
BENCHMARKING MODULAR GENETIC PROGRAMMING ON
DEEP MEMORY TASKS

by

Mihyar Al Masalma

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

March 2022

© Copyright by Mihyar Al Masalma, 2022

To my father, this work is a result of your passion for knowledge that

you seeded in us.

ii

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . ix

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Thesis Objectives . 3

1.2 Thesis Outline . 4

Chapter 2 Related Work . 6

2.1 Neural networks with Memory . 6

2.2 Genetic Programming with Memory 8

2.3 Discussion . 10

Chapter 3 List data structure with genetic programming 12

3.1 GP Structure . 13

3.2 Evolution Algorithm . 18

3.3 Discussion . 20

Chapter 4 Results . 22

4.1 Experiment Parameterizations . 22

4.2 Sequence Recall . 26
4.2.1 GP versus NEAT . 29
4.2.2 Replacing the protected division instruction 33
4.2.3 Complex instruction set . 34
4.2.4 Noisy data with protected division instruction set 37
4.2.5 Generalization . 40

4.3 Sequence Classification . 41
4.3.1 GP versus NEAT . 43
4.3.2 Replacing the protected division instruction 47

iii

4.3.3 Complex instruction set . 48
4.3.4 Noisy data with protected division instruction set 51
4.3.5 Generalization . 53

4.4 Copy Task . 55
4.4.1 GP versus NEAT . 58
4.4.2 Replacing the protected division instruction 59
4.4.3 Complex instruction set . 61
4.4.4 Noisy data with protected division instruction set 63
4.4.5 Generalization . 68
4.4.6 Full vector with protected division instruction set 69

4.5 Discussion . 70

Chapter 5 Conclusion . 72

Bibliography . 75

iv

List of Tables

4.1 Table shows different operators used by different populations in
attempt to best solve Tasks using GP. 23

4.2 Table shows parameters used by GP to configure the evolution
algorithm. 23

4.3 Table shows parameters used in configuration file in attempt to
best solve tasks using NEAT. 25

4.4 Table shows step by step simulation for agent processing se-
quence recall input . 28

4.5 Table shows final generation Mean and Standard Deviation for
sequence recall NEAT and GP. 33

4.6 Table shows final generation Mean and Standard Deviation for
sequence recall Div and Multiplication instruction sets in GP. . 33

4.7 Table shows final generation Mean and Standard Deviation for
sequence recall Div and Full configurations in GP. 37

4.8 Table shows final generation Mean and Standard Deviation for
sequence recall Original and Modified task setup in GP. 40

4.9 Table shows Mean and Standard Deviation for sequence recall
GP 20 champions generalizing on 50 and 100 depth. 41

4.10 Table shows final generation Mean and Standard Deviation for
sequence classification NEAT and GP. 46

4.11 Table shows final generation Mean and Standard Deviation for
sequence classification Div and Multiplication instruction sets in
GP. 47

4.12 Table shows final generation Mean and Standard Deviation for
sequence classification Div and Full instruction sets in GP. . . . 51

4.13 Table shows final generation Mean and Standard Deviation for
sequence classification Original and Modified instruction sets in
GP. 53

4.14 Table shows Mean and Standard Deviation for sequence classi-
fication GP 20 champions generalizing on 50 and 100 depth. . . 54

v

4.15 Table shows step by step simulation for agent processing copy
task input . 56

4.16 Table shows final generation Mean and Standard Deviation for
copy task NEAT and GP. 59

4.17 Table shows final generation Mean and Standard Deviation for
copy task GP Div and Multiplication instruction set. 61

4.18 Table shows final generation Mean and Standard Deviation for
copy task GP Div and Full instruction set. 63

4.19 Table shows final generation Mean and Standard Deviation for
copy task GP Original and Modified instruction sets. 65

4.20 Table shows Mean and Standard Deviation for copy task GP 20
champions generalizing on 50 and 100 Sequence Length. 68

4.21 Table shows Mean and Standard Deviation for copy task GP 20
champions generalizing on full vector 50 and 100 Sequence Length. 70

4.22 Compare results between our findings and work done by others. 70

4.23 Compare results between our findings and work done by others. 71

4.24 Compare our findings in two different variations and results of
full vector. 71

vi

List of Figures

3.1 GP tree structure . 14

3.2 GP Multi-Population Structure. 17

3.3 GP Stack Structure. 18

4.1 Sequence Recall Task description. 26

4.2 Sequence Recall Input Sequence Example. 27

4.3 GP vs NEAT 4-depth Sequence Recall Task Results. 30

4.4 GP vs NEAT 5- and 6-depth Sequence Recall Task Results. . 31

4.5 GP vs NEAT 15- and 21-depth Sequence Recall Task Results. 32

4.6 Division vs Multiplication 4- and 5-depth Sequence Recall Task
Results. 34

4.7 Division vs Full 4-depth Sequence Recall Task Results. 35

4.8 Division vs Full 5- and 6-depth Sequence Recall Task Results. 36

4.9 Division vs Full 15- and 21-depth Sequence Recall Task Results. 37

4.10 Original vs Modified 4-depth Sequence Recall Task Results. . . 39

4.11 Original vs Modified 5- and 6-depth Sequence Recall Task Results. 40

4.12 Original vs Modified 15- and 21-depth Sequence Recall Task
Results. 41

4.13 Sequence Classification input. 42

4.14 GP vs NEAT 4-depth Sequence Classification Task Results. . 44

4.15 GP vs NEAT 5- and 6-depth Sequence Classification Task Results. 45

4.16 GP vs NEAT 15- and 21-depth Sequence Classification Task
Results. 46

4.17 Division vs Multiplication 4- and 5-depth Sequence Classifica-
tion Task Results. 47

4.18 Division vs Full 4-depth Sequence Classification Task Results. 49

vii

4.19 Division vs Full 5- and 6-depth Sequence Classification Task
Results. 50

4.20 Division vs Full 15- and 21-depth Sequence Classification Task
Results. 50

4.21 Original vs Modified 4-depth Sequence Classification Task Re-
sults. 52

4.22 Original vs Modified 5- and 6-depth Sequence Classification
Task Results. 53

4.23 Original vs Modified 15- and 21-depth Sequence Classification
Task Results. 54

4.24 Copy Task Sequence example showing Program State of every
step. 57

4.25 GP Copy Task Stack Structure. 58

4.26 GP vs NEAT Copy Task Results. 60

4.27 Division vs Multiplication Copy Task Results. 62

4.28 Division vs Full Copy Task Results. 64

4.29 Original vs Modified Copy Task Results. 66

4.30 GP Combined Copy Task Results. 67

4.31 Full Vector Copy Task Results. 69

viii

Abstract

Partially observable tasks require a learning agent to make decisions based on the

previous state, hence a requirement for memory. There is a trade-off between the

flexibility and specificity of the memory. This impacts the ability of the agent to solve

specific tasks versus generalize to a range of tasks. Recently, a suite of ‘deep memory

tasks’ was proposed to evaluate different approaches to partially observable problems.

In this thesis, a canonical tree-structured genetic programming (GP) framework is

assumed as the starting point, with memory taking the form of a list. The interface

to memory requires that canonical GP is deployed as a modular co-evolutionary

framework to support multiple outputs. An empirical evaluation is performed using

three deep memory benchmarks to showcase the relative strength/weaknesses of this

approach. We also compare our findings with neural solutions to distinguish between

the relative contribution of GP versus list-based memory.

ix

Acknowledgements

First and foremost, a huge thanks to Dr. Malcolm Heywood, my research supervisor.

Plenty of idea were tried in the making of this thesis especially with the pandemic,

it was comforting having Dr. Heywood with me during this journey.

To my family and friends who stuck by me through this interesting journey with

patience and understanding, you’ve always pushed me to become a better version of

myself and I hope I made you proud.

x

Chapter 1

Introduction

There are many different approaches to characterizing machine learning (ML) and

the types of tasks to which they might be applied. One of the most widely assumed

is from the perspective of the type of feedback available, leading to the concept of

supervised, unsupervised, and reinforcement learning. Supervised learning implies

that for each input (state) there is a known corresponding outcome (label). Typical

examples of tasks that might be addressed using supervised learning are classification

and regression (function approximation). In both cases, the underlying objective is

to find some mapping from the input space to the label or function space such that

a cost function is minimized. Unsupervised learning represents the subset of tasks

for which there is no label information available, thus the underlying objective is to

describe the original input only data in terms of a lower-dimensional representation,

i.e. clustering. Again, after each input is presented, an update is performed such

that some distance measure is minimized. The last category of a task, reinforcement

learning, represents a decision-making problem in which the learning agent has to

maximize the cumulative rewards over a (possibly infinite) sequence of state inputs.

As such the action chosen by the learning agent at any point in time impacts what

state the agent might experience next. Reinforcement learning tasks appear in appli-

cations such as making investments, decision making for autonomous agents, drones,

cars or robots, and games. In this thesis, we are interested in reinforcement learning

(RL).

When it comes to RL in particular, there are two types of problems that we might

try to address, those where the description of state (input) provided by the task is

complete and the second where state information is incomplete or partial. In the case

of the first type of task, reactive learning agents are sufficient. This implies that an

agent does not need to build a ‘mental model’ of the world (internal state) in order

to make optimal decisions. Conversely, partially observable environments require the

1

2

agent to develop an internal state representation or memory in order to make optimal

decisions.

An example of a task with complete state information would be the game of chess.

This is to say that, all the information we need at any stage in the game, in order

to make an optimal decision is available from the current configuration of the board.

For tasks with partial information, we will need some sort of memory to keep track of

past state values or what steps have we tried (in the past), and what results we have

reached using such steps. An example of that would be card games, where you can

only see cards that you hold and memorize past dealt cards. Another example would

be first-person shooter games where the learning agent’s view is limited by orientation

and position relative to other objects in the environment, i.e. it is not possible to

see through walls, trees, or out the back of the agent’s body. We are interested in

problems with partial information in this thesis.

RL tasks can also be subject to stochastic and deterministic properties. Deter-

ministic tasks do not have a random component to the task, a good example would

be the game of Chess. In Chess, we have a defined set of pieces, each of which has

specific moves that can be performed and this will not change. Conversely, Stochastic

tasks have a random component to them. A good example of that would be the game

of poker where we do not know what is the next card to be dealt. Another example

is games where dice are used, such as back-gammon, where the dice represent the

source of randomization.

In general, if we wanted to invent a new Machine Learning (ML) algorithm we

would need to answer three key questions: representation, credit assignment, cost

function. Representation defines a language for expressing how the learning algorithm

expresses possible solutions. Credit assignment defines how a possible solution can

be modified once the performance is evaluated. The third question addresses the

performance of a possible solution or a cost function. In our work we are interested in

the specific case of Genetic Programming [17]. As such we see genetic programming

addressing the previously mentioned questions in the following way:

• Representation: Genetic Programming (GP) assumes that solutions are de-

scribed in terms of an a priori specified instruction set. In effect, we are conduct-

ing a combinatorial search over the set of instructions appearing in a candidate

3

solution in order to find solutions that optimize the performance function using

the least number of instructions.

• Credit Assignment: represents the process by which the representation is

manipulated. GP assumes that a ‘population’ of candidate solutions exists.

Selection operates on the population to determine which solutions get to sur-

vive. Variation operators modify the ‘parent’ programs to produce ‘offspring’,

typically through the application of crossover and mutation [17]. Finally, re-

placement defines how a new population is defined from the resulting parents

and children, i.e. competition to survive in a fixed size population.

• Performance Function: is the metric used to rank the performance of indi-

viduals relative to each other. In the case of reinforcement learning tasks, it

is typically defined in terms of maximizing the total reward experienced over

a sequential set of interactions between the agent (a GP individual) and the

environment. As such, the reward policy is task-specific.

In this thesis, we will assume that GP takes the general form of Koza’s canonical

tree-structured GP as implemented in DEAP [6]. In doing so, we can concentrate on

the underlying issues of decision-making under incomplete information with varying

amounts of stochastic noise.

1.1 Thesis Objectives

Canonical tree-structured GP is a reactive representation (no capacity for representing

the previous state). In order to overcome such a limitation and work with partially

observable tasks, we will take the approach of adding an external memory. Depending

on how the external memory is designed, we might make the tasks more difficult or

easier to solve. The agent will need to learn when to write and when to read to

memory, given instructions that perform a write or read (from memory). Naturally,

there are many approaches to designing the memory properties for GP. In this thesis,

we develop our solution about the concept of a linked list.

Our second hypothesis relates to the instruction set an agent has access to. We

assume that different instruction sets would have different effects on the agent’s per-

formance. We assume that having a small instruction set would lead to clear and

4

simple solutions on account of how quick or even how often a solution would be

found. On the other hand, we assume having more diverse instructions set would

allow for bigger search space and therefore agents would find a solution more often.

This would come as a trade-off to speed and simplicity versus limiting the instruction

set too much (i.e. not possible to find solutions).

The third hypothesis is related to how the task itself is defined. We assume that

the interaction between task definition and instruction set has the potential to make

the task easier or more difficult for the agent to solve. What we mean by that is, if

a task has a clear definition in relation to the instruction set, then the agent will be

able to find a solution to the given task very quickly. On the other hand, if the task

definition has stochastic/noise properties, we anticipate that this will make it much

more difficult for the agent to solve.

1.2 Thesis Outline

This thesis is structured as follows: In Chapter 2: Related Work, relevant topics

are introduced to present prior work regarding the general approaches assumed for

designing memory versus the flexibility of the resulting memory models. Specifically,

we review developments from both neural networks and GP as well as from the

perspective of internal versus external memory models.

Following that, in Chapter 3: List data structure with genetic programming,

describes in detail our approach for external memory and the control signals that

would be necessary for an agent to access and manipulate the memory. Also, we

detail how to address the single output limitation of canonical tree-structured GP

and the details of the evolutionary credit assignment process we are using.

Then in Chapter 4 Results, the different instruction sets used to evolve GP agents

alongside the configuration file needed for the comparator neural evolutionary repre-

sentation (NEAT) [27]. The benchmarking tasks and their results are then reported

as follows:

• In section 4.2 Sequence Recall, describes the experiment performed and the

results in both GP and NEAT compared. Results from different GP instruction

sets are compared with each other, introducing different kinds of noise and

5

comparing results with the original GP setup, and the generalization properties

of the original setup tested.

• In section 4.3 Sequence Classification, describes the task and experiments per-

formed. Results for both GP and NEAT are compared. Results from different

GP instruction sets are compared with each other, introducing different kinds of

noise and comparing results with the original GP setup, and the generalization

properties of the original setup tested.

• In section 4.4 Copy Task, describes the task and experiments performed. Results

in both GP and NEAT are compared, with results from different GP instruction

sets compared with each other. Different kinds of noise are introduced and

compared, and the generalization properties of the original setup are tested.

Lastly, Chapter 5: Conclusion, wraps up the thesis with a summary of the thesis

including directions in which future work can be done in this area.

Chapter 2

Related Work

In order to address partially observable state tasks, it is necessary that the repre-

sentation support some form of memory (capable of expressing internal state). In

the following, we provide a review of recent research of machine learning frameworks

from the perspective of neural networks and genetic programming. Specifically, the

recent developments in memory models for neural networks will be contrasted with

the historical developments of memory in GP. This will then establish the motiva-

tion for using recent benchmarks from neural networks to assess the capability of GP

augmented with an external memory structure; thus, forming the research question

of this thesis.

2.1 Neural networks with Memory

Neural networks as used for machine learning tasks are often characterized in terms

of layers of neurons in which the output(s) from one layer may only be connected to

the inputs of the following layer (a feedforward architecture). This is sufficient for

reactive/stateless tasks such as classification or regression. Memory (of the previous

state) can be introduced by adopting connection topologies that allow the output of

a neuron in layer l to appear as an input to neurons in the same or earlier layers.1

Memory formed by recurrent connections tends to assume that all values appearing

in the path of a recurrent connection should be retained. Under gradient-based credit

assignment, this leads to pathologies such as vanishing versus exploding gradients [23].

As such, further developments from the neural network community attempt to address

this shortcoming by adding additional controls. The most widely adopted model

is that of the Long Short Term Memory (LSTM) [10]. LSTM supports additional

functionality, such as gating the input to the recurrent feedback loop and enabling

1Implies that a unit delay that takes a value and reintroduce it in the next iteration is applied
to such a recurrent connection.

6

7

the value of a recurrent connection to be reset.

Recently, Graves et al. introduced an alternative formulation for memory in neu-

ral networks called the ‘Neural Turing Machine’ (NTM) [7]. The motivation was

based on the observation that although the distributed form of memory provided by

recurrent connections are Turing-complete (may simulate arbitrary procedures), this

is only realized if they are correctly connected. However, the connectivity patterns

need to be pre-specified.2 A NTM realizes memory by providing the neural network

with an ‘external memory’ (synonymous with the indexed memory of a computer)

that a neural network interacts with using a dedicated set of read and write opera-

tions. Graves et al. demonstrate that the proposed NTM is able to provide solutions

to benchmark problems that defeat recurrent neural networks (LSTM).3 The bench-

marks included the copy task, finding n-grams, and sorting. Later research went on

to generalize these results to planning tasks such as route discovery on the London

underground [8].

Recurrent forms of memory are also present in frameworks for neuro-evolution.

The NEAT (NeuroEvolution of Augmenting Topologies) paradigm represents a widely

assumed approach, in part because the genotypic representation supports the appli-

cation of sexual reproduction under a variable length representation [27]. Specifically,

NEAT initiates evolution from a population of linear models (perceptrons) and incre-

mentally increases complexity by adding (hidden) neurons and modifying the pattern

of connections. Unlike gradient methods, neuro-evolutionary frameworks are there-

fore free to discover recurrent topologies specific to a particular problem. Indeed, the

NEAT framework has been widely applied to tasks with temporal properties. The

following results are identified as being significant to this thesis as they contrast and

compare outcomes using a neuro-evolutionary approach to results from the above

mentioned Neural Turing Machine:

• NEAT with LSTM [22]: provides NEAT with the LSTM as an atomic data struc-

ture for incorporating into neural networks as evolved by the NEAT framework.

In addition, in order to scale the approach to tasks with increasing memory

2Gradient methods for credit assignment are good for optimizing weights within fixed topologies,
not discovering the topology connectivity itself.

3Indeed, feedforward network, LSTM, and external memory can all be used in a single architecture
for maximum performance [7].

8

‘depth’, NEAT is rewarded for evolving neural network topologies that max-

imize the information stored in the LSTM data structures. Benchmarking is

performed using the sequence classification and recall tasks (representing tasks

that can be scaled to different memory durations) with success rates in the order

of ≈ 25% on the 5-depth sequence recall task and 6-depth sequence classification

task.

• Evolving Neural Turing Machines [9]: demonstrated that adopting a neuro-

evolutionary approach to credit assignment enabled the interface to external

memory to be substantially simplified. Moreover, the topology of the controlling

neural network could also be directly evolved. Empirical evaluation on the Copy

Task demonstrated generalization under much deeper tasks than demonstrated

with NTM, with zero error and a solution identified with a single neuron (as

opposed to the 100 neurons appearing in the NTM solution).

• Modular Memory Units [16]: proposes a specific configuration of input, read and

write gates relative to a memory cell. The resulting ‘modular memory unit’ is

embedded within the hidden layer of a feedforward neural network and can

be trained using either neuro-evolutionary or gradient-based credit assignment

mechanisms. Benchmarking was performed using the sequence classification

and sequence recall tasks (also adopted in this thesis) with results typically

better than reported by [22].

2.2 Genetic Programming with Memory

Recurrent (as opposed to external/indexed) memory is associated with the retention

of a single variable’s state. Koza originally proposed to support variables by having

a single read/write operation to act on a specific variable reference in tree-structured

GP [17]. Naturally, it was necessary to ‘guess’ the relevant number of variables.

Conversely, under the so called ‘linear GP’ representation, instructions are expressed

in an imperative programming language, e.g. R[a] = R[a] 〈op〉 R[b]; where R[a]

is a reference to array/ register cell a and 〈op〉 is a two argument operator. Naturally,

if the registers are not reset after execution of the program, all registers retain their

9

content and are therefore recurrent (or stateful) with respect to their previous value

[19].

Silva et al. proposed a framework called ‘Genetically Programmed Networks’

(GPN) in which individuals consist of n programs [24]. Programs comprising an in-

dividual receive input in the form of task attributes, outputs from other programs in

the same individual, or delayed outputs from other programs; the latter correspond

to recurrent connections associated with a single program’s output as fed back to

an ‘earlier’ program in the same individual. Silva et al. demonstrate that the GPN

framework is able to evolve solutions to the Tartarus (4 × 4) grid world task (intro-

duced by Teller and Andre, see below). Memory in this case is distributed across the

‘network’ of n programs and only associated with the output of each program (as

opposed to variables within programs).

Indexed memory for tree-structured GP was introduced by Teller ([28]) using a

single argument ‘read’ operation (argument specified the memory ‘address’) and a

dual argument write (value for writing and memory address). Naturally, the read

operation returned the value read from memory, however, the write also returned a

value, this time the value at the memory address before performing the write. This

was necessary in order to ensure that values could continue to be passed up the tree

(from the position of the write instruction). Teller went on to demonstrate that tree-

structured GP could produce solutions to a grid world task in which blocks had to be

pushed to the boundary of the grid (the Tartarus task). However, both Andre and

Brave later pointed out that the role of indexed memory under Teller’s experiments

might be unrelated to the development of internal state representations for solving

the Tartarus task. Agapitos et al. went on to consider the role of soft updates4 to

Teller’s indexed memory model under a Financial Trading application [1].

Andre and Brave separately proposed tree-structured GP formulations for map

making / planning in which the left and right hand branches were evaluated in in-

dependent ‘phases’. During phase 1, the exploration branch is executed, implying

for Andre that indexed memory can be written to, but the state of the environment

cannot change [2, 3]. In short, the purpose of the exploration phase is to visit the ‘in-

teresting’ states of the world and develop an appropriate representation in memory.

4Soft updates imply that writing the value x to memory location i is defined by the operation
M[i] = M[i] × x. McPhee et al. develop the concept for tree-structured GP in general [20].

10

After completing phase 1, the same agent is allowed to execute its second branch,

which in the case of Andre may only take input from memory. The agent, however,

can now modify the world. Brave assumed the same division of duties, but went

about developing the memory model using pointers expressed relative to the original

state [4]. In both cases, the Tartarus grid world task was assumed (a 4 × 4 world),

thus assuming that the agent could navigate the world without memory was feasi-

ble. Moreover, it was never necessary to develop a lower dimensional representation

of state for efficiency purposes because the grid worlds were always sufficiently low

dimensional. Indeed, isomorphic memory representations of state were the norm.

Langdon showed that tree-structured GP with indexed memory can evolve data

structures such as queues and lists [18]. However, the explicit goal was to evolve the

relevant operations to control indexed memory to operate as a queue/list. Langdon

went on to demonstrate that given tasks that could benefit from specific data struc-

tures (such as queues or stacks), GP would use the data structures in preference to

indexed memory (that would require the data structure to be evolved while solving

the task). Finally, Langdon drew attention to the ‘deceptive’ nature of tasks involving

a memory requirement. This was equated to the premature loss of useful primitives

in the population. As such, diversity measures were introduced in an attempt to let

primitives exist long enough for their respective purpose(s) to become apparent, i.e.

have a measurable effect on performance.

Most recently, forms of memory have been developed for GP agents operating in

both high dimensional (video frame buffer [26, 25, 14]) and low dimensional (1 or

2 inputs [13, 14, 15]) partially observable environments. Memory for other forms of

GP has also been demonstrated, for example, recurrent ‘connections’ in Cartesian GP

provides the basis for evolving solutions to low dimensional grid world and forecasting

problems [29].

2.3 Discussion

Machine learning as applied to supervised learning and reinforcement learning5 tasks

need not be anything more than reactive. However, tasks that are in some way par-

tially observable will need to augment (external) state information with internal state,

5Conforming to the Markov property of complete state information.

11

or memory. Section 2.1 provided a characterization of developments in memory mech-

anisms from the perspective of neural networks sufficient to motivate the research

conducted in this thesis. Specifically, although recurrent connections are ‘Turing-

complete’, they face practical limitations that limit their application. The Neural

Turing Machine framework addresses this by providing an interface to indexed mem-

ory. Also noteworthy for this thesis was that neural-evolutionary paradigms could

either build on the NTM or LSTM frameworks in order to more efficiently discover

solutions to a set of scalable benchmark ‘deep’ memory problems.

Research using memory for genetic programming has taken a similar path (§2.2),

with both recurrent/scalar memory and external indexed / data structures provided to

enable tasks with partially observable state to be solved. However, to date, the tasks

used to benchmark recent developments in neural networks have not been applied

to GP. The approach of this thesis is to assume a tree-structured representation

for GP but to revisit the role of external memory as a predefined data structure.

We hypothesize that the style of credit assignment and representation assumed by

canonical tree-structured GP will be sufficient for discovering efficient solutions to

deep memory benchmarks that recent neural representations still find challenging. In

the next section, the specific approach to deploying GP for these style tasks and the

stack data structure itself will be detailed.

Chapter 3

List data structure with genetic programming

This thesis hypothesizes that we can draw on the approach adopted by Langdon [18]

(reviewed in §2.2) to demonstrate that GP is also effective for solving benchmark

‘deep’ memory tasks (reviewed in §2.1). Specifically, we will assume the following:

• GP will take the form of the classical tree structure, as implemented in the open

source DEAP Python distribution [6].

• External memory will take the form of a list data structure controlled by up

to four commands: push, pop head, pop tail, no op. Push and pop result

in pushing and popping data to/from the list data structure (hence a stack).

A data pushed will be the input state from the environment. Such a design

decision is motivated, on the one hand, by external memory of the NTM [7]

and neuro-evolution (e.g. [9]). On the other hand, Langdon demonstrated that

GP could exploit data structures when provided. The machine learning agent1

will have to develop a policy for controlling the stack given reinforcement

feedback from the environment.

• Tree-structured GP is limited to a single output [17]. In order to support

the four outputs necessary to control the stack, four populations will be co-

evolved, i.e. a prior decomposition of the task. Individuals may only ‘mate’ with

other individuals from the same population (ensuring a common context). The

fitness of each program, however, is expressed relative to a sampling (without

replacement) of one individual from each population.2 Such a sampling across

the four populations defines the GP reinforcement learning agent. Thus, fitness

reflects individuals that are good at their respective tasks (push, pop, no-op) and

1By ‘agent’ we imply that any candidate solution that the machine learning framework suggests
can be assumed. In this thesis, we compare different GP and neural evolutionary formulations.

2Applied repeatedly until no further individuals exist.

12

13

as well as good co-operators. Co-operation is therefore an emergent phenomena

with only implicit support for ‘team’ or ‘group fitness’.3

• Simple instruction sets will be assumed throughout. Unlike Langdon [18], no

attempt will be made to construct instruction sets and functions that promote

task-specific behavior (loops, functions shared between particular subsets of pro-

grams, etc). Instead, we limit the instruction set to a common set of arithmetic

and logical operations for all benchmark tasks.

In the following, we provide the details for the above framework and conclude

with a discussion and comparison of the proposed approach with earlier works.

3.1 GP Structure

DEAP (Distributed Evolutionary Algorithm in Python [6]): assumes Koza’s

original canonical tree-like structure [17] to evolve programs (Figure 3.1). Thus, the

external leaves of the tree represent zero-argument references to input state variables,

si(t), and constants (green color). A set of constants are initialized prior to evolution

and then remain the same while the state variables, si(t), define the state of the

environment at time step t. Internal nodes are the operations that will be executed

using the leaves as inputs from the bottom up to produce a value in the internal nodes

and ultimately the single root node (red color). This structure is sufficient when we

have a task consisting of a single output. However, when a task requires support for

multiple outputs then the tree-structured representation represents a limitation. To

overcome the single output restriction, a multi-population framework is assumed, one

population per output (Figure 3.2).

All of the experiments in this paper assume a reinforcement learning context;

which is to say that the machine learning agent (GP or neural network) experiences an

environment through the vector of inputs describing the current state of the environ-

ment. Let si(t) denote the i -th state input at time step t. The agent then suggests an

action, a, in this case selected from the set {pop, push tail, push head, no op}.
After which a reward might be received, r(t+1), and the input state updates, si(t+1),

3Explicit formulations for co-evolution through Teaming (e.g. [5, 12, 14]) might be assumed in
future research.

14

Figure 3.1: GP tree structure

to reflect the impact of the agent’s action on the environment. If an action is deemed

to result in the agent entering a terminal state (by the environment), the agent will

receive a lower cumulative reward,
∑

t r(t), than an agent that completes more of the

underlying task.

An agent is the composition of GP individuals as sampled from each population,

thus an agent has the same number of individuals as the possible actions. For instance,

given a task with the push, pop head, push head and no op actions, the agent will

have four members, one from each of the four different populations. The composition

of an agent has the following form: the first agent will be composed by selecting

individual k = 0 from each population, the second agent will be composed by selecting

individual k = 1 from each population and so on until k = N − 1; implying N agents

have been constructed. Each member of the agent will be assigned the same fitness,

i.e. fitness reflects the group performance of the set of programs comprising the agent.

Each individual may only appear in one agent for each fitness evaluation. Moreover,

index k does not imply any particular ordering on the respective populations, so k = 0

does not imply the best-performing program from each population.4 The following

pseudo-code describes the formation of a team:

4Biases could be investigated in the future. Instead, we will rely on mate selection to result in the
best-performing programs receiving higher reproductive rights, thus appearing with more frequency
within the population as generations progress.

15

1 # N = population size

2 pop1 = [tree1 , tree2 , ..., treeN] # Represent Push

3 pop2 = [tree1 , tree2 , ..., treeN] # Represent Pop Head

4 pop3 = [tree1 , tree2 , ..., treeN] # Represent Pop Tail

5 pop4 = [tree1 , tree2 , ..., treeN] # Represent No -Operation

6

7 # Create a list of teams

8 teams_list = []

9 for I = 1 to N

10 teams_list.push([pop1[I], pop2[I], pop3[I], pop4[I]])

11 Next I

Listing 3.1: Agent Team formation

Each population is of a constant size, ’N’. Having established the fitness of each

agent, all programs participating in that agent receive the same fitness. Fitness

evaluation is the only step performed using programs from each population. Selection

is the process by which a population is seeded5, so advancing each population from

generation g to g + 1. To do so, a tournament of size ’n’ is repeatedly applied (with

replacement) to identify parents, one per tournament. In each case, the individual

from the tournament with the highest fitness6 is copied to the next population. This

process continues until we have seeded a new population of size ’N’. The following

pseudo-code represents the process of selecting individuals:

1 # N = population size

2 # n = tournament size

3 chosen = []

4 for i in range(N):

5 tournament = [random.choice(individuals) for i in range(n)]

6 # attrgetter is a method to return individual attribute

7 chosen.append(max(tournament , key=attrgetter(fitness))

Listing 3.2: Population Tournament Selection

Now that we have a population of parents with the best fitness of their respective

tournaments, we introduce diversity. The variation process consists of two steps: 1)

mate pairs of consecutive individuals with probability, cxpb. Cross-over selects the

material from the parents to exchange [17], otherwise the parents remain unchanged

5The multi-population model implies that there are as many populations as actions.
6As inherited from the agent a program participated in.

16

2) mutate every individual with probability mutpb. Mutation implies that a randomly

selected node is flipped to a matching argument operator/state index / constant. The

following pseudo-code summarizes both the crossover and the mutation procedure:

1 chosen = individuals.copy()

2 # cxpb = Crossover Probability

3 # mutpb = Mutation Probability

4 for i in range(1, len(offspring), 2):

5 if random.random () < cxpb:

6 offspring[i-1], offspring[i] = mate(offspring[i-1],

offspring[i])

7 del offspring[i-1]. fitness.value , offspring[i]. fitness.

value

8

9 for i in range(len(offspring)):

10 if random.random () < mutpb:

11 offspring[i], = mutate(offspring[i])

12 del offspring[i]. fitness.value

Listing 3.3: Population Crossover and Mutation

The multi-population approach implies a decomposition of the task, while the

same (state) inputs are used for each (GP individuals will identify which inputs

to actually use). We use the value in the root node of the champion from each

population, the population argument with the maximum value expresses the choice

of output under the current state (input). For instance, if we have 4 populations and

we get the following values from our champion root nodes (0.2, 0.1, 0.6, 0.25) then

the resulting choice is the one expressed by the third population, or

a∗ = arg max
i∈A

(GPi(pk)) (3.1)

where GPi(pk) is the numerical value returned from the root node of program i after

execution w.r.t. input state ~s(t). A is the number of populations (and therefore the

number of outputs specified in the task). a∗ is the action suggested by the ‘winning’

program.

For instance, in the experiments below we assigned the first population to represent

action push to memory, second population to pop from memory and third population

to abstain from doing any action, i.e. no-operation. When evaluating fitness we take

the output of each of those populations and if the value of the first population is the

17

Figure 3.2: GP Multi-Population Structure.

highest then we execute the push to memory operation. The execution would then

commence from the new state, ~s(t + 1), given that the execution of state interacts

with the task and does not result in a terminal state.

Memory: For memory we assumed the list data structure, where the first word

added to the list is the first word retrieved from memory. However, in order to

provide additional degrees of freedom to the resulting functionality, we provided the

agent with the ability to retrieve from the head of the list or the tail. Function D

is a delay function that looks at the head of the list and passes it to input in the

next generational cycle without changing the value of the list head. An agent can

interact with the memory and change it without the memory being able to affect

the agent. We use function D to complete the loop between the agent and the

memory, where the memory would have an impact on the agent as it is fed as input

to the agent. Figure 3.3 summarizes the relationship between all of these components.

Inputs are fed to GP individuals from each population. Based on the output from GP

individuals comprising the team under evaluation, we get the argument associated

with the ‘winning action’. That action will update the state of the world, and the

process iterates until some terminal condition is encountered.

18

Figure 3.3: GP Stack Structure.

3.2 Evolution Algorithm

We assume the following overall process for the evolutionary algorithm, the algorithm

maintains a list of candidate solutions (the population, size N) selects survivors (par-

ents) before applying variation operators to maintain diversity. The algorithm consists

of.

• each individual undergoes a fitness (performance) evaluation.

• individuals are selected to be parents using tournament selection. So n(<<

N) individuals are selected with uniform probability. The fittest (from each

tournament) is copied to the next population. N tournaments are performed

to identify N parents.

• variation operators are applied to the parents to introduce diversity.7 This takes

the form of Crossover (sexual variation) and Mutation (asexual variation).

The process then iterates, so the new individuals have their fitness evaluated.

When the generational loop is done, the algorithm returns the final population. The

following pseudo-code shows in more detail the steps the modified algorithm takes.

7Otherwise, the best individual at generation zero would ultimately just copy itself throughout
the population.

19

1 # N = population size

2 pop1 = [tree1 , tree2 , ..., treeN]

3 pop2 = [tree1 , tree2 , ..., treeN]

4 pop3 = [tree1 , tree2 , ..., treeN]

5 pop4 = [tree1 , tree2 , ..., treeN]

6

7 # New trees have fitness set to invalid , add new trees of each

population in a list to be evaluated

8 new_individual1 = [new_tree1 , new_tree2 , ..., new_treeN]

9 new_individual2 = [new_tree1 , new_tree2 , ..., new_treeN]

10 new_individual3 = [new_tree1 , new_tree2 , ..., new_treeN]

11 new_individual4 = [new_tree1 , new_tree2 , ..., new_treeN]

12

13 for I = 1 to N

14 evaluate_fitness(new_individual1[I], new_individual2[I],

new_individual3[I], new_individual4[I])

15 Next I

16

17 # halloffame is used to store the best performing individual in

population.

18 halloffame1.update(pop1)

19 halloffame2.update(pop2)

20 halloffame3.update(pop3)

21 halloffame4.update(pop4)

22

23 For each generation evolving include:

24 # Select the next generation individuals (select entire population):

25 offspring1 = select(pop1 , len(pop1))

26 offspring2 = select(pop2 , len(pop2))

27 offspring3 = select(pop3 , len(pop3))

28 offspring4 = select(pop3 , len(pop4))

29

30 # Vary the pool of individuals:

31 offspring_pop = clone(parent_pop)

32 For I = 1 to len(offspring_pop)

33 If mate_probability then

34 child1 , child2 = mate(offspring_pop[I], offspring_pop[I

+1])

35 offspring_pop[I] = child1

20

36 offspring_pop[I+1] = child2

37 End

38 Next I

39 For I = 1 to len(offspring_pop)

40 If mutate_probability then

41 mutate_child = mutate(offspring_pop[I])

42 offspring_pop[I] = mutate_childtemp_data

43

44 # Select new trees with invalid fitness then (number of invalid tree

!= N):

45 for I = 1 to N

46 evaluate_fitness(new_individual1[I], new_individual2[I],

new_individual3[I], new_individual4[I])

47 Next I

48 # Update the hall of fame with the generated individuals.

49 # Replace the current population with the offspring.

50 # Return a list of final populations

Listing 3.4: Modified Simplest Evolutionary Algorithm

We note the use of a ‘hall of fame’ which is an elitism function to keep a record

of the best individual through the generations. As each population (in the multi-

population framework) converges the hall of fame will retain the champion agent.

3.3 Discussion

The proposed framework assumes the availability of a list that can be controlled using

a set of actions: {pop, push tail, push head, no op}. The goal of the agent is to

determine the relevant policy to control the list to perform some tasks under the re-

ward signal received by the environment. Given that we are using tree-structured GP,

a separate population is employed for each action. A weak co-evolutionary framework

will be assumed in which one individual is sampled from each population without re-

placement to build an agent. Fitness is measured relative to the agent’s performance,

and it is this fitness that each program comprising that agent receives. Once N agents

are evaluated, we have the fitness for A×N GP individuals. Selection, reproduction,

and replacement can then be performed relative to each population.

The use of an external data structure is common to GP with indexed memory

21

(reviewed §2.2. However, the typical approach is to include instructions within the

instruction set of programs, and have these manipulate memory. Instead, we assume

the approach of NTM, neuro-evolution, and Langdon and have the action of a program

be a signal sent to control a feature of external memory. This implies that there can

only be one action per time step/interaction with the environment. However, as

per NTMs, this is still sufficient for solving potentially difficult partially observable

problems.

Chapter 4

Results

An empirical study will be performed with the weakly coupled coevolutionary GP

formulation for controlling a list as a queue (§3) with three parameterizable ‘deep’

memory tasks: Sequence Recall (§4.2), and Sequence Classification (§4.3), and Copy

Task (§4.4). Moreover, in addition to comparing our results with those previously

published ([7, 9, 22, 16]), we will also run additional experiments using the NEAT

framework for evolving neural networks. These experiments will assume the same

interface to the list data structure as the weakly coupled coevolutionary GP formu-

lation; hence, will give some insight as to how much is due to GP and how much is

due to the data structure.

4.1 Experiment Parameterizations

A GP framework allows a user to use a wide variety of operators and user-defined

primitives [6]. Using this feature gives the power to customize the population and

come up with a solution that best fits the problem at hand. We varied the type and

the number of operators used to solve memory problems. The hypothesis is that not

only will smaller instruction sets result in discovering solutions faster, but also that

including ‘protected division’ will have a significant impact when the task definitions

from previous benchmarking studies are assumed [7, 9, 22, 16]. Table 4.1 shows the

difference between the approaches taken, while table 4.2 lists parameters used by GP

to configure the evolution algorithm:

22

23

Operators Div Multiplication Full

Addition × × ×
Subtract × × ×

Protected Division × ×
Multiplication × ×

Boolean ×
if-then-else ×

And ×
Or ×
Not ×

Less than ×
Equal ×

Random Constant ×

Table 4.1: Table shows different operators used by different populations in attempt
to best solve Tasks using GP.

Parameter Value

Tournament size 5
Crossover Probability 0.5
Mutation Probability 0.4

Table 4.2: Table shows parameters used by GP to configure the evolution algorithm.

Protected division (%) was introduced by Koza as a mechanism to ensure that a

real-valued number was always returned following application of arithmetic division

[17]. Specifically, Koza proposed the following definition for protected division:

a%b =

{
a
b

b > 0.0

1.0 b = 0.0
(4.1)

where in practice the use of floating point arithmetic implies that it is necessary to

trap overflows resulting from b −→ 0.0

Several authors have noted that such a definition introduces a discontinuity into

the division operation that works against its use in regression/ function approximation

problems [21, 11]. We hypothesize that for the ‘deep’ memory benchmarks as typically

defined, the above definition will actually make the task easier. That is to say, the

division operation will act as if it is a conditional statement returning unity if the

second argument is zero, and perform the division operation otherwise.

24

As remarked above, we will also repeat experiments in which the proposed weakly

coevolutionary GP formulation is replaced by an approach to evolving neural net-

works. Specifically, the neural evolution of augmented topologies (NEAT) framework

will be assumed on account of: 1) its use in prior research in the ‘deep’ memory

benchmarks [8, 22], and; (2) to establish to what degree the results we achieve are

due to the data structure versus the GP formulation. Naturally, the NEAT framework

assumes a configuration file that governs how the network evolves.

Parameter Value

fitness criterion Max

fitness threshold 100

pop size 400

reset on extinction 1

num inputs Task Related

Initial # hidden neurons 1

num outputs Task Related

initial connection partial direct 0.5

feed forward False

compatibility disjoint coefficient 1.0

compatibility weight coefficient 0.6

conn add prob 0.1

conn delete prob 0.1

node add prob 0.1

node delete prob 0.1

activation default sigmoid

activation options sigmoid

activation mutate rate 0.1

aggregation default sum

aggregation options sum

aggregation mutate rate 0.0

bias init mean 0.0

bias init stdev 1.0

25

Parameter Value

bias replace rate 0.1

bias mutate rate 0.7

bias mutate power 0.5

bias max value 30.0

bias min value -30.0

response init mean 1.0

response init stdev 0.1

response replace rate 0.1

response mutate rate 0.1

response mutate power 0.1

response max value 30.0

response min value -30.0

weight max value 30.0

weight min value -30.0

weight init mean 0.0

weight init stdev 1.0

weight mutate rate 0.4

weight replace rate 0.5

weight replace power 0.5

enabled default True

enabled mutate rate 0.01

compatibility threshold 3.0

species fitness func max

max stagnation 20

elitism 2

survival threshold 0.2

Table 4.3: Table shows parameters used in configuration

file in attempt to best solve tasks using NEAT.

26

Table 4.3 lists the values used in the configuration file. In our attempt to make

NEAT work better we have changed the values of some of those parameters. Starting

with the population size, we have tested with both higher and lower numbers in

population and we didn’t notice much of a difference. The initial number of hidden

neurons was another parameter that we experimented with, a higher number didn’t

produce better results. We also changed the activation function, response mutate and

weight mutate.

4.2 Sequence Recall

For our first experiment, we introduce the Sequence Recall Task, which is also known

as T-maze navigation task [16, 22]. The Sequence Recall task requires an agent to

start at one end of a T-maze and is given an instruction. The agent then moves

in the ‘maze’ along a corridor until it reaches a junction. At this point, the agent

needs to make a decision to go left or right, depending on the instruction given at

the beginning of the task. In order to solve the task, the agent has to correctly and

accurately remember the instruction given at the start of the task. The agent would

also need to maintain this information and retain it to be used when encountering

the junction as opposed to earlier points along the corridor.

Figure 4.1: Sequence Recall Task. An agent listens to a series of instructions at
the beginning of the trail, then travels along multiple corridors. The agent needs to
select which direction it will go at a junction based on the direction received at the
beginning.

Starting with the simple form of the Sequence Recall task, it can be extended

to solve more complex higher depth Sequence Recall tasks, i.e. consist of multiple

junctions and corridors of variable length, Figure 4.1. At the start of the maze, the

27

Figure 4.2: Sequence Recall Input Sequence Example. The ones in the first
line indicate the agent receiving instructions. The accompanying second line is the
instructions, where 1 means right and 0 means left. From here on, the second line
will indicate the length of the corridor. When the corridor reaches zero, this would
indicate the agent reached a junction.

agent receives a set of instructions before moving along the current corridor. When

the agent encounters a junction, it will need to decide on the direction it will move,

based on the instructions received at the beginning of the task to reach the end goal.

Figure 4.2 is the input corresponding to Figure 4.1.

The input consists of 2D array where the first input indicates the ‘mode’ for

interpreting the second bit. Thus, only when the first bit is set to ‘1’ should the

agent treat the second input as a direction. Thereafter, the first input takes a value

of ‘0’ indicating that the agent needs to navigate the maze. The second input can

either be a direction or a countdown to the end of a corridor. Once a corridor length

reaches zero, this would mean the agent has reached a junction and has to make a

decision based on the instruction received at the beginning of the task. In order for the

agent to successfully solve that task, it needs to accurately memorize the instructions

in the original order and then retrieve this information in sequence, through multiple

corridors of varying lengths.

The fitness of the program is calculated by how well it can reuse the input infor-

mation to navigate the maze. For instance, the example given in 4.2 should follow

the flow shown in the following step by step table:

index input Description Action

0 [1,1] an instruction bit of going right, commit to memory Push

1 [1,0] an instruction bit of going left, commit to memory Push

2 [1,0] an instruction bit of going left, commit to memory Push

3 [1,1] an instruction bit of going right, commit to memory Push

28

index input Description Action

4 [0,1] Moving in the corridor None

5 [0,0.5] Moving in the corridor None

6 [0,0] Reached a corner and retrieve an instruction from memory Pop Head

7 [0,1] Moving in the corridor None

8 [0,0.75] Moving in the corridor None

9 [0,0.5] Moving in the corridor None

10 [0,0.25] Moving in the corridor None

11 [0,0] Reached a corner and retrieve an instruction from memory Pop Head

12 [0,1] Moving in the corridor None

13 [0,0.5] Moving in the corridor None

14 [0,0] Reached a corner and retrieve an instruction from memory Pop Head

15 [0,1] Moving in the corridor None

16 [0,0.75] Moving in the corridor None

17 [0,0.5] Moving in the corridor None

18 [0,0.25] Moving in the corridor None

19 [0,0] Reached a corner and retrieve an instruction from memory Pop Head

Table 4.4: Table shows step by step simulation for agent

processing sequence recall input

Leaving us with the following list of actions:

Push Push Push Push None None Pop Head None None None None

Pop Head None None Pop Head None None None None Pop Head

Each of these actions carries a weight of 1, the fitness will be calculated up until

the performed action does not match the expected action. Training is performed on

50 different sequences with random corridor lengths between 10 and 20 steps. The

list data structure serves as a memory to store the instruction given to the agent.

The agent will have the freedom to pick an action from the head or tail of the queue

or four outputs consisting of: push, pop head, pop tail, no op. When evolving

the programs there are a few settings that can be tweaked to control the complexity

29

of the task:

• Sequence Depth: One parameter that can change is the number of instruc-

tions given to an agent at the beginning of the task. This will impact the number

of corridors and junctions in a maze. The more instructions the agent receives

at the beginning of the task, the more corridors and junctions the agent will

face to solve the maze. In our experiment, we have experimented with depths

of 4, 5, 6, 15, and 21.

• Corridor Length: Number of steps the agent has to take to reach the junction.

The length is determined randomly and ranges between 10 and 20. This will

help ensure that the agent cannot simply memorize when to retrieve info from

the memory structure, but it has to react to reaching the junction. The agent

would also need to decide on what to retrieve from the memory structure, either

from the head of the queue or the tail of the queue. If we were to use fixed-

length corridors, the agent would memorize when to turn rather than learn what

constitutes a junction, and when faced with a different layout the agent will not

succeed in finding a solution.

• Iterations: we have chosen to work with 50 separate tasks of random sequences

with varied depths per fitness evaluation. This was done to ensure that solutions

do not optimize for one specific length, but can generalize to different depths.

4.2.1 GP versus NEAT

We begin by comparing the GP configuration with that of NEAT, both assuming

the same interface an external list. Results shown in Figure 4.3 represent 20 runs

of 250 generations in GP and 500 generations in NEAT. The GP fitness of each

generation was calculated by evaluating the champion of said generation on a new

randomly generated sequence and recording the evaluation results (not used for fitness

evaluation-selection-replacement). While NEAT fitness was calculated based on the

fitness of the champion during training. The GP run assumes the Div operators from

Table 4.1 (+,−,%) and NEAT configuration file had the parameters from 4.3 with

30

Figure 4.3: GP vs NEAT 4-depth Sequence Recall Task Results. Figure shows
an evolving solution for a 4-depth sequence of varied corridor lengths using mean and
standard deviation of 20 runs. The x-axis shows the number of generations while the
y-axis shows the fitness of the generation. Colored lines show the mean of the 20
runs. The shaded area shows the standard deviation of the 20 runs.

31

Figure 4.4: GP vs NEAT 5- and 6-depth Sequence Recall Task Results.
Figure shows an evolving solution for 5-depth and 6-depth sequence of varied corridor
lengths using mean and standard deviation of 20 runs. The x-axis shows the number
of generations while the y-axis shows the fitness of the generation. Colored lines show
the mean of the 20 runs. The shaded area shows the standard deviation of the 20
runs.

num-inputs = 2 (Instructions and data) and num-outputs = 4 (Push, Pop Head,

Nothing and Pop Tail).

Figure 4.3 shows the mean and standard deviation of the 20 runs combined. We

will start with sequences of 4 junctions depth 1, showing that GP has the upper hand

in this number of solutions and how fast it was reached. The following code represents

the functions of the champion reached in GP:

1 # Tree1 represent Push action

2 tree1 = add(ARG0 , ARG0)

3 # Tree2 represent Pop Head action

4 tree2 = protected_div(ARG0 , ARG1)

5 # Tree3 represent No Action

6 tree3 = add(ARG0 , ARG1)

7 # Tree4 represent Pop Tail

8 tree4 = add(ARG1 , ARG0)

Listing 4.1: Sequence Recall Champion Code

1Testing was done on a different set of 4-depth sequences.

32

Figure 4.5: GP vs NEAT 15- and 21-depth Sequence Recall Task Results.
Figure shows an evolving solution for 15-depth and 21-depth sequence of varied cor-
ridor lengths using mean and standard deviation of 20 runs. The x-axis shows the
number of generations while the y-axis shows the fitness of the generation. Colored
lines show the mean of the 20 runs. The shaded area shows the standard deviation
of the 20 runs.

Looking at results in Figure 4.4 we can see that NEAT starts to fall behind GP

at the beginning as the task becomes more complex and then catches up and find a

solution. The difference is not that significant after the first 250 generations as the

standard deviation starts to become closer to the mean of 20 runs. Following the

same pattern we can see in Figure 4.5 NEAT falls even farther behind as the task

gets more complicated while GP continues to perform better even in the 21-depth

task. The standard deviation for NEAT does not become any better as generations

progress in 15-depth and 21-depth.

Table 4.5 summarizes the respective GP and NEAT model outcomes under all the

different depth limits associated with the Sequence Recall task.

Generalizing Task: Taking the champions from the GP 21-depth runs and

testing it with even higher depths we managed to solve the task every single time.

We tested with 50-depth and 100-depth. Which led us to the conclusion, once the

task is being solved the champion can solve higher depth with no issues.

33

GP (test) NEAT (training)
Mean Standard Deviation Mean Standard Deviation

4-depth 100 0.0 96.42 15.59
5-depth 95.1 21.35 96.21 16.5
6-depth 100 0.0 96.04 17.25
15-depth 95.0 21.79 95.59 19.20
21-depth 100 0.0 91.0 26.97

Table 4.5: Table shows final generation Mean and Standard Deviation for sequence
recall NEAT and GP.

4.2.2 Replacing the protected division instruction

In the next experiment, we investigate the impact of the protected division on our

instruction set, since a protected division will return ‘1’ in case of dividing by ‘0’.

We hypothesize that such an operator effectively represents a conditional statement

that returns ‘1’ when the denominator is ‘0’ and therefore particularly useful for

memory recall task definitions as typically assumed. We swapped Div operators with

Multiplication operators from Table 4.1 and we ran the experiment again. Results in

Figure 4.6 show the difference between Div and multiplication operators used to solve

this task. We can see immediately the effect multiplication is having on the solution.

In both 4-depth and 5-depth cases, a solution was not found using Multiplication

operators.

Table 4.6 reports the resulting mean and standard deviations under test condi-

tions. Replacing the protected division operator with multiplication clearly ‘breaks’

the capacity of GP to solve the Sequence Recall task, whereas under the Copy Task,

replacing protected division with multiplication was preferable.

Div Multiplication
Mean SD Mean SD

4-depth 100 0.0 0.0 0.0
5-depth 95.1 21.35 0.0 0.0

Table 4.6: Table shows final generation Mean and Standard Deviation for sequence
recall Div and Multiplication instruction sets in GP.

34

Figure 4.6: Div vs Multiplication 4- and 5-depth Sequence Recall Task Re-
sults. Figure shows the difference between Div and Multiplication operators evolving
solution for 4-depth and 5-depth sequence of varied corridor lengths using mean and
standard deviation of 20 runs. The x-axis shows the number of generations while the
y-axis shows the fitness of the generation. Colored lines show the mean of the 20
runs. The shaded area shows the standard deviation of the 20 runs.

4.2.3 Complex instruction set

Having established that the concise instruction set requires protected division, we

expand the instruction set to include arithmetic, Full operators, and constants (Table

4.1) and we repeated the experiment once again.

Results in Figure 4.7 show that there is no difference between the two different

instruction sets under the 4-depth setup. Moving on to the 5- and 6-depth task

parameterizations (Figure 4.8) the Full instruction set have better performance and

find solutions every single time. We also notice how consistent the standard deviation

is for the mean of those solutions.

Conversely, under the 6-depth task parameterization, both lines almost match.

Looking more into the results we found that in one of the runs a solution was not

reached which caused the wider standard deviation in the Div instruction set under

the 5-depth task. The following code represents the functions of the champion reached

in the GP Complex instruction set using Full operators:

35

Figure 4.7: Div vs Full 4-depth Sequence Recall Task Results. Figure shows
the difference between Div and Full operators evolving solution for a 4-depth sequence
of varied corridor lengths using mean and standard deviation of 20 runs. The x-axis
shows the number of generations while the y-axis shows the fitness of the generation.
Colored lines show the mean of the 20 runs. The shaded area shows the standard
deviation of the 20 runs.

36

Figure 4.8: Div vs Full 5- and 6-depth Sequence Recall Task Results. Figure
shows the difference between Div and Full operators evolving solution for 5-depth
and 6-depth sequence of varied corridor lengths using mean and standard deviation
of 20 runs. The x-axis shows the number of generations while the y-axis shows the
fitness of the generation. Colored lines show the mean of the 20 runs. The shaded
area shows the standard deviation of the 20 runs.

1 # Tree1 represent Push action

2 tree1 = mul(mul(ARG0 , ARG0), if_then_else(False , ARG0 ,

92.26174280394346))

3 # Tree2 represent Pop Head action

4 tree2 = protected_div(ARG0 , ARG1)

5 # Tree3 represent No Action

6 tree3 = mul(if_then_else(lt(ARG1 , ARG0), mul(ARG0 , ARG0), mul

(57.58064261386541 , ARG1)), if_then_else(True , ARG1 , ARG0))

7 # Tree4 represent Pop Tail

8 tree4 = mul(mul(ARG0 , 21.05549475191497) , if_then_else(True , ARG0

, ARG0))

Listing 4.2: Sequence Recall Full Champion Code

The same theme appears when looking at 15-depth (Figure 4.9), Full instruction

set is having an easier time finding a solution in every single run. The Div instruction

set did not find a solution in one instance which led to the wider standard deviation.

Looking at 21-depth we find no difference in performance, both of our instruction sets

have performed exceptionally, almost immediately a solution was found regardless of

the complexity of the task.

37

Figure 4.9: Division vs Full 15- and 21-depth Sequence Recall Task Results.
Figure shows the difference between Div and Full operators evolving solution for 15-
depth and 21-depth sequence of varied corridor lengths using mean and standard
deviation of 20 runs. The x-axis shows the number of generations while the y-axis
shows the fitness of the generation. Colored lines show the mean of the 20 runs. The
shaded area shows the standard deviation of the 20 runs.

Table 4.7 summarizes the generalization performance of the Div versus Full in-

struction sets. The consistency of the Full instruction set is again very obvious. The

implication is that the protected division might lead to local solutions appearing when

the instruction set is reduced.

Div Full
Mean Standard Deviation Mean Standard Deviation

4-depth 100 0.0 100 0.0
5-depth 95.1 21.35 100 0.0
6-depth 100 0.0 100 0.0
15-depth 95.0 21.79 100 0.0
21-depth 100 0.0 100 0.0

Table 4.7: Table shows final generation Mean and Standard Deviation for sequence
recall Div and Full configurations in GP.

4.2.4 Noisy data with protected division instruction set

For our last change to the Sequence Recall task, we introduce changes to make the

task harder for GP to solve. Specifically, we introduced the following changes to the

original task:

38

• switched the zeros with -1. So now the pairs for instructions would be 1 to go

right and -1 to go left rather than the original of 1 to go right and 0 to go left.

• change corridor lengths by adding 1 to every step. Starting from 1 + corri-

dor length and counting down till reaching 1. Meaning that an action must be

taken when the corridor countdown reaches 1 now rather than taking action

when the countdown reaches zero in the original setup.

These changes were intended to make the task harder to solve with the protected

division operator. We ran the modified task with the same parameters as the original

setup for 20 runs and recorded the results.

Looking at results in Figure 4.10 for the 4-depth parameterization we can see

the effect of those changes as compared to runs performed under the original task

definition. Both setups find an immediate solution to the task, however, a wider

standard deviation appears under the modified task definition, suggesting that some

champions failed to generalize.

We then started to look at deeper versions of the task. Figure 4.11 summarizes

outcomes for the 5- and 6-depth task parameterizations. We observe an exchange in

performance between the two setups. First, in the 5-depth runs the Original setup

is having a wider standard deviation with almost none for the Modified setup, while

the complete opposite is happening in 6-depth; Modified results in the wide standard

deviation. Looking deeper into the results we can note that one case caused the wider

variance in both cases.

Running the same setups on more complex mazes like 15-depth and 21-depth

(Figure 4.12) the agent has no issues in solving either of those setups. We can see

a bit of fluctuation at the earlier generations in 15-depth but working solutions are

reached within the first 10 to 25 generations in both cases. As for the 21-depth test

case Figure 4.12 shows a smooth performance from the beginning to the end with the

modifications having no effect on the performance.

In conclusion we can certainly say that GP is having no issue finding a solution

in any case as long as we do not use Multiplication instruction set (no protected

division). Moreover, as summarized by Table 4.8 we note that attempting to remove

the use of ‘0’ in the problem definition has no impact on the ability of GP solutions to

39

Figure 4.10: Original vs Modified 4-depth Sequence Recall Task Results.
Figure shows the difference between Original and Modified setups evolving solution
for a 4-depth sequence of varied corridor lengths using mean and standard deviation
of 20 runs. The x-axis shows the number of generations while the y-axis shows the
fitness of the generation. Colored lines show the mean of the 20 runs. The shaded
area shows the standard deviation of the 20 runs.

40

Figure 4.11: Original vs Modified 5- and 6-depth Sequence Recall Task
Results. Figure shows the difference between Original and Modified setups evolving
solution for 5-depth and 6-depth sequence of varied corridor lengths using mean and
standard deviation of 20 runs. The x-axis shows the number of generations while the
y-axis shows the fitness of the generation. Colored lines show the mean of the 20
runs. The shaded area shows the standard deviation of the 20 runs.

be consistently identified. On the other hand, NEAT is unable to consistently solve

the task, there was instability in the performance presented by the wider standard

deviations in the charts.

Original Modified
Mean Standard Deviation Mean Standard Deviation

4-depth 100 0.0 95.0 21.79
5-depth 95.1 21.35 100 0.0
6-depth 100 0.0 90.0 30.0
15-depth 95.0 21.79 100 0.0
21-depth 100 0.0 100 0.0

Table 4.8: Table shows final generation Mean and Standard Deviation for sequence
recall Original and Modified task setup in GP.

4.2.5 Generalization

In order to test the capacity to generalize the solution we did the following. First, we

are using the original task setup using corridor length value of 10 and Div instruc-

tion set from table 4.1. Second, we trained 20 different champions. Each of these

champions will be tested on 50 and 100 depth. Third, we generate 50 random test

41

Figure 4.12: Original vs Modified 15- and 21-depth Sequence Recall Task
Results. Figure shows the difference between Original and Modified setups evolving
solution for 15-depth and 21-depth sequence of varied corridor lengths using mean
and standard deviation of 20 runs. the x-axis shows the number of generations while
the y-axis shows the fitness of the generation. Colored lines show the mean of the 20
runs. The shaded area shows the standard deviation of the 20 runs.

for each champion on each length. Then, we ran the tests and recorded how well the

champions managed to solve the task.

Table 4.9 shows the Mean and Standard Deviation of the test of the champion.

Looking at the results from 50 and 100 depths we can say that the champion had no

problem scaling up to a more complex layout. The high success rate of 98% on both

layouts with the low standard deviation leads us to state that the champion can scale

up without any issues.

Mean SD

50 depth 97.7 9.9
100 depth 97.7 9.8

Table 4.9: Table shows Mean and Standard Deviation for sequence recall GP 20
champions generalizing on 50 and 100 depth.

4.3 Sequence Classification

For our second experiment, we are using Sequence Classification from [16, 22]. Se-

quence Classification is a parameterizable ‘deep’ memory task where the agent has to

42

Figure 4.13: Sequence Classification input. The agent receives a sequence of
input signals (1/-1) mixed with noise (0’s) of variable length. At each introduction of
signals, the agent has to determine if it has received more 1’s or -1’s. Agent receives
a sequence as input and output -1 if the number of -1’s is greater than the number
of 1’s else output 1’s. [16]

keep track of the classification target through a long sequence of signals mixed with

noise. The agent is given a sequence of -1/1 signals with a random number of zero’s

in between. The agent has to decide if it received more 1’s or -1’s at the end. The

depth of the task is determined by the number of 1’s and -1’s in the sequence. The

agent has to learn to ignore the noise represented by 0’s in the sequence. Traditional

recurrent neural networks have a hard time with this task especially as the sequence

grows longer [22, 16].

In order to successfully solve the task, the agent has to concentrate on the ‘non-

zero’ information throughout the sequence. For instance, for a 6-depth sequence,

the network has to make the right classification for every sub-sequence. If any sub-

sequence classification is incorrect, then the entire sequence classification becomes

incorrect. The number of zeros in a sequence is determined randomly following each

signal (1/-1) and ranges from 10 to 20. This inconsistency adds to the complexity

of the task, as the agent cannot simply memorize when to classify signals and ignore

the noise. An intelligent decision-making system needs to have the capability to

filter out distractions and concentrate on useful signals. Mastering this property is

a necessity to be able to generalize the task to solve more complex higher depth

Sequence Classification tasks.

Starting with the simple form of the Sequence Classification task we can extend

43

it to solve more complex higher depth Sequence Classification tasks which consist of

multiple signals. Figure 4.13 represents examples of input sequences and expected

output sequences. The input represents a 2D-array the 1st bit comes from the input

sequence while the 2nd bit comes from memory controlled by the agent. The fitness

of the program is determined by how well it classifies the input. Each of these actions

carries a weight of 1, the fitness will be calculated up until the performed action does

not match the expected action. Training is being performed on 50 separate iterations

of sequences with intervening noise (zeros) randomly selected between 10 and 20. As

in the earlier experiments, the list data structure serves as a memory to store the

classification as the agent advances. When evolving the programs there are a few

settings that can be tweaked to control the complexity of the task:

• Signal Depth: One parameter that can change is the number of signals given

to an agent in a sequence. This will impact the number of signals and noise in

sequence. The more signals and noise the agent receives, the more classifica-

tions the agent will have to make to solve the task. In our experiment we’ve

experimented with 4-, 5-, 6-, 15- and 21-depth signals.

• Noise Length: Number of classifications the agent has to take to reach the

signal. The length is determined randomly and ranges between 10 and 20. This

will help ensure that the agent cannot simply memorize when to retrieve info

from the memory structure, but it has to react to reaching the signal.

• Iterations: we have chosen to work with 50 separate evaluations of sequences

with common signal depths per experiment. This was done to ensure that the

program does not optimize toward one specific length of noise but can generalize

to multiple noise lengths.

4.3.1 GP versus NEAT

We start our experiment by comparing the results between NEAT and GP. We run

the task on 20 runs of 500 generations for NEAT and 250 generations for GP. GP

fitness of each generation is calculated by taking the champion of said generation

and testing it on new randomly generated sequences (of the same signal depth) and

44

Figure 4.14: GP vs NEAT 4-depth Sequence Classification Task Results.
Figure shows the evolving solution for a 4-depth sequence of varied sequence lengths
using mean and standard deviation of 20 runs. the x-axis shows the number of
generations while the y-axis shows the fitness of the generation. Colored lines show
the mean of the 20 runs. The shaded area shows the standard deviation of the 20
runs

recording the results. On the other hand, NEAT results come from the generation

training fitness.

GP runs were done using the Div operators from Table 4.1 and NEAT configura-

tion file had the parameters from Table 4.3 with num-inputs = 3 (sequence and input

from memory stack) and num-outputs = 4 (Push, Pop Head, Pop Tail, No op).

Looking at Figure 4.14 we can immediately see the difference in performance between

the two platforms. GP performs significantly better than NEAT as it is able to solve

the task in every single run, while NEAT is unable to reach a solution.

45

Figure 4.15: GP vs NEAT 5- and 6-depth Sequence Classification Task
Results. Figure shows the difference between GP and NEAT setups evolving solution
for 5-depth and 6-depth sequence of varied sequence lengths using mean and standard
deviation of 20 runs. the x-axis shows the number of generations while the y-axis
shows the fitness of the generation. Colored lines show the mean of the 20 runs. The
shaded area shows the standard deviation of the 20 runs.

The following code represent the functions of the champion reached in GP:

1 # Tree1 represent Push action

2 tree1 = sub(add(ARG0 , ARG1), ARG1)

3 # Tree2 represent Pop Head action

4 tree2 = sub(ARG0 , protected_div(add(sub(ARG0 , ARG0), add(add(ARG0

, ARG1), ARG1)), protected_div(ARG0 , protected_div(ARG0 , ARG0)

)))

5 # Tree3 represent No Action

6 tree3 = protected_div(protected_div(ARG0 , ARG0), ARG0)

7 # Tree4 represent Pop Tail action

8 tree4 = protected_div(sub(add(ARG0 , ARG1), add(add(ARG1 , ARG0),

ARG0)), ARG0)

Listing 4.3: Sequence Classification Champion Code

As the task becomes more complex we see the performance trend continue between

the two platforms. Figures 4.15 and 4.9 verifies the findings we had so far. GP

continues to perform better than NEAT regardless of the extra number of generations

provided to NEAT. Optimal solutions were reached in almost every run by GP, while

NEAT still lags behind and can not find a solution.

Generalizing Task: As we did with other tasks, we took the champion of GP

46

Figure 4.16: GP vs NEAT 15- and 21-depth Sequence Classification Task
Results. Figure shows the difference between GP and NEAT setups evolving solu-
tion for 15-depth and 21-depth sequence of varied sequence lengths using mean and
standard deviation of 20 runs. the x-axis shows the number of generations while the
y-axis shows the fitness of the generation. Colored lines show the mean of the 20
runs. The shaded area shows the standard deviation of the 20 runs.

for the 21-depth task and tested it with even higher depths. Results showed GP

champions had the ability to generalize to more complex tasks. We tested with 50-

depth and 100-depth and the agent managed to find solutions. In conclusion, once a

solution is found it can be generalized without any issues.

Table 4.10 summarizes the generalization performance of GP versus NEAT. The

supremacy of GP is again very obvious, the results from NEAT is nowhere to be

compared with how well GP is handling the task.

GP (test) NEAT (training)
Mean SD Mean SD

4-depth 100 0.0 59.33 7.88
5-depth 96.3 16.12 60.44 9.87
6-depth 96.0 17.43 55.60 7.52
15-depth 96.6 14.82 39.44 3.64
21-depth 95.5 19.61 37.14 3.96

Table 4.10: Table shows final generation Mean and Standard Deviation for sequence
classification NEAT and GP.

47

Figure 4.17: Div vs Multiplication 4- and 5-depth Sequence Classification
Task Results. Figure shows the difference between Div and Multiplication setups
evolving solution for 4-depth and 5-depth sequence of varied sequence lengths using
mean and standard deviation of 20 runs. the x-axis shows the number of generations
while the y-axis shows the fitness of the generation. Colored lines show the mean of
the 20 runs. The shaded area shows the standard deviation of the 20 runs.

4.3.2 Replacing the protected division instruction

Just like our other experiments, we wanted to study the effect of the tools given to the

agent on the performance of the agent. We start by switching instruction set from Div

to Multiplication (Table 4.1). We tested only with 4-depth and 5-depth tasks (Figure

4.17). It is readily apparent that only when the protected division operator appears

can GP solve the task. Table 4.11 shows in numbers the difference in performance

between div and Multiplication instructions sets.

Div Multiplication
Mean SD Mean SD

4-depth 100 0.0 48.3 6.07
5-depth 96.3 16.12 34.9 12.0

Table 4.11: Table shows final generation Mean and Standard Deviation for sequence
classification Div and Multiplication instruction sets in GP.

48

4.3.3 Complex instruction set

Now we compare the minimalist ‘Div’ instruction set to the ‘Full’ instruction set, i.e.

arithmetic, logical and constants (Table 4.1). The Full instruction set contains a wide

variety of options for the agent to choose from, giving us the opportunity to study the

effect of having too many choices on the complexity of the agent. Figure 4.18 shows

the difference between the two instruction sets in an attempt to solve the 4-depth

Sequence Classification task. The figure shows that Full instruction set has a slight

edge over Div instruction set in terms of how fast it can reach a solution. This edge

comes with the price of the complexity of the champion agent. An example champion

in GP using Full operators has the form:

1 # Tree1 represent Push action

2 tree1 = mul(ARG0 , if_then_else(True , ARG1 , ARG1))

3 # Tree2 represent Pop Head action

4 tree2 = mul(mul(if_then_else(True , ARG0 , ARG1), protected_div(

ARG0 , ARG1)), ARG1)

5 # Tree3 represent No Action

6 tree3 = protected_div(mul(if_then_else(True , ARG1 , ARG1),

if_then_else(eq (17.256515950005948 , protected_div(

protected_div(ARG1 , 91.88959726562793) , protected_div(ARG0 ,

ARG0))), mul(ARG1 , ARG0), mul(ARG0 , ARG0))), ARG0)

Listing 4.4: Sequence Classification Full Champion Code

Continuing with the same trend, data from Figure 4.19 shows the difference be-

tween the two instruction sets become more obvious as the complexity of the task

increases. That fact is confirmed when we look at Figure 4.20 for the 15- and 21-

signal depth versions of the task. As we reached the 21-depth sequence the difference

between the two instruction sets become clearer. Full instruction set has the upper

hand in this task not only in terms of the number of generations to reach a solution

but also by the consistency with which solutions are found (illustrated by the size of

the standard deviation).

Table 4.12 illustrate how close the results of Div and Full instructions set toward

the end. Both of these instruction sets are performing at a close result range.

49

Figure 4.18: Div vs Full 4-depth Sequence Classification Task Results. Figure
shows the difference between Div and Full setups evolving solution for a 4-depth
sequence of varied sequence lengths using mean and standard deviation of 20 runs.
the x-axis shows the number of generations while the y-axis shows the fitness of the
generation. Colored lines show the mean of the 20 runs. The shaded area shows the
standard deviation of the 20 runs.

50

Figure 4.19: Div vs Full 5- and 6-depth Sequence Classification Task Results.
Figure shows the difference between Div and Full setups evolving solution for 5-depth
and 6-depth sequence of varied sequence lengths using mean and standard deviation
of 20 runs. the x-axis shows the number of generations while the y-axis shows the
fitness of the generation. Colored lines show the mean of the 20 runs. The shaded
area shows the standard deviation of the 20 runs.

Figure 4.20: Div vs Full 15- and 21-depth Sequence Classification Task Re-
sults. Figure shows the difference between Div and Full setups evolving solution for
15-depth and 21-depth sequence of varied sequence lengths using mean and standard
deviation of 20 runs. the x-axis shows the number of generations while the y-axis
shows the fitness of the generation. Colored lines show the mean of the 20 runs. The
shaded area shows the standard deviation of the 20 runs.

51

Div Full
Mean SD Mean SD

4-depth 100 0.0 100 0.00
5-depth 96.3 16.12 95.4 20.05
6-depth 96.0 17.43 96.8 13.94
15-depth 96.6 14.82 95.9 17.87
21-depth 95.5 19.61 100 0.00

Table 4.12: Table shows final generation Mean and Standard Deviation for sequence
classification Div and Full instruction sets in GP.

4.3.4 Noisy data with protected division instruction set

Finally, we altered the setup of the task to remove the opportunity to explicitly trap

the zeros in the input sequences. To do so, we replaced the inputs taking a value of zero

and replaced them with a random number generated between [+β,−β] and ran the

programs. The process was repeated over three sets of β ∈ {0.5, 0.25, 0.125}. Figure

4.21 shows the results of the original task run along with the three runs of the β-noise

tasks for a signal sequence depth of 4. We can immediately see that the original ‘clean’

version of the task setup outperformed all of the other variations. The range of the

β-noise introduced has an effect on the difficulty of the task. However, there is not a

simple ‘linear’ relationship between the amount of β-noise and task difficulty. From

the perspective of average performance reached under test: β = 0.25 > 0.125 > 0.5.

We continue our test and add to the complexity of the task by running it at a

higher signal sequence depth. Figure 4.11 shows results from running tests on 5-depth

and 6-depth respectively. The same trend continues here too, we can see that the

original task still performs best (i.e. is easiest) while the agent never returns all 20

runs with an ideal solution.

In the 5-sequence depth task we do not see any change from the previous figure,

0.125 still performs better than 0.5 but worst than 0.25. We believe that 5-depth

sequence wasn’t long enough for the range noise to show full impact on agent per-

formance. On the other hand, looking at the 6-depth figure we can see a change in

the pattern. Notice how 0.125 now performs better than 0.25 and 0.5 in all runs.

As the complexity increases in Figure 4.23 we see the previous trend grows clearer,

the smaller the range used the better performance we get. That said, we also see a

decline in the overall performance. The deeper the sequence, the harder it is for the

52

Figure 4.21: Original vs Modified 4-depth Sequence Classification Task Re-
sults. Figure shows an evolving solution for a 4-depth sequence of varied sequence
lengths using mean and standard deviation of 20 runs including modifications. the
x-axis shows the number of generations while the y-axis shows the fitness of the gen-
eration. Colored lines show the mean of the 20 runs. The shaded area shows the
standard deviation of the 20 runs

53

Figure 4.22: Original vs Modified 5- and 6-depth Sequence Classification
Task Results. Figure shows the evolving solution for 5-depth and 6-depth sequence
of varied sequence lengths using mean and standard deviation of 20 runs including
modifications. the x-axis shows the number of generations while the y-axis shows the
fitness of the generation. Colored lines show the mean of the 20 runs. The shaded
area shows the standard deviation of the 20 runs

agent to find a solution.

Table 4.13 shows in numerical values the results seen in figures 4.21, 4.22 and

4.23. We can see as the task is in lower complexity (4-, 5- and 6-depth), modification

with range ‘0.25’ has the better performance. But, as the task gets more complicated

(15-depth and 21-depth) the smaller the range the better results we are getting.

Original Modified 0.5 Modified 0.25 Modified 0.125
Mean SD Mean SD Mean SD Mean SD

4-depth 100 0.0 68.7 30.66 88.6 23.02 80.7 27.62
5-depth 96.3 16.12 70.8 33.07 90.9 21.68 77.1 31.94
6-depth 96.0 17.43 69.9 34.0 72.7 34.67 77.0 31.45
15-depth 96.6 14.82 47.6 38.88 60.5 39.68 63.9 40.08
21-depth 95.5 19.61 36.3 37.46 37.5 36.56 70.6 40.22

Table 4.13: Table shows final generation Mean and Standard Deviation for sequence
classification Original and Modified instruction sets in GP.

4.3.5 Generalization

In order to test the capacity to generalize the solution we did the following. First, we

are using the original task setup using noise value of 10 and Div instruction set from

54

Figure 4.23: Original vs Modified 15- and 21-depth Sequence Classifica-
tion Task Results. Figure shows the evolving solution for 15-depth and 21-depth
sequence of varied sequence lengths using mean and standard deviation of 20 runs
including modifications. the x-axis shows the number of generations while the y-axis
shows the fitness of the generation. Colored lines show the mean of the 20 runs. The
shaded area shows the standard deviation of the 20 runs

table 4.1. Second, we trained 20 different champions. Each of these champions will be

tested on 50 and 100 depth. Third, we generate 50 random tests for each champion on

each length. Then, we ran the tests and recorded how well the champions managed

to solve the task.

Table 4.14 shows the Mean and Standard Deviation of the test of the champion.

Looking at the table we can see that the champion kept the success rate and managed

to successfully scale with the problem. Both the 50 and 100 depth layouts presented a

challenge judging by the slightly higher standard deviation but the champion managed

to score high in both layouts.

Mean SD

50 depth 95.1 15.9
100 depth 93.7 19.4

Table 4.14: Table shows Mean and Standard Deviation for sequence classification GP
20 champions generalizing on 50 and 100 depth.

55

4.4 Copy Task

In the copy task [7, 9] the agent has to memorize and then recall a long sequence

of random binary vectors (words). The program is given a single bit delimiter to

indicate the beginning of the memorization process, a sequence of random bit vectors

to be memorized, then a single bit delimiter to indicate the beginning of the recall

process. Figure 4.24 shows this process in more detail. The first step is to initialize

the program with the start bit set to unity. In each following step, the program

receives a random bit vector (element bits, Figure 4.24) until a single delimiter bit is

set to unity, indicating the end of the memorization phase and the beginning of the

recall phase. Once the delimiter bit is set, then there are no further inputs, hence the

‘element’ bits are also set to unity.

The program was trained to copy a sequence of random 8-bit vectors, where the

sequence length was randomly generated between 10 and 20 vectors long. The target

sequence is simply a copy of the input sequence without the delimiter or starts flags.

The task is abstracted in a way that delimiters are the only thing that matters, based

on the delimiter passed the program needs to maintain awareness of which phase is

currently in effect and act on it. The goal is to be able to retain arbitrary length

sequences of bit vectors. Testing will be performed over multiple lengths of sequence.

The fitness of a program is calculated by how well it can perform actions based

on the delimiters. For instance, the example in Figure 4.24 should follow the flow of

the following step by step table:

index input Description Action

0 [1,0] indicates the beginning of memorization None

1 [0,0] commit info to memory Push

2 [0,0] commit info to memory Push

3 [0,0] commit info to memory Push

4 [0,0] commit info to memory Push

5 [0,1] indicates the beginning of recall None

6 [0,0] retrieve from memory Pop Head

7 [0,0] retrieve from memory Pop Head

8 [0,0] retrieve from memory Pop Head

56

index input Description Action

9 [0,0] retrieve from memory Pop Head

Table 4.15: Table shows step by step simulation for agent

processing copy task input

Leaving us with the following list of actions:

None Push Push Push Push Push None Pop head Pop head Pop head

Pop head Pop head

Each of these actions carry a weight of 1, the fitness will be calculated up until

performed action does not match the expected action. Training is repeated for 50

separate iterations of sequences with random lengths between 10 and 20. The list

data structure was used as memory for this task with 4 actions: push, pop head,

pop tail, no op. When evolving the program there are a few setting to modify the

copy task complexity:

• Sequence Length: One parameter that can control the difficulty level of the

task is the length of the sequence the program has to memorize and recall. In

the experiment by [7] the length was set between 1 and 20. On the other hand,

in [9] experiment it was set to be between 1 and 10 to address the generalization

question. In our task the length is set to be randomly chosen between 10 and

20, the random generation was chosen to prevent the program from over-fitting

for the training data and be able to generalize to longer sequences that were

never seen before.

• Bit Vector Size: This parameter represents the number of bits in each vector,

i.e the number of values that must be stored in each step. In [9] experiment

1-bit, 2-bit, 4-bit, and 8-bits long were experimented with. In [7] experiment

only worked with 8-bit in their program. In our experiment, we also assumed

8-bits vectors.

• Iterations: Just like [9] we have chosen to work with 50 separate iterations of

random sequences with varied lengths. This was done to ensure that solutions do

57

Figure 4.24: Copy Task Sequence example showing Program State of every step.

not optimize toward one specific length, but can generalize to different sequence

lengths.

Program State: In tasks where it is important to know what state the program

is in and act based on that, we introduced the state as an extra output (making the

total of 5 outputs for the task). Program state will be figured out by the agent and

will be fed back as input. Let’s take Copy Task as an example, the programs are

given delimiters for memorizing, and everything after that until the recall delimiter

will have to be pushed to memory. Program state will be used as a reminder of

what state the programs are in (memorize or recall). Figure 4.24 shows an example

sequence and the value of ‘Program State’ produced by the agent when processing the

sequence. Figure 4.25 shows Copy Task GP structure, in it, we can see the interaction

between agent and memory and how programs state is passed from one evolutionary

cycle to another.

58

Figure 4.25: GP Copy Task Stack Structure.

4.4.1 GP versus NEAT

Results shown in Figure 4.26 represent 20 runs of 250 generations in GP and 500

generations in NEAT. The GP fitness of each generation was calculated by evaluating

the champion of the training generation on a new randomly generated sequence and

recording the evaluation results, i.e. the GP curve reflects test performance. While

NEAT fitness was calculated based on the fitness of the champion during training, i.e.

the NEAT curves reflect training alone. GP run was done using the Div operators

from Table 4.1 and NEAT configuration file had the parameters from Table 4.3 with

num-inputs = 3 (two delimiters and input from memory stack) and num-outputs =

5 (Push, Pop Head, Nothing, Pop Tail and Progress State).

Figure 4.26 shows the mean and standard deviation of the 20 runs combined.

Looking at the figure we can see a solution was reached within the first 50 generations

in the case of GP while NEAT struggled with this task and was unable to reach a full

solution. Taking the solution from GP, we were able to test the capacity to generalize

by testing it on newly generated sequences of lengths 20, 50, and 100, i.e. only the

case of sequences of length 20 were encountered during training. The following code

represents the solution discovered by a GP champion:

59

1 # Tree1 represent Push action

2 tree1 = sub(ARG1 , ARG1)

3 # Tree2 represent Pop Head action

4 tree2 = sub(protected_div(protected_div(ARG0 , ARG2), ARG2), ARG1)

5 # Tree3 represent No Action

6 tree3 = add(add(add(ARG1 , ARG1), ARG0), protected_div(ARG0 , add(

protected_div(ARG1 , ARG1), protected_div(ARG1 , ARG1))))

7 # Tree4 represent Pop Tail

8 tree4 = add(ARG2 , ARG1)

9 # Tree5 represent Progress State

10 tree5 = sub(add(ARG2 , ARG1), ARG0)

Listing 4.5: Copy Task Champion Code

Framework Mean SD

GP (test) 95.0 21.79
NEAT (training) 53.40 0.65

Table 4.16: Table shows final generation Mean and Standard Deviation for copy task
NEAT and GP.

Table 4.16 defines test performance of the champions from the 20 GP runs with

the ‘Div’ instruction set from Table 4.1. Clearly, test performance of GP exceeds

the training performance under NEAT. Moreover, this is achieved in a tenth of the

number of generations than under NEAT.

4.4.2 Replacing the protected division instruction

Having established the utility of GP and the list data structure, we now turn our

attention to the role of the instruction set (currently add, subtract, and division).

The ‘protected division’ operation is supposed to act as a conditional statement under

the Copy Task. In order to test this, the protected division will be replaced with

multiplication (i.e. an unprotected operator) or the Multiplication operators from

Table 4.1

Figure 4.27 compares the two GP instruction sets (20 separate runs). Both were

able to find solutions within the first 50 generations. Moreover, the ‘multiplication’

instruction set was even more effective, i.e. faster convergence with lower standard

60

Figure 4.26: GP vs NEAT Copy Task Results. Figure shows the evolving solution
for 8-bit vectors of varying lengths using mean and standard deviation of 20 runs.
the x-axis shows the number of generations while the y-axis shows the fitness of the
generation. The colored line shows the mean of the 20 runs. The shaded area shows
the standard deviation of the 20 runs.

61

deviation (Table 4.17). The following code represents the solution found by GP using

Multiplication instructions set to solve Copy Task:

1 # Tree1 represent Push action

2 tree1 = sub(sub(ARG2 , ARG1), add(ARG1 , mul(mul(ARG0 , ARG2), ARG1)

))

3 # Tree2 represent Pop Head action

4 tree2 = mul(ARG2 , mul(ARG0 , ARG0))

5 # Tree3 represent No Action

6 tree3 = add(add(ARG2 , ARG0), add(add(ARG2 , ARG2), ARG1))

7 # Tree4 represent Pop Tail

8 tree4 = mul(ARG2 , sub(mul(ARG1 , ARG1), add(ARG2 , ARG2)))

9 # Tree5 represent Progress State

10 tree5 = sub(ARG2 , add(mul(ARG0 , ARG2), ARG1))

Listing 4.6: Copy Task Multiplication Champion Code

instruction set Mean SD

Div 95.0 21.79
Multiplication 100 0.0

Table 4.17: Table shows final generation Mean and Standard Deviation for copy task
GP Div and Multiplication instruction set.

4.4.3 Complex instruction set

At this point, we have established that simple solutions to the ‘Copy Task’ can be

discovered efficiently under the proposed approach. Conversely, using NEAT in place

of the weakly cooperative GP framework (GP) did not manage to discover such

solutions. We now introduce a ‘complex’ instruction set in which all arithmetic and

logical operators appear (Table 4.1).

The hypothesis is that this would lead to a larger search space and likely more

complex solutions being discovered after more generations. Results in figure 4.28

shows that Div instruction set was able to find a solution almost immediately, while

Full instruction set struggled with the task and in some runs were unable to find

a solution. Looking at table 4.18 which shows the last generation testing results of

20 different runs, we can see the difference in performance between Div and Full

instruction sets both in ’Mean’ and ’Standard Deviation’. The solution found was

62

Figure 4.27: Div vs Multiplication Copy Task Results. Figure shows the dif-
ference in performance between Div and Multiplication instruction sets. Results
represent mean and standard deviation of 20 runs each with varied vectors length.
The colored line shows the mean of the 20 runs. The shaded area shows the standard
deviation of the 20 runs.

63

in some cases over complicated. The following code represents the functions of the

champion using Full operators in GP:

1 # Tree1 represent Push action

2 tree1 = mul(if_then_else(lt(mul(protected_div(ARG1 , ARG2), ARG0),

mul(ARG1 , 71.99986108166674)), mul(mul(ARG0 , if_then_else(True ,

ARG0 , ARG1)), if_then_else(False , 7.860610953699998 , ARG2)),

protected_div (12.090939012041579 , ARG2)), ARG1)

3 # Tree2 represent Pop Head action

4 tree2 = protected_div(mul(protected_div(if_then_else(True , ARG0 ,

ARG0), if_then_else(True , 2.1023390046363333 , ARG0)),

protected_div(ARG2 , ARG0)), mul(ARG2 , ARG2))

5 # Tree3 represent No Action

6 tree3 = if_then_else(eq(mul(ARG0 , 60.12377982639531) , if_then_else(

lt(ARG0 , ARG1), mul(ARG1 , 59.03890437566138) , if_then_else(True ,

ARG0 , mul(if_then_else(True , ARG1 , ARG2), if_then_else(True ,

25.77960635715084 , ARG1))))), ARG1 , 56.123860744871514)

7 # Tree4 represent Pop Tail

8 tree4 = mul(if_then_else(True , ARG2 , mul(mul(ARG2 , mul(ARG2 , ARG1)),

ARG2)), mul(mul (70.98917616469029 , ARG1), mul(ARG0 ,

63.148039312409196)))

9 # Tree5 represent Progress State

10 tree5 = if_then_else(not_(True), if_then_else(True , mul(ARG2 , ARG1),

ARG0), protected_div(mul (41.70397912251834 , ARG0), protected_div

(ARG1 , ARG2)))

Listing 4.7: Copy Task Full Champion Code

instruction set Mean SD

Div 95.0 21.79
Full 80.0 40.0

Table 4.18: Table shows final generation Mean and Standard Deviation for copy task
GP Div and Full instruction set.

4.4.4 Noisy data with protected division instruction set

In this experiment under the Copy Task, we return to the minimalist instruction set

based on the ‘protected division’ operator (or Div in Table 4.1). This time, however,

we replaced the zero in the delimiter and start files to be -1 in an attempt to disrupt

64

Figure 4.28: Div vs Full Copy Task Results. Figure shows the difference in
performance between Div and Full instruction sets. Results represent mean and
standard deviation of 20 runs each with varied vectors length. The colored line shows
the mean of the 20 runs. The shaded area shows the standard deviation of the 20
runs.

65

the role of protected division in building a ‘conditional’ statement. Having a zero in

the input allows the ‘protected division’ operator to behave as a conditional operator,

replacing the zero with -1 will take away that advantage and forces the agent to find

another way to deal with the input. Thus, the start of the memorization delimiter is

now [1,-1] instead of [1,0] and the recall delimiter is now [-1,1] rather than [0,1] (see

Table 4.24). We used the Div instruction set from table 4.1 and ran the experiment

for 20 once again.

Results in figure 4.29 show that in both cases the agent was able to find a solution

to solve the problem. What is interesting now is that the modified version of the task

slows down the pace of evolution, taking in the order of 125 generations to solve the

task, but all runs appear to generalize. That is to say, all 20 champions generalize to

solve all test cases (Table 4.29). Looking at table 4.19 which shows the last generation

testing results of 20 different runs, we can see the results in numerical expression.

instruction set Mean SD

Original 95.0 21.79
Modified 100 0.0

Table 4.19: Table shows final generation Mean and Standard Deviation for copy task
GP Original and Modified instruction sets.

Combined results in figure 4.30 summarizes all the different experiments per-

formed with the Copy Task using GP. We note that the agent performed best using

Multiplication instruction set from table 4.1 and had the worst results using the Full

instruction set. Div instruction set came third. However, applying the Div instruc-

tion set with ‘-1’ replacing ‘0’ in the task definition resulted in slower convergence,

but better generalization than Div under the original task definition. This tends to

suggest that the ‘conditional’ statement operation that appears with protected di-

vision and the ’0’ style task definition results in early convergence to sub-optimal

champions. Introducing a problem definition without ‘0’ results in a slower rate of

convergence, but all runs then perform optimally. The ’multiplication’ instruction set

appears to achieve this under the task definition based on ‘0’.

66

Figure 4.29: Original vs Modified Copy Task Results. Figure shows the differ-
ence in performance between Original and Modified settings of Copy Task. Results
represent mean and standard deviation of 20 runs each with varied vectors length.
The colored line shows the mean of the 20 runs. The shaded area shows the standard
deviation of the 20 runs.

67

Figure 4.30: GP Combined Copy Task Results. Figure shows all the different
variations of the Copy Task done in GP. Results represent mean and standard devi-
ation of 20 runs each with varied vectors length. The colored line shows the mean of
the 20 runs. The shaded area shows the standard deviation of the 20 runs.

68

4.4.5 Generalization

In order to test the capacity to generalize the solution we did the following. First,

we are using the original task setup using 8-bit length and Div configuration from

table 4.1. Second, we trained 20 different champions. Each of these champions will

be tested on 50 and 100 sequence lengths. Third, we generate 50 random tests for

each champion on each length. Then, we ran the tests and recorded how well the

champions managed to solve the task.

Table 4.20 shows the Mean and Standard Deviation of the test of the champion.

We can clearly see that even with extremely long sequences the champion agent

managed to ace those tests with no issues at all. Having a success rate of 100% and a

standard deviation of 0.0 on both 50 and 100 length sequences proves that the agent

can generalize with no problems at all.

Mean SD

50 length 100 0.0
100 length 100 0.0

Table 4.20: Table shows Mean and Standard Deviation for copy task GP 20 champions
generalizing on 50 and 100 Sequence Length.

69

Figure 4.31: Full Vector Copy Task Results. Figure shows full vector variation
of the Copy Task done in GP. Results represent mean and standard deviation of 20
combined runs random length vectors. The colored line shows the mean of the 20
runs. The shaded area shows the standard deviation of the 20 runs.

4.4.6 Full vector with protected division instruction set

In this last experiment under the Copy Task, we are using the minimalist instruction

set based on the ‘protected division’ operator (or Div in Table 4.1). This time,

however, we are using the full vector of 11-bit (8-bit to be copied, 2-bit as delimiters,

and 1-bit ‘progress state’) as an input. With this setup, it will be harder for GP to

evolve an agent since the agent needs to learn that the first two bits are the delimiters

then learn what each of these delimiters mean. Due to the complexity of this setup,

we altered the number of generations used from 250 (used in all previous tasks and

setups) to 500. Looking at figure 4.31 we can see how challenging this variation was

for GP demonstrated by the wide ‘standard deviation’. despite that, GP managed to

find solutions in most cases and solved the task.

In order to test the capacity to generalize the solution we did the following. First,

70

we trained 20 different champions. Each of these champions will be tested on 50 and

100 sequence lengths. Second, we generate 50 random tests for each champion on each

length. Then, we ran the tests and recorded how well the champions managed to solve

the task. Table 4.21 shows the Mean and Standard Deviation of the champions test.

Mean SD

50 length 90.13 15.99
100 length 90.05 19.66

Table 4.21: Table shows Mean and Standard Deviation for copy task GP 20 champions
generalizing on full vector 50 and 100 Sequence Length.

4.5 Discussion

Looking back at the results found by this study and comparing with previous studies

that tackled the same tasks, we can best illustrate these findings as follows:

• Sequence Recall: The previous work was done with 1- to 6-depth only, while

our work expanded to 15-depth and 21-depth.

GP 4.2 NEAT 4.2 MMU [16]

4-depth 100% 96.42% ≈64.0%
5-depth 95.1% 96.21% ≈55.0%
6-depth 100% 96.04% 46.3%
15-depth 95.0% 95.59% NA
21-depth 100% 91.59% NA
Gen 250 500 10,000

Pop Size 100 x 4 400 100

Table 4.22: Compare results between our findings and work done by others.

• Sequence Classification: Previous work done on this task covered 1- to 6-

depth only, we expanded that to work with 15-depth and 21-depth also.

71

GP 4.2 NEAT 4.2 MMU [16]

4-depth 100% 59.33% ≈94.0%
5-depth 96.3% 60.44% ≈90.0%
6-depth 96.0% 55.60% 87.6%
15-depth 96.6% 39.44% NA
21-depth 95.5% 37.14% NA
Gen 250 500 1,000

Pop Size 100 x 4 400 100

Table 4.23: Compare results between our findings and work done by others.

• Copy Task: In Graves et al. [7] didn’t have comparable numbers with what

we have so we are only listing our findings.

GP 4.4 NEAT 4.4 GP Full Vector 4.4.6

8-bit 95.0 53.40 90.13
Gen 250 500 500

Pop Size 100 x 5 400 100 x 5

Table 4.24: Compare our findings in two different variations and results of full vector.

Chapter 5

Conclusion

This thesis investigates the ability of GP to perform a suite of ‘deep’ memory tasks

as popularized for benchmarking neural networks (Sequence Recall, Sequence Clas-

sification, and the Copy Task). We begin by recognizing that there are two basic

approaches (§2): internal memory models and external memory models. An internal

memory implies that some form of ‘recurrent connectivity’ exists in the representation

that lets the learning agent retain internal state. Such a representation is capable

of Turing complete computation (§2.1), but faces the difficulty of separating compu-

tation to suggest an action from computation to control memory. In this work, we

therefore adopt an external memory model (§2.2). This means that the properties of

memory have to be ‘engineered in’, thus another set of flexibility/ efficiency trade-offs.

The agent was given control signals to manipulate the memory in terms of adding

to memory, retrieving from memory, and not interacting with the memory. Having

external memory made the task easier for GP to handle, especially in observable tasks

like the one we have. Otherwise, an internal memory management would give the

agent more flexibility in dealing with non-observable tasks.

Our approach was designed to operate within constraints set by canonical Tree

structure GP (§3), i.e. programs may only produce a single output. In order to

support multiple outputs, we assume a multi-population model in which a feasible

learning agent can only be defined by sampling one program from each population

or a modular coevolutionary framework. External memory was designed around the

concept of a list that can be accessed as a first-in, first-out, or a first-in, last-out data

structure.

The resulting empirical evaluation was designed to answer three basic questions

(§4): 1) can a neural representation perform as effectively as GP with the external

memory model we assume; 2) what influence will support for different instruction

sets have; 3) how does changing the task representation affect the ability of GP to

72

73

discover solutions. With regards to question 1, GP was never worse than the neural

network and was explicitly better in the Sequence Classification and Copy Task.

In the case of question 2, we provided three different types of instruction sets and

assessed the impact this had on the performance of the agent. Protected Division

played a very important role in evolving an agent that can solve our test cases, when

replaced with multiplication the performance dropped drastically in two of the task

while the multiplication set performed better on another task. We also showed the

results of Full instruction set and how that would affect the agent. We showed that

having a minimized instruction set will lead to clear outcomes and that including

more instructions will lead to longer solutions but we will always find one.

Finally, with regards to question 3, this thesis investigated the effect of different

types of noise on our deep memory tasks. The first type of noise was done by replacing

zeros with another number (-1 or 1). Our motivation was to try to remove the

perceived advantage that Protected Division was perceived to play. We implemented

this type of noise in two tasks. Observed results were not majorly impacted by

this change. The second type of noise was done by replacing zeros with a range of

noise. We experimented with three different ranges (-0.5 to 0.5), (-0.25 to 0.25) and

(-0.125 to 0.125). Ranged noise has a bigger impact on the complexity of the found

solution and the performance of the agent. Results showed that in higher depth the

narrower the range the better the results. Looking at 15-depth and 21-depth the best

performance we got was with a noise range between -0.125 and 0.125.

Future work could be done by providing the agent with more options for the

memory data structure. Rather than assuming a list data structure, the agent would

have to learn to pick the right type of data structure as memory and then learn how

to handle that type of memory. For example, associative memory represents a very

different approach that would be useful for solving ‘image’ recall tasks as opposed to

the sequence recall style tasks investigated in this thesis.

In this thesis, we only tested Neural Network with the original setup of tasks. It

would also be interesting to see results from previous tasks in Neural Network using

the modified setup with the range-type noise. GP solution can get complicated if the

wrong instruction set is used. The tree structure could grow fast and consume a lot

of memory and CPU cycles with very few benefits. We would recommend the start

74

with a small instruction set and adding more options slowly along the way of the

development to keep complexity to a minimum. Selecting what functions would be

used is completely related to the task at hand and how it’s represented.

Bibliography

[1] Alexandros Agapitos, Anthony Brabazon, and Michael O’Neill. Genetic program-
ming with memory for financial trading. In Proceedings of European Conference
on Applications of Evolutionary Computation: Part I, volume 9597 of LNCS,
pages 19–34. Springer, 2016.

[2] David Andre. Evolution of mapmaking: Learning, planning, and memory using
genetic programming. In Proceedings of the Conference on Evolutionary Com-
putation, pages 250–255. IEEE, 1994.

[3] David Andre. The evolution of agents that build mental models and create simple
plans using genetic programming. In Proceedings of the International Conference
on Genetic Algorithms, pages 248–255. Morgan Kaufmann, 1995.

[4] Scott Brave. The evolution of memory and mental models using genetic pro-
gramming. In Proceedings of the Annual Conference on Genetic Programming,
pages 261–266. MIT Press, 1996.

[5] John A. Doucette, Peter Lichodzijewski, and Malcolm I. Heywood. Hierarchical
task decomposition through symbiosis in reinforcement learning. In Genetic and
Evolutionary Computation Conference, pages 97–104. ACM, 2012.

[6] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. DEAP: evolutionary algorithms made easy. Jour-
nal of Machine Learning Research, 13:2171–2175, 2012.

[7] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR,
abs/1410.5401, 2014.

[8] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John P. Agapiou, Adrià Puigdomènech Badia, Karl Moritz
Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher
Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hy-
brid computing using a neural network with dynamic external memory. Nat.,
538(7626):471–476, 2016.

[9] Rasmus Boll Greve, Emil Juul Jacobsen, and Sebastian Risi. Evolving neural
turing machines for reward-based learning. In Tobias Friedrich, Frank Neumann,
and Andrew M. Sutton, editors, Proceedings of the 2016 on Genetic and Evolu-
tionary Computation Conference, pages 117–124. ACM, 2016.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Comput., 9(8):1735–1780, 1997.

75

76

[11] Maarten Keijzer. Improving symbolic regression with interval arithmetic and lin-
ear scaling. In Proceedings of the European Conference on Genetic Programming,
volume 2610 of LNCS, pages 70–82. Springer, 2003.

[12] Stephen Kelly and Malcolm I. Heywood. Emergent solutions to high-dimensional
multitask reinforcement learning. Evolutionary Computation, 26(3), 2018.

[13] Stephen Kelly, Jacob Newsted, Wolfgang Banzhaf, and Cedric Gondro. A mod-
ular memory framework for time series prediction. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 949–957. ACM, 2020.

[14] Stephen Kelly, Robert J. Smith, Malcolm I. Heywood, and Wolfgang Banzhaf.
Emergent tangled program graphs in partially observable recursive forecasting
and vizdoom navigation tasks. ACM Transcations on Evolutionary Learning and
Optimization, 1(3):1–41, 2021.

[15] Stephen Kelly, Tatiana Voegerl, Wolfgang Banzhaf, and Cedric Gondro. Evolving
hierarchical memory-prediction machines in multi-task reinforcement learning.
Genetic Programming and Evolvable Machines, 22(4):573–605, 2021.

[16] Shauharda Khadka, Jen Jen Chung, and Kagan Tumer. Neuroevolution of a
modular memory-augmented neural network for deep memory problems. Evol.
Comput., 27(4):639–664, 2019.

[17] John R. Koza. Genetic programming - on the programming of computers by
means of natural selection. Complex adaptive systems. MIT Press, 1993.

[18] William B. Langdon. Genetic Programming and Data Structures. Kluwer Aca-
demic, 1998.

[19] Xiao Luo, Malcolm I. Heywood, and A. Nur Zincir-Heywood. Evolving recur-
rent models using linear GP. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1787–1788. ACM, 2005.

[20] Nicholas Freitag McPhee and Riccardo Poli. Memory with memory: soft assign-
ment in genetic programming. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1235–1242. ACM, 2008.

[21] Ji Ni, Russ H. Drieberg, and Peter I. Rockett. The use of an analytic quotient op-
erator in genetic programming. IEEE Transactions on Evolutionary Compution,
17(1):146–152, 2013.

[22] Aditya Rawal and Risto Miikkulainen. Evolving deep lstm-based memory net-
works using an information maximization objective. In Tobias Friedrich, Frank
Neumann, and Andrew M. Sutton, editors, Proceedings of the Genetic and Evo-
lutionary Computation Conference, pages 501–508. ACM, 2016.

[23] H. Sebastian Seung. Continuous attractors and oculomotor control. Neural
Networks, 11(7-8):1253–1258, 1998.

77

[24] Arlindo Silva, Ana Neves, and Ernesto Costa. Building agents with memory: An
approach using genetic programmed networks. In Proceedings of the Conference
on Evolutionary Computation, pages 1824–1833. IEEE, 1999.

[25] Robert J. Smith and Malcolm I. Heywood. Evolving Dota 2 shadow fiend bots
using genetic programming with external memory. In Proceedings of the Genetic
and Evolutionary Computation Conference, pages 179–187. ACM, 2019.

[26] Robert J. Smith and Malcolm I. Heywood. A model of external memory for
navigation in partially observable visual reinforcement learning tasks. In Ge-
netic Programming - 22nd European Conference, EuroGP 2019, Held as Part of
EvoStar 2019, Leipzig, Germany, April 24-26, 2019, Proceedings, volume 11451
of Lecture Notes in Computer Science, pages 162–177. Springer, 2019.

[27] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural network through
augmenting topologies. Evol. Comput., 10(2):99–127, 2002.

[28] Astro Teller. Turing completeness in the language of genetic programming with
indexed memory. In Proceedings of the Conference on Evolutionary Computation,
pages 136–141. IEEE, 1994.

[29] Andrew James Turner and Julian Francis Miller. Recurrent cartesian genetic pro-
gramming. In Proceedings of the International Conference on Parallel Problem
Solving from Nature, volume 8672 of LNCS, pages 476–486. Springer, 2014.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Thesis Objectives
	Thesis Outline

	Related Work
	Neural networks with Memory
	Genetic Programming with Memory
	Discussion

	List data structure with genetic programming
	GP Structure
	Evolution Algorithm
	Discussion

	Results
	Experiment Parameterizations
	Sequence Recall
	GP versus NEAT
	Replacing the protected division instruction
	Complex instruction set
	Noisy data with protected division instruction set
	Generalization

	Sequence Classification
	GP versus NEAT
	Replacing the protected division instruction
	Complex instruction set
	Noisy data with protected division instruction set
	Generalization

	Copy Task
	GP versus NEAT
	Replacing the protected division instruction
	Complex instruction set
	Noisy data with protected division instruction set
	Generalization
	Full vector with protected division instruction set

	Discussion

	Conclusion
	Bibliography

