test, and 82.36% accuracy during the field test, which were nearly closed to the detection 

rate achieved by Zhai et al. (2011) for another field of study related to license plate detection. 

Evaluation Methods 

SD (%) 

RMSE (%) CCC (%) 

Min Max 

Lab 0.07 5.72 1.25 98.73 

Outdoor 0.02 0.06 1.96 91.01 

Field 0.16 9.13 6.31 82.36 

Table 5.5: Summary of performance analysis. 

By looking at the summary of performance analysis (Fig. 5.11), the RFIP system performed 

better in the outdoor experiment than the real crop field experiment. The reasons could be related 

to the effects of wind and the shadow over the ground ROI. Also, a greater number of replications 

for each object (10 samples per object for outdoor evaluation and 7 samples per object for field 

evaluation) may have had an influence on the analysis.  

The RTK-GPS accuracy was precise enough to locate the field data points on the real-time 

Google map. However, from the scatter plots shown in the results section, there was a slight under-
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or-overestimation for the object area detection during the experimental trials. The potential reasons 

could be the manually adjusted exposure and brightness of the image sensor; the value chosen for 

the threshold filter; and the luminance effects on the ROI. A slight under-or-overestimation is a 

common discrepancy in remote sensing technology (Silván-Cárdenas & Wang, 2008; Sayer et al., 

2020), which did not have a major impact in this specific research.  

Since the protype was tested in the selected crop field to detect plant leaf areas, a single 

plant was chosen inside the defined ROI avoiding any weeds and unwanted empty areas. However, 

there were still unavoidable situations, which may have influenced data collection during the 

experimental phase. For example, the motion effect of the researcher on the experimental setup 

due to continuous monitoring; the light reflection of the objects alongside the edges; and the 

luminance effect on the objects. The effect of wind on the plant leaves, the darkness or shadow of 

leaves on each other for one specific plant with multiple leaves, and the effect of shade were also 

responsible for the imprecise data collection. 

Despite these factors, the ROI was kept stationary for both the RFIP and reference data 

collection. Moreover, the RFIP was placed at the same height as the ground surface for all data 

collection with the help of a custom-built wooden frame. Overall, the RFIP system showed a great 

potentiality in the lab, outdoor, and field environment for real-time object and plant detection using 

single, lightweight, and cost-effective FPGA hardware. 

Precise field data collection is the key to support on-the-spot farm management decisions 

and the developed real-time crop monitoring system proved its proficiency in this regard. This 

real-time crop monitoring system might be one of the best possible solutions in the current PA 

market for accessible farm management services.  
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CHAPTER 6. CONCLUSIONS 

After analyzing the existing methods of acquiring agricultural imagery, it was determined 

that a new strategy and system for real-time crop monitoring using computationally efficient FPGA 

hardware would provide a powerful solution to solve current demands in PA. Hence, a real-time 

crop monitoring system that included the RFIP and the RTK-GPS, was developed in this study.  

With the intention of responding to the current limitations of high-resolution imagery and 

the need for a more accurate and precise GPS for real-time crop monitoring PA applications, this 

study showed great potential for real-world application. Here, a real-time crop monitoring system 

was developed that included a high resolution, and high-speed image acquisition and image 

processing units using the same FPGA platform; and an RTK-GPS with 8 cm positional accuracy, 

to compensate the current PA limitations for on-the-spot farm management solutions.  

The proposed system was able to minimize the imaging limitations in digital agriculture 

related to computational complexity, image resolution, and time of deploying this photographic 

technology and facilitate real-time, actionable management strategies in the field. To reduce 

human errors and get more precise real-time data, future research should include the development 

of an agrobot. The agrobot should integrate the RFIP, the RTK-GPS, and the battery sources. Also, 

an adjustable shade should be included to reduce luminance effect on the ROI, and a remote-

control system to move the system along the crop rows. However, the image sensor should be 

upgraded with automatic exposure control, global shutter, and polarizing filter attached to the lens. 

To avoid the pixel noise from the captured images, the development of a single or multiple noise 

reduction filters will be an ideal solution.  
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Incorporating all the modifications mentioned above, this proposed real-time crop 

monitoring system could be deployed on an unmanned ground vehicle. Furthermore, the developed 

system, with a lightweight FPGA nano board, would also be applicable for integration on an 

unmanned arial vehicle. 

  



56 

 

REFERENCES 

Abbadi, N. E., & Saad, L. A. (2013). Automatic Detection and Recognize Different Shapes in an 

Image. International Journal of Computer Science, 162-166. 

AlAli, M. I., Mhaidat, K. M., & Aljarrah, I. A. (2014). Implementing Image Processing Algorithms 

on FPGAs. 2013 IEEE Jordan Conference on Applied Electrical Engineering and 

Computing Technologies (AEECT) (pp. 118-123). Jordan: IEEE. 

Al-Gaadi, K. A., Hassaballa, A. A., Tola, E., Kayad, A. G., Madugundu, R., Alblewi, B., & Assiri, 

F. (2016). Prediction of Potato Crop Yield Using Precision Agriculture Techniques. Public 

Library of Science One. 

Asano, S., Maruyama, T., & Yamaguchi, Y. (2009). Performance comparison of FPGA, GPU and 

CPU in image processing. 2009 International Conference on Field Programmable Logic 

and Applications. Prague: IEEE. 

Bannister, R., Gregg, D., Wilson, S., & Nisbet, A. (2005). FPGA implementation of an image 

segmentation algorithm using logarithmic arithmetic. 48th Midwest Symposium on Circuits 

and Systems, 2005 (pp. 810-813). Covington: Institute of Electrical and Electronics 

Engineers. 

Bhakta, I., Phadikar, S., & Majumder, K. (2019). State-of-the-art technologies in precision 

agriculture: a systematic review. Science of Food and Agriculture. 

Blauth, D. A., & Ducati, J. R. (2010). A Web-based system for vineyards management, relating 

inventory data, vectors and images. Computers and Electronics in Agriculture, 182-188. 

Burgos-Artizzu, X. P., Ribeiro, A., Guijarro, M., & Pajares, G. (2011). Real-time image processing 

for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 

337-346. 

Caballero, D., Calvini, R., & Amigo, J. M. (2020). Chapter 3.3 - Hyperspectral imaging in crop 

fields: precision agriculture. Data Handling in Science and Technology, 453-473. 

Canada, S. (2015, 11 25). Crop Monitoring & Damage Assessment. Retrieved from Government 

of Canada: https://www.nrcan.gc.ca/earth-sciences/geomatics/satellite-imagery-air-

photos/satellite-imagery-products/educational-resources/14652 

Canada, S. (2017). Canadian agriculture: evolution and innovation. Statistics Canada. 

Canada, S. (2017). Growing opportunity through innovation in agriculture. Statistics Canada. 



57 

 

Canada, S. (2018). Change in total area of land in crops. Statistics Canada. 

Canada, S. (2018). Proportion of farms using computers/laptops for farm management. Statistics 

Canada. 

Canada, S. (2021). Employee wages by occupation. Statistics Canada. 

Chattha, H. S., Zaman, Q. U., Chang, Y. K., Read, S., Schumann, A. W., Brewster, G. R., & 

Farooque, A. A. (2014). Variable rate spreader for real-time spot-application of granular 

fertilizer in wild blueberry. Computers and Electronics in Agriculture, 70-78. 

Cointault, F., Newspapers, L., Rabatel, G., & Germain, C. (2012). Texture, Color and Frequential 

Proxy-Detection Image Processing for Crop Characterization in a Context of Precision 

Agriculture. In Agricultural Science (pp. 49-70). France: INTech. 

Das, A. K. (2020, October). Development of an Automated Debris Detection System for Wild 

Blueberry Harvesters using a Convolutional Neural Network to Improve Food Quality. 

Faculty of Graduate Studies Online Theses. Truro, Nova Scotia, Canada: Dalhousie 

University. 

Davies, I. J. (2001). Empirical correction factor for the best estimate of Weibull modulus obtained 

using linear least squares analysis. Materials Science Letters, 997-999. 

Dorj, U.-O., Lee, M., & Yun, S.-s. (2017). An yield estimation in citrus orchards via fruit detection 

and counting using image processing. Computers and Electronics in Agriculture, 103-112. 

Dou, R., Liu, L., Liu, J., & Wu, N. (2019). Development of high-speed camera with image quality 

evaluation. 2019 IEEE 8th Joint International Information Technology and Artificial 

Intelligence Conference (ITAIC) (pp. 1404-1408). Chongqing: IEEE. 

El-Medany, W. M., & El-Sabry, M. R. (2008). GSM-based remote sensing and control system 

using FPGA. 2008 International Conference on Computer and Communication 

Engineering. Kuala Lumpur, Malaysia: IEEE. 

Esau, T. J., Zaman, Q. U., Chang, Y. K., Schumann, A. W., Percival, D. C., & Farooque, A. A. 

(2014). Spot-application of fungicide for wild blueberry using an automated prototype 

variable rate sprayer. Precision Agriculture, 147-161. 

FAO. (2020). The State of Food Security and Nutririon in the World. Food and Agriculture 

Organization of the United Nations. 

FAO. (2021). Hunger and food insecurity. Food and Agriculture Organization of the United 

Nations. 



58 

 

FAO. (2021). Integrated Weed Management. Food and Agriculture Organizations of the United 

Nations. 

FAO. (2021). Sustainable Crop Production Intensification. Food and Agriculture Organization of 

the United Nations. 

Gonzalez, C., Mozos, D., Resano, J., & Plaza, A. (2011). FPGA Implementation of the N-FINDR 

Algorithm for Remotely Sensed Hyperspectral Image Analysis. IEEE Transactions on 

Geoscience and Remote Sensing, 374 - 388. 

González, C., Sánchez, S., Paz, A., Resano, J., Mozos, D., & Plaza, A. (2013). Use of FPGA or 

GPU-based architectures for remotely sensed hyperspectral image processing. Integration, 

89-103. 

Guo, T., Kujirai, T., & Watanabe, T. (2012). Mapping Crop Status from AN Unmanned Aerial 

Vehicle for Precision Agriculture Applications. ISPRS International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences (pp. 485-490). 

Melbourne: ISPRS Congress. 

Gutiérrez, F., Htun, N. N., Schlenz, F., Kasimati, A., & Verbert, K. (2019). A review of 

visualisations in agricultural decision support systems: An HCI perspective. Computers 

and Electronics in Agriculture, 1-28. 

Johnston, C. T., Gribbon, K. T., & Bailey, D. G. (2004). Implementing Image Processing 

Algorithms on FPGAs. Proceedings of the Eleventh Electronics New Zealand Conference, 

ENZCon’04 (pp. 118-123). Palmerston North: Cite Seer. 

Kestur, S., Davis, J. D., & Williams, O. (2010). BLAS Comparison on FPGA, CPU and GPU. 

IEEE Computer Society Annual Symposium on VLSI. Lixouri, Greece: IEEE. 

Lamb, D. W., & Brown, R. B. (2001). PA—Precision Agriculture: Remote-Sensing and Mapping 

of Weeds in Crops. Journal of Agricultural Engineering Research, 117-125. 

Lin, L. I.-K. (1992). Assay Validation Using the Concordance Correlation Coefficient. Biometrics, 

599-604. 

Ling, G., & Bextine, B. (2017, June 26). Precision Farming Increases Crop Yields. Retrieved from 

Scientific American: https://www.scientificamerican.com/article/precision-farming/ 

Lorite, I. J., García-Vila, M., Santos, C., Ruiz-Ramos, M., & Fereres, E. (2013). AquaData and 

AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited 

yield with AquaCrop. Computers and Electronics in Agriculture, 227-237. 



59 

 

MacLean, W. J. (2005). An Evaluation of the Suitability of FPGAs for Embedded Vision Systems. 

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR'05) - Workshops. San Diego: Institute of Electrical and Electronics Engineers. 

Moshnyaga, V. G., Hasimoto, K., & Suetsugu, T. (2008). FPGA design for user’s presence 

detection. 2008 15th IEEE International Conference on Electronics, Circuits and Systems 

(pp. 1316-1319). Malta: IEEE. 

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances 

and remaining knowledge gaps. Biosystems Engineering, 358-371. 

Myers, S. (2020, October 12). 6 ways data analytics leads to better decisions for farmers. 

Retrieved from Sas Blogs: https://blogs.sas.com/content/sascom/2020/10/12/6-ways-data-

analytics-leads-to-better-decisions-for-farmers/ 

Ogier, A., Dorval, T., & Genovesio, A. (2007). Biased Image Correction Based on Empirical Mode 

Decomposition. 2007 IEEE International Conference on Image Processing. San Antonio, 

TX, USA: IEEE. 

Price, A., Pyke, J., Ashiri, D., & Cornall, T. (2006). Real Time Object Detection for an Unmanned 

Aerial Vehicle using an FPGA based Vision System. Proceedings 2006 IEEE International 

Conference on Robotics and Automation (pp. 2854-2859). Orlando: Institute of Electrical 

and Electronics Engineers. 

Ramirez‐Cortes, J. M., Gomez‐Gil, P., Alarcon‐Aquino, V., Martinez‐Carballido, J., & Morales‐

Flores, E. (2013, January 18). FPGA‐based educational platform for real‐time image 

processing experiments. Wiley Online Library, pp. 193-201. 

Rehman, T. U., Zaman, Q. U., Chang, Y. K., Schumann, A. W., Corscadden, K. W., & Esau, T. J. 

(2018). Optimising the parameters influencing. Biosystems Engineering, 85-95. 

Rehman, T. U., Zaman, Q. U., Chang, Y. K., Schumann, A. W., Corscadden, K. W., & Esau, T. J. 

(2018). Optimising the parameters influencing performance and weed (goldenrod) 

identification accuracy of colour co-occurrence matrices. Biosystems Engineering, 85-95. 

Ruß, G., & Brenning, A. (2010). Data Mining in Precision Agriculture: Management of Spatial 

Information. International Conference on Information Processing and Management of 

Uncertainty in Knowledge-Based Systems (pp. 350-359). Verlag Berlin Heidelberg: 

Springer. 



60 

 

Saddik, A., Latif, R., & Ouardi, A. E. (2021). Low-Power FPGA Architecture Based Monitoring 

Applications in Precision Agriculture. Journal of Low Power Electronics and Applications, 

1-17. 

Saddik, A., Latif, R., Elhoseny, M., & Ouard, A. E. (2021). Real-time evaluation of different 

indexes in precision agriculture using a heterogeneous embedded system. Sustainable 

Computing: Informatics and Systems. 

Saegusa, T., Maruyama, T., & Yamaguci, Y. (2008). How fast is an FPGA in image processing? 

2008 International Conference on Field Programmable Logic and Applications. 

Heidelberg: IEEE. 

Salazar, S. (2015, August 17). Google Maps Platform. Retrieved from Maps data and Google Maps 

APIs enable a new approach to agriculture: 

https://mapsplatform.googleblog.com/2015/08/maps-data-and-google-maps-apis-

enable.html 

Sawant, S., Durbha, S. S., Jagarlapudi, & Adinarayana. (2017). Interoperable agro-meteorological 

observation and analysis platform for precision agriculture: A case study in citrus crop 

water requirement estimation. Computers and Electronics in Agriculture, 175-187. 

Saxena, L., & Armstrong, L. (2014). A survey of image pr y of image processing techniques for 

agricultur ocessing techniques for agriculture. Asian Federation for Information 

Technology in Agriculture (pp. 401-413). Edith Cowan University Research Online. 

Sayer, A. M., Govaerts, Y., Kolmonen, P., Luffarelli, M., Mielonen, T., Patadia, F., . . . Witek, M. 

L. (2020). A review and framework for the evaluation of pixel-level uncertainty estimates 

in satellite aerosol remote sensing. Atmospheric Measurement Techniques, 373-404. 

Schellberg, J., Hill, M. J., Gerhards, R., Rothmund, M., & Braun, M. (2008). Precision agriculture 

on grassland: Applications, perspectives and constraints. European Journal of Agronomy, 

59-71. 

Shin, J., Chang, Y. K., Heung, B., Nguyen-Quang, T., Price, G. W., & Al-Mallahi, A. (2020). 

Effect of directional augmentation using supervised machine learning technologies: A case 

study of strawberry powdery mildew detection. Biosystems Engineering, 49-60. 

Silván-Cárdenas, J. L., & Wang, L. (2008). Sub-pixel confusion–uncertainty matrix for assessing 

soft classifications. Remote Sensing of Environment, 1081-1095. 



61 

 

Sood, K., Singh, S., Rana, R. S., Rana, A., Kalia, V., & Kaushal, A. (2015). Application of GIS in 

precision agriculture. National Seminar on “Precision Farming technologies for high 

Himalayas”. Ladakh: ResearchGate. 

Sun, H., Slaughter, D. C., Ruiz, M. P., Gliever, C. J., Upadhyaya, S. K., & Smith, R. F. (2010). 

RTK GPS mapping of transplanted row crops. Computers and Electronics in Agriculture, 

32-37. 

Teillet, P. M. (2007). Image correction for radiometric effects in remote sensing. International 

Journal of Remote Sensing, 1637-1651. 

Tlelo-Cuautle, E., Carbajal-Gomez, V. H., Obes, P. J., Rangel-Magdaleno, J. J., & Núñez-Pérez , 

J. C. (2015). FPGA realization of a chaotic communication system applied to image 

processing. Nonlinear Dynamics, 1879-1892. 

Triantafyllou, A., Sarigiannidis, P., & Bibi, S. (2019). Precision Agriculture: A Remote Sensing 

Monitoring System Architecture. Information. 

Trimberger, S. M. (1994). Field-Programmable Gate Array Technology. New York: Kluwer 

Academic Publisher. 

Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019, November 11). A Review on UAV-Based 

Applications for Precision Agriculture. IoT Applications and Industry 4.0, 1-26. 

Valle, S. S. (2020). Agriculture 4.0. Rome: Food and Agriculture Organization of the United 

Nations. 

Vibhute, A., & Bodhe, S. K. (2012). Applications of Image Processing in Agriculture: A Survey. 

International Journal of Computer Applications, 0975-8887. 

Wachowiak, M. P., Waltersb, D. F., Kovacsb, J. M., Wachowiak-Smolíkováa, R., & James, A. L. 

(2017). Visual analytics and remote sensing imagery to support community-based research 

for precision agriculture in emerging areas. Computers and Electronics in Agriculture, 149-

164. 

Worldbank. (2019, November 30). Employment in agriculture (% of total employment) (modeled 

ILO estimate). Retrieved from World Bank Group: 

https://data.worldbank.org/indicator/SL.AGR.EMPL.ZS?end=2019&start=1991&view=c

hart 

Worldmeters. (2019, November 30). World Population: Past, Present, and Future. Retrieved from 

Worldmeters: https://www.worldometers.info/world-population/#growthrate 



62 

 

Zhai, X., Bensaali, F., & Ramalingam, S. (2011). Real-time license plate localisation on FPGA. 

CVPR 2011 WORKSHOPS (pp. 14-19). Colorado: Institute of Electrical and Electronics 

Engineers. 

Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. 

Computers and Electronics in Agriculture, 113-132. 

Zhang, Q. (2016). Precision Agriculture Technology for Crop Farming. The Hague: Taylor & 

Francis. 

Zude-Sasse, M., Fountas, S., Gemtos, T. A., & Abu-Khalaf, N. (2016). Applications of precision 

agriculture in horticultural crops. European Journal of Horticultural Science (eJHS), 78-

90. 

 

 

  



63 

 

APPENDIX. RAW DATA 

1. RAW Pixel Data from Lab Evaluation 

Algorithms Objects RFIP_Area DSLR_Area 

R 1 135367 130390 

R 1 135279 130524 

R 1 135424 130521 

R 1 133683 131077 

R 1 133581 130390 

R 1 133675 129838 

R 1 133537 129887 

R 1 133721 129413 

R 1 133565 129094 

R 1 133685 130230 

R 2 96707 89900 

R 2 96747 89611 

R 2 96806 89580 

R 2 95540 89851 

R 2 95660 89809 

R 2 95576 90258 

R 2 95604 89893 

R 2 95557 89821 

R 2 95649 90951 

R 2 95607 90532 

R 3 84448 76894 

R 3 84402 77267 

R 3 84438 76504 

R 3 82913 76761 

R 3 82943 76761 

R 3 82909 76745 

R 3 82957 76352 

R 3 82929 76708 

R 3 82933 76668 

R 3 82920 76707 

R 4 85237 77936 

R 4 85221 77859 

R 4 85295 77278 

R 4 84894 77486 

R 4 85043 77500 

R 4 84953 77871 

R 4 85058 77935 

R 4 84895 77433 

R 4 84966 77634 

R 4 84928 77869 
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R 5 87381 80799 

R 5 87291 80112 

R 5 87378 80325 

R 5 88532 80295 

R 5 88405 80938 

R 5 88476 80669 

R 5 88448 80681 

R 5 88552 79957 

R 5 88433 80694 

R 5 88455 80443 

R 6 57060 49491 

R 6 57056 50322 

R 6 57078 49423 

R 6 58839 50075 

R 6 58789 49463 

R 6 58844 49418 

R 6 58801 49088 

R 6 58798 49296 

R 6 58842 49070 

R 6 58804 49760 

R 7 51129 43322 

R 7 51055 43238 

R 7 51141 43238 

R 7 53161 43310 

R 7 52964 43107 

R 7 53047 43126 

R 7 53029 43265 

R 7 53049 43261 

R 7 53014 43357 

R 7 53050 44211 

R 8 178300 174017 

R 8 178383 173864 

R 8 178331 173424 

R 8 177322 173489 

R 8 177462 173510 

R 8 177407 172643 

R 8 177514 172774 

R 8 177321 172424 

R 8 177487 173664 

R 8 177323 172465 

R 9 32631 23425 

R 9 32591 23330 

R 9 32638 23567 

R 9 34000 23505 

R 9 34003 23853 

R 9 33998 23626 
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R 9 33978 23388 

R 9 34018 23403 

R 9 33965 23408 

R 9 34002 23549 

R 10 40515 29894 

R 10 40567 29469 

R 10 40575 29430 

R 10 43037 29285 

R 10 43112 29814 

R 10 43046 29497 

R 10 43096 29172 

R 10 43075 29213 

R 10 43108 28979 

R 10 43051 29241 

R 11 33987 24429 

R 11 34045 24418 

R 11 34028 24495 

R 11 38180 24581 

R 11 38082 24511 

R 11 38152 24602 

R 11 38091 25905 

R 11 38148 25348 

R 11 38116 25676 

R 11 38131 25907 

R 12 85915 77314 

R 12 85814 76625 

R 12 85915 76297 

R 12 88086 77562 

R 12 88204 77233 

R 12 88196 77491 

R 12 88178 77204 

R 12 88170 77035 

R 12 88205 77740 

R 12 88194 76577 

R 13 89515 80385 

R 13 89386 80037 

R 13 89472 80273 

R 13 90561 80237 

R 13 90476 79838 

R 13 90627 80740 

R 13 90493 79702 

R 13 90584 80737 

R 13 90479 80161 

R 13 90489 80339 

R 14 59376 49555 

R 14 59293 49301 
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R 14 59369 49133 

R 14 60854 49016 

R 14 60942 48923 

R 14 60872 49379 

R 14 60942 49404 

R 14 60864 49294 

R 14 60941 49244 

R 14 60863 49304 

R 15 53339 43278 

R 15 53338 43017 

R 15 53292 43263 

R 15 53896 43290 

R 15 53813 43520 

R 15 53922 43804 

R 15 53914 43342 

R 15 53893 42901 

R 15 53872 43288 

R 15 53862 43330 

R 16 60781 49621 

R 16 60822 49299 

R 16 60773 49139 

R 16 60637 49670 

R 16 60700 49328 

R 16 60619 49409 

R 16 60683 49614 

R 16 60621 49384 

R 16 60717 49702 

R 16 60621 48972 

G 1 129263 129470 

G 1 129169 129160 

G 1 129233 128822 

G 1 129517 129436 

G 1 129409 129112 

G 1 129440 129289 

G 1 129376 128928 

G 1 129514 128665 

G 1 129413 128066 

G 1 129419 128889 

G 2 91544 89601 

G 2 91443 90039 

G 2 91519 90621 

G 2 91168 89248 

G 2 91138 89403 

G 2 91194 89717 

G 2 91119 89311 

G 2 91165 90106 
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G 2 91032 89424 

G 2 91187 89837 

G 3 78562 76104 

G 3 78616 76332 

G 3 78596 76376 

G 3 78563 76354 

G 3 78479 75839 

G 3 78613 76395 

G 3 78528 76061 

G 3 78588 76328 

G 3 78466 76403 

G 3 78643 76239 

G 4 80221 77384 

G 4 80104 77369 

G 4 80213 77934 

G 4 79901 77838 

G 4 80071 77794 

G 4 79990 77542 

G 4 80064 77424 

G 4 79892 76489 

G 4 80053 77638 

G 4 79986 76606 

G 5 84021 80807 

G 5 83865 80733 

G 5 83988 80361 

G 5 83494 80611 

G 5 83384 80541 

G 5 83469 80767 

G 5 83397 80604 

G 5 83603 80920 

G 5 83346 80320 

G 5 83472 80320 

G 6 54160 49987 

G 6 54067 50161 

G 6 54104 50464 

G 6 54060 50012 

G 6 53929 50063 

G 6 54063 50247 

G 6 53933 50248 

G 6 54027 50149 

G 6 53961 50205 

G 6 54035 50144 
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2. Example of RAW Image Data from Lab Evaluation 
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3. RAW Pixel Data from Outdoor Evaluation 

Plant Samples RFIP_Area Web Camera_Area 

1 42391 46654 

2 42446 47403 

3 42792 47163 

4 42529 47307 

5 42587 47699 

6 42890 47687 

7 42935 47126 

8 42890 48000 

9 42931 47684 

10 42834 48137 

11 49334 55154 

12 49037 55003 

13 49072 55384 

14 48961 55308 

15 49198 55000 

16 49095 54894 

17 49380 55255 

18 49426 55193 

19 49030 55119 

20 49127 55291 

21 78125 87068 

22 78124 87691 

23 77595 87582 

24 77957 87372 

25 77994 87356 

26 77919 88301 

27 77767 87250 

28 78015 86943 

29 77947 89390 

30 77547 88830 

31 56139 58944 

32 56285 58617 

33 56313 59358 

34 56251 59195 

35 56350 58833 

36 55725 59220 

37 56007 59322 

38 56201 58790 

39 56246 58962 

40 56176 59244 

41 59577 66416 

42 59544 66382 

43 59554 66598 
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44 59505 66518 

45 59450 66403 

46 59042 66772 

47 59150 66651 

48 59119 66697 

49 59240 66562 

50 58913 66571 

51 103641 123088 

52 104173 123440 

53 103617 123244 

54 103660 122598 

55 104122 123459 

56 104121 123571 

57 103562 122915 

58 103888 121768 

59 103593 123285 

60 103348 123598 

61 62641 69642 

62 62643 69912 

63 62673 69834 

64 62634 69862 

65 62668 69997 

66 62293 70006 

67 62593 69742 

68 62590 69172 

69 62640 69657 

70 62639 69529 

71 55027 62534 

72 55102 62213 

73 54859 62306 

74 54880 62419 

75 55241 62469 

76 55234 62509 

77 55254 62545 

78 55332 62375 

79 55314 62668 

80 54904 62583 

81 111565 125668 

82 111274 126489 

83 111385 125884 

84 111615 126153 

85 111693 125778 

86 111661 126026 

87 111962 124901 

88 112053 126065 

89 111824 125961 
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90 112185 125639 

91 54093 59823 

92 54089 59973 

93 53990 59946 

94 53904 59708 

95 53777 59776 

96 54123 59741 

97 54187 59646 

98 54229 60104 

99 54217 60164 

100 54328 60159 

101 109075 125539 

102 108703 124637 

103 108992 124921 

104 108942 125560 

105 109447 124784 

106 109409 124229 

107 109383 124163 

108 109262 124031 

109 109037 124636 

110 109398 124647 

111 75706 84944 

112 75372 85314 

113 75452 84908 

114 75004 84705 

115 75070 85390 

116 75561 84628 

117 75242 85050 

118 74833 84733 

119 75179 84223 

120 75391 84496 

121 55133 61399 

122 55072 61219 

123 54656 60904 

124 54688 61416 

125 55118 60959 

126 54997 60680 

127 54879 61599 

128 55068 61288 

129 55192 61215 

130 54945 61457 

131 73434 81322 

132 73438 82017 

133 73369 82353 

134 73742 82070 

135 73513 81653 



72 

 

136 73261 81929 

137 73206 81472 

138 74290 81914 

139 73375 81808 

140 73488 82029 

141 52107 57065 

142 52180 56633 

143 52179 56626 

144 52210 56413 

145 52018 56781 

146 52077 56568 

147 52225 56430 

148 52355 57012 

149 52392 56950 

150 52379 56940 

151 50981 58200 

152 51048 58042 

153 51260 58489 

154 51441 57767 

155 51466 58169 

156 51463 58383 

157 51515 58559 

158 51031 58382 

159 51295 58263 

160 51076 57894 

161 75428 82821 

162 75186 82287 

163 74790 82520 

164 75132 82155 

165 74982 82829 

166 74841 83020 

167 74762 82609 

168 74701 82286 

169 75161 81967 

170 75174 81988 

171 75537 85055 

172 75165 84455 

173 75558 83902 

174 75428 84224 

175 75841 83962 

176 75664 84157 

177 75473 83765 

178 75231 83798 

179 75335 83459 

180 75675 83600 

181 78828 89664 
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182 78774 89253 

183 78599 89890 

184 78710 89551 

185 78554 89072 

186 79012 89295 

187 78951 89133 

188 79027 88870 

189 78350 88839 

190 78700 89670 

191 73896 85161 

192 73936 84930 

193 73763 84968 

194 73524 84871 

195 73568 84294 

196 73956 84790 

197 74012 84842 

198 73698 84414 

199 73418 84805 

200 73455 84628 

201 92286 102879 

202 91998 102649 

203 92050 103175 

204 91766 102558 

205 91862 102483 

206 91846 102602 

207 92335 102579 

208 92288 102658 

209 91807 102808 

210 91639 102201 

211 51290 56775 

212 51330 57236 

213 51207 56929 

214 51699 56744 

215 51802 56901 

216 51680 56763 

217 51747 57082 

218 51818 56791 

219 51590 56941 

220 51745 57246 
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4. Example of RAW Image Data from Outdoor Evaluation 
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5. RAW Pixel Data from Field Evaluation 

Plant Samples RFIP_Area Web Camera_Area 

1 50597 105605 

2 56424 112878 

3 56908 116785 

4 56831 113262 

5 57096 111373 

6 56982 112490 

7 56566 113022 

8 95859 148470 

9 95146 150293 

10 93301 146447 

11 94841 151527 

12 94302 152271 

13 95249 151712 

14 95256 151108 

15 108576 162412 

16 109517 170544 

17 111499 170211 

18 112136 171710 

19 112654 169813 

20 112260 169332 

21 111665 166651 

22 59876 97063 

23 60022 96854 

24 60340 101450 

25 60929 106505 

26 59951 96268 

27 60272 98987 

28 59664 97295 

29 163829 217826 

30 161299 209755 

31 162524 214002 

32 162250 208905 

33 162393 211373 

34 162148 205108 

35 162599 216317 

36 100205 162880 

37 102514 170594 

38 102883 168981 

39 103509 171028 

40 104292 177802 

41 100064 166179 

42 95703 163669 

43 53667 98706 
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44 53512 99697 

45 53117 103580 

46 52924 105015 

47 52517 104450 

48 52327 103290 

49 53859 99330 

50 87907 149662 

51 87693 150055 

52 87639 150664 

53 88138 148784 

54 87728 146208 

55 87865 145735 

56 86462 143844 

57 54822 123113 

58 53159 107944 

59 52559 107909 

60 52468 104682 

61 52702 109359 

62 51856 102987 

63 52456 109863 

64 36949 96891 

65 35450 97726 

66 35102 97524 

67 35007 94743 

68 34877 91517 

69 34557 93439 

70 34974 97126 

71 63265 114112 

72 63603 116415 

73 63460 115435 

74 63770 116043 

75 63718 111243 

76 63086 115523 

77 63807 116706 

78 144215 242515 

79 142234 239223 

80 143889 239851 

81 144790 239651 

82 145062 238725 

83 145230 238635 

84 146279 240750 

85 38967 108616 

86 38691 110705 

87 38788 109505 

88 38550 110652 

89 38912 108716 
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90 38616 112454 

91 38768 109197 

92 88639 179499 

93 87130 176008 

94 87554 175875 

95 87387 175930 

96 88018 174577 

97 86896 172592 

98 86790 174644 

99 69258 135094 

100 68603 133094 

101 68094 131715 

102 67870 131489 

103 67727 132659 

104 67349 135322 

105 66176 137809 

106 44255 111478 

107 43830 111720 

108 43763 113473 

109 43913 106295 

110 43791 116860 

111 43878 113548 

112 43836 115167 

113 46220 114831 

114 45349 120675 

115 43591 116181 

116 42879 118783 

117 43510 119111 

118 41842 112654 

119 40768 114872 

120 16267 114273 

121 24063 111168 

122 31189 116423 

123 30069 114766 

124 30199 121966 

125 29537 118136 

126 29725 117313 

127 92972 146026 

128 93000 147284 

129 93827 148430 

130 93816 149275 

131 93593 151295 

132 93739 151926 

133 93909 151420 

134 80747 112598 

135 80268 112451 
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136 80101 115374 

137 80098 115814 

138 80077 116548 

139 80069 116777 

140 80108 115524 

141 127102 189921 

142 127636 187506 

143 127454 190112 

144 127106 189068 

145 127257 189231 

146 127229 189194 

147 127140 188432 
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6. Example of RAW Image Data from Field Evaluation 

 


