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Abstract

This thesis deals with modelling and solving the multi-calendar extensions of the naval
surface ship work period problem (NSWPP). NSWPP is a variant of the resource-
constrained project scheduling problem (RCPSP) with its own specific network char-
acteristics and constraints including limited work periods, activities of varying pri-
ority, multi-calendars activities and resources, precedence relationships, and time
constraints. A binary integer programming model focusing on front-loading activities
based on priority and duration is developed. The NSWPP is NP-hard causing its
solution time to grow exponentially with the number of activities and resources. To
shorten computation time, the Serial Schedule Generation Scheme heuristic is modi-
fied to adapt to the additional features of the multi-calendar NSWPP. The modified
serial SGS reduces computational time from over 40 minutes to around 10 minutes
for a large size instance of the problem. Experiments are carried out using data from
real large-scale naval refit operations.
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Chapter 1

Introduction

A project can be defined as a “one-time endeavour that consists of a set of activities,

whose executions take time, require resources and incur costs or induce cash flows”

(Schwindt et al., 2015). The time, resources and performance elements can further be

complicated by additional factors such as due date penalties, precedence constraints

and multiple execution modes. The task of effectively coordinating all these activities

and requirements from start to finish is known as project management. Project man-

agers are typically required to “perform the project within time and cost estimates

at the desired performance level in accordance with the client, while utilizing the re-

quired resources effectively and efficiently” (Schwindt et al., 2015). An initial project

schedule is designed to meet the intentions provided by management or project spon-

sor (Larson and Gray, 2021). Minimizing the project makespan (i.e., to finish as soon

as possible) is the most commonly considered objective. However, other performance

measures exist such as lowest cost completion by a fixed deadline, balanced or levelled

resource usage over a given time horizon, maximizing net present value, and reduc-

ing the lateness of each individual activity. A number of other potential scheduling

objectives have been proposed in the literature (Brucker et al., 1999; Hartmann and

Briskorn, 2010).

In the naval maintenance environment, an accurate baseline schedule is needed

prior to the project start date to assign specific high value or scarce resources such as

heavy cranes, highly specialized technicians, generator test loads or a graving dock to

specific periods during the project (Bertrand, 2020). The impact of poorly allocating

scarce or high value resources is significant to overall organizational performance. A

slight delay affecting these crucial resources has the potential to disrupt the current

project as well as the schedule and budget of other ongoing and subsequent projects.

1
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The critical path method (CPM) (Kelley and Walker, 1959) and the program eval-

uation and review technique (PERT) (Malcolm et al., 1959) are the results of early

attempts to apply mathematical modelling to project scheduling problems (PSP).

Both methods use known precedence relationships and duration information for each

activity to generate feasible project schedules. Schedules obtained by these methods

are only precedence and time feasible. They are rarely feasible once resource con-

straints are considered. Thus, extensions were developed to account for resource limi-

tations giving rise to the Resource Constrained Project Scheduling Problem (RCPSP).

The RCPSP is a scheduling problem of projects containing activities with prece-

dence constraints, and limited resource capacities. The naval surface ship work peri-

ods problem (NSWPP) is a highly complex variant of the classical RCPSP (Bertrand,

2020), with its own specific network characteristics, multi-calendars activities and re-

sources, as well as intricate precedence relations between activities, with four types

of precedence relations and lags between activities. The complex project network

resulting from the NSWPP and the other requirements make it very challenging to

schedule and execute, especially for the large size problems. A typical refit project in

the Navy can have thousands of activities. The specific requirements of the NSWPP

that distinguish it from other variants of RCPSP include activity time constraints,

the necessity of completing high priority activities within given time periods, and

preference on processing activities of long duration before activities of short duration

to ensure that such long-duration activities have a reduced chance of not being com-

pleted before the end of the refit period.

Naval repair facilities working on these challenging projects normally use commer-

cial enterprise resource planning (ERP) software with the auto-scheduling function

disabled to prevent financial and contractual mishaps (Bertrand, 2020). Scheduling

these large projects manually absorbs a great amount of work and workers, yet can

hardly produce high-quality solutions.

Bertrand (2020) introduced the NSWPP and developed several binary integer
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programming (BIP) models for initial scheduling and schedule recovery after disrup-

tions. He then conducted extensive testing on maintenance data from the Royal

Canadian Navy by comparing his BIP to the serial SGS heuristic. Prabhu (2021) de-

veloped matheuristic methods to quickly find high-quality solutions for the NSWPP

when large problem instances are run. These BIP models, heuristic and matheuristic

methods have laid an excellent foundation for the study of the NSWPP.

However, not all key characteristics of the NSWPP were considered in the BIP

models and heuristic methods developed by Bertrand (2020) and Prabhu (2021).

Their models can handle scheduling problems with activities following only one cal-

endar. However, current shipyard and construction practices dictate that activities

and resources can follow multiple calendars. Test datasets provided by Thales and

collected from a shipyard on the West Coast of Canada reveal that several calendars

are used for activities and workers. For example, some trades or unionized workers do

not work on week-ends while others do. Hence, there is a minimum of two calendars

to be considered: five-day and seven-day calendars. Furthermore, some calendars

can have eight-hour shifts while others have 12-hour shifts. Thus, there is a need to

extend the models proposed by Bertrand (2020) and Prabhu (2021) to cover multiple

calendars for activities and resources.

In project management, there are four types of precedence relationships between

activities: 1) Finish to Start (most commonly encountered), 2) Finish to Finish, 3)

Start to Finish and 4) Start to Start (Larson and Gray, 2021). The existing NSWPP

formulations only cover the usual Finish to Start relationship. The goal of this re-

search work is to also include the other three relationships in the formulation of the

NSWPP

Finally, the third extension proposed is to formulate new activity time constraints

not accounted for by Bertrand (2020) and Prabhu (2021). These include constraints

such as Start On, Start On or Before, Start On or After, Finish On, Finish On or

Before, Finish On or After. These new constraints add significant complexity to the

computation of the Earliest Start (ES) and Latest Start (LS) dates.
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In summary, this thesis extends the current MILP models for the NSWPP by

integrating new features in its formulation: multiple calendars for activities and re-

sources, three new activity relationships, and six new activity time constraints. The

serial SGS will also be adapted to handle these new requirements to quickly find good

approximate solutions for large-scale problem instances. Experiments are performed

using datasets from real large-scale refit operations and their results are analyzed and

discussed.

The next section will give a detailed description of the NSWPP under considera-

tion.

1.1 Problem Description

This thesis project is one of many projects under the “Refit Optimizer” research

project aiming to develop an intelligent project scheduling application under the

sponsorship of Thales Canada. Thales Canada provides service to transportation,

aerospace, defence, and security sectors. Thales has been awarded a multi-million

dollar in-service-support contract for six Harry-De-Wolfe Class and two Protecteur

Class ships. The software being developed in the “Refit Optimizer” project is an

add-on scheduling software that can receive input from an ERP system, optimize

schedules, then send the optimal schedule back to the ERP system. Three research

teams from Dalhousie University, École Polytechnique de Montréal, and Université

Laval participate and collaborate in this “Refit Optimizer” research project. The

Dalhousie team focuses on the NSWPP.

A NSWPP project typically contains several smaller projects referred to as “work

packages.” Each work package consists of a number of individual tasks/jobs/operations

that should be finished to complete the work package. This thesis uses the term “ac-

tivity” to refer to theses individual tasks/jobs/operations in work packages. NSWPP

scheduling is challenging not only because of the large amount of work packages and

their associated activities, but also due to the resource limitations arising from shar-

ing the same resource pools as well as time constraints. Some other characteristics
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that makes scheduling NSWPP more difficult are discussed below.

1.1.1 Work period and excess works

Notification of maintenance works are generated in three ways: preventive main-

tenance, repair inspection, and failures noticed by ship staff during sailing. The

electronic maintenance system of the repair facility automatically generates preven-

tive maintenance notifications. Refit notifications can also be created by the repair

facility staff when they discover defects during inspection. Additionally, when ship

staff find breakdowns that cannot be fixed by themselves on a naval surface ship, a

refit notifications is sent to the repair facility electronic maintenance system. Then

activities and work packages are created from these notifications by the repair facility

planning department. The planning department collects and provides other infor-

mation needed to perform corrective and preventive maintenance actions. Schedules

within given time horizon of maintenance work periods are then generated using these

work packages, associated activities, and all other information needed. The general

process of schedule generation is depicted in Figure 1.1.

Figure 1.1: Naval ship refit work package and project generation process (Prabhu,
2021)

As depicted by Figure 1.2, a typical maintenance lifecycle of naval surface ships

is composed of several short work periods (SWP) with long dry-dock work period

(DWP) in between. The length of a work period varies according to the type of the

work period, as well as the naval surface ship condition. A DWP may last from 20

weeks to 50 weeks depending on the condition and the age of ships (Bertrand, 2020).

Before and after a DWP, naval surface ships undergo an extended work period which

lasts a few months for docking preparation and sailing preparation. A naval surface
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ship may experience several SWPs that last approximately 12 to 30 weeks in total

per year Bertrand (2020).

Figure 1.2: Naval surface ship maintenance lifecycle (Bertrand, 2020)

Schedulers try to fit as many activities as possible in maintenance work periods,

but usually several activities remain pending at the end of work periods. The length

of work periods is estimated and decided considering the number of existing refit noti-

fications (Prabhu, 2021). However, a lot of notifications are raised during inspections

and preventive maintenance work resulting in excess work. Naval surface ships may

sail for their next mission as long as all essential maintenance works are done by the

end of work periods (Bertrand, 2020). The excess maintenance works will then be

postponed and planned for subsequent work periods.

1.1.2 Work package priority

To ensure that essential works are completed by the end of work periods and ships can

sail safely, work packages and activities are prioritized to indicate their importance.

There are generally three levels of priority for work packages and activities: Essential

work, high opportunity work, and normal opportunity work labelled as priority levels

1, 2, and 3 respectively (Bertrand, 2020).
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Work packages of priority 1 are critical to the successful completion of the next

mission and must be completed by the end of work periods. Work packages level 2

and 3 are less important. It is common to see some level 3 activities not executed at

the end of a work period and be postponed to subsequent work periods. Given these

characteristics of work packages, schedulers in the planning department would like to

generate a schedule where all priority–1 activities are completed within the current

work period, and then have as many priority–2 activities as possible scheduled by the

end of the work period. Priority–3 activities are the last to be considered. Given the

desire to have all priority–1 activities completed during the work period and given

potential unforeseen delays, it was decided to schedule these activities as early as

possible.

1.1.3 Long duration activities

Some long duration activities may not fit in the short work periods (SWPs), but can

only be fit in dry dock work periods (DWPs) which happen once per maintenance

life cycle. If the activities with long duration are not completed in a DWP, they may

have to wait for years until their next chance to be scheduled. Even if a long duration

activity is scheduled in DWP, there is still a chance that it cannot be completed. If

a long duration activity is scheduled near the end of the project, there is a higher

probability that it will not be completed due to various delays and then have to wait

for another maintenance period. Thus, it is again important to have long-duration

work packages scheduled as early as possible in the DWP. Bertrand (2020) proposed

a RCPSP model with the objective of front-loading jobs based on their priority and

duration.

1.1.4 Multi-calendar activities

Another characteristic of large-scale projects is that activities can use different calen-

dars while sharing the same resource pool. Calendars are classified by three attributes:

� days per week (e.g., 5 days per week or 7 days per week). Some activities can

take place on the weekends other cannot because of limitations on the resources

or workers needed to perform these tasks.
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� hours per day (e.g., 8 hours per shift or 12 hours per shift). Here again these

hours available for work are dependent on the availability of resources and

workers, the trades involved, etc.

� holiday exceptions. These are calendar days other than weekends where work

cannot be performed such as federal statutory holidays and provincial holidays.

Scheduling NSWPP projects becomes more challenging when multiple calendars

for activities and resources are added. Scheduling activities with different calendars

into a universal calendar is a challenging task. Actual durations may not be the

same as the original estimated duration provided in the data, and these durations

can change from one calendar to another. Durations might need to extend to skip

the weekend, if weekends occur during the execution of activities. The same goes

for calendars with different holiday exceptions. An example with two hypothetical

activities is shown in Figure 1.3 to illustrate how durations change according to the

calendar considered. In the example, Day 1 is a Monday. Days 6 and 7 are the

weekend. Both activity 1 and 2 require 4 work days to be completed. Activity 1 is a

predecessor of Activity 2.

In case 1, both activities follow a 7-day calendar. Work can take place during

weekends. Activity 1 starts at the beginning of day 1 and ends at the end of day 4

(end date = start date + duration – 1 = 1 + 4 – 1 = 4). Activity 2 starts at the

beginning of day 5 and ends on day 8 (5 + 4 –1 = 8). But since activity 2 starts on

Friday (day 5), its duration will be extended for two additional days. Hence, in this

case the effective duration of both activities is 4 days.

In case 2, both activities follow a 5-day calendar. Work cannot be done during

weekends. Activity 1 starts at the beginning of day 1 and ends at the end of day 4

(end date = start date + duration – 1 = 1 + 4 – 1 = 4). Activity 2 starts at the

beginning of day 5 and is interrupted by the weekend. Work resume on activity 2 on

day 8 and ends on day 10. In this case, the effective duration of activity 2 is longer

by 2 days because it spans the weekend.
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Case 1:  7-day calendar

Days Mon Tue Wed Thur Fri Sat Sun Mon

t 1 2 3 4 5 6 7 8

Activity 1

Activity 2

Case 1:  5-day calendar

Days Mon Tue Wed Thur Fri Sat Sun Mon Tue Wed

t 1 2 3 4 5 6 7 8 9 10

Activity 1

Activity 2

Figure 1.3: Impact of multiple calendars and holidays on activity duration

1.1.5 Special network structure

Project network structures for construction projects typically have a high degree of

precedence and equally important activities that are all expected to be completed

with a minimum makespan. Figure 1.4 shows such a project network with a high

degree of precedence. Conversely, large-scale maintenance operations typically have

less precedence relations between activities as they can take place simultaneously at

different locations and on different systems or subsystems.

The NSWPP exhibits less precedence relationships between work packages. How-

ever, each work package is a small project with a high degree of precedence between

internal activities (Bertrand, 2020). Additionally, despite the little precedence rela-

tions between work packages, work packages have interrelations with each other by

competing for the same resources (Bertrand, 2020). Figure 1.5 shows the difference of

precedence degree in an NSWPP between the project level and the work package level.

Another difference between the NSWPP and typical network projects is that in
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the NSWPP not all work packages must be completed. Therefore, there is no need

to include a dummy end activity in the network (Bertrand, 2020).

Figure 1.4: Typical network structure for construction projects (Croteau, 2018)

1.1.6 Precedence relations

When Bertrand (2020) and Prabhu (2021) introduced the NSWPP, they only con-

sidered the basic Finish to Start precedence relationship. However, project networks

can have up to four types of precedence relations: Finish to Start (FS), Finish to

Finish (FF), Start of Start (SS), and Start to Finish (SF). Finish to Start requires

that successor cannot start until the predecessor finishes, presented in the part a) of

Figure 1.6. Finish to finish requires that successor cannot finish until the predecessor

finishes. This is illustrated in part b) of Figure 1.6. Start to Start requires that a

successor cannot start until its predecessor starts (depicted in the part c) of Figure

1.6). Start to Finish requires that a successor cannot finish until its predecessor starts

as illustrated in the part d) of Figure 1.6. With these four types of precedence re-

lations and hundreds of activities in the NSWPP projects, the network structure on

the activity level are very large and complex.
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Figure 1.5: Example of a NSWPP project showing the structure at the work package
and activity levels
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Figure 1.6: Precedence relationships

1.1.7 Activity start/finish time constraints

In typical construction projects, activities start times and finish times are dictated

by the precedence and resource constraints. In NSWPPs, Program schedulers typi-

cally specify additional start and finish time constraints based on some operational

requirements. For example, a special welding job may require inspection and approval

from an international expert who can only travel to the shipyard in a given week of

the year. The program scheduler would then require the welding job to finish on or

before the expert is to arrive. Such constraints are: start on, finish on, start on or

after, finish on or after, start on or before, and finish on or before.

From the datasets obtained from our partner, it was found that the ratio of the

number of activity start/finish time constraints to the number of activities ranges from

0.184 to 1.956. These additional constraints add another level of complexity to the

problem, thus requiring new extensions to the formulation and solving of the NSWPP.

For example, adding a Finish On constraint on an activity may make the problem

infeasible if the predecessor activity cannot finish early enough for the activity to

start and complete on time under its normal duration. There may then be a need to

resort to overtime or run the activities in multimode setting.
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1.1.8 Resource constraints

Resources in RCPSP consist of labour (workers), machines, tools, space, etc. Re-

sources in the NSWPP may follow different calendars which have various days-off

and shift length arrangements. Resources may or may not be available during days-

off and weekends. If resources are not available, then activity durations may extend

further until the required resources are available.

Furthermore, due to activity start/finish time constraints, overtime and additional

resources may be needed to reach a feasible schedule. However, some resource ca-

pacities such as space cannot be extended at all. It is also very difficult to gather

information about labour resources, such as extra shift availability, during the plan-

ning phase which occurs many months ahead of the maintenance period.

1.2 Research objectives and dissertation organization

Unlike traditional construction projects, ship maintenance and/or refit projects ex-

hibit less precedence relationships between work packages. However, despite the

sparse precedence relations between work packages, work packages have interrela-

tions with each other by competing for the same resources and spaces (Bertrand,

2020). Furthermore, given the readiness requirements and the available redundancies,

ship refit projects have different performance measures than the classical makespan

minimization. Bertrand (2020) and Prabhu (2021) proposed the first NSWPP models

destined to address the specific characteristics of ship maintenance and/or refit. How-

ever, not all key characteristics of the NSWPP were considered in the MILP models

and heuristic methods developed by Bertrand (2020) and Prabhu (2021).

The aim of this thesis is to extend the models proposed by (Bertrand, 2020) to

include the new requirements and characteristics identified by our industrial partners

including:

1. multicalendar activities;

2. multicalendar resources;
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3. three additional activity relationships (FF, SS, and SF);

4. activity start/finish time constraints.

The targeted extensions will include building a new transfer matrix to convert

multiple calendars into a universal calendar, devising new formulations to calculate

Earliest Start (ES) and Latest Start (LS) values for each one of the additional re-

lationships, developing a new binary integer programming (BIP) formulation of the

NSWPP, developing a solution algorithm using Python and Gurobi, and conduct-

ing numerical experiments using different sizes of datasets provided by the industrial

partner.

The remainder of this thesis is organized as follows. Chapter 2 presents a brief and

condensed literature review on the NSWPP. Chapter 3 presents the multi-calendar

extension under relationship constraints. It presents the transfer matrix method

used to handle the multiple calendar requirements. Chapter 4 presents the new BIP

formulation developed to deal with the problem. Numerical experiments conducted

to test the validity of the proposed models are reported in Chapter 5. Lastly, Chapter

6 presents the conclusions along with some suggestions and areas for future study.



Chapter 2

Literature Review

Many extensions of the RCPSP have been proposed since the initial formulation de-

veloped by Kelley and Walker (1959). This section presents a brief literature review

on recent developments of the Resource Constrained Project Scheduling Problem

(RCPSP). We start by presenting a classification of the different variants, then rele-

vant RCPSP formulations and solution methods are reviewed.

2.1 RCPSP Classification

According to Schwindt et al. (2015), the RCPSP consists of many variants that can be

classified based on: type of constraints, type of precedence relations, type of resources,

type of activity splitting, number of execution modes, number of objectives, types of

objectives, level of information as depicted in Table 2.1.

2.1.1 Constraint types for the NSWPP

Time-constrained project scheduling problems (TCPSP) typically have fixed dead-

lines but no limit on resource amounts (Guldemond et al., 2008). The duration of

activities can be shorten to meet deadlines by paying a higher cost for acquiring extra

resources. On the other hand, resource availabilities in RCPSP are strictly limited.

NSWPPs have both time activity constraints that specify activity start time or finish

time. Resource availabilities in the NSWPP are assumed to be limited because there

are very limited pools of resources shared among multiple projects. Therefore, the

NSWPP can be classified as both TCPSP and RCPSP but cannot perfectly fit in

neither of them.

15



16

Table 2.1: Classification of project scheduling problems (Schwindt et al., 2015)

ATTRIBUTES CHARACTERISTICS

Type of constraints
Time-constrained problem
Resource-constrained problem

Type of precedence relations
Ordinary precedence relations
Generalized precedence relations
Feeding precedence relations

Type of resources

Renewable resources
Non-renewable resources
Storage resources
Continuous resources
Partially renewable resources

Type of activity splitting
Non-preemptive problem
Integer preemption problem
Continuous preemptive problem

Number of execution modes
Single-mode problem
Multi-mode problem

Number of objective types
Single-criterion problem
Multi-criteria problem

Level of information

Deterministic problem
Stochastic problem
Problem under interval uncertainty
Problem under vagueness
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2.1.2 Precedence relations for the NSWPP

Ordinary precedence relation requires that the successor cannot start until the pre-

decessor finishes (Larson and Gray, 2021). Generalized precedence relations express

that the time gap between predecessor and successor cannot be less or more than

a predefined number. As for feeding precedence relation, the successor cannot start

until a certain percentage of the predecessor is completed. From observation, the

NSWPP can be classified as generalized precedence relation problem because a time

gap is often required between activities. For instance, no successor activity can be

executed in a room that has just been painted. The time for drying is the time gap

(or lag) needed between the painting activity and its successor activities.

2.1.3 Resource types for the NSWPP

Renewable resource RCPSP is a scheduling problem with resource capacities con-

strained during every time period that are released back to the resource pool when

an activity is completed. This is usually the case for resources such as machines and

spaces.

Non-renewable resources are those that are consumed once for all (total consumption)

such as budget and time. Storage resources are consumed and replenished over time

by activities. Continuous resources are able to be continuously and simultaneously al-

located to multiple activities, such as electricity. Partially renewable resources usually

refer to time interval of labour availability. Because resources in the NSWPP include

space, machine, and labour resources which are occupied during activities execution

but are released after the activities are completed, the NSWPP can be classified as a

renewable resource RCPSP.

2.1.4 Activity splitting types for the NSWPP

Non-preemptive activities are jobs that must not be interrupted once they start. Inte-

ger preemptive activities assume that they can be interrupted and resumed, but they

can only be split into integral durations. Continuous preemptive activities can stop

and resume at any time. Activities in the NSWPP are assumed to be non-preemptive

in this thesis, because assuming that activities are preemptive is impractical. For
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most of the activities in the NSWPP, some occupied resources are not released even

when the activities are interrupted. For example, when replacing corroded steel un-

der tiles, no other activity can be executed in this space even if the replacement of

corroded steel activity is stopped. Therefore, splitting activities in the NSWPP can

only extend the duration of the activities with no advantage in minimizing makespan.

2.1.5 Activity execution modes for the NSWPP

Deckro and Hebert (1989) proposed the concept of project crashing in which the du-

ration of activities can be reduced by increasing usage of resources in order to meet

required deadlines. Talbot (1982) formulated the multi-mode RCPSP model which

has activities with multiple processing modes resulting in various length of duration

and resource usage.

Prabhu (2021) modelled the NSWPP as a single-mode RCPSP in which activities

have only one execution mode with a specific resource demand. The single-mode was

used due to insufficient information on how resource usage affected activity duration.

However, Bertrand (2020) proposed a multi-mode NSWPP model by making assump-

tions on the duration of activity modes with the purpose of showing which activities

had the most impact on the schedule. Different from multi-mode RCPSP model in

Talbot (1982), only activity durations vary with the choice of activity execution mode

while resource usage remained the same in the model proposed by Bertrand (2020).

It assumed that activity duration decrease one unit of time with each incremental ac-

tivity execution mode. By adding a constraint in the formulation to limit the number

of non-original execution modes, Bertrand (2020) helps schedulers to make decisions

on overtime decision.

With the addition of activity Start-On/Finish-On constraints, it is essential to

include the multi-mode execution of activities to guarantee the existence of feasible

solutions by allowing the shortening of the duration of predecessor activities. Oth-

erwise, the Start-On/Finish-On activity may not start when required. Thus, the

NSWPP is formulated as a multi-mode problem.
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2.1.6 Number of criteria for the NSWPP

RCPSPs with single criterion have only one goal of problem solving such as minimizing

makespan, minimizing cost, or minimizing the peak of resource utilization. On the

opposite, RCPSPs with multiple criteria for decision making have several conflicting

goals. In this thesis, the goal of the NSWPP is to complete as many as possible

high-priority and long-duration activities within the given maintenance period. In

other words, solving NSWPP is finding a solution that front-loads high-priority and

long-duration activities as well as minimizes the resulting makespan. Thus, NSWPPs

are multi-criteria scheduling problems.

2.1.7 Level of information for the NSWPP

Deterministic problems assume that all information is known in advance, and no

change occurs during the implementation of the solution. On the other hand, stochas-

tic problems account for uncertainties which seems more reasonable for real-world

practice. However, stochastic problems require the estimates of probability distribu-

tion for all the uncertain parameters. In the case of NSWPPs, the two main uncertain

parameters are activity duration and resource availability. However, information for

estimating probability distribution of activity durations and resource availabilities

is insufficient at the current phase of study. Therefore, although surface naval ship

projects are performed in dynamic and stochastic environments with unavoidable

uncertainties, NSWPP is modelled as a deterministic problem in this thesis. The

front-loading of high-priority and long-duration activities permits to minimize the

risk that delays may cause the non-completion of these important activities. Hence,

this objective function allows for some robustness in the solution.

2.2 Review of directly related literature

In summary, the NSWPP is classified as a deterministic multi-mode multi-criteria

scheduling problem with generalized precedence relations, renewable resources, and

non-preemptive activities. It has some features of both RCPSP and TCPSP due to

the activity time constraints. The research work done by Bertrand (2020) accounts
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for many characteristics of NSWPP except for the activity time constraints, general-

ized precedence relations, and multi-calendar activities and resources. To the best of

our knowledge, there is no literature on RCPSP with activity time constraints and

the TCPSP is most often a time-resource leveling problem. The extant literature on

RCPSP or TCPSP cannot achieve the goal of addressing the NSWPP.

Many papers have investigated the RCPSP with generalized precedence relations.

Bianco and Caramia (2012) did a study on RCPSP with generalized precedence re-

lations, and proposed a branch and bound algorithm aiming to minimize makespan.

Li and Dong (2018) studied RCPSP with multiple activity execution modes and

mode dependent generalized precedence relations, and proposed two meta-heuristics

that levels mode choices and resources. de Azevedo et al. (2021) proposed an exact

method for RCPSP with generalized precedence relations and criteria of satisfiability

and workload. These studies convert FS, FF, and SF relationships into SS relation-

ships for the convenience of calculation using the conversion method developed by

Bartusch et al. (1988). This conversion method is for problems with fixed activity

duration. Given that the NSWPP has varying activity durations due to multiple

calendars, their conversion method cannot be applied.

Kong and Dou (2021) studied an RCPSP with generalized precedence relations and

resource calendars with varying length of activity durations similar to the NSWPP.

Kong and Dou (2021) proposed a formulation with constraints of minimum and max-

imum lag time between activities for four types of precedence relations without con-

version. Formulations of precedence relation constraints are shown in Equation 2.1

to 2.4 with lSSmin
ij and lSSmax

ij referring to the minimum lag time between activity i

and activity j in a SS relationship, and Si and Fi referring to the start time and fin-

ish time of activity i. Although the model developed by Kong and Dou (2021) does

not account for many characteristic of the NSWPP such as activity time constraints

and the different solution goals, this method of formulating generalized precedence

relations with varying activity duration is a good baseline reference for the NSWPP.

lSSmin
ij ≤ Sj − Si ≤ lSSmax

ij (2.1)
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lSFmin
ij ≤ Fj − Si ≤ lSFmax

ij (2.2)

lFSmin
ij ≤ Sj − Fi ≤ lFSmax

ij (2.3)

lFFmin
ij ≤ Fj − Fi ≤ lFFmax

ij (2.4)

2.3 RCPSP formulations

There are several MILP formulations of RCPSP and its various extensions. Several

studies have been conducted to compare the performance of these RCPSP formula-

tions. These studies provide useful guidelines for choosing appropriate formulation

methods for RCPSPs based on their characteristics.

There are n activities to be scheduled and k resource types. For formulation

purposes a dummy Start (i = 0) and a dummy Finish activity (n + 1) are created.

Each activity i has duration di and uses bik units of resource type k to complete.

Each resource type k has Bk renewable units. Using the precedence requirements,

the Earliest Start (ESi) and Latest Start (LSi) of each activity i are pre-calculated.

Pritsker et al. (1969) developed a discrete-time formulation (DT) for this problem

using binary decision variables. This binary variable, xit, is indexed by i and t

indicating whether activity i starts at time t.

xit =

⎧⎨⎩1, if activity i starts at time t

0, otherwise.
(2.5)

The formulation for minimizing project makespan is given below where P is a

set of pairs of predecessors (i, j), H is the set representing the discretized planning

horizon and K is the set of resource types.

Min

LSi∑︂
m=ESi

txn+1,t (2.6)

s.t.:
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LSj∑︂
m=ESj

txj,t ≥
LSi∑︂

m=ESi

txi,t + di ∀(i, j) ∈ P (2.7)

n∑︂
i=1

bik

min(LSi,t)∑︂
s=max(ESi,t−di+1)

xis ≤ Bk ∀t ∈ H,∀k ∈ K (2.8)

LSi∑︂
t=ESi

xit = 1 ∀i ∈ P ∪ {n+ 1} (2.9)

x00 = 1 (2.10)

xit = 0 ∀i ∈ P ∪ {n+ 1}, t ∈ H \ {ESi, LSi} (2.11)

xit ∈ {0, 1} ∀i ∈ P ∪ {n+ 1}, t ∈ {ESi, LSi} (2.12)

The objective is to minimize the completion time of the last activity as given by

Equation 2.6. Constraints 2.7 ensure that an activity j is started only after its prede-

cessor i is completed in an FS relationship. Constraints 2.8 ensure that the execution

of activities in any time period does not use more than the amounts of each resource

available. Constraints 2.9 guarantees that all activities are scheduled. Constraint 2.10

sets the start time of the dummy Start activity at time 0. Constraints 2.11 ensure

that activities are not scheduled outside of their [ES, LS] time windows. Constraints

2.12 defines the decision variables as binary.

A disaggregated discrete-time formulation (DDT) for RCPSP, modified from the

DT, is proposed by Christofides et al. (1987). The only difference is the precedence

constraint. The DDT results in tighter relaxations than DT (Koné et al., 2011). The

precedence constraint of DDT is as follows:

LSi∑︂
s=t

xis +

min(LSj ,t+di−1)∑︂
s=ESj

xis ≤ 1 ∀(i, j) ∈ P (2.13)

A flow-based continuous-time formulation (FCT) for RCPSP was proposed by

Artigues et al. (2003). This formulation contains three types of variables; start time

continuous variables, sequential binary variables that indicate whether activities are

processed before each other, continuous flow variables which express resource trans-

ferring between activities. According to Artigues et al. (2003), the FCT has poor
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relaxations compared to DT and DDT. However, the FCT has advantages because

it has a polynomial number of variables and constraints while DT and DDT have

a pseudo-polynomial number of variables and constraints (Koné et al., 2011). FCT

performs better than DT and DDT in problems with large time horizon.

Event-based RCPSP formulations such as start/end event-based (Zapata et al.,

2008) and on/off event-based (Koné et al., 2011) are also found in the literature for

different variants of the RCPSP. Event-based RCPSP formulations can take care of

problems with non-integer activity processing times, and have less number of vari-

ables for problem with long horizon compared to DT, DDT, and FCT. However,

event-based formulations only surpass the other three formulations when problems

are complex and with very long scheduling horizon (Koné et al., 2011).

These RCPSP formulations have their own advantages and disadvantages when

used to model different variants of the RCPSP. A computational study comparing

performances of discrete-time, flow-based continuous time, and event-based RCPSP

formulations is conducted by Koné et al. (2011). It provides a guide for choosing for-

mulations based on the complexity of the problems measured using the Process range

(PR) and Disjunction ratio (DR) indicators. These complexity indicators are pre-

sented in the Network Indicators section of this thesis (see 2.5). Formulation perfor-

mances are summarized in Table 2.2 where the symbol ≻means “dominate”. NSWPP

instances have relatively low PR and medium DR which indicates that discrete-time

RCPSP formulations may be an appropriate choice. Prabhu (2021) ran many exper-

iments for the NSWPP and found that the DDT does not outperform the DT.

Table 2.2: Performance of MILP formulations based on DR and PR

High DR Low DR

Low PR DDT ≻ DT≻ FCT ≻ OOEx ≻ SEE DDT ≻ DT ≻ OOEx ≻ FCT ≻ SEE

High PR FCT,OOEx ≻ SEE ≻ DT ≻ DDT OOEx ≻ FCT ≻ SEE ≻ DT ≻ DDT
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Bertrand (2020) developed a deterministic and discrete-time MILP formulation

for the NSWPP that accounted for the requirements to front-load high priority and

long duration activities, multi-modes activities, basic precedence constraints, and re-

source constraints. However, multi-calendars activities and resources, the other three

types of relationship constraints, and start/finish time constraints are not included.

The formulation in Bertrand (2020) is presented below.

Indices:

i index of activities

j index of activities

t index of time periods (e.g., days)

m index of execution modes

Parameters for Sets:

n integer, number of non-dummy activities

H integer, time horizon considered for scheduling

K integer, number of resource types

M integer, number of execution modes

Sets:

J Set of activities, J = {0, · · · , n} with index i or j

H Set of time periods, H = {0, · · · , H} with index t

K Set of types of resources, K = {1, · · · , K} with index k

M Set of execution modes, M = {0, · · · ,M} with index m

P Set of immediate finish to start activity pairs (i, j)

Wj Set of time periods between the early start and late start of

activity j, Wj = {ESj, · · · , LSj}

Other Parameters:

dim (djm) integer, duration of activity i (j) under mode m

rjk integer, activity j demand for resource type k

Rk integer, capacity of resource k

ESj integer, earliest start time of activity j
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LSj integer, latest start time of activity j

pj integer, priority of activity j

θ exponent used to ponderate the priority of activities, θ ≥ 0

ε1 very small duration value assigned to activities with no dura-

tion (i.e., milestones), ε1 ≥ 0
ε2 very small weight used to penalize late scheduling of activities,

ε2 ≥ 0
α parameter used to give tie-breaking benefits to longer duration

work (α=1.1) or making each work duration unit equal (α=0),

α ≥ 0
βM1 total alternative shift limit

βM2 alternative mode reduction limit

Decision Variables:

xjtm =

⎧⎨⎩1, if activity j starts at time t in mode m

0, otherwise.

The formulation is given by:

Max
∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M

xjtm

pθj
(ε1 + djm)

α (1− ε2t) (2.14)

s.t.: ∑︂
m∈M

∑︂
t∈Wj

t xjtm ≤ 1 ∀j ∈ J (2.15)

∑︂
m∈M

∑︂
t∈Wj

t xjtm ≥
∑︂
m∈M

∑︂
t∈Wi

(t+ dim)xjtm ∀j ∈ J ,∀(i, j) ∈ P (2.16)

∑︂
m∈M

∑︂
j∈J

min{LSj ,t}∑︂
b=max{t−djm+1,ESj}

rjkxjbm ≤ Rk ∀k ∈ K,∀t ∈ H (2.17)

∑︂
j∈J

∑︂
t∈Wj

(xjt2 + 2xjt3 + ...+ (M − 1)xjtM) ≤ βM1 (2.18)

∑︂
j∈J

∑︂
t∈Wj

(xjt2 + xjt3 + ...+ xjtM) ≤ βM2 (2.19)
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xjtm ∈ {0, 1} ∀j ∈ J , t ∈ Wj (2.20)

The objective is front-loading high priority and long duration activities in sched-

ules as given by Equation 2.14. Constraint 2.15 ensures that all activities are sched-

uled no more than one time. Constraint 2.16 ensures that an activity j is started only

after its predecessor i is completed in an FS relationship. Constraint 2.17 guarantees

resource feasibility of all activities during their execution. Constraint 2.18 limits the

total duration reduction of activities due to overtime. Constraint 2.19 limits the total

number of activities executed in overtime modes.

ES-LS time window

It can be observed that discrete-time RCPSP formulations are time window sensitive.

Therefore, some data pre-processing is needed to predetermine the [ES, LS] time

windows for the project activities. Moreover, Kolisch et al. (1995) found that the

computational time of RCPSP can benefit from ES-LS time windows by reducing the

number of binary variables in the problem. However, this benefit reduces significantly

if the LS is calculated from a large time horizon instead of from a time horizon

relatively close to the optimal makespan (Kramer and Jenkins, 2006). Therefore,

properly predetermining a tight project time horizon and [ES-LS] time windows using

heuristics is helpful in reducing computational time.

2.4 Solution methods

The Branch-and-Bound, Branch-and-cut methods are the best exact methods to

date for solving the RCPSP (Demeulemeester and Herroelen, 1997; Laborie, 2005;

Sprecher, 1996). These methods are widely implemented by many solvers such as

CPLEX, GLPK/Gusek, and Gurobi. The numerical experiments carried out in this

thesis were run using Gurobi.

According to Blazewicz et al. (1983), the RCPSP belongs to the class of NP-hard

problems. It is observed that NSWPPs, extensions of the RCPSP, cannot be solved

in reasonable time for large-size instances. In practice, the efficiency of the scheduling

method is usually preferred to the determination of the optimal schedule after a very



27

long resolution time. Many research studies investigated heuristic methods for the

RCPSP in order to achieve feasible solutions in a reasonable amount of time. Classic

heuristics for the RCPSP can be classified in two types: single-pass heuristics, and

multi-pass heuristics. Single-pass and multi-pass heuristics concentrate on obtaining

a feasible solution quickly but farther from optimum (Pellerin et al., 2020). Both

single-pass and multi-pass heuristics are built based on schedule generation scheme

(SGS), including serial and parallel SGSs.

Schedule generation scheme

Among all heuristics, priority rule based scheduling is the most popular and impor-

tant technique for three reasons (Zhang and Sun, 2011): 1) it is easy to use; (2) it

consumes relatively short computational time; and 3) it obtains best results com-

pared to other heuristics, in the multi-pass method. Priority rule based scheduling

scheme consists of two parts: schedule generation scheme and priority rule (Kolisch

and Hartmann, 2006).

SGS, proposed by Kelley (1963), is one of the classic heuristic techniques for

RCPSPs Kolisch and Hartmann (2006). SGSs build feasible schedules by step-wise

extension of partial schedules, which are schedules where only subsets of activities

have been scheduled Hartmann and Kolisch (2000). There are two types of SGS:

serial and parallel SGSs distinguished by activity and time increment of steps.

Serial SGS schedules one activity at a time on its earliest start time constrained

by resources and precedence relations (Kelley, 1963). Each iteration of serial SGS

selects an eligible activity from the unscheduled activities, and schedules it at its

earliest time of precedence and resource feasibility. There is a variant of serial SGS

named listing serial SGS (Hartmann, 1998). This variant starts with building a list

of ordered activities based on certain priority rules. This list has to be precedence

feasible, meaning that each activity has its own network of predecessors as list pre-

decessors (Hartmann, 1998). Activities are scheduled at their earliest feasible time

according to this list. Geiger (2013) adapted a repair procedure in the Serial SGS

heuristic to find a feasible initial solution for multi-mode RCPSP. When a mode of an
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activity causes infeasibility, this repair procedure is triggered to select another mode

randomly. Repair procedure stops when a feasible mode is found or the maximum

number of re-selections is reached. However, feasibility is not guaranteed by this re-

pair procedure.

On the other hand, parallel SGS schedules a set of activities every time for each

discrete time unit (Kelley, 1963). For each iteration of parallel SGS, a subset of

unscheduled activities are scheduled at time t. This subset of activities must be

precedence feasible. It goes to next iteration that schedules activities at time t + 1

when there is no more activities that can be scheduled at time t feasibly. Kolisch and

Hartmann (2006) concludes that parallel scheduling scheme does not generally have

superior performance than serial scheduling scheme, and serial scheduling scheme is

a better option for hard RCPSP problems (large size and moderate resource con-

straints) (Kolisch and Hartmann, 2006).

Both SGSs can be employed in X-pass methods. X-pass methods are distinguished

by the number of schedules generated: single-pass (X = 1), multi-pass (X > 1)

(Hartmann and Kolisch, 2000). Solution of multi-pass method is the best solution

out of multiple schedules generated employing different priority rules (Hartmann and

Kolisch, 2000). Schedules are created from scratch, and do not consider any knowl-

edege from each other (Hartmann and Kolisch, 2000).

For both serial scheduling SGSs, the choice of next activity to be scheduled follows

a suitable priority rule. Türkakın et al. (2021) classified heuristic priority rules as

four types: network related, time values related, resource related, and combination

of network, time values, and resource related. Hartmann and Kolisch (2000) found

that the selection of SGS type and priority rules depend on the problem criteria.

2.5 Network Indicators

Network indicators can be used to measure the complexity of problems and help to

determine the proper solution method for RCPSPs. Some indicators capture infor-

mation on the size and topological structure of the project network. Other indicators
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deal with the resources allocated to the project activities. These indicators are clas-

sified under four groups as follows:

� Precedence-oriented indicators: Coefficient of Network complexity (CNC), Or-

der Strength (OS), etc.

� Resource-oriented indicators: Resource Factor (RF ), Resource Constrainedness

(RC), etc.

� Time-oriented indicators: Process Range (PR), etc.

� Hybrid indicators: Resource Strength (RS), Disjunction Ratio (DR), etc.

In this subsection, six commonly used instance indicators are presented: (CNC),

(OS), (RF ), (RC), (PR), and (DR). More indicators are described in Vanhoucke

et al. (2012) and De Reyck and Herroelen (1996).

2.5.1 Coefficient of Network complexity

The Coefficient of Network complexity (CNC) measures how dense the project net-

work is. It is the ratio of the total number of non-dummy precedence pairs (P ) to

the total number of non-dummy activities (n).

CNC =
P

n
(2.21)

A project with many precedence pairs is said to be disjunctive in nature: many

activities cannot be done in parallel. A project with a low number of precedence pairs

is said to be cumulative in nature: many activities can be done in parallel. A number

of studies seem to confirm that problems become easier with increasing values of the

CNC (Herroelen and De Reyck, 1999).

2.5.2 Order Strength

The Order Strength (OS) is another network density indicator. It is the ratio of the

number of all precedence relations (not only the direct relations but also including

the transitive ones) denoted by P̂ to the theoretical maximum number of precedence

pairs.
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OS =
P̂

n2−n
2

(2.22)

Like the CNC, the OS is a precedence-oriented indicator giving a measure of the

network density (De Nijs, 2013; Herroelen and De Reyck, 1999). Small values of CNC

and OS indicate that a project has many activities that can be scheduled in parallel

Koné et al. (2011). Small values of CNC and OS also means longer computational

times for finding optimal solution resulting from wider activity [ES, LS] time windows

and more decision variables (Herroelen and De Reyck, 1999).

2.5.3 Resource Factor

Resource Factor (RF ) denotes the average resource demand for a resource type re-

quested per activity.

RF =
1

n |K|
∑︂
i∈J

∑︂
k∈K

⎧⎨⎩1, if ri,k > 0

0, otherwise
(2.23)

where J is the set of activities, K is the set of resource types, and ri,k is the demand

for resource type k by activity i.

The RF measures the density of the resource demand matrix rik. It simply scans

for each activity/resource combination whether the resource is requested by the ac-

tivity or not and calculates the average portion for all resources requested by all

activities (percentage of resource use). If RF = 1, then all resources are demanded

by all activities. If RF = 0, then none of the resources are demanded by any of the

activities. Kolisch et al. (1995) conducted experiments on 480 RCPSP instances with

30 activities and four types of resources to show that the CPU time increases as the

RF increases.

2.5.4 Resource Constrainedness

Resource Constrainedness (RCk) defines the average usage of resource type k over

the activities using that resource k.
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RCk =

∑︁
i∈J

ri,k

ak ·
∑︁
i∈J

⎧⎨⎩1, if ri,k > 0

0, otherwise

(2.24)

where ak is the availability for resource type k.

Finally,

RC =

∑︁
k∈K

RCk

|K|
(2.25)

RC indicates the average usage of resources (De Nijs, 2013; Kolisch et al., 1995;

Patterson, 1976). Large values of RC indicate a highly resource-constrained project.

Computational time increases as RC increase at first, then drops after it reaches

a peak (Herroelen and De Reyck, 1999) as depicted in Figure 2.1 below. The RC

exhibits an easy-hard-easy complexity pattern that resembles a bell curve. Problem

instances with very low or very high values of RC are not too difficult to solve.

Instances with RC values between 0.4 and 0.75 require more computational effort to

solve.

Figure 2.1: Computational complexity vs RC (Herroelen and De Reyck, 1999)
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2.5.5 Process Range

Process Range (PR) as shown in Equation 2.26, is the ratio between the maximum

and minimum duration of project activities. A large PR means big duration difference

between activities which increases the computational time as the solver must search

through a larger solution space to assign an optimal start time for the longer duration

activities present among the short duration ones (Herroelen and De Reyck, 1999).

PR =
max
i=1...n

{Di}

min
i=1...n

{Di}
(2.26)

2.5.6 Disjunction Ratio

Disjunction Ratio (DR) is the product of the coefficient of network complexity (CNC)and

the resource constrainedness (RC).

DR = CNC ×RC (2.27)

Koné et al. (2011) proposed an MILP formulation type selection guide based on

the DR and PR indicators as depicted in Table 2.2.



Chapter 3

Scope and methodologies

As discussed earlier the main goal of this thesis is to extend the NSWPP models

proposed by Bertrand (2020) and Prabhu (2021) to include the new requirements

and characteristics identified by our industrial partners including: multicalendar ac-

tivities, multicalendar resources, three additional activity relationships (FF, SS, and

SF), activity start/finish time relationships.

The targeted extensions will include building a new transfer matrix to convert

multiple calendars into a universal calendar, devising new formulations to calculate

Earliest Start (ES) and Latest Start (LS) values for each one of the additional rela-

tionships, developing a new BIP formulation of the NSWPP, developing a solution

algorithm using Python and Gurobi, and conducting numerical experiments using

different sizes of datasets provided by the industrial partner.

This chapter will present the transfer matrix developed to accommodate the multi-

calendar requirements and the calculations of the Earliest Start (ES) and Latest Start

(LS) values when all new relationships and additional constraints are incorporated in

the problem. The BIP formulations will be developed in the next chapter.

3.1 Duration matrices

As discussed in the problem description section, it is challenging to formulate a math-

ematical model to schedule activities and resources following different calendars. To

solve this problem, we develop a unique and novel approach that deals with the

multi-calendar requirements outside of the mathematical formulation by creating two

duration matrices that convert all calendars into one universal calendar. Once the

activity durations are set in the universal calendar, the mathematical formulation can

be developed as if we were dealing with one calendar.
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An example is presented here to illustrate the process of building the duration

matrix. Figure 3.1 shows the durations of two activities following two different calen-

dars. Activity 1 has a duration of 3 days and follows a 7-day calendar while activity

2 has a duration of 5 days and follows a 5-day calendar (i.e., no work on weekends).

It also is assumed that day 4 (Thursday) of the week under consideration is a holiday

and no work can take place in both calendars.

Figure 3.1: Sample activities

Figure 3.2 shows a calendar representation of the basic duration matrix d obtained

for the example considered. Element djt represents the effective duration of activity

j if it were to start on day t. Q is a large positive number. Days when works are

prohibited or not allowed because of calendar requirements have duration values of

−Q to prevent their selection in a maximization model. The value of Q must be

selected to avoid over-scaling issues. A good value would be slightly larger than the

planning horizon H to be determined later with the serial SGS heuristic.

d =

(︄
3 4 4 −Q 3 3 3 3 3

8 8 8 −Q 7 −Q −Q 5 7

)︄

Figure 3.2: Calendar representation of the duration matrix d
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For example, d11 = 3 means that the effective duration of activity 1 is 3 if it is

started on day 1. Indeed, if activity 1 starts at the beginning of day 1 (Monday) it

will finish at the end of day 3 (Wednesday), hence its duration is 3 full days. d12 = 4

means that the effective duration of activity 1 is 4 if it is started on day 2. The dura-

tion is extend by one day because the third day of work would be Thursday which is

a holiday. Thus, the third day of actual work is Friday or day 5. So that the effective

duration in the universal calendar is 4 days. Similarly, we get d21 = 8 meaning that

the effective duration of activity 2 is 8 if it is started on day 1 because the duration

spans the holiday and the weekend, thus adding three days to the effective duration

in the universal calendar.

As mentioned earlier in the literature review section, predetermining the [ES,LS]

windows for activities shortens the model’s solve time because the optimizer does

not have to consider the whole planning horizon H. In project management, the ES

values are typically calculated in a forward pass while the LS values are calculated

in a backward pass. The transfer matrix d presented above is constructed in the

forward pass. An equivalent transfer matrix denoted db is constructed in the forward

pass and will be used to calculate the LS values. Element dbjt represent the effective

backward path duration of activity j if it were to “end” on day t. Figure 3.3 shows

a calendar representation of the basic backward duration matrix obtained for the il-

lustrative example with two activities presented in Figure 3.1

db =

(︄
−Q −Q 3 4 4 4 3 3 3

−Q −Q −Q −Q −Q −Q −Q 8 8

)︄

Figure 3.3: Calendar representation of the duration matrix db in the backward pass

For example, db17 = 3 means that the effective duration of activity 1 is 3 if it ends
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on day 7. Indeed, for activity 1 to end on day 7 (Sunday) it must have started at

the beginning of Day 5 (Friday). Given that activity 1 follows a 7-day calendar and

there is no holiday between day 5 and day 7, its duration does not change from the

original. db16 = 4 because activity 1 must start on day 3 to end on day 6 because day

4 is a holiday which extends the effective duration by 1 day.

As discussed earlier, NSWPPs have limited length of refit periods, especially for

Priority-1 activities. NSWPPs also have time constraints for activities specifying

their start dates and/or end dates. With these activity time constraints and complex

precedence relationships, it is possible for a problem to be infeasible if some activities

are not crashed (e.g., duration reduced by overtime).

Bertrand (2020) developed a multi-mode NSWPP model that can assign overtime

to the most impactful activities to ensure projects can be completed on time. These

processing modes include overtime and other execution modes with decreasing activ-

ity duration in the multi-mode model. For example, an activity that can normally

be executed between 8am to 4pm requires 16 hours to be completed. Its duration in

normal mode is 2 days, but the duration of overtime mode can be reduced to 1 day

by adding an extra 8 hour shift from 4pm to 12am.

To include the multi-mode characteristic in the extended problem formulation, the

forward transfer duration matrix is extended from two dimensions to three dimensions

where each element of the matrix is a row vector withM elements. M is the number of

execution modes available. Mode 1 is the normal duration mode while mode M is the

smallest duration mode. The mth element djtm of the row vector at the intersection of

row j and column t of matrix d is the effective duration of activity j under execution

mode m if it were to start on day t. In general, we have:
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d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

[d111, · · · , d11M ] [d121, · · · , d12M ] · · · [d1t1, · · · , d1tM ] · · · [d1H1, · · · , d1HM ]
...

...
...

...
...

...
...

...
... [· · ·, djtm, · · ·] ...

...
...

...
...

...
...

...

[dn11, · · · , dn1M ] · · · · · · [dnt1, · · · , dntM ] · · · [dnH1, · · · , dnHM ]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the illustrative example introduced at the start of this section in Figure 3.1,

assuming that activity 1 can only be reduced by one day and activity 2 can be re-

duced by at most two days, the following duration per execution modes are defined

as depicted in Table 3.1.

Table 3.1: Activity duration per execution mode

Modes
Activity 1 2 3

1 3 2 2
2 5 4 3

The following transfer matrix is then obtained:

d =

(︄
[3, 2, 2] [4, 3, 3] [4, 3, 3] [4, 3, 3] [3, 2, 2] · · ·
[8, 7, 6] [8, 7, 6] [8, 7, 6] [8, 7, 6] [7,6,5] · · ·

)︄

Vector [7, 6, 5] at the intersection of row 2 and column 5 gives the three effective

duration values for activity 2 if it where to start on day 5. Under mode 1 the duration

is 7, under mode 2 the duration is 6 (reduced by one day), and under mode 3 the

duration is 5 (reduced by one additional day).

Figure 3.4 shows the calendar representation of the extended duration matrix for

the two-activity example. Similarly, the backward duration matrix is extended to

include multi-mode execution.
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Figure 3.4: Example of extended duration matrix for multi modes

The duration of activities in the data provided by the industrial partner are in

hours. Using hours over a scheduling period of several hundreds of days would make

the time horizon H too large and considerably slowdown the optimization process.

Furthermore, at the initial planning and scheduling phase there is no need to be

more granular than a day as unit of time. Additionally, estimates of duration are

usually imprecise and subject to changes. Deviations in execution may be too large

if a schedule is built in units of hours. But deviations in hours may be hidden in

schedules built with units of days. For example, if an activity estimated to take 5

hours to complete ends up taking 7 hours, a schedule built in hours would see all

successor activities delayed by two hours. However, a schedule in days would easily

absorb this deviation because the activity would have a buffer of three hours in a

8-hours shift, thus this deviation does not affect any successor activity.

3.2 Formulations for calculating ES and LS

Many papers in the RCPSP literature use serial SGS to determine the scheduling time

horizon, ES, and LS. The vast majority of these papers describe methods that only

accommodate the Finish-to-Start (FS) relationship. To adapt our formulation to all

types of precedence relationships that may exist in a NSWPP project, we derive new

equations (3.1) to (3.8) to compute the ES and LS of project activities under one

single calendar, where (i, j) denotes a pair of activities in the precedence relationships

such that i is the immediate predecessor of j (i.e., j is the successor of i).

ES(FS)j = ESj + di (3.1)
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ES(FF )j = ESj + di − dj (3.2)

ES(SS)j = ESj (3.3)

ES(SF )j = ESj − dj (3.4)

LS(FS)i = LSj − dj (3.5)

LS(FF )i = LSj + dj − di (3.6)

LS(SS)i = LSj (3.7)

LS(SF )i = LSj − dj (3.8)

To handle the multi-calendar NSWPP, the above equations are then modified with

the forward and backward duration values as follows

ES(FS)j = ESj + di,ESj
(3.9)

ES(FF )j = ESj + di,ESj
− db[j],[ESj+di,ESj

] (3.10)

ES(SS)j = ESj (3.11)

ES(SF )j = ESj − dbj,ESj
(3.12)

LS(FS)i = LSj − dbi,LSj−1 (3.13)

LS(FF )i = LSj + dj,LSj
− db[i],[LSj+dj,LSj

] (3.14)

LS(SS)i = LSj (3.15)

LS(SF )i = LSj − dbi,LSj
(3.16)

After adding execution modes and extending the duration matrices, the [ES,LS]

windows widen because of the options of shorter durations. If a predecessor activity

is performed according to a short duration mode, its successor can start earlier. This

is also true for determining the LS; if all successors of an activity use their short

duration modes, the activity can start later. Thus, Equations (3.17) to (3.24) are

updated to account for the execution modes. Recall that activities are assumed to

have M processing/execution modes. Performing in mode M results in the short-

est duration while mode 1 represents the non-overtime mode that has the longest

(normal) duration.
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ES(FS)j = ESj + di,ESj ,M (3.17)

ES(FF )j = ESj + di,ESj ,M − dbj,ESj+di,ESj,M
,1 (3.18)

ES(SS)j = ESj (3.19)

ES(SF )j = ESj − dbj,ESj ,1 (3.20)

LS(FS)i = LSj − dbi,LSj−1,M (3.21)

LS(FF )i = LSj + dj,LSj ,1 − dbi,LSj+dj,LSj,1
,M (3.22)

LS(SS)i = LSj (3.23)

LS(SF )i = LSj − dbi,LSj ,M (3.24)

In addition to precedence relationships, activity Start-On/Finish-On constraints

must be considered when [ES,LS] windows are determined. Tables 3.2 and 3.3 give

the functions used to calculate the ES and LS values respectively. dbj,date,1 and

dbj,date,M denote the duration of the non-overtime mode and duration of maximum

overtime mode respectively.

Table 3.2: ES calculation with precedence relations and activity time constraints

ES

Start On date

Start On or Before max{0,ESFS, ESFF , ESSS, ESSF}

Start On or After max{date,ESFS, ESFF , ESSS, ESSF}

Finish On date− dbj,date,1

Finish On or Before max{0,ESFS, ESFF , ESSS, ESSF}

Finish On or After max{date− dbj,date,1,ESFS, ESFF , ESSS, ESSF}

At this stage, all adjustments to the duration matrix, ES and LS calculations have

been made and the binary integer programming formulation of the multicalendar,

multimode NSWPP with general activity relationships and activity Start/Finish On

constraints can be developed. This is done in the next chapter.



41

Table 3.3: LS calculation with precedence relations and activity time constraints

LS

Start On date

Start On or Before min{date,LSFS, LSFF , LSSS, LSSF}

Start On or After min{H,LSFS, LSFF , LSSS, LSSF}

Finish On date− dbj,date,M

Finish On or Before min{date− dbj,date,M ,LSFS, LSFF , LSSS, LSSF}

Finish On or After min{H,LSFS, LSFF , LSSS, LSSF}



Chapter 4

Mathematical model and solution method

This section presents the new BIP to extend the original models developed for the

NSWPP by Bertrand (2020) and Prabhu (2021). The objective of the model is

to build a schedule that front-loads high-priority and long-duration activities. A

heuristic method, the serial schedule generation scheme, is also modified to deal with

the new requirements identified by our industrial partner.

4.1 Multi-calendar multi-mode discrete-time priority-duration RCPSP

model

According to Bertrand (2020) and Prabhu (2021), the schedulers of navy refit projects

desire to have high-priority activities scheduled as soon as possible in the DWP to

ensure that all critical jobs are done by the end of the maintenance period. Activities

with long-duration should also be scheduled as early as possible to avoid any risk of

not being able to complete them due to delays or other unforeseen events. There-

fore, the model developed here retains the weighted-objective function introduced by

Bertrand (2020) to achieve the goal of front-loading high-priority and long-duration

activities.

The [ES,LS] window for single-mode and multi-mode are presented in Tables 4.1

and 4.2. Table 4.1 and 4.2 show that the [ES,LS] windows are the same for Start

On, Star On or Before, and Start On or After, but different for the other three. For

models with multi-mode, the start on/before/after constraints can still be satisfied by

precalculating [ES, LS] because duration is not needed in time window calculations

based on these three constraints. On the other hand, time windows for activities

with finish on/before/after constraints become wider because of the shorter length

of duration in mode M (maximum overtime mode). Therefore, constraints for Finish

on, Finish on or before, and Finish on or after are necessary for the BIP model.
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Table 4.1: ES and LS values for activity time constraints with single execution mode

Start On
ES date
LS date

Start On or Before
ES max{0,ESFS, ESFF , ESSS, ESSF}
LS min{date,LSFS, LSFF , LSSS, LSSF}

Start On or After
ES max{date,ESFS, ESFF , ESSS, ESSF}
LS min{H,LSFS, LSFF , LSSS, LSSF}

Finish On
ES date− dbj,date
LS date− dbj,date

Finish On or Before
ES max{0,ESFS, ESFF , ESSS, ESSF}
LS min{ date− dbj,date,LSFS, LSFF , LSSS, LSSF}

Finish On or After
ES max{date− dbj,date,ESFS, ESFF , ESSS, ESSF}
LS min{H,LSFS, LSFF , LSSS, LSSF}

Table 4.2: ES and LS values for activity time constraints with multiple execution
mode

Start On
ES date
LS date

Start On or Before
ES max{0,ESFS, ESFF , ESSS, ESSF}
LS min{date,LSFS, LSFF , LSSS, LSSF}

Start On or After
ES max{date,ESFS, ESFF , ESSS, ESSF}
LS min{H,LSFS, LSFF , LSSS, LSSF}

Finish On
ES date− dbj,date,1
LS date− dbj,date,M

Finish On or Before
ES max{0,ESFS, ESFF , ESSS, ESSF}
LS min{date− dbj,date,M ,LSFS, LSFF , LSSS, LSSF}

Finish On or After
ES max{date− dbj,date,1,ESFS, ESFF , ESSS, ESSF}
LS min{H,LSFS, LSFF , LSSS, LSSF}

Indices:

i index of activities

j index of activities

k index of resource types

t index of time periods (e.g., days)

m index of execution modes
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Parameters for Sets:

n integer, number of non-dummy activities

H integer, time horizon considered for scheduling

K integer, number of resource types

M integer, number of execution modes

Sets:

J Set of activities, J = {0, · · · , n} with index i or j

H Set of time periods, H = {0, · · · , h} with index t

K Set of types of resources, K = {1, · · · , K} with index k

M Set of execution modes, M = {0, · · · ,M} with index m

Wj Set of time periods between the early start and late start of

activity j, Wj = {[ES1, · · · , LS1], · · · , [ESj, · · · , LSj], · · · }

PFS Set of immediate Finish to Start activity pairs (i, j)

PFF Set of immediate Finish to Finish activity pairs (i, j)

PSS Set of immediate Start to Start activity pairs (i, j)

PSF Set of immediate Start to Finish activity pairs (i, j)

CDo Set of activity and time pairs (j, s) specifying the time s when

activity j must Finish On

CDb Set of activity and time pairs (j, s) specifying the time s when

activity j must Finish On or Before

CDa Set of activity and time pairs (j, s) specifying the time s when

activity j must Finish On or After
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Other Parameters:

ditm (djtm) integer, duration of activity i (j) when started at time period

t under mode m

dim (djm) integer, normal (baseline) duration of activity i (j) under mode m

rjkt integer, activity j demand for resource type k in period t

Rtk integer, capacity of resource k at time period t

ESj integer, earliest start time of activity j

LSj integer, latest start time of activity j

pj integer, priority of activity j

θ exponent used to ponderate the priority of activities, θ ≥ 0

ε1 very small duration value assigned to activities with no dura-

tion (i.e., milestones), ε1 > 0

ε2 very small weight used to penalize late scheduling of activities,

ε2 > 0

α parameter used to give tie-breaking benefits to longer duration

work (α=1.1) or making each work duration unit equal (α=0),

α ≥ 0

βM1 total alternative shift limit

βM2 alternative mode reduction limit

Decision Variables:

xjtm =

⎧⎨⎩1, if activity j starts at time t in mode m

0, otherwise.

The objective function and constraints of the proposed novel multicalendar mul-

timode BIP for the NSWPP are described next.

The objective function is slightly different from the one proposed by Bertrand (2020).

Its aim is still to front-load high-priority long-duration activities, but the baseline nor-

mal activity duration (djm) is used instead of djtm here to avoid artificially prioritizing

activities that see their durations increased due to holidays or days-off.
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Maximize
∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M

xjtm

pθj
(ε1 + djm)

α(1− ε2t) (4.1)

Subject to:

∑︂
t∈Wj

∑︂
m∈M

xjtm ≤ 1 ∀j ∈ J (4.2)

Each activity must be completed between its [ES,LS] time window, no more than

once. Recall that for the NSWPP, it is not required to complete all activities before

the ship can sail.

∑︂
j∈J

min{LSj ,t}∑︂
b=max{t−dbjtm+1,ESj}

∑︂
m∈M

rjktxjbm ≤ Rtk ∀k ∈ K,∀t ∈ H (4.3)

At each discrete time t, the total usage of resource type k by all scheduled activities

must not exceed the resource capacity.

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

txjtm ∀j ∈ J ,∀(i, j) ∈ PFS (4.4)

In a Finish-to-Start relationship, the successor j can start if and only if its predecessor

i is completed.

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ djtm)xjtm ∀j ∈ J ,∀(i, j) ∈ PFF (4.5)

In a Finish-to-Finish relationship, the successor j can finish if its predecessor i is

completed.

∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

txjtm ∀j ∈ J ,∀(i, j) ∈ PSS (4.6)

In a Start-to-Start relationship, the successor j can start if its predecessor has started.
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∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm ∀j ∈ J ,∀(i, j) ∈ PSF (4.7)

In a Start-to-Finish relationship, the successor j can finish iff its predecessor i has

started. The (-1) term appears here because an activity starts at the beginning of a

period but finishes at the end of a period. So for an activity to be completed by the

beginning of a period, it must have been completed at the end of the previous period.

∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm = s ∀(j, s) ∈ CDo (4.8)

This ensures that activity j finishes exactly on time period s, when j has a Finish-On

requirement.

∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm ≤ s ∀(j, s) ∈ CDb (4.9)

This ensures that activity j finishes on or before time period s, when j has a Finish-On

or Before requirement.

∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm ≥ s ∀(j, s) ∈ CDa (4.10)

This ensures that activity j finishes on or after time period s, when j has a Finish-On

or After requirement.

∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M
m ̸=1

(m− 1)xjtm ≤ βM1 (4.11)

The total number of overtime shifts cannot exceed the limit set up by the scheduler.

∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M
m ̸=1

xjtm ≤ βM2 (4.12)

The total number of alternative execution modes cannot exceed the limit set up by

the scheduler.
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Putting the model together gives the following BIP.

Max
∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M

xjtm

pθj
(ε1 + djm)

α (1− ε2t)

s.t.: ∑︂
t∈Wj

∑︂
m∈M

xjtm ≤ 1 ∀j ∈ J

∑︂
j∈J

min{LSj ,t}∑︂
b=max{t−dbjtm+1,ESj}

∑︂
m∈M

rjktxjbm ≤ Rtk ∀k ∈ K,∀t ∈ H

∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

txjtm ∀(i, j) ∈ PFS∑︂
t∈Wi

∑︂
m∈M

(t+ ditm)xitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ djtm)xjtm ∀(i, j) ∈ PFF∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

txjtm ∀(i, j) ∈ PSS∑︂
t∈Wi

∑︂
m∈M

txitm ≤
∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm ∀(i, j) ∈ PSF∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm = s ∀(j, s) ∈ CDo∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm ≤ s ∀(j, s) ∈ CDb∑︂
t∈Wj

∑︂
m∈M

(t+ djtm − 1)xjtm ≥ s ∀(j, s) ∈ CDa∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M
m ̸=1

(m− 1)xjtm ≤ βM1

∑︂
j∈J

∑︂
t∈Wj

∑︂
m∈M
m ̸=1

xjtm ≤ βM2

xjtm ∈ {0, 1} ∀j ∈ J , t ∈ Wj

The above obtained BIP will be modelled in Python and solved using the com-

mercial solver Gurobi for the datasets provided by our industrial partner. Given that

the current problem is a an extension of the original NSWPP, it is anticipated that it

will be more difficult to solve. Therefore, a heuristic solution method is developed to

quickly solve the BIP and present the scheduler with a good initial feasible solution.
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4.2 Heuristic Method: Adapted Listing Serial SGS

According to Bertrand (2020), a quick, decent schedule is preferable to the schedulers

in the initial planning than an optimal schedule that takes a long time to obtain.

However, given that the NSWPP is NP-hard, the computation time grows expo-

nentially with the problem size. Due to uncertainties and deviations in duration

modes and labour availability, schedulers may need to adjust some parameters and

re-run the model a few times before they can get a practical schedule. Therefore, a

heuristic method that can generate good schedules quickly may be a better option

for large-size problems. Furthermore, some experiments have shown that Gurobi can

produce optimal solutions in a shorter time with a feasible initial solution (warm-

start). Therefore, a heuristic method that can accommodate the new characteristics

of the NSWPP would be useful. In what follows, the adapted serial SGS heuristic is

presented in two parts. First the priority rule, then the actual schedule generation

scheme.

4.2.1 Duration Matrix

New forward pass and backward pass duration matrixes are developed to deal with

multi-calendar activities in the maximization BIP model. A large negative value,

-Q, is used prevent the selection of activities starting on days when works are not

allowed due to calendar requirements. However, this large negative value may cause

problems in Adapted Listing Serial SGS where step by step calculation of start date

and end date is needed. Here is an example to illustrate the problem due to -Q; both

Activity 1 and Activity 2 have 5 days duration with only one execution mode, and

follow a 5-day calendar. Activity 1 is the FS predecessor of Activity 2. Assuming

Activity 1 starts on day 1 which is Monday, the end date of Activity 1 equals to

1 + d1,1 − 1 = 1 + 5 − 1 = 5, which is day 5 on Friday in this example. The end

date of Activity 2 equals to 1 + d2,6 − 1 = 1 + (−Q) − 1 = −Q. Problem comes

when calculating the end date of Activity 2. Therefore, the forward duration matrix

is modified for Adapted Listing Serial SGS. Assuming activities can start/end on any

day, instead of -Q, extended durations are filled in the day-offs in matrices for the

calculation convenience.
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4.2.2 Priority Rule

The schedule generation scheme needs an ordered list of activities to operate. Thus,

the first step is to build a priority rule to order the project activities. This priority

rule is built with the goal of producing a feasible schedule which can also front-load

high-priority and long-duration activities. The result of applying this priority rule is

a list of activities that guides the choice of the next activity to be scheduled using the

serial SGS. An illustrative example of the priority rule is given below for the project

network depicted in Figure 4.1 and Table 4.3.

Figure 4.1: Project Network for the Priority Rule Example

For the remainder of this thesis, Start-On, Start-On or Before, Start-On or After,

Finish-On, Finish-On or Before, and Finish-On or After are referred to as time-

enforced constraints.

The first step of the procedure is to find all activities with time-enforced constraints

and sort them by their required dates in ascending order (i.e., earliest to latest). For

the illustrative example depicted in Figure 4.1 and Table 4.3, activities 4 and 8 are

selected because they have Start On constraints. Then, they are sorted as [4, 8] be-

cause activity 4 must start on day 2, which is earlier than the Start On time (day 10)

of activity 8.
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Table 4.3: Data for the Priority Rule Example

Activity Priority duration Constraint

1 1 1
2 1 2
3 1 1
4 1 1 Start On day 2
5 1 1
6 1 1
7 1 1
8 1 1 Start On day 10
9 2 1
10 1 3

The second step is to place all predecessors of each activity with time-enforced con-

straints before it according to their precedence relationships, priority and duration.

For our example, we have activities 2 and 1 that are the predecessors of activity 4.

Activities 2 and 1 have the same priority but activity 2 is longer than activity 1, thus

2 will be placed before 1 yielding the following sequence: 2, 1, 4.

Activities 5, 6, and 7 are predecessors of activity 8 and they have the same duration

and priority. Given that 5 is a predecessor of 6, two sequences are possible: 7, 5, 6,

8 or 5, 6, 7, 8. Such a tie is arbitrarily broken and sequence 5, 6, 7, 8 is chosen. As

a result, the output of the second step is the combined list of both chosen sequences:

[2, 1, 4, 5, 6, 7, 8]. These two steps put the activities with time-enforced constraint

and their predecessors at the top of the priority list. The reason for this is to ensure

that the resources are not consumed by activities with more freedom to be scheduled,

such as activities 3, 9, and 10 in the example.

The third and final step is to slot in the rest of the activities and their predecessors

as sorted by ascending priority, and descending duration. Activities 10 and 3 are

priority-1 activities hence activity 9 which is of priority 2 comes after them. Activity

10 has a longer duration than activity 3. Hence, the final list of activities for the

example is [2, 1, 4, 5, 6, 7, 8, 10, 3, 9]. Following this order to schedule activities

using the serial SGS guarantees that activities can be scheduled without violating the

precedence relationships and time-enforced constraints while maintaining the goal of
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front-loading high-priority, and long-duration activities.

4.2.3 Schedule Generation Scheme

In this subsection, we discuss how the classical Serial SGS is modified to handle mul-

tiple calendars, multiple execution modes, four types of precedence relationships, and

time-enforced constraints. The pseudo-code of the new serial SGS is given below.

Parameter:

cjt binary, 1 if activity can be executed at time t according to the

calendar that activity j belongs to (i.e., djt ≥ 0), otherwise 0

(i.e., djt = −Q)

Algorithm 1: Compute the start time Sj of activity j as sorted by the Priority Rule
presented above

1: Input data: n, djtm, dbjtm, M , Rkt, rjkt, PFS, PFF , PSS, PSF

2: Initialize: j = 1, m1 = 1

3: while j ≤ n do

4: Initialize Sj = 1

5: if PFS ̸= ∅ then

6: Initialize: i = 1

7: Find the cardinality PFS of set PFS: PFS = |PFS|
8: SFS = 1

9: while i ≤ PFS do

10: if SFS ≤ Si + di,Si,mi
then

11: SFS = Si+ di,Si,mi

12: end if

13: i = i+ 1

14: end while

15: end if

16: if PFF ̸= ∅ then

17: Initialize: i = 1

18: Find the cardinality PFF of set PFF : PFF = |PFF |
19: SFF = 1

20: while i ≤ PFF do
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21: if SFF ≤ Si + di,Si,mi
− dbj,Si+di,Si,mi

,mi
then

22: SFF = Si + di,Si,mi
− dbj,Si+di,Si,mi

,mi

23: end if

24: i = i+ 1

25: end while

26: end if

27: if PSS ̸= ∅ then

28: Initialize: i = 1

29: Find the cardinality PSS of set PSS: PSS = |PSS|
30: SSS = 1

31: while i ≤ PSS do

32: if SSS ≤ Si then

33: SSS = Si

34: end if

35: i = i+ 1

36: end while

37: end if

38: if PSF ̸= ∅ then

39: Initialize: i = 1

40: Find the cardinality PSF of set PSF : PSF = |PSF |
41: SSF = 1

42: while i ≤ PSF do

43: if SSF ≤ Si − dbjSimj
+ 1 then

44: SSF = Si − dbjSimj
+ 1

45: end if

46: i = i+ 1

47: end while

48: end if

49: Sj = max{Sj, SFS, SFF , SSS, SSF}
50: while cjSj

= 0 do

51: Sj = Sj + 1

52: end while
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53: Initialize: g = 0

54: while g ≤ djSjmj
do

55: if RkSj+g < rjkSj+g then

56: Sj = Sj + g + 1

57: g = 0

58: else

59: g = g + 1

60: end if

61: end while

62: if Sj > Start-On Datej OR Sj + DjSjmj
> Finish-On Datej OR Sj >

Start-On-or-Before Datej OR Sj +DjSjmj
> Finish-On-or-Before Datej then

63: j = j − 1

64: while mj ≥ M do

65: j = j − 1

66: end while

67: mj = mj + 1

68: else

69: Initialize: g = 0

70: while g ≤ DjSjmj
do

71: RSj+g,k = RSj+g,k − rj,k,Sj+g

72: g = g + 1

73: end while

74: j = j + 1

75: mj = 1

76: end if

77: end while

Although the adapted serial SGS seems complex with many steps, decision making,

and formulations, its basic logic is to simply schedule activities as early as possible

within resource availability. If time-enforced constraints are not satisfied for an

activity, the duration of its predecessors are iteratively reduced until a feasible

schedule is obtained. The decision condition and statement Sj = Sj + 1 if c[j,Sj ] = 0

is added to ensure that activities are not scheduled to start on a day-off. Without
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this condition, if the immediate predecessor ends on a day before a holiday, the

successor will be scheduled to start on the holiday.

A small example is used to demonstrate the application of this adapted serial SGS.

There are Finish-to-Start (FS) relationships between activities as shown in Figure 4.2.

Some other parameters are listed in Table 4.4. All activities are in a 7-days-per-week

calendar with no holiday exception to eliminate the duration matrix and make the

demonstration easily understood.

Figure 4.2: Network for the Adapted Serial SGS Example

Table 4.4: Parameters for the Adapted Serial SGS Example

durations
Activity j d1 d2 d3 rj1 Start On

1 2 1 1 1
2 4 3 2 0
3 1 1 1 1 6
4 2 1 1 1

R1 1

According to the priority rule described earlier, the order of scheduling for this ex-

ample is [1, 2, 3, 4]. Figure 4.3 shows how a feasible schedule is built step by step

using the adapted serial SGS.

In subfigure a), Activity 1 of normal duration 2 is scheduled and the available resource

is completely used on day 1 and day 2.

Next activity 2 is to be scheduled (sub-figure b). Activity 3 cannot start until activity

2 finishes, but activity 3 has Start On constraint which cannot be satisfied if activity
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2 is executed in non-overtime mode. Therefore, following the adapted serial SGS

procedure, execution mode 2 is selected for activity 2 and its duration is reduced to

3 (instead of 4) so that activity 3 can start on day 6 (sub-figure c). Activity 2 does

not require any resource for its execution, thus there is one unit of resource left on

days 3 to 5.

Activity 4 has no predecessor but it cannot be scheduled on day 1 and day 2 because

there is no resource available to perform it. The earliest that activity 4 can be per-

formed is on day 3 as depicted on sub-figure d).

This small example shows how a Start-On constraint is dealt with. All other prece-

dence relationships and other time-enforced constraints are similarly accounted for

in the proposed adapted serial SGS with slight differences in the decision conditions

and functions according to Table 4.2.

Figure 4.3: Step by Step Schedule Building based on the Adapted Serial SGS
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Experiments and analysis of results

This chapter presents the results of the numerical experiments run with the datasets

provided by the industrial partner and built from actual maintenance operations

from a Canadian shipyard. The experiments consist of solving the BIP formulation

proposed with Gurobi and the adapted serial SGS. In what follows, the datasets and

instances used in the experiments are presented first. Then, the average priority-1

duration-weighted centroid (DWC), a criterion used to assess the quality of a front-

loaded schedule is introduced. Finally, the results of the computations are presented

and discussed.

5.1 Datasets and Instances

Two real-world refit project scheduling instances form Thales are provided, OTC

with 136 activities and CRUISE with 500 activities. Referring to the discussion of

problem complexity indicated by network indicators in the literature review section,

the CRUISE-500 instance is less complex than the OTC-136 instance, despite their

problem sizes. Network indicator values of these two instances are shown in Table

5.1. Although experiments are also done on the CRUISE-500 instance, analysis on

results are mainly done on the OTC-136 instance and its generated instances because

of its higher complexity. Four problem instances of different sizes are created from

the original OTC instance with 136 activities provided by Thales. Thus, the size of

instances range from 136 to 680 activities with increments of 136. The RF , RC, PR,

CNC, and DR network indicators for these instances are the same given that they

are duplicates. The OS indicator decreases with size as shown in Table 5.2. These

instances are used to see how problem size and OS affect the solution times and the

schedule quality of the solution obtained by Gurobi and the modified serial SGS.

57
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Table 5.1: Network Indicators of CRUISE-500 and OTC-136 instances

Value of Indicators # OTC-136 CRUISE-500

OS 0.0227 0.0716
RF 0.2312 0.0589
RC 0.4642 0.2346
PR 20.0000 8.0000
CNC 0.7279 1.0557
DR 0.3379 0.2476

Table 5.2: Characteristics of the instances

Instance # Number of activities OS

1 136 0.0227
2 272 0.0113
3 408 0.0075
4 544 0.0056
5 680 0.0045
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5.2 Impact of Solver Tolerance on Gap from Optimum

To find a good trade-off between computational time and solution gap from optimum,

an experiment is carried out on the largest instance with 680 activities. The tolerance

values of the solver are varied and the CPU time and solution obtained are recorded.

Experiments starts from 0.01%, the default tolerance of Gurobi Optimizer, to 10%.

The results obtained are depicted in Table 5.3.

Table 5.3: Computational Time as a function of Solver Tolerance

Tolerance (%) CPUt (min) Z value Z Gap(%) DWC DWC Gap(%)

0.01 548.50 1365.25 – 1271.06 –
0.05 90.82 1364.78 0.03 1268.07 -0.24
0.10 66.15 1364.35 0.07 1282.29 0.88
0.50 29.49 1362.41 0.21 1277.76 0.52
1.00 17.55 1357.26 0.58 1290.33 1.52
5.00 9.72 1316.67 3.56 1322.97 4.08
10.00 9.53 1316.67 3.56 1322.97 4.08

Gurobi Optimizer takes about 548.5 minutes (more than 9 hours) to find a solution

when the tolerance is set at 0.01%, while it takes only 17.55 minutes when the

tolerance is set at 1%. The gap is 0.58% from the solution obtained with a tolerance

of 0.01%, which seems to be a good trade-off given the significant decrease in CPU

time. Therefore, a tolerance of 1% is chosen for the remainder of the experiments.

The solution obtained with tolerance set at 0.05% has a slightly smaller (i.e., better)

DWC than the solution with tolerance set at 0.01%, although the Z value of solution

obtained with tolerance set at 0.05% is smaller (i.e., worse). The objective function is

calculated using the baseline normal activity durations (djm) instead of djtm to avoid

artificially prioritizing activities that see their durations increased due to holidays or

day-offs. However, the DWC is calculated using djtm. The schedule with tolerance

set at 0.05% happens to have fewer durations increased due to holidays, thus resulting

in a smaller DWC.
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5.3 Duration-Weighted Centroid as Schedule Quality Criterion

Bertrand (2020) proposed the average priority-1 duration-weighted centroid (DWC)

as a criterion to assess the quality of a front-loaded schedule (i.e., placing the priority-

1 and long-duration activities early in the schedule). This centroid is calculated by

Equation 5.1, where J1 represents the set of priority-1 activities, Sj and Fj represent

the start time and finish time of activity j respectively, and dj represents the duration

of activity j.

DWCold =
∑︂
j∈J1

Sj + Fj

2 |J1|
dj (5.1)

Equation 5.1 is intended to give more weight/importance to schedules that have

long-duration activities starting early. However, we found that this intention is not

achieved without giving more weight to the activities duration. Therefore, the DWC

equation is slightly modified as shown in Equation 5.2. The reason of making this

change is illustrated in Figure 5.1 where three schedules of three priority-1 activities

are shown. A smaller centroid is desired as it would correspond to a better front-

loaded schedule.

DWC =
∑︂
j∈J1

Sj + Fj

2 |J1|
d1.1j (5.2)

Figure 5.1: Illustrating the Need of Duration-Weight

Table 5.4: Comparison of Schedule-Quality Measures

Schedule AvC DWCold DWC

1 5.25 18 20.46
2 6.25 21.5 24.42
3 8.25 18 19.79
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A simple visual inspection shows that Schedule 3 is superior to Schedule 1 which is

superior to schedule 2 in terms of front-loading long-duration jobs. Table 5.4 shows

the computed values of the Average Centroid (AvC), DWCold and DWC for each of

the three schedules. From these results, it is clear that DWC is a better criterion in

ranking the schedule quality. The AvC yields a ranking that is the opposite of what

it should be. The DWCold is not capable of discriminating schedule 1 from schedule

3.

5.4 Experiments and Results

For the numerical experiments, we used the same objective function parameters as

in Bertrand (2020). Hence the values of θ, α, ε1, and ε2 are set to 5, 1.1, 0.001, and

0.001 respectively. Thus, the objective function becomes:

MaximizeZ =
∑︂
m∈M

∑︂
j∈J

LSj∑︂
ESj

100xjtm

p5j
(0.001 + djm)

1.1(1− 0.001t)

The BIP and modified serial SGS are programmed in Python 3.8.6. The BIP is

solved using Gurobi 9.5.1. Information of the computer used for experiments is given

in Appendix A, and the Python code of the BIP is given in Appendix B.

5.4.1 Objective function comparison between BIP and Serial SGS

This section compares the objective function values Z and computation times CPUt

obtained by the BIP and Serial-SGS as displayed in Table 5.5. The solutions obtained

by Gurobi for the BIP are all optimal. For each instance the gap between the SGS

values and the optimal solution is given. Although the objective function value Z

is syntactic, it is calculated for solutions obtained by Serial SGS for comparison to

observe the performance of Serial SGS. The objective function values gap of Se-

rial SGS to BIP varies from 0.39% to 4.38%, and generally increase with problem size.

As anticipated, the computation time increases as the problem size increases. Given

that in the initial scheduling phase, schedulers may want to run the model several

times and make resource adjustments, solution times becomes a very important

factor. Table 5.6 depicts the computation times for both methods and separates the
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Table 5.5: Comparison between BIP and Adapted Serial SGS

BIP SGS SGS Gap
Inst. Size Z∗ CPUt (min) Z CPUt (min) to BIP (%)

1 136 310.11 0.05 308.89 0.50 0.39
2 272 599.74 0.31 594.70 1.80 0.84
3 408 878.38 2.94 854.08 3.94 2.77
4 544 1128.08 7.23 1090.90 6.76 3.30
5 680 1362.41 17.54 1302.71 10.81 4.38

BIP problem generation time (.lp file creation) and the BIP actual solve time (i.e.,

Gurobi solver time). Figure 5.2 shows the CPUt growth trends for the serial-SGS,

BIP problem generation and BIP actual solve times.

Table 5.6: Detailed computational times (in minutes)

Serial-SGS BIP
CPUt Solve time .lp file creation

Inst. Size (min) (min) (min)

1 136 0.50 0.05 4.90
2 272 1.80 0.31 13.73
3 408 3.94 2.94 32.43
4 544 6.76 7.23 59.16
5 680 10.81 17.54 113.66

The above results show that the computational time of the BIP exact method grows

exponentially as expected, since NSWPP is a NP-hard problem. Furthermore, the

time spent on generating the .lp file for Gurobi has a similar trend as the actual

Gurobi solve time. The total time needed to reach an optimal solution by the exact

method makes it not very practical for large-size instances such as instances 4 and

5. On the other hand, the computational time of adapted serial-SGS grows linearly

with the problem size. Besides, as mentioned earlier, the CRUISE-500 instance is

less complex than OTC instances, because it has a lot more precedence relations and

activity time constraints.
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Figure 5.2: Detailed Computational Time Growth

As mentioned by Bertrand (2020), a feasible solution produced in reasonable time is

more favourable than a perfectly optimal solution as it is rarely implemented in prac-

tice. To test the ability of the exact method to give a good solution within reasonable

time, an experiment is carried out on instances without and with warm-start with

the initial solution generated by the serial-SGS. The results obtained are in Table 5.7.

Table 5.7: Computational Time With and Without Warm-Start

Serial SGS With Warm-start Without Warm-start
Solve time Solve time Solve time Difference to

With Warm-start
Inst. (min) (min) (min) (%)

1 136 0.50 0.05 0.12 156.16
2 272 1.80 0.31 0.98 222.28
3 408 3.94 2.94 5.73 95.28
4 544 6.76 7.23 13.00 79.83
5 680 10.81 17.55 40.65 131.62

Without warm-start, the Gurobi Optimizer takes between 79.8% to 222.3% extra
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time to find a optimal solution. These results indicate that for large-size problems

that cannot achieve optimal solutions in reasonable time, initial solutions obtained

by the adapted serial-SGS can at least ensure a feasible solution when the time limit

is reached. Using this heuristic solution to warm-start Gurobi also seems to result in

very good approximate solutions.

5.4.2 DWC comparison between BIP and Serial-SGS Solutions

As discussed in Section 5.3, the Duration-Weighted Centroid (DWC) is a good

schedule-quality measure. Table 5.8 summarizes the DWC values calculated for the

Serial-SGS and the BIP.

Table 5.8: DWC Comparison between the BIP and Serial-SGS

BIP Serial-SGS
Inst. Size DWC∗ DWC Gap (%)

1 136 290.38 320.75 10.46
2 272 534.29 567.53 6.22
3 408 762.65 854.44 12.04
4 544 1015.65 1093.96 7.71
5 680 1277.76 1340.61 4.92

Schedules generated by the exact method (BIP) have smaller DWC values than the

Serial–SGS for instances of all sizes, meaning that the exact method gives better

solutions for the goal of front-loading high-priority and long-duration activities.

The performance of the Serial-SGS is good given that for the instances considered it

has a maximum gap of about 12% for a very short compute time.

5.4.3 Makespan Comparison between the BIP and Serial-SGS

The goal of the NSWPP is not to minimize makespan Cmax. However, in this section

we will compare the resulting calculated makespan values of the solutions obtained

using the Serial-SGS and the BIP. The obtained results are presented in Table 5.9.

Given that front-loading activities is part of the optimization goal, it is not surprising

to see that the exact method outperforms the Serial-SGS here.
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Table 5.9: Cmax Comparison between the BIP and Serial-SGS

Cmax

Inst. Size Serial-SGS BIP

1 136 181 180
2 272 249 229
3 408 382 340
4 544 511 455
5 680 630 574

5.4.4 Results for the CRUISE-500 Dataset

As discussed above in the Datasets and Instances section, there are many differences

of characteristics between the CRUISE-500 and OTC datasets. Therefore, direct

comparisons cannot be made between their results. The results for the CRUISE-500

instance are shown in Tables 5.10 and 5.11. In this case, the Serial SGS method

achieves very good results as it finds a solution 2.37% away from optimal in only 2

minutes when the BIP needs 31 minutes to get to the optimal solution. On the other

hand, the BIP is capable of better front-loading the activities as its DWC is about

30% lower (lower is better for DWC).

Table 5.10: Results of CRUISE-500

BIP SGS SGS Gap
Inst. Size Z∗ CPUt (min) Z CPUt (min) to BIP (%)

6 CRUISE-500 512.08 30.97 499.96 2.03 2.37

Table 5.11: DWC Comparison between the BIP and Serial-SGS for CRUISE-500

BIP Serial-SGS
Inst. Size DWC∗ DWC Gap (%)

6 680 187.24 245.03 30.86
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Conclusions

The NSWPP is a complex variant of the RCPSP with specific characteristics: limited

length of maintenance period, industry-specific network structure, priority levels,

multiple activity and resource calendars, general precedence relationships, multiple

execution modes, and time-enforced activity constraints. These characteristics

lead to the special goal of solving this problem to front-load high-priority and

long-duration jobs within the same priority level as well as satisfying all constraints.

The multi-calendar, multi-mode, discrete-time priority-duration RCPSP model

presented in this paper successfully accommodates all the characteristics listed

above, and generates optimal schedules in terms of front-loading high-priority and

long-duration jobs. Because the NSWPP is an NP-hard problem, the computational

time to solve the developed BIP model grows exponentially with problem instance

size. Numerical experiments showed that the proposed model can achieve optimal

solutions with Gurobi in a reasonable amount of time for small-size instances (under

400 activities). However, for large-size instances the solver takes very long to find

the optimal solution.

A quickly generated and approximate solution could be more useful than an optimal

solution obtained after a long wait in real-world applications where schedulers must

go through several iterations. Therefore, a modified serial-SGS heuristic method

is proposed to quickly produce good-quality schedules. Experiments show that the

solution obtained from the adapted serial-SGS can also be used to warm-start the

optimal solver to produce the optimal solution faster. Additionally, the values of

the ES, H, and LS parameters obtained as by-products of the serial-SGS, help to

reduce the computational time of the BIP model by deceasing the number of binary

decision variables in the model. In practice, the Navy scheduler can use the serial
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SGS heuristic for a quick assessment of the schedule. If, the scheduler has more

time then the BIP model can be solved using the SGS solution to initialize the

optimization process which would decrease computation time.

Although the serial-SGS heuristic gives feasible solutions, the gap from optimum

shows that there is room for improvement. The priority rule used in the serial-SGS

ranks activities with time-enforced constraints on top of others even if their priority

level is low. This ensures the feasibility of the obtained solutions. However, it may

schedule some of these activities unnecessarily too early resulting in solutions that

are far from optimum. An extension would be to develop a matheuristic method to

solve small BIP models to select where to place ”free-floating” high-priority activities

before time-enforced constraints.

Future research may also be conducted on the rescheduling of multi-calendar

NSWPPs in order help schedule recovery or reducing deviation from the initial plan.

In real-world applications, over-estimated duration and delays due to various reasons

are inevitable. A tool that can quickly reschedule the rest of the activities in order

to catch-up to the original schedule may be very useful.

Prabhu (2021) developed a decomposition matheuristic to solve large-size instances of

the original NSWPP. Similarly, decomposition matheuristics should be developed to

quickly solve the multicalendar multimode NSWPP. Further studies may be done in

designing guidelines for the selection of solution methods depending on the complexity

of problem instances.



References

Artigues, C., Michelon, P., and Reusser, S. (2003). Insertion techniques for static and
dynamic resource-constrained project scheduling. European Journal of Operational
Research, 149(2):249–267.
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Appendix A

Information of computer used for experiments

Processor:10th Generation Intel® Core� i7-10510U Processor (1.80 GHz, up to 4.90

GHz with Turbo Boost, 4 Cores, 8 Threads, 8 MB Cache)

Operating system:Windows 10 Pro

Memory:16 GB DDR4 2667MHz

Storage:1 TB PCIe SSD
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Appendix B

Python Code of the BIP model

# Python code goes here

# Create the problem called "problem1"

prob = LpProblem("problem1", LpMaximize)

# Create the variable x[j,t,m]

var =

[[[pulp.LpVariable("x[%s,%s,%s" % (j + 1, t + ES.iloc[j], m + 1), None,

None, LpBinary) for m in range(M.shape[0])]

for t in

range(LS.iloc[j] - ES.iloc[j] + 1)]

for j in range(n)]

# Set the initial value

for j in range(len(var)):

for t in range(len(var[j])):

for m in range(len(var[j][t])):

var[j][t][m].setInitialValue(0)

for i in range(asgs):

var[i][SGS[’ES’].iat[i] - ES.iloc[i]][0].setInitialValue(1)

# Create the objective function

prob += pulp.lpSum(

[[[var[j][t][m] * (1 - (0.001 * (t + ES.iloc[j]))) * (100 / (PR.iloc[j] ** 5))

*((0.001 + int(Dobj.iloc[j,m])) ** 1.1)
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for m in range(M.shape[0])]

for t in range(LS.iloc[j] - ES.iloc[j] + 1)] for j in range(n)])

# Create constraint 1: all activities should be completed no more

than 1 time between ES and LS

for j in range(n):

prob += (pulp.lpSum([[var[j][t][m] for m in range(M.shape[0])]

for t in range(LS.iloc[j] - ES.iloc[j] + 1)]) == 1)

# Create constraint 2: finish to start

for i in range(C7.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C7["pred"].iat[i]) - 1

j2 = int(C7["succ"].iat[i]) - 1

lag = int(C7["lag"].iat[i])

prob += (pulp.lpSum([[(t + ES.iat[j2]) * var[j2][t][m]

for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * ((t + ES.iat[j1]) +

D.iat[j1, t + ES.iloc[j1]][m] + lag) for t in

range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 3: finish to finish

for i in range(C8.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C8["pred"].iat[i]) - 1

j2 = int(C8["succ"].iat[i]) - 1

lag = int(C8["lag"].iat[i])
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prob += (pulp.lpSum(

[[(t + ES.iat[j2] + D.iat[j2, t + ES.iloc[j2]][m]) * var[j2][t][m]

for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * ((t + ES.iat[j1]) +

D.iat[j1, t + ES.iloc[j1]][m] + lag - 1) \

for t in range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 4: Start to start

for i in range(C9.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C9["pred"].iat[i]) - 1

j2 = int(C9["succ"].iat[i]) - 1

lag = int(C9["lag"].iat[i])

prob += (pulp.lpSum(

[[(t + ES.iat[j2]) * var[j2][t][m]

for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1] + lag)

for t in range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 5: Start to finish

for i in range(C10.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C10["pred"].iat[i]) - 1

j2 = int(C10["succ"].iat[i]) - 1

lag = int(C10["lag"].iat[i])

prob += (pulp.lpSum(

[[(t + ES.iat[j2] + D.iat[j2, t +

ES.iloc[j2]][m] - 1) * var[j2][t][m]
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for t in range(LS.iat[j2] - ES.iat[j2] + 1)]

for m in range(M.shape[0])]) >=

pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1] + lag)

for t in range(LS.iat[j1] - ES.iat[j1] + 1)]

for m in range(M.shape[0])]))

# Create constraint 6: finish on

for i in range(C2.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C2.iloc[i, 0]) - 1

j2 = int(C2.iloc[i, 1])

prob += (pulp.lpSum(

[[var[j1][t][m] * (t + ES.iat[j1] + D.iat[j1, t +

ES.iloc[j1]][m] - 1) for m in range(M.shape[0])] \

for t in range(LS.iloc[j1] - ES.iloc[j1] + 1)]) == j2)

# Create constraint 7: finish on or after

for i in range(C4.shape[0]):

# print(P["element id"].iat[i])

j1 = int(C4.iloc[i, 0]) - 1

j2 = int(C4.iloc[i, 1])

prob += (pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1]

+ D.iat[j1, t + ES.iloc[j1]][m] - 1) \

for m in range(M.shape[0])]

for t in range(LS.iloc[j1] -

ES.iloc[j1] + 1)]) >= j2)

# Create constraint 8: finish on or before

for i in range(C6.shape[0]):

j1 = int(C6.iloc[i, 0]) - 1

j2 = int(C6.iloc[i, 1])

prob += (pulp.lpSum([[var[j1][t][m] * (t + ES.iat[j1]
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+ D.iat[j1, t + ES.iloc[j1]][m] - 1)

for m in range(M.shape[0])]

for t in range(LS.iloc[j1] - ES.iloc[j1] + 1)]) <= j2)

# Create constraint 9: resource availability

for k in range(int(R)):

for s in range(int(H + 1)):

temp = []

for j in range(n):

for m in range(M.shape[0]):

for t in range(int(max(s - DB.iloc[j, s][m] + 1, ES[j])

- ES.iloc[j]), int(min(LS[j], s) - ES.iloc[j] + 1)):

form1 = RD.iloc[j, k] * var[j][t][m] *

AC.iloc[int(SGS["calendar"].iat[j]), s]

temp.append(form1)

prob += (pulp.lpSum(temp) <= AV.iat[k, s])

# Create the .lp file

prob.writeLP("problem1.lp")

prob.solve(GUROBI_CMD(mip=MIP,options=[

("Heuristics", 0.2),

("Symmetry", 2)],

warmStart=True,

gapRel=Tol))
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