
LONG-RANGE GRAVITY-AIDED AUTONOMOUS

UNDERWATER VEHICLE NAVIGATION

by

Franz Heubach

Submitted in partial fulfillment of the

requirements for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

March 2022

© Copyright by Franz Heubach, 2022

This thesis is dedicated to my friends and family. Thank you for all

your support and encouragement. I love you.

ii

Table of Contents

List of Tables . viii

List of Figures . ix

List of Abbreviations and Symbols Used xvii

Abstract . xxvi

Acknowledgements .xxvii

Chapter 1 Introduction . 1

Chapter 2 Background . 12

2.1 State Estimation . 13

2.2 Dead Reckoning . 14

2.3 Acoustic Transponder Navigation . 16

2.4 Cooperative Localization . 17

2.5 Mapping . 18

2.6 Geophysical Terrain Types . 19

2.6.1 Bathymetry . 20

iii

2.6.2 Geomagnetic Field . 21

2.6.3 Gravitational Field . 22

2.7 Simultaneous Localization and Mapping 24

2.8 Terrain Aided Navigation . 25

2.8.1 Bathymetry Aided Navigation 26

2.8.2 Geomagnetic Aided Navigation 27

2.8.3 Gravity Aided Navigation . 27

2.9 Reference Frames . 29

2.10 Extended Kalman Filter (EKF) . 32

2.11 Quaternion Conventions . 35

2.12 Environment Modelling . 37

2.12.1 Perlin Noise . 37

2.12.2 Correlation between Gravity Anomaly and Terrain 40

2.13 Motivation . 44

Chapter 3 Methodology . 46

3.1 Robot Operating System (ROS) and Gazebo 57

3.2 AUV Navigation Testbed . 59

3.3 Terrain Aided Navigation (TAN) Algorithm 59

3.3.1 Trials Plan . 60

3.4 DRDC DCAF . 62

iv

Chapter 4 Experiment . 64

4.1 AUV Navigation Testbed . 65

4.1.1 Inertial Navigation Modelling 65

4.1.2 Gazebo World Models . 75

4.1.3 Terrain Generation . 76

4.1.4 Terrain Augmentation . 77

4.1.5 Terrain to Gravity Anomaly Conversion 79

4.1.6 Gravity Gradiometer Model 81

4.2 AUV Navigation Testbed Command Line Interface 82

4.2.1 Visualizing Perlin Noise . 83

4.2.2 Terrain Augmentation . 83

4.2.3 Raster Re-sampling . 83

4.2.4 Crop Raster to Square . 84

4.2.5 Generate Density for Raster 84

4.2.6 Generate Terrain as Raster . 84

4.2.7 Derive Gravity Anomaly Field 84

4.2.8 Show GeoTIFF . 85

4.2.9 Translate Raster . 85

4.2.10 Compare Slices . 85

4.2.11 Raster to Gazebo World . 85

4.3 ROS Parameter Study CLI . 86

4.4 Terrain Aided Navigation Algorithm 87

4.4.1 Particle Filter . 88

4.5 DRDC Collaborative Autonomous Framework 91

v

4.5.1 Bounce Behaviour . 92

4.5.2 Vehicle Behaviour Arbitration 95

Chapter 5 Results and Discussion . 97

5.1 Inertial Navigation Modelling . 98

5.2 Gazebo World Models . 103

5.3 Terrain Generation . 105

5.4 Terrain Augmentation . 107

5.5 Gravity Maps . 110

5.6 TAN Algorithm . 112

5.6.1 Gradiometer Heading Noise 112

5.6.2 Seafloor Density Uncertainty 121

Chapter 6 Conclusion . 130

6.1 Future Work . 133

References . 145

Appendix A Gradiometer Noise Particle Filter Results 146

Appendix B Density Amplitude Study 163

B.1 Density Maps . 163

B.2 Particle Filter Results . 169

Appendix C Local Gravity Anomaly from Terrain in Python 180

vi

Appendix D Horizontal Bounce Behaviour Algorithm 185

Appendix E The ROS Parameter Study CLI 188

E.0.1 The Run Command . 188

E.0.2 The extract command . 197

E.1 Full Configuration File . 201

vii

List of Tables

2.1 Comparison of the two major quaternion conventions 35

4.1 Vertical bounce behaviour input parameters 93

4.2 Horizontal bounce behaviour input parameters 94

5.1 Summary of INS model simulations 98

5.2 Summary of the gravity gradiometer heading noise parameter
study . 113

5.3 Summary of the seafloor density amplitude variation parameter
study . 122

viii

List of Figures

2.1 Different types of acoustic transponders 16

2.2 Types of acoustic sonar sensor swaths 20

2.3 The AUV body-centered reference frame 30

2.4 The AUV DVL reference frame 30

2.5 A single octave two-dimensional Perlin noise function 39

2.6 Five octaves of two-dimensional spatial Perlin noise 40

3.1 Main methodology decision tree 48

3.2 Continuation of branch (1) of main methodology decision tree . . 50

3.3 Continuation of branch (2) of main methodology decision tree . . 55

3.4 Continuation of branch (3) of main methodology decision tree . . 56

3.5 An overview of sources of uncertainty within gravity aided lo-
calization algorithm . 61

4.1 An extracted bathymetry raster from the GEBCO database . . 78

4.2 An extracted bathymetry raster from the GEBCO database
augmented with Perlin noise 79

ix

4.3 An overview of the terrain aided navigation algorithm imple-
mentation . 87

4.4 Example of path planned by the horizontal bounce behaviour . . 94

5.1 Search pattern used for INS model simulations overlaid on the
Bedford Basin . 100

5.2 INS model simulation scenario one 100

5.3 INS model simulation scenario two 101

5.4 INS model simulation scenario three 102

5.5 The Gazebo physics simulator world model of the augmented
terrain . 104

5.6 The Bedford Basin Gazebo physics simulator world model . . 105

5.7 Generated density variation using two Perlin noise octaves . . 106

5.8 Terrain augmentation verification AUV path 108

5.9 Bathymetry trace along the AUV path for terrain augmentation
verification . 109

5.10 Bathymetry environment from the GEBCO database used for
the environment model . 110

5.11 Derived gravity anomaly for the environment model 111

5.12 Calculated gravity gradient for the environment model 112

5.13 AUV’s XY paths during the gravity gradiometer heading noise
parameter study . 115

5.14 The initial INS positions of the gradiometer heading noise pa-
rameter study . 116

x

5.15 The initial INS position errors for each gradiometer heading
noise session . 117

5.16 The initial INS gradiometer heading error for each gradiometer
heading noise session . 118

5.17 Euclidean position error comparison between the TAN algo-
rithm and dead-reckoning . 119

5.18 Euclidean position error for only the TAN algorithm 120

5.19 The initial INS positions for the seafloor density uncertainty
parameter study . 123

5.20 The initial INS Euclidean position errors for each density un-
certainty session . 124

5.21 The initial INS heading error for each density uncertainty session125

5.22 Euclidean position error comparison between the TAN algo-
rithm and dead-reckoning for the density uncertainty study . . 126

5.23 Euclidean position error for only the TAN algorithm for the
density uncertainty study . 127

5.24 The gravity anomaly difference between constant and non-constant
seafloor density . 128

A.1 Gradiometer heading noise: Session 0: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 147

A.2 Gradiometer heading noise: Session 0: TAN algorithm Eu-
clidean position error . 148

A.3 Gradiometer heading noise: Session 1: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 149

A.4 Gradiometer heading noise: Session 1: TAN algorithm Eu-
clidean position error . 150

xi

A.5 Gradiometer heading noise: Session 2: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 151

A.6 Gradiometer heading noise: Session 2: TAN algorithm Eu-
clidean position error . 152

A.7 Gradiometer heading noise: Session 3: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 153

A.8 Gradiometer heading noise: Session 3: TAN algorithm Eu-
clidean position error . 154

A.9 Gradiometer heading noise: Session 4: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 155

A.10 Gradiometer heading noise: Session 4: TAN algorithm Eu-
clidean position error . 156

A.11 Gradiometer heading noise: Session 5: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 157

A.12 Gradiometer heading noise: Session 4: TAN algorithm Eu-
clidean position error . 158

A.13 Gradiometer heading noise: Session 6: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 159

A.14 Gradiometer heading noise: Session 6: TAN algorithm Eu-
clidean position error . 160

A.15 Gradiometer heading noise: Session 7: Euclidean position error
comparison between TAN algorithm and dead-reckoning . . . 161

A.16 Gradiometer heading noise: Session 7: TAN algorithm Eu-
clidean position error . 162

B.1 Seafloor density uncertainty: Session 0: generated density vari-
ation . 164

xii

B.2 Seafloor density uncertainty: Session 1: generated density vari-
ation . 165

B.3 Seafloor density uncertainty: Session 2: generated density vari-
ation . 166

B.4 Seafloor density uncertainty: Session 3: generated density vari-
ation . 167

B.5 Seafloor density uncertainty: Session 4: generated density vari-
ation . 168

B.6 Seafloor density uncertainty: Session 0: Euclidean position er-
ror comparison between TAN algorithm and dead-reckoning . 170

B.7 Seafloor density uncertainty: Session 0: TAN algorithm Eu-
clidean position error . 171

B.8 Seafloor density uncertainty: Session 1: Euclidean position er-
ror comparison between TAN algorithm and dead-reckoning . 172

B.9 Seafloor density uncertainty: Session 1: TAN algorithm Eu-
clidean position error . 173

B.10 Seafloor density uncertainty: Session 2: Euclidean position er-
ror comparison between TAN algorithm and dead-reckoning . 174

B.11 Seafloor density uncertainty: Session 2: TAN algorithm Eu-
clidean position error . 175

B.12 Seafloor density uncertainty: Session 3: Euclidean position er-
ror comparison between TAN algorithm and dead-reckoning . 176

B.13 Seafloor density uncertainty: Session 3: TAN algorithm Eu-
clidean position error . 177

B.14 Seafloor density uncertainty: Session 4: Euclidean position er-
ror comparison between TAN algorithm and dead-reckoning . 178

xiii

B.15 Seafloor density uncertainty: Session 4: TAN algorithm Eu-
clidean position error . 179

xiv

List of Abbreviations and Symbols Used

2D two-dimensional

3D three-dimensional

ANT AUV navigation testbed

API application programming interface

ARL Army Reasearch Laboratory

AUV autonomous underwater vehicle

CHS Canadian hydrographic service

CL cooperative localization

CLI command line interface

.csv comma separated value

DCAF DRDC collaborative autonomous framework

DDS data distribution service

DEM digital elevation model

DKF distributed Kalman filter

DPM distributed partical mapping

DRDC Defense Research and Development Canada

xv

DVL Doppler velocity log

ECA ECA Group

EKF extended Kalman filter

FFT fast Fourier transform

FPF full plane fit

FTS first order Taylor series

GAN gravity aided navigation

GDAL geospatial data abstraction library

GEBCO General Bathymetric Chart of the Oceans

GEOS geometry engine open-source

GIS geographic information system

GNSS global navigation satellite systems

GPS global positioning system

HITL hardware-in-the-loop

ICCP iterative closest contour point

IGA island model genetic algorithm

IGRF International Geomagnetic Reference Field

IMU inertial measurement unit

INS inertial navigation system

ISL Intelligent Systems Laboratory

JPL Jet Propulsion Laboratory

xvi

KF Kalman filter

LBL long baseline

MEMS micro-electro-mechanical systems

MOR mid-ocean ridge

NASA National Aeronautics and Space Administration

NPF nine point fit

ROS Robot Operating System

RPS ROS parameter study

SBL short baseline

SLAM simultaneous localization and mapping

STL standard triangle language

TAN terrain aided navigation

TERCOM terrain contour matching

TOF time of flight

TSF two subgroup fit

UKF unscented Kalman filter

UNCLOS Canada’s United Nations Convention on the Law of the Sea

USBL ultra-short baseline

UUV unmanned underwater vehicle

xvii

Background

0 The N-dimensional vector with zeros for all elements

ωIMU The ground truth angular velocity vector of the vehicle in the imu-centered

reference frame

a The vector representing gravitational acceleration

aIMU The ground truth acceleration vector of the vehicle in the imu-centered refer-

ence frame

Hk The Jacobian of h relative to the state X

Lk−1 The state transition function Jacobian relative to the process noise

Mk The Jacobian of the measurement with respect to the measurement noise vk

p A second generic quaternion other than q

p The vector to the point at which you are calculating the gravitational potential

pi The vector to the position of the centre of mass of the ithmass element

q A four element vector representing a quaternion

qϵ The vector part of the quaternion when using ϵ to represent the vector portion

qGL The quaternion representing the rotation from the global coordinate frame to

the local coordinate frame.

qLG The quaternion representing the rotation from local coordinate frame to global

coordinate frame.

xviii

qv The vector part of the quaternion

Qk−1 The process noise covariance matrix

Rk The measurement noise covariance matrix in the measurement reference frame

Sk The measurement residual covariance

Uk−1 The input vector from time set k to k − 1

w The process noise

x The ground truth velocity of the DVL sensor in the DVL-centered reference

frame

xG A three dimensional coordinate in the global reference frame

xL A three dimensional coordinate in the local reference frame

xm The position vector of the gravity gradiometer measurement [x, y] in the xy-

plane

Zk The measurement vector

δxi The size of the ithelement in the x direction

δyi The size of the ithelement in the y direction

δzi The size of the ithelement in the z direction

q̇ The rate of change of the quaternion q

ẋDVL The vehicle velocity in three dimensions as measured by the DVL

ϵx The first element of the vector portion of the quaternion

ϵy The second element of the vector portion of the quaternion

ϵz The third element of the vector portion of the quaternion

xix

η The scalar portion of the quaternion

r̂ The unit vector pointing from r to ri

N The N-dimensional Gaussian distribution

∇ The gradient operator

ωL The angular rate in three-dimensional space in the local reference frame

ρ The density of the ithelement

Σ2
DVL The covariance matrix associated with the DVL velocity measurement

Σ2
ω The covariance matrix associated with gyroscopes in the imu-centered reference

frame

Σ2
a The covariance matrix associated with accelerometers in the imu-centered ref-

erence frame

θm The gradiometer’s gravity gradient direction measurement

ṽk The estimated measurement residual, also known as the residual

A The amplitude of a Perlin noise layer

az The z component of a

f The spatial frequency of the Perlin noise layer

G The universal gravitational constant, 6.674× 10−11

g The gravity anomaly

h The non-linear measurement function

i The index of the mass element

i, j, k The quaternion units

xx

k The index of the Perlin noise layer

l The lacunarity of successive Perlin noise layers

mi The mass of the ithmass element

Mm The magnitude of gradiometer’s gravity gradient measurement

n The number of individual mass elements

qw The scalar part of the quaternion

r The magnitude of the different between r and ri

r The persistence of successive Perlin noise layers

r The vector going from point p to pi

t The variable that the Perlin noise interpolation function is parameterized with

V The gravitational potential

x The x component of the r vector

y The y component of the r vector

z The z component of the r vector

Inertial Navigation Modelling

a The acceleration of the vehicle during the time step T

q The INS estimate of the current vehicle quaternion orientation

x The INS estimate of the current vehicle position estimate in three-dimensional

Cartesian space

x The INS vehicle positional estimate using the EKF

xxi

ẋ The INS estimate of the current vehicle velocity in three-dimensional Cartesian

space

ẋ The velocity of the vehicle during the time step T

k The subscript denoting the current time step

k + 1 The subscript denoting the next time step

T The time step used for the EKF equations

Particle Filter

∆θins The change in the vehicle’s yaw between prediction steps of the particle filter

∆dins The distance travelled by the vehicle’s center of mass between prediction steps

of the particle filter

ESS The effective sample size; a measure used to represent how many particles

effectively represent the weighted sample distribution

σθ The standard deviation of all the particle heading estimates

σm The standard deviation of the gradiometer gravity gradient direction measure-

ment

σx The standard deviation of all the particle x position estimates

σy The standard deviation of all the particle y position estimates

θk+1 The particle filter’s estimate of the vehicle yaw after the prediction step

θk+1 The particle filter’s estimate of the vehicle yaw before the prediction step

θk−1 The previous inertial navigation system estimate of the vehicle’s yaw

θi The a priori gravity gradient map’s gradient direction at the ith particle’s

location

xxii

θm The gradiometer’s gravity gradient direction measurement

θkins The latest inertial navigation system estimate of the vehicle’s yaw

fθ The jitter multiplication factor for the heading estimate

fx The jitter multiplication factor in the x coordinate direction

fy The jitter multiplication factor in the y coordinate direction

i The particle index

jθ The jitter added to the particle filter heading estimate

jx The jitter in the x coordinate direction of the particle filter positional estimate

jy The jitter in the y coordinate direction of the particle filter positional estimate

n The number of Gaussian distributions to use for the approximation of the

likelihood function.

Np The sample size, also known as particles, used by the particle filter

wk
i The particle weight of the ith particle before the particle filter’s update step

wk+1
i The particle weight of the ith particle after the particle filter’s update step but

before normalization

xk+1 The easting portion of the particle filter’s positional estimate of the vehicle’s

center of mass in a projected coordinate system after the prediction step

xk The easting portion of the particle filter’s positional estimate of the vehicle’s

center of mass in a projected coordinate system before the prediction step

xk
ins The latest easting portion of the inertial navigation system positional estimate

of the vehicle’s center of mass in a projected coordinate system

xk−1
ins The previous easting portion of the inertial navigation system positional esti-

mate of the vehicle’s center of mass in a projected coordinate system

xxiii

yk+1 The northing portion of the particle filter’s positional estimate of the vehicle’s

center of mass in a projected coordinate system after the prediction step

yk The northing portion of the particle filter’s positional estimate of the vehicle’s

center of mass in a projected coordinate system before the prediction step

ykins The latest northing portion of the inertial navigation system positional esti-

mate of the vehicle’s center of mass in a projected coordinate system

yk−1
ins The previous northing portion of the inertial navigation system positional es-

timate of the vehicle’s center of mass in a projected coordinate system

Gradiometer Model

∠∇g The planar direction or heading of the gravity gradient

Σg The covariance matrix of the gyroscope measurement defined in the body-

centered reference frame

∥∇g∥ The planar magnitude of the gravity gradient

N The normal distribution

σθ The standard deviation of the Gaussian noise applied to the heading of the

gravity gradient

σm The standard deviation of the Gaussian noise applied to the magnitude of the

gravity gradient

gz The vertical component of the gravity gradient

x The coordinate direction in line with the cardinal direction East

y The coordinate direction in line with the cardinal direction North

Terrain Generation

l The lacunarity or the ratio of frequencies of successive Perlin noise layers

xxiv

noctave The number of octaves required to guarantee a minimum detail size

po The period of the first Perlin noise layer or the base period

s The size of the minimum guaranteed detail within the generated terrain

xxv

Abstract

Autonomous underwater vehicles (AUV) are a mobile platform for underwater sens-

ing, an environment relatively unexplored. Georeferencing measurements is difficult

due to the challenge of AUV localization. The rapid attenuation of radio frequencies

underwater restricts AUVs from using the global position system (GPS), the above-

water solution to localization. Underwater localization relies on dead-reckoning, the

integration of vehicle inertia measurements to arrive at a position estimate. However,

the dead-reckoned position error is unbounded. This error can be bounded using a

source of position feedback. Terrain aided navigation (TAN) — using georeferenced

geophysical terrain maps can provide that feedback. TAN shows significant promise

as a method for long-range, passive underwater AUV navigation, especially gravity-

aided navigation (GAN). This thesis presents a TAN algorithm that uses a gravity

gradiometer and gravity gradient maps to successfully limit dead-reckoning error by

a factor of 25 over a 500 km long AUV mission, with a localization accuracy of 1 km.

The TAN algorithm exploits the correlation between terrain and the gravity anomaly

to use a global database of bathymetry maps (GEBCO) with 400m resolution. The

mission was simulated in the AUV navigation testbed (ANT), a collection of tooling

developed during this thesis to accelerate research in TAN. Among the contributions

made by the ANT, is a inertial navigation system (INS) that emulates the uncer-

tainty characteristics of a commercial navigation grade INS (Kearfott Seanav) — to

simulate dead-reckoning error growth. Parts of the ANT have been released to the re-

search community as open-source, and are being used by researchers in the Intelligent

Systems Laboratory (ISL) at Dalhousie University.

xxvi

Acknowledgements

Thank you to my supervisor Dr. Mae Seto for your guidance, feedback, and critique

from start to finish of this thesis.

Thank you to my supervisory committee Dr. Vincent Sieben and Dr. Robert Bauer

for your comments, suggestions, and feedback.

Thank you to my lab colleagues for your feedback, support, and good company.

Thank you to the open-source community for all the amazing software that enabled

this thesis.

Thank you to my funders who through their resources enabled the work in this thesis:

Nova Scotia Graduate Studies (NSGS), Irving Shipbuilding Inc., the Killam Fam-

ily Foundation (Killam Scholar), and Defence Research and Development Canada

(DRDC).

xxvii

Chapter 1

Introduction

1

2

The autonomous underwater vehicle (AUV) is a mobile under-water sensing plat-

form. The on-board autonomy enables underwater missions that would otherwise

require a larger vehicle for manned missions and removes the operating area restric-

tions imposed by a tethered vehicle [1]. This reduces the mission cost and enables

longer duration missions for ocean sensor measurements / data collection [1]. This

data is limited only by the sensors the AUV can support, which is limited by its

onboard energy, and size. The lower cost of, and potential of AUV missions, and the

leap in embedded computing technology, means sensors specifically built for the AUV

platforms have proliferated in the last two decades [2]. When making measurements

underwater, the measurements must be georeferenced to be of any use to the AUV

mission.

Georeferencing data underwater is especially difficult because the global position-

ing system (GPS) is not available underwater. This is due to the rapid frequency-

dependent attenuation of radio frequencies by salt water [3] [4]. The effective range of

radio frequency communication under water is on the order of 10m [4]. Reliance on

the acoustic communication channel has important consequences, underwater commu-

nication channels are low-bandwidth, low baud-rate, and unreliable, therefore vehicle

localization is difficult [3]. Localization refers to the vehicle’s ability to georeference

itself, and navigation refers to how a vehicle travels from one location to another.

Over longer missions, localization becomes essential to navigation so the two words

are often incorrectly used interchangeably or in similar contexts [5]. During shorter

missions the vehicle localization can be performed using dead-reckoning [6].

Dead-reckoning uses the numerical integration of measurements of angular ve-

locity and acceleration to obtain the vehicle position [7]. This integration action

also integrates the measurement errors which leads to unbounded error growth with

time [7]. Over shorter distances (10 km to 500 km) this can be mitigated with a better

inertial navigation system (INS). An INS implements dead-reckoning [6]. However,

over longer distances (>500 km) the error accumulated over time becomes unusable

for navigation even with the most expensive INS [8, 6].

For example, underwater port-to-port navigation from Halifax, Nova Scotia to

Southampton, England is approximately 4500 km. Long-range underwater navigation

3

is necessary when the surfacing for a GPS fix is undesirable or impracticable (e.g.

under-ice [9], stealth, or deep-water operations). Using the Kearfott Seanav INS with

a circular error probable of 0.5% of distance travelled [8], the accumulated error would

be approximately 45 km (95% confidence interval, assuming Gaussian distributed).

This is an unacceptable amount of accumulated error — larger than the width of

the English channel (approximately 30 km). This justifies the research field of long-

distance AUV navigation.

Dead-reckoned AUV navigation in general requires position feedback [10]. This

can be in the form of acoustic beacons integrated on surface platforms that access

GPS [11], other underwater vehicle(s) [12], or georeferenced landmarks [13]. These

methods all require an active acoustic communication channel which can be inter-

mittent [3] and could be interfered with (jammed). Stationary beacons need to be

installed and georeferenced before the mission. They are obviously limited in oper-

ating range [13] and therefore of no value for long distance missions. Other methods

require other vehicles (e.g. ships) and the ocean surface to be available which is not

the case for under-ice navigation [14, 9]. An emerging method for AUV navigation is

to use physical features of the terrain as position references [15, 16, 17].

Terrain aided navigation (TAN) refers to AUV localization and navigation us-

ing sensors to detect and recognize geophysical terrain features [6]. This includes

the bathymetry sensed through sonars [10], the magnetic field with magnetometers

and magnetic gradiometers [18, 19], and the gravitational field through the use of

gravimeters and gravity gradiometers [20, 21]. These methods are in varying stages

of technological readiness. Each method uses a priori georeferenced maps to localize

the AUV [6]. There are various TAN algorithms that have been explored — some

as simple as matching to the nearest map location [22, 23], other more complicated

methods propagate state estimate distributions using a Kalman filter or particle fil-

ter [24, 25, 26, 27].

The goal of this thesis is to develop a TAN algorithm that limits the dead-reckoned

error growth over long distances, is passive, resistant to interference, and uses readily-

available information. Active sensors emit energy into the water, passive sensors do

not [17]. Gravity aided navigation gravity aided navigation (GAN) was chosen as the

4

method of TAN that meets the requirements.

GAN is resistant to interference as it requires large amounts of mass to be moved

to change the local gravity field. The gravity field is more persistent as it is less

dynamic than the magnetic field [17]. The magnetic field is also not stable enough

to navigate by near the poles whereas the gravity field would be. Additionally, the

temporal aspects of the gravity field like tidal effects can be filtered somewhat with

wave models. The work in this thesis is closely related to work by Pasnani and

Seto [28]. Pasnani and Seto use the gravity anomaly field directly to perform TAN.

This thesis presents a novel algorithm to perform underwater TAN through exploiting

the correlation between the bathymetry and gravity anomaly.

The work presented in this thesis evaluates whether the global General Bathymet-

ric Chart of the Oceans (GEBCO) [29] bathymetry database can be used to navigate

a vehicle with a gravity gradiometer. The benefit of this versus the gravity anomaly

maps used in [28] is the increased resolution (400m [29] versus 2 km [17]) and better

availability of maps. Both are global databases, the GEBCO database being of higher

resolution. Additionally, the presented TAN provides a separate method for local-

ization dependent on a different set of maps but using a similar sensor. This creates

the option to fuse both methods with particle filter state estimate to increase the

localization accuracy even further. This promising approach is left for future work.

Towards developing a low-risk testing method for the TAN algorithm presented in

this thesis, the author developed tools and processes that will benefit others in AUV

navigation as well as users of the ROS ecosystem for research, and reduce duplication

of research tooling. The tools together make up what this thesis refers to as the AUV

navigation testbed (ANT). Early work in this thesis was presented at the IEEE AUV

2020 virtual conference [30]. The ANT and environmental modelling techniques were

open-sourced and presented at the IEEE Oceans 2021 conference in San Diego [31].

Tools that are part of the ANT are currently used by researchers in the Intelligent

Systems Laboratory (ISL).

The work in this thesis has three main contributions. Firstly, a TAN algorithm

that is passive, resistant to interference, limits dead-reckoning error growth, and uses

5

readily-available information. Secondly, an INS model implementation that has error

growth properties of current state-of-the-art INS and can be used for simulating

AUV dead-reckoning. Thirdly, the development of a set of tools (the ANT, and ROS

parameter study (RPS)) to enable and ease underwater AUV research, especially in

the field of TAN.

The proposed TAN algorithm uses existing global bathymetry maps from GEBCO

to perform gravity gradient aided localization of the AUV to provide a position error

bound on dead-reckoning (details in sections 4.4.1 and 5.6). The algorithm exploits

the correlation between the terrain and the gravity anomaly to derive the gravity

gradient. Using the gravity gradient heading for navigation makes the algorithm

more robust to the uncertainties that arise when using the gravity gradient. The

particle filter provides a position estimate limited by the accuracy of the a priori

maps provided to the vehicle. The particle filter algorithm successfully limits the error

growth of the dead-reckoned position estimate to 1 km — limited by the resolution of

the gravity gradient map input (the 400m resolution bathymetry from GEBCO was

converted to a resolution of 1 km during derivation of the gravity anomaly). Over a

distance of 500 km the median particle filter position error was approximately 1 km.

Compared with the median dead-reckoning error of 25 km, the particle filter reduces

position error by a factor of 25 (details in section 5.6). To simulate dead-reckoning

an INS model was needed.

An INS uses accelerometers and gyroscopes to measure the vehicle acceleration

and angular velocity, respectively. These are integrated twice and once, respectively,

to obtain the vehicle position and orientation. Numerically integrating inertial mea-

surements to estimate position and orientation is referred to as dead-reckoning [32].

The Gazebo physics simulator does not include an implementation of an INS model,

only an inertial measurement unit (IMU). There are also no libraries that implement

an INS model that could be adapted for use within the Gazebo physics simulator.

Therefore, This thesis documents the creation and testing of an INS model that has

error properties similar to current state-of-the-art INSs [8]. The position estimate of

the simulated INS was used as the comparison for the implemented TAN algorithm,

and is part of the collection of tools developed during the work in this thesis referred

6

to as the ANT.

The ANT was created to accelerate the development and low-risk testing of TAN

in an underwater environment. It uses the Gazebo simulator, the ROS, and the un-

manned underwater vehicle (UUV) simulator [33]. Gazebo is an open-source physics-

based simulator for robotics. ROS is a robotics tool chain that provides middleware

for writing modular, component-based robotics software architecture, and a commu-

nications layer for data sharing between processes. The UUV simulator is a software

package that uses ROS and the Gazebo simulator, to provide a 3D vehicle URDF-

model, a vehicle dynamics model, and a vehicle controller for a torpedo-shaped AUV

(the ECA Group (ECA) A9) that shares kinematic similarities with the type of vehi-

cle that could be used for on-vehicle testing of the TAN algorithm developed during

the work in this thesis.

The collection of tools that comprise the ANT, include the ANT command line

interface (CLI). A CLI is a text based interface that executes program commands from

the command line. The ANT CLI is written in Python, a popular language, and open-

sourced to the community on GitHub (the most popular code-sharing platform). The

work in the ANT CLI was published as part of the OCEANS 2022 conference in San

Diego where the work was presented [31]. The ANT CLI contains functionality to

visualize Perlin noise (a coherent type of noise often used to generate artificial terrain),

create artificial terrain with various parameters under the users control, augment

existing terrain with noise as a way to introduce missing detail into lower-resolution

raster data, use bathymetry and optionally density to derive an approximation of

the local gravity anomaly using the correlation between the terrain and the gravity

anomaly, and facilitate a pipeline from a bathymetry raster to a 3D solid mesh collision

and visual model within the Gazebo simulator.

The terrain generation technique is useful in TAN research to explore how ter-

rain properties affect the performance of an algorithm (details in section 4.1.3). This

promotes a deeper understanding of the algorithm limitations before on-vehicle im-

plementation, and in-water testing. The terrain augmentation technique contributes

a way for researchers to take existing lower-resolution measurements (which are more

readily available, e.g. GEBCO) and add realistic detail, with noise properties under

7

the user’s control, while maintaining the integrity of the original measurements (de-

tails in section 4.1.4). The bathymetry can then be transformed into the expected 3D

model format for visual and collision awareness within the Gazebo physics simulator.

The ANT CLI supports a pipeline to transform a raster into a model within the

Gazebo simulator using the Blender tool [34]. Blender is a widely used open-source

3D modelling and animation software tool and is the recommended way to create 3D

models for the Gazebo environment. The pipeline makes use of existing open-source

Python libraries that support reading raster data [35], the Blender Python appli-

cation programming interface (API), and matplotlib a Python plotting library [36].

The pipeline reads the raster data, imports it into Blender, turns it into a 3D solid

triangular mesh, uses matplotlib to generate a colour map and overlays it onto the

mesh as a visual, exports the files to a Gazebo model directory, and generates the nec-

essary configuration files for the models use within Gazebo. This pipeline accelerates

a process to complete in a few minutes when it can otherwise take a day.

This thesis will cover the methods, implementations, results, and consequences of

these contributions. The thesis begins by introducing state estimation in section 2.1.

State estimate is a broad topic that covers methods which estimate the current state of

a system based on uncertain input. In this case the AUV pose when it is transiting or

taking measurements under water. The standard localization method on most AUVs

is to use a form of dead-reckoning (section 2.2) [2]. The implementation of AUVs

dead-reckoning is often based on an inertial navigation system (INS). However, dead-

reckoning has no error bound on the position estimate error [7]. Therefore, some

method of position feedback needs to be employed to bound the error growth.

Georeferenced acoustic transponders can be used for position feedback. This is

usually in the form of an existing acoustic transponder network and works in a manner

similar to GPS [37, 3]. Each transponders uses the time a message takes to travel

i.e. time-of-flight, to range the vehicle from the known transponder position. Related

research, benefits, and drawbacks of acoustic transponder localization is introduced

in section 2.3. Transponders can also be used integrated to other mobile platforms, or

other AUVs [12]. The other vehicle’s known position can then be used to cooperatively

localize the AUV. This is introduced in section 2.4. Other forms of localization can

8

use a priori information about the environment (maps) to assist state estimation

methods [28].

Research within mapping related to AUV navigation and localization is intro-

duced in section 2.5. Maps summarize, record, and georeference the information

associated with a specific geophysical region [38]. The terrain types are: the ocean

floor (bathymetry), the Earth’s magnetic field (geomagnetic), and Earth’s gravita-

tional field (gravity). The properties and research related to these terrain types are

introduced in sections 2.6.1 to 2.6.3, respectively. Mapping the environment and us-

ing the same maps to localize the vehicle is referred to as simultaneous localization

and mapping (SLAM).

Research related to SLAM, and the reasons to use SLAM, are covered in sec-

tion 2.7. SLAM is appropriate when revisiting a known area more, which enables

loop closure [39]. For long distance transits however, SLAM loop closures are less

useful and can only be used on the return trip; if there is one. Therefore, TAN aided

navigation using a priori maps is introduced in the next section.

TAN compares a georeferenced a priori map to AUV measurements to localize the

vehicle. TAN methods using the different geophysical terrain types first introduced

in section 2.6, are covered in section 2.8. Research related to navigation using acoustic

sensors and the ocean floor (bathymetry) is introduced in section 2.8.1, using the

geomagnetic field is covered in section 2.8.2, and using the gravity field is introduced

in section 2.8.3. Then, the background section covers some of the mathematical

concepts used extensively within this thesis, starting with reference frames.

Reference frames are introduced in section 2.9, and quaternion conventions are

introduced in section 2.11. Quaternions have three main conventions [40], each can

be mixed and matched with each other, making it important to be clear about which

convention is used. Both quaternions and reference frames are featured heavily in

the implementation of the INS. The INS was implemented using the EKF framework,

the de-facto standard [32, 41]. The EKF is a linearization of a non-linear system’s

state space to use the Kalman filter (KF) framework [32]. Given small enough steps

most non-linear systems can be approximated using linear propagation and correction,

9

justifying the EKF wide-spread use [32]. The structure of an EKF is introduced in

detail in section 2.10. The EKF based INS is used as input to the TAN algorithm

together with the environment sensor models.

The environment is modelled using existing terrain from a global database of ocean

floor bathymetry, the GEBCO database (details in section 2.12). Perlin noise [42],

introduced in section 2.12.1, is a method to generate custom terrain or augment

existing terrain with higher detail. The environment for GAN needs to include a

measure of the gravity anomaly. The correlation between the gravity anomaly and

the terrain can be used to derive the gravity gradient [43]. This is first introduced

in section 2.12.2.

To conclude the background section a summary of the motivation for the work in

this thesis (section 2.13) is provided. The background introduces AUV navigation and

localization, covers the concepts needed for the work in this thesis, and summarizes the

thesis work motivation. Next, the methods used throughout this thesis are introduced.

The methodology section (chapter 3) covers the problem and solution flow for the

work in this thesis. Multiple decision-tree diagrams pose the problems and challenges

encountered during this thesis, and the solutions and implementations as a result of

them. These diagrams show the conceptual flow for the work presented within this

thesis. The reader is then introduced to ROS and the Gazebo simulator, which are

fundamental to the implementation of the work in this thesis, in section 3.1. These

tools are the basis of the ANT, a collection of tools developed during the work in

this thesis to acelerate research processes within TAN. The ANT is introduced in sec-

tion 3.2. The ANT is used for low-risk simulation based testing and is a prerequisite

for integration testing, and in water testing.

Section 3.4 discusses the work completed towards vehicle integration and in-water

testing of the TAN algorithm on the IVER 3, a torpedo shaped AUV. The method-

ology section concludes with the methods used for designing the TAN algorithm

in section 3.3, and studies that are going to be used to test the performance of the

TAN in comparison to dead-reckoning (INS) in section 3.3.1. This leads to the im-

plementation of the work in this thesis.

10

The experiment section (chapter 4) covers the implementation details for the ANT

thoroughly, this includes the break down of the state equations for the EKF-based

INS model in section 4.1.1, and the creation of the Gazebo world model used for the

simulation environment in section 4.1.2. The application of Perlin noise to create

terrain, to the user’s specifications, as a way of testing TAN algorithms is explained

in section 4.1.3. Perlin noise can also be used to add detail to lower resolution terrain

as a way to enhance the realism of a simulation environment, this process is discussed

in section 4.1.4.

Once the missing density field is generated, and the bathymetry has sufficient de-

tail the gravity gradient is derived using the correlation between the terrain and the

gravity anomaly [44]. The details of this conversion are covered in section 4.1.5. The

gravity gradient is used to simulate the gravity gradiometer. The gravity gradiometer

model is discussed in section 4.1.6. The gravity gradiometer model is used as posi-

tion feedback for the TAN algorithm. The model used for particle filter based TAN

algorithm is discussed in detail in section 4.4. The DRDC collaborative autonomous

framework (DCAF) project works towards vehicle integration and in-water testing

for the TAN algorithm.

Parts of DCAF that the author directly developed are discussed in detail in sec-

tion 4.5. This includes the bounce behaviour, and vehicle behaviour arbitration. The

bounce behaviour confines the vehicle to a virtual boundary surrounding a predefined

operating region. The arbiter manages the actions requested by behaviours within

DCAF and selects which action gets executed on the vehicle based on priority and

action request time. Before implementation on the vehicle the TAN is tested within

the ANT.

The ANT provides a CLI that accelerates testing of TAN related algorithms. The

CLI provides the terrain generation, terrain augmentation, gravity anomaly deriva-

tion, pipeline from raster to Gazebo world model, and peripheral functionality. The

ANT CLI is discussed in section 4.2. Additionally, a tool to enable parameter studies

with ROS and Gazebo simulator was also developed, the ROS parameter study CLI,

discussed in detail in section 4.3. The results of the tests for the ANT and the TAN

algorithm are shown in chapter 5.

11

The results and discussion section (chapter 5) shows the INS model has the error

characteristics of current state-of-the-art INS models, therefore, verifying its use to

develop dead-reckoning navigation methods. The results of the INS model results

are discussed in section 5.1. The verification of the tools developed as part of the

ANT, including the Gazebo world models, terrain generation, terrain augmentation,

and gravity map derivation are shown and discussed in sections 5.2 to 5.5, respec-

tively. Results of testing the TAN algorithm performance when subjected to gravity

gradiometer heading noise and density uncertainty, due to the constant density as-

sumption, are presented and discussed in sections 5.6.1 and 5.6.2, respectively. The

results show the particle filter algorithm successfully limits error growth, and local-

izes the vehicle to within a 1 km (limited by map resolution used for the simulation

studies).

The thesis concludes with a reiteration of the contributions of this thesis, a sum-

mary of the implication of the results (chapter 6), and the author’s recommendations

for follow-on future work (section 6.1).

Chapter 2

Background

12

13

This chapter covers the background needed for the thesis work. This includes

research in the field of AUV localization and navigation to provide context and moti-

vation for the presented work. It also introduces and explains mathematical concepts

used in later sections.

2.1 State Estimation

For an AUV to localize itself and effectively navigate, some form of state estimation

is required as the AUV position is not directly observable or measurable. The state

estimation here concerns the vehicle pose: the vehicle position and attitude.

The KF, and variations there of, are arguably the de facto standard in state

estimation [32, 41] (the KF is covered in detail in section 2.10). However, non-

parametric state estimation techniques like the particle filter and its variants have

become increasingly common [45, 26, 46, 27, 20]. For a summary of state estimation

techniques related to terrain aided navigation see Table 1 in Carreno et al. [10]. State

estimation in the context of AUV localization and navigation is also discussed in

detail in work by Paul et al. [3].

For example, a Kalman filter error state formulation is used to integrate an IMU,

with a Doppler velocity log (DVL), acoustic transponders like an long baseline (LBL),

pressure sensor (to measure depth), and altitude measurements for a complete AUV

navigation solution [47]. A Doppler velocity log (DVL) measures acoustic Doppler

effect along four directions [47], used for over-ground velocity feedback. A long base-

line (LBL) system measures round-trip travel times between a vehicle transceiver and

four remote transponders [47], used for vehicle position feedback relative to the LBL

system.

TAN is highly non-linear, due to the non-linear nature of geophysical terrain [25];

therefore, the unscented Kalman filter (UKF) has been used (e.g. [25], [48]). The

UKF uses sigma points to transform the Gaussian distribution through a non-linear

function, rather than linearization of the non-linear function (EKF), and does not

require the often difficult task of computing the Jacobian matrices [49]. The UKF is

14

generally more accurate than the EKF, and the sigma point-based probability distri-

bution transform is not limited to Gaussian (unimodal) distributions [49]. However,

the UKF is more conceptually complex, computational expensive, and often may not

perform better [41]. For this reason the UKF was not pursued for use within this

thesis.

Sampling-based techniques like the particle filter, also referred to as sequential

Monte Carlo, condensation, and natural selection are able to represent non-linear,

multi-hypotheses, and un-parameterized probability distributions [50]. They are,

therefore, ideal for state estimation where the state transition or measurement model

are non-linear, as is the case for TAN [16], due to the non-linear nature of geophysical

terrain.

Particle filter based state estimation, as applied to TAN is heavily relied on by

numerous research works [51, 27, 16, 28], making them attractive for research in

TAN. Effort has gone into making particle filters less likely to prematurely converge

in featureless environments by slowing convergence in uninformative terrain [51], and

more efficient in representing the underlying bathymetry estimates of particles [27]. A

TAN solution for gliders also makes use of the particle filter [15]. This demonstrates

the versatility, and active use of particle filter based algorithms in the field of TAN.

Often the particle filter based TAN relies on the existing dead-reckoning solu-

tion that comes standard on the AUV [2]. The dead-reckoning algorithm, imple-

mented in the INS, provides the high fidelity vehicle state estimation over short

distances [32], complemented by the lower frequency position feedback updates asso-

ciated with TAN [17].

2.2 Dead Reckoning

Dead-reckoning uses the previous position (or prior), the velocity vector, and the time

step to estimate the current position [3]. This velocity can be directly measured (for

e.g. with a Doppler velocity log) or estimated by integrating the acceleration vector

over time. The integration of acceleration with respect to time estimate position is

referred to as inertial navigation and is the basis of most AUV navigation systems [2].

15

Military grade INS cost $ 1 million and have a drift performance of 1 nm/day (1

nautical mile is approximately 1.85 kms), navigation grade INS are on the order of $

100K and can limit the drift to 1 nm/hour, and a micro-electro-mechanical systems

based INS costing thousands of dollars have > 10 nm/hour drift [18].

The INS can be integrated with the DVL. The DVL uses Doppler shift of acoustic

measurements to get a direct measure of the three-dimensional (3D) relative velocity

vector over ground [3]. The velocity is relative to the surface that the four or more

beams are reflected by [3]. This is usually the vehicle velocity relative to the ocean

floor. The DVL has a nominal standard deviation of 0.3 cm s−1 to 0.8 cm s−1 and cost

from $20K to $80K [3]. This direct measure of the velocity puts a bound on the INS

velocity estimate’s error growth and therefore, increases localization and navigation

performance.

The DVL is heavily relied upon in situations where a direct measure of the relative

velocity can improve the navigation accuracy of an INS. This is true for most under-

water navigation scenarios unless the altitude of the vehicle is beyond the range of

the DVL or stealth is required, as the DVL emits acoustic signals. The DVL can also

be used to give object relative velocity to map rotating and translating icebergs [52].

Additionally, the DVL is often used in hull inspections to give an error bounded

estimate of the vehicle’s velocity relative to the ship’s hull [53].

A tightly coupled approach using the measurement of each DVL beam makes the

navigation solution robust to DVL beam drop outs. This avoids situations where

receiving the returns from three beams is equivalent to total drop out causing a loss

in information that could be used for state estimation [47].

The DVL is a sensor that actively adds energy to the water in the form of acoustic

energy from the vehicle, this is not desirable in situations where the vehicle must

remain undetected. There are other (passive) localization methods that use acoustic

communication where the vehicle only listens. This is similar to GPS [37]. Acoustic

transponders can be configured to work this way.

16

Figure (2.1) (a) Short baseline (SBL) (b) Ultra-short baseline (USBL) (c) Long
baseline (LBL). Figure 1.2 from Paull et al. [54]

2.3 Acoustic Transponder Navigation

Ultra-short baseline (USBL), short baseline (SBL), and LBL are types of acoustic

transponder and beacon configurations, as shown in Figure 2.1 [54]. The general

concept is that the vehicle uses the acoustic transponders, the time of flight (TOF)

of acoustic pings, or the phase difference between received signals to determine its

location relative to the georeferenced transponders [54].

LBL beacons are distributed through the mission area and use triangulation to

localize the vehicle [55]. The vehicle uses the phase difference of the USBL (transpon-

ders spaced < 10 cm) to determine the heading to the USBL, and TOF to determine

the distance. The SBL uses transponders on either end of the ships hull to triangulate

the vehicle position [54]. LBL is more accurate over longer distances but requires

stationary georeferenced beacons on the ocean floor. This is not required by the

USBL and the SBL. [54].

Acoustic communication has inherent lag, due to the low speed of sound under

water. This lag is on the order of 2 s for an operating area of 350m by 350m [47].

Therefore, the state estimation must account for significant time delay in consecutive

received signals.

A long distance acoustic transponder array was used for a 12-day under-ice mission

in the Canadian High Arctic [9]. This mission is considered the longest under-ice

mission to date and its purpose was to collect bathymetric survey data for Canada’s

Canada’s United Nations Convention on the Law of the Sea (UNCLOS) application.

17

However, the acoustic array was used to home the vehicle over a long-distance towards

a moving target, not for vehicle localization [9].

Related work by Di Qiu et al. attempted to use acoustic sources of opportunity

for navigation [56]. Their work explored the use of a training phase where the vehicle

detects acoustic sources within the area and geotags their location. The database of

acoustic sources can then later be used for navigation. This method can be used in

conjunction with TAN for applications like geomagnetic aided navigation to improve

localization and navigation performance [57]. This method for navigation requires

many active acoustic sources, and is most useful in areas with underwater activi-

ties [56].

A general discussion and an in depth review of the literature surrounding acoustic

transponder localization and navigation can be found in Paull et al. [54] and Paull et

al. [3].

Acoustic transponder localization can complement TAN or be used as ground

truth localization to test TAN solutions [47]. Passive localization is achievable us-

ing acoustic transponders if the AUV has its time precisely synchronized with the

transponders time. Then one-way travel time can be used to range the vehicle from

the base station without the vehicle having to transmit anything. However, TAN has

the benefit of not requiring stationary beacons (LBL) or other vehicles with SBL or

USBL to localize the AUV. This is especially relevant for longer distance navigation

(> 1000 km), as many LBL based transponders would be required to provide an ac-

ceptable localization solution given LBL beacon spacing is on the order of 30 km to

50 km [58]. For these reasons acoustic transponder localization is not realistic for long

distance AUV navigation. A mitigation strategy includes placing these beacons on

mobile platforms (other AUVs) to perform cooperative localization.

2.4 Cooperative Localization

Cooperative localization (CL) uses several vehicles to aid with localization; for ex-

ample, surface vehicles or other underwater vehicles. CL relies on the basic idea that

vehicles have location uncertainty and sharing that information with other vehicles

18

forms a better localization estimate [3].

Underwater, this information sharing is done over the acoustic communication

channel, which adds the challenges of acoustic communication to CL. CL is an ex-

pansive field that covers homogeneous and heterogeneous teams of AUVs with any

assortment of vehicles, including surface vehicles. It is covered in more detail in work

by Paul et al. in Chapter 11 of the Encyclopedia of Robotics [54]

Recent exploratory work focused on the use of CL to improve the performance of

TAN. Distributed Kalman filters (DKFs) were suggested as a way to use a formation

of AUVs to increase the localization accuracy of geomagnetic aided navigation [18].

The AUV formation could be used to extend the baseline of the magnetometer, giv-

ing a more accurate vector measurements of the magnetic field using multiple flux

gate magnetometers [18]. This was proposed as better method to detect unexploded

ordnances; however, experimental results implemented directly on an AUV forma-

tion were not completed [18]. Djapic et al. did present successful representative

experiments as precursors to future experimentation. These experiments included

swimmer formations detecting mines and two magnetometers detecting the direction

of a passing car at a distance of 15m [18].

Cooperative localization requires active communication between vehicles. This

cannot be achieved passively, and therefore, does not meet the passivity requirement

of the TAN algorithm. Next, improvements in mapping related to TAN will be

discussed. Georeferenced maps are a prerequisite to TAN, unless performing SLAM

(introduced in section 2.7).

2.5 Mapping

A map summarizes and records the measurements about a specific phenomena in an

area. Maps in the context of navigation relate a measurement to a spatial position

(georeferencing). There has been effort to sum different terrain maps in a region to

form an integrated visual representation.

Bodus-Olkowska et al. show that the fusion of bathymetric data, sonar images,

and magnetic anomaly contour data can serve as an integrated visualization summary

19

of the sea-floor [59]. The multi-beam echo sounder bathymetric measurements pro-

vide the depth information with precise positioning, the side-scan sonar images show

the dimensions and locations of objects on the seafloor, and marine magnetometer

measurements provide visualization of the ferromagnetic characteristics of features

below the sea floor [59].

Sparse measurements have been interpolated using the Kriging algorithm to cre-

ate prior field maps that can be used as navigational aids [60]. This method, in

conjunction with the iterative iterative closest contour point (ICCP) matching algo-

rithm and an interpolated gravitation field map, successfully limited the AUV growth

in localization error [60].

Barkby et al. demonstrated the use of a Gaussian process map as the bathymetry

representation during particle filter SLAM. The map representation allowed loop clo-

sure without direct re-visitation of previously covered areas [27].

It is useful to determine if navigation within an area is likely to give good results.

This is referred to as navigability analysis [61]. There are numerous works on navi-

gability analysis of gravity maps and their analysis is beyond the scope of this thesis,

some related references can be found in Liu et al [61].

This section provided a brief overview of the research directly related to mapping

in the context of TAN. The research aims to extract as much useful information

from the available measurements, or fuse it with other data to expand the amount of

usable measurements. Maps usable for TAN contain information about the different

geophysical terrain types, bathymetry, magnetic, and gravity.

2.6 Geophysical Terrain Types

Each subsection here describes a geophysical terrain type that can be used for TAN.

The properties of the terrain type and the sensors used to measure the terrain type

are described.

20

2.6.1 Bathymetry

Bathymetry refers to the topography of the ocean floor. Sonar imaging is used

to extract information from the bathymetry. The different types of sonar imag-

ing are side-scan, multi-beam, forward looking, mechanical scanning and imaging,

and synthetic aperture [54]. These are shown in Figure 2.2. Side-scan sonar pro-

Figure (2.2) Sonar sensor swaths (a) Side scan (b) Multi-beam (c) Forward looking
(d) Mechanical scanning and imaging (d) Synthetic aperture. Figure from Chapter
11 of the Encyclopedia of Robotics written by Paull et al. [54].

duces two-dimensional (2D) mosaicked images of the ocean floor beneath the vehicle.

Bathymetry extraction from side-scan sonar data was demonstrated in Mackenzie

et al. [62]. Multi-beam sonars uses the returns of an array of acoustic signals and

specifically arranged transducers, from which a bathymetric map can be constructed

[54]. The forward-looking sonar’s primary purpose is mapping features directly in

front of the vehicle [3]. This is useful for omni-directional remotely operated vehicles

(ROV) that can approach these features at low speeds (e.g. for man-made underwa-

ter structure inspection) [3]. Unlike the multi-beam sonar, the mechanical scanning

and imaging sonar uses a single beam. It takes time to scan the single beam which

causes the mosaicking of these images through time to be more complex [3]. Finally,

synthetic aperture sonar uses the displacement of its host vehicle to create a virtual

array, making the resolution independent from the target and sensor, at the cost of

complex image processing and tight vehicle motion tolerance [3]. A more comprehen-

sive overview can be found in Chapter 11 of the Encyclopedia of Robotics written by

Paull et al.[54].

21

2.6.2 Geomagnetic Field

Earth’s total magnetic field is produced by the movement of molten iron within the

Earth’s core. The magnetic field varies from 25 000 nT to 70 000 nT [59].

Underwater magnetic field measurements are usually collected with surface ve-

hicles [58], as AUV localization is poorer than global navigation satellite systems

(GNSS) localization for georeferencing the collected measurements.

The total magnetic field measured by a magnetometer on-board a mobile vehicle is

compromised by the main Earth field, the vehicle induced field, temporal variations,

and the crustal field [63]. A magnetometer measures the total magnetic field; however,

the crustal field is desired for navigation. The main Earth field is modelled by the

International Geomagnetic Reference Field (IGRF) [64]; therefore, it is the easiest

to remove from a sensor measurement [65]. Vehicle magnetic field compensation

techniques can remove the vehicle’s own magnetic field from the measurement to

within sub nT accuracy [65].

Temporal variations in the measured magnetic field, often caused by space weather,

can be removed using frequency filtering [63]. The filtering works as long as the fre-

quency of the temporal variations is significantly lower than the variation due to the

change in vehicle position, so it may not work as well for slow moving boats and

submarines [63]. Daily temporal variations in the Earth’s magnetic field can be on

the order of 50 nT [58].

Among the types of magnetometers are the flux-gate and Caesium-vapor or optically-

pumped magnetometer, the latter being orders of magnitude more accurate, to within

a sub nT accuracy [66]. The flux-gate magnetometer measures the vector gradient

of the magnetic field as well as the magnitude, whereas the Caesium-vapour magne-

tometer only measures the magnitude.

The magnetic field decays as 1/r3, where r is the distance from the magnetic

source [63]. An increase in altitude acts as a low pass filter to the frequencies contained

in the magnetic field, removing the higher frequency components [63]. For this reason,

magnetic field maps of the crustal field sampled at lower altitudes contain more higher

22

frequencies. This allows maps from lower altitudes to be filtered for higher altitudes

[63]. The converse is much more challenging but has been done for small altitude

changes [57] and is referred to as downward continuation.

Distortions in the magnetic field created by newly introduced ferromagnetic ob-

jects have been used to locate underwater meteorites using magnetic field surveys [67].

2.6.3 Gravitational Field

Gravitational acceleration is inversely proportional to the square of the distance to

the mass contributing to the gravity field. When measuring the gravitational field

with a gravimeter, the measurement consists of the magnitude of the gravity field,

the vehicle induced acceleration, the thermal drift, the tidal effect, and the perceived

gravitational effect (Eötvös effect) [68]. Gravimeters measure the magnitude of the

gravity field, whereas gravity gradiometers measure the gradient of the magnetic

field. Gravity gradiometers have the benefit of being insensitive to vehicle-induced

acceleration, thermal drift, and the Eötvös effect [68]. The signal of interest is the

gravity anomaly, the difference between the geoid gravity and the normal gravity [44].

The geoid gravity acceleration is calculated perpendicular to the surface of the geoid.

The normal gravity acceleration is the gravity calculated with the reference ellipsoid.

Gravity anomalies on the Earth’s surface range from approximately -50 mGal to

50 mGal [69], where 1 mGal is 10−5m/s2.

The tides occur due to the gravitational pull of the Moon. The cyclic movement of

large fluid masses has significant effects on the gravitational field. The Eötvös effect

occurs due to the change in centrifugal acceleration induced by the change in vehicle

angular velocity around Earth’s axis. The effect is induced by velocity of the vehicle

in the direction or anti-direction of the Earth’s spin [70]. These effects are important

when trying to isolate the spatial information from the gravity field.

The tidal effect can be removed using tidal models; the vehicle induced acceleration

can be removed by taking accurate measurements of the vehicle depth; thermal drift

is managed by actively keeping the sensor temperature constant; and the perceived

gravitational effect can be removed using accurate measurements of the vehicle’s

direction of travel relative to the rotation of the Earth [68].

23

When performing surveys of marine gravitational fields it is important to minimize

the effect of vehicle-induced accelerations on measurements [71]. AUVs have the

advantage of being underwater, i.e. unaffected by higher frequency waves, making

them ideal for marine gravity surveys [71].

Gravimeters are often harder to integrate into smaller AUVss [72]. Recent work

integrated a gravimeter into a 50 cm diameter and 70 cm height titanium pressure

vessel [68] — where a small AUV has a cylindrical diameter of 14 cm [73]. This is one

reason for the lack of their wide spread use. The development of a custom gravimeter

to detect sub ocean floor mineral deposits successfully met a resolution requirement of

0.1mGal (1× 10−5ms−2), and was designed specifically to be integrated in an AUV

[68].

Ishihara et al. attempted to use the gravity field produced by high-density volumes

to detect sub ocean floor mineral deposits [74]. However, they were unsuccessful in

detecting the suspected gravity anomalies [74] at an AUV 40m altitude, using the

custom gravimeter developed by Shinohara et al. [68].

Due to their relationship with bathymetry, gravity field maps can be used to

plan shipboard surveys, as ocean structures that are greater than 10 km to 15 km

appear in maps with an accuracy of 4− 7mGal [75]. These maps can also be used for

undersea volcano discovery, petroleum exploration, and tectonic plate research [75].

AUV-based gravity surveys were suggested to enable exploration of small-scale (1m

to 1000m) features in the oceanic crust [76]. AUV-based gravity surveys would allow

measurements at depth, closer to the small-scale features [76]. Being closer to the

mass source that produces the gravity anomaly is beneficial because the acceleration

due to gravity attenuates proportional to the square root of the distance to the source

mass [44]. This is especially desirable around the mid-ocean ridge (MOR), a hot-spot

for critical chemical and biological processes [76].

The quality of digital elevation model (DEM) derived gravity field maps was shown

to increase from an error of 23% to an error of 5% when density maps where included

rather than making the constant density assumption [77]. However, density maps are

still uncommon.

24

Finally, there has been exploration into using the gravitational field for obstacle

avoidance. Yan et al. presented an obstacle detection method based on the change

in the gravity gradient that successfully detected objects with a mass greater than

1× 109 kg from 600m away.

These geophysical terrain types were all considered when developing the TAN

algorithm. Bathymetry requires the use of active sensors, and therefore does not meet

the passivity requirement. The magnetic field has significant temporal variation [58],

is not persistent, and requires filtering to remove the vehicle’s affect on the magnetic

field[63]. The gravity field is persistent [44], and gravity gradiometer have the benefit

of being unaffected by the vehicle-induced acceleration, thermal drift, and the Eötvös

effect [68].

When maps of the geophysical terrain types do not exist, there is the possibility

of mapping and using those maps at the same time to localize. This is simultaneous

localization and mapping (SLAM). SLAM is an extension of TAN that removes the

requirement for a priori maps. It is outside the scope of work within this thesis,

however, it is briefly reviewed to acknowledge the importance of this extensive field.

2.7 Simultaneous Localization and Mapping

Another field with some attention is SLAM. Its main attractive feature is the ability

to place a vehicle in an environment without prior maps and have the vehicle localize

itself within the map that it incrementally builds [53]. If the vehicle successfully

recognizes an area that it has previously visited, it can set the drifted position equal

to the previous position and propagate the change backward to decrease the error

of all previous measurements [53]. This recognition of an already visited area and

subsequent propagation of uncertainty removal is referred to as loop closure [78].

There have been recent developments in the area of SLAM in the context of TAN.

Begum et al. proposes the idea of using island model genetic algorithm (IGA) based

SLAM [79]. The work aims to use the property of natural selection to select the

most probable map for the loop closing, while keeping multiple hypotheses for the

robot’s possible position. It was experimentally tested within a small structured office

25

environment, were the requirements of speed and memory efficiency are less than in

a longer mission in an ocean vehicle with limited computation power.

Extensive experimental work was presented by Barkby et al. using particle filter

based SLAM and a Gaussian process map model in an underwater environment. The

map model for the bathymetry was shown to allow loop closure without significant

terrain overlap [27]. Barkby et al. also presented the incorporation of low-resolution

bathymetric maps into SLAM as the prior belief [80]. This also improved the TAN

performance.

The likelihood of a SLAM solution succeeding for a gravitational field environment

is explored by Pasnani et al. [17]. Their work found that the landmark-to-landmark

variability was a better representation of the potential for SLAM success. This mea-

sure can be used to assess the feasibility of a navigation solution before investing

resources [17].

Next, the different methods of TAN, using the geophysical terrain types introduced

in section 2.6, are discussed. The latest research developments in each area are

explored and discussed, leading to the conclusion that gravity aided navigation will

be used for the implementation of the TAN algorithm.

2.8 Terrain Aided Navigation

In the context of vehicle localization, TAN uses the measurement of features that

contain location-specific information to localize the vehicle. However, terrain is often

used interchangeably with ocean floor bathymetry.

One of the most difficult environments to navigate within is the under-ice environ-

ment. Under-ice environments are low-contrast and have repetitive ice textures. The

presence of the ice which makes it difficult or impossible for surface ship aiding [54]

so navigational aids like acoustic transponder arrays [54] cannot be easily deployed.

Therefore, there is research that specifically deals with challenges faced in under-ice

conditions (e.g. [9], [52], [55]). The method for TAN chosen aims to not limit the

possibility of navigating in such areas.

26

There are three general types of geophysical terrain types that contain location

specific information within a measurement: bathymetry, the geomagnetic field, and

gravitational field, introduced in section 2.6.

2.8.1 Bathymetry Aided Navigation

Bathymetry based navigation is the most established, as sonars are mature and a sin-

gle measurement is information rich relative to a single gravitational or geomagnetic

field measurement. Research has aimed to make using bathymetry measurements as

a navigational aid more robust and accurate.

A novel way to store bathymetric particle filter based grid maps was introduced by

Barkby et al. [78]. The method uses the redundancy and overlap in the bathymetric

map stored by each particle to build a particle ancestry-based tree data structure.

This algorithm reduces the algorithmic complexity of the distributed partical map-

ping (DPM) to linear complexity. The work shows that particle filter based SLAM

using bathymetric measurements is not only feasible but robust through extensive

experimentation. [78].

Work by Decktor and Rock shows that SLAM performance can be significantly im-

proved if the information content of the bathymetry is taken into consideration when

weighting measurement updates [51]. The experimental results showed the method

prevented overconfidence of the state estimate and maintained nominal convergence

rates in areas with featured bathymetry. These considerations considerably improve

the robustness of the particle filter based state estimate in featureless bathymetry [51].

Marine glider vehicles have also received attention as a platform for TAN [15].

Claus and Bachmeyer show that a particle filter based algorithm is successful in lim-

iting the growth of position error from 5.5 km to 90m [15]. Glider vehicles especially

benefit from TAN and other navigational aids, as dead-reckoning drifts significantly

due to their unique method of vehicle actuation.

27

2.8.2 Geomagnetic Aided Navigation

As distance from the source increases, created magnetic fields decay faster than radio

frequency signals, making geomagnetic aided navigation harder to jam [63]. This

makes geomagnetic navigation attractive as a back up navigation system for aerial

vehicles that rely heavily on GNSS [63]. Unlike navigation that uses acoustic sensors

or communications, measuring the magnetic field does not emit signals; therefore, it

can be used for missions that require stealth.

There are also situations were the magnetic field contains more features than

bathymetry, making it a better candidate for localization [57]. This depends on

the mission environment. There has been work to apply familiar state estimation

techniques and navigation techniques to geomagnetic aided navigation.

Additionally, Mu et al. proposed adaptive EKF that uses stochastic linearization

to solve the problem of linearization error by determining the linearization region,

size, and uncertainty. The work aims to minimize the magnetic field linearization

error to decrease the potential localization error of the EKF-based geomagnetic aided

navigation [19].

There has been research specifically focused on the affordability and size of the

AUV platform [57]. Quintas et al. showed that geomagnetic aided navigation can be

applied on smaller vehicles [57]. This shows that research in underwater geomagnetic

aided navigation is potentially less cost-prohibitive for smaller research institutions.

2.8.3 Gravity Aided Navigation

Gravity aided navigation (GAN) has seen significant attention due to it being a

stealth navigation methodology, being unjammable, and able to derive gravity field

maps from widely available and high resolution DEM [43]. Recent developments have

applied known state estimation techniques, and matching algorithms to GAN.

Wang et al. used a notable GAN solution in the South China Sea [72]. The

algorithm was not implemented on-board an AUV because the gravimeter was too

large. Therefore, the measurements were collected by a surface ship which can be

georeferenced against the ship’s GNSS position as a form of ground truth [72]. The

28

position drift was successfully limited to 3 nm. The dead-reckoning drift during the

trail was 200 nm [72]. ‘

Han et al. discuses the use of classic matching algorithms for GAN, and states that

ICCP matching for GAN relies on small inertial navigation error to avoid divergence

and mismatching [81]. The original terrain contour matching (TERCOM) algorithm

has high computational complexity, therefore, Han et al. suggest a TERCOM-based

algorithm based on the shortest path algorithm to achieve constant time complex-

ity [81].

There are numerous examples of GAN used in the literature to supply the po-

sition error bound on the otherwise unbounded INS error. Liu et al. applied both

EKF and UKF based state estimation with gravity measurement based updates and

effectively limited the position error [24]. There are papers as early as 1990 that

implement GAN [82]. Jircitano et al. from Bell Aerospace discuss the merits of using

gravity gradient as a method for gravity aided navigation. Parameter studies using

synthetic terrain are performed to show the effect of terrain quality on the perfor-

mance of the gravity gradiometer navigation system [82]. Jircitano et al. mention

bathymetry can be used interchangeably with the gravity anomaly information when

the gravity anomaly information is not available. However, there is no mention of

actually performing and testing the gravity gradiometer navigation system using the

bathymetry [82]. My thesis aims to explore this work.

There has been other work adapting EKF state estimation to GAN. One important

aspect is the linearization error that comes with the EKF. Xiong et al. presented a

neural network approach to linearization of the gravity map within the context of EKF

state estimation [83]. The method was compared to other linearization methods like

nine point fit (NPF), first order Taylor series (FTS), full plane fit (FPF) technique,

and two subgroup fit (TSF). This work shows that using neural network linearization

effectively reduces the linearization error of the EKF in simulation, and has significant

benefits for highly non-linear gravitational field measurements [83].

Finally, small improvements to the unscented Kalman filter specifically for gravity-

aided navigation have been proposed [25], making the UKF relevant to GAN.

29

Bathymetry aided navigation requires the use of active sensors, and therefore does

not meet the passivity requirement, it was discussed to be complete in the coverage

of TAN. The magnetic field has significant temporal variation [58], is not persistent,

and requires complex filtering to remove the vehicle’s effect on the magnetic field[63].

This makes magnetic aided navigation less attractive than the alternative, GAN. The

gravity field is persistent [44], and effectively unjammable [43]. If a gravity gradiome-

ter is used to perform GAN, then measurements are unaffected by the vehicle induced

acceleration, thermal drift, and the Eötvös effect [68]. Using the gravity gradient fa-

cilitates the correlation between bathymetry and the local gravity anomaly [43]. This

would make the requirement of a priori maps less restrictive, by using large readily

available maps from global databases of bathymetry like General Bathymetric Chart

of the Oceans (GEBCO) [29].

This concludes the review of the literature in field of AUV navigation. The choice

of using GAN with a gravity gradiometer has been justified. The following sections

cover details needed for some of the mathematical concepts used in the thesis. This

starts with a section on reference frames (section 2.9), a detailed explanation of the

EKF (section 2.10), and quaternion conventions (section 2.11). The two latter sections

cover the background needed for the implementation of AUV dead-reckoning, later

discussed in section 4.1.1. Next, is a section on environment modelling (section 2.12).

This section covers the background for the implementation of some of the tools created

as part of the ANT. This includes Perlin noise in section 2.12.1 and the derivation

of the local gravity anomaly maps using the correlation between the bathymetry and

the gravity anomaly in section 2.12.2. The background chapter concludes with a

reiteration of the thesis motivations and the choices as informed by the literature.

2.9 Reference Frames

This report uses a right-handed Cartesian coordinate system, where counter-clockwise

rotations around an axis are defined as positive. This is consistent with the convention

in the Gazebo simulator. The vehicle has a body-centered reference frame. The x,

y, and z coordinate axis of the body-centered reference frame are shown in Fig. 2.3

as the red, blue, and green axis, respectively. This convention is used by the ROS

30

visualization tool rviz, and is kept consistent in this report. This body-centered

Figure (2.3) The body-centered reference frame x, y, and z axis shown by the red,
blue, and green axis, respectively.

reference frame is denoted by the subscript L, for local reference frame. The state

estimate of the EKF is performed in the global reference frame, in this case the world

frame within the Gazebo simulation environment. The world frame is technically a

Cartesian plane approximation of the Earth’s surface evaluated at a specific origin.

Using an Earth-fixed reference frame was not required. The global reference frame is

denoted by a subscript G, for global.

The DVL has its own reference frame that is rotated by +π around the y axis. A

visual of the DVL reference frame is shown in Fig. 2.4.

On a vehicle, sensors are limited by size of the vehicle and the power requirement

Figure (2.4) The DVL reference frame in which the DVL measurements are recorded
and published.

31

of the sensors. In the simulated vehicle the on-board sensors include an inertial

measurement unit (IMU), an altimeter, a depth sensor and a DVL. The IMU includes

a 3-axis gyroscope and a 3-axis accelerometer. The gyroscope measures the rotation

rates around the axes in the body-centred reference frame ωL. The accelerometer

measures the accelerations along the axis of the body-centered reference frame aL.

With integration, the vehicle position, velocity, and attitudes can be estimated.

The system state can be formulated to not include vehicle dynamics if the inertial

measurements can be measured at a high enough frequency. Instead of using control

inputs as the inputs to the model, the effect of the control inputs on the vehicle’s

inertia can be measured directly with high frequency IMU measurements. This allows

the IMU to be used as a replacement for a vehicle dynamic model [84] [40] [37, pp. 121–

122, 361–365]. The IMU sensor model is defined by eq. (2.1),

aIMU = a+N (0,Σ2
a)

ωIMU = ω +N (0,Σ2
ω)

(2.1)

where a is the ground truth acceleration vector of the vehicle in the IMU-centred

reference frame, ω is the ground truth angular velocity vector in the IMU-centered

reference frame, Σ2
a is the accelerometer covariance matrix in the IMU-centred refer-

ence frame, and Σ2
ω is the gyroscope covariance matrix in the imu-centered reference

frame. The goal of the INS model was black-box modelling of the Kearfott INS. IMU

sensor drift was not needed to emulate the position error drift properties of the INS,

therefore, it was not included in the IMU model. A full detailed implementation of

an INS was not necessary, and outside the scope of this thesis.

The DVL measures the speed-over-ground directly in the DVL-centered reference

frame relative to the world frame. This is used to bound the error of the position

estimate from the integrated accelerometer measurements. The DVL is a Gazebo

plugin as part of the UUV Simulator package used [33]. The DVL is model is defined

by eq. (2.2),

ẋDVL = ẋDVL +N (0,Σ2
DVL) (2.2)

32

where ẋDVL is the ground truth velocity vector of the DVL sensor (in the DVL-

centered reference frame), and Σ2
DVL is the covariance matrix associated with the

DVL measurement.

A gravity gradiometer will be used as input to the gravity gradient-aided localiza-

tion. The gradiometer sensor model is a simplified model that uses a gravity gradient

map derived from the original bathymetry and an artificially generated density field.

[︄
θ(x)m

M(x)m

]︄
=

⎡⎢⎣ arctan
(︂

∂g(x)
∂x

, ∂g(x)
∂y

)︂√︃(︂
∂g(x)
∂x

)︂2
+
(︂

∂g(x)
∂y

)︂2
⎤⎥⎦ (2.3)

where g(x) is the gravity anomaly at the gradiometer location in the global reference

frame, θm is the gravity gradient heading in xy-plane, Mm is the gravity gradient

magnitude in the xy-plane.

These reference frame conventions will be used when introducing and implement-

ing EKF-based dead-reckoning.

2.10 Extended Kalman Filter (EKF)

The integrated navigation system on-board the simulated vehicle uses an EKF for

state estimation. The EKF is an algorithmic framework for recursive state estimation

using a predict-update structure and is covered extensively in numerous references.

The references used are Budiyono’s Principles of GNSS, Inertial, and Multi-sensor

Integrated Navigation Systems [37] and Ruiter’s book Spacecraft Dynamics and Con-

trol: An introduction [85]. Also used was a report by the Army Reasearch Labora-

tory (ARL) and as a supplemental resource on strap-down inertial navigation using

quaternion based EKF [86].

As an extension of the Kalman Filter for non-linear state estimation, the EKF

relies on the assumption of white noise (Gaussian distributed, zero-mean). The EKF

is a Taylor series approximation of the optimal Kalman filter and, therefore, does not

provide optimal results, only an approximation [85].

The EKF uses a prediction of the stateXk|k−1 usingXk−1 and Uk−1, whereXk|k−1

33

is the prediction of the current step given the previous step, k is the current time

step, k − 1 is the previous time step, and U is the input vector from time step k

to k − 1. It also predicts the covariance matrix Pk|k−1 given the previous covariance

matrix Pk−1. The prediction step of the EKF is given by eqs. (2.4) and (2.5),

Xk|k−1 = f(Xk−1|k−1,Uk−1) (2.4)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Lk−1Qk−1L

T
k−1 (2.5)

where the matrices Fk−1 is the state transition function Jacobian relative to the state

defined by eq. (2.6), Lk−1 is the state transition function Jacobian relative to the

process noise defined by eq. (2.7), and Qk−1 is the process noise covariance matrix.

Fk−1 =
∂f

∂X

⃓⃓⃓⃓
Xk−1|k−1,Uk−1

(2.6)

Lk−1 =
∂f

∂w

⃓⃓⃓⃓
Xk−1|k−1,Uk−1

(2.7)

The w ∼ N (0,Qk) in eq. (2.6) is the process noise. If the additive process noise

assumption holds then Lk−1 becomes the identity matrix. In the case here, this

assumption is violated; this is explained in section 4.1.1.

The update stage of the EKF uses a measurement Zk and the predicted state

Xk|k−1 to determine the approximately optimal resultant state estimate by fusing the

measurement information and uncertainty with the current state estimate and uncer-

tainty. A more detailed discussion on error sources will be covered in section 4.1.1.

The updated state is determined using eqs. (2.8) to (2.12):

ṽk = Zk − h(Xk|k−1) (2.8)

Sk = HkPk|k−1H
T
k +MkRkM

T
k (2.9)

34

Kk = Pk|k−1H
T
k S

−1
k (2.10)

Xk|k = Xk|k−1 +Kkṽk (2.11)

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkMkRkM

T
k K

T
k . (2.12)

Equation (2.8) gives the estimated measurement residual ṽk or innovation, where h

is the non-linear measurement function. Equation (2.9) gives the measurement resid-

ual covariance Sk where Hk is the Jacobian of h relative to the state X (eq. (2.13)),

Hk =
∂h

∂X

⃓⃓⃓⃓
Xk|k−1

(2.13)

and Mk is defined as the Jacobian of the measurement with respect to the measure-

ment noise vk ∼ N (0,Rk),

Mk =
∂h

∂v

⃓⃓⃓⃓
Xk|k−1

. (2.14)

If the additive measurement noise assumption holds then Mk becomes the identity

matrix. Equation (2.10) gives the near-optimal gain Kk for the filter update. The

state update is given by eq. (2.11). Finally, the covariance update is defined by

eq. (2.12) [87, pp. 55–57], referred to as the Joseph form of the covariance update

equation [88]. The shorter covariance update equation given by,

Pk|k = (I −KkHk)Pk|k−1 (2.15)

assumes that the optimal gain is used. There were issues with the symmetry of the

covariance matrix update due to double point limited arithmetic precision. Equa-

tion (2.12), or the Joseph form guarantees the resulting covariance update to return

a symmetric matrix, as it works for all gains [88].

This section introduced the general form of an EKF, the implementation of the

EKF-based INS in section 4.1.1 makes heavy use of quaternion notation. The next

section covers the notation and the convention used in this thesis.

35

Table (2.1) The two major conventions for quaternions. Adapted with minor mod-
ifications from [40]

Quaternion Type Hamilton JPL

Components order (qw, qv) (qv, qw)

Algebra Handness
ij = k

Right-handed
ij = −k

Left-handed

Function Passive Passive

Right-to-left product means
Default notation, q
Default Operation

Local-to-Global

q ≜ qGL
xG = q ⊗ xL ⊗ q∗

Global-to-Local

q ≜ qLG
xL = q ⊗ xG ⊗ q∗

2.11 Quaternion Conventions

The orientations are represented with unit quaternions. This avoids singularities and

requires only polynomial multiplications to perform rotations and inverse rotations.

There are many conventions found within the literature; Solà found seven common

quaternion conventions and states that the convention used within a piece of literature

is often not stated [40]. Table 2.1 summarizes the two major quaternion conventions:

the Hamilton, and the Jet Propulsion Laboratory (JPL).

Equation (2.16) shows the convention used for the implementation of the EKF,

q =

⎡⎢⎢⎢⎢⎢⎣
ϵx

ϵy

ϵz

η

⎤⎥⎥⎥⎥⎥⎦ (2.16)

where ϵ is the vector part of the quaternion and η is the scalar part. This convention

is used in [85], which is an excellent reference on quaternions to represent attitude.

However, the left-handed convention is used for a quaternion, and the right-handed

one is used here. This means that the right-to-left product transforms local to global.

This is convenient, and found to be more intuitive. Given the convention in eq. (2.16)

36

the quaternion product is defined by eq. (2.17),

p⊗ q =

[︄
pηqϵ + qηpϵ + pϵ × qϵ

pηqη − pT
ϵ qϵ

]︄
. (2.17)

To perform a rotation of a vector in 3-space by a unit vector quaternion, quaternion

inversion and conjugation needs to be defined. Quaternion conjugation is defined in

eq. (2.18),

q∗ =

[︄
−ϵ

η

]︄
(2.18)

where ∗ is the conjugate operator. Conveniently, if the quaternion is of unit mag-

nitude, the inverse is equivalent to the conjugate of the quaternion. This makes

inversion simple and efficient.

Additionally, quaternions can be pure. This means that the scalar part is zero.

Therefore, with the right-handed convention and quaternion definition, rotating a

vector in 3-space by a unit quaternion is defined by eq. (2.19),

[︄
xG

0

]︄
= q ⊗

[︄
xL

0

]︄
⊗ q∗ (2.19)

where xG is the 3-space vector in the global reference frame, xL is the 3-space vector

in the local reference frame, and q is the unit quaternion representation the local

references frames orientation relative to the global reference frame. Equation (2.19)

will allow the rotation of the acceleration vector a, measured by the accelerometer,

into the global reference frame; the reference frame the EKF is using. Additionally,

the rotation from global to local frame uses the inverse of the quaternion to perform

the rotation operation (eq. (2.19)),

[︄
xL

0

]︄
= q∗ ⊗

[︄
xG

0

]︄
⊗ q (2.20)

where q is defined as the rotation of our local frame within the global frame; the

convention in this report. This is also the convention used by the Gazebo simulator,

and standard ROS geometry messages package. However, the ROS message refers to

37

η as w and the components of ϵ directly as x, y, and z.

Finally, global reference frame quaternion rates in terms of the measured local

angular rate becomes important in the formulation of the EKF and is defined by

eq. (2.21) [40],

q̇ =
1

2
q ⊗ ωL (2.21)

where ωL is the local reference frame 3-space angular rate. The angular rate is given

by the gyroscopes.

2.12 Environment Modelling

Environment modelling covers two topics. First, Perlin noise, used in terrain genera-

tion and terrain augmentation. Both are capabilities provided by the ANT. Second,

and finally, the mathematical description of the correlation between the terrain and

the gravity anomaly. This relationship is used to exploit large databases of readily

available bathymetry for GAN.

2.12.1 Perlin Noise

Perlin noise is a coherent pseudo-random noise. Coherent meaning the resulting

function is smooth on smaller scales and pseudo-random on larger scales. Small and

large are relative to how the Perlin noise function is parameterized. Two points close

to each other will have similar values and two points far away from one another will

be uncorrelated. Perlin noise is generated by sampling random numbers on a regular

grid. These random numbers become the gradient of the function at those regular

grid locations. The gradients are then interpolated using the fifth-order interpolation

function in eq. (2.22) (from [42]),

f(t) = 6t5 − 15t4 + 10t3 (2.22)

where f(t) is the interpolation function parameterized in terms of t. Using eq. (2.22)

ensures that the first and second order derivatives are zero at both t = 0 and t =

1 corresponding to the regular grid. This provides at least first and second order

continuity between neighbouring grid areas.

38

Perlin noise is heavily used in computer graphics for texture generation [42] [89],

terrain generation, and other applications that benefit from a form of pseudo-random

noise function that is continuous in at least its first two derivatives. Tian et al. use

Perlin noise together with the fast Fourier transform (FFT) to simulate the ocean

surface for computer graphics rendering [89]. It is common to find pseudo-random

noise tools within most 3D graphics software [34].

Additionally, it can be used for generating missing terrain detail where real mea-

surements are not detailed enough for creating a high-resolution model used in sim-

ulation [90]. For example, Martin et al. use Perlin noise for creating high-resolution

asteroid models to enable simulation of spacecraft cameras and other sensors during

spacecraft approach and landing on asteroids [90]. Perlin noise is used along with

erosion modelling to supplement low resolution models of the asteroids.

An example of a single two-dimensional Perlin noise function is shown in Fig. 2.5.

The Perlin noise function is N-dimensional so can be used in a two-dimensional spatial

domain. It has a period of 2500m and, inversely, a frequency of 1/2500m−1. The grid

shows the intersections where the value of the gradient was pseudo-randomly gener-

ated by the definition of Perlin noise. In between these intersections the function is

smoothed using eq. (2.22). When using Perlin noise to add realistic variation multiple

layers of Perlin noise are often overlaid to produce the desired affects. These multiple

superimposed layers are referred to as octaves. This is due to successive Perlin noise

octaves having double the frequency of the previous layer. When discussing multiple

superimposed octaves of Perlin noise there are a few mathematical concepts that are

used to describe the relationship between successive Perlin noise octaves: lacunarity,

persistence, base frequency, and base amplitude. Lacunarity is the ratio of successive

octaves frequencies. The lacunarity defined recursively by eq. (2.23).

l = fk+1/fk (2.23)

where f is the spatial frequency, and k is the index of the Perlin noise octave. Often

the lacunarity is two (hence multiple layers are called octaves). Persistence is the

39

Figure (2.5) Adapted from Heubach and Seto [31]. A single octave two-dimensional
Perlin noise function. The Perlin noise function has a period of 2500m. The zero
crossings occur at the intersections of the grid. The average value of this Perlin noise
function has been adjusted from 0m to −300m in preparation of using it as a possible
seascape.

ratio of successive octaves amplitudes. It is defined recursively by eq. (2.24)

r = Ak+1/Ak (2.24)

where r is the persistence between successive Perlin noise layers, and A is the am-

plitude of the kth Perlin noise layer. The base frequency is the frequency of the first

Perlin noise layer. This first Perlin noise layer has the largest period and lowest fre-

quency. Finally, the base amplitude is the amplitude of the first perlin noise layer.

These two base properties define the initial value for the recursive definition of the

lacunarity and persistence. An example Perlin noise function that contains five oc-

taves, a lacunarity of 2m, a persistence of 0.5m, and a mean of −300m is shown

in Fig. 2.6. From Fig. 2.6 it is clear that successive octaves add to the detail within

the terrain and significantly add to the realism of the terrain. The consequences of

this are discussed further in section 4.1.3.

40

Figure (2.6) Five octaves of Perlin noise scaled to an area of 10 km. The five Perlin
noise octaves have a lacunarity of 2, persistence of 0.5, base amplitude of 50m, and
base frequency of 1/2500m−1. Adapted from [31].

2.12.2 Correlation between Gravity Anomaly and Terrain

The correlation between the gravity anomaly and ocean bathymetry originates from

the fundamental relationship between mass and gravity. The normal gravity is the

gravitational acceleration calculated at the surface of the Earth’s reference ellipsoid

(e.g.the WGS 1984 reference ellipsoid used by GPS). There are multiple reference

ellipsoids aiming to approximate the geoid — a more accurate model of the Earth

that includes undulations. The geoid is an equipotential surface equivalent to the

mean of the ocean’s surface — if the oceans were static at equilibrium extended

through continents. The geoid can only be discovered through extensive gravity

measurements.

The difference between the gravity vector at the surface of the geoid, gP , and the

gravity vector on the surface of the reference ellipsoid, γQ, is defined as the gravity

anomaly vector ∆g [44, p.83]. The point Q is the projected along the ellipsoidal

normal onto the reference ellipsoid to get point P . The difference in magnitude of

∆g is referred to as the gravity anomaly [44, p.83].

To approximate the gravity anomaly, view the terrain as a distributed local source

of mass variation — the same mass variation that gives the geoid its undulations.

However, the terrain only gives the shape of the Earth’s surface, not its internal

41

density variation. If constant density is assumed, then one can approximate the

gravity anomaly with the ocean bathymetry which is readily available. This terrain

correlation was used by Liu et al. in [43], Martine in [91], and Guo et al. in [92].

The basis of the terrain correlation equation can be derived using Newton’s equation

of gravity potential.

Given a distribution of n masses the gravitation potential at point p is defined by

the sum of all contributions to the gravitational potential by each mass. Formally,

this gives eq. (2.25),

V (p) = −
n∑︂

i=1

Gmi

|p− pi|
(2.25)

where V is the gravitational potential associated with a finite mass distribution, p

is the vector to the point at which the gravitational potential is being calculated,

pi is the vector to the centre of mass of the ithpoint mass, mi is the mass of the

ithpoint mass, G is the universal gravitational constant 6.674 × 10−11, and i is the

index identifying each point mass.

The acceleration, a, due to this distributed mass can be calculated by taking the

negative gradient of the gravitational potential V ,

a = −∇V (p) (2.26)

where ∇ is the gradient operator. Using eq. (2.26), derive the equation for the

vertical acceleration az using eq. (2.29). Before performing the derivation two other

variables need to be defined, the distance vector (eq. (2.27)) and the magnitude of

the distance (eq. (2.28)):

r = p− pi (2.27)

r =
(︁
∆x2 +∆y2 +∆z2

)︁1/2
(2.28)

The derivation is shown in eq. (2.29). The derivation is shown for one coordi-

nate dimension of the acceleration, az. The rest are similar and were omitted for

42

brevity. Equation (2.29a) shows the application of the partial derivative with respect

to the vertical acceleration. The other partial derivatives resulting from the gradient

operator were left out.

az = − ∂

∂z

n∑︂
i=1

−Gmi

r
(2.29a)

= − ∂

∂z

n∑︂
i=1

−Gmi

(∆x2 +∆y2 +∆z2)1/2
(2.29b)

= G
n∑︂

i=1

mi
∂

∂z

(︁
∆x2 +∆y2 +∆z2

)︁−1/2
(2.29c)

= G
n∑︂

i=1

mi

(︃
−1

2

(︁
∆x2 +∆y2 +∆z2

)︁−3/2
)︃

∂

∂z

(︁
∆x2 +∆y2 +∆z2

)︁
(2.29d)

= G
n∑︂

i=1

mi

(︃
−1

2

(︁
∆x2 +∆y2 +∆z2

)︁−3/2
)︃
2∆z (2.29e)

az = −G
n∑︂

i=1

mi∆z

r3
(2.29f)

Using eq. (2.28) the distance r can be replaced by its expanded form. A portion

of that expanded form does vary with respect to z. However, the summation, the

gravitational constant G, and the ithmass, mi, can be moved outside of the partial

derivative as they do not vary with respect to z and can be treated as constants

yielding eq. (2.29c). Use the chain rule to evaluate the partial derivative of the power

term yielding eq. (2.29d). The second part of the chain rule reduces the final term

(shown by eq. (2.29e)). Finally, what is left is the equation that gives the acceleration

in the z direction based on the contribution of a collection of finite mass elements.

The derivation shows only the z coordinate dimension, the others are similar. The

complete equation is shown in eq. (2.30).

a = −G

n∑︂
i=1

mir

r3
(2.30a)

= −G

n∑︂
i=1

mir̂

r2
(2.30b)

43

It is expected that the acceleration be proportional to the inverse square of the dis-

tance. Upon closer inspection, the distance r can be factored out using the property,

r = rr̂. Equation (2.30a) reduces to eq. (2.30b) to get the expected result. The

acceleration due to gravity is proportional to the inverse of the square of the distance

to the mass causing the acceleration. This provides confidence in the solution.

Additionally, a sanity check can be performed using dimensionless analysis to

ensure units on one side of the equation are equivalent to the units on the other side

of the equation. This process is shown in eq. (2.31),

G

[︃
Nm2

kg2

]︃
,mi [kg] , r [m] , r [m] (2.31a)

−Gmir

r3
(2.31b)

→
[︃
Nm2

kg2

]︃
[kg] [m]

[︃
1

m3

]︃
(2.31c)

→
[︃
kg ·m ·m2

s2 · kg2

]︃
[kg] [m]

[︃
1

m3

]︃
(2.31d)

→
[︂m
s2

]︂
(2.31e)

where N is Newtons, m is meters, kg is kilograms, and s is seconds. Using the main

equation eq. (2.30) and replacing the main variables with their respective units, and

removing the summation (which has no effect on the units), yields eq. (2.31c). Then

using the definition of a Newton, [N] → [kg · m · s−2], one is left with eq. (2.31d).

Reducing eq. (2.31d), the final units are the expected units of acceleration.

Equation (2.30) is almost the equation that would permit the derivation of the

gravity gradient from the terrain using the correlation between the terrain and the

gravity gradient. The ithmass can be replaced by the density of the ithmass element

and its volume. The result is the final equation eq. (2.32), which allows the computa-

tion of the gravity acceleration due to a distribution of finite volumes that each have

a distinct density and location.

az = −G
n∑︂

i=1

ρiδxiδyiδzi∆zi
r3

(2.32)

44

2.13 Motivation

The work in this thesis aims to build on work by Pasnani and Seto in [28]. The work

uses a particle filter to perform GAN using the global gravity anomaly database from

the SCRIPPS institute. This database is limited to a resolution of 1 nm (nautical

miles). By using the correlation between the terrain and the gravity anomaly the

data within GEBCO can be exploited. The global GEBCO database has a resolu-

tion of approximately 400m, about twice higher resolution than the gravity anomaly

database. Since both methods use GAN, a particle filter, and similar sensors, fu-

ture work fusing these two methods to improve the localization accuracy further is

possible.

The review of the literature concludes with the choice of GAN using the gravity

gradiometer as the sensor of choice. Bathymetry aided navigation requires the use of

active sensors, and therefore does not meet the passivity requirement. The magnetic

field has significant temporal variation [58], is not persistent, and requires complex

filtering to remove the vehicle’s affect on the magnetic field[63]. This makes magnetic

aided navigation less attractive than GAN. The gravity field is persistent [44], and

effectively unjammable [43].

A gravity gradiometer is desirable for GAN because the measurements are unaf-

fected by the vehicle induced acceleration, thermal drift, and the Eötvös effect [68].

Using the gravity gradient also allows use of the correlation between bathymetry and

the local gravity anomaly [43], enabling use of bathymetry for GAN.

Finally, a method for low-risk testing of the TAN algorithm was required. The

AUV navigation testbed (ANT) requires an AUV model (provided by the UUV sim-

ulator [33], a physics-based simulator (Gazebo simulator), a library to manage the

distributed robotics system (Robot Operating System (ROS)), an INS model (im-

plemented in this thesis), and a realistic way to model environmental uncertainty

(implemented in this thesis). Vehicle integration requires DCAF an autonomy frame-

work developed for the IVER 3 (developed collaboratively during the work in this

45

thesis). The next section discusses the thesis methodology.

Chapter 3

Methodology

46

47

As previously discussed, GAN was chosen as the most promising method of TAN.

GAN benefits from being geophysically persistent, temporally stable, passive, and

having widely available maps. To support low-risk algorithm verification and future

in-water tests various software tools where developed, independently, and collabora-

tively. This section covers the decision-making methods leading to this thesis.

The overall flow related to the work in this thesis is shown in a conceptual flow

diagram in Figs. 3.1 to 3.4. Red represents problems or challenges that lead to green

solutions which may lead to more challenges, and so on. The diagrams are brief and

show a summary of the thought process that lead to the tools, and solutions developed

in this thesis.

To start, the challenge of the thesis was to explore passive AUV navigation which

is resistant to interference, passive, and uses readily available maps. Pure inertial

navigation fulfills this requirement, however, its error growth is unbounded with time.

The rate of the error growth can be slowed by aiding the pure inertial navigation with

another measurement / sensor. Of the solutions explored in the literature review,

TAN (specifically GAN) showed the most promise to aid pure inertial navigation.

TAN could provide position references (landmarks) through measurements of features

in Earth’s magnetic field and gradient; seabed bathymetry; gravity anomaly, and

gravity gradient. If such measurements are compared with a priori georeferenced

maps then this may be a solution for long range underwater localization.

TAN approaches that use georeferenced bathymetric features employ acoustic

sonars to sense the bathymetry. Therefore, this does not meet the requirement for a

passive navigation system. This eliminates the left side of the diagram in Fig. 3.1.

Magnetic based localization was not explored due to its semi-dynamic nature. Mag-

netic fields are in constant flux between the north and south poles switching (albeit

over long times) so the maps would have to be updated with measurements, fre-

quently. This eliminates the right branch in Fig. 3.1. Finally, GAN was determined

to satisfy most of the initial requirements for passive, stable, and interference resistant

underwater navigation.

48

Figure (3.1) Highest level decision tree that maps the methodology for the thesis
direction. This starts with the original problem, and includes decisions until the three
branches that lead to Figs. 3.2 to 3.4. This includes a brief overview that justifies
why gravity-aided navigation was chosen and leads into the main categories of the
thesis.

49

GAN is passive because gravimeters and gravity gradiometers do not emit de-

tectable energy into their environment to make their measurements. They are resis-

tant to interference as changing the gravitational field notably would require large

unrealistic mass changes. Gravity anomaly maps are available at a resolution of

1nm [93]. This is sufficient for long range navigation, however, it does not pro-

vide a high-fidelity environmental model to run simulations to develop navigation

methodologies. The correlation between the terrain and gravity anomaly could be

used to calculate the approximate gravity anomaly. This bases the gravity map on

bathymetry maps which are readily available and at higher resolutions than 1nm.

Bathymetry map resolutions can range from 500m globally [29] to 2m, or better,

for smaller geographical regions. The next issue to address is how to access readily

available density information on the Earth’s crust.

If the gravity gradient is used for navigation, then the local gravity anomaly is suf-

ficient [43, 83], due to the gravity gradient (the first derivative of the gravity anomaly)

favouring shallower, local terrain variations [94, 95]. Additionally, the gravity gra-

diometer is immune to vehicle-induced acceleration, thermal drift, and the Eötvös

effect [68]. When the gravity gradient is used for navigation the absolute value of the

gravity anomaly is of less consequence than the local variation (the gradient) [94].

This means the correlation between the terrain and the gravity anomaly can be used

to calculate the local gravity anomaly [91] and then the gravity gradient is calculated.

This gravity gradient map can be used for navigation [82], and the gravity gradient

can be calculated to resolutions high enough to provide an environment model for

a simulator. This leads to the next set of problems that each branch to their own

decision tree as a continuation Figs. 3.2 to 3.4. The three challenges faced are: the

navigation algorithm to use, how to perform low risk testing, and how to move toward

vehicle testing (higher risk and more valuable testing).

Fig. 3.2 explores the choice of algorithm. GAN is inherently non-linear [6], and

often multi-modal [5, p.30] (i.e. more than one hypothesis for the vehicle location).

The algorithm must handle a high degree of non-linearity, as well as maintain multiple

main hypotheses of the AUV position. The gravity gradient may not be distinctively

50

unique within the area so the algorithm must be able to address this. Addition-

ally, there can be portions along an AUV’s mission that have less variation in the

anomaly field so the algorithm must address this as well. Historically, this motivated

the TERCOM algorithm [22] and later particle filter based algorithms [45, 26, 27].

TERCOM had the advantage of very low computational requirements. However, due

to its simplicity it often diverged which motivated particle filter-based algorithms

(discussed further in section 4.4.1). The particle filter-based algorithm can represent

an arbitrary state estimation probability (likelihood) distribution of the AUV posi-

tion. The propagation of this distribution can be non-linear and multi-modal which

fulfills the requirements for the localization problem. The choice of particle filter

Figure (3.2) Continuation of decision branch (1) of the main decision tree in Fig. 3.1.
This decision branch focuses on the state estimation algorithm used for vehicle local-
ization using the gravity gradient field.

based localization led to three challenges, sample impoverishment, a priori informa-

tion requirement, and how to perform the prediction step to propagate the particles.

Firstly, sampling impoverishment occurs when the probability of many particles

representing state (location) estimate hypotheses is very small [96]. This wastes

51

computation power and is mitigated through resampling [96]. This process resam-

ples particles, with the probability of choosing a particle proportional to its weight.

The same particle can be chosen multiple times. This is discussed in more detail

in section 4.4.1. This effectively multiplies particles with larger weight and favours

the elimination of lower weighted (less likely hypotheses) ones. This leads next to

the challenge of particle duplication. After resampling, higher weighted particles are

multiplied. However, this leads to particles that share similar hypotheses, effectively

wasting computation resources again. This is solved with stabilizing noise, or rough-

ening [96], which injects sufficient noise to spread the duplicated particle out in the

AUV’s position state space without spreading them so much that the quality of the

overall state estimate is reduced. This is discussed further in section 4.4.1.

Secondly, is the requirement for a priori information for the particle filter weight-

ing or the correction step. The particle filter requires an estimate of the gravity

gradient to weight the particles. The weight is calculated according to how likely

the gradiometer measurement is, based on the particle’s position estimate. This can

be provided by using the derived gravity gradient map. Discussed in more detail

in section 4.1.5).

Finally, the particle filter must propagate the particles forward, also referred to

as the prediction step in state estimation. The INS state estimate can be used as the

input to the particle filter. The INS, standard on many AUVs, is the basis of many

navigation solutions. After a search, it does not appear that there are any readily

available, high-fidelity INS model implementations that can be re-purposed for use in

the Gazebo simulation, therefore one was developed by the author. This along with

the implementation of the DVL model is discussed in more detail in section 4.1.1.

Next, the challenges and solutions created in the pursuit of low-risk testing is

discussed in Fig. 3.3. Physics-based simulation are used for low-risk testing. This

is mathematical modelling to approximate reality. The better the model the less

difference there is between reality and the more appropriate it is to perform low-risk

tests before moving to experiments. Determining which physics simulator to use was

based on features, availability, open-source, and industrial readiness. Often industrial

52

readiness is in conflict with open-source readily available tools, however, that has

slowly changed over time. Some of the most widely relied on technology of our era

are open-source projects [97, 98]. Open-source allows companies, organizations, and

individuals to collaborate on projects which they collectively own and benefit from.

ROS is a development within the open-source community originally started by Willow

Garage, and now the leading open-source robotics tool chain supporting numerous

packages [99] (discussed more in section 3.1). ROS 2 robotics middleware made the

switch from its own serialization and communications layer implementation to data

distribution service (DDS) [100].

Data distribution service (DDS) is a data connectivity standard middleware pro-

tocol and API. It is the standard distributed systems middleware for the data sharing

layer [101]. DDS is used across industries to manage large integrated distributed sys-

tems, e.g. Nav Canada uses DDS to run real-time traffic management for 3.3 million

flights over 18 million square kilometres, National Aeronautics and Space Adminis-

tration (NASA) uses DDS for their launch control system, and Raytheon uses DDS

for interoperability between mission-critical military defence systems [101]. ROS has

begun to merge the robotics research and industrial communities [102]. This is ben-

eficial for the industry, and for the research community [102]. For this reason ROS

and its complementary robotics simulator Gazebo were chosen. Designing a vehicle

dynamics model, and vehicle controller were beyond the scope of this thesis; therefore,

an openly available ROS and Gazebo simulator package UUV simulator was used [33].

The UUV simulator package provides the vehicle 3D model, vehicle dynamics

model, and various vehicle controllers [33]. The torpedo-shaped style AUV model

that the UUV simulator provides is a model for the ECA A9 [33]. The ECA A9 is

the vehicle that most closely represents the vehicle kinematics and dynamics of the

IVER 3; the most likely vehicle that the thesis work will use for future in-water trials.

Both the Gazebo and UUV simulator do not have an implementation of an AUV’s

navigation suite’s INS. The INS provides dead-reckoning capabilities and is the ba-

sis of other navigation and localization algorithms [32, 41, 21]. This missing fea-

ture was addressed by implementing an EKF-based INS model, discussed further

in section 4.1.1. The Gazebo simulator also does not have a gravimeter model (not

53

surprisingly) within in its simulated sensor suite.

A gravity gradiometer sensor model was implemented by deriving the gravity

anomaly and from that the gravity gradient (discussed in section 4.1.6). The gravity

gradiometer uses the ground truth of the AUV position and the gravity gradient map

as well as additive Gaussian noise to model a measurement. The gravity gradiometer

requires a detailed gravity anomaly map which was provided by the derivation of

local gravity anomaly maps using the correlation between the terrain the gravity

anomaly [82]. Density information (optional [82]) and bathymetry are used to derive

the approximate gravity anomaly.

Density information can be generated using Perlin noise [42] (discussed in sec-

tion 4.1.3). This enables full control over the amount of variation, and level of detail.

This density information is included in the creation of the simulation environment,

but not in the derivation of the a priori gravity gradient map the particle filter uses.

This adds a realistic source of uncertainty. Bathymetry is readily available from the

global GEBCO database [29]. The resolution is approximately 400m. Creating a sim-

ulation environment using interpolated measurements from this bathymetry assumes

there is no terrain variation between measurements. This is not realistic of course.

The terrain can be augmented with specifically designed Perlin noise to add varia-

tion and detail between measurements without affecting the integrity of the original

measurements [31]. Terrain augmentation is discussed in more detail in section 4.1.4.

Finally, the challenge of future vehicle testing is explored in Fig. 3.4. A hardware-

in-the-loop (HITL) provides a low-risk test method that allows hardware integration

and testing before integrating the algorithm on the actual vehicle. The ISL has

two IVER 3 HITL emulators that can be used for this. However, the HITL does

not have any high-level autonomy interface. Its existing interface requires the en-

tire mission to be planned before launching the AUV. Additionally, there is no ROS

interface. The vehicle does support a serial interface that provides waypoint based

control capabilities. To address these deficits the ISL was sub-contracted to build

the DRDC collaborative autonomous framework (DCAF). DCAF provides adaptive

mission-planning capabilities, communications, survivability features, and obstacle

54

avoidance. The author directly developed the arbiter, the process that manages in-

dividual requests for vehicle actions from different sources within DCAF, and sends

the highest priority action to the vehicle interface. It supports interrupts and resum-

ing of previously interrupted actions. The author also directly developed the bounce

survivability feature. The bounce behaviour adds a virtual boundary that the vehicle

must stay within during the execution of its mission. These contributions to DCAF

are discussed further in section 4.5.

55

Figure (3.3) Continuation of decision branch (2) of the main decision tree in Fig. 3.1.
This decision branch focuses on the computer simulations of the environment and
peripherals needed to support the testing of the vehicle state estimation algorithm.

56

Figure (3.4) Continuation of branch (3) of the main decision tree in Fig. 3.4. This
decision branch focuses on the beginnings of future work to test the algorithm in the
hardware-in-the-loop simulator. This portion of the project was in collaboration with
others in the Intelligent Systems Laboratory. Therefore, only the portions of DCAF
directly developed in the thesis are indicated.

57

3.1 ROS and Gazebo

Over the past decade there has been a movement within the robotics research commu-

nity towards open-source readily available tooling [99]. This follows the trend towards

open-source in the parent field of computer science [97, 98, 103]. Open-source facili-

tates collaboration on tools and projects that are used by, but too resource intensive

(not to mention redundant), for everyone to re-develop. This is a welcome develop-

ment as there is now less shortage of available tools for the robotics research com-

munity [99, 104]. Additionally, well-led community driven projects are often better

documented, supported and widely used. When large groups of students, researchers,

and software engineers know a specific tool, they will prefer to use and improve that

tool. At the same time widely used tools within an industry attracts the creation of

course material, and courses for learning the tool in the first place. Together with

community projects being accessible to all this is a reinforcing cycle that is a welcome

addition to the robotics research community.

The use of common tools provides an incentive for researchers to share their tools

with the community once created or improved. This has been done with parts of the

thesis work already [31], and other parts will follow. To make the work sharable the

choice was made to implement much of the work using ROS [99]. The ROS is a set of

software libraries and tools that helps with developing robotics software [99]. There

are large libraries of well vetted robotics algorithms, simulators, and middleware [105].

The ROS middleware provides the ability to create decoupled processes that inter-

act through public interfaces. A node is a process in ROS (not always true, but good

enough for understanding work within this thesis). The public interfaces can either be

in the form of publish-subscribe (pub-sub) messages or service-client services. Mes-

sages are passed over topics which are given a unique string identifier domain-wide

within ROS.

The pub-sub relationship is the simplest of the two. One or more publishers

can publish messages to one or more subscribers on a unique topic. The publishers

do not have to know about the subscribers, and vice versa. The publishers and

subscribers are often in separate nodes but do not have to be. This relationship

58

allows the maximum decoupling as the publisher does not expect a response after

publishing a message and the subscriber does not need to provide a response to

receive a message (i.e. no hand-shaking is required). The best real-world analogy is

a newspaper subscription. This relationship is best for nodes that need input from

other nodes or need to provide information to other nodes within the system. For

example, an altimeter would publish its measurements on a topic for other nodes to

consume.

The server-client relationship has a server and a client. Again, these are often in

separate processes. The interaction between server and client is captured in a public

interface called a service. The service defines a request and a response message. A

client will send a request message to the server and the server will respond with a

response message. This relationship is best for nodes that provide a service for other

nodes such as interpolation, geographic projection, etc.

ROS was chosen because it has a large community and ecosystem related to

robotics. Distributed concurrency and performing tasks at the same time in differ-

ent processes with interactions facilitated by messaging, is well suited for the thesis

problem. To test the terrain-aided navigation algorithm one needs to run the sim-

ulation, a gradiometer model, projection algorithms, the particle filter, the inertial

navigation system, the vehicle model, and the vehicle controller concurrently. ROS

was developed with support for a robotics physics-based simulator called Gazebo.

Additionally, a ROS package called UUV simulator, developed by Manhães et al.,

already existed [33]. This package provides a AUV vehicle dynamics model, as well

as a vehicle waypoint controller; creating these was outside the scope of this thesis.

The waypoint controller, part of the UUV simulator package [33], provides a high-

level service go to that accepts waypoint messages. The waypoint message includes

control over the AUV goal position, goal depth, vehicle speed, and acceptance ra-

dius of the waypoint. This made it possible to write high-level testing code for the

algorithm without re-implementing much of the lower-level functionality outside the

thesis’ scope (e.g. vehicle control, vehicle dynamics, and physics simulator).

All these tools used, together with the tools the author developed, are referred to

59

as the AUV navigation testbed (ANT). A testbed to enable and make AUV navigation

research faster.

3.2 AUV Navigation Testbed

There are currently few tools directly for AUV terrain-aided navigation. In the course

of the thesis work, several tools were used together, others re-purposed, and others de-

veloped. The portion of the tools developed for the thesis, plus the ones re-purposed,

are called the ANT. Specifically, the ANT is the combined use of the ROS, the

UUV simulator, the INS, the gravity gradiometer model, implementation of gravity

anomaly derivation, the particle filter algorithm, and the ANT CLI. The ANT CLI

provides much of the functionality as a command line interface. The capabilities of

the ANT CLI have evolved to support the work in this thesis.

The ANT CLI was open-sourced as part of the second conference paper [31] pub-

lished during this thesis work. The ANT is a portion of the thesis work contributions,

excluding the gravity gradient localization algorithm, that works together with ex-

isting open-source readily available robotics tooling. The capabilities ANT CLI is

discussed in detail in section 4.2.

The ANT was developed to support low-risk testing of AUV navigation algorithms.

Its value is demonstrated during testing of the TAN algorithm developed within this

thesis.

3.3 Terrain Aided Navigation (TAN) Algorithm

The TAN algorithm is an implementation of GAN. It uses the INS as input and

the gravity gradient direction as position feedback. It builds on work by Pasnani

and Seto [28]. Pasnani uses the gravity anomaly directly to perform GAN, the TAN

algorithm uses the correlation of the gravity anomaly with the terrain to supplement

lower resolution gravity anomaly maps with higher resolution bathymetry. This is

demonstrated in section 5.6.

Fig. 3.5 is a summary figure of the source of uncertainty that affect the per-

formance of the TAN algorithm. There are three main sources of uncertainty, the

60

unknown environmental density, the additional terrain variation or noise in between

the bathymetry measurements, and the noise from the gravity gradiometer measure-

ments. Section 5.6 discusses the results of the parameter study to explore the effects

of environmental and sensor uncertainty on the performance of the TAN algorithm.

There are three parameter studies that explore each of the sources of uncertainty and

their effect on the particle filter algorithm’s state estimate error. Additionally, there

are trials of the INS model to verify that the INS replicates available INS naviga-

tion properties such as navigational uncertainty and error growth. Finally, work on

the DCAF project is discussed and proposed as the next step in testing the TAN

algorithm.

3.3.1 Trials Plan

The trials plan includes a verification of the performance characteristic of the INS

model, DVL model, and three studies to explore the effect of environmental and

sensor uncertainties on the performance of the TAN algorithm.

The first study, an AUV search mission, aims to verify that the INS model and

DVL model replicates current state-of-the-art INSs like the Kearfott INS [8]. The

AUV will run a survey mission within a simulated Beford Basin (Halifax, Nova Sco-

tia) environment. The resulting uncertainty growth and state estimate error will be

compared to existing INS performance. The implementation of this study is intro-

duced in section 4.1.1, and the results and implications discussed in section 5.1.

Next, two parameter studies were performed to test the TAN algorithms’ sensi-

tivity to uncertainty within the environment (two of the three sources of uncertainty

shown in Fig. 3.5). These parameter studies were completed and the data collected

using the ROS parameter study (RPS) CLI (discussed in section 4.3). The parameter

studies were performed with the ANT using ROS, Gazebo, and UUV simulator.

The first TAN algorithm study explores the effect of gravity gradiometer sensor

noise on the quality of the TAN position state estimate. The study involves 80 runs

of an 500 km AUV transit across an area of the ocean off the south-east coast of

Nova Scotia. The gradiometer noise is varied systematically from 0 rad to 0.7 rad in

61

Figure (3.5) This figure is an overview of sources of uncertainty within the gravity
aided localization algorithm. The main sources of uncertainty are highlighted with a
grey header. These sources of uncertainty aim to make the simulation of the grav-
ity aided localization algorithm closer to reality. The artificial density field does not
actually need to be accurate as it is providing a source of uncertainty between what
the a priori gravity gradient map contains versus what the environmental gravity
gradient actually contains. The environmental gravity gradient is derived using an
approximation of the gravity anomaly. The gravity anomaly is derived using aug-
mented bathymetry and the the artificial density. The augmented bathymetry is the
summation of the existing bathymetry field and artificial terrain variation in between
measurements. The artificial terrain variation that is not included in the derivation
of the a priori gravity gradient map adds an additional source of uncertainty to the
input of the particle filter based gravity aided localization algorithm.

62

steps of 0.1 rad. This yields 8 sessions each containing 10 runs. The starting parti-

cle positions, starting INS position error, and the starting INS heading error are all

pseudo-randomly initialized at the beginning of each run. The 10 runs then represent

the expected variation in algorithmic performance subject to pressures from the grav-

ity gradiometer sensor noise. The results of this study can be found in section 5.6.1.

The second TAN algorithm study explores the effect of the constant density as-

sumption on the quality of the TAN state estimate. The study contains 50 runs of

an 500 km AUV transit across an area of the ocean off the south-east coast of Nova

Scotia. The density variation amplitude of the terrain is varied logarithmically from

50 kg/m3 to 800 kg/m3 in 5 steps. This yields 5 sessions with 10 runs each. The

starting particle positions, starting INS position error, and starting INS heading er-

ror are pseudo-randomly initialized at the beginning of each run. The uncertainty

spawns from the difference between the constant density assumption made to derive

the a priori gravity gradient maps the AUV has access to and actual environment

within the ANT which includes the effect of the density variation in its creation. Each

session of 10 runs represent the resulting variation in TAN algorithmic performance

when subjected to pressures due to the assumption of constant density when using

the correlation between the gravity anomaly and the terrain to derive gravity gradient

maps for use in navigation. The results of this study can be found in section 5.6.2.

After testing the TAN algorithm in the ANT the next steps are vehicle integra-

tion and in-water testing. The collaborative project DCAF, for which the author

contributed to, was developed in support of future in-water testing of ROS based

algorithms.

3.4 DRDC DCAF

Future work for the gravity gradient aided navigation leads to HITL and in-water

testing. In preparation, the author collaborated on a DRDC project that is con-

tracted out to the ISL. The aim of this project is to create a ROS based autonomous

framework to enable backseat autonomy on the IVER 3 AUV. The work on DCAF

includes, waypoint planning, survivability features, obstacle avoidance, mission con-

trol, acoustic communication, and vehicle interface. This is an ongoing collaborative

63

project. Each portion has a main developer and the support of others in the ISL

when needed. The author’s developed algorithms had the opportunity for in-water

testing on the IVER3 AUV. However, delays due to the global pandemic have not

made this possible.

The author was the main developer for the arbiter, the bounce survivability fea-

ture, and the technical documentation. The arbiter supports vehicle action interface.

It manages separate vehicle action requests from other portions of the DCAF frame-

work or the topside operator’s computer and sends the highest priority actions on

through the vehicle interface to the IVER 3 vehicle. The bounce behaviour supports

a virtual boundary for the vehicle in which its entire mission must take place. The

vehicle is blocked from moving outside this area within the scope of the mission. The

implementation of these features as part of DCAF is discussed further in section 4.5.

The methodology section summaries the flow of the work within this thesis. It

uses the challenges encountered as well as related research to justify methods used

to address these challenges. ROS, the Gazebo simulator, and the UUV simulator

package are introduced as methods to develop TAN algorithms. The choice of these

tools is justified within the context of robotics research. These tools together with

others developed during this thesis are presented as the method to perform low-risk

testing of the TAN. This collection of tools is referred to as the ANT. Next, the

methods used to verify the INS model and test the TAN algorithm within the ANT

are introduced. Finally, development on the DCAF project is discussed as a method

to move to vehicle integration and future in-water testing. The next section, the

experiment section, will cover the implementation details of these methods.

Chapter 4

Experiment

64

65

This experiment section covers the components that make up the AUV navigation

testbed (ANT), a brief over view of the peripheral functionality implemented by the

ANT CLI. Then, details of the particle filter based TAN algorithm are covered. This

is followed by the experiment section which covers the details of the DCAF project.

Finally, the ROS parameter study CLI, used for all the parameter studies in this

thesis, is discussed.

4.1 AUV Navigation Testbed

The ANT is a collection of tools to support AUV navigation. These tools have been

developed or repurposed for the development of the TAN algorithm.

4.1.1 Inertial Navigation Modelling

An INS integrated on an AUV uses inertial and rotation sensors to estimate the

vehicle’s position from dead-reckoning. Dead-reckoning is a form of path integration,

using the vehicle’s velocity and elapsed time, to estimate the new or current vehicle

position [32].

A basic INS uses the current orientation estimate and transforms them into the

world frame where they are fused with the current estimate for a better position

estimate. However, unless the rotation operation is part of the EKF, the effect of using

an orientation with uncertainty on the state estimate is lost. Therefore, the rotation

operation is included within the EKF, this make the state space representation and

Jacobians more complex, but it provides the benefit of providing a better measure of

the uncertainty of the state estimate.

In the context of AUV navigation, the INS is largely for dead-reckoning within

the horizontal plane. An inclinometer provides an error bound for the vehicle’s in-

clination, and the pressure sensor for the vehicle depth [3, 106]. When using the

INS within this thesis an inclinometer is not used. However, depth is assumed to be

known to a high accuracy, effectively turning a 3D localization problem into a 2D

one in the horizontal plane [106]. The implemented INS uses the EKF framework for

state estimation. The INS is aided by a DVL, giving a more direct measure of the

speed-over-ground.

66

Prediction

Inertial measurements are used in place of a dynamic model so the integration of the

inertial measurements yields an estimate of the AUV position, velocity, and attitude.

The decision was made to do the integration within the EKF state transition function

rather than outside of the EKF. The integration could be performed outside the EKF

so more accurate numerical integration methods, like Runge-Kutta, could be applied.

It would also allow the EKF to run at a slower prediction rate than the incoming

measurements from the IMU. These additional features were deemed unnecessary to

demonstrate the benefits of an external position update to bound the error growth of

dead-reckoning. Therefore, the integration is performed within the EKF prediction

step, requiring the EKF to run at 50Hz.

The vehicle position, velocity, and attitude are the state variables for the EKF

state estimation. The state vector is shown in eq. (4.1),

X =

⎡⎢⎢⎣
x

ẋ

q

⎤⎥⎥⎦ (4.1)

where x is the current position in world frame, ẋ is the current velocity in the world

frame, and q is the unit quaternion representing the attitude of the body-centered

vehicle frame relative to the world frame.

The discretized kinematic equation for position is shown in eq. (4.2),

xk+1 =
1

2
akT

2 + ẋkT + xk (4.2)

where T is the time step, ak is the acceleration during the time step, ẋ is the velocity

during the time step, and xk is the previous position. Equation (4.2) assumes constant

acceleration within a time step. This assumption is true for small time steps. For the

1/50 seconds time step used this is a good assumption because the vehicle dynamics

/ responses occur on a much longer time scale. Similar assumptions hold for the

67

discretized velocity, shown in eq. (4.3),

ẋk+1 = akT + ẋk. (4.3)

The quaternion rate in eq. (2.21) can be discretized into the form of eq. (4.4) [85,

p. 489],

qk+1 =
1

2
ωk ⊗ qk (4.4)

where ωk is the body-frame angular velocities relative to the world inertial frame (the

gyroscope measurement). Expanded using the notations described in eq. (2.16) and

the definition of the quaternion product (eq. (2.17)), the discretized equation for the

quaternion can be derived as,

ϵk+1 =
1

2
T (ηkωk + ϵk × ωk) + ϵk

ηk+1 =
1

2
T (−ϵTkωk) + ηk.

(4.5)

The discrete prediction equations define the non-linear prediction function f ,

f(Xk−1,aG,ωL, T) =

⎡⎢⎢⎣
A3×1

A3×1

C4×1

⎤⎥⎥⎦ (4.6)

where A3×1 is defined by,

A3×1 =

⎡⎢⎢⎣
1
2
axT

2 + ẋT + x

1
2
ayT

2 + ẏT + y

1
2
azT

2 + żT + z

⎤⎥⎥⎦ (4.7)

B3×1 is defined by,

B3×1 =

⎡⎢⎢⎣
axT + ẋ

ayT + ẏ

azT + ż

⎤⎥⎥⎦ (4.8)

68

and C4×1 is defined by,

C4×1 =

⎡⎢⎢⎢⎢⎢⎣
1
2
(ϵyωz − ϵzωy + ηωx)T + ϵx

1
2
(−ϵxωz + ϵzωx + ηωy)T + ϵy
1
2
(ϵxωy − ϵyωx + ηωz)T + ϵz

1
2
(−ϵxωx − ϵyωy − ϵzωz)T + η

⎤⎥⎥⎥⎥⎥⎦ . (4.9)

Equation (4.6) uses the world frame acceleration which can be calculated using

the body frame acceleration, the current attitude estimate, and eq. (2.19) to yield

eq. (4.10) and eq. (4.11).

aG =

⎡⎢⎢⎣
ax

ay

az

⎤⎥⎥⎦
aG

(4.10)

aG =

⎡⎢⎢⎣
(︁
ax
(︁
ϵ2x − ϵ2y − ϵ2z + η2

)︁
+ ay (2ϵxϵy − 2ϵzη) + az (2ϵxϵz + 2ϵyη)

)︁(︁
ax (2ϵxϵy + 2ϵzη) + ay

(︁
−ϵ2x + ϵ2y − ϵ2z + η2

)︁
+ az (−2ϵxη + 2ϵyϵz)

)︁(︁
ax (2ϵxϵz − 2ϵyη) + ay (2ϵxη + 2ϵyϵz) + az

(︁
−ϵ2x − ϵ2y + ϵ2z + η2

)︁
− g
)︁
⎤⎥⎥⎦

aL
(4.11)

Equation (4.6) is used in eq. (2.4) predict the state Xk|k−1. To calculate the predicted

or a priori covariance matrix, eq. (2.5) is used. The transition function Jacobian

F is derived using its definition (eq. (2.6)), and the non-linear transition function

(eq. (4.6)), yielding eq. (4.12),

Fk−1(Xk|k−1,aL,ωL, T) =

[︄
A6×6 B6×4

04×6 C4×4

]︄
(4.12)

69

where A6×6 is defined by,

A6×6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.13)

B6×4 is defined by,

B6×4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂fx
∂ϵx

∂fx
∂ϵy

∂fx
∂ϵz

∂fx
∂η

∂fy
∂ϵx

∂fy
∂ϵy

∂fy
∂ϵz

∂fy
∂η

∂fz
∂ϵx

∂fz
∂ϵy

∂fz
∂ϵz

∂fz
∂η

∂fẋ
∂ϵx

∂fẋ
∂ϵy

∂fẋ
∂ϵz

∂fẋ
∂η

∂fẏ
∂ϵx

∂fẏ
∂ϵy

∂fẏ
∂ϵz

∂fẏ
∂η

∂fż
∂ϵx

∂fż
∂ϵy

∂fż
∂ϵz

∂fż
∂η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.14)

and C4×4 is defined by,

C4×4 =

⎡⎢⎢⎢⎢⎢⎣
1 Tωz

2
−Tωy

2
Tωx

2

−Tωz

2
1 Tωx

2

Tωy

2
Tωy

2
−Tωx

2
1 Tωz

2

−Tωx

2
−Tωy

2
−Tωz

2
1

⎤⎥⎥⎥⎥⎥⎦ . (4.15)

∂fx
∂ϵx

=
1

2
T 2 (2ϵxax + 2ϵyay + 2ϵzaz)

∂fx
∂ϵy

=
1

2
T 2 (2ϵxay − 2ϵyax + 2ηaz)

∂fx
∂ϵz

=
1

2
T 2 (2ϵxaz − 2ϵzax − 2ηay)

∂fx
∂η

=
1

2
T 2 (2ϵyaz − 2ϵzay + 2ηax)

(4.16)

70

∂fy
∂ϵx

=
1

2
T 2 (−2ϵxay + 2ϵyax − 2ηaz)

∂fy
∂ϵy

=
1

2
T 2 (2ϵxax + 2ϵyay + 2ϵzaz)

∂fy
∂ϵz

=
1

2
T 2 (2ϵyaz − 2ϵzay + 2ηax)

∂fy
∂η

=
1

2
T 2 (−2ϵxaz + 2ϵzax + 2ηay)

(4.17)

∂fz
∂ϵx

=
1

2
T 2 (−2ϵxaz + 2ϵzax + 2ηay)

∂fz
∂ϵy

=
1

2
T 2 (−2ϵyaz + 2ϵzay − 2ηax)

∂fz
∂ϵz

=
1

2
T 2 (2ϵxax + 2ϵyay + 2ϵzaz)

∂fz
∂η

=
1

2
T 2 (2ϵxay − 2ϵyax + 2ηaz)

(4.18)

∂fẋ
∂ϵx

= T (2ϵxax + 2ϵyay + 2ϵzaz)

∂fẋ
∂ϵy

= T (2ϵxay − 2ϵyax + 2ηaz)

∂fẋ
∂ϵz

= T (2ϵxaz − 2ϵzax − 2ηay)

∂fẋ
∂η

= T (2ϵyaz − 2ϵzay + 2ηax)

(4.19)

∂fẏ
∂ϵx

= T (−2ϵxay + 2ϵyax − 2ηaz)

∂fẏ
∂ϵy

= T (2ϵxax + 2ϵyay + 2ϵzaz)

∂fẏ
∂ϵz

= T (2ϵyaz − 2ϵzay + 2ηax)

∂fẏ
∂η

= T (−2ϵxaz + 2ϵzax + 2ηay)

(4.20)

71

∂fż
∂ϵx

= T (−2ϵxaz + 2ϵzax + 2ηay)

∂fż
∂ϵy

= T (−2ϵyaz + 2ϵzay − 2ηax)

∂fż
∂ϵz

= T (2ϵxax + 2ϵyay + 2ϵzaz)

∂fż
∂η

= T (2ϵxay − 2ϵyax + 2ηaz)

(4.21)

where T is the time step, all accelerations a and angular rates ω are in the local or

body frame L, and the state variables are evaluated at time step k− 1. Additionally,

because the covariance matrix of the IMU sensor is in the body frame, the covariance

must be rotated into the world frame. This violates the additive noise assumption as

the noise in the world frame is no longer additive. Therefore, L, the Jacobian of the

process noise covariance Q, is derived using eq. (2.7), yielding eq. (4.22),

Lk−1(Xk−1, T) =

[︄
A6 x 3 06 x 3

04 x 3 B4 x 3

]︄
(4.22)

A6 x 3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2(ϵ2x−ϵ2y−ϵ2z+η2)
2

T 2(2ϵxϵy−2ϵzη)

2

T 2(2ϵxϵz+2ϵyη)

2

T 2(2ϵxϵy+2ϵzη)

2

T 2(−ϵ2x+ϵ2y−ϵ2z+η2)
2

T 2(−2ϵxη+2ϵyϵz)

2

T 2(2ϵxϵz−2ϵyη)

2

T 2(2ϵxη+2ϵyϵz)

2

T 2(−ϵ2x−ϵ2y+ϵ2z+η2)
2

T
(︁
ϵ2x − ϵ2y − ϵ2z + η2

)︁
T (2ϵxϵy − 2ϵzη) T (2ϵxϵz + 2ϵyη)

T (2ϵxϵy + 2ϵzη) T
(︁
−ϵ2x + ϵ2y − ϵ2z + η2

)︁
T (−2ϵxη + 2ϵyϵz)

T (2ϵxϵz − 2ϵyη) T (2ϵxη + 2ϵyϵz) T
(︁
−ϵ2x − ϵ2y + ϵ2z + η2

)︁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.23)

B4 x 3 =

⎡⎢⎢⎢⎢⎢⎣
Tη
2

−Tϵz
2

Tϵy
2

Tϵz
2

Tη
2

−Tϵx
2

−Tϵy
2

Tϵx
2

Tη
2

−Tϵx
2

−Tϵy
2

−Tϵz
2

⎤⎥⎥⎥⎥⎥⎦ (4.24)

72

where the state variables are evaluated at time step k − 1. Finally, the process noise

covariance matrix is defined by the variance of the accelerometers and the gyroscopes

(eq. (4.25)),

Qk(aL,ωL) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
ax 0 0 0 0 0

0 σ2
ay 0 0 0 0

0 0 σ2
az 0 0 0

0 0 0 σ2
ωx

0 0

0 0 0 0 σ2
ωy

0

0 0 0 0 0 σ2
ωz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.25)

where σ2
ax is the accelerometer variance in the body frame x axis, and the σ2

ωx
is

the gyroscope variance around the body frame x axis. In this implementation, the

assumption is that all accelerometer variances are the same and similarly all gyroscope

variances are the same.

The predict step is triggered by a message published by the IMU. This occurs at

a rate of 50Hz. Therefore, the nominal mean time step of the EKF prediction cycle

is about 20ms. In this implementation the message time stamp is used to determine

the time step between consecutive messages.

DVL Update

To bound the velocity error growth a direct measurement of the velocity-over-ground

is fused in the EKF update step. The measurement equation yields the expected

measurement given the current state estimate,

h̃dvl(Xk|k−1) =

⎡⎢⎢⎣
−2ẋϵxϵz − 2ẋϵyη + 2ẏϵxη − 2ẏϵyϵz + żϵ2x + żϵ2y − żϵ2z − żη2

2ẋϵxϵy − 2ẋϵzη − ẏϵ2x + ẏϵ2y − ẏϵ2z + ẏη2 + 2żϵxη + 2żϵyϵz

ẋϵ2x − ẋϵ2y − ẋϵ2z + ẋη2 + 2ẏϵxϵy + 2ẏϵzη + 2żϵxϵz − 2żϵyη

⎤⎥⎥⎦ (4.26)

where h̃ is the expected measurement in the DVL reference frame. Equation (4.26) is

derived by applying consecutive rotations to the global velocity state estimate. One

rotation is from the world frame to IMU/body frame and the other is from the body

frame to the INS frame. Equation (2.20) is used to perform the consecutive rotations

73

to yield eq. (4.27),

[︄
ẋdvl

0

]︄
= q∗

dvl/L ⊗

(︄
q∗ ⊗

[︄
ẋG

0

]︄
⊗ q

)︄
⊗ qdvl/L (4.27)

where ẋdvl is the expected measurement, qdvl/L is the orientation of the DVL frame

relative to the body frame defined by eq. (4.28), q is the estimated orientation of the

body frame relative to the world frame, and ẋG is the velocity estimate in the world

frame. Both q and ẋG are part of the AUV state.

qdvl/L =

⎡⎢⎢⎢⎢⎢⎣
0
√
2
2

0
√
2
2

⎤⎥⎥⎥⎥⎥⎦ (4.28)

The Jacobian for the DVL measurement update is defined by eq. (4.29).

Hk(Xk|k−1) =

⎡⎢⎢⎣
0 0 0 ∂hẋ

∂ẋ
∂hẋ

∂ẏ
∂hẋ

∂ż
∂hẋ

∂ϵx

∂hẋ

∂ϵy

∂hẋ

∂ϵz

∂hẋ

∂η

0 0 0
∂hẏ

∂ẋ

∂hẏ

∂ẏ

∂hẏ

∂ż

∂hẏ

∂ϵx

∂hẏ

∂ϵy

∂hẏ

∂ϵz

∂hẏ

∂η

0 0 0 ∂hż

∂ẋ
∂hż

∂ẏ
∂hż

∂ż
∂hż

∂ϵx

∂hż

∂ϵy

∂hż

∂ϵz

∂hż

∂η

⎤⎥⎥⎦ (4.29)

∂hẋ

∂ẋ
= −2ϵxϵz − 2ϵyη

∂hẋ

∂ẏ
= 2ϵxη − 2ϵyϵz

∂hẋ

∂ż
= ϵ2x + ϵ2y − ϵ2z − η2

∂hẋ

∂ϵx
= −2ẋϵz + 2ẏη + 2żϵx

∂hẋ

∂ϵy
= −2ẋη − 2ẏϵz + 2żϵy

∂hẋ

∂ϵz
= −2ẋϵx − 2ẏϵy − 2żϵz

∂hẋ

∂η
= −2ẋϵy + 2ẏϵx − 2żη

(4.30)

74

∂hẏ

∂ẋ
= 2ϵxϵy − 2ϵzη

∂hẏ

∂ẏ
= −ϵ2x + ϵ2y − ϵ2z + η2

∂hẏ

∂ż
= 2ϵxη + 2ϵyϵz

∂hẏ

∂ϵx
= 2ẋϵy − 2ẏϵx + 2żη

∂hẏ

∂ϵy
= 2ẋϵx + 2ẏϵy + 2żϵz

∂hẏ

∂ϵz
= −2ẋη − 2ẏϵz + 2żϵy

∂hẏ

∂η
= −2ẋϵz + 2ẏη + 2żϵx

(4.31)

∂hż

∂ẋ
= ϵ2x − ϵ2y − ϵ2z + η2

∂hż

∂ẏ
= 2ϵxϵy + 2ϵzη

∂hż

∂ż
= 2ϵxϵz − 2ϵyη

∂hż

∂ϵx
= 2ẋϵx + 2ẏϵy + 2żϵz

∂hż

∂ϵy
= −2ẋϵy + 2ẏϵx − 2żη

∂hż

∂ϵz
= −2ẋϵz + 2ẏη + 2żϵx

∂hż

∂η
= 2ẋη + 2ẏϵz − 2żϵy

(4.32)

The covariance update requires the Jacobian Mk (eq. (2.14)) and the DVL mea-

surement noise matrix to be defined. The residual ṽk is in the DVL reference frame,

therefore, the additive noise assumption holds and Mk becomes,

Mk = I3x3 (4.33)

75

the identity matrix. This simplifies Equations 2.9 and 2.12. Finally, the DVL mea-

surement noise covariance matrix is defined by,

Rk(ẋLdvl
) =

⎡⎢⎢⎣
σ2
ẋdvl

0 0

0 σ2
ẏdvl

0

0 0 σ2
żdvl

⎤⎥⎥⎦ (4.34)

where σ2
ẋdvl

is variance of the velocity measurement in the x direction within the DVL

frame of reference. This implementation assumes the variance in all three axes are

the same.

This concludes the details of the INS implementation. The INS model provides

the basis of AUV dead-reckoning within the ANT. The next part of the ANT covered

is the environment model.

4.1.2 Gazebo World Models

The Gazebo simulation environment supports mesh files for the creation of a simula-

tion environment. These 3D object files can contain meshes with visual textures and

shading. This is supported by the underlying 3D rendering engine. The 3D objects

are used in visualization and physics simulation. This facilitates simulating sensors

in a physical environment provided by the physics-based engines in Gazebo.

In-water testing is an extension of the work in this thesis. The nearest, and

often used, body of water in the Halifax Area is Bedford Basin. To mitigate risk for

future in-water tests the vehicle, its behaviours, and performance are first verified

in a simulated environment. This provided the motivation to create the underwater

Bedford Basin environment within Gazebo.

The Bedford Basin Gazebo world was created using the functionality of the ANT

CLI. The original bathymetric 2m resolution data provided by Canadian hydro-

graphic service (CHS) [107] was merged with the lower resolution DEM provided

by the government of Nova Scotia. The resulting raster covers a 7 km by 7 km area

encasing the Bedford Basin.

76

This raster was transformed into a Gazebo world model using the ANT CLI devel-

oped as part of the thesis work presented and published at the Oceans 2021 conference

in San Diego [31]. The tool makes heavy use of raster [35], numerical [108], and graph-

ical tools [36] available as Python libraries, as well as the Blender Python API [34].

Blender is an open-source widely used 3D modelling and animation software [34].

This pipeline allows any raster, in a geospatial data abstraction library (GDAL) sup-

ported format, to be loaded by the tool and turned into 3D world model supported

by the Gazebo simulator. The tool can resize, re-sample, scale, and transform the

raster before turning it into the final 3D mesh and configuration files expected by

Gazebo. The Blender Python API is used to overlay a colour map generated by mat-

plotlib, a Python plotting library, onto the 3D mesh. This allows easier visualization

of the height variation in the final Gazebo world model. This pipeline saves time and

reduces the probability of mistakes when creating a Gazebo world model using raster

data. It reduced what would normally take a researcher a day (not including the time

to learn all the tools involved in the process) to a few minutes.

The results of this raster to Gazebo world model pipeline will be discussed in

detail in 5.2.

4.1.3 Terrain Generation

Control over the detail and composition of the terrain used for the TAN algorithm

enables testing of terrain variation and uncertainty in algorithmic performance. It

also allows creation of synthetic density fields to fill in density information for which

there are no available detailed measurements. This adds to the environmental un-

certainty the TAN algorithm is subjected to — consequently making its simulations

more realistic.

Perlin noise can also be used to generate pseudo realistic terrain to enhance the

realism of simulations. This was previously done by others to simulate a spacecraft

landing on an asteroid for the purpose of designing the spacecraft to explore the

asteroid [90]. Perlin noise was used by Martin et al. [90] along with erosion modelling

to supplement low-resolution terrain information of the modelled asteroids.

Similar techniques were used in the thesis. Perlin noise was used to augment

77

bathymetry and generate density fields to increase the fidelity of the simulation envi-

ronment for the AUV long-distance transit operations. The augmented bathymetry

add detailed terrain variation on top of the approximately 0.5 km resolution bathymetry

available from the GEBCO database [29].

The ANT CLI was written to provide this functionality. It provides the ability to

generate terrain to a set of specifications. The number of octaves, the base period,

base amplitude, lacunarity, persistence, size, mean value, and origin can be set during

generation. Additionally, the smallest feature size that is guaranteed can be set

using a command line option. This implicitly chooses the number of octaves, noctave,

required to guarantee a minimum feature size of, s, within the terrain. The equation

used to calculate the number of octaves is,

noctave = ⌈ log(s)− log(po)

log(1/l)
+ 1⌉ (4.35)

where po is the period of the first Perlin noise layer, and l its lacunarity. This function

was derived for use in the ANT CLI tool-chain.

This extends the possible use of the terrain generation tool to simulation of side-

scan sonar within a ocean environment. The minimum feature size s for simulating

the returns for side-scan sonar would be determined by the frequency used by the side-

scan sonar. Side-scan sonar was not used within the work for this thesis. However,

this increases the utility of this tool for other researchers. The tool also supports

using a similar process to add noise to an existing lower-resolution map to increase

the level of detail in a realistic way. This is referred to as terrain augmentation within

this thesis.

4.1.4 Terrain Augmentation

The ANT CLI supports terrain generation. It reads an existing raster and adds Per-

lin noise layers on top of the existing raster. The raster retains its georeferencing

information. Perlin noise is especially suited for this application because if the la-

cunarity is 2, the grid on which the gradients are sampled, and therefore the zero

value crossings, line up with each other. The locations of the grid intersections of the

78

Figure (4.1) Adapted from [31]. An extracted raster from the GEBCO database.
The resolution is approximately 450m. The raster is georeferenced using the UTM
Zone 20N NAD83 coordinate reference system.

first Perlin noise function are guaranteed to be zero. An affine transformation can be

used to line the Perlin noise layers up with the lower resolution data. The result is

additional noise in between the original measurements. This is much more realistic

than assuming the terrain varies linearly between measurements when using a raster

to generate an environment model.

For example, from Heubach and Seto [31] a 5 km by 5 km raster was extracted from

the GEBCO database (shown in Fig. 4.1). It was chosen because it had interesting

features (two seamounts). The raster has a resolution of about 450m. Creating a

simulation environment from this raster would normally involve interpolating between

measurements. Whether this is linear or cubic the resulting seascape is smooth with

no finer details. Depending on the application this may be sufficient. However, if this

is used as the environment it assumes the measurements are unaffected by noise, and

the terrain variation in between measurements is known. The more realistic approach

taken in this thesis is to augment the terrain with noise and to use the augmented

terrain as the simulation environment. The original measurements are used as input

79

to the TAN algorithm. This adds realistic uncertainty to the information that the

TAN algorithm has about the environment.

An example of this augmented terrain is shown in Fig. 4.2. From Fig. 4.2, the

Figure (4.2) Adapted from [31]. An extracted raster from the GEBCO database.
It has been augmented with five octaves of Perlin noise, with a lacunarity of 2 and
persistence of 0.5.

details added by the Perlin noise is subtle. It adds realism and additional uncertainty

when the original GEBCO measurements are used for the navigation or localization

algorithm. Augmenting the terrain leaves the original measurements at the orig-

inal measurement location unchanged. This assumption is verified and discussed

in section 5.4. The terrain augmentation feature is not used for testing the TAN al-

gorithm. The resolution of the bathymetry was sufficient to test the navigation over

long-distances.

4.1.5 Terrain to Gravity Anomaly Conversion

The approximation of the gravity anomaly used in the ANT makes use of eqn 2.32,

introduced in section 2.12.2. This is possible because the gravity anomaly created

80

by mass attenuates by the inverse square law. The gravity gradient, being the first

derivative of the gravity anomaly, attenuates at the inverse cube of the distance,

making it even more sensitive to local mass variations [82, 94]. Therefore, the local

mass variation has the largest impact on the gravity gradient. This is assumption is

used by Liu et al. in [43]. Additionally, since the interest is in the gravity gradient, for

navigation purposes, the absolute value of the gravity anomaly becomes irrelevant for

navigation [94]. Its variation must be within the dynamic range of the gradiometer

(approximately 1 E [94], this depends on platform and will only improve with time).

The local anomaly calculation is posed using matrix algebra to exploit available

matrix algebra tools and ultimately reduce the computation time. The local gravity

anomaly is approximated using a raster of the bathymetry as input. Optionally,

a density raster can also be supplied. If the density raster is not used the constant

density assumption is made. This replaces the entire density matrix with the identical

value of 2670 kgm−3 (An approximate value of the outer crustal density). A single

average value for the density of the Earth’s crust is really difficult to find. This

value is sufficient. The gravity anomaly does not need to be absolutely accurate

— only relatively accurate. Next, it is assumed the average density of the seawater is

1027 kgm−3 [109]. The density of sea water depends on temperature and salinity [109],

however, the depth has the largest effect on density variation in seawater and can be

modelled [110]. Extensive modelling of the seawater density variation is outside the

scope of this thesis, so the constant value will be used.

A few properties can be set to affect the calculation of the local gravity anomaly

field. Calculation depth, target window size, and target resolution can be set. The

calculation depth is the depth at which local gravity anomaly is calculated. The target

window size is used to determine the horizon for which mass elements are deemed

to negligibly impact the gravity anomaly, and the target resolution determines the

window movement step size.

A single local gravity anomaly is calculated by selecting a single position to de-

termine the approximate local anomaly. Equation (2.32) is used, where the density ρ

is determined by either the constant density assumption or a value from the density

raster. The top-down area δx · δy of a finite volume is determined by the resolution

81

of the bathymetry raster. The height of the finite volume, δz, is set by the ocean

depth. The difference in depth between the centre of the finite volume of ocean water

and the calculation depth yields ∆z. The Euclidean difference between the centre of

the finite volume and the calculation position yields the distance r. Together these

parameters provide the means to calculate the local anomaly at a single point by per-

forming a summation of all the contributions to the single local anomaly from each

finite volume within the designated window size. This window can be swept across

the raster to calculate local anomaly field.

The approximate local anomaly field will be smaller in its geographical bounds

than the input raster. This is due to the window size (horizon). A local anomaly can

only be calculated at the centre of a window, therefore, the local anomaly field will be

half a window size smaller in the direction of all the Cartesian directions. The result-

ing gravity anomaly maps are shown and discussed in further detail in section 5.5.

There are significant limitations to this approach. First, the gravity anomaly

cannot be compared to measured gravity anomalies directly. It would be more ac-

curate to call the calculated gravity anomaly the relative gravity anomaly, because

it is relative to the local area in which it was calculated. This means it cannot be

directly used for navigation as the measured gravity anomaly. The gravity anomaly

is different than the relative gravity anomaly and would lead to quick divergence of

the state estimate. However, if only the gradient of the local anomaly is used then

the absolute difference between measured and calculated becomes irrelevant [95]. The

gravity gradient can be measured with a gravity gradiometer, and compared to the

gradient of the calculated local gravity anomaly for AUV navigation [43, 92, 82].

4.1.6 Gravity Gradiometer Model

The gravity gradiometer model used within the ANT is defined by eq. (4.36),

[︄
∥∇g∥
∠∇g

]︄
=

⎡⎢⎢⎣
√︃(︁

∂gz
∂x

)︁2
+
(︂

∂gz
∂y

)︂2
+N (0, σm)

arctan 2

(︃
∂gz
∂y
∂gz
∂x

)︃
+N (0, σθ)

⎤⎥⎥⎦ (4.36)

82

where ∥∇g∥ is the planar magnitude of the gravity gradient, ∠∇g is the gravity

gradient’s heading planar direction, N is the normal distribution, gz is the vertical

component of the gravity gradient, σm is the standard deviation of the Gaussian noise

applied to the magnitude of the gravity gradient, σθ is the standard deviation of the

Gaussian noise applied to the gravity gradient heading, x is the coordinate direction

in-line with the cardinaleast direction, y is the coordinate direction in-line with the

north cardinal direction. The study that explores the effect of gravity gradiometer

heading noise on the performance of the particle filter implementation of GAN is

discussed in section 5.6.1.

The gravity gradiometer has limitations. It does not include the tidal effect, the

vehicle-induced acceleration, the Eötvös effect, or thermal drift. The latter three

effects are negligible if the sensors within the gravity gradiometer are precisely cali-

brated together. Additionally, the gravity gradiometer ignores the third dimension of

the gravity gradient. This was to make the implementation simpler, and fit within the

scope of the thesis. A more realistic gravity gradiometer would give the full three-

dimensional gravity vector. Finally, the uncertainty due to noise would be much

more complex. There would be uncertainty associated with all the sensors within the

gradiometer and additional uncertainty from the combination of their measurements.

However, this model suffices in enabling exploration of the implementation of a GAN

algorithm. Increasing the complexity, realism, and accuracy of these models is part

of the possible continuation of the work in this thesis.

This concludes the discussion of the implementation of the main parts of the ANT.

Much of the covered functionality is used by running the ANT CLI. The summary of

this tool is covered next, along with additional functionality not yet covered.

4.2 AUV Navigation Testbed Command Line Interface

The ANT CLI contains much of the peripheral tool-chain that helps create an under-

water simulation environment quickly. The CLI supports various operations related

to the ANT including: visualizing Perlin noise, augmenting existing terrain, resam-

pling a raster, cropping a raster to a square, generating density for a raster, generating

terrain, deriving an gravity anomaly field from bathymetry and density, displaying

83

a geotiff, translating a raster, generating traces from the diagonal of GeoTIFF files,

and converting a raster to a Gazebo world model. Some of these functionalities have

already been discussed in detail. Others will be discussed in this section.

4.2.1 Visualizing Perlin Noise

To help with the understanding of how Perlin noise layers interact and how certain

parameters affect the roughness, and detail of generated terrain, visualization func-

tionality was added to the ANT CLI. The command accepts the target resolution,

size, base period, mean, amplitude, number of octaves, lacunarity, persistence, and a

random seed as options. The target resolution determines the resolution at which the

superimposed Perlin noise layers are sampled, the size determines the scaling factor

applied to the Perlin noise function, the base period is the inverse of the Perlin noise

gradient grid spatial sampling frequency, the mean is the transformation for all values

of the Perlin noise function, amplitude is the multiplication factor for all values of

the sampled function, the number of octaves determines the number of Perlin noise

layers, the lacunarity the ratio of frequencies of successive Perlin noise layers, per-

sistence the ratio of the amplitude of successive Perlin noise layers, and the random

seed allows the creator to control what see is used to initialize the pseudo-random

number generator.

The Perlin noise functions are generated using these constraints then plotted and

shown using matplotlib a Python plotting library [36]. This leads to fast iteration on

which parameters deliver the effect desired by the user.

4.2.2 Terrain Augmentation

The terrain augmentation command provides the interface to augment existing terrain

with Perlin noise. This functionality was covered in section 4.1.4.

4.2.3 Raster Re-sampling

The re-sampling command eases working with large rasters that may have much

higher or lower resolution than one would like for their application. This is especially

important when importing very large maps into Gazebo which has a hard limit for

84

how many data points it can handle. This command uses built-in functionality from

the rasterio Python library [35] and is really there for convenience. There are a lot of

other tools, such as GDAL, that provide this same functionality.

4.2.4 Crop Raster to Square

This command crops an existing raster to a square. This is important when working

with Gazebo which has trouble when working with digital elevation models that are

not square. Additionally, a square raster is a prerequisite for Perlin noise terrain

augmentation.

4.2.5 Generate Density for Raster

This command generates a density field using Perlin noise. The input parameters

for the Perlin noise function can be specified. Additionally, this command uses the

georeferencing information from the input raster to georeference the generated density

field to the same geographical area as the original raster. This allows the density field

to mimic density measurements taken in that geographical area. More discussion

about generated density fields can be found in section 5.3

4.2.6 Generate Terrain as Raster

This command provides terrain generation capabilities similar to the Perlin noise

visualization command. However, instead of the plot being produced, the result is a

GeoTIFF raster file. This can be used in any geographic information system (GIS)

tool, or the other ANT CLI commands that support a raster as an input such as the

raster to Gazebo world command.

4.2.7 Derive Gravity Anomaly Field

This command uses the correlation between the gravity anomaly and the terrain

to derive a local gravity anomaly field. This commands implements the equations

and processes first introduced in section 2.12.2. This command supports including

a crustal density field in the derivation of the gravity anomaly. A finite element

approach is used to derive the local gravity anomaly. The resulting local gravity

85

anomaly maps are discussed further in section 5.5.

4.2.8 Show GeoTIFF

This command supports plotting an existing GeoTIFF raster. Some simple properties

of the resulting figure can be changed such as x label, y label, x tick spacing, y tick

spacing, and x multiplication factor, y multiplication factor, and an output path at

which to save the figure. This command speeds up making quick plots of existing

GeoTIFF rasters, and is used to produce figures found throughout this thesis.

4.2.9 Translate Raster

This command takes a input raster path and applies a simple transformation to the

location of the raster. Useful to be able to apply a false origin to place the centre or

a corner of the raster at 0,0.

4.2.10 Compare Slices

This command takes in any number of .stl, raster, and .dae files and determines the

trace along the main diagonal. This is really helpful when verifying that a transforma-

tion from a raster to standard triangle language (STL) file was completed correctly. A

slice of all the main diagonals is plotted for comparison. It makes errors in conversion

much easier to detect.

4.2.11 Raster to Gazebo World

This command provides the pipeline from raster to Gazebo world model. The des-

tination folder can be specified, so can the size, the height exaggeration, and the

colour map to apply as a visual effect. Any colour map name supported by mat-

plotlib will work. An example of height exaggeration can be see in section 5.2. The

world size parameter is useful for scaling a raster that covers a really large area, down

to a smaller area that Gazebo supports. Gazebo is limited in the size of model it

supports. Gazebo has support for DEM, however, there were numerous collision and

visual problems. Therefore, the world models are loaded in as Collada files.

86

Collada is a 3D model interchange format used by numerous 3D modelling soft-

ware. It allows interchange of 3D models between different software. The 3D model

was created within Blender by importing the original raster. Then the raster is con-

verted to a mesh, rendering properties are set, and the colour map overlay is added.

This is exported as a Collada file that Gazebo supports. This reduces a process that

was error prone, tedious, and took the better part of a day down to a few minutes of

run time for a raster containing millions of measurements.

4.3 ROS Parameter Study CLI

In the process of performing the parameter studies within the ROS and Gazebo envi-

ronments the lack of a formalized approach to running studies was discovered. This

led to the necessity of developing a Python library that formalizes an approach to pa-

rameter studies within the ROS ecosystem. The Python library, ros parameter study

(rps for short), provides the means of organizing multiple ROS launch files, command

line environments, rosrun commands, topic bag data collection, and stopping condi-

tions to perform a parameter study. The capabilities of the ROS parameter study

CLI and the accompanying RPS library are described in detail in appendix E.

The ROS parameter study tool may not be an academic contribution in the

strictest sense, however, the package will be released to the academic and ROS com-

munities as an open-source package. This contributes to the efficiency of others that

use the package to reduce their own work load. The work in this thesis would not

have been possible without the work of others sharing their written software, and

benefited greatly from the open-source community. Therefore, sharing this work is

significant.

This concludes the discussion about the functionality provided by the ANT, and

related tooling. Next, the implementation details of the particle filter based TAN

algorithm are discussed.

87

4.4 Terrain Aided Navigation Algorithm

The overview of the TAN algorithm is shown in Fig. 4.3. The TAN algorithm uses the

particle filter framework to perform state estimation of the position and heading of

the vehicle in two-dimensions. The particles are propagated forward in the prediction

state using the input from the INS, and the particles are weighted based on the

likelihood that the measured gradiometer heading would be seen at the location of

the particles hypothesis.

Figure (4.3) An overview of the gravity-aided navigation implemented. The
bathymetry from readily available sources like GEBCO is used with a generated den-
sity field to derive the gravity anomaly field used as the environment in simulations.
The gravity anomaly field that the particle filter uses to evaluate the likelihood of a
gradiometer heading measurement is derived from the original bathymetry with the
constant density assumption.

The TAN algorithm requires a priori bathymetry information which can be con-

verted to gravity gradient maps exploiting the correlation between the terrain and

the gravity anomaly, discussed in section 2.12.2. The simulated gradiometer uses a

similarly derived gravity anomaly map. However, the environment gravity anomaly

includes the influence of the terrain density which is unknown to the vehicle state

estimation. This explores the validity of the constant density assumption the particle

88

filter uses to perform TAN.

4.4.1 Particle Filter

The TAN algorithm is implemented using a particle filter. A particle filter or se-

quential Monte Carlo method uses a set of samples to represent the posterior state

estimate distribution. These samples are referred to as particles, each one represent-

ing a single state hypothesis. A particle filter uses a propagation, weighting, and

resampling cycle.

Propagation

The particle filter uses the INS as the basis of its propagation or prediction step.

⎡⎢⎢⎣
xk+1

yk+1

θk+1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
xk +∆dins cos(θ

k+1)

yk +∆dins sin(θ
k+1)

θk +∆θins

⎤⎥⎥⎦ (4.37)

where ∆dins and ∆θins are given by,

[︄
∆dins

∆θins

]︄
=

⎡⎣√︂(xk
ins − xk−1

ins)
2 + (ykins − yk−1

ins)
2

θkins − θk−1
ins

⎤⎦ (4.38)

and where xk
ins is the INS position estimate in the x direction, ykins is the INS position

estimate in the y direction,

Weighting

The weight assigned to each particle is given by the likelihood of the gradiometer

measurement θm, given the gradiometer direction at the particle’s location xi, yi re-

trieved from the vehicle’s a priori gravity gradient map. The likelihood function is

not a simple Gaussian, as other dimensions in the state estimate, because a heading

is defined on an interval of 2π and one would expect the likelihood function to wrap

around just as the angle does. This behaviour can be approximated using eq. (4.39).

89

L(θm|θi, σm) =
1

σm

√
2π

(︄
e−

1
2
(
θm−θi
σm

)2 +
n∑︂

j=1

(︂
e−

1
2
(
θm−θi+2πj

σm
)2 + e−

1
2
(
θm−θi−2πj

σm
)2
)︂)︄
(4.39)

where θm is the gradiometer’s gravity gradient direction measurement, σm is the

standard deviation of the gradiometer’s gravity gradient direction measurement, and

θi is the gravity gradient direction at the location of the ith particle given by the

vehicle’s a prior gravity gradient map. θi is evaluated by taking the position (xi, yi)

of the ith particle and looking up the value of the gravity gradient direction at that

location in the vehicle’s a priori gravity gradient map.

Equation (4.39) repeats the likelihood function every ±2πj for j from 1 to n. The

number of repetitions depends on the standard deviation of the Gaussian function.

The total area under the distribution can be estimated to less than 1% error by

calculating n to capture at least the area within three standard deviations of the

distribution. n is calculated using eq. (4.40):

n =
⌈︂3σm

2π

⌉︂
. (4.40)

Once the relative likelihood is calculated, each particle’s weight is updated using

eq. (4.41),

wk+1
i = wk

i · L(θm|θi, σm) (4.41)

where wk+1
i is the updated particle weight, wk

i is the previous particle weight, and

the relative likelihood is given by eq. (4.39).

Following the weight update, the particle weights must be normalized. Normal-

ization is completed using eq. (4.42),

wk+1
i =

wk
i∑︁
iwi

. (4.42)

Over time some particles can become insignificant because of their extremely low

weight. Ideally, these particles would be dropped and replaced by particles spawned

90

near particles with higher weights. This is achieved with particle resampling.

Resampling

The particle filter uses resampling to increase the particles filter’s resolution in areas

with heavily weighted particles. There are numerous resampling schemes used in

particle filters [96]. This thesis focused on multinomial resampling. Multinomial

resampling is applied when the effective sample size is below a threshold. The effective

sample size is a measure used to describe how many particles are effectively describing

the particle distribution. To avoid particle degeneracy, where particles have very low

weights and have no effect on the weighted distribution anymore, the resampling step

is used. The measure of effective sample size used is described in eq. (4.43) [96, p. 85],

ESS =
1∑︁
iw

2
i

(4.43)

where wi is the weight of the ith particle, and ESS is the effective sample size. The

threshold used is given by eq. (4.44),

neff <
Np

2
(4.44)

where Np is the total number of particles.

When the threshold is met the particles are resampled using the multinomial

resampling scheme [111] [96]. The particles are resampled from a discrete distribution

where the probability of sampling a particle is directly proportional to its weight wi.

After, the weights are reinitialized to,

wi =
1

Np

(4.45)

where Np is the total number of particles. Without stabilizing noise resampling can

lead to particle duplication.

91

Stabilizing Noise

The goal of stabilizing noise is to inject enough noise to spread the particles out in

the state space without sacrificing particle filter convergence. Stabilization noise is

also referred to as jitter. Equation (4.46) shows the jitter vector that is added to each

particle’s state estimate. ⎡⎢⎢⎣
jx

jy

jθ

⎤⎥⎥⎦
i

=

⎡⎢⎢⎣
fx · N (0, σx)

fy · N (0, σy)

fθ · N (0, σθ)

⎤⎥⎥⎦
i

(4.46)

where i is the particle index, jx is the jitter in the x coordinate direction, jy is the

jitter in the y coordinate direction, jθ is the jitter added the heading estimate, fx is

the multiplicative factor in the x coordinate direction, fy is the multiplicative factor

in the y coordinate direction, fθ is the multiplicative factor for the heading estimate,

σx is the standard deviation of all the particle x position estimates, σy is the standard

deviation of all the particle y position estimates, σθ is the standard deviation of all

the particle heading estimates.

The jitter vector is added directly to the state estimate. The sampling from

the normal distribution is done separately for every particle estimate. This provides

enough jitter to keep particles from representing the same hypotheses while main-

taining particle filter convergence.

After testing the AUV navigation algorithm within the ANT. The next steps are

vehicle integration, and in-water testing. The next section explains the details of the

developments towards these objectives, the DCAF project.

4.5 DRDC Collaborative Autonomous Framework

The goal for testing the TAN algorithm is in-water testing. The intermediate step

for this is to integrate the algorithm on the vehicle. A HITL significantly accelerates

this integration by replicating the software stack running on the actual vehicle. The

ISL has access to two HITL that run the full vehicle software stack. Additionally, it

has an environment simulator that supports a range of environmental, inertial, and

92

survivability sensors. However, it does not include a gravity related sensor like a

gravimeter or gravity gradiometer. Therefore, the main value of using the HITL is

integration of the TAN algorithm code and supporting peripherals onto a software

replicate of the vehicle.

The DCAF project is ongoing and the work was collaborative. The author was

the main developer for the bounce behaviour, the arbiter, and the software documen-

tation. The implementation details of the bounce behaviour, and the arbiter will now

be discussed.

4.5.1 Bounce Behaviour

The bounce behaviour constrains the vehicle to a virtual volume defined by the bound-

aries (vertical walls) of a rectangular prism. In practice this is implemented by con-

straining the vehicle in a horizontal operating region and a operating depth range.

The aim of of this behaviour is reducing the chances of vehicle loss if another be-

haviour tries to submit an action that would place the vehicle outside its allowed

operating region. The bounce behaviour has one of the highest priorities, second

only to the obstacle avoidance behaviour (see section 4.5.2). The bounce behaviour is

called bounce because the vehicle is confined to the operating region by ”bouncing”

off the virtual boundaries.

Vertical Bounce

The vertical bounce behaviour constrains the vehicle to a range of depths. This can

be used to keep the vehicle from going below a certain depth if another behaviour

commands it to dive deeper. The parameters defining the behaviour are summa-

rized in table 4.1. The vertical bounce behaviour is triggered when either eqs. (4.47)

and (4.48) become true.

d > dmax − dmax buffer (4.47)

d < dmin + dmin buffer (4.48)

93

Table (4.1) A summary of the parameters that the vertical bounce behaviour sup-
ports and their descriptions.

Parameter Description

max depth The maximum depth the vehicle is permit-
ted to dive to.

min depth The minimum depth the vehicle is permit-
ted to surface to.

max depth buffer The safety buffer used to trigger the
bounce behaviour when the vehicle is close
to reaching the max depth.

min depth buffer The minimum safety buffer used to trigger
the bounce behaviour when the vehicle is
close to reaching the min depth.

where d is the AUV depth. When triggered the vertical bounce behaviour requests a

high priority depth set point at the buffer distance from the depth bounds.

Horizontal Bounce

The horizontal bounce behaviour constrains the vehicle to an operating region. The

implementation of the horizontal bounce behaviour makes use of the operating region

boundary, and operating region buffer size to calculate an inner safety boundary that

triggers the bounce behaviour when exited by the AUV. The parameters supported

by the horizontal bounce behaviour are described in table 4.2. The horizontal bounce

behaviour is triggered when the vehicle exits the inner safety boundary calculated

using an offset, defined by the operating region buffer, from the operating region

boundary. A plan to get the vehicle back within the operating region is calculated

using geometry. Two circles with a radius of the vehicle’s turn radius are created.

Both are placed so they are coincident with the vehicle position and tangent to the

vehicle heading. The intersection with the inner boundary is calculated for both

circles (shown in Fig. 4.4). The shortest path along the circles, in the direction of

the vehicle, back into the safety region is chosen. The waypoint corresponding to

the intersection with the safety boundary and the shortest path is sent to the arbiter

as a high priority waypoint action. Algorithmic details of this planning are included

in appendix D.

94

Table (4.2) A summary of the parameters that the horizontal bounce behaviour
supports and their descriptions.

Parameter Description

operating region bounds A string conforming to the comma sepa-
rated value (.csv) format to define a se-
quence of four points. These points are in
latitude longitude format and defined the
corners of the rectangular operating region.

operating region buffer The safety margin or buffer used to cal-
culate an area within the operating region
that is no closer than the buffer value to
the boundary defined by the operating re-
gion.

turn radius The vehicle turn radius to use to plan the
vehicle path back into the inner boundary
region. Should be less than half of the
buffer value.

Figure (4.4) The top-left corner of the operating region is shown. The outer and
inner boundary are shown as the straight black lines. The distance between these two
lines is defined by the buffer parameter. The current vehicle position that triggered
the horizontal bounce behaviour is shown with a blue dot and an vector for the vehicle
heading. The circles used for path planning are shown as the black circles. Finally,
the orange dot and vector represent the waypoint sent to the arbiter, by the bounce
behaviour, to get the vehicle back to safety.

95

The planning algorithm uses computational geometry to determine the quickest,

safest path back to the operating region for the kinematically limited AUV. Therefore,

the algorithm is computationally efficient to run. The planning algorithm does not

consider the vehicle dynamics or kinematics within the algorithm. The non-holonomic

constraints of the vehicle are only addressed by the user-provided vehicle turn radius.

There is no guarantee that the vehicle can perform the motion that is planned given its

current momentum. This can only be addressed by being conservative with the vehicle

turn radius and setting it to the worst case scenario. Since the bounce behaviour is

a behaviour that is used only when the vehicle is performing anomalously, this is

deemed to have minimal performance impacts to the vehicles nominal operation.

4.5.2 Vehicle Behaviour Arbitration

The vehicle behaviour arbitration is conducted by the arbiter process. The arbiter

supports a ROS action interface. All behaviours within DCAF use this action in-

terface to request an action from the vehicle. The action interface supports servo

and waypoint commands. Servo commands change the vehicle heading set point for a

specified period of time. The waypoint command sets the vehicle controller’s waypoint

objective. The goal of the arbiter is to take competing behaviours action priorities

and make a decision on which action to submit to the vehicle, when to interrupt ac-

tions with other more important ones, when to resume previously interrupted actions,

and finally to pass along cancel requests for actions that are no longer needed.

The arbiter is fundamentally implemented as a priority queue. Adding a behaviour

to DCAF requires adding a behaviour ID to the configuration for the arbiter along

with the behaviour priority. For example, the waypoint planner for search patterns

is the lowest priority, the bounce behaviour is of higher priority, and currently the

obstacle avoidance behaviour has the highest priority. Interrupting and resuming an

action is supported by controlling the conditions under which items get pushed and

popped off the priority queue.

The priority queue is implemented using the C++ standard library’s implemen-

tation of heap algorithms. Every time a request for action is issued to the arbiter

through the action interface, it is pushed onto the heap using std:push_heap. When

96

there are multiple actions in the queue, the one with the highest priority is selected.

If there is a conflict between multiple actions with the same priority the actions are

selected on a first-in-first-out (FIFO) basis. The arbiter keeps track of the current

active action, without removing it from the queue yet. Once the action is deemed

complete the arbiter pops action from the queue and starts the next one. If the action

at any time is cancelled by the behaviour then the arbiter relays the cancel request to

the vehicle, pops the action from the queue, and begins the next action in the queue.

The arbiter supports interrupts and resuming interrupted actions. When the

arbiter is currently executing a lower priority action and receives a request for a

higher priority action it will send the higher priority action request to the vehicle for

execution. It will not remove the lower priority action from the queue, as lower priority

action will be resumed once the higher priority action is complete. An interrupt is

needed when the arbiter detects that the action at the front of the queue does not

match the active action anymore. This means that a higher priority action has been

received during the other actions execution. The arbiter must now be interrupted

to service the higher priority action. The arbiter relies heavily on the max heap

algorithm.

C++’s max heap algorithm is used because it provides the majority of the func-

tionality required from the arbiter, is part of the standard library, is tested and is

reliable. Any additional functionality for the arbiter, like the action interface, is pro-

vided by ROS [99]. This together makes the arbiter more maintainable and robust

then using a custom algorithm. In the future the arbiter may need to support con-

current actions that do not conflict with each other on the vehicle. Such as taking

measurements and diving. The arbiter can be changed to meet these requirements

once necessary.

This concludes the discussion of the author’s main contributions to the DCAF

project, and the experiment section. The results and verification of these implemen-

tations will now be discussed.

Chapter 5

Results and Discussion

97

98

This chapter presents and discusses the results. First, the verification of the INS

model is presented and discussed. Second, results related to environment modelling

are discussed — Gazebo world models, terrain generation, and terrain augmentation,

and gravity maps. Third, and finally, the results of the parameter studies using the

particle filter based TAN algorithm are discussed.

5.1 Inertial Navigation Modelling

The verification of the INS model is presented in this section. The simulations demon-

strate certain aspects of the INS/DVL system well, and will be further discussed.

Table 5.1 provides a qualitative representation of each simulation.

Table (5.1) Summary of qualitative and quantitative aspects of each INS model
simulation.

Simulation

Number
Gyroscope
Deviation

Initial
Heading
Deviation

DVL
Update

Orientation
Update

1 0.01 rad s−1 ≈ 0 Yes No
2 0.01 rad s−1 5° Yes No
3 0.01 rad s−1 5° Yes Yes

In all simulations the AUV performs the ”lawnmower” or boustrophedon sur-

vey mission over an area in Bedford Basin as shown in Fig. 5.1. This pattern is

used for survey missions to provide overlapping swaths of sensor coverage (e.g. mine

counter-measures and bathymetric mapping). Note, this bathymetric map within the

simulation and Gazebo does not observe the east-north-up convention. The results

will be presented with the positive y-axis in the south direction. As shown, the path

length is approximately 1700m and starts at (500,750). The transect lengths are

200m, and the spacing is 60m. This area was chosen because of the distinctive sea

mount feature at the start of the mission and less variations later in the mission.

The DVL was modelled with a standard deviation of 0.3m s−1, to emulate the per-

formance of the Kearfott SeaNav -24™sea navigation unit. The SeaNav -24 is a fully

integrated sea navigation unit that has a bounded orientation error of 1mrad and a

position error of 0.1% of distance travelled circular error. Simulation three emulates

99

the SeaNav -24 performance; however, the first two simulations explore the effects of

having a less fully integrated state-of-the-art navigation solution.

All simulations use a gyroscope with a covariance matrix defined in the body-

centered reference frame,

Σg =

⎡⎢⎢⎣
0.0001 0 0

0 0.0001 0

0 0 0.0001

⎤⎥⎥⎦ . (5.1)

This variance was chosen for demonstration purposes based on the localization er-

ror ellipses within the mission. Similarly, the initial position deviation is 1m and

the initial velocity deviation is 0.1m for all simulations. This facilitates comparisons

between simulations and attribution of observed effects on the localization uncer-

tainty. The position uncertainty will be presented as an ellipse representing the 95%

confidence error ellipse of the multivariate Gaussian distribution for the x, y position.

Simulation 1, explores the localization of the INS/DVL solution without an initial

heading error. This is unrealistic, but serves as a baseline to highlight the impact of

the integrated gyroscope on the position uncertainty. The results of simulation 1 are

shown in Fig. 5.2. The results show that integrating the measured angular veloci-

ties to determine the estimated heading, and using the heading to derive the rotation

from world frame to the body-centered frame, creates unbounded error in the position

estimation. The integration of the DVL measurements contributes to the uncertainty

but not the orientation or the error ellipse shape, as the DVL’s measurement uncer-

tainty is simulated identically for all three axes. The final position uncertainty has a

covariance of,

Σ =

[︄
22 −9

−9 65

]︄
(5.2)

resulting in an error ellipse with major and minor axes lengths of 40m and 22m,

respectively.

Simulation 2, more realistically, includes the initial heading uncertainty. A small

100

Figure (5.1) Bedford Basin, Halifax NS, Canada bathymetry, showing the search
pattern used for the simulations.

Figure (5.2) Simulation Scenario 1: No initial heading uncertainty. The ellipses
represent the 95% confidence boundary of the Gaussian uncertainty distribution.

101

heading error of 5° was chosen. From Fig. 5.3, it is clear that the initial heading error

has significant impact on the uncertainty of the final position. This is due to the

heading error also affecting the position error. The INS implementation includes the

reference rotation frame from the body frame to the world frame within the EKF.

Therefore, heading uncertainty will have effects on the localization accuracy of the

INS. It also causes the ratio of the error ellipse’s major to minor axes to increase

Figure (5.3) Simulation Scenario 2: 0.09 rad (5°) initial heading uncertainty. The
ellipses represent the 95% confidence boundary of the Gaussian uncertainty distribu-
tion.

significantly from 2 to 5. This localization solution has no external reference for its

orientation; therefore, the heading uncertainty introduced by the initial heading error

will persist. The final position uncertainty has a covariance of,

Σ =

[︄
381 −368

−368 421

]︄
(5.3)

resulting in an error ellipse with major and minor axes of 136m and 28m, respectively.

Finally, it is useful to simulate (examine) a commercial full navigation solution like

102

the Kearfott SeaNav -24. Simulation 3 shows this with an additional EKF orientation

update that provides the orientation to within 0.001 rad. The results of simulation

4 are shown in Fig. 5.4. The initial uncertainty disappears with the first orientation

Figure (5.4) Simulation Scenario 3: Simulating the uncertainty characteristics of
the Kearfott SeaNav -24

update by the EKF. The way the external orientation update is performed by the

Kearfott SeaNav -24 is not important if the error specifications provided by Kearfott

are trusted, unless the magnetic readings are unreliable and the unit relies on them for

an external orientation reference. It is assumed this is not the case in Bedford Basin.

The error ellipse shape, which is characteristic of heading error affecting the position

error through reference frame rotation, disappears due to the simulated external ori-

entation reference. Additionally, the position uncertainty grows much slower, due to

the lack of heading error growth. The final position uncertainty covariance is,

Σ =

[︄
10 6

6 10

]︄
(5.4)

resulting in an error ellipse with major and minor axes of 15m and 15m, respectively.

103

The Kearfott SeaNav -24 states that the circular error probable (CEP) is approxi-

mately 0.1% of distance travelled. The search path is approximately 1700m long;

therefore when the expected position error of 1.7m is converted to the 95% error

ellipse of radius 3.5m, it is within a factor of two from the simulated error ellipse

radius of 7.5m. Therefore, the implemented INS/DVL navigation solution could be

used to emulate the Kearfott SeaNav -24 navigation solution.

It was shown that the INS/DVL localization solution is configurable to explore

the effects of initial heading error, heading error due to gyroscopic measurement

integration, and error due to DVL velocity measurement integration. The position

error of the unaided INS remains unbounded. This demonstrates the importance

of externally referenced position updates to bound the error growth of the position

estimate.

The INS model provides dead-reckoning emulation capabilities of commercially

available INSs within the ANT. Next, are sections discussing the results of environ-

ment modelling capabilities of the ANT, such as the generation of Gazebo world

models, terrain generation, terrain augmentation, and local gravity anomaly deriva-

tion.

5.2 Gazebo World Models

The ANT CLI provides the data pipeline to use a georeferenced raster to create a

world model compatible with the Gazebo simulator, this was introduced in section 4.2.

This ANT CLI tool was used to create the Gazebo world used for the vehicle simu-

lation to collect the bathymetry trace in section 5.4. The resulting model within the

Gazebo environment is shown in Fig. 5.5. Fig. 5.5 shows the 5 km by 5 km area from

the GEBCO database. The model contains all the configuration files, a 3D mesh,

and visual rendering properties that allow Gazebo to render it correctly. The visual

rendering is slightly discontinuous in this model because visual mesh smoothing was

not added through the Blender API when the model was first created. However, the

Bedford Basin Gazebo world shows the full capabilities of the raster to Gazebo world

model pipeline.

104

Figure (5.5) The Gazebo world model of the sea mounts first introduced in sec-
tion 4.1.4.

The Bedford Basin Gazebo world first introduced in section 4.1.2, is shown in Fig. 5.6.

Fig. 5.6 shows the rendered visual mesh. This model also includes collision support.

The height is exaggerated by a factor of ten for visual effect only in this thesis. This

Gazebo world model is useful because of its high resolution (2m) [107], and its close

geographical proximity to the Lab. The Bedford Basin is one of main locations for

in-water testing by Halifax researchers.

The Bedford Basin model is already used by other researchers in the ISL for

collaborative robotic localization research. This demonstrates the need for a pipeline

from real-world raster measurements to the Gazebo world model that is easy to use.

105

Figure (5.6) The Bedford Basin Gazebo world model. The height is exaggerated by
a factor of ten. This helps visualize the height variation. The colour map represents
the ocean depth. The model covers a 7 km by 7 km area surrounding the Bedford
Basin, Halifax, Nova Scotia, Canada.

5.3 Terrain Generation

Terrain generation was used to generate missing crustal density. Synthetic terrain

generation is implemented in the ANT CLI (discussed in section 4.2) and uses the

process described in section 4.1.3. The generated density is used within the second

parameter study which looks at the effect of the constant density assumption on the

performance of the TAN algorithm, which will be discussed in section 5.6.2. An ex-

ample of the generated density field is shown in Fig. 5.7. The GEBCO bathymetry

georeferencing was used to georeference the density to have the two rasters over-

lap. Both were used to generate the gravity anomaly. Appendix B shows the other

generated density rasters used within the density uncertainty parameter study, and

contains more examples of generated density.

The limitations of terrain generation (”terrain” is loosely used because it was

used to generate density) using Perlin noise are numerous. Perlin noise is usually

homogeneous in its variation throughout. This means there is not more or less detail

in one area or another. Overcoming this limitation is discussed later in section 6.1.

Perlin noise also has less irregular features than real density variation. Density can

106

Figure (5.7) Synthetic density variation within the earths crust generated using the
Perlin noise. The density is comprised of two Perlin noise octaves, a lacunarity of 2,
and a persistence of 0.5. The base period is 500 km, base amplitude is 50 kg/m3, and
mean value is 2670 kg/m3.

107

change abruptly and irregularly for a number of reasons, including but not limited to

ore deposits, sub-ocean floor oil deposits, and different mineral formations. This is

one of the main limitations of using Perlin noise to generate the density variation.

Where measurements are available, it is better to use Perlin noise, or what this

thesis refers to as terrain generation, to add missing details to the terrain. This com-

bines the realism and benefits of actual measurements while making up for the missing

detail of the available measurements. This is referred to as terrain augmentation.

5.4 Terrain Augmentation

Terrain augmentation of a lower resolution terrain raster does not affect the original

terrain measurements when adding noise. It only adds terrain variations in between

original measurements. It also maintains the georeferencing that the original raster

possessed. The ANT CLI includes this functionality. This was discussed in sec-

tion 4.1.4. These claims are verified by completing an AUV mission through an

ocean environment defined by the raster first introduced in section 4.1.4. The path

is shown in Fig. 5.8. The bathymetry encountered during the AUV mission must

match the original bathymetry data at all 11 intersections of the grid. This is where

the Perlin noise layers must all have a value of zero. The results of this transect

are shown in Fig. 5.9. Fig. 5.9 shows that terrain augmentation using Perlin noise

layers to create the ocean terrain was successful. The results of the terrain augmenta-

tion create more realistic terrain variation between original measurements than linear

interpolation —without impacting their integrity. This is shown by the augmented

bathymetry trace directly passing through all original bathymetric measurements.

The level of variation in between bathymetry measurements in the augmented terrain

is completely under the user’s control. This demonstrates the power of this method

to add visual realism, environmental texture, and environmental uncertainty into a

simulation environment.

108

Figure (5.8) Adapted from Heubach and Seto [31]. The white path shows the AUV
mission path for which the bathymetry transect depths are recorded. The direction
of travel is indicated on the figure (top-left to bottom-right). This trace crosses 11
grid intersections where the original bathymetry measurements should be unchanged.

109

Figure (5.9) Adapted from Heubach and Seto [31]. The bathymetry trace along
the AUV vehicle path shown in Fig. 5.8. The ocean depth is on the y-axis, the
distance the AUV over-ground is shown on the x-axis. The markers show the original
bathymetry measurements from the GEBCO database. The dashed line shows the
ocean depth along the AUV travel path if ocean environment were to be generated
using bi-linearly interpolation of the original measurements. The dark line shows the
ocean depth along the AUV path if the Perlin noise layers are used to augment the
original measurements to create the ocean environment.

110

5.5 Gravity Maps

The correlation of the gravity anomaly with the terrain (Fig. 5.10) and density

(Fig. 5.7) enables calculation of the relative gravity anomaly with methods first intro-

duced in section 4.1.5. The resulting relative gravity anomaly is shown in Fig. 5.11.

Figure (5.10) An area of ocean to the south of Nova Scotia. The area covers an
area of 500 km by 500 km. It is georeferenced using the UTM Zone 20N coordinate
reference system which uses the WGS84 datum. The depth ranges from 3 km in the
north-west corner close to the continental shelf of North America, to 6.5 km in some
of the trenches. This area is used for all of the parameter studies used to explore the
effect of uncertainty on the performance of the particle filter based TAN algorithm.

The gravity anomaly variation within Fig. 5.11 is well within the capability of state-

of-the-art navigation quality gravimeters (approximately 0.1mGal [68]). A gravity

gradiometer is being simulated for use in the ANT for the TAN algorithm by us-

ing the derived gravity gradient field. This is derived from Fig. 5.10, and shown

in Fig. 5.12. Fig. 5.12 shows the magnitude of the gravity gradient. The gravity gra-

dient magnitude is well within the abilities of existing gravity gradiometers (1 E [94]).

Therefore, the particle filter TAN algorithm using the gravity gradient as positional

111

Figure (5.11) The calculated gravity anomaly for the area shown in Fig. 5.10 and
the density shown in Fig. 5.7. The gravity anomaly is displayed in mGal (1mGal =
1 × 10−3cm/s2). The gravity anomaly was calculated using the method described
in section 4.1.5 using a window size of 50 km.

112

Figure (5.12) The gravity gradient calculated from eq. (2.32). The magnitude of
the gravity gradient is on the order of 1E (1E = 10× 10−9 s−2). The area covered
is the same as the gravity anomaly in Fig. 5.11.

feedback is within current gravity gradiometer sensor capabilities. This moves the

algorithm into the domain of algorithms that could realistically be implemented on

an AUV given the platform was large enough to host the gravity gradiometer.

This concludes the results of environmental modelling solution capabilities pro-

vides by the ANT. Next, the ANT is used to perform two parameter studies on

the performance of the TAN algorithm, compared with dead-reckoning subjected to

uncertainty.

5.6 TAN Algorithm

5.6.1 Gradiometer Heading Noise

The first test of particle filter algorithm performance was applying Gaussian noise to

the gradiometer’s heading measurement. The heading measurement is used by the

particle filter algorithm to determine the state estimate along with the INS position.

When these two position estimates, INS and particle filter position (TAN position),

113

are compared they will be referenced by their respective ROS topics, \eca a9\pose ins,

and \eca a9\pose tan.

Table 5.2 shows the first parameter study setup. There are eight sessions each

with ten runs. Each session has a unique parameter configuration, and each run has

a unique random initialization of initial uncertainties and particle locations. There

are a total of eight sessions spanning a range of gradiometer heading noise standard

deviations - from 0 rad to 0.7 rad (0° to 40°). A standard noise range for gradiometer

heading was not readily available, due to the variation in types of gravity gradiome-

ters [94]. Therefore, the noise range encompasses a vast range of noise settings to

be conservative — the noise causes the heading to point orthogonal to the actual

heading about 5% of the time with a noise standard deviation of 0.7 rad.

Table (5.2) A summary of the parameter study on the effect of Gaussian gradiometer
heading noise on the performance of the particle filter algorithm. Each session has ten
runs with random initialization for particle filter, and INS localization and heading
errors.

Session σ (rad) Runs

0 0 10
1 0.1 10
2 0.2 10
3 0.3 10
4 0.4 10
5 0.5 10
6 0.6 10
7 0.7 10

The random initialization of particles uses a uniform distribution, even though the

INS estimate is normally distributed. The circular uniform distribution covers an area

defined by three times the standard deviation of the normal distribution of the INS

estimate. This almost guarantees (99.7%) the vehicle is within the initial area covered

by particles. The uniform distribution is used to maximize coverage, and refrain from

unnecessarily biasing the particle initialization. Additionally, uniform distributions

were used to initialize the actual error of the INS. This maximizes coverage of error

cases. This is distinct from the uncertainty estimate that the INS uses, which is

normally distributed.

114

This study includes a total of 80 runs. Approximately nine ended in particle

degeneracy within the particle filter’s localization estimate. Six of these degenerate

cases occurred in the zero noise session. All other sessions had one or less degenerate

cases within the ten runs of each session. The zero noise case degeneracy occurred

because the particle filter requires stabilizing noise, or the illusion of stabilizing noise,

to remain stable. The first run was especially affected because the standard deviation

of the particle filter’s probability distributions, from which samples were evaluated,

where set to approximately match the value of the gradiometer’s heading standard

deviation. For the first session this was approximately zero. This causes the particle

filter to converge prematurely, and become degenerate. The position estimate then

degenerates to produce NaN’s which means all the particles collapse onto one position.

The first session is not representative of using the particle filter in practice where the

uncertainty is certainly not close to zero. It was performed as a baseline.

The environment used for this study is an approximately 500 km by 500 km area

of the south-east coast of Nova Scotia, Canada (Fig. 5.13). The top-left corner of

the area just touches the continental shelf off the coast of Nova Scotia. The area

was chosen because it contains bathymetric features, however, the shape and size of

the features is not unique within the area. The raster defining this area is from the

GEBCO database. The resolution of the bathymetry is approximately 460m.

Fig. 5.13 shows the XY paths of the INS position estimate. The paths are shown

as on overlay on a colour map of the ocean bathymetry. The paths show the scale of

the parameter study. The vehicle paths start in the lower-left hand corner and travel

to the upper-right hand corner during the run. The paths begin to spread out slightly

(not visible given the scale of the plot). This is due to the random initialization of

the INS position error. This position error has a spread of about 4 km. This is shown

in more detail in Fig. 5.14. This is not realistic, however, testing outside the particle

filter localization algorithm determines performance under non-nominal conditions.

The initial INS error is sampled from a uniform distribution, previously justified,

hence the spread at the beginning (bottom left) Fig. 5.13. The INS estimate paths in

Fig. 5.13 converge at the top-right because the INS position estimate is used by the

115

Figure (5.13) All eighty XY paths of the vehicle’s INS position estimate are overlaid
on the colour map of the ocean bathymetry raster. The initial position spread is about
4 km and shown in more detail in Fig. 5.14. The initial heading error of about 0.1
radians (6 deg) and shown in more detail in Fig. 5.16. Time elapses from the bottom-
left point to the top-right.

116

vehicle waypoint controller.

The initial INS position estimates are shown in Fig. 5.14. Each point in the dis-

tributions is at approximately uniform range from the actual vehicle position 69 km

northing, 69 km easting. The uniform distribution is coverage of initial error that the

INS has, this is not to be confused with the initial position uncertainty of the INS

which is Gaussian distributed. The spread of the initial INS error is approximately

3 km. This matches and validates the initialization procedure which randomly ini-

tializes the INS position error from two uniform distributions along the northing and

easting axes. Each uniform distribution has a range from -3 km to +3 km matching

the results seen in Fig. 5.14. The initial Euclidean error of the INS position estimate

is randomlt initialized as shown in Fig. 5.15.

Figure (5.14) The randomly initialized positions of the INS. The actual starting
position of the vehicle is 69 km northing, 69 km easting, shown by the red dot. The
spread is approximately 4 km.

Fig. 5.15 shows the initial distribution of the INS position estimate error for each

session is evenly distributed enough that the runs should capture the full range of

possible starting position error conditions for each gradiometer noise setting.

117

Figure (5.15) The randomly initialized initial INS Euclidean position errors for each
session of ten runs with the same gradiometer noise setting. The error range is
approximately 4 km The spread is approximately uniform.

Fig. 5.16 shows the spread of the INS initial heading estimate error. The dis-

tribution of the initial heading error for each gradiometer noise setting is uniformly

distributed over a range of 0.2 rad (11°), from −0.1 rad to 0.1 rad. The Euclidean and

heading error s are both evenly distributed over a reasonable range to give confidence

in the particle filter performance results when compared against the dead-reckoning

only (INS).

For each session’s worth of multiple runs with identical gradiometer noise setting,

the error distribution of the particle filter and the dead-reckoned position estimate

is compared. A representative figure was chosen with a gradiometer noise standard

deviation that is in the middle of the study’s dynamic range. Session two is highlighted

here as a typical case. The rest of the results for the gradiometer noise study are

in appendix A. Session two compares the particle filter and dead-reckoned position

estimate performance with a gradiometer heading noise of 0.2 rad (11°). Fig. 5.17

contains all runs that did not have problems with degeneracy.

118

Figure (5.16) The random initialized initial INS heading errors for each session of
ten runs with the same gradiometer noise setting. The error range is approximately
0.1 radians (6°). The spread is approximately uniform across the heading error range.

The degeneracy was a problem for the first session. Six of the ten runs ended in

degeneracy. This is due to the first session having a gradiometer heading noise stan-

dard deviation of zero and the particle filter having an artificially low 0.001 rad noise

standard deviation. This standard deviation is used to determine the distributions

that particles are weighted and sampled from. At very low standard deviations this

leads to instability in the particle filter and the particle hypotheses degenerate into a

single estimate. This is prevented by keeping the particle filter probability distribu-

tions large enough to avoid degeneracy. Additional noise stabilization techniques are

another way to avoid this.

Of the other runs within the session, half had one degenerate case, the rest had

none. This shows the first session is exceptional and does not contribute much insight

into how uncertainty affects the AUV position estimate. It does the opposite, showing

that artificially not capturing uncertainty at all is one of the reasons for particle

degeneracy. The particle filter must represent the uncertainty within the system and

artificially reducing uncertainty leads to a worse or degenerate position estimate.

119

From Fig. 5.17 it is clear the INS position estimate error is unbounded in time.

The particle filter that implements TAN shows that once position information, in the

form of the gradiometer heading direction derived from terrain maps, is incorporated

into the position estimate the position estimate error is bounded. The difference is

large enough as highlighted in Fig. 5.18 which shows just the TAN position estimate

error.

Figure (5.17) Comparison of the Euclidean error of the INS and particle filter based
localization solutions. The comparison uses a representative session, session 2. The
gradiometer noise standard deviation for session 2 is 0.2 rad (11°). One run of the ten
was excluded in this plot because the particles during that run degenerated enough
to cause the position estimate to become not a number about half way through. The
dark line represents the median case for collection of runs, the filled area the total
spread. The particle filter spread is hard to visualize in the comparison plot so it is
plotted on its own in Fig. 5.18.

Fig. 5.18 shows that the particle filter corrects for the initial position error in the

INS which is approximately 10 km. Just after, it maintains an error of approximately

1 km for the duration of the transit by the AUV. There is significant variation between

runs as seen by the shaded area covering all runs within this session. Some of this

variation is due to the particle filter estimate being based on random sampling and

120

stabilizing noise. So some variation between runs is expected. Additionally, the

variation in the position estimate error are greater during some parts of the journey

than others. This is due to the underlying limitation of using the terrain as the basis

of the gradiometer heading estimate. During a mission there will be terrain sections

where there is less terrain variation which may lead to sections of larger position error

versus lesser variation later in the mission.

Figure (5.18) The particle filter based localization performance for session 2. Session
2 has a standard deviation of 0.2 rad (11°). The dark line represents the median
Euclidean error, the shaded area encompasses the entire spread of all runs within the
session. The particle filter performance is compared based on distance travelled by
the vehicle.

Additionally, Fig. 5.18 shows the median error is around 1 km. This reflects the

limitation of using a map with a limited resolution of 1 km. This means any par-

ticle position hypotheses that are closer than 1 km will be equally probable and

consequently given the same particle weight. Therefore, the estimate convergence

stagnates.

When comparing the INS positioning performance with the particle filter using

the median, the particle filter out-performs the INS estimate by a factor of 25 over

121

the 500 km mission — from 25 km median position error to 1 km position error. Of

course this is not quite a fair comparison because the INS estimate does not contain

position feedback and therefore has unbounded error growth. Extending this mission

to an arbitrary length would increase this factor. This shows how important it is to

have a source of position feedback in the vehicle state estimate. There may be more

to be learned from the difference between sessions within the study.

When comparing successive session’s results (gradiometer noise increase from ses-

sion 0 to session 7) (Figs. A.1 to A.16 are found in appendix A) it is apparent that the

higher the gradiometer heading noise the larger and more frequent the fluctuations

of the particle filter estimate. Higher gradiometer heading noise causes the particle

filter estimate to vary more than it otherwise would. Additionally, the variation of

the particle filter estimate grows with higher noise. This is expected, but particle

filter median performance hovers around the 1 km error. This leads to the conclusion

that within this study the noise limit causing the particle filter to consistently diverge

was not reached. This is a limitation of this study.

Another limitation is the uncertainty from the constant density assumption. Lead-

ing to the next study. A study that is more representative of a scenario where the

vehicle has access to a priori gravity gradient maps from actual measurements of

the gravity gradient (similar to the work in [28]) rather than a gravity gradient map

derived from the bathymetry making the assumption crustal density is constant. Us-

ing the constant seafloor density assumption to generate the a priori map and the

environment model ignores the uncertainty resulting from the non-constant seafloor

density in the real environment.

5.6.2 Seafloor Density Uncertainty

The density uncertainty parameter study explores how the assumption of constant

seafloor density affects the performance of the particle filter (TAN) algorithm. This

was done by varying the amplitude of density variations as input to the environmental

gravity anomaly model. The goal of this study is to test the sensitivity of the particle

filter algorithm to varying levels of density variations within the Earth’s crust when

making the assumption of constant density. This assumption is often required due to

122

a realistic lack of detailed density information about the Earth’s crust.

The particle initialization and INS error initialization are kept consistent with

methods used in the previous study (section 5.6.1).

The parameter study contains 50 runs. The density variation amplitude is varied

logarithmically from 50 kgm−3 to 800 kgm−3. This is an overly inclusive range that is

large enough to make conclusions about the effect of the constant density assumption

on the performance of the TAN algorithm. The density amplitude is used as input

to the method used for the generation of synthetic density, discussed in section 4.1.3

and section 5.3. The gravity anomaly field within the simulator was derived from

the density field, and the GEBCO bathymetry. The a priori maps the AUV particle

filter (TAN) algorithm has access to only use the GEBCO bathymetry and assume

constant density. The greater the density amplitude variation the greater the differ-

ence between the maps used for navigation and the environment. The are 10 runs

per session, where each session represents one parameter setting (density amplitude

is a single value). There are a total of 5 sessions, the summary for which is shown

in table 5.3.

Table (5.3) A summary of the parameter study on the effect of density amplitude
variations on the performance of the gradiometer aided localization.

Session Density Amplitude (kg/m3) Runs

0 50 10
1 100 10
2 200 10
3 400 10
4 800 10

The environment used for this study is the same as the gradiometer heading noise

study, shown in Fig. 5.13. The path travelled by the vehicles are similar. For each run

the vehicle was spawned in the environment in the same location. Additionally, the

INS was initialized with a pseudo-random initial positional error, and heading error.

The amount of error is unrealistic at approximately 4 km in diameter. However,

this amount of error is used to test whether the particle filter algorithm successfully

123

converges given a higher degree of uncertainty about the initial position of the vehicle.

The distribution of initial INS starting positions is shown in Fig. 5.19. Fig. 5.19 shows

Figure (5.19) The randomly initialized positions of the INS. The actual starting
position of the vehicle is 69 km northing, 69 km easting, shown by the red dot. The
spread is approximately 8 km.

the spread is approximately uniform and is about 8 km. This provides confidence that

the study’s initial error conditions provides realistic coverage of possible position error

conditions in the INS. The INS initial position Euclidean error is shown per session

in Fig. 5.20. Fig. 5.20 shows that the distribution of initial position Euclidean error

is approximately uniform for each session. The provides confidence that the runs in

each session, which will be compared, have coverage of most possible dead-reckoning

INS initial error conditions. The spread of initial heading error is especially important

because over long distances small heading errors lead to large position estimate errors.

Fig. 5.21 shows the distribution of absolute heading errors in the initial dead-

reckoning (INS) heading estimate. Again the initial heading error is approximately

evenly distributed across the range of -0.1 rad to +0.1 rad for each session. The

124

Figure (5.20) The randomly initialized initial INS euclidean position errors for each
session. The absolute error range is approximately 4 km. The spread is approximately
uniform.

coverage of initial error conditions for the INS is approximately evenly distributed for

positional and heading error. This observation holds across sessions.

The particle filter (TAN) algorithm position error estimate is compared with dead-

reckoning performance in Fig. 5.22. Session 2 was chosen as a representative example

of the performance comparison. For each run the particle filter was pseudo-randomly

initialized. The gravity gradiometer sensor heading noise standard deviation was

set to a constant 0.2 rad for all sessions. Fig. 5.22 shows the median accumulated

position error during the 500 km mission is approximately 30 km. This compares

with median error of 1 km for the particle filter TAN algorithm. The particle filter

successfully converges within 30 km, then varies around the position error of 1 km.

This is due to the limitation of the resolution of the map used for navigation. The

re-sampled resolution of the gravity gradient map used by the AUV is 1 km. Since

the gravity gradiometer measurement is compared to the gravity gradient map, any

measurement within 1 km use the same gravity gradient map value to weight the

125

Figure (5.21) The random initialized initial INS heading errors for each session of
ten runs with the same gradiometer noise setting. The error range is approximately
0.2 radians (12°). The spread is approximately uniform across the heading error
range.

126

Figure (5.22) Comparison of the Euclidean error of the INS and particle filter based
localization solutions. The comparison uses a representative session, session 2. The
gradiometer noise standard deviation for session 2 is 0.2 rad (11°). The dark line
represents the median case for collection of runs, the filled area the total spread. The
particle filter spread is hard to visualize in the comparison plot so it is plotted on its
own in Fig. 5.23.

127

particles, this effectively sets a hard limit on the accuracy of the position estimate of

the particle filter.

The zoomed in particle filter performance of session 2 is shown in Fig. 5.23.

Fig. 5.23 shows that the particle filter algorithm performance varies significantly. One

Figure (5.23) Only the particle filter positional Euclidean error during session 2.
Session 2 had a density amplitude variation of 200 kgm−3. The gravity gradiometer
heading noise has a standard deviation of 0.2 rad. The dark line is the median and the
shaded area is envelope for the maximum and minimum. The particle filter estimate
converges within 30 km and then varies around 1 km error.

run diverges around 100 km, shown by the shaded area. This shows there is room for

improvement for how robust the particle filter algorithm is. There are similar cases

within other sessions within this study.

When comparing sessions within this study with increase density amplitude (in-

cluded in appendix B) there is an increase of median performance roughness when

increasing the density amplitude variation. However, even with very high density

variation the particle filter still converges and stays converged for the majority of the

runs within each session. This is due to the difference between navigating using the

128

Figure (5.24) The difference in the gravity anomaly that the constant density as-
sumption makes. The gravity anomaly difference has units of mGal (1Gal = 1 cm/s2).

absolute gravity anomaly and the gravity gradiometer heading. The magnitude of the

gravity anomaly may change significantly with changes of density (shown in Fig. 5.24),

but the direction of gradient is much more likely to remain unchanged.

This study shows that the TAN algorithm is quite robust when subjected to un-

certainties in the environmental density by making the constant density assumption.

The TAN algorithm successfully converges and maintains a position estimate 30 times

more accurate than the dead-reckoned position estimate over a distance of 500 km.

The TAN algorithm limits the error growth experienced by dead-reckoning by suc-

cessfully incorporating the gravity gradient heading into the state estimate as position

feedback.

There are other forms of density variation that have not been explored in this

study. This include the level of detail in the density field, the roughness, and discon-

tinuities. These are limitations of this parameter study, and should be addressed in

future work. However, this study gives a basis to the rationale of assuming constant

129

density when using the gravity gradient for navigation.

This concludes the results chapter. The results demonstrate the ability of the

INS model to emulate various configurations of a commercially available navigation-

grade INS. The simulations used to demonstrate the capabilities of the INS model are

performed in the Bedford Basin Gazebo model. This further justifies its development.

The unbounded error growth shows the necessity of position feedback. For this the

TAN algorithm was proposed.

Next, environment modelling results were discussed. Terrain generation was used

to create a synthetic density field to use in the second parameter study of the TAN al-

gorithm. Terrain augmentation was not used within this thesis, however, its potential

to be of use to other researchers [31] justifies its existence.

Finally, the TAN algorithm was tested in the ANT. The first parameter study of

the TAN algorithm demonstrated the particle filter was robust to gravity gradiome-

ter heading sensor noise. The particle filter converged quickly and stayed converged

throughout the AUV mission. The particle filter successfully limited the error growth

of the INS, and out-performed dead-reckoning by a factor of 30 —limited only by the

gravity gradient map resolution. Additionally, the second parameter study demon-

strated that the constant density assumption used when using bathymetry as an

input to gravity gradiometer based TAN is justified. Density amplitude variation was

shown to have little effect on the performance of the particle filter algorithm. This

demonstrates that bathymetry could successfully be used as a replacement for maps

of the gravity anomaly for GAN, as mentioned by [82], and used in [43].

Chapter 6

Conclusion

130

131

This thesis describes the process of developing a TAN algorithm that is passive,

resistant to interference, limits dead-reckoning error growth, and uses readily-available

data. To achieve this objective a collection of tools were developed, referred to as the

ANT, to support low-risking testing of the TAN algorithm using the ROS and Gazebo

simulator ecosystem. Additionally, the development of DCAF enables eventual vehicle

integration and in-water testing of the TAN. The TAN algorithm uses a particle filter

based state estimation algorithm, similar to work by Pasnani and Seto [28], but using

the correlation between the bathymetry and the gravity anomaly to use the gravity

gradient as position feedback. This exploits the increased availability of a priori

bathymetry maps which are also of higher resolution. The proposed approach also

enables the possibility of using both gravity anomaly maps and bathymetry maps

together and fuse the position feedback within the particle filter state estimate to

increase the localization accuracy even further. This is left to future work.

The TAN algorithm performance was compared to dead-reckoning. The INS

model that implements dead-reckoning was covered in detail in section 4.1.1. The INS

error properties were chosen to simulate the error properties of current state-of-the-art

INS. The desired error characteristics where successfully demonstrated in section 5.1.

The INS model was shown to successfully capture difference in error growth between

the cross-track and along-track error position. The along-track error grows from the

integration of acceleration, whereas the cross-track error grows from the integration

of acceleration and angular velocity. The cross-track error was shown to grow faster

than the along-track error, as expected in section 5.1.

The particle filter (TAN) algorithm limits the unbounded growth due to dead-

reckoning and out performs dead-reckoning by a factor of 25 over a 500 km AUV mis-

sion. The particle filter algorithm is robust against gravity gradiometer heading noise,

converging with heading noise of up to 0.7 rad (40°), demonstrated in section 5.6.1.

Less than 10% of the particle filter runs showed the beginning of divergence during the

first half of the AUV mission, with the majority converging again during the second

half of the journey. Even during the significant increase in localization error during

this partial divergence the particle filter algorithm was able to recover successfully.

This demonstrated the robustness of the particle filter algorithm.

132

Terrain generation was then used to design density data for use in testing the as-

sumption of constant density when deriving the gravity anomaly from the bathymetry.

In section 5.6.2, it was shown that varying the density amplitude had little effect on

the performance of the TAN algorithm. The TAN algorithm still converged within

15 km and maintained a median localization accuracy of approximately 1 km. This

shows support for the assumption of constant density often made when using the

correlation between terrain and gravity anomaly for GAN ([43, 92]).

All parameter studies discussed during this thesis where performed using the ROS

parameter study (RPS) tool. RPS enabled parameter studies using an existing ROS

based implementation of the TAN algorithm and the Gazebo simulator. The RPS tool

also made working with the data output from ROS and Gazebo simulator possible

using the widely used Python language. This tool did not exist within the ROS

package ecosystem and will be contributed back to the research community to allow

others to benefit from the work in this thesis.

The ANT CLI packages the tools that enabled the work in this thesis. This

includes terrain generation, terrain augmentation, derivation of the gravity anomaly

using the correlation between the terrain and the gravity and anomaly, and a pipeline

from a raster data set to a Gazebo world model. The tools enabled the research in

this thesis and have been open-sourced and released to the research community as

part of the presentation of the work in this thesis at the OCEANS 2021 conference

in San Diego. The ANT is already being used by other researchers within the ISL.

The work in this thesis demonstrated four main contributions. First, a TAN al-

gorithm that is passive, resistant to interference, limits dead-reckoning error growth,

and uses readily-available measurements, Second, an INS model implementation that

has error growth properties of current state-of-the-art INS and can be used for simu-

lating AUV dead-reckoning. Third, the development of a set of tools (the ANT, and

RPS) to enable and ease underwater AUV research, especially in the field of TAN.

Each contribution worked towards the goal of AUV localization accuracy. Lo-

calization accuracy is fundamental to the challenge of underwater navigation and

exploration. The difficulty of underwater localization comes from the underwater

133

domain, which limits communication speed and bandwidth due to the nature of the

acoustic signal medium, as radio frequencies experience high attenuation, making

them impractical. A navigation solution that relies on above ground, GNSS, is not

applicable for underwater operations unless frequent vehicle surfacing is allowed by

the mission. Therefore, during underwater operation, vehicles rely on dead-reckoning,

which has unbounded position error growth.

TAN is one of the solutions to the localization problem for the underwater domain,

particularly useful for long-distance AUV navigation. After all, AUVss are a platform

for further underwater sensing, making it possible to explore an environment that is

still relatively unexplored. Higher accuracy localization is a fundamental enabler for

this.

6.1 Future Work

The next steps for the work presented in this thesis is vehicle integration. There was

significant progress in the development of DCAF, a ROS based autonomy framework

for the IVER 3. The DCAF project is in the stage of on-vehicle testing. Once the

limitations and bugs within DCAF have been identified and work to eliminate them

completed, DCAF would be ready for testing the TAN algorithm.

First, it is recommended that the TAN algorithm implemented on the vehicle

should use feedback from the bathymetry, using sensors such as the on-board altime-

ter. Current gravity gradiometers do not fit on vehicle’s the size of the IVER 3.

Once the particle filter is proven to be robust under realistic data conditions during

in-water testing on the IVER 3, the TAN algorithm should be implemented on an

AUV that has the space for a gravity gradiometer.

Current gravity measurement technology is in early stages of technological readi-

ness, and provides its own challenges for vehicle integration related to power usage,

space requirements, mechanical integration, and software integration [112]. The host

platform would need to be large enough to support a gravity gradiometer, such as the

Explorer class vehicle. This would be a significant undertaking, and would require a

team of researchers and technicians. Verification that the gravity gradiometer works,

134

and produces measurements comparable to existing verified data on board the AUV

is recommended. The sensor integration would include precise gradiometer calibra-

tion to eliminate measurement errors from vehicle induced acceleration, the Eötvös

effect, and thermal drift, as well as quantifying the effect of tides and determining

the necessity of filtering these effects from the measurements.

A possible way to reduce the time to testing of the TAN algorithm would be

ship-based testing using the gravity gradiometer that would later be integrated into

the AUV. This would allow a significant amount of testing of the algorithm and

enable discovery of sensor limitations before committing to AUV integration. Once

satisfactory results have been achieved the gravity gradiometer can then be integrated

into the AUV.

On completion of the sensor integration, the gravity gradient based TAN algorithm

(demonstrated within this thesis) should be integrated on to the vehicle and tested

on the water surface. This would enable comparison to the absolute GPS position.

Close agreement between the GPS position and the TAN state estimate position would

support the use of the TAN algorithm for long-range underwater AUV missions.

References

[1] Christopher R. German et al. “A Long Term Vision for Long-Range Ship-
Free Deep Ocean Operations: Persistent Presence through Coordination of
Autonomous Surface Vehicles and Autonomous Underwater Vehicles”. In: 2012
IEEE/OES Autonomous Underwater Vehicles (AUV). Southampton, United
Kingdom: IEEE, Sept. 2012, pp. 1–7. doi: 10.1109/AUV.2012.6380753.

[2] Robert Panish and Mikell Taylor. “Achieving High Navigation Accuracy Us-
ing Inertial Navigation Systems in Autonomous Underwater Vehicles”. In:
OCEANS 2011 IEEE - Spain. Santander, Spain: IEEE, June 2011, pp. 1–
7. isbn: 978-1-4577-0086-6. doi: 10.1109/Oceans-Spain.2011.6003517.

[3] Liam Paull et al. “AUV Navigation and Localization: A Review”. In: IEEE
Journal of Oceanic Engineering 39.1 (Jan. 2014), pp. 131–149. issn: 0364-9059,
1558-1691. doi: 10.1109/JOE.2013.2278891.

[4] Liu Lanbo, Zhou Shengli, and Cui Jun-Hong. “Prospects and Problems of
Wireless Communication for Underwater Sensor Networks”. In:Wireless Com-
munications and Mobile Computing 8.8 (2008), pp. 977–994. issn: 1530-8677.
doi: 10.1002/wcm.654.

[5] Kjetil Bergh Ånonsen. “Advances in Terrain Aided Navigation for Underwater
Vehicles”. In: (2010), p. 157.

[6] José Melo and Ańıbal Matos. “Survey on Advances on Terrain Based Naviga-
tion for Autonomous Underwater Vehicles”. In: Ocean Engineering 139 (July
2017), pp. 250–264. issn: 00298018. doi: 10.1016/j.oceaneng.2017.04.047.

[7] Warren S. Flenniken Iv, John H. Wall, and David M. Bevly. “Characterization
of Various IMU Error Sources and the Effect on Navigation Performance”. In:
2005.

[8] Kearfott. Specifications - Kearfott SeaNav INS. 2020.

[9] Chris Kaminski et al. “12 Days under Ice: An Historic AUV Deployment in the
Canadian High Arctic”. In: 2010 IEEE/OES Autonomous Underwater Vehi-
cles. Monterey, CA, USA: IEEE, Sept. 2010, pp. 1–11. isbn: 978-1-61284-980-5.
doi: 10.1109/AUV.2010.5779651.

135

https://doi.org/10.1109/AUV.2012.6380753
https://doi.org/10.1109/Oceans-Spain.2011.6003517
https://doi.org/10.1109/JOE.2013.2278891
https://doi.org/10.1002/wcm.654
https://doi.org/10.1016/j.oceaneng.2017.04.047
https://doi.org/10.1109/AUV.2010.5779651

136

[10] Sebastian Carreno et al. “A Survey on Terrain Based Navigation for AUVs”.
In: OCEANS 2010 MTS/IEEE SEATTLE. Seattle, WA: IEEE, Sept. 2010,
pp. 1–7. isbn: 978-1-4244-4332-1. doi: 10.1109/OCEANS.2010.5664372.

[11] M.B. Larsen. “Synthetic Long Baseline Navigation of Underwater Vehicles”.
In: OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Pro-
ceedings (Cat. No.00CH37158). Vol. 3. Sept. 2000, 2043–2050 vol.3. doi: 10.
1109/OCEANS.2000.882240.

[12] Liam Paull, Mae Seto, and John Leonard. “Decentralized Cooperative Tra-
jectory Estimation for Autonomous Underwater Vehicles”. In: IEEE Interna-
tional Conference on Intelligent Robots and Systems (June 2015). doi: 10.
1109/IROS.2014.6942559.

[13] David Pick et al. “Uncertainty Analysis of Ultra-Short- and Long- Baseline
Localization Systems for Autonomous Underwater Vehicles”. In: OCEANS
2018 MTS/IEEE Charleston. Oct. 2018, pp. 1–6. doi: 10.1109/OCEANS.
2018.8604760.

[14] Baozhi Chen and Dario Pompili. “Minimizing Position Uncertainty for Under-
Ice Autonomous Underwater Vehicles”. In: Computer Networks 57.18 (Dec.
2013), pp. 3840–3854. issn: 13891286. doi: 10.1016/j.comnet.2013.09.009.

[15] Brian Claus and Ralf Bachmayer. “Terrain-Aided Navigation for an Underwa-
ter Glider”. In: Journal of Field Robotics 32.7 (Oct. 2015), pp. 935–951. issn:
15564959. doi: 10.1002/rob.21563.

[16] K.B. Anonsen and O. Hallingstad. “Terrain Aided Underwater Navigation Us-
ing Point Mass and Particle Filters”. In: 2006 IEEE/ION Position, Location,
And Navigation Symposium. Coronado, CA: IEEE, 2006, pp. 1027–1035. isbn:
978-0-7803-9454-4. doi: 10.1109/PLANS.2006.1650705.

[17] Parth Pasnani and Mae L. Seto. “Terrain-Based Localization and Mapping for
Autonomous Underwater Vehicles Using Particle Filters with Marine Gravity
Anomalies”. In: IFAC-PapersOnLine 51.29 (2018), pp. 354–359. issn: 24058963.
doi: 10.1016/j.ifacol.2018.09.498.

[18] Vladimir Djapic et al. “Challenges in Underwater Navigation: Exploring Mag-
netic Sensors Anomaly Sensing and Navigation”. In: 2015 IEEE Sensors Ap-
plications Symposium (SAS). Zadar, Croatia: IEEE, Apr. 2015, pp. 1–6. isbn:
978-1-4799-6117-7. doi: 10.1109/SAS.2015.7133638.

[19] Hua mu et al. “Geomagnetic Surface Navigation Using Adaptive EKF”. In:
June 2007, pp. 2821–2825. doi: 10.1109/ICIEA.2007.4318926.

https://doi.org/10.1109/OCEANS.2010.5664372
https://doi.org/10.1109/OCEANS.2000.882240
https://doi.org/10.1109/OCEANS.2000.882240
https://doi.org/10.1109/IROS.2014.6942559
https://doi.org/10.1109/IROS.2014.6942559
https://doi.org/10.1109/OCEANS.2018.8604760
https://doi.org/10.1109/OCEANS.2018.8604760
https://doi.org/10.1016/j.comnet.2013.09.009
https://doi.org/10.1002/rob.21563
https://doi.org/10.1109/PLANS.2006.1650705
https://doi.org/10.1016/j.ifacol.2018.09.498
https://doi.org/10.1109/SAS.2015.7133638
https://doi.org/10.1109/ICIEA.2007.4318926

137

[20] Bo Wang et al. “Improved Particle Filter-Based Matching Method With Grav-
ity Sample Vector for Underwater Gravity-Aided Navigation”. In: IEEE Trans-
actions on Industrial Electronics 68.6 (June 2021), pp. 5206–5216. issn: 1557-
9948. doi: 10.1109/TIE.2020.2988227.

[21] Hubiao Wang et al. “Location Accuracy of INS/Gravity-Integrated Naviga-
tion System on the Basis of Ocean Experiment and Simulation”. In: Sen-
sors (Basel, Switzerland) 17.12 (Dec. 2017), p. 2961. issn: 1424-8220. doi:
10.3390/s17122961.

[22] Jr. Cannon, Carl Mark W., and Joseph W. TERCOM Performance: Analysis
and Simulation: tech. rep. Fort Belvoir, VA: Defense Technical Information
Center, June 1974. doi: 10.21236/AD0783804.

[23] Kedong Wang et al. “Matching Error of the Iterative Closest Contour Point
Algorithm for Terrain-Aided Navigation”. In: Aerospace Science and Technol-
ogy 73 (Feb. 2018), pp. 210–222. issn: 12709638. doi: 10.1016/j.ast.2017.
12.010.

[24] Fanming Liu et al. “Application of Kalman Filter Algorithm in Gravity-Aided
Navigation System”. In: 2011 IEEE International Conference on Mechatronics
and Automation. Beijing, China: IEEE, Aug. 2011, pp. 2322–2326. isbn: 978-
1-4244-8113-2. doi: 10.1109/ICMA.2011.5986348.

[25] Lin Wu, Jie Ma, and Jinwen Tian. “A Self-Adaptive Unscented Kalman Filter-
ing for Underwater Gravity Aided Navigation”. In: IEEE/ION Position, Lo-
cation and Navigation Symposium. Indian Wells, CA, USA: IEEE, May 2010,
pp. 142–145. isbn: 978-1-4244-5036-7. doi: 10.1109/PLANS.2010.5507294.

[26] Burak Turan and Ali Turker Kutay. “Particle Filter Studies on Terrain Ref-
erenced Navigation”. In: 2016 IEEE/ION Position, Location and Navigation
Symposium (PLANS). Savannah, GA: IEEE, Apr. 2016, pp. 949–954. isbn:
978-1-5090-2042-3. doi: 10.1109/PLANS.2016.7479793.

[27] Stephen Barkby et al. “Bathymetric Particle Filter SLAM Using Trajectory
Maps”. In: The International Journal of Robotics Research 31.12 (Oct. 2012),
pp. 1409–1430. issn: 0278-3649, 1741-3176. doi: 10.1177/0278364912459666.

[28] P Pasnani, M Seto, and J Gu. “Long Range Underwater Localization and
Navigation Using Gravity-Based Measurements”. In: (2020), p. 8.

[29] British Oceanographic Data Centre.GEBCO - The General Bathymetric Chart
of the Oceans. https://www.gebco.net/.

https://doi.org/10.1109/TIE.2020.2988227
https://doi.org/10.3390/s17122961
https://doi.org/10.21236/AD0783804
https://doi.org/10.1016/j.ast.2017.12.010
https://doi.org/10.1016/j.ast.2017.12.010
https://doi.org/10.1109/ICMA.2011.5986348
https://doi.org/10.1109/PLANS.2010.5507294
https://doi.org/10.1109/PLANS.2016.7479793
https://doi.org/10.1177/0278364912459666

138

[30] F. Heubach and M. L. Seto. “Extended Range AUV Localization and Nav-
igation Aided by Gravity Anomalies and Bathymetry”. In: 2020 IEEE/OES
Autonomous Underwater Vehicles Symposium (AUV). Sept. 2020, pp. 1–6.
doi: 10.1109/AUV50043.2020.9267918.

[31] Franz Heubach and Mae Seto. “Generation of Augmented Bathymetry to Aid
Development of Terrain-Aided Autonomous Underwater Vehicle Localization
and Navigation Approaches”. In: OCEANS 2021: San Diego – Porto. Sept.
2021, pp. 1–6. doi: 10.23919/OCEANS44145.2021.9705861.

[32] B. Barshan and H.F. Durrant-Whyte. “Inertial Navigation Systems for Mobile
Robots”. In: IEEE Transactions on Robotics and Automation 11.3 (June 1995),
pp. 328–342. issn: 1042296X. doi: 10.1109/70.388775.

[33] Musa Morena Marcusso Manhães et al. “UUV Simulator: A Gazebo-based
Package for Underwater Intervention and Multi-Robot Simulation”. In:OCEANS
2016 MTS/IEEE Monterey. IEEE, Sept. 2016. doi: 10.1109/oceans.2016.
7761080.

[34] Blender Foundation. Blender. The Blender Project.

[35] Rasterio. Mapbox. 2018.

[36] Matplotlib. Matplotlib Development Team. 2022.

[37] Paul D. Groves. Principles of GNSS, Inertial, and Multi-sensor Integrated Nav-
igation Systems. 2008.

[38] Chris Roman and Hanumant Singh. “A Self-Consistent Bathymetric Mapping
Algorithm”. In: Journal of Field Robotics 24.1-2 (Jan. 2007), pp. 23–50. issn:
15564959, 15564967. doi: 10.1002/rob.20164.

[39] Adrian Ratter and Claude Sammut. “Local Map Based Graph SLAM with
Hierarchical Loop Closure and Optimisation”. In: (2015), p. 10.

[40] Joan Solà. “Quaternion Kinematics for the Error-State Kalman Filter”. In:
arXiv:1711.02508 [cs] (Nov. 2017). arXiv: 1711.02508 [cs].

[41] M. Karimi, M. Bozorg, and A. R. Khayatian. “A Comparison of DVL/INS
Fusion by UKF and EKF to Localize an Autonomous Underwater Vehicle”. In:
2013 First RSI/ISM International Conference on Robotics and Mechatronics
(ICRoM). Tehran: IEEE, Feb. 2013, pp. 62–67. isbn: 978-1-4673-5811-8 978-
1-4673-5809-5 978-1-4673-5810-1. doi: 10.1109/ICRoM.2013.6510082.

[42] Ken Perlin. “Improving Noise”. In: ACM Transactions on Graphics 21.3 (July
2002), pp. 681–682. issn: 0730-0301. doi: 10.1145/566654.566636.

https://doi.org/10.1109/AUV50043.2020.9267918
https://doi.org/10.23919/OCEANS44145.2021.9705861
https://doi.org/10.1109/70.388775
https://doi.org/10.1109/oceans.2016.7761080
https://doi.org/10.1109/oceans.2016.7761080
https://doi.org/10.1002/rob.20164
https://arxiv.org/abs/1711.02508
https://doi.org/10.1109/ICRoM.2013.6510082
https://doi.org/10.1145/566654.566636

139

[43] Fanming Liu et al. “Integrated Navigation System Based on Correlation be-
tween Gravity Gradient and Terrain”. In: 2009 International Joint Conference
on Computational Sciences and Optimization. Sanya, Hainan, China: IEEE,
Apr. 2009, pp. 289–293. isbn: 978-0-7695-3605-7. doi: 10.1109/CSO.2009.98.

[44] Weikko Heiskanen and Helmut Moritz. Physical Geodesy. W. H. Freeman, 1967.

[45] Sebastian Thrun. “Particle Filters in Robotics”. In: (2002), p. 9.

[46] José Melo and Ańıbal Matos. “A Data-driven Particle Filter for Terrain Based
Navigation of Sensor-limited Autonomous Underwater Vehicles”. In: Asian
Journal of Control 21.4 (2019), pp. 1659–1670. issn: 1561-8625. doi: 10 .
1002/asjc.2107.

[47] Paul A. Miller et al. “Autonomous Underwater Vehicle Navigation”. In: IEEE
Journal of Oceanic Engineering 35.3 (July 2010), pp. 663–678. issn: 0364-9059,
1558-1691, 2373-7786. doi: 10.1109/JOE.2010.2052691.

[48] Meng Wu and Jian Yao. “Adaptive UKF-SLAM Based on Magnetic Gradient
Inversion Method for Underwater Navigation”. In: (2015), p. 5.

[49] S. Julier, J. Uhlmann, and H.F. Durrant-Whyte. “A New Method for the Non-
linear Transformation of Means and Covariances in Filters and Estimators”.
In: IEEE Transactions on Automatic Control 45.3 (Mar. 2000), pp. 477–482.
issn: 1558-2523. doi: 10.1109/9.847726.

[50] Kevin Murphy and Stuart Russell. “Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks”. In: Sequential Monte Carlo Methods in Prac-
tice. Ed. by Arnaud Doucet, Nando Freitas, and Neil Gordon. New York, NY:
Springer New York, 2001, pp. 499–515. isbn: 978-1-4419-2887-0 978-1-4757-
3437-9. doi: 10.1007/978-1-4757-3437-9_24.

[51] Shandor Dektor and Stephen Rock. “Improving Robustness of Terrain-Relative
Navigation for AUVs in Regions with Flat Terrain”. In: 2012 IEEE/OES Au-
tonomous Underwater Vehicles (AUV). Southampton, United Kingdom: IEEE,
Sept. 2012, pp. 1–7. isbn: 978-1-4577-2056-7 978-1-4577-2055-0 978-1-4577-
2054-3. doi: 10.1109/AUV.2012.6380751.

[52] Peter W. Kimball and Stephen M. Rock. “Mapping of Translating, Rotat-
ing Icebergs With an Autonomous Underwater Vehicle”. In: IEEE Journal
of Oceanic Engineering 40.1 (Jan. 2015), pp. 196–208. issn: 0364-9059, 1558-
1691, 2373-7786. doi: 10.1109/JOE.2014.2300396.

https://doi.org/10.1109/CSO.2009.98
https://doi.org/10.1002/asjc.2107
https://doi.org/10.1002/asjc.2107
https://doi.org/10.1109/JOE.2010.2052691
https://doi.org/10.1109/9.847726
https://doi.org/10.1007/978-1-4757-3437-9_24
https://doi.org/10.1109/AUV.2012.6380751
https://doi.org/10.1109/JOE.2014.2300396

140

[53] Stephen M. Chaves et al. “Pose-Graph SLAM for Underwater Navigation”. In:
Sensing and Control for Autonomous Vehicles. Ed. by Thor I. Fossen, Kristin
Y. Pettersen, and Henk Nijmeijer. Vol. 474. Cham: Springer International Pub-
lishing, 2017, pp. 143–160. isbn: 978-3-319-55371-9 978-3-319-55372-6. doi:
10.1007/978-3-319-55372-6_7.

[54] Liam Paull et al. Encyclopedia of Robotics: Chapter 11. Springer Berlin Hei-
delberg, 2018. isbn: 978-3-642-41610-1.

[55] Doupadi Bandara et al. “Technologies for Under-Ice AUV Navigation”. In:
2016 IEEE/OES Autonomous Underwater Vehicles (AUV). Tokyo, Japan:
IEEE, Nov. 2016, pp. 108–114. isbn: 978-1-5090-2442-1. doi: 10.1109/AUV.
2016.7778657.

[56] Di Qiu et al. “Underwater Navigation Using Location-Dependent Signatures”.
In: 2012 IEEE Aerospace Conference. Big Sky, MT: IEEE, Mar. 2012, pp. 1–9.
isbn: 978-1-4577-0557-1 978-1-4577-0556-4 978-1-4577-0555-7. doi: 10.1109/
AERO.2012.6187192.

[57] Joao Quintas, Francisco Curado Teixeira, and Antonio Pascoal. “Magnetic
Signal Processing Methods with Application to Geophysical Navigation of
Marine Robotic Vehicles”. In: OCEANS 2016 MTS/IEEE Monterey. Mon-
terey, CA, USA: IEEE, Sept. 2016, pp. 1–8. isbn: 978-1-5090-1537-5. doi:
10.1109/OCEANS.2016.7761322.

[58] Naomi Kato and Toshihide Shigetomi. “Underwater Navigation for Long-
Range Autonomous Underwater Vehicles Using Geomagnetic and Bathymet-
ric Information”. In: Advanced Robotics 23.7-8 (Jan. 2009), pp. 787–803. issn:
0169-1864, 1568-5535. doi: 10.1163/156855309X443016.

[59] Izabela Bodus-Olkowska and Natalia Wawrzyniak. “Hydrographic Imaging for
Underwater Environment Modelling”. In: 2017 18th International Radar Sym-
posium (IRS). Prague, Czech Republic: IEEE, June 2017, pp. 1–10. isbn: 978-
3-7369-9343-3. doi: 10.23919/IRS.2017.8008211.

[60] G.C. Bishop. “Gravitational Field Maps and Navigational Errors”. In: Pro-
ceedings of the 2000 International Symposium on Underwater Technology (Cat.
No.00EX418). Tokyo, Japan: IEEE, 2000, pp. 149–154. isbn: 978-0-7803-6378-
6. doi: 10.1109/UT.2000.852532.

[61] Fanming Liu et al. “Navigability Analysis Based on Gravity Map Statistical
Characteristics”. In: 2012 IEEE International Conference on Mechatronics and
Automation. Chengdu, China: IEEE, Aug. 2012, pp. 522–526. isbn: 978-1-
4673-1278-3 978-1-4673-1275-2 978-1-4673-1277-6. doi: 10.1109/ICMA.2012.
6283162.

https://doi.org/10.1007/978-3-319-55372-6_7
https://doi.org/10.1109/AUV.2016.7778657
https://doi.org/10.1109/AUV.2016.7778657
https://doi.org/10.1109/AERO.2012.6187192
https://doi.org/10.1109/AERO.2012.6187192
https://doi.org/10.1109/OCEANS.2016.7761322
https://doi.org/10.1163/156855309X443016
https://doi.org/10.23919/IRS.2017.8008211
https://doi.org/10.1109/UT.2000.852532
https://doi.org/10.1109/ICMA.2012.6283162
https://doi.org/10.1109/ICMA.2012.6283162

141

[62] Colin M. MacKenzie, Mae L. Seto, and Yajun Pan. “Extracting Seafloor Ele-
vations from Side-Scan Sonar Imagery for SLAM Data Association”. In: 2015
IEEE 28th Canadian Conference on Electrical and Computer Engineering
(CCECE). Halifax, NS, Canada: IEEE, May 2015, pp. 332–336. isbn: 978-
1-4799-5827-6 978-1-4799-5829-0. doi: 10.1109/CCECE.2015.7129298.

[63] Aaron Canciani and John Raquet. “Airborne Magnetic Anomaly Navigation”.
In: IEEE Transactions on Aerospace and Electronic Systems 53.1 (Feb. 2017),
pp. 67–80. issn: 0018-9251. doi: 10.1109/TAES.2017.2649238.

[64] IAGA V-MOD Geomagnetic Field Modeling: International Geomagnetic Ref-
erence Field IGRF-13. https://www.ngdc.noaa.gov/IAGA/vmod/igrf.html.

[65] William J. Hinze, R. Von Frese, and Afif H. Saad. Gravity and Magnetic Ex-
ploration: Principles, Practices, and Applications. New York: Cambridge Uni-
versity Press, 2013. isbn: 978-0-521-87101-3.

[66] Peter Hood. “History of Aeromagnetic Surveying in Canada”. In: The Leading
Edge 26.11 (Nov. 2007), pp. 1384–1392. issn: 1070-485X, 1938-3789. doi: 10.
1190/1.2805759.

[67] Gunther Kletetschka et al. “Localization of the Chelyabinsk Meteorite From
Magnetic Field Survey and GPS Data”. In: IEEE Sensors Journal 15.9 (Sept.
2015), pp. 4875–4881. issn: 1530-437X, 1558-1748, 2379-9153. doi: 10.1109/
JSEN.2015.2435252.

[68] Masanao Shinohara et al. “Development of an Underwater Gravity Measure-
ment System Using Autonomous Underwater Vehicle for Exploration of Seafloor
Deposits”. In: OCEANS 2015 - Genova. Genova, Italy: IEEE, May 2015, pp. 1–
7. isbn: 978-1-4799-8736-8. doi: 10.1109/OCEANS-Genova.2015.7271487.

[69] GRACE Fact Sheet. https://earthobservatory.nasa.gov/features/GRACE/page3.php.
Text.Article. Mar. 2004.

[70] “Eötvös Effect”. In: Wikipedia (Dec. 2019).

[71] L. V. Kiselev et al. “Autonomous Underwater Robot as an Ideal Platform for
Marine Gravity Surveys”. In: 2017 24th Saint Petersburg International Con-
ference on Integrated Navigation Systems (ICINS). Saint Petersburg, Russia:
IEEE, May 2017, pp. 1–4. doi: 10.23919/ICINS.2017.7995685.

[72] Yong Wang et al. “Technology of Gravity Aided Inertial Navigation System
and Its Trial in South China Sea”. In: IET Radar, Sonar & Navigation 10.5
(June 2016), pp. 862–869. issn: 1751-8784, 1751-8792. doi: 10.1049/iet-
rsn.2014.0419.

[73] L3 Harris. IVER3 Autonomous Underwater Vehicle (AUV). 2019.

https://doi.org/10.1109/CCECE.2015.7129298
https://doi.org/10.1109/TAES.2017.2649238
https://doi.org/10.1190/1.2805759
https://doi.org/10.1190/1.2805759
https://doi.org/10.1109/JSEN.2015.2435252
https://doi.org/10.1109/JSEN.2015.2435252
https://doi.org/10.1109/OCEANS-Genova.2015.7271487
https://doi.org/10.23919/ICINS.2017.7995685
https://doi.org/10.1049/iet-rsn.2014.0419
https://doi.org/10.1049/iet-rsn.2014.0419

142

[74] Takemi Ishihara et al. “Development of an Underwater Gravity Measure-
ment System with Autonomous Underwater Vehicle for Marine Mineral Ex-
ploration”. In: 2016 Techno-Ocean (Techno-Ocean). Kobe, Japan: IEEE, 2016,
pp. 127–133. isbn: 978-1-5090-2445-2. doi: 10.1109/Techno-Ocean.2016.
7890633.

[75] David T. Sandwell and Walter H. F. Smith. “Marine Gravity Anomaly from
Geosat and ERS 1 Satellite Altimetry”. In: Journal of Geophysical Research:
Solid Earth 102.B5 (May 1997), pp. 10039–10054. issn: 01480227. doi: 10.
1029/96JB03223.

[76] James C. Kinsey, Maurice A. Tivey, and Dana R. Yoerger. “Toward High-
Spatial Resolution Gravity Surveying of the Mid-Ocean Ridges with Autonomous
Underwater Vehicles”. In: OCEANS 2008. Quebec City, QC, Canada: IEEE,
2008, pp. 1–10. isbn: 978-1-4244-2619-5. doi: 10.1109/OCEANS.2008.5152005.

[77] Zu Yan et al. “Modeling Local Gravity Anomaly Self-Adaption Quotient Ref-
erence Maps for Underwater Autonomous Navigation”. In: 2014 IEEE 26th In-
ternational Conference on Tools with Artificial Intelligence. Limassol, Cyprus:
IEEE, Nov. 2014, pp. 945–949. isbn: 978-1-4799-6572-4. doi: 10.1109/ICTAI.
2014.143.

[78] Stephen Barkby et al. “A Featureless Approach to Efficient Bathymetric SLAM
Using Distributed Particle Mapping”. In: Journal of Field Robotics 28.1 (Jan.
2011), pp. 19–39. issn: 15564959. doi: 10.1002/rob.20382.

[79] Momotaz Begum, George I. Mann, and Raymond Gosine. “An Evolutionary
SLAM Algorithm for Mobile Robots”. In: 2006 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Beijing, China: IEEE, Oct. 2006,
pp. 4066–4071. isbn: 978-1-4244-0258-8 978-1-4244-0259-5. doi: 10.1109/
IROS.2006.281870.

[80] Stephen Barkby et al. “Incorporating Prior Maps with Bathymetric Distributed
Particle SLAM for Improved AUV Navigation and Mapping”. In: (2009), p. 7.

[81] Yurong Han et al. “An Improved TERCOM-Based Algorithm for Gravity-
Aided Navigation”. In: IEEE Sensors Journal 16.8 (Apr. 2016), pp. 2537–2544.
issn: 1530-437X, 1558-1748, 2379-9153. doi: 10.1109/JSEN.2016.2518686.

[82] A. Jircitano, J. White, and D. Dosch. “Gravity Based Navigation of AUVs”.
In: Symposium on Autonomous Underwater Vehicle Technology. June 1990,
pp. 177–180. doi: 10.1109/AUV.1990.110453.

https://doi.org/10.1109/Techno-Ocean.2016.7890633
https://doi.org/10.1109/Techno-Ocean.2016.7890633
https://doi.org/10.1029/96JB03223
https://doi.org/10.1029/96JB03223
https://doi.org/10.1109/OCEANS.2008.5152005
https://doi.org/10.1109/ICTAI.2014.143
https://doi.org/10.1109/ICTAI.2014.143
https://doi.org/10.1002/rob.20382
https://doi.org/10.1109/IROS.2006.281870
https://doi.org/10.1109/IROS.2006.281870
https://doi.org/10.1109/JSEN.2016.2518686
https://doi.org/10.1109/AUV.1990.110453

143

[83] Ling Xiong, Jie Ma, and Jin-wen Tian. “Gravity Gradient Aided Position Ap-
proach Based on EKF and NN”. In: Proceedings of 2011 Cross Strait Quad-
Regional Radio Science and Wireless Technology Conference. Harbin, Hei-
longjiang, China: IEEE, July 2011, pp. 1347–1350. isbn: 978-1-4244-9792-8.
doi: 10.1109/CSQRWC.2011.6037213.

[84] Yuhong Yang, Junchuan Zhou, and Otmar Loffeld. “Quaternion-Based Kalman
Filtering on INS/GPS”. In: (), p. 8.

[85] De Ruiter. Spacecraft Dynamics and Control : An Introduction. 2012.

[86] James M. Maley. Multiplicative Quaternion Extended Kalman Filtering for
Nonspinning Guided Projectiles: tech. rep. Fort Belvoir, VA: Defense Technical
Information Center, July 2013. doi: 10.21236/ADA588831.

[87] Richard S. Bucy and Peter D. Joseph. Filtering For Stochastic Processes With
Applications To Guidance. New edition edition. Providence, R.I: American
Mathematical Society, Mar. 2005. isbn: 978-0-8218-3782-5.

[88] Renato Zanetti and Kyle J. DeMars. “Joseph Formulation of Unscented and
Quadrature Filters with Application to Consider States”. In: Journal of Guid-
ance, Control, and Dynamics 36.6 (Nov. 2013), pp. 1860–1864. issn: 0731-
5090, 1533-3884. doi: 10.2514/1.59935.

[89] Li Tian. “Ocean Wave Simulation by the Mix of FFT and Perlin Noise”. In:
(2014), p. 4.

[90] I. Martin et al. “Asteroid Modeling for Testing Spacecraft Approach and Land-
ing”. In: IEEE Computer Graphics and Applications 34.4 (July 2014), pp. 52–
62. issn: 1558-1756. doi: 10.1109/MCG.2014.22.

[91] J. E. Martine. Relating Geoid Anomalies, Gravity Anomalies and Ocean To-
pography. Tech. rep. Fort Belvoir, VA: Defense Technical Information Center,
Dec. 1983. doi: 10.21236/ADA140112.

[92] Y. Guo, L. Xiong, and X. Cheng. “Modeling and Analysis of Gravity and
Gravity Gradient Based on Terrain Anomaly”. In: 2018 13th IEEE Conference
on Industrial Electronics and Applications (ICIEA). May 2018, pp. 1957–1961.
doi: 10.1109/ICIEA.2018.8398029.

[93] Scripps Institution of Oceanography, UC San Diego. https://scripps.ucsd.edu/.

[94] Dan DiFrancesco et al. “Gravity Gradiometry – Today and Tomorrow”. In:
11th SAGA Biennial Technical Meeting and Exhibition. Swaziland, South Africa,
European Association of Geoscientists & Engineers, 2009. doi: 10.3997/2214-
4609-pdb.241.difrancesco_paper1.

https://doi.org/10.1109/CSQRWC.2011.6037213
https://doi.org/10.21236/ADA588831
https://doi.org/10.2514/1.59935
https://doi.org/10.1109/MCG.2014.22
https://doi.org/10.21236/ADA140112
https://doi.org/10.1109/ICIEA.2018.8398029
https://doi.org/10.3997/2214-4609-pdb.241.difrancesco_paper1
https://doi.org/10.3997/2214-4609-pdb.241.difrancesco_paper1

144

[95] Daniel DiFrancesco et al. “Gravity Gradiometer Systems – Advances and Chal-
lenges”. In: Geophysical Prospecting 57.4 (2009), pp. 615–623. issn: 1365-2478.
doi: 10.1111/j.1365-2478.2008.00764.x.

[96] T. Li, M. Bolic, and P. M. Djuric. “Resampling Methods for Particle Filtering:
Classification, Implementation, and Strategies”. In: IEEE Signal Processing
Magazine 32.3 (May 2015), pp. 70–86. issn: 1558-0792. doi: 10.1109/MSP.
2014.2330626.

[97] The Linux Foundation. The Linux Kernel Archives. Linux Kernel Organiza-
tion. 2022.

[98] Python Software Foundation. Python.Org. The Python Software Foundation.
2022.

[99] Open Robotics. ROS. Open Robotics. 2022.

[100] WilliamWoodall. ROS on DDS. https://design.ros2.org/articles/ros on dds.html.
2019.

[101] Object Management Group.DDS Portal – Data Distribution Services. https://www.dds-
foundation.org/. 2021.

[102] ROS-Industrial. https://rosindustrial.org. 2022.

[103] Docker. Docker. 2022.

[104] Open Source Robotics Foundation. Gazebo. http://gazebosim.org/.

[105] Open Robotics. ROS Index. https://index.ros.org/packages/. 2022.

[106] Georgios Salavasidis et al. “Terrain Aided Navigation for Long Range AUV
Operations at Arctic Latitudes”. In: 2016 IEEE/OES Autonomous Under-
water Vehicles (AUV). Tokyo, Japan: IEEE, Nov. 2016, pp. 115–123. isbn:
978-1-5090-2442-1. doi: 10.1109/AUV.2016.7778658.

[107] Fisheries and Oceans Canada Government of Canada. Nautical Charts and
Services. https://www.charts.gc.ca/index-eng.html. July 2019.

[108] NumPy. NumPy. 2022.

[109] National Earth Science Teachers Association (NESTA). Density of Ocean Wa-
ter. https://windows2universe.org/earth/Water/density.html. 2010.

[110] Robert Tenzer, Pavel Novák, and Vladislav Gladkikh. “On the Accuracy of the
Bathymetry-Generated Gravitational Field Quantities for a Depth-Dependent
Seawater Density Distribution”. In: Studia Geophysica et Geodaetica 55.4 (Aug.
2011), p. 609. issn: 1573-1626. doi: 10.1007/s11200-010-0074-y.

https://doi.org/10.1111/j.1365-2478.2008.00764.x
https://doi.org/10.1109/MSP.2014.2330626
https://doi.org/10.1109/MSP.2014.2330626
https://doi.org/10.1109/AUV.2016.7778658
https://doi.org/10.1007/s11200-010-0074-y

145

[111] Jeroen D. Hol, Thomas B. Schon, and Fredrik Gustafsson. “On Resampling
Algorithms for Particle Filters”. In: 2006 IEEE Nonlinear Statistical Signal
Processing Workshop. Cambridge, UK: IEEE, Sept. 2006, pp. 79–82. isbn:
978-1-4244-0579-4 978-1-4244-0581-7. doi: 10.1109/NSSPW.2006.4378824.

[112] Takemi Ishihara et al. “High-Resolution Gravity Measurement Aboard an Au-
tonomous Underwater Vehicle”. In: GEOPHYSICS 83.6 (Nov. 2018), G119–
G135. issn: 0016-8033, 1942-2156. doi: 10.1190/geo2018-0090.1.

https://doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/10.1190/geo2018-0090.1

Appendix A

Gradiometer Noise Particle Filter Results

This appendix contains all the plots comparing positional estimate error of the parti-

cle filter solution (TAN) versus only dead reckoning (INS) for the gradiometer noise

parameter study. This study looks at the effect of gravity gradiometer heading noise

on the positional estimate error. Figs. A.1 to A.16. Detailed discussion of this study

can be found in section 5.6.1. Each figure in this appendix summarizes the perfor-

mance spread of one session. All runs in the same session have the same gradiometer

noise heading standard deviation. The summary of the study’s session is shown in ta-

ble 5.2.

For each session there are two figures. The first figure shows the comparison

between positional estimate error between the particle filter and dead reckoning. The

second shows only the positional estimate error of the particle filter because it is hard

to see details of the spread when plotted on the same plot as dead reckoning. The

146

147

Figure (A.1) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 0 is shown. The gradiometer heading noise for this
session was 0 rad. The first session is rather unrealistic and only 6 of the 10 runs fin-
ished with problems of particle degeneracy. This is due to the particle filter requiring
some stabilizing noise to avoid degeneracy. A noise setting of 0 does not achieve this.
This was expected and holds little value for application to reality.

148

Figure (A.2) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 0. The gradiometer heading
noise for this session was 0 rad. Note that a noise setting of 0 is unrealistic and caused
6 out of 10 of the particle filter runs to end in degeneracy. This was expected.

149

Figure (A.3) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 1 is shown. The gradiometer heading noise for this
session was 0.1 rad.

150

Figure (A.4) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 1. The gradiometer heading
noise for this session was 0.1 rad.

151

Figure (A.5) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 2 is shown. The gradiometer heading noise for this
session was 0.2 rad.

152

Figure (A.6) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 2. The gradiometer heading
noise for this session was 0.2 rad.

153

Figure (A.7) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 3 is shown. The gradiometer heading noise for this
session was 0.3 rad.

154

Figure (A.8) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 3. The gradiometer heading
noise for this session was 0.3 rad.

155

Figure (A.9) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 4 is shown. The gradiometer heading noise for this
session was 0.4 rad.

156

Figure (A.10) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 4. The gradiometer heading
noise for this session was 0.4 rad.

157

Figure (A.11) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 5 is shown. The gradiometer heading noise for this
session was 0.5 rad.

158

Figure (A.12) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 5. The gradiometer heading
noise for this session was 0.5 rad.

159

Figure (A.13) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 6 is shown. The gradiometer heading noise for this
session was 0.6 rad.

160

Figure (A.14) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 6. The gradiometer heading
noise for this session was 0.6 rad.

161

Figure (A.15) The comparison of positional estimate Euclidean error between the
particle filter (TAN) and dead reckoning (INS). The legend shows the topic names
within ROS. The dark line represents the median Euclidean positional estimate error.
The lighter shaded area represents the bounds of the Euclidean positional estimate
error (minimum and maximum). The comparison is made by distance over ground
covered by the vehicle. Session 7 is shown. The gradiometer heading noise for this
session was 0.7 rad.

measure of error used is Euclidean error.

162

Figure (A.16) The zoomed in plot of the positional estimate Euclidean error of the
particle filter (TAN). The legend shows the topic names within ROS. The dark line
represents the median positional estimate Euclidean error. The lighter shaded area
shows the maximum in minimum errors within session 7. The gradiometer heading
noise for this session was 0.7 rad.

Appendix B

Density Amplitude Study

This appendix shows all the positional error spreads associated with the particle filter

algorithm (TAN) compared with dead reckoning (INS) for the density uncertainty

study. For this study the density amplitude variation was varied logarithmically.

The generated density maps used to derive the gravity gradient used as positional

feedback for the TAN algorithm are show in Figs. B.1 to B.15. A representative

example, related discussion, and implications are discussed in section 5.6.2.

B.1 Density Maps

The density maps shown in Figs. B.1 to B.5 vary from a density amplitude variation

of 50 kg/m3 to 800 kg/m3 in five steps. The density was generated using two octaves

of Perlin noise. The base period of the Perlin noise octaves was set to 500 km.

163

164

Figure (B.1) The generated density map using layers of Perlin noise. This density
field contains two octaves of Perlin noise, configured with a base period of 500 km, a
lacunarity of 2, and a persistence of 0.5. The density varies over an area of 500 km
by 500 km. It is georeferenced to the same GEBCO area used for the study, shown
in Fig. 5.13. However, it is shown with a false origin that is relative to the south-west
corner of the GEBCO bathymetry. The base amplitude for the Perlin noise used to
generate this density was set to 50 kg/m3.

165

Figure (B.2) The generated density map using layers of Perlin noise. This density
field contains two octaves of Perlin noise, configured with a base period of 500 km, a
lacunarity of 2, and a persistence of 0.5. The density varies over an area of 500 km
by 500 km. It is georeferenced to the same GEBCO area used for the study, shown
in Fig. 5.13. However, it is shown with a false origin that is relative to the south-west
corner of the GEBCO bathymetry. The base amplitude for the Perlin noise used to
generate this density was set to 100 kg/m3.

166

Figure (B.3) The generated density map using layers of Perlin noise. This density
field contains two octaves of Perlin noise, configured with a base period of 500 km, a
lacunarity of 2, and a persistence of 0.5. The density varies over an area of 500 km
by 500 km. It is georeferenced to the same GEBCO area used for the study, shown
in Fig. 5.13. However, it is shown with a false origin that is relative to the south-west
corner of the GEBCO bathymetry. The base amplitude for the Perlin noise used to
generate this density was set to 200 kg/m3.

167

Figure (B.4) The generated density map using layers of Perlin noise. This density
field contains two octaves of Perlin noise, configured with a base period of 500 km, a
lacunarity of 2, and a persistence of 0.5. The density varies over an area of 500 km
by 500 km. It is georeferenced to the same GEBCO area used for the study, shown
in Fig. 5.13. However, it is shown with a false origin that is relative to the south-west
corner of the GEBCO bathymetry. The base amplitude for the Perlin noise used to
generate this density was set to 400 kg/m3.

168

Figure (B.5) The generated density map using layers of Perlin noise. This density
field contains two octaves of Perlin noise, configured with a base period of 500 km, a
lacunarity of 2, and a persistence of 0.5. The density varies over an area of 500 km
by 500 km. It is georeferenced to the same GEBCO area used for the study, shown
in Fig. 5.13. However, it is shown with a false origin that is relative to the south-west
corner of the GEBCO bathymetry. The base amplitude for the Perlin noise used to
generate this density was set to 800 kg/m3.

169

B.2 Particle Filter Results

Figs. B.6 to B.15 show all the results for the comparison between dead reckoning INS

and particle filter TAN performance during the density uncertainty parameter study.

The study varies the amplitude of the crustal density logarithmically to determine the

effect of the constant density assumption on the performance of the TAN algorithm.

Within the study there were 5 sessions with 10 runs each. The density amplitude was

varied from 50 kg/m3 to 800 kg/m3. The results and implications of this study are

discussed in section 5.6.2.

For each session there are two plots. One shows the comparison between the

positional Euclidean error of the dead-reckoning (INS) and the particle filter (TAN).

The other the zoomed in version of the TAN algorithms performance. This is because

the details of the performance of the TAN algorithm are hard to see when compared

with the dead-reckoning performance.

170

Figure (B.6) The comparison between the positional Euclidean error of dead-
reckoning (INS) and the particle filter algorithm (TAN). The dark line is the median
error of the positional estimate, the shaded area is the spread of the error of the
positional estimate for all the runs within session 0. The runs are compared by the
distance the vehicle has travelled, shown on the x-axis. The density variation of this
session was 50 kg/m3.

171

Figure (B.7) The positional estimate Euclidean error for the particle filter algorithm
(TAN). The dark line is the median positional estimate Euclidean error, and the
shaded area is the spread of the error within session 0. The density variation of this
session was 50 kg/m3. All runs within a session are compared based on AUV distance
travelled, shown on the x-axis.

172

Figure (B.8) The comparison between the positional Euclidean error of dead-
reckoning (INS) and the particle filter algorithm (TAN). The dark line is the median
error of the positional estimate, the shaded area is the spread of the error of the
positional estimate for all the runs within session 1. The runs are compared by the
distance the vehicle has travelled, shown on the x-axis. The density variation of this
session was 100 kg/m3.

173

Figure (B.9) The positional estimate Euclidean error for the particle filter algorithm
(TAN). The dark line is the median positional estimate Euclidean error, and the
shaded area is the spread of the error within session 1. The density variation of
this session was 100 kg/m3. All runs within a session are compared based on AUV
distance travelled, shown on the x-axis.

174

Figure (B.10) The comparison between the positional Euclidean error of dead-
reckoning (INS) and the particle filter algorithm (TAN). The dark line is the median
error of the positional estimate, the shaded area is the spread of the error of the
positional estimate for all the runs within session 2. The runs are compared by the
distance the vehicle has travelled, shown on the x-axis. The density variation of this
session was 200 kg/m3.

175

Figure (B.11) The positional estimate Euclidean error for the particle filter algo-
rithm (TAN). The dark line is the median positional estimate Euclidean error, and
the shaded area is the spread of the error within session 2. The density variation of
this session was 200 kg/m3. All runs within a session are compared based on AUV
distance travelled, shown on the x-axis.

176

Figure (B.12) The comparison between the positional Euclidean error of dead-
reckoning (INS) and the particle filter algorithm (TAN). The dark line is the median
error of the positional estimate, the shaded area is the spread of the error of the
positional estimate for all the runs within session 3. The runs are compared by the
distance the vehicle has travelled, shown on the x-axis. The density variation of this
session was 400 kg/m3.

177

Figure (B.13) The positional estimate Euclidean error for the particle filter algo-
rithm (TAN). The dark line is the median positional estimate Euclidean error, and
the shaded area is the spread of the error within session 3. The density variation of
this session was 400 kg/m3. All runs within a session are compared based on AUV
distance travelled, shown on the x-axis.

178

Figure (B.14) The comparison between the positional Euclidean error of dead-
reckoning (INS) and the particle filter algorithm (TAN). The dark line is the median
error of the positional estimate, the shaded area is the spread of the error of the
positional estimate for all the runs within session 4. The runs are compared by the
distance the vehicle has travelled, shown on the x-axis. The density variation of this
session was 800 kg/m3.

179

Figure (B.15) The positional estimate Euclidean error for the particle filter algo-
rithm (TAN). The dark line is the median positional estimate Euclidean error, and
the shaded area is the spread of the error within session 4. The density variation of
this session was 800 kg/m3. All runs within a session are compared based on AUV
distance travelled, shown on the x-axis.

Appendix C

Local Gravity Anomaly from Terrain in

Python

Listing 1 shows the Python code implementation of the conversion from terrain to

local gravity anomaly using the correlation between the gravity anomaly and the

terrain. This algorithm is explained in more detail in sections 2.12.2 and 4.1.5.

1 import numpy as np

2 from tqdm import tqdm

3

4

5 def local_anomaly(bathy, bathy_xj, bathy_yi, interpolation_depth, i, j, m, n,

density):↪→

6 """

7 Calculate the local gravity anomaly using a window on a data set.

8

9 This calculated anomaly is not any official measure of the gravity anomaly.

10 It is a simplified version that approximates the gravity anomaly gradients

11 but is not correct in the sense of absolute values.

12

13 The function assumes a few parameter values. An average crustal density of

14 2670 kg/m^3, an average seawater density of 1027 kg/m^3, a universal gravity

15 constant of 6.674e-11 m^3 kg^-1 s^-2.

16

17 :param bathy: The bathymetry value matrix. The value at

18 row, col must correspond with the

19 coordinate (x[col], y[row]).

180

181

20 :type bathy: d x p np.array

21 :param bathy_xj: The x coordinate vector. Length must be

22 the same as the columns in bathy value

23 matrix.

24 :type bathy_xj: 1 x p np.array

25 :param bathy_yi: The y coordinate vector. Length must be

26 the same as the rows in bathy value

27 matrix.

28 :type bathy_yi: 1 x d np.array

29 :param interpolation_depth: The height at which the gravity anomaly

30 should be calculated. Positive heights are

31 above the water surface. Negative heights

32 are below the water surface.

33 :type interpolation_depth: float

34 :param i: The starting row of the window.

35 :type i: int

36 :param j: The starting column of the window.

37 :type j: int

38 :param m: The number of rows in the window.

39 :type m: int

40 :param n: The number of columns in the window.

41 :type n: int

42 :param density: The density value matrix. The value at

43 row, col must correspond with the

44 coordinate (x[col], y[row]). The average

45 crustal density is used if no density

46 matrix is provided.

47 :type density: d x p np.array

48

49 :returns: A tuple of length 3. (x coordinate, y coordinate, gravity

50 anomaly)

51 :rtype: tuple (float, float, float)

52 """

53

54 crustal_density = 2670 # kg/m^3

55 # The density of sea water.

56 seawater_density = 1027 # kg/m^3

57 # The universal gravitation constant.

182

58 G = 6.674e-11 # m^3 kg^-1 s^-2

59 area = np.abs((bathy_xj[1] - bathy_xj[0]) * (bathy_yi[1] - bathy_yi[0]))

60

61 # m and n must be odd

62 # i, j, m, n are all in terms of indices.

63 # the location that the anomaly is being calculated at.

64 min_res = max(abs(bathy_xj[1] - bathy_xj[0]), abs(bathy_yi[1] - bathy_yi[0]))

65 x, y = bathy_xj[j + (floor(n / 2))], bathy_yi[i + (floor(m / 2))]

66 xx, yy = np.meshgrid(bathy_xj[j : j + n], bathy_yi[i : i + m])

67 dxx = np.abs(xx - x)

68 dyy = np.abs(yy - y)

69 height = bathy[i : i + m, j : j + n]

70 dzz = interpolation_depth - height / 2.0

71 if density is None:

72 density = crustal_density * np.ones(dxx.shape)

73

74 r = np.sqrt(np.square(dxx) + np.square(dyy) + np.square(dzz))

75 effective_density = np.zeros(dxx.shape)

76 np.putmask(effective_density, height >= 0, density)

77 np.putmask(effective_density, height < 0, seawater_density - density)

78

79 # Remove calculations using terrain that is too close

80 too_close_mask = r < min_res / 2.0

81 r[too_close_mask] = np.nan

82 if np.sum(too_close_mask) > 1:

83 print("WARNING: Threw out {} cells because they were to close.")

84 print(np.sum(too_close_mask))

85

86 volume = area * np.abs(height)

87 dzz = np.abs(dzz)

88 effective_mass = effective_density * volume

89 gravity_contribution = G * effective_mass * dzz / r**3

90 gravity_contribution[np.isnan(gravity_contribution)] = 0

91 return x, y, np.sum(gravity_contribution)

92

93

94 def local_anomaly_sweep(

95 bathy, bathy_xj, bathy_yi, interpolation_depth, m, n, istep, jstep, density

96):

183

97 """

98 Perform a sweep across a larger matrix to calculate multiple local gravity

99 anomalies using a moving window.

100

101 :param bathy: The bathymetry value matrix. The value at

102 row, col must correspond with the

103 coordinate (x[col], y[row]).

104 :type bathy: d x p np.array

105 :param bathy_xj: The x coordinate vector. Length must be

106 the same as the columns in bathy value

107 matrix.

108 :type bathy_xj: 1 x p np.array

109 :param bathy_yi: The y coordinate vector. Length must be

110 the same as the rows in bathy value

111 matrix.

112 :type bathy_yi: 1 x d np.array

113 :param interpolation_depth: The height at which the gravity anomaly

114 should be calculated. Positive heights are

115 above the water surface. Negative heights

116 are below the water surface.

117 :type interpolation_depth: float

118 :param m: The number of rows in the window.

119 :type m: int

120 :param n: The number of columns in the window.

121 :type n: int

122 :param istep: The number of rows to skip for every

123 window step.

124 :type istep: int

125 :param jstep: The number of columns to skip for every

126 window step.

127 :type jstep: int

128 :param density: The density value matrix. The value at

129 row, col must correspond with the

130 coordinate (x[col], y[row]). The average

131 crustal density is used if no density

132 matrix is provided.

133 :type density: d x p np.array

134

135 :returns: A tuple of length 3. (x coordinate vector, y coordinate vector,

184

136 anomaly value matrix)

137 :rtype: tuple (1 x q np.array, 1 x r np.array, r x q np.array)

138 """

139 ivec = range(0, bathy.shape[0] - m, istep)

140 jvec = range(0, bathy.shape[1] - n, jstep)

141

142 # Populate the anomaly field

143 anomaly = np.zeros((len(ivec), len(jvec)))

144 xs = list()

145 ys = list()

146

147 # Calculate the local anomaly

148 for i, ibathy in tqdm(

149 enumerate(ivec), desc="Calculating anomalies", total=len(ivec),

unit="anomaly"↪→

150):

151 for j, jbathy in enumerate(jvec):

152 x, y, anomaly[i, j] = local_anomaly(

153 bathy,

154 bathy_xj,

155 bathy_yi,

156 interpolation_depth,

157 ibathy,

158 jbathy,

159 m,

160 n,

161 density,

162)

163 if i == 0:

164 xs.append(x)

165 ys.append(y)

166

167 return np.asarray(xs), np.asarray(ys), anomaly

(1) A Python implementation of deriving the gravity anomaly from the correlation
between gravity and the terrain. The implementation makes heavy use of Python’s
matrix library numpy. This speeds up the processing time substantially.

Appendix D

Horizontal Bounce Behaviour Algorithm

The horizontal bounce behaviour uses computational geometry to plan a quick safe

pat back to within a safe distance of the operating region boundary. The horizontal

bounce behaviour and the reasons for it existing are discussed in section 4.5.1.

The horizontal bounce behaviour makes the use of the geometry engine geometry

engine open-source (GEOS), and linear algebra library (Eigen for C++, Numpy for

Python). The GEOS library has bindings for Python as well as a C++ API. The

final implementation that is now part of the DCAF framework is written in C++.

The horizontal bounce behaviour once triggered is as follows:

1. Determine the unit vector that defines the current vehicle heading.

ûvehicle = [cos(θvehicle), sin(θvehicle)]
T (D.1)

2. Determine the two vectors that are perpendicular to û, that will be used to

define the direction of the circle’s two centres.

R =

[︄
cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

]︄
û1 = R · ûvehicleû2 = RT · ûvehicle (D.2)

185

186

3. Determine the centres of the two circles.

c1 = xvehicle + r · û1 (D.3)

c2 = xvehicle + r · û2 (D.4)

4. Create high resolution line ring defining the circles, C1, C2, using the circle

centres c1 and c2 and the turn radius r.

5. Use the polygon defining the inner boundary area, Binner, to compute the line

paths, p1 and p2, that define the parts of C1 and C2 that are outside of the

polygon Binner.

[p1, p2] = Binner \ (C1 ∪ C2) (D.5)

6. Determine the shortest parth length between p1 and p2 and assign it to pmin.

pmin = minlength(p1, p2) (D.6)

7. Determine the intersection of the line path pmin with the inner boundary exterior

by determining which boundary point for the line path pmin is furthest from the

vehicle position xvehicle, as one of the boundary points is approximately the

vehicle position itself. Assign the resulting point to xwp.

8. Determine the waypoint heading by taking the last two points in the line path

pmin and determine the unit vector, ûwp, representing vehicle heading at the

waypoint xwp.

9. Determine the vehicle heading, θwp, using the unit vector, ûwp.

θwp = arctan 2(ûwpy , ûwpx) (D.7)

10. The active waypoint is replaces with the waypoint determined by the bounce

187

behaviour, wwp and θwp leading the vehicle back to a safe distance from the

operating region boundary.

Appendix E

The ROS Parameter Study CLI

The ROS parameter study CLI is a tool developed for running parameter studies with

existing ROS systems. This CLI along with the accompanying rps library (developed

for loading the results of the parameter studies) were used for all parameter studies

within this thesis. The RPS package’s CLI interface has two commands. The first is

run, the second is extract.

E.0.1 The Run Command

run is used to launch a full parameter study using a configuration file as input. A

full example of the configuration file that was used for the gradiometer noise study

can be found in appendix E.1. The merits of the configuration file and what part

of the ROS parameter study features they support will be discussed in detail in this

section.

For the parameter studies in this thesis a study consists of multiple sessions each

containing multiple runs. A session’s runs all share the same setting configuration,

such as gradiometer noise standard deviation. A run refers to one execution of the

simulation environment coupled with the ROS nodes. A session can contain one or

more runs. This is useful when internal parameters for a node are randomly initialized.

For example, the initial INS error and the initial particle positions for the particle

filter. After all runs are complete the runs within a session contain the variation

due to random initialization and the variation between sessions is due to the main

parameters varied during the study.

188

189

The run command loads in the configuration file and then creates a set of bash

commands that will be executed for a specific run. For each run a set of processes

are launched according to the configuration file. These processes are run as child

processes of the main ROS parameter study program, and their status is tracked

with a progress bar to show overall study progress and individual run progress.

There are seven main keywords within the configuration file: env, processes, runs,

launch, commands, record, and termination. Each will be explained with its snippet

from the sample configuration file from appendix E.1.

The env section supports setting up a bash environment before any of the launch

commands are run. This allows sourcing the needed ROS environment setup scripts.

A few macros are supported, one of them, ${}, is shown in listing 2. This macro

supports using bash environment variables within the configuration file. The ${}
macro was written written to help avoid hard-coding in paths to files within the

configuration file.

1 env:

2 scripts:

3 - ${HOME}/workspace/ros1_ws/devel/setup.sh

4

(2) A portion of the ROS parameter study configuration file showing the usage of
the env section.

The processes and runs sections each support a single number for configuration

(shown in listing 3). The processes field enables executing multiple runs in parallel.

This number should be adjusted based on how powerful your computer is. If not keep

it configured at 1. The runs field determines how many runs will be completed for

each session. If there are no random initialized parameters internal to the nodes you

are launching then keep this at 1. If there is randomly initialized internal parameters

within nodes use a number large enough for reasonable coverage of the expected

spread.

5 processes: 1

6

7 runs: 10

8

190

(3) A portion of the ROS parameter study configuration file showing the usage of
the processes and runs section.

The launch field supports numerous entries each corresponds to an existing launch

file (shown in listing 4). Each entry under the launch field supports the identifying

name, package name, launch file name, and args fields. The name field is used to

identify this launch file in the output log files that ROS parameter study gathers

after each run, the package field for the name of the ROS package, the file field for

the launch file name (expected to be within the launch folder inside the ROS package),

and the args field which supports any number of key value pairs for setting launch

file arguments.

9 launch:

10 - name: gazebo

11 package: ds_gazebo_worlds

12 file: world.launch

13 args:

14 world_name: $(find ds_gazebo_worlds)/worlds/gebco_01.world

15 gui: false

16

17 - name: model_upload

18 package: ds_uuv_nav

19 file: eca_a9.launch

20 args:

21 x: 700.

22 y: 700.

23 z: -50.

24 yaw: 0.7071

25

26 - name: ins

27 package: ds_localization

28 file: ins.launch

29

30 - name: controller

31 package: ds_uuv_nav

32 file: controller.launch

33

34 - name: maps

35 package: ds_localization

191

36 file: map_gebco_01.launch

37 args:

38 bathymetry_gt_geotiff_path: $(find

ds_gazebo_worlds)/models/gebco_01/bathymetry.tif↪→

39 anomaly_gt_geotiff_path: $(find

ds_gazebo_worlds)/models/gebco_01/anomaly-const-density.tif↪→

40 anomaly_map_geotiff_path: $(find

ds_gazebo_worlds)/models/gebco_01/anomaly-const-density.tif↪→

41

42 - name: tan

43 package: ds_localization

44 file: tan.launch

45 args:

46 update_frequency: 1.

47 heading_jitter_factor: 0.5

48 x_jitter_factor: 0.5

49 y_jitter_factor: 0.5

50 gradient_std_dev: [$(linspace 0.001, 0.7, 8)]

51

52 - name: sensors

53 package: ds_sensors

54 file: sensors.launch

55 args:

56 gradiometer_frequency: 0.5

57 gradiometer_magnitude_std_dev: 0.0

58 gradiometer_heading_std_dev: [$(linspace 0, 0.7, 8)]

59

60 - name: rviz

61 package: ds_uuv_nav

62 file: rviz.launch

63

(4) A portion of the ROS parameter study configuration file showing the usage of
the launch section. It also shows usage of the linspace and find macro.

The are a few examples of other macros within listing 4. They all have the syntax

$(cmd param1, param2, ...). The first is the find macro (shown on line 38). It works

exactly like the find macro in ROS launch files. It will be replaced by the full path

to the ROS package using the rospkg Python package to perform the lookup. This

192

avoids having to hard-code the location of ROS packages within the configuration file.

The next macro is linspace (shown on line 50). It expects exactly three arguments. It

behaves exactly like Python package numpy’s linspace function because this function

is used for this macro. The macro will be replaced by numbers, separated by commas

so they are valid Yaml, from the first parameter to the last parameter in exactly

the last parameters amount of steps. For example parameters 1, 2, 3 would yield

1.0, 1.5, 2.0. There is another similar macro, logspace, that has the same behaviour

but instead of a linear step it takes a number of logarithmic spaced steps. These

two macros make it easier to calculate evenly spaced variation of parameters linear

or logarithmic for the parameter study.

If a launch file parameter specified using the key value pairs under the args field

is a list of values it must have the same length as all other parameters that have a

list of values. This is what determines how many sessions the study will have. In our

example there are eight sessions because the gradient standard deviation noise and

particle filter setting are varied together.

The commands section provides the ability to execute any command along with

the execution of a run (shown in listing 5).

64 commands:

65 - name: go_to

66 cmd: "rosservice call /eca_a9/go_to \"{

67 waypoint: {

68 header: {

69 seq: 0,

70 stamp: {

71 secs: 0,

72 nsecs: 0

73 },

74 frame_id: ''

75 },

76 point: {

77 x: 4300.,

78 y: 4300.,

79 z: -50.0

80 },

193

81 max_forward_speed: 3.0,

82 heading_offset: 0.0,

83 use_fixed_heading: false,

84 radius_of_acceptance: 10.0

85 },

86 max_forward_speed: 3.0,

87 interpolator: 'lipb'

88 }\""

89 delay: 25.

90

(5) A portion of the ROS parameter study configuration file showing the usage of
the commands section.

The name field provides the identifier for collecting log files for the process result-

ing from this command, the cmd field is the actual command to run, and the delay

field is used to delay the execution of the command for a specified amount of seconds

from the start of a run. In this case it is used to issue the go to command to the ECA

vehicle waypoint controller once all other processes have initialized. The 25 seconds

was chosen by trial an error based on the workstation the simulation was done on.

The record section is used to explicitly configure which topics are recorded by

rosbag during each run (shown in listing 6). The namespace field configures the

namespace that the topics are under, and the topics field contains all the topic names

in a list. The bag files can later be extracted to csv files and organized based on the

topic names using the command extract. lst:rps.config.commands).

91 record:

92 namespace: 'eca_a9'

93 topics:

94 - pose_gt

95 - pose_ins

96 - altimeter

97 - pose_tan

98 - tan/pose2d

99 - gravity_gradiometer

100

(6) A portion of the ROS parameter study configuration file showing the usage of
the record section.

194

Finally, the termination section allows configuring which node will monitor the

run and determine when the run is complete (shown in listing 7). The package field

is the name of the ROS package, the node field is the name of the file to run, the args

fields supports key value pairs of node arguments, the namespace field determines

the namespace the node will be pushed into when it is started (required when the

topics the node is monitoring are within a namespace), and the timeout field which

will abort the run if the run takes longer than this amount of seconds.

101 termination:

102 package: ds_uuv_nav

103 node: monitor_goal.py

104 args:

105 x: 4300

106 y: 4300

107 tolerance: 30

108 topic: pose_ins

109 namespace: eca_a9

110 timeout: 100000

(7) A portion of the ROS parameter study configuration file showing the usage of
the termination section.

The termination criteria node requires further explanation. The node can be

written to monitor any topics it has access to and can determine progress however

it sees fit. This allows the termination criteria to be very flexible and custom for

a specific application. The only requirement is for the application to conform to

a specific protocol on its stdout. It must only print out a measure of the error

as a number followed by a new line, and when it deems the termination criteria

has been met print out the string Done. The error measure can be any measure

whatsoever. The first value read from standard out is used as the starting error and

each consecutive read error is compared to the initial error to determine progress and

display this using the progress bars. When Done is read from stdout, the progress

bar is set to complete and managed sub-processes are killed. This ends the run,

closes log files, closes active bag files, and shuts down all nodes (including the Gazebo

simulation environment).

The results of a run are stored in the output directory. This can be controlled by

195

the current working directory when using the ROS parameter study CLI. An example

of the output directory file structure is shown in listing 8.

00_00_00_2021-12-13-14-56-29.bag

00_00_01_2021-12-13-15-32-06.bag

00_00_02_2021-12-13-16-08-53.bag

00_00_03_2021-12-13-16-46-34.bag

...

00_input_configuration.yml

00_parsed_configuration.yml

...

03_00_00_2022-01-11-17-58-31.bag

03_00_01_2022-01-11-19-30-31.bag

03_00_02_2022-01-11-21-01-57.bag

...

03_07_07_2022-01-16-15-20-50.bag

03_07_08_2022-01-16-16-03-04.bag

03_07_09_2022-01-16-16-45-36.bag

03_input_configuration.yml

03_parsed_configuration.yml

log

...

03_00_00

controller.log.txt

gazebo.log.txt

go_to.log.txt

ins.log.txt

maps.log.txt

model_upload.log.txt

rosbag.log.txt

rviz.log.txt

sensors.log.txt

196

tan.log.txt

03_00_01

controller.log.txt

...

tan.log.txt

...

03_07_09

controller.log.txt

gazebo.log.txt

go_to.log.txt

ins.log.txt

maps.log.txt

model_upload.log.txt

rosbag.log.txt

roscore.log.txt

rviz.log.txt

sensors.log.txt

tan.log.txt

03_main.log.txt

(8) The directory structure of the output directory for the parameter study. Each
run is given a unique identifier compromised of the study ID, session ID, and run ID
(01 03 09 for study 1, session 3, and run 9, where 0 is the starting number). Ellipses
show missing output (the over 2000 files in this directory don’t fit into a reasonable
example)

Each run is identified by a unique ID comprised of a combination of the study ID,

session ID, and the run ID. For example, study 0, session 3, run 5 would have the

ID 00 03 05. This ID is later used to read the extracted .csv files for data analysis

and plotting. Ellipses show missing file for brevity. Listing 8 shows the the output

directory after running four studies. There are ten runs in each of the eight sessions

within each study. Leading to 80 runs per study. For each study there is the input

configuration file which is a copy of the configuration file used for that study. There

is also a copy of the parsed configuration file that is the configuration file with the

macros applied (file paths, and numbers have replace the original macros to make

197

the Yaml file valid Yaml). These two files are useful for debugging errors in the

configuration file. Log files are also collected to help with debugging.

All processes including the main processes are logged into files within the log

directory. The files are grouped by their unique ID. Each log directory contains

files for that specific run organized by the names given within the configuration file

using the name field. The main process is logged to a file identified with the name

main. These log files contain all the information one would usually see printed to the

terminal when running a launch file. Very helpful for when the fiftieth of eighty runs

crashes after two days and one needs to investigate why. Now that the bag files exist

the extract command is required.

E.0.2 The extract command

The extract command was written to extract all topics within the record section of

the configuration file into .csv files that can be read into any language of choice, in

this case Python. For a large study this can take half an hour or more. The resulting

directory structure is shown in listing 9.

...

00_input_configuration.yml

00_parsed_configuration.yml

...

03_00_00_2022-01-11-17-58-31.bag

03_00_00_|eca_a9|altimeter.csv

03_00_00_|eca_a9|gravity_gradiometer.csv

03_00_00_|eca_a9|pose_gt.csv

03_00_00_|eca_a9|pose_ins.csv

03_00_00_|eca_a9|pose_tan.csv

03_00_00_|eca_a9|tan|pose2d.csv

03_00_01_2022-01-11-19-30-31.bag

...
(9) Abbreviated layout of the results directory after the extract command is run.
The .csv files are the result of the extract command.

Each topic has been extracted to a .csv file with the unique ID of the run with

198

the full topic name. Forward slashes are not valid in file names so they have been

replaced by the — symbol. This structure allows rps to intelligently read in the csv

files in to organized pandas data frames (the Python data analysis library used for

data analysis).

The rps library

The ROS parameter study package comes with both a command line interface to run

and extract the parameter study, as well as a importable library to prepare the data

for analysis. A example of the rps library’s usage is shown in listing 10.

1 from pathlib import Path

2 import ros_parameter_study as rps

3

4 directories = [

5 Path("./gebco_01/gradiometer_noise/results"),

6]

7 globs = ["03*.csv"]

8 data = rps.DataAccessor(directories, globs)

9 study = data.with_topics(

10 [

11 "/eca_a9/pose_tan",

12 "/eca_a9/tan/pose2d",

13 "/eca_a9/pose_ins",

14 "/eca_a9/pose_gt",

15],

16 subsample_factors=[

17 10,

18 1,

19 100,

20 100,

21],

22)

(10) Code snippet to briefly show the power of the rps library. Once imported the
rps library gives access to the DataAccessor which can be used to control the loading
in of the data generated by the parameter study.

Line 2 shows the way that the library is imported. Line 4-6 defines the directories

to look in for the extracted files from the parameter study. Line 7 defines the globs

199

used for each directory. A glob is a way of string matching file names. The glob

03*.csv matches all the .csv files that are part of the study three. Line 8 initializes

the DataAccessor class defined in the rps library. It uses the directory and glob

and find all matching .csv files organize them by study, session, and run. It then

determines which topics are available for each run and provides one main method

with topics that allows custom loading of the files using pandas built-in read csv

function.

Line 9-22 shows an example usage of the with topics method of the DataAccessor

class. It accepts a list of topic names that you would like to have accessible, as

well as supporting a different sub-sample factor for each topic. If some topics are

collected and recorded at 10Hz and a run takes 30min, sub-sampling during the file

read process can save a lot of time when you really only need a data point at most

every 10 s. The with topic method does not load the data into pandas data frames

yet. The data is lazy loaded when the study is looped through (shown in listing 11).

24 from functools import partial

25

26 for session in study.sessions():

27 for run in session.runs():

28 dfs_by_topic = run.to_comparable_dataframes(

29 key="%time",

30 in_place_transformers=[

31 partial(

32 add_run_relative_column_by_key,

33 key="%time",

34 output_key="run_time",

35),

36 partial(

37 add_distance_column,

38 output_key="distance",

39 x_fields=["field.pose.pose.position.x", "field.x"],

40 y_fields=["field.pose.pose.position.y", "field.y"],

41),

42 partial(

43 add_run_relative_column_by_key,

44 key="distance",

45 output_key="run_distance",

200

46),

47],

48)

49

50 tan_df = dfs_by_topic["/eca_a9/pose_tan"]

51 gt_df = dfs_by_topic["/eca_a9/pose_gt"]

52 tan_x = tan_df["field.pose.pose.position.x"].to_numpy()

53 gt_x = gt_df["field.pose.pose.position.x"].to_numpy()

54 error = tan_x - gt_x

(11) Code snippet to briefly show the usage of the lazy data loading using the rps
library. The rps library supports making data streams at different collection rates
directly comparable using rps convenience functions.

The study object API makes use of Python’s standard iterator protocol. Line

26-27 show how to loop over sessions and runs. The run object supports one main

method to comparable dataframes. This method performs the loading of the data,

the in place transformation of the resulting data frames, and makes sure the data

frames of different topics are directly comparable using a a column that all topics

have. The key keyword argument on line 29 determines which column is used to

make the data frames comparable. Behind the scenes this enforces that all topics

have that column in their tabular data, that enough tabular data exists to compare

it to other tables, that all tables are sub-sampled to equalize the frequency with the

slowest frequency data, and that all tables have equal number of entries. For example

when the key is time, afterwards all the topics within a run are directly comparable

(you can add and subtract the arrays directly and this is valid) using the absolute time

stamp within the table. After this step a number of in place transformers supported

by the rps library can be applied.

An in place transformer is just a function that takes in the dfs by topic as an

argument an applies any in place transformation to some or all of the run’s topic’s

tabular data. There are three examples of in place transformers used in listing 11.

The add run relative column by key compares all the topics within a run using a a

column they all share, in this case %time, and adds a column with the run relative

column corresponding to that key in a different column. The is useful to make multiple

runs comparable because the original time column is absolute time. Subtracting the

201

earliest time that any of the topics within a run contain yields a run relative time

that enables comparison between runs that happened at different absolute times. This

same function can be used to create a run relative column by a different key such as

distance travelled.

Different runs, though they may travel the same approximate distance, can take

very different amounts of time to simulate. This leads to the relative run time being

less of a good column to compare different runs with. Therefore, the run relative

distance can be used once it is created by the other in place transformer. This

final way of comparing multiple different runs was used to created the error spread

comparison figures within section 5.6.

This is a brief overview of rps package. This package was developed by me as

a necessity for running parameter studies within the ROS environment. A package

providing this functionality did not exist. The amount of development time was

substantial, however, the parameter studies would have taken substantially more

time without it. This tool will also be released to the research community. The

rps package is separate from the rest of my work and therefore can be released as a

package on its own. The rps package will provide a tool that was missing from the

robotics research community. Additionally, this package will be used within our own

lab by other students and researcher who wish to perform a parameter study within

the ROS environment, the main tool-chain used within the ISL.

E.1 Full Configuration File

This section contains the interrupted example of a ROS parameter study configuration

file for the gradiometer noise parameter study.

1 env:

2 scripts:

3 - ${HOME}/workspace/ros1_ws/devel/setup.sh

4

5 processes: 1

6

7 runs: 10

8

202

9 launch:

10 - name: gazebo

11 package: ds_gazebo_worlds

12 file: world.launch

13 args:

14 world_name: $(find ds_gazebo_worlds)/worlds/gebco_01.world

15 gui: false

16

17 - name: model_upload

18 package: ds_uuv_nav

19 file: eca_a9.launch

20 args:

21 x: 700.

22 y: 700.

23 z: -50.

24 yaw: 0.7071

25

26 - name: ins

27 package: ds_localization

28 file: ins.launch

29

30 - name: controller

31 package: ds_uuv_nav

32 file: controller.launch

33

34 - name: maps

35 package: ds_localization

36 file: map_gebco_01.launch

37 args:

38 bathymetry_gt_geotiff_path: $(find

ds_gazebo_worlds)/models/gebco_01/bathymetry.tif↪→

39 anomaly_gt_geotiff_path: $(find

ds_gazebo_worlds)/models/gebco_01/anomaly-const-density.tif↪→

40 anomaly_map_geotiff_path: $(find

ds_gazebo_worlds)/models/gebco_01/anomaly-const-density.tif↪→

41

42 - name: tan

43 package: ds_localization

44 file: tan.launch

203

45 args:

46 update_frequency: 1.

47 heading_jitter_factor: 0.5

48 x_jitter_factor: 0.5

49 y_jitter_factor: 0.5

50 gradient_std_dev: [$(linspace 0.001, 0.7, 8)]

51

52 - name: sensors

53 package: ds_sensors

54 file: sensors.launch

55 args:

56 gradiometer_frequency: 0.5

57 gradiometer_magnitude_std_dev: 0.0

58 gradiometer_heading_std_dev: [$(linspace 0, 0.7, 8)]

59

60 - name: rviz

61 package: ds_uuv_nav

62 file: rviz.launch

63

64 commands:

65 - name: go_to

66 cmd: "rosservice call /eca_a9/go_to \"{

67 waypoint: {

68 header: {

69 seq: 0,

70 stamp: {

71 secs: 0,

72 nsecs: 0

73 },

74 frame_id: ''

75 },

76 point: {

77 x: 4300.,

78 y: 4300.,

79 z: -50.0

80 },

81 max_forward_speed: 3.0,

82 heading_offset: 0.0,

83 use_fixed_heading: false,

204

84 radius_of_acceptance: 10.0

85 },

86 max_forward_speed: 3.0,

87 interpolator: 'lipb'

88 }\""

89 delay: 25.

90

91 record:

92 namespace: 'eca_a9'

93 topics:

94 - pose_gt

95 - pose_ins

96 - altimeter

97 - pose_tan

98 - tan/pose2d

99 - gravity_gradiometer

100

101 termination:

102 package: ds_uuv_nav

103 node: monitor_goal.py

104 args:

105 x: 4300

106 y: 4300

107 tolerance: 30

108 topic: pose_ins

109 namespace: eca_a9

110 timeout: 100000

(12) An example configuration file for the parameter study CLI. This configuration
file uses the Yaml file format and is easily readable in Python.

	Title Page
	Table of Contents
	List of Abbreviations and Symbols Used
	Abstract
	Acknowledgements
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 State Estimation
	2.2 Dead Reckoning
	2.3 Acoustic Transponder Navigation
	2.4 Cooperative Localization
	2.5 Mapping
	2.6 Geophysical Terrain Types
	2.6.1 Bathymetry
	2.6.2 Geomagnetic Field
	2.6.3 Gravitational Field

	2.7 Simultaneous Localization and Mapping
	2.8 Terrain Aided Navigation
	2.8.1 Bathymetry Aided Navigation
	2.8.2 Geomagnetic Aided Navigation
	2.8.3 Gravity Aided Navigation

	2.9 Reference Frames
	2.10 Extended Kalman Filter (EKF)
	2.11 Quaternion Conventions
	2.12 Environment Modelling
	2.12.1 Perlin Noise
	2.12.2 Correlation between Gravity Anomaly and Terrain

	2.13 Motivation

	Chapter 3 Methodology
	3.1 ROS and Gazebo
	3.2 AUV Navigation Testbed
	3.3 Terrain Aided Navigation (TAN) Algorithm
	3.3.1 Trials Plan

	3.4 DRDC DCAF

	Chapter 4 Experiment
	4.1 AUV Navigation Testbed
	4.1.1 Inertial Navigation Modelling
	4.1.2 Gazebo World Models
	4.1.3 Terrain Generation
	4.1.4 Terrain Augmentation
	4.1.5 Terrain to Gravity Anomaly Conversion
	4.1.6 Gravity Gradiometer Model

	4.2 AUV Navigation Testbed Command Line Interface
	4.2.1 Visualizing Perlin Noise
	4.2.2 Terrain Augmentation
	4.2.3 Raster Re-sampling
	4.2.4 Crop Raster to Square
	4.2.5 Generate Density for Raster
	4.2.6 Generate Terrain as Raster
	4.2.7 Derive Gravity Anomaly Field
	4.2.8 Show GeoTIFF
	4.2.9 Translate Raster
	4.2.10 Compare Slices
	4.2.11 Raster to Gazebo World

	4.3 ROS Parameter Study CLI
	4.4 Terrain Aided Navigation Algorithm
	4.4.1 Particle Filter

	4.5 DRDC Collaborative Autonomous Framework
	4.5.1 Bounce Behaviour
	4.5.2 Vehicle Behaviour Arbitration

	Chapter 5 Results and Discussion
	5.1 Inertial Navigation Modelling
	5.2 Gazebo World Models
	5.3 Terrain Generation
	5.4 Terrain Augmentation
	5.5 Gravity Maps
	5.6 TAN Algorithm
	5.6.1 Gradiometer Heading Noise
	5.6.2 Seafloor Density Uncertainty

	Chapter 6 Conclusion
	6.1 Future Work

	References
	Appendix A Gradiometer Noise Particle Filter Results
	Appendix B Density Amplitude Study
	B.1 Density Maps
	B.2 Particle Filter Results

	Appendix C Local Gravity Anomaly from Terrain in Python
	Appendix D Horizontal Bounce Behaviour Algorithm
	Appendix E The ROS Parameter Study CLI
	E.0.1 The Run Command
	E.0.2 The extract command

	E.1 Full Configuration File

