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Abstract

5G networks enable emerging latency and bandwidth critical applications like indus-

trial IoT, AR/VR, or autonomous vehicles in addition to supporting traditional voice

and data communications. In the 5G infrastructure, Radio Access Networks (RANs)

consist of radio base stations that communicate over wireless radio links. This com-

munication, however, is prone to environmental changes, such as the weather. These

links can suffer from radio link failure and subsequently interrupt ongoing services,

severely impacting the above-mentioned applications. One way to mitigate such ser-

vice interruption is to proactively predict failures and reconfigure the resource al-

location accordingly. Existing works focused on such failure prediction (e.g., using

supervised ensemble learning) do not considering the spatio-temporal correlation of

radio communication and weather changes. In this work, we propose a communication

link failure prediction model based on the LSTM autoencoder, i.e., considering both

the spatio-temporal correlation of radio communication as well as weather changes.

We implement and evaluate the proposed scheme over a huge volume of real radio

and weather data. The results confirm that the proposed scheme performs better

than the state-of-the-art solution.
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Chapter 1

Introduction

Emerging networking applications include Industry 4.0, intelligent transportation,

smart health system, AR/VR, etc., that demand high network bandwidth, high re-

liability, and low communication time [1]. Mobile and wireless devices from these

applications usually communicate over radio links and various types of networks like

ad hoc, sensor, mesh, or cellular [2–7]. Fifth-generation (5G) cellular networks aim

to support the above emerging applications out of these aforementioned networks.

Unlike 4G networks with large and high-power cell towers to reflect signals over long

distances, a 5G network consists of cells with a small coverage. This is due to the

usage of millimeter-wave (mmWave) spectrum (between 24GHz and 100GHz) [8] in

5G that can travel over short distances, but is susceptible to interference from the

weather and physical obstacles (e.g., buildings). There are various weather conditions

like rain, fog, precipitation, and smog that cause these waves to attenuate during

propagation. Extreme conditions may lead to the total link failure of the network.

The mmWave, however, enables high-speed communications. Some estimates indi-

cate that 5G wireless broadband connections can access data at speeds of 20 gigabits

per second (Gbps) or higher [9]. It is expected that 5G services and networks will be

deployed over the next several years to meet the growing demand for mobile devices

and internet connectivity.

However, the use of mmWave has a number of disadvantages, besides the fact

that the frequency is affected by the weather conditions. In addition to passing

through the atmosphere, the mmWave radio frequency suffers from the frequency

dependent absorption and dispersion effects which cause distortions in the amplitude

and phase of signals [10]. Various properties of insulated media, such as the refrac-

tion, absorption and scatter, influence the regular propagation of mmWave [8]. This

includes attenuation while propagating through water and the atmosphere. It can

affect the parameters of the signals from the radio antenna that ultimately causes

1
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the unavailability of the link transmission. Likewise, the wind plays an important

role in the transmission of the mmWave waves as strong winds cause atmospheric

vibration, which is responsible for attenuating the key performance indicator (KPI)

parameters [11].

Emerging applications deployed over 5G demand reliable and fast communica-

tions, wherein the system must be robust against any radio link failure. Thus, in

this thesis we focus on learning-based radio link failure prediction. We use the radio

station (cellular tower) and real-world weather data sourced from Turkish networking

company ITU-Turkcell [12]. The radio station data contains KPI parameters for the

radio sensors collected on a daily basis in 2019, as well as the spatial information of

each radio tower. In addition, the weather data from the weather stations scattered

throughout the same region were provided by the Turkish National Meteorological In-

stitute. The weather data contains forecast data for the next five days from any date

of 2019, collected in the mornings and evenings of each day. This data also contains

the real weather report of the region captured hourly everyday. The ITU-Turkcell

network operators set two thresholds for the unavailability of a link based on time

(in seconds) and background bit error (BBE). A radio link is declared failed if both

these thresholds are exceeded.

Previously proposed solutions can be divided into two main domains. The first

domain encompasses the physical layer or topology based solutions [11, 13, 14], while

the other domain consists of software based solutions that use Artificial Intelligence

or Machine Learning, or Deep Learning algorithms [15–17]. Our research focuses on

the software-based solutions for the radio link failure prediction, which leverages deep

learning technologies.

An ensemble learning model for high prediction accuracy was proposed by Kotagiri

et al. [18], which uses a combination of Random Forest, Light Gradient Boosting

Machine and Extreme Gradient Boosting Machine. They compute the average failure

probability of the individual model and classify the link failure by selecting an optimal

threshold. However, the solution does not maintain the sequential property of the

data which is an important aspect for the model to recognize the feature patterns in

the new sequence of data. The existing approaches are limited to the supervised model

training, where the scalability of the solution is computationally complicated. The
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traditional feature extraction method may affect the overall result in larger network

settings.

The goal of this research is to use a time-series deep-learning solution to utilize

improved feature mapping on the pre-processed data and, ultimately, perform the link

failure prediction. The proposed model learns the high-level features from the sequen-

tial data in an incremental manner, which reduces the complex data pre-processing

and allows the model to perform prediction over a large amount of data. The experi-

ment shows improved performance over the traditional pre-processing and supervised

models and provide an improved scope for scalability in large network settings.

1.1 Contribution

In this work, we first analyzed both the radio and weather data sets to understand

the weather features and the KPI features. This was then used to identify feature

correlations and pattern matching, which were imperative for testing our initial hy-

pothesis and assumptions. Following this, we investigated the existing state-of-the-art

solution from NEC corporation [18] on the same data and identified its limitations.

Specifically, in data pre-processing steps, the authors did not remove the outliers from

long distance weather stations. Additionally, there was no cross-validation of time

series data for the segmentation for training and validation. The training and testing

was performed on the standard scikit-learn train test split with only the 2019 data.

We calculated the optimal distance between the radio towers and the weather

stations within a specific region, following which we detected and removed the outlier

connections with those stations that were far away from the radio towers. A re-

calibration of the data was accomplished using the synthetic approach, smote [19], to

strengthen the learning performance of the proposed model. The sequential property

of the data has been taken into account and applied to a customized time series cross

validation to perform a sequence based training of the proposed model. We developed

an Auto-encoder with the LSTM units, where a series of gates was used to control the

sequence of the data. This was then used as an input for training the time-specific

prediction. The final step consisted of testing our model with data collected over the

new time period and evaluating the performance of our solution, which did not exist

in the state-of-the-art solution [18].
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The performance of our proposed solution is better than the existing one in terms

of the accuracy, precision, recall, and F1 score. The major contribution in the devel-

opment of our solution was taking the sequential nature of the data into account for

the implementation of the model. This allows a well-trained model to reconstruct any

sequence of the data while calculating a higher reconstruction error than normal data.

Based on the evaluation of our proposed solution, we have achieved score of 88% ac-

curate classification (F1 Score ), which is 10% higher than the current state-of-the-art

solution [18], along with 14% higher precision and 3% higher recall indicating a sig-

nificant improvement of our proposed deep-learning based solution over the existing

ensemble-learning based one. A more detailed overview of our contributions have

been provided below:

• Built correlations based on the distance between the radio tower site and the

weather station data. A heuristic to find the correlation between these two

based on the distance matrix was also developed. Outlier weather stations were

subsequently detected and removed.

• Applied the principal component analysis of the data, where the dimensions

were reduced so as to contain the maximum information in the data..

• Proposed a time-series based deep learning model which provides the

hyper-parameters to tune the training for different settings and properties of

the data.

• Evaluated the performance of our proposed solution with the standard evalua-

tion metrics for prediction and compared the result with the existing state-of-

the-art solution from NEC corporation [18]. We also discussed the limitations

of the existing solutions and proposed improvements to them.

• Tested the solution with a new time span of data, performing 10% better in

terms of prediction accuracy.

• Released the code for the above solution in a public repository [20].
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1.2 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents two sections: Sec-

tion 2.1 introduces the necessary background for understanding the thesis, including

the overview of data pre-processing steps, ensemble models and sequence-based deep

learning models. Section 2.2 describes, in detail, the features from the available data.

Chapter 3 discusses research work relevant to this thesis, including their findings

and the limitations. Chapter 4 presents the design methodology and evaluation of

the overall thesis. This is divided into two parts. In the first three sections, we

explain the data pre-processing steps of both existing state-of-the-art solution and

our proposed methods as well as the learning model training and implementation de-

tails. After that, Section 4.4 represents the explanation of the evaluation metrics, the

results of the training and the testing of both existing solution and our proposed so-

lution alongside the findings. Chapter 5 discusses the conclusion and future research

directions of our work.



Chapter 2

Background and Data Description

2.1 Background

In this section, we briefly review the machine learning algorithms required to build

the proposed solution. This includes the pre-processing methods such as encoding

and feature selection as well as learning models like ensemble learning, the Long

Short-Term Memory (LSTM) networks and the Autoencoder networks.

2.1.1 Data Pre-processing

When working with a sequential classification problem using deep learning methods

like LSTM neural networks, categorical data cannot be input directly. It must be

converted to numerical data first, called encoding, which can be achieved in a number

of ways. We have applied the binary encoding and the one-hot encoding method

separately in our research for the categorical encoding, evaluating and observing the

performance of each in our proposed model. This experimentation helped us to choose

the best encoding method for our data. The following is a brief description of the

working procedure of the mentioned two encoding approach.

Binary Encoding Method. Binary encoding is a straightforward means of

converting data into binary format where categorical features are first numbered and

then uniquely assigned as columns in the output.

We first convert each category into an integer numerical order beginning with 1.

Then, the binary code is generated by converting each integer to binary. Thereafter,

the digits of the binary number are divided into separate columns according to their

features. Binary encoding produces log2n features if there are n unique categories [21].

The Fig. 2.1 shows an example of binary encoding operation. The first table

contains the weather related categorical features. First, ordinal integer numbers are

assigned for each of the categorical features. Then, the numbers are converted to the

6
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Figure 2.1: Example of Binary encoding operation.

binary representations. Finally, the binary values are split into the different weather

columns. Usually, the binary encoding operation works best for the categorical fea-

tures with ordinal correlations among them. The categorical features with no such

correlation as like shown in the example figure 2.1 creates a false sense of ranking

in the dataset among the features. The next paragraph discusses how the one hot

encoding was used to avoid such bias in the data.

One-Hot Encoding Method. One-hot encoding performs well for data that has

little or no relationship within it. Categorical data without any ordinal properties are

best encoded using this encoding method [22]. Machine learning algorithms consider

the order of a set of numbers to be a significant trait. Higher numbers are perceived as

better or more important than the lower numbers [23]. Although the binary encoding

algorithm works well for most ordinal situations, data which doesnt have ranked

categories causes problems in both with prediction and performance [24].

Using categorical values as input, we create new categorical columns and assign

binary values to each one in the one hot encoding method. This creates binary vectors

that represent the integer values. Binary variables are mapped to each category

containing either 0 or 1. Here, 0 represents the absence and 1 represents the presence

of that category. An example of one hot encoding method in Fig. 2.2 clarifies the

heuristic of this encoding method where Table 1 contains a column with categorical

weather data that has no ordinal relation among them.

The second table in the Fig. 2.2 includes dummy variables that correspond to a

specific weather category. 1 represents the presence of each category, while 0 repre-

sents its absence.
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Figure 2.2: Example of one hot encoding operation.

2.1.1.1 The Curse of High Dimensionality

Categorical data encoding can create data overfitting, since it adds substantially more

dimensions to the data, thereby impacting how the learning model trains and performs

for the test data. A few dimensionality reduction techniques have been employed in

this study, which have been briefly discussed in the following sections.

Feature Selection. Predictive models are designed to be developed with a small

number of input variables. Feature selection is the process of reducing the number

of input variables or dimensions. A reduction in the number of input variables can

reduce computational costs as well as enhance model performance. In feature selection

methods, which use statistical methods as part of their evaluation process, input

variables are evaluated in relation to target variables; then, those that are most

closely related to target variables are chosen [25]. Data types play a critical role in

determining which statistical measures are applied to input and output variables. The

methods can be fast and effective depending upon the type of data. The objectives

of feature selection techniques include:

1. Simplification of models to make them easier to interpret by researchers/users.

2. Shorter training times.

3. Avoiding the curse of dimensionality.

4. Enhanced generalization by reducing overfitting (formally, reduction of vari-

ance).

Recursive Feature Elimination. In this work, we used the Recursive Feature
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Elimination (RFE) technique of dimensionality reduction [26]. RFE involves recur-

sively evaluating smaller sets of features. In this method, a feature importance or

coefficient of variation (coeff) attribute is calculated to determine the importance of

each feature before the estimator is trained on the initial set of features. Thereafter,

the least important features are pruned from the current set of features. The coeff

represents the contribution of a feature to the prediction task in the dataset, where

negatively scored features are responsible for negatively classified class predictions,

and positively scored features are responsible for positively classified class predictions.

The features with scores close to zero are eliminated until the performance of the es-

timator begins to deteriorate. This process is repeated recursively on the pruned set

until the desired number of features is eventually selected.

Principal Component Analysis. Principal Component Analysis is an unsu-

pervised statistical analysis method for component analysis that constructs relevant

features through linear or non-linear combination of the original features. In order to

construct the most relevant features, the correlated features are linearly transformed

into smaller uncorrelated components [27]. The original data is projected into the

reduced space by using the eigenvectors of the covariance matrix, which is also known

as the principal components [28]. This operation reduces the overall dimension of the

data. The equation 2.1 refers the computation of covariance matrix σjk for variable

j and k.

σjk =
1

n− 1
×
∫ n

i=1

(xij − x′j)(xik − x′k). (2.1)

Here, σjk represents the covariance matrix, xij represnts the specific number of

sample from original feature space xj, x
′
j represents the mean over all of the samples,

xik represents the specific number of sample from the original feature space xk and

x′k represents the mean over all of the samples.

Despite being undefined by definition, dimensionality reduction tends to simplify

data sets at the expense of some accuracy. The analysis of small datasets is simpler

and machine learning algorithms can analyze them without having to bother with

extraneous data. Essentially, PCA ensures that data set information is preserved

while reducing the number of features within the dataset [28]. Along with RFE, the

motivation of using the PCA with the high dimensional encoded data is to retrieve

the maximum information after the dimension reduction operation. We have trained
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our proposed model with both PCA and RFE methods applied on the data and

subsequently observed the prediction performance of the model, which is represented

and discussed in detail in Chapter 4.

A few separate tasks need to be performed in the PCA in order to achieve the

reduction in dimension. The first step is to investigate the correlation between the

features to determine the information, i.e., the change in mean from each feature to

the other. This involves calculating the matrix of the covariance, which is a p×p sym-

metric matrix (p is the number of dimensions) where the covariances are associated

with all possible pairs of the initial variables.

The next step is to determine the principal components of the covariance matrix

by computing their eigenvectors and eigenvalues. The eigenvectors of a variability

matrix are the directions of the axes that contain the most variance. The eigenvalues

are simply the coefficients attached to the eigenvectors, which are indicative of the

variance in each Principal Component. Following that, principal components are

computed by ranking eigenvectors according to their eigenvalues. As a final step, the

feature vector is calculated by adding the highest significant values from the previous

steps. The purpose of this step is to remove the features with low significant values,

which is a passive operation when reducing the dimensions [29].

2.1.2 Dataset Balancing

An important aspect of data preprocessing is balancing minority and majority classes

within the data.

Resampling data is one of the most common approaches to deal with the un-

balanced datasets. This can be achieved in two different ways: 1) Undersampling

and 2) Oversampling. Usually, oversampling techniques tend to be preferred over

undersampling techniques [19].

Synthetic minority oversampling technique (SMOTE) is an oversampling tech-

nique where the synthetic samples are generated for the minority class, which aids in

overcoming the over-fitting problem caused by random oversampling. By interpolat-

ing between positive instances that lie together, it generates new instances based on

the feature space [19].

In the initial step, a total of N oversampling observations are determined. An
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Figure 2.3: Synthetic Minority Oversampling.

iteration starts with the selection of the first random instance of the class. The next

step is to retrieve the K-Nearest Neighbour ( KNN ) (5 by default) for the instance

as shown in Fig. 2.3. A new synthetic instance is generated by interpolating N

instances from these K instances. It utilizes a distance metric in order to calculate

the difference between the feature vector (selected minority class sample) and its

neighbors. A random value between [0, 1] is multiplied by this matrix that calculates

the difference between the matrix and the feature vector [30]. As many synthetic

examples of the minority class can be created using this procedure as needed.

2.1.3 Learning Algorithms

2.1.3.1 Ensemble Learning Method.

Ensemble learning is a general meta approach to machine learning that seeks better

predictive performance by combining the predictions from multiple models. It is

a popular machine learning paradigm where multiple models (often called “weak

learners”) are trained to solve the same problem and combined to get better results

[31]. The main hypothesis is that when weak models are correctly combined we can

obtain more accurate and/or robust models.

The existing state-of-the-art solution [18] used a combination of three models to

prepare the Ensemble learning model. The three individual models are: Random

Forest, Light Gradient Boosting Machine and Extreme Gradient Boosting Machine.

Our approach reproduced the prediction performance in the same way, then analyzed

the details further to discover limitations and other details of the solution. We will

be discussing the theoretical details in this section and the implementation details in
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Chapter 4.

Random Forest. A random forest consists of many individual decision trees that

work together as an ensemble. A random forest is a method of predicting classes based

on the number of votes each tree provides and the class with the most votes becomes

the model prediction as shown in Fig. 2.4. One of the most fundamental concepts

underlying random forest is the idea of the wisdom of crowds [32]. Considering the

impact of correlated and uncorrelated models, the likelihood is that the results will

be better when their number increases and they work as a group.

Figure 2.4: Random Forest Classifier

Initially a randomly split dataset is transformed into a decision tree ensemble

(based on the divide-and-conquer strategy) [33]. On the basis of selection indicators

like information gain or Gini index, a decision tree is generated. The trees are gen-

erated from a sample of random data. The best class is chosen as the final outcome

for a classification problem when each tree votes.

Light Gradient Boosting Machine (LGBM). Light Gradient Boosting Ma-

chine (LGBM) is a gradient boosting framework that uses a tree-based learning algo-

rithm. LGBM grows the tree horizontally while other algorithms grow trees vertically.

In other words, Light GBM grows the tree leaf-wise horizontally while other algorithm

grows level-wise [34]. The figure 2.5 below shows the horizontal growth of the tree.
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Figure 2.5: Light Gradient Boosting Machine leaf-wise growth.

It chooses the leaf with max delta loss to grow. Leaf-wise algorithms can reduce

more loss than level-wise algorithms when growing the same leaf. As the data size

grows, traditional data science algorithms face difficulty delivering results faster [35].

Data can be handled by Light GBM with less memory usage and bigger data sizes.

The fact that Light GBM focuses on accuracy is another reason for its popularity.

Data scientists are increasingly using LGBM to develop data science applications

because it supports GPU learning.

Extreme Gradient Boosting Machine. Extreme Gradient Boosting Machine

(XGBoost) is an implementation of gradient boosted decision trees designed for speed

and performance, and is a competitive machine learning technique [36].

Boosting also works on the ensemble principle. It is a method that utilizes the

combined strength of weak learners so that prediction accuracy can be improved.

The model outcome at any instant, t, is weighed according to the model outcome

at the previous instance, t − 1. Both correctly predicted outcomes and incorrectly

predicted outcomes are assigned weights. A weak learner is slightly more accurate

than random guessing. In a boosting algorithm, the mis-classification error created by

the previous model creates a stronger model by using the evidence from the previous

model to create a new, stronger model [37]. As mentioned previously, XGBoost is

algorithm that combines a decision-tree-based ensemble machine learning framework

with gradient boosting to achieve an ensemble prediction.
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2.1.3.2 Deep Learning based Models

Fully Connected Feed-Forward Convolution Neural Network. The fully con-

nected convolution neural networks are deep learning algorithms that use an image

or a data series as input, capture the spatial patterns with programmable filters, and

then assign importance using trainable weights. In contrast with other classification

algorithms, the processing required for convolutional neural networks is much lower.

Convolutional Neural Networks have the capability of learning filters in contrast to

many other methods that require additional feature engineering to design them. A

Convolutional Neural Network is composed of the following three different layers.

1. Convolutional Layer.

2. Pooling Layer.

3. Fully-Connected Layer.

Usually several Convolutional Layers and Pooling Layers are alternated before the

Fully - Connected Layer.

Convolution Layer. The convolution operation is the fundamental building

block of this type of network. It performs a convolution of feature maps with a filter

matrix to obtain, as output, a different series of feature maps, with the goal to extract

high-level features. The result of the convolution between one input feature map and

one filter is the ordered feature map obtained applying the filter across the width and

height of the input feature map [38].

Stride. Stride controls how the filters slides to one input feature map. In partic-

ular, the value of stride indicates how many units must be shifted at a time.

Padding. Padding indicates how many extra columns and rows to add outside

an input feature map, before applying a convolution filter. All the cells of the new

columns and rows have a dummy value, usually 0.

Pooling Layer. The purpose of the pooling operation is to achieve a dimen-

sion reduction of the aforementioned feature maps, preserving as much information

as possible. It is useful for extracting dominant features which are rotational and

positional invariant. Its input is a series of feature maps and the output is a different

series of feature maps with lower dimensions.
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Fully - Connected Layers. A fully-connected Layer is designed to learn non-

linear combinations of the high-level features represented by the output of the convo-

lution layer and the pooling Layer. Fully connected layers are usually implemented

using Multi Layer Perceptrons (MLPR) [39]. A series of feature maps are generated

from the original input series after convolution and pooling operations. A column

vector represents all the feature maps flattened into one, representing the original

multivariate input. As the input series is flattened, the single column is connected to

the MLPR, whose neurons are divided equally between classes of the series. Back-

propagation is applied to the data during training. Over a series of epochs, the model

is able to distinguish the input series thanks to their dominant high-level features and

to classify them.

Long Short Term Memory Network (LSTM). An LSTM is a type of Re-

current Neural Network (RNN) which allows the network to retain long-term de-

pendencies between data at a given time from previous timesteps [40]. The LSTM

network consists of a series of repeating modules, each containing three control gates:

the forget gate, the input gate, and the output gate. The cell state of the network

transitions horizontally from one end to another. The network control gates regulate

the information for passing to the cell state during the transition. A sigmoid neural

network layer and a pointwise multiplication operation are used in the control gates.

The sigmoid layer outputs numbers in 0 and 1, which represents which information

should be let through and which one should be forgotten. In the LSTM model, the

vectors are read from an input vector x = [x1, x2, ..., xt, ...], where xt×Rm represents

a m-dimensional vector of readings for m variables at the time-instance t [41].

ft = σ(Wf · [ht−1, xt] + bf ) (2.2)

where ht−1 is the output in state t − 1, Wf and bf are the weight matrices and the

bias of the forget gate. Then, xt is processed before storing in cell state [42]. The

value is determined in the input gate along with a vector of candidate values Ct. The

activation function simultaneously updates it in the new cell state C ′t,

it = σ(Wi · [ht−1, xt] + bi) (2.3)
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C ′t = tanh(Wc · [ht−1, xt] + bc) (2.4)

The old state is multiplied by the factor ft from Eq. 2.2 and the it × C ′t is added

which is represented in Eq. 2.5. This is the new candidate state value, scaled by the

amount decided upon to update each state value.

Ct = (ft × Ct−1) + (it × C ′t) (2.5)

where (Wi, bi) and (Wc, bc) from Eq. 2.3 and Eq. 2.4 are the weight matrices and

the biases of input gate and memory cell state, respectively. Finally, the output gate,

which is defined by,

ot = σ(Wo · [ht−1, xt] + bo) (2.6)

where Wo and bo are the weight matrix and the bias of output gate. The output is

the filtered version generated from the cell state Ct. Then, The cell state is converted

to output values from −1 to 1 and multiplied by the sigmoid gate output from Eq.

2.6.

ht = ot × tanh(Ct) (2.7)

The ht output from each LSTM unit at the end of the transition is generated by

its cell state.

LSTM - Autoencoder. Autoencoders are neural networks that learn the best

encoding and decoding schemes from data. They consist of an input layer, an output

layer, an encoder neural network, a decoder neural network, and a latent space. In or-

der to feed the data to the network, decoders decompress the encoded representation

into the output layer, while encoders compress them in the latent space. After the

encoded-decoded output has been compared with the initial data, errors are prop-

agated back through the architecture in order to update the network weights [41].

In particular, given the input x ∈ Rm, the encoder compresses x to obtain an en-

coded representation z = e(x) ∈ Rn. The decoder reconstructs this representation

to give the output x = d(z) ∈ Rm. The autoencoder is trained by minimizing the

reconstruction error.
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L = |x− x′| (2.8)

where x′ represents the reconstructed output and x represents the ground truth. An

autoencoder does not to simply copy input to output. The constraint, i.e., n ×
m, forces the autoencoder to learn the most salient features of the training data.

Alternatively, one of the most important properties of an autoencoder is the ability

to reduce data dimensions while retaining the structure of the data [17].

Figure 2.6: LSTM Autoencoder Architecture

Encoder-decoder LSTMs are implemented as LSTM Autoencoders using the encoder-

decoder architecture. LSTM encoders are capable of decoding, encoding, and recre-

ating sequences from a given time-series data. Evaluation of the model is based on

its capacity to recreate the input sequence.

The Fig. 2.6 represents the architecture of an LSTM-Autoencoder network. The

Encoder part (LSTM Encoder) of the network transforms a given input sequence into

a fixed-length vector, or a compressed sequence. The vectors with a fixed length are

called context vectors. Decoders (LSTM Decoders) start from the context vector as

input, while predicting output sequences from the final encoder state as an initial

decoder state. A repeat vector layer is used to repeat a context vector generated by
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the encoder so that the decoder can use it. Each forecasting step is repeated for n

steps (n is the number of future steps to be taken). The output from the decoder is

mixed according to the time step. Each time step is applied to a full dense layer with

a separate output for each time step. The Time Distributed layer is a wrapper that

enables the application of layers to every window of a time interval.

There are several types of autoencoders that have been proposed in the literature,

such as vanilla autoencoders, convolutional autoencoders, regularized autoencoders,

and LSTM - autoencoders. Among them, LSTM - autoencoders refer to autoen-

coders where both the encoder and the decoder are constructed with LSTM units.

LSTMs have the ability to detect temporal patterns in data with a large number of

observations, which makes them a good choice for forecasting time series or identi-

fying anomalies/ failures [40]. The operation of using an Autoencoder with LSTM

involves the reconstruction of the data while maintaining the temporal dependency

of the features. In this research, an autoencoder model with multiple LSTM layers

is trained with only the normal sequences which can be used to detect link failures

in the time series test data. During training, the encoder-decoder only encountered

normal instances/ non-failed links and learned to reconstruct them. A failed link

which is not learnt by the model during training, may not be easy to re-construct,

resulting in higher reconstruction errors. In this thesis, we explored the capabilities

of a well-trained model that can show the difference between anomalous data, such

as failed links, since such anomalous events are rare in a real world scenario.

2.2 Data Explanation

The dataset used throughout this thesis was collected from the regional weather

stations and the radio tower sensors by the organization network experts [12]. The

dataset can be found here [43]. The first set of data contains samples from January

2019 to December 2019. Additionally, we collected data from January 2020 to June

2020. We trained our model with the 2019 data only, while the data from the first six

months of 2020 was incorporated in the testing phase. We utilized the information

from both radio towers and the weather stations from the same region and prepared

our solution accordingly to predict the network link failure.



19

There are six subsets in the original data set that represents three parts for dif-

ferent network and weather operations. A brief description of the parts and subsets

are provided below:

1. Weather Data :

• Met - Forecast Data. The weather forecast data contains forecast re-

ports for the next five days. The features are Date-time, station id, min-

max temp, weather type, wind speed, humidity, report time, wind direc-

tion.

• Met - Station. This data-set contains the spatial features of the weather

stations. The features are weather stations, ground height (distance of the

weather station from the sea level), and the clutter class which indicates

the type of environment of the weather station location.

• Met - Real. This data contains the real time weather report with of each

hour of the day. The features are station-no, date time, measure-date,

measure-hour, temp (max,min,current), wind-dir (max,min), wind-speed

(max,min), humidity,precipitation, precipitation-coeff, pressure, pressure-

sea-level.

A summary of the weather data is given in Table 2.1.

Subset Total Features Total Samples

Met-Forecast 9 39370
Met-Real 32 629217

Met-Stations 3 117

Table 2.1: Summary of the weather data.

2. Radio Link Data :

• RL - Sites. This data-set contains spatial features of the Radio link (RL)

sites. The features are site-no, ground height (distance of the radio link

site from the sea level) and the clutter class which indicates the type of

environment of the site location.
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• RL - KPI. Each sample in the Key Performance Indicator (KPI) data

represents the features that are used to measure the performance of the

radio links. The features are type, date-time, tip, mlid, mw-connection id,

site no, polarization, card type, adaptive modulation, frequency band, link

length, severely error seconds, error seconds, unavailable seconds, available

time, bbe (background bit error), power level, scalability score, capacity,

modulation, radio link failure. A summary of the radio link data is given

in Table 2.2.

Subset Total Features Total Samples

RL-Sites 3 1674
RL-KPI 21 979063

Table 2.2: Summary of radio tower data.

3. Distance Matrix : The exact location of the radio towers and the weather

station base are kept secret due to the security reasons. But the geo-relation

between the radio tower and the weather stations is represented in the form

of the distance between them. The distance matrix represents the distance

between each of the weather station and the radio link tower site. Each sample

is in terms of distance in kilometers for each weather station and site id. The

distance matrix is the only connected relation between the weather stations and

the radio link tower site.

A brief summary of the contents of each table in the dataset is summarized and

can be seen in Table 2.3.
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Table Contents

Weather Station Table Spatial Properties and environment type of station
sites

Real Weather Table Data on the weather condition on real time, e.g.
wind speed and temperature

Weather Forecast Table Forecast data for the next 5 days after measurement

Radio Link Site Table Spatial Properties and environment type of RL sites

Radio Link KPIs Table RL performance indicators, e.g. background bit er-
ror count (BBE) and unavailable seconds

Distance Table Distance among the weather stations and RL sites

Table 2.3: Dataset table description



Chapter 3

Literature Review

3.1 Related Works

Fifth generation (5G) wireless networks promise to provide faster and more expansive

data connectivity, exceeding thresholds from previous fourth generation (4G) tech-

nology. The need for high bandwidth data access to end users is always increasing,

thanks to the growing number of users and devices who rely on mobile computing,

as well as the constantly increasing sophisticated applications. Weather interruptions

are particularly damaging to high frequency communications. In particular, Millime-

ter wave transmissions suffer from significant depletion owing to precipitation. As a

result, during rainstorms, connection availability and dependability suffer consider-

ably [14].

Weather forecasts can be used to predict whether connection disruptions will occur

ahead of time, thereby saving significant recovery costs and potential downtime. Many

existing solutions are proposed and implemented that take into account the impacts

of the weather on network links. These can be divided into two types of literature

found in the context of radio link failure prediction. Some of these works focused on

the network topology and the solutions implemented at the physical layer. Different

routing protocols are employed to detect the unavailability of packets in topology-

based works. Another approach is the use of machine learning algorithms in order to

detect the failed link [11].

The proposed solutions utilize machine learning algorithms to classify the normal

frequency links from the affected links with the collected mmWave radio frequency

data and meteorological weather forecast data. As opposed to the topology-based

solutions, which are complex and expensive to migrate or scale for a new network

situation, machine learning-related solutions allow for dynamic scaling regardless of

data size in a new region or time-frame. In this section, we present and compare the

existing solutions. We thoroughly reviewed the literature and previously proposed

22
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solutions as well as pointed out the gaps and limitations in those solutions.

3.1.1 Topology Based

Topology-based reliability service is common both in wired [44–48] and wireless

[49–55] networks. However, these works did not consider weather impact. Nauman

Javed et al. [56] proposed a predictive routing model for wireless mesh networks which

operate at millimeter-wave bands with directional links, that uses in-network param-

eter prediction to make the network adaptive, as opposed to using meteorological

weather information from external sources, such as weather radars. The approach is

validated through simulations based on real-world weather events, observed through

a network of weather radars, and compared with approaches that do not make use of

predictions but may use the link quality as a parameter in routing decision making.

The results showed 8% better performance in terms of entire link failure detection in

the mm-Wave predictive mesh network model.

A new transmission technique for wireless network was proposed by Jacek Rak et

al. [57], which mitigates the link quality degradation or complete failure particularly in

the heavy rain storm conditions. The proposed methodology in his research is the first

one to use information on forecast attenuation of links based on radar measurements

and days ahead weather forecast to perform in advance the periodic updates of a

network topology that is used for further accurate prediction of the link failure.

Another study proposed a reinforcement learning approach to prevent the mmWave

based connection disruption. The authors discussed about the radio link signal failure

(RLF) in the closed environment context such as the elevator. The metallic wall of

the elevator interrupts the radio connection between the radio tower and the mobile

device [16].

A Reinforcement learning model approach called Intelligent Elevator Detection

and Network Adaptation is proposed where the user will upload the failure report,

link stats, to a cloud server which can be then utilized by other users to acquire

prior knowledge about the RLF [16]. The algorithm switches to the stronger signal

(3g/4g/5g/wifi) seamlessly without losing connectivity. The learning model uses the

accelerometer and gravity sensor to detect user entrance and exit into the elevator

and detects the elevator by the nearby WiFi MAC addresses. Then, it classifies the
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signal strength of the available cellular network in the elevator. The proposed solution

in this study leans into the recovery aspect from the UE and does not provide much

scaling convenience.

An RF prediction model has been formulated analytically from the rain echo

maps statistics in order to calculate signal attenuation based on the radar-based rain

echo map [58]. Through the predictive routing protocol, a method of predicting the

background bit error (BBE) rate and the likelihood of detecting backhaul failure has

been used to predict the future. While heavy rain weather features are one of the

most common weather features, using the only one in the dataset to feed into the

model also results in incorrect predictions.

Another type of research has been conducted that uses the various weather fea-

tures from the weather station that are situated near network sites [59]. The pre-

diction model in the methodology is built by taking several weather features into

account. The study also proposed the model that raises an alarm before predicting

and registering a link failure if the radio link signal quality is below the threshold.

The methodology has a limitation of working with the distance between weather sta-

tions and radio link sites, as long-distance weather station data suffers from time

synchronization problems with network link site data.

3.1.2 Machine Learning Based

The available solutions that employed machine learning techniques to classify net-

work connections, are divided into two categories. Some of the existing solutions

utilized the decision tree based supervised learning model where the correlations of

the radio network frequency data features and the weather forecast data features

were calculated and classified the failed links to normal links by forming conditional

decisions. The other type of the existing solutions used the feature compression and

latent representation of the most important features properties of the deep learning

algorithms.

The existing state-of-the-art solution from NEC Corporation [18] worked with the

same provided data such as ours, using an ensemble model based on the decision

tree algorithm. The authors designed the approach to have three individual decision

tree based models, which are trained and and then perform classification for each
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link. The final prediction result was calculated from the average prediction from each

model prediction score. The detail of the workflow and learning model approach is

described and compared with our proposed solution in later sections.

Another decision tree based approach was proposed in [60] where a low depth

model, DecisionTreeClassifier, was able to capture the feature correlations between

the radio frequency KPI data and the weather forecast data. The solution relied

heavily on the random iterative feature elimination to prevent the model overfit-

ting from the high dimensional combined data, whereas we used systematic neural

network based dimension reduction in our proposed solution. DecisionTreeClassi-

fier was unsatisfactory in classifying the failed link compared to the aforementioned

ensemble model due to the use of random feature elimination and data imbalance.

There exist other works on failure cause analysis and detection of failures in radio

networks [61,62].

The authors of [61] used causality graphs to apply feature correlations and link

failure detection to classify sequential network data. Another work of supervised as

well as semi-supervised ML based models was proposed by Francesco et al. [63] where

high classification accuracy was achieved from a supervised model. The solution per-

formed worse on the real network deployment with little or no data labelling. Later,

the author performed the experiment with deep learning instead and achieved higher

classification accuracy than the supervised solution. However, unlike our approach,

the solution did not process the sequential training of the model where models are

trained and validated by time sequence.

A supervised learning technique for predicting failures was suggested by Vanerio

et al. [64], such that any potential microwave connection problems may be repaired

immediately. The decision trees were utilised to detect anomalies in synthetically

created data derived from genuine microwave network statistics. The proposed work

used the synthetic data of various disruption events such as weather, geo-location and

so on to train the supervised model and classify the anomalous links. Nevertheless,

unlike our proposed solution, the authors did not enlighten that the high dimensions

of the data due to encoding may degrade the model training performance in a real

network setting.

Some existing studies utilized deep learning methods for anomaly detection in
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radio link features, which is nearly similar to detecting/forecasting the failed links.

M. Furdek et al. [65] proposed an unsupervised learning technique which predicts

malicious attacks at the optical layer as anomalies by having the knowledge of the

mmWave radio link features.

A density-based unsupervised clustering technique for grouping and labelling

points into potential classes was proposed by X. Chen et al. [66], detecting outliers

as network failures, and then training a neural network to identify failures via bi-

nary classification using the already labelled data. These proposed solutions did not

put emphasis on maintaining the data sequence during training, unlike our proposed

solution in terms of time series data.

Decomposition and modelling approaches are two types of strategies for detecting

abnormal records in time-series data. Only suited for univariate time series, decom-

position techniques split a time series into level, trend, seasonality, and noise compo-

nents, monitoring the noise components to capture anomalous records [40]. Modeling

approaches depict a time series as a linear/non-linear function that relates each cur-

rent value with its previous values, forecasts the value of a record at a given time,

and reports records whose prediction error goes outside of a threshold as anomalies.

Moving Average (MA) is a stochastic modelling method. Autoregressive Integrated

Moving Average (ARIMA) [67] , and Holt-Winters (HW) [68] used statistical mea-

sures to calculate the correlation between the data records. We utilized the time

series aspect of the deep learning model due to the sequential property of the data.

One of the main aspects of our work is to maintain the sequence according to the

date of the weather forecast and radio link performance indicators.

A deep learning model was proposed by H.D. Nguyen et al. [15],for forecasting

the trend in the supply-chain management system while maintaining the sequential

properties of the data. Similarly, Mahmoud et al. [41] proposed an anomaly detection

technique for malicious attack detection. By training the models with just examples

of normal classes, the Long Short Term Memory (LSTM) autoencoder and One-class

Support Vector Machine (OC-SVM) were used to identify anomalies-based attacks

in an imbalanced dataset. The LSTM-autoencoder was trained to learn the normal

traffic pattern and the compressed representation of the input data (i.e. latent fea-

tures), after which it was fed to an OC-SVM method for classification. We took
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the inspiration from the aforementioned anomaly detection solutions and built our

own solution to predict failures in the radio link in the context of weather impact on

mmWave radio link. One of the main advantages of the aforementioned techniques

is the ability to handle high-dimensional data sets with high performance, which is

nearly impossible or requires extra efforts and time for supervised models. Moreover,

the amount of weather and radio link data is increased along with the time where

supervised models might fail to classify due to the high dimensionality in the real

world setup. However, the existing techniques for anomalous sequence detection split

the data into multiple subsequences, typically based on a fixed sized windows, where

we have explored the dynamic window size for the past failure events as well as sys-

tematic feature reduction to improve model performance. An LSTM-Autoencoder

is a time series autoencoder that captures long-term temporal correlations between

data recordings in the form of complicated equations that are incomprehensible to

humans.

Approach Scaling New Data Testing Sequence Maintain Recovery
P-WARP X Not Tested No Yes

Ensemble Model × Not Tested No No
DecisionTree × Poor No No

LSTM-AE-OCSVM X Not Tested Yes No
ConvAE × Not Tested No No

Proposed LSTM-AE X Good Yes No

Table 3.1: A comparison of existing solutions for Link Failure / Anomaly Detection.

In summary, we can observe that most of the machine learning based solutions

do not focus on the data sequences during the model training, in terms of radio link

failure prediction. Decision Tree based solutions offer less computation at the cost of

low prediction accuracy. The solutions that utilize the reconstruction property of an

Autoencoder with LSTM layers maintain the sequence of the training data but there

are no experiments for the new sequence of data coming from radio tower sensors

in real world. This greatly limits the ability of these models to predict in a new

setting. On the other hand, the Convolutional Autoencoder models do not maintain

the historical data during model training. In our proposed model, we addressed the

above limitations. Furthermore, we find that our model is very successful on the

new data. Even though we do not provide the recovery of the radio link, which is
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the future direction of this research, our model performance is better than previously

discussed machine learning based solutions.



Chapter 4

Research Methodology and Evaluation

This section introduces the approaches for both the current state-of-the-art solution

from NEC corp [18] and our proposed solution for predicting the radio link failures.

In this thesis, we address the issue of mmWave radio link failure in radio base-station

towers due the weather effect. Radio towers operating in mmWave radio signals

produce Key Performance Indicators (KPIs) of sensors for a certain time span, which

are used to correlate weather forecast data. Geographical characteristics of radio

towers and weather stations are revealed by the spatial information from the area.

The objective of this study is to use the temporal dependency of the radio links

and weather features and predict a link failure for a particular day. The deep learn-

ing strategies were utilized for the improvement of feature mapping, learning fea-

ture correlations and accurately predict link failures. The workflow of the proposed

methodology is given below in the Fig. 4.1.

Figure 4.1: The workflow of the proposed approach.

29
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4.1 Data Pre-Processing

4.1.1 Distance correlation.

In order to determine whether the failure of the radio links was related to the weather

condition, we had to use the weather forecast report associated with the radio links.

The distance from a radio base tower to the weather station is the only primary

parameter found in the data. The dataset contained a distance matrix between radio

towers and weather stations, along with the radio tower id and the weather station id,

which provided the necessary correlation parameter for the features between the radio

tower and weather station data. However, the region from which the data originates

extends to a radius of more than 100 km. Radio towers located in far away areas

cannot all be correlated with weather stations. The failure of a far radio tower link

in the mmWave environment would not be impacted by the weather forecast because

of the short-range properties of mmWave [9]. So, using the distance information

between radio towers and weather stations, we devised a step-by-step heuristic to

extract correlations between them. We used the following heuristic to find the best

distance radius to corroborate the radio towers with the weather stations.

1. First, the closest radio link tower from each of the weather stations is found.

This ensures that at least one radio link tower is associated with a weather

station.

2. Next, among the above set of all radio link tower distances, we found the max-

imum distance between that radio tower and its corresponding nearest weather

station. For example, lets assume, RL1, RL2 and RL3 ( Radio link tower) are

connected with their nearest weather stations WS1, WS2 and WS3 (Weather

station), respectively. RL3, and its distance d3, was found to be the largest of

the three connections. d3 is thus set as the radius for other weather stations

to be connected to radio towers, and denoted as the optimal distance d. The

computed optimal distance d was 4.2 km.

3. Finally, all of the radio link towers were taken into account which are within the

optimal distance d for each weather station and formed the correlation between

RL and WS as shown in Fig. 4.2. As we can see in the figure, if weather station
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Figure 4.2: Correlation established based on the optimal distance d.

WS2 has radio link towers RL2, RL8 and RL67 within the optimal distance d,

then the correlation is established between this weather station and all three

radio link towers

However, after calculating the shortest distance between RL and WS, it was re-

vealed that, some of the WS have a very high distance from the RL sites. For exam-

ple, compared to most radio towers, which are only 2 or 3 km away from their closest

weather stations, a small number of radio towers are located approximately 100 km

away from their closest weather stations. The data from these weather stations do not

have the same impact on the radio link key performance of the corresponding radio
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Figure 4.3: Correlation heuristic flowchart.

tower in the mmWave network environment, and thus designated as outliers. These

WS and their corresponding closest radio link tower were removed from the formed

correlation. The outlier radio towers are shown in Fig. 4.4. The links associated with

these towers are also not considered [10].

Figure 4.4: Outlier weather stations.
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4.1.2 Data Combination

The radio link KPI data and the weather forecast data need to be brought together for

the classification of the radio links. The combination operation was performed based

on the correlation formed between RL site id and WS weather station id, through the

optimal distance d. As the weather forecast affects radio tower link features differently

during different times of the year, the final data achieved sequential properties by

combining it with the weather forecast data. This is a major contribution of the

work; maintaining the link sequence with forecasts in order to accurately identify

the link failure at various times during the year. This is not available in the current

state-of-the-art solution [18].

Before performing the merging operation, the weather forecast data required more

processing. As mentioned in Section 2.2, the weather report dataset contains the

forecast data for the next five days for each particular date. This report includes

temperature, humidity, wind direction, speed and weather type. In order to predict

the link failures for the next one day, we extracted only the forecast data for the

next day from the dataset. Also, we only extracted the morning forecast data as

the radio tower KPI samples were collected in the morning only. The spatial data

(ground height and clutter class) for each stations were added to the modified forecast

dataset.

Then, we combined the radio KPI data with the forecast data. For each radio

link failure prediction, we needed the weather forecast data for the next day in our

prediction. As mentioned before, this weather forecast data is contained in the current

date. So, the alignment was made such that the relationship between this particular

date and the KPI data would be preserved in the model.

The combination between the radio link KPI data and the modified weather fore-

cast data was done based on the correlation formed by optimal distance d. As there

were no weather forecast reports for the first entry in the dataset, ’01/01/2019’, the

KPI dataset also had its entry removed for the same date to ensure the correct align-

ment, which was then designated as modified KPI data. However, we must also note

that the KPI data is also used has historical data in our model. Thus the final dataset

was combined such that it contained the KPI data and the weather report of the same

day for each radio link, as well as the previous day KPI data to use as historical data.
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However, we only kept the target feature for the modified radio KPI data as the

failure prediction utilized the ML classification task and not the regression task.

Also, we parsed through the ’date-time’ feature of the final combined dataset and

extracted the month as an integer number. Then we added a ’month’ feature to the

modified combined data which contained the integer month value [69]. The temporal

attribute of the data was tracked using this feature and the corresponding index.

We used this feature as a reference for the further semi-supervised pre-processing

operations such as dimension reduction, data-balancing and so on.

The final dataset was structured as follows,

Figure 4.5: Data Structure

4.1.3 Missing Data

A data quality report was produced from the final combined data to find out the data

quality issues and plan to handle the issues. The data quality report was produced

separately for the continuous features of the data and the categorical features of the

data [70]. This approach helped in identifying the specific issues in the separate types

of the data. The data quality metrics for the continuous features are:

1. Number of samples.

2. Percentage of missing data of each features.

3. Cardinality.

4. Maximum and minimum value.

5. First and third quartiles of the data.
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6. Mean and Median.

7. Standard deviation.

Figure 4.6: Data Quality report of the Continuous features

The data quality metrics for categorical features are:

1. Number of samples.

2. Percentage of missing data of each features.

3. Cardinality.

4. First Mode value, Mode Frequency and Mode percentage.

5. Second Mode value, Model Frequency and Mode percentage.

Figure 4.7: Data quality report of the categorical features.
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In order to solve this issue of data quality, we devised a plan, wherein the first step

was to prepare a solution for the missing values in both continuous and categorical fea-

tures. The continuous features which contained missing values are the following: ‘link-

length’, ‘scalability-score’, ‘min-temperature’, ‘max-temperature’, ‘humidity-max’,

‘humidity-min’, ‘wind-speed’,’error-seconds’. The solution applied for the missing

values in the continuous features are,

The mean. The mean of the values were calculated and placed in the missing

cell. This method was applied on min-temperature, max-temperature, humidity-max,

humidity-min and wind-speed, and link-length.

The median. The median was calculated based on the previous and the next

value of the missing value cell [71]. This method was applied on the the ’scalability-

score’ feature which determines the scaling ability of the frequency modulation and

ranges from 0 to 1. In order to keep the value unbiased, the median was calculated

and filled in the missing cell.

Removing and zero filling. This approach was applied on the feature neid.

The neid determines the id of the each radio link sample. Filling the cells with any

value would introduce a bias in the dataset. The sample with missing neid had been

removed from the dataset. The ‘0’ is placed in the missing cell for the ‘error-second’

feature as it determines how many seconds the error links are up before reporting the

failure. Filling it with zero was the most optimal solution for this feature.

The categorical features which contain missing values are the following: ‘polariza-

tion’, ‘frequency-band’, ‘direction’.

Mode. The missing values in the categorical features are filled with the Mode

value of the particular features i.e., Frequency band and direction [71].

However, in case of a missing value for the feature ’polarization’, the sample was

entirely removed from the dataset [72]. ‘Polarization’ contained only two values in

the dataset which are enable and disable. Filling out with either of these values would

introduce bias in the dataset. Removing the sample assured the purity of the dataset

in terms of noise and bias.
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4.1.4 Categorical Feature Encoding

The categorical features needed to be encoded with binary vectors to train a ma-

chine learning algorithm. The existing solution applied the binary encoding method

for categorical data. In binary encoding, the categorical features were initially con-

verted to numerical ones using an ordinal encoder. The numbers were converted to

binary numbers. After that, the binary values were divided into columns. The binary

encoding heuristic of the categorical data was performed as follows,

1. The categories were first converted to numeric order starting from 1 (order is

created as categories appear in a dataset and do not mean have any ordinal

significance)

2. The integers were converted into binary code, so for example, 3 becomes 011, 4

becomes 100 and so on.

3. Then the digits of the binary number were set as separate columns.

Figure 4.8: Binary encoding to categorical features.

The number of features in the dataset after binary encoding was 67. The models

were trained with binary encoded data, reconstruction errors were calculated and

classification task for failure detection was performed. Due to the ordinal properties

of the binary encoding method which can impact the overall model performance,

we applied another encoding method called one hot encoding to observe the model

performance difference. The one hot encoding system was applied and the data was

prepared for model training separately.

One hot encoding specifically works with categorical data that is nominal [23].

In our dataset, the categorical data did not have any ordinal properties. So one hot

encoding was applied on the categorical features in order to eliminate the ordinal
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properties from the encoded data. In a binary classification task, the numerical

labels produced from the binary encoding may affect the loss calculation of the model

training especially in a real world failure event scenario. A small bias during the

training period may degrade the model’s feature learning ability, which ultimately

adversely affects prediction accuracy. This statement is further justified in Section

4.4 by multiple evaluations and comparisons of prediction results. The heuristic of

the one hot encoding in the dataset is as follows, In one hot encoding, for each level

of a categorical feature, we created a new variable. Each category was mapped with

a binary variable containing either 0 or 1. Here, 0 represented the absence, and 1

represented the presence of that category. These newly created binary features were

known as ’dummy variables’. The number of dummy variables depends on the levels

present in the categorical variable [23]. The number of features in the original data

before encoding was 29, which subsequently increased to 1377 after encoding.

Figure 4.9: One hot encoding to Categorical Features.

4.1.5 Feature Selection

Feature selection was used for reducing the high dimensional feature count. The

reduction of feature count improved the performance of the ensemble learning model

of the existing solution [18]. Features were removed in an iterative way by using the

feature importance property of a supervised classifier. This was calculated for each

feature of the dataset where a higher score represented the importance of the feature

in classification operation. A linear algorithm (Logistic Regression) was used to find

a set of coefficients to use in the weighted sum in order to make the prediction. These

coefficients were used directly as a crude type of feature importance score [26].

The feature coefficient scores were both negative and positive as shown in Fig.
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Figure 4.10: Feature Coefficient scores.

4.10. The feature name was changed to numbers only for the better plot interpre-

tation. Here, the positive scores indicated the importance of classifying the class 1

( failed link ) and negative scores indicated the importance of classifying the class

0 ( normal link ). The features with absolute less scores were iteratively removed

until the F1 score of the linear classifier was reduced. The number of features before

applying the feature selection method was 67. which dropped to 51 after applying

the feature selection.

4.1.6 Principal Component Analysis

The high dimensionality of the data after the categorical encoding operation may

lead to the model over-fitting during the training as well as cause features to appear

equally spaced from each other, which is one of the reasons why a model cannot learn

proper distribution [29]. We employed an unsupervised approach called Principal
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Component Analysis (PCA) to tackle this issue regarding high dimensionality. Gen-

erally, dimensionality reduction involves reducing the complexity of a model as well as

decreasing the computation cost. In contrast, losing the dimensions may negatively

affect model performance, as it may contain critical information about the feature

distribution. There are two methods for reducing the dimensionality of a dataset:

feature selection and feature extraction. The feature selection algorithm selects a

subset of the original features, whereas the feature extraction algorithm identifies

information from the original feature set to construct a new feature subspace [73].

The PCA algorithm involves feature extraction by constructing new components for

a new feature space from the original feature set. The PCA attempts to determine

the directions of the maximum variance in high-dimensional data and project it into

a subspace with fewer dimensions than the original one. In other words, PCA can be

defined as the linear projection that minimizes the mean squared distance between

the data points and their projections. Moreover, due to the transformation of the

original d-dimensional data onto the new k-dimensional subspace (usually k <<d),

all information and variance associated with the original feature distribution are in-

cluded in the first few principal components. In case of the binary representation,

PCA considers the internal geometrical interpretations of the data points [74,75]. For

example, if [x1, x2, .., xn] are n variables, consider a k-dimensional ( k <<d) linear

space spanned by the orthogonal binary bases [b1, b2, ..., bk] with the shift vector µ,

then PCA minimizes the new feature space reconstruction error Eb by employing the

following equation 4.1:

Eb =
n∑

i=1

‖ xi − (µ+ ai1b1 + ...+ aikbk) ‖2 (4.1)

The PCA algorithm also ranks components in descending order in the new data space

according to the variance/information, so the model learns about the distribution

of the features mainly from the top-ranked components. PCA considers the linear

correlation of the features and projects the feature map accordingly [76]. The feature

mapping for linear representation depends on the internal correlation and geometrical

interpretation among the features. However, PCA did not perform well on binary

encoded data due to the ordinal structure of the binary encoding approach. This

also affected the prediction results. The total principal components was 57 from
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the original 63 binary encoded features, which indicates poor performance of feature

compression for the binary encoded data. Thus, we applied a new encoding method

called one hot encoding to the original data. Training a model with lower rank

components has little to no impact on the learning of feature distribution of the model

[73]. This property of the PCA algorithm allowed us to remove the lower-ranking

components without losing any information, thus reducing the overall dimensions of

the data.

We applied the Principal Component Analysis in our data such that the retrieved

variance was emphasized and the final data dimensions were chosen accordingly. The

model was tested for different variances in an iterative process, and a threshold for

the number of components was selected based on its performance and computation

cost. Our study determined that the conditions of 90% variance retention, with 728

components for one hot encoded data, produced the best results, as seen in Table 4.1.

The iterative experimentation with various number of principal components based

on the final prediction score and computation cost allowed us to select the most

optimal setting for our model training. The features of the one hot encoded data

before applying the PCA were 1377, which was transformed into less dimensional

components after applying PCA.

Principal Components Retained Information F1 Score Training Time
1377 100% 0.71 310 mins
1136 96% 0.85 230 mins
728 90% 0.88 150 mins
665 85% 0.82 150 mins
413 75% 0.77 120 mins
169 65% 0.61 30 mins

Table 4.1: Principal Components VS Retained Variance.

4.2 Data Preparation

The failure event depends on the weather condition of specific regions. The recorded

failure in the data is rare due to the low fluctuation of weather condition. The KPI

data contains only 0.31% of total samples which resulted radio link failure, which

translates to a ratio of 1:320 for failure to regular features.
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Figure 4.11: Data balancing operations using synthetic approach.

Imbalanced data classification has the drawback of having too few samples of

the minority class for a model to learn the decision boundary successfully. The im-

balanced data can be balanced using oversampling and under sampling techniques.

Existing solutions incorporated the oversampling technique SMOTE ( Synthetic Mi-

nority Oversampling Technique) [19], which enhances the minority class in a dataset

by synthesizing new samples in the feature space. The method selects the samples

that are close to the feature space, then draws a line between the samples in the fea-

ture space and adds a new sample at the point along the line. Thus, the new sample

is added to the dataset without bias and noise.

Based on the dataset, the total number of majority N+ and minority N– sam-

ples were determined. Our next step was to determine the threshold degree of class

imbalance, generating the optimal number of samples accordingly. We calculated

KNN’s for each minority sample x1 using Euclidean distance, and normalize r1 as

rx ≤ r1/
∑
r1 based on the ratio r1 calculated for δi/k. The total number of syn-

thetic samples for each data point were G = rx × Gap. For our implementation of

the synthetic oversampling, the total number of oversampling observations, N, is set

up. Generally, this was selected such that the class distribution ratio was as close

possible. Then, we started the iteration by first selecting a positive class instance.

We selected k = 4 for the nearest neighbors. The difference in distance between the
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feature vector and its neighbors was calculated using the Euclidean distance equation

which is shown in the Fig. 4.11. This calculated difference was multiplied by any

random value in [0, 1] to determine the gap and new instances were synthesized ac-

cordingly. This generated new positive instances, which were merged into the data.

The final minority to majority ratio after the re-balancing operation improved from

1:320 to 1:10.

4.2.1 Data Segmentation

The data requires segmentation into train data and validation data for the model

to calculate the performance. Using timed forecast data in conjunction with KPI

data from the radio tower, we achieved the sequential properties as mentioned in

the previous section. The segmentation required a systematic approach in order to

maintain the sequence of the data. The time series segmentation needs to be aware of

the fact that, the train set has to be always behind the validation set sequentially so

that the learning model does not incorrectly use future train data instead past data

for predictions.

The existing solution applied 70:30 segmentation of the entire dataset where first

nine months were considered as the train set and the rest three months are considered

as the test set [77]. The model was trained on the first nine months of 2019 and the

prediction score was calculated on the last three months of the test set.

However, we used expanding window time series cross validation method for the

data segmentation into the train set, validation set and test set [78]. The idea for

time series splits was to divide the training set into two folds at each iteration on

the condition that the validation set is always ahead of the training split [79]. The

splitting was performed with k-fold Cross Validation with 5 iterations where k = 2. A

‘TimeBasedCV’ custom splitter function was updated and modified from the default

TimeSeriesSplit from the scikit-learn module , that enabled us to control the time

window of the data sequence and the method was imported from a open source git

repository [80]. Then it was used as a main splitter() function with the GridSearchcv

model for performing the cross validation of the data segmentation [81]. Every cross-

validation iteration used one fold as a validation set and k - 1 folds as a training set.

Following that, the standard deviation was calculated by averaging all folds. At the
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first iteration, we trained the proposed candidate model on the RLF from January

to April and validated on May data, and for the next iteration, trained on data from

January to May, and validated on June data, and so on to the end of the training

set. The October, November and December 2019 data was selected for testing the

model which is shown in Figure 4.12. The training and testing of the proposed model

performance with the segmented data is described in a later section. As mentioned,

we utilized the GridSearchcv statistical model to perform the cross validation [82].

The cross validation accuracy of segmentation was computed by averaging over the

validation sets, which is 0.9954123658.

Figure 4.12: Expanding window Time series segmentation.

We also collected the data from 2020 and tested the model with the 2020 data

to gain better standing with the results about the proposed solution. The prepared

new test data from 2020 contains weather forecast data from weather stations and

key performance data from radio tower sensors of January, 2020 to June, 2020 . The

data from 2020 was pre-processed in the similar way as the 2019 dataset and prepared

accordingly before testing.
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4.2.2 Data Normalization

We applied a normalization algorithm on the data before using it for model training.

The scikit-learn library module provided StandardScaling method to scale the data in

range [0, 1]. The gradient descent of the neural network helped optimize the training

and this optimization requires the data to be scaled. Scaling also helped the activation

function to determine the output for the neurons of the network where close to 1 leads

to the positive classification result and 0 to the negative one. This was an important

step of data preparation before training the learning models.

4.3 Model Training

4.3.1 Neural Network based learning Methods

Fully Connected Convolution Neural Network. We used a fully connected

Convolution Neural Network ( FCNN ) as our baseline model for deep learning based

solutions. The main goal of using FCNN is to observe the data properties and be-

haviour on a neural network environment. Convolutional Neural Networks are a type

of deep learning model, which can capture spatial patterns through training filters

and assign weights to them. The model was trained with the first 9 months and

tested with the last 3 months of 2019. The goal of the FCNN implementation is

to observe and improve upon the existing solution by employing the spatial feature

pattern instead of the decision-tree boundary, as in the NEC implementation [18].

The model was implemented such that it worked in three consecutive stages: data

transformation, local convolution and full convolution [83, 84]. The model workflow

is described below.

Data Transformation: Transformation of the data was applied to the original

set in three aforementioned branches. We transformed the original train set differ-

ently with each successive iteration. This transformation mapped the identity of the

original series so that it preserved the integrity. Following the splitting of the input

series, a moving average was calculated. A variety of new input series were created

with varying levels of smoothness. Coefficient values were used to down sample the

original sets.

Local Convolution: Following this, a 1-D convolution with different filter sizes
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was applied by passing each convolution layer through a global max pooling layer

as shown in Fig. 4.13. We applied the formula n/p, where n is the length of the

input series in terms of p, the pooling factor by which we determined the size of the

pooling kernel. This algorithm used the original input series as input along with two

down-sampled versions of it (half sampled and quarter sampled). The corresponding

convolutional kernel was [64× 728] as the convolutional kernels always have the same

width as the input series with varied length of data. In the second branch, the input

series are down sampled and the filter size used here was [32× 728]. Then, the third

branch of the transformation processed the shorter version than previous version of

the input series, with a filter size of [8× 728].

Figure 4.13: Fully connected CNN architecture and workflow.

Fully Connected Convolution. At this stage, the output from the aforemen-

tioned three branches were concatenated which is represented in Figure 4.13. We

converged the 1-D convolutional outputs and added more max-pooling layers. A

compressed vector resulted from full convolution, which captured train-set data on a

wide range of frequencies. In the subsequent layers, this vector was used as an input

into fully connected layers with the softmax function. A dropout regularization layer

was added after convolution and global pools, and all the outputs are concatenated.

The last fully connected layer outputs the prediction values for the samples.

We used Sigmoid activation function for each layers as we were calculating the
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probability distribution for prediction. During each training epoch, the model dis-

tinguished the input based on their high-level features and classified them according

to the feature mapping [85]. After the training was complete, we fit the test data to

evaluate the model performance. All of the high-level features learned by the local

convolution layers were flattened into a one-dimensional local vector. A final vector

(same size as test input data) containing the probability distribution score was cre-

ated by concatenating all of the flattened vectors produced by the local convolutions.

It was calculated using dot multiplication of the feature weights. As a result, the fi-

nal output was a one-dimensional vector of the probability scores that were obtained

from the high-level feature mapping of the test data in the convolution layers. Then,

we selected an optimal threshold based on the probabilities generated from the test

input data in order to identify the failed links. The classification details are discussed

elaborately in section 4.4. A summary of the training process of the FCNN is given

below.

1. At every epoch, the output was computed using the present input vector.

2. The output was a vector where the elements are the estimated probability scores

of the classes of the target feature.

3. The prediction error was computed using a cost function. The cost function

was recorded and the cost value converged to a solution at the final epoch.

4. The weights were updated in a backward pass to propagate the error by using

gradient descent.

The hyper-parameters are listed in Table 4.2.

LSTM - Autoencoder. An Autoencoder with an LSTM layer was applied

to observe and improve the previous FCNN solution by utilizing the reconstruction

property of the Autoencoder and the sequence maintaining property of the LSTM.

We planned to improve upon the previous neural network predictions by utilizing the

sequential properties along with the spatial properties of the features. Depending on

the input data properties, we applied the Recurrent Neural Network (RNN)-based

LSTM nodes coupled with Autoencoder architectures, where sequential correlations

of radio link features are used during the model training. We used a feed-forward
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Hyper-Parameter Selected Value
Epochs 50

Total hidden layers 5
Batch size 64
Dropout 0.3

Activation function Sigmoid
Computation CUDA, Cluster GPU
Loss function Mean Absolute Error (MAE)

Table 4.2: Hyper-parameters of FCNN.

neural network-based approach to solve this problem because RNNs consider both

the previous output and current input at each epoch.

The reason that we decided to use the Autoencoder in our proposed model for

failure classification is the fact that the Autoencoder tries to learn the best parame-

ters to reconstruct the input at the output layer. Moreover, we adapted the LSTM

algorithm for our model to solve the issues of the standard RNN technique, such as

vanishing and exploding gradient problems. The LSTM - Autoencoder model training

and validation heuristic is described below.

1. The train and validation data are separated into two parts : zero labeled (Nor-

mal Link) and mixed labeled (both normal and failed links).

2. The zero labeled data was the normal link state of the sample. A normal link

state is when the link does not face any failure.

3. We ignored the mixed labeled data, and trained an Autoencoder on only zero

labeled data.

4. This Autoencoder learned the features of the normal link state.

5. A well-trained Autoencoder is able to predict any new data that is coming from

the normal link state as it will have the same statistical distribution. Thus, the

reconstruction error is small.

6. In case of mixed labelled data, the autoencoder struggles to reconstruct the

data from failure event and generate high reconstruction error for those mixed

labelled samples. The samples with high reconstruction error are classified as

the failure samples.
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Additional data preparation for LSTM layers. The input required more

preprocessing to fit into the LSTM layers. The input data to an LSTM neuron usually

is a 3-dimensional array. The shape of the array is [samples× lookback× features] .

samples: This is the number of samples or the number of data points to fit into

encoder. We used it to train and validate our model and observed the performance.

lookback: LSTM layers were mainly used to maintain the sequence of the data,

as the model requires looking at the past data points. The LSTM processes the data

up to (t-lookback) at time t. In this case, the time sequence represented each date of

the year.

features: It is the number of features in the input data.

The Hyper-parameters are listed in Table 4.3.

Hyper-Parameter Selected Value
Epochs 50

Learning rate 0.001
Hidden layers 4

Batch size 16
Optimizer Adam
Dropout 0.3

Activation function ReLU
Computation CUDA, Cluster GPU
Loss function Mean Absolute Error (MAE)

Table 4.3: Hyper-parameters of LSTM-AE.

Implementation Details: Our model used LSTM with autoencoder to learn

the representations of the network dataset in a semi-supervised fashion. It contained

multiple layers of encoder and decoder stages and each stage consists of multiple

LSTM units [15]. The final architecture of our proposed model includes 4 layers for

each encoder and the decoder including the input layer and the output layer. The

operation is explained for one day time lag and one hot encoded data with PCA

applied for dimension reduction. The lookback time for LSTM units is the hyper-

parameter of the model which was tuned for various previous timesteps (number of

past dates) during the experimentation to achieve the best prediction results.

Encoder. The input data X(n) was encoded via the encoder block to generate a

fixed range feature vector Z(n). As shown in the figure 4.14, the input data X(n) ∈
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R728∗1∗16 was the initial features from the dataset. The encoder block sequentially

reduces the dimension of the 728-dimension initial features. The dimensions were

reduced to 364, 91, 45, and 22, after the first, second, third and fourth layers of the

encoder respectively. The final encoded feature vector Z(n) ∈ R22 represented the

compressed latent input data. RepeatV ector, replicated the feature vector with input

shape of [22 × 1 × 16] for the decoder. The RepeatV ector layer acted as a bridge

between the encoder and decoder modules [17]. The Decoder layer was designed to

unfold the encoding. As mentioned, for encoder-decoder, the input was reduced into a

compressed feature vector, to regenerate output as the same dimension as the original

input. The RepeatV ector converted the feature vector tensor to retrieve the output

of same the dimension. RepeatV ector connects the encoder to decoder by retrieving

the output from the last layer of encoder.

Figure 4.14: LSTM - Autoencoder Architecture.

Decoder. Similar to the encoder block, the layers in the decoder block were

arranged in reverse order. The encoded features Z(n) were sent through a series of

LSTM blocks to generate the output feature vector X
′
(n). Each subsequent layer of

the decoder increases the dimensions again, in reverse order.

The encoded feature vector was fed into the decoder block for generating the
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output feature. We represented the input feature vector of the decoder block as Z(n).

LSTM blocks were then used to generate an output feature vector X
′
(n), based on the

encoded features Z(n). The dimensions were increased in reverse order of the encoder.

TimeDistributed(Dense()) was added in the end to get the output which is shown in

the model diagram figure 4.14. The TimeDistributed layer created a vector of length

equal to the number of features output from the previous layer. In this network,

the final decoder layer outputted 728 features. Therefore, the TimeDistributed layer

created a 728 long vector and duplicated it 16 (mini-batch) times. The output of the

last layer was a 728× 256 array that we denoted as U and the output from the dense

layer was 256× 16 array which was denoted as V. Multiplication of U and V yielded

a result 728× 16 matching the input size and dimensions.

The output feature vector X
′
(n) was reconstructed to be as similar to the input

feature vector X(n) as possible. An estimation error between input and output data

was calculated using the mean absolute error (MAE). LSTM - Autoencoder network

was used to model normal traffic data based on the discriminatory features presented

in the data. The reconstruction error for normal sample data is supposed to be less

when compared to that of failed sample data. Due to this behavior, the corresponding

error value for the failed link will be significantly higher, making it easier for one to

detect the failure.

First, we checked our model performance with a smaller set of the data. In a

single training and validation iteration, we separated 1/5th of the data which is the

first iteration of the time series splitting. It contained train data with no failure from

January 2019 to April 2019 and the validation data with mixed classes (normal and

positive) of May 2019. The train data had 427080×728 examples (122 timesteps ) with

no failure links. The validation data had 106770×728 ( 30 timesteps ) examples with

mixed labels. We trained and validated our model and recorded the reconstruction

loss. The train loss converged to a solution after some time of the training which

indicates the proper learning of the model. The reconstruction loss for the validation

set were a bit higher than the train loss which indicated that our model struggled to

reconstruct the samples with failure event.

After that, we repeated the above phase five times according to the iterations of

the data segmentation, i.e., we fed the whole data set of same number of features from
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1.2 million samples of training data and 0.53 million samples of the validation data.

Although, the model took a long time (approximately 230 minutes) to finish the train-

ing and the validation, the loss converged to a solution which indicated the learning of

the model. We experimented the training of the model with multiple parameter tun-

ing for achieving the best version of the trained model. The experimentation included

different types of encoded training data, varying amounts of historical data for past

observation during the feature compression, as well as different numbers of hidden

layers and LSTM units. We performed the experiments in a sequence that allowed

us to determine the best setting for a specific step, and then used the knowledge to

perform the next experiment to achieve even greater prediction accuracy. Evaluations

and results of the experiments are discussed in Section 4.4.

Following that, we trained the model with data from the new time span of 2020

in the same environment setting. The data from 2020 was similarly pre-processed

and prepared and sent to the model that had been trained with the data from 2019.

The model was tested on the new data and we evaluated its data reconstruction

performance with the temporal properties presented in the data. The next step was to

predict link failures using the standard evaluation metrics, which is discussed in more

detail in the next section, using the optimal threshold derived from the reconstruction

loss.

4.3.2 Supervised Ensemble Learning Method

We also implemented the current state-of-art solution to recreate the prediction re-

sult and compared it with our proposed solution. As a general practice in machine

learning, ensemble learning seeks to improve predictive performance by combining

predictions from multiple models. The existing solution from NEC corp [18] trained

a decision-tree based ensemble learning model that includes Random Forest (RF)

classifier, Light Gradient Boosting Machine (LGBM) and Extreme Gradient Boost-

ing Machine (XGB).

In order to recreate the state of the art solution, we implemented the ensemble

learning solution with the decision tree based models in the pipeline. We particularly

used Random Forest (RF), Light Gradient Boosting Machine (LGBM) and Extreme

Gradient Boosting Machine (XGB). Here, we selected n estimator = 1000, which
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Figure 4.15: Ensemble method and its prediction strategy.

is the number of trees the algorithm built before taking the maximum voting. The

maximum tree depth was four. The minimum sample splits were set to two as its a

binary class classification. We selected two maximum terminal nodes from each tree

which prevented the tree from growing any further to prevent the model overfitting.

1/5th sample were left out for out-of-the-bag sample error estimation which was used

to get the unbiased estimate of the classification error as trees were added to the

forest iteratively [86]. It was also used to estimate variable importance.

We ran all of the data down each tree, created the pair of classes and computed

proximities for each pair. When two cases occupied the same terminal node, their
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proximity was increased by one. After that, we normalized the proximities by dividing

by the number of trees (set up in the estimator) at the end of the train run. A low-

dimensional view of the data was produced by using proximities. For each spliting

of the node, the Gini impurity criterion for split node was less than the parent

node [86], which ultimately decreased the variable count in the node which led to the

faster training of the model.

Finally, the model calculated the probability scores for each test sample by uti-

lizing the oob score estimation and output the results. The LGBM and XGB were

utilized to boost the training rate of the RF by performing optimal gradient descent.

The number of horizontal leaves set to 2max depth where max depth of the tree was set

to 2 for the boosting algorithms. Keeping the max depth low helped the model pre-

vent overfitting [86]. The average prediction scores calculated from each three model

were determined as the final prediction score of the ensemble model. The ensemble

model hyper-parameters are listed in Table 4.4.

The models were trained with similar train data which contained data from Jan-

uary 2019 to September 2019. After training was completed, we tested the models

with data from October 2019 to December 2019 and calculated the failure proba-

bility score for each sample of the target ‘RLF’. A probability score was calculated

based on the scores generated from each model in the ensemble. However, the ex-

isting solution used a fixed threshold for performing the classification task. During

our implementation of the existing solution to re-create similar output, we used both

fixed threshold of 0.5 and an optimal threshold of 0.58. The optimal threshold was

selected iteratively from achieving the highest prediction results. The prediction re-

sults were improved when an optimal threshold was used instead of a fixed one which

is a contribution for improvement to the existing solution. Using the threshold value

of failure probability of each sample as the denominator, we declared a link failed if

the target probability score is higher than the threshold value.

4.4 Evaluation

In this section, we discuss the evaluation process and results of our proposed solution

along with the state of the art solution [18], which shows that our method provides

better performance in terms of classification score in detecting link failures from the
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Hyper-Parameter Selected Value
Number of trees (RF) 1000

Tree depth (RF) 4
No. of leaves (per node) (LGBM, XGB) 2

Max tree depth (LGBM, XGB) 2

Table 4.4: Hyper-parameters of ensemble learning.

weather forecast and the sensor key performance indicator data.

4.4.1 Performance metrics

The performance metrics of the model are classification accuracy, precision, recall and

F1 score for evaluating the existing ensemble learning solution, the baseline convolu-

tion neural network solution, and proposed candidate method LSTM - Autoencoder.

We also used the receiver operating characteristic curve (ROC) to represent the clas-

sification results. The mathematical representation of the metrics are calculated as

follows.

Precision =
TP

(TP + FP )
(4.2)

Recall =
TP

(TP + FN)
(4.3)

F1 Score = 2× (Precision ∗Recall)
(Precision+Recal

) (4.4)

Accuracy =
(TP + TN)

(TP + TN + FN + FP )
(4.5)

where TP (True Positive) represents the number of instances correctly classified as

a failure; TN (True Negative) represents the number of instances correctly classified as

normal link; FP (False Positive) represents the number of instances incorrectly classi-

fied a failed link; FN (False Negative) represents the number of instances incorrectly

classified as normal.

However, we did not consider accuracy from Eq. 4.5 as our definitive evaluation

metric as like precision, recall and F1 score. Usually, accuracy is a good measure of

performance evaluation in the symmetrically balanced data ( ratio 1:1) but often fails

to represent the correct results for imbalanced data [87,88]. As our data has the class
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ratio of 1:10 for minority:majority classes, we decided not to include the accuracy as

an evaluation metric for the prediction results.

Receiver Operating Characteristic curve. A receiver operating characteristic

curve (ROC) is a graph showing the performance of a model of classifying True

Positive Rate (TPR) and False Positive Rate (FPR) for optimal threshold. An ROC

curve plots TPR vs FPR at different classification thresholds and points out the result

based on the most optimal one [89].

Testbed. Our experiments were conducted using a Core I7 10700K processor

running at 4.2 GHz, 32 GB DDR4 RAM, and Nvidia RTX 2080 TI GPU SLI. Ad-

ditionally, Ubuntu 18.04 LTS was used and CUDA version 10.2.9.55 was used to

accelerate the training process.

4.4.2 Parameter Tuning

Fully Connected Convolution Neural Network Model. The main goal of this

research is to apply a deep learning method and utilize the properties to improve

upon the existing supervised Machine learning solution. In order to do it, first we

trained a fully connected feed-forward convolution neural network and performed

the classification based on the prediction score. Then we implemented a time series

based neural network model of Autoencoder with LSTM nodes to use the output

reconstruction property of the Autoencoder to classify the failures.

We trained the model using differently preprocessed data to assess the performance

and obtain the best predictions on test data. Thus, we created different versions of

the trained model and tested the new data. Our first training of the model was to

use binary encoded data with a recursive feature elimination method and PCA for

dimension reduction. Last but not least, we reduced the dimension of the one hot

encoded data using PCA and trained the model. We trained the baseline model with

different encoded and preprocessed data and observed the training loss in order to

determine the best preprocessing techniques for the model and to improve predictions

with a more robust solution. The model was trained with first 9 months of the 2019.

Then we tested the model performance with the last 3 months of the 2019 and the

first 6 months of the 2020 which was completely new data to the model.

The above Fig. 4.16 illustrated the train loss generated during the training of
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Figure 4.16: Train loss of FCNN for binary encoded and one hot encoded with PCA
data.

the baseline model with both binary encoded data and the one hot encoded data.

As can be seen from the plot, a one hot encoded data has a very good convergence

to a solution while a binary encoded train shows some hiccups along the line. This

supports the evidence of better training of the model with one hot encoded data.

The claim was solidified with the classification results calculated from the prediction

scores which was generated from both binary encoded data and one hot encoded data

trained model.

ROC Representation. We used ROC method for representing the classification

results. [89].

The ROC curve represented the classification of the test target variable. The

model was trained and tested with different preprocessed data. The Figure 4.17

represents the plots for different sets of test data. PCA outperformed recursive elim-

ination method with binary encoded data. By maintaining the total information or

retained variance at 90%, we were able to improve model training performance which

was not the case with the RFE method. Furthermore, we found that one-hot encoded
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(a) Binary Encoded + RFE, 2019. (b) Binary Encoded + PCA, 2019.

(c) One Hot Encoded + PCA, 2019. (d) One Hot Encoded + PCA, 2020.

Figure 4.17: ROC curve generated from different parameters tuning.

and PCA combination in training performed better than both previously preprocessed

data, indicating that one hot encoding method is better suited for this data due to

its non-ranking encoding properties. The model outperformed for computing the pre-

diction distribution using one hot encoding for both test data from 2019 and the new

data from 2020, providing a clear indicator of the best encoding method selection

based on the data. As a result of the 2020 test data, the model performed even bet-

ter, with a higher recall, indicating a clear improvement in overall model accuracy for
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predicting new data in the future. Nevertheless, the Recursive Feature Elimination

method for dimensionality reduction performed significantly worse than the PCA in

terms of generating accurate predictions, so we determined that the PCA with one

hot encoded data was the best option for further experiments. The classification

result of the fully connected convolutional Neural Network is given below.

• Data A = Binary encoded + RFE 2019

• Data B = Binary encoded + PCA applied data of 2019

• Data C = One Hot Encoded + PCA applied data of 2019

• Data D = One hot encoded + PCA applied Data of 2020

Data Setting Precision Recall F1 Score

Data A 0.72 0.67 0.70
Data B 0.8 0.78 0.78
Data C 0.82 0.8 0.81
Data D 0.84 0.82 0.83

Table 4.5: Evaluation result for fully connected convolution model.

The precision score and F1 score of the one hot encoded 2019 test data is 2% higher

than the previously state-of-the-art supervised ensemble learning model performance.

We utilized the significant spatial properties presented in the data for the key point

of training the FCNN. The ability of neural network to learn the feature importance

better than the supervised ensemble model is one of the key reason of the result

improvements. The supervised models struggles classifying binary classes when the

testing sample is significantly less than the training data [90] such our data. The

data preparation of our proposed approach helped the FCNN to detect and utilize

the important features and resulted 4% better for new test samples than the existing

solution [18]. Furthermore, the model performed better with one hot encoded data

than binary encoded data. This affirmed the effectiveness of one hot encoding as

a pre-processing hyper-parameter. Also, we tuned hyper-parameter such batch size,

learning rate, training epoch in iterative way until the most optimal results were

produced. This was absent from the existing state of the art solution which led to
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produce poor classification score than our proposed model. The model performed well

with the new test data of 2020 which also signifies the better training of the model.

LSTM - Autoencoder. We implemented the Autoencoder model with LSTM

layers to perform and observe the classification of the failure link in 2019 data as

well as the new 2020 data. At each epoch, the training process fed the LSTM-AE

model with all training sample with normal label/normal links and validated with the

validation set for each segments. Both reconstruction error of train and validation set

converged after a certain point which determined the proper learning of the model.

The training process trying to minimize the reconstruction loss for each epoch. The

validation set reconstruction started lower and then eventually it crossed the training

error as the failed link reconstruction error is higher in the validation set.

Tests were conducted on the performance of our proposed model in different ways.

Several versions of the model were trained with different configurations varying the

encoding techniques in preprocessing, number of hidden layers, number of past days

were used in training of the model. These experiments allowed us to determine the

optimal version of our approach, which we compared with a baseline Full Connected

Network (FCN) and the existing state-of-the-art [18] solution.

Encoding Methods. As like our baseline FCNN model, We trained the model

with binary encoded data and one hot encoded data. As a result of the ranking

of the features in the binary encoding heuristic, the baseline model learned poorer

with binary encoded data than the one hot encoded data. Our claim can be further

justified by training our candidate proposed solution with both encoded data and

observing the learning characteristics.

The Fig. 4.18 illustrates the reconstruction errors from training the model with

different encoded data. One hot encoded data resulted in a smoother convergence of

training and validation error. These results demonstrate better learning of the feature

representation of one hot encoded data which is in line with the baseline solution.

Better learning of the train data eventually improved the accuracy of predicting the

failed link on the test data. our method involved iteratively selecting the most opti-

mal threshold and categorizing the reconstruction errors for every sample in the last

training epoch. Then, we determined the sample is a link failure if the generated error

for the corresponding sample is higher than the optimal threshold. We calculated the
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Figure 4.18: Reconstruction error of different encoding methods.

Accuracy, Precision, Recall and F1 score for the test data using the optimal threshold

on the reconstruction error. We utilized this heuristic for every experiment for the

proposed solution and recorded the prediction results on the test data. Both versions

of the models trained with batch size 16 and one day past data lookback for LSTM

units.

The ROC curve representation. Here we represented the ROC curve for the

classification result. The model generated the best results for the one hot encoded

data of 2019 and 2020. The model was capable of successfully distinguishing the

true positive rate and the false positive rate. We generated ROC curve for each

experiments. However, we are only representing one ROC plot containing the best

result of one hot encoded data of 2019. The full classification results are given in

Table 4.6.

We can see by the results showed in Table 4.6 that the performance of the model

improved when using one-hot as the encoding technique. The positive effect can be

explained as a result of the categorical features not having any type of rank between
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Figure 4.19: ROC curve representation for one hot encoded data with PCA of 2019.

Encoding technique Precision Recall F1 Score
Binary (2019) 0.8 0.81 0.81
Binary (2020) 0.8 0.79 0.78

One-hot (2019) 0.87 0.85 0.86
One-hot (2020) 0.87 0.85 0.86

Table 4.6: Prediction results for different encoding techniques (PCA applied).

them. Besides, the fact that our approach uses PCA to pre-process the data ensures

that it does not suffer from handling the higher dimensional data that is generated

when using one-hot encoding. So, we selected the one hot encoding method as the

preferred encoding method and continued next experiments with one hot encoded

data.

Number of Layers. As part of training and experimentation with a variety of hid-

den layer numbers, we fine-tuned the structure of the proposed LSTM - Autoencoder
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model. During this test, we used 2, 3, 4 layers with 384, 438, and 480 units respec-

tively, and compared the resulting reconstruction error and classification score based

on the errors. We used the one hot encoded data for conducting this experiment.

This experiment enabled selection of the best version of the hyper-parameters for the

proposed model based on knowledge of the optimal number of hidden layers.

Figure 4.20: Training reconstruction error of different structures of LSTM-AE.

As shown in Fig. 4.20, data compression performance improved when more hidden

layers were added. In this case, the model trained with four hidden layers performed

better than the other configurations. The low number of hidden layers resulted an

under-fitting model because of the high dimensional data and complex correlation

between features. We calculated the optimal threshold for different settings in order

to classify the reconstruction errors. The table 4.7 shows the classification results for

failed links which represents the better performance with more layers. The results

were generated for 2019 test data. The test results showed a significant impact for

each settings. From the observations, we selected the 4 hidden layers model as the

best version of the model due to the highest prediction scores calculated from this
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version of the model. However, we also built and trained our model with 5 hidden

layers and 556 units which resulted the model over-fitting. This added complexity

of the model allowed the model to capture the details and noises of the data to the

extent that it negatively impacted the overall performance of the model. Thus, we

used only the 4 hidden layers version of the model with one hot encoded data training

for next experiment.

The ROC curve representation. We represented the ROC curve for the clas-

sification result. The model generated the best results for the one hot encoded data

of 2019 for 4 hidden layers architecture. The model was able to predict 87% of the

true positive class. The ROC plot was generated for each experimentation. The ROC

curve containing the best result is shown in Figure 4.21. The classification results are

given in Table 4.7.

Figure 4.21: ROC curve representation for one hot encoded + PCA data of 2019 with
4 hidden layers for LSTM-AE.

Usage of Past Sample Measurement. One of the major differences between our

approach and that of the state-of-the-art model is our approach used of temporal
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Hidden layers Precision Recall F1 Score
2 0.64 0.4 0.49
3 0.73 0.67 0.7
4 0.90 0.87 0.88

Table 4.7: Prediction results for different numbers of hidden layers.

properties, taking advantage of the LSTM units to understand this type of dependency

better. Nevertheless, we were able to fine-tune how much historical information the

model receives to reconstruct a sample. In this experiment, we varied the number of

days in the past (lookback steps) that the LSTM units receive (1, 5 or 7) in order

to forecast a failure. The main reason for using the different amount of historical

data is that the weather effects might be different for older data, which may provide

a better insight into the weather-radio link correlation and help predict the failure

more accurately.

Figure 4.22: Reconstruction error for different numbers of lag steps.

This experiment was conducted using the model with four hidden layers and with

one-hot encoded data, as this was the best version of the model according to previous

results. The Fig. 4.22 shows the reconstruction error generated from different past
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data observations. We can see that increasing the number of lookback steps from

one day to five days lead to a improved performance in prediction, which can be seen

in Table 4.8 as well. However, that the performance stayed almost the same when

we increased the duration from five days to seven days past data observation. We

attribute that to the fact that these extra two days are further away in the past end

up not having any significant impact in the the day we intended to forecast. Due

to this, we determined that five lookback steps would be the optimal configuration

for the model, since it provides better results than a single step while using less data

than a seven-day time lag. According to previous experiments and observations, we

determined the best version of the model is trained and tested using one-hot encoded

data, built with four hidden layers, and observe five days past data to produce the

best prediction result.

The ROC curve representation. We represented the ROC curve for the clas-

sification result. The model generated the best results for the one hot encoded with

PCA applied data of 2019 for 4 hidden layers architecture and five past days lookback

paraneters. The model was able to predict 88% of the true positive class. However,

we generated the ROC curve for each past date observations (1, 5 and 7). Here we

presented the ROC curve containing the best results. The full classification results

are given in Table 4.8.

Test Data Past Days used Precision Recall F1 Score
2019 1 0.87 0.85 0.86

5 0.90 0.87 0.88
7 0.90 0.86 0.88

2020 1 0.87 0.85 0.86
5 0.90 0.86 0.88
7 0.90 0.86 0.88

Table 4.8: Prediction results for different amounts of days in the past data being used
with one hot encoded + PCA and 4 hidden layers of the model.

State-of-the-art Supervised Model. We also recreated the current state-of-

the-art solution to compare it with our proposal. The existing solution [18] used the

ensemble learning method of the supervised models. The ensemble model was trained

and tested with different variations of the preprocessed data to evaluate the model

performance. The evaluation procedure is given below.
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Figure 4.23: ROC curve representation for one hot encoded data of 2019 with 4
hidden layers and five days past data observation.

1. The ensemble model was built with decision-tree based supervised models. Ran-

dom forest, LGBM and XBM were trained in a pipeline where the final results

were improved by utilizing LGBM and XGB boosting algorithm.

2. Trained the model with the one hot encoded with PCA applied, default seg-

mented data (70:30) with applying data rebalancing technique SMOTE.

3. First, we tested the model with the last three months of 2019. Then, we used

the new data from 2020 as the test data and calculated the prediction scores

for each samples.

We calculated the prediction score of each sample of the target label Rlf of the

train set and tested the model performance on the test set of 2019 as well as the new

data from 2020 with same preprocessing methods. We applied our proposed heuristic
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of optimal distance calculation and trained ensemble supervised models due to the

lack of information provided by the existing solution regarding distance correlation

calculation. We found no significant differences between the F1 score (0.77) of the

test result for our proposed distance correlation heuristic and the F1 score(0.78)

published for the state-of the-art NEC solution [18], which supports the effectiveness

of the proposed optimal distance heuristic. The predicted class probabilities of an

input sample were computed as the softmax of the weighted terminal leaves from the

decision tree ensemble corresponding to the provided sample. The average predicted

probability for the test data was calculated from the individual model prediction. A

fixed threshold (0.5) and an optimal threshold (0.58) was applied on the predicted

probabilities to perform the binary classification. The optimal threshold was selected

iteratively where maximum performance of the failure prediction was achieved. Final

prediction results were calculated from the probability scores derived from the test

data.

• Data 1 = Test data of 2019 with fixed threshold

• Data 2 = Test data of 2019 with optimal threshold

• Data 3 = Test data of 2020 with optimal threshold

• Data 4 = Test data of 2020 with fixed threshold

Data Setting Precision Recall F1 Score

Data 1 0.70 0.84 0.76
Data 2 0.79 0.77 0.77
Data 3 0.76 0.84 0.79
Data 4 0.66 0.82 0.73

Table 4.9: Evaluation result for supervised Ensemble Model.

The evaluation results are shown in Table 4.9. The ensemble model was trained

with the first 9 months of the 2019 and tested with the last 3 months of 2019. We

trained and tested with both imbalanced data and the balanced data. The decision

tree based models performed better with test data for balanced training. In addition

to classifying with fixed thresholds of prediction scores, the optimal threshold was
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also selected iteratively. We found a clear maximum accuracy between 0.4 and 0.6

from the generated prediction scores. The exact value of the optimal threshold is

0.5802 which is calculated by using a library called np.argmax(accuracy). A major

improvement over the published state-of-the-art solution is that the optimal threshold

allowed better prediction of failed links than the previously selected fixed threshold.

However, due to the lack of consideration of temporal dependencies of the features

in the state-of-the-art solution, we used deep learning neural networks to improve

prediction.

4.4.3 Model Comparisons

We used the spatial properties of the features for a convolution neural network to

calculate the prediction scores for the target feature RLF. In utilizing the neural

network for the most optimal latent features. We experimented with different model

hyper-parameter tuning and recorded the best prediction result with one hot encoded

data. Then, We proposed a more sophisticated model of Autoencoder with LSTM

units considering the temporal dependency and the aforementioned spatial properties

both. The proposed LSTM - Autoencoder model provided us with more control over

the training of the model with time series data. Through analyzing the temporal

dependencies between the features, we conducted multiple experiments on the model

training in order to maximize prediction accuracy. We experimented with different

hyper-parameter tuning and recorded the best prediction score with one hot encoded

data five days past data time lag and built with four hidden layers. Then, we im-

plemented the existing state of the art solution [18] and experimented with different

hyper-parameter tuning to recreate and ultimately improve the prediction perfor-

mance. We used the optimal threshold instead of a fixed threshold to improve the

prediction score calculated by the ensemble model and recorded the best prediction

result with the balanced and optimal threshold setup. In summary, baseline model

FCNN produced the best predictions when training with one-hot encoded data and

candidate model LSTM-AE produced the best predictions by using one-hot encoded

data, five-day history observation, and four hidden layers. Ensemble model pro-

duced the best prediction scores when training with balanced data and using optimal

threshold. We compared the best versions of each model from previous experiments
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based on prediction scores. We have mentioned the prediction results for 2019 test

data in the previous parameter tuning section. Here, Table 4.10 represents the final

prediction results for 2020 data.

Method used Precision Recall F1 Score
Baseline model FCNN 0.84 0.82 0.83

Supervised ensemble model 0.76 0.84 0.79
Proposed model LSTM-AE 0.90 0.87 0.88

Table 4.10: Comparison of prediction results with state of the art approach.

Analyzing Table 4.10, we find that the LSTM-Autoencoder approach is able to

identify 87% of the failed links among all of the failed links and false normal links,

where 90% of the identified failed links matches with the original failed links ( True

positive) from the test data. Our proposed solution achieved higher precision of 14%

and recall of 3% and the F1 score of 11% over the previous method (NEC) [18].

We attribute this improvement to the strategic use of the temporal correlations of

the features. By capturing the temporal dependencies of radio stations and weather

stations data, our model is able to predict future radio link failure events more ac-

curately. Table 4.10 represents that the proposed LSTM - AE model outperformed

other solutions in predicting the one day ahead radio link failure.

The Autoencoder model performs better than the previous FCNN method and the

existing supervised ensemble solution. The precision, recall and F1 scores are higher

in the Autoencoder model. The proposed neural network model was successful to

recognise the important feature patterns and able to classify the failure data from

the normal data in both 2019 and 2020 time span. The LSTM - AE model was

trained and validated with the time series cross validated data where the lookback

window was set for the past data. It helped the encoder to compress the current

sample to latent space by observing the past data using the LSTM nodes. Thus,

the training quality achieved improvements than other supervised or baseline neural

network solution.

The scaling of the data helped the activation functions to optimize the neurons

for better reconstruction of the input. There are two feature selection methods are

applied on the data and trained the model with different setting to observe the model

performance. The recursive elimination method and principal components analysis
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methods are applied and tested the performance difference for different dimensionality

reduction methods. The PCA as a dimensionality reduction operation performed

better than the recursive elimination method. This performance difference happened

due to the maximum information kept in the dataset during dimensionality reduction

by PCA. Our proposed pre-processing and model solution based on the temporal

dependency of the feature set achieved highly accurate prediction results for the one

day ahead link failure, which is a major contribution of this work.



Chapter 5

Conclusion and Future work

5.1 Conclusion

5G Radio link data from radio tower can often be compromised because of the weather

impacts in different regions. In contrast, uninterrupted communication will propel

the Internet of Things into the next era of communication. Predicting and preventing

failures to ensure this seamless operation will be one of the major objectives for the

network operators to provide the desired quality of service.

In this work, we highlighted the limitation of the exiting state-of-the-art solution

and discussed the optimal solutions. We proposed and implemented the preprocessing

strategy and utilized the reconstruction property of the deep learning algorithm Au-

toencoder coupled with Long-Short Term Memory neurons. We experimented with

tuning different hyper-parameters to achieve the best version of the model which can

be scaled and implemented to a real environment. Our solution outperformed the

existing solution by utilizing the temporal dependency of the features in terms of the

prediction accuracy. It is observed that, the feature recognition ability of our model

can be utilized to predict different year data for any region for the similar network

setting.

5.2 Future Work

In our proposed model, we have performed the radio link failure prediction for one day

ahead of the current date. First, we plan to extend the prediction span to the next

five days, instead of one. Then we plan to work on data preparation such that the

learning model will be able to predict radio link failure based on all the forecast data

available in the future. Furthermore, we have currently applied synthetic minority

oversampling technique to mitigate the majority and minority ratio for the current

solution. Now, we are developing a Balancing Generative Adversarial Network model
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where we will train the model with only minority class for creating more efficient data

balancing for the original imbalanced data. The plan is to prepare more balanced

data for our proposed model training so that it will perform better for the prediction

with new data. To test the performance of our feature recognition property, we are

planning to train our model using radio data with different features from various

regions.
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[14] Drozdy, Árpád, P. Kántor, and J. Bitó, “Effects of rain fading in 5g millimeter
wavelength mesh networks,” in Computer Communications, June 2018.

[15] S. Elsayed, “Forecasting and anomaly detection approaches using lstm and lstm
autoencoder techniques with the applications in supply chain management,” in
International Journal of Information Management, 2021.

[16] R. G. Karjee, Jyotirmoy and V. Tijoriwala, “A reinforcement learning approach
to handle radio link failure in elevator scenario,” in 2020 IEEE 17th Annual
Consumer Communications & Networking Conference (CCNC), 2020.

[17] Ranjan, “Lstm-autoencoder for extreme rare event classification in keras,” https:
//towardsdatascience.com/lstm-autoencoder-for-extreme-rare-event-classificat
ion-in-keras-ce209a224cfb.

[18] LinkBusters, “Ensemble solution,” 2020. [Online]. Available: https://www.itu.
int/en/ITU-T/AI/challenge/2020/Documents/ITUChallenge LinkBusters.pdf

[19] Bhagat, “Enhanced smote algorithm for classification of imbalanced big-data
using random forest,” in IEEE International Advance Computing Conference,
2015.

[20] “The thesis code repository.” [Online]. Available: https://github.com/ArifulIsl
amPreence/RLF Prediction Main Thesis

[21] B. Roy, “Binary encoding,” 2019. [Online]. Available: https://towardsdatascien
ce.com/all-about-categorical-variable-encoding-305f3361fd02

[22] Jie and L. I. A. N. G, “One-hot encoding and convolutional neural network based
anomaly detection.” Journal of Tsinghua University (Science and Technology),
vol. 8, no. 2, 2011.

[23] Li and Jia, “Deep convolutional neural network based ecg classification system
using information fusion and one-hot encoding techniques.” Mathematical Prob-
lems in Engineering), vol. 6, no. 3, 2018.

[24] C. Seger, “An investigation of categorical variable encoding techniques in ma-
chine learning: binary versus one-hot and feature hashing,” 2018.

[25] Chandrasheka, “A survey on feature selection methods.” Computers & Electrical
Engineering, vol. 40, no. 1, 2014.

[26] Zhang, “Integrating feature selection and feature extraction methods with deep
learning to predict clinical outcome of breast cancer.” IEEE Access, no. 6, 2018.

 https://towardsdatascience.com/lstm-autoencoder-for-extreme-rare-event-classification-in-keras-ce209a224cfb
 https://towardsdatascience.com/lstm-autoencoder-for-extreme-rare-event-classification-in-keras-ce209a224cfb
 https://towardsdatascience.com/lstm-autoencoder-for-extreme-rare-event-classification-in-keras-ce209a224cfb
https://www.itu.int/en/ITU-T/AI/challenge/2020/Documents/ITUChallenge_LinkBusters.pdf
https://www.itu.int/en/ITU-T/AI/challenge/2020/Documents/ITUChallenge_LinkBusters.pdf
https://github.com/ArifulIslamPreence/RLF_Prediction_Main_Thesis
https://github.com/ArifulIslamPreence/RLF_Prediction_Main_Thesis
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02


76

[27] Wold, Svante, K. Esbensen, and P. Geladi, “Principal component analysis,” in
Chemometrics and intelligent laboratory systems, 2020.

[28] L. Geladi, Paul and Johan, “Principal component analysis,” 2020.

[29] XIE and XIAOHUI, “Principal component analysis,” in Principal component
analysis, 2019.

[30] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: syn-
thetic minority over-sampling technique,” Journal of artificial intelligence re-
search, vol. 16, pp. 321–357, 2002.

[31] Dietterich, “Ensemble learning.” The handbook of brain theory and neural net-
works, vol. 2, no. 1, 2002.

[32] ——, “Random forest classifier for remote sensing classification.” in International
journal of remote sensing., vol. 26, no. 1, 2005.

[33] Alam, “Random forest classification for detecting android malware,” in IEEE
international conference on green computing and communications and IEEE In-
ternet of Things and IEEE cyber, physical and social computing, 2013.

[34] Documentation, “Light gradient boosting,” https://lightgbm.readthedocs.io/en
/latest/.

[35] “Light gradient boosting machine,” https://www.geeksforgeeks.org/lightgbm-l
ight-gradient-boosting-machine/, September 2021.

[36] Saul, “Light gradient boosting machine,” https://towardsdatascience.com/xgb
oost-extreme-gradient-boosting-how-to-improve-on-regular-gradient-boosting
-5c6acf66c70a, March 2021.

[37] “Extreme gradient boosting machine,” https://xgboost.readthedocs.io/en/late
st/, 2021.

[38] Zhao, “Convolutional neural networks for time series classification,” Journal of
Systems Engineering and Electronics, vol. 28, no. 1, 2017.

[39] Borovykh, “Conditional time series forecasting with convolutional neural net-
works.” arXiv preprint, vol. 1703, no. 4691, 2017.

[40] Breuel, “Benchmarking of lstm networks.” arXiv preprint, vol. 1508, 2015.

[41] S. Elsayed, “Network anomaly detection using lstm based autoencoder,” in Pro-
ceedings of the 16th ACM Symposium on QoS and Security for Wireless and
Mobile Networks, 2020.

[42] N. K. Manaswi, “Rnn and lstm,” in Deep Learning with Applications Using
Python. Springer, 2018, pp. 115–126.

 https://lightgbm.readthedocs.io/en/latest/
 https://lightgbm.readthedocs.io/en/latest/
 https://www.geeksforgeeks.org/lightgbm-light-gradient-boosting-machine/
 https://www.geeksforgeeks.org/lightgbm-light-gradient-boosting-machine/
https://towardsdatascience.com/xgboost-extreme-gradient-boosting-how-to-improve-on-regular-gradient-boosting-5c6acf66c70a
https://towardsdatascience.com/xgboost-extreme-gradient-boosting-how-to-improve-on-regular-gradient-boosting-5c6acf66c70a
https://towardsdatascience.com/xgboost-extreme-gradient-boosting-how-to-improve-on-regular-gradient-boosting-5c6acf66c70a
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/


77

[43] “Rl kpi + ws data,” 2020. [Online]. Available: https://docs.google.com/spre
adsheets/d/1KvFV5WXtRo9dU3Yak40b2G7JG8KCIqrg/edit?usp=sharing&o
uid=105740223973240568967&rtpof=true&sd=true

[44] M. Shojaee, M. C. Neves, and I. Haque, “Safeguard: Congestion
and memory-aware failure recovery in SD-WAN,” in 16th International
Conference on Network and Service Management, CNSM 2020, Izmir,
Turkey, November 2-6, 2020. IEEE, 2020, pp. 1–7. [Online]. Available:
https://doi.org/10.23919/CNSM50824.2020.9269119

[45] M. A. Moyeen, F. Tang, D. Saha, and I. Haque, “SD-FAST: A
packet rerouting architecture in SDN,” in 15th International Conference
on Network and Service Management, CNSM 2019, Halifax, NS, Canada,
October 21-25, 2019. IEEE, 2019, pp. 1–7. [Online]. Available: https:
//doi.org/10.23919/CNSM46954.2019.9012703

[46] U. Lekhala and I. Haque, “Piqos: A programmable and intelligent qos
framework,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops, INFOCOM Workshops 2019, Paris, France,
April 29 - May 2, 2019. IEEE, 2019, pp. 234–239. [Online]. Available:
https://doi.org/10.1109/INFCOMW.2019.8845158

[47] F. Tang and I. Haque, “Remon: A resilient flow monitoring framework,” in
Network Traffic Measurement and Analysis Conference, TMA 2019, Paris,
France, June 19-21, 2019. IEEE, 2019, pp. 137–144. [Online]. Available:
https://doi.org/10.23919/TMA.2019.8784521

[48] I. Haque and M. A. Moyeen, “Revive: A reliable software defined data
plane failure recovery scheme,” in 14th International Conference on Network
and Service Management, CNSM 2018, Rome, Italy, November 5-9, 2018,
S. Salsano, R. Riggio, T. Ahmed, T. Samak, and C. R. P. dos Santos,
Eds. IEEE Computer Society, 2018, pp. 268–274. [Online]. Available:
https://ieeexplore.ieee.org/document/8584938

[49] I. Haque and D. Saha, “SoftIoT: A resource-aware sdn/nfv-based iot network,”
The Elsevier Journal of Network and Computer Applications, vol. 193, Nov 2021.

[50] D. Saha, M. Shojaee, M. Baddeley, and I. Haque, “An Energy-Aware SDN/NFV
architecture for the internet of things,” in IFIP Networking 2020 Conference
(IFIP Networking 2020), Paris, France, Jun. 2020.

[51] I. Haque, M. Nurujjaman, J. Harms, and N. Abu-ghazaleh, “SDSense: An ag-
ile and flexible SDN-based framework for wireless sensor networks,” The IEEE
Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1866 – 1876, February
2019.

https://docs.google.com/spreadsheets/d/1KvFV5WXtRo9dU3Yak40b2G7JG8KCIqrg/edit?usp=sharing&ouid=105740223973240568967&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1KvFV5WXtRo9dU3Yak40b2G7JG8KCIqrg/edit?usp=sharing&ouid=105740223973240568967&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1KvFV5WXtRo9dU3Yak40b2G7JG8KCIqrg/edit?usp=sharing&ouid=105740223973240568967&rtpof=true&sd=true
https://doi.org/10.23919/CNSM50824.2020.9269119
https://doi.org/10.23919/CNSM46954.2019.9012703
https://doi.org/10.23919/CNSM46954.2019.9012703
https://doi.org/10.1109/INFCOMW.2019.8845158
https://doi.org/10.23919/TMA.2019.8784521
https://ieeexplore.ieee.org/document/8584938


78

[52] I. Haque, S. Islam, and J. Harms, “On selecting a reliable topology in wireless
sensor networks,” in Proceedings of the 2015 IEEE International Conference on
Communications, ser. ICC ’15, 2015.

[53] I. Haque, C. Assi, and W. Atwood, “Randomized energy-aware routing algo-
rithms in mobile ad hoc networks,” in Proceedings of the 8th ACM international
symposium on Modeling, analysis and simulation of wireless and mobile systems,
ser. MSWiM ’05, 2005.

[54] I. Haque and C. Assi, “OLEAR: Optimal localized energy aware routing in mobile
ad hoc networks,” in Proceedings of the 2005 IEEE International Conference on
Communications, ser. ICC ’05, 2005.

[55] I. T. Haque and C. Assi, “Localized energy efficient routing in mobile ad hoc
networks,” The Willey Journal of Wireless and Mobile Computing, vol. 7, no. 6,
pp. 781–793, August 2007.

[56] N. Javed, E. Lyons, M. Zink, and T, “Adaptive wireless mesh networks: Sur-
viving weather without sensing it,” 22nd International Conference on Computer
Communication and Networks, pp. 1–7, 2013.

[57] R. J, “A new approach to design of weather disruption-tolerant wireless mesh
networks,” Telecommun Syst, vol. 61, 2016.

[58] J. P. Rohrer, A. Oberthaler, E. K. Cetinkaya, V. Frost, and J. P. G. Sterbenz,
“Performance comparison of weather disruption-tolerant cross-layer routing al-
gorithms,” IEEE INFOCOM, vol. 1703, no. 4691, 2009.

[59] M. Tornatore, “A survey on network resiliency methodologies against weather-
based disruptions,” 8th International Workshop on Resilient Networks Design
and Modeling (RNDM), 2016.

[60] P. H. Swain and H. Hauska, “The decision tree classifier: Design and potential,”
IEEE Transactions on Geoscience Electronics, vol. 15, no. 3, pp. 142–147, 1977.

[61] Kliger, “A coding approach to event correlation,” in International Symposium
on Integrated Network Management. Springer, 1995.

[62] Wietgrefe, “Using neural networks for alarm correlation in cellular phone net-
works,” in International Workshop on Applications of Neural Networks to
Telecommunications (IWANNT), 1997.

[63] Weitgrefe, “Supervised and semi-supervised learning for failure identification in
microwave networks,” IEEE Transactions on Network and Service Management,
vol. 18, no. 2, 2020.

[64] Vanerio, “Machine-learning based approaches for anomaly detection and clas-
sification in cellular networks,” in Proceedings of the Workshop on Big Data
Analytics and Machine Learning for Data Communication Networks, 2017.



79

[65] C. N. M. Furdek, “Experimentbased detection of service disruption attacks in op-
tical networks using data analytics and unsupervised learning,” Metro and Data
Center Optical Networks and Short-Reach Links II and International Society for
Optics and Photonics., vol. 10946, 2019.

[66] X. Chen and B. Li, “Self-taught anomaly detection with hybrid unsupervised/su-
pervised machine learning in optical networks,” Journal of Lightwave Technology,
vol. 37, no. 7, 2019.

[67] Chen, “Forecasting crime using the arima model.” 2008 Fifth International Con-
ference on Fuzzy Systems and Knowledge Discovery., vol. 5, 2008.

[68] Kalekar, “Time series forecasting using holt-winters exponential smoothing,”
Kanwal Rekhi school of information Technology, vol. 4329008, no. 13, 2004.

[69] “Applied ml failure prediction project by iec,” https://github.com/ITU-AI-ML
-in-5G-Challenge/PS-036 IEC Research RLFPrediction, December 2020.

[70] Kahn, “Transparent reporting of data quality in distributed data networks.”
Egems, vol. 3, no. 1, 2015.

[71] Kumar, “Python – replace missing values with mean, median and mode,” 2021.
[Online]. Available: https://vitalflux.com/pandas-impute-missing-values-mean-
median-mode/

[72] Baweja, “how to deal with missing data in python,” https://towardsdatascience
.com/how-to-deal-with-missing-data-in-python-1f74a9112d93.

[73] L. Li, “Principal component analysis for dimensionality reduction,” 2019.
[Online]. Available: https://towardsdatascience.com/principal-component-ana
lysis-for-dimensionality-reduction-115a3d157bad

[74] H. Shen and J. Z. Huang, “Sparse principal component analysis via regularized
low rank matrix approximation,” Journal of multivariate analysis, vol. 99, no. 6,
pp. 1015–1034, 2008.

[75] S. Lee, Principal components analysis for binary data. Texas A&M University,
2009.

[76] S. Kolenikov, G. Angeles et al., “The use of discrete data in pca: theory, simu-
lations, and applications to socioeconomic indices,” Chapel Hill: Carolina Pop-
ulation Center, University of North Carolina, vol. 20, pp. 1–59, 2004.

[77] Documentation, “Train test split,” https://scikit-learn.org/stable/modules/ge
nerated/sklearn.model selection.train test split.html.

[78] Bergmeir, “On the use of cross-validation for time series predictor evaluation.”
Information Sciences, vol. 191, (2012).

https://github.com/ITU-AI-ML-in-5G-Challenge/PS-036_IEC_Research_RLFPrediction
https://github.com/ITU-AI-ML-in-5G-Challenge/PS-036_IEC_Research_RLFPrediction
https://vitalflux.com/pandas-impute-missing-values-mean-median-mode/
https://vitalflux.com/pandas-impute-missing-values-mean-median-mode/
https://towardsdatascience.com/how-to-deal-with-missing-data-in-python-1f74a9112d93
https://towardsdatascience.com/how-to-deal-with-missing-data-in-python-1f74a9112d93
https://towardsdatascience.com/principal-component-analysis-for-dimensionality-reduction-115a3d157bad
https://towardsdatascience.com/principal-component-analysis-for-dimensionality-reduction-115a3d157bad
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html


80

[79] Herman, “How to use convolutional neural networks for time series classifica-
tion,” https://towardsdatascience.com/how-to-use-convolutional-neural-netwo
rks-for-time-series-classification-56b1b0a07a57.

[80] G. link of RLF project, “The time series cross validation code repository.”
[Online]. Available: https://gist.github.com/orhermansaffar/2bd2342c81026de1
c09c97d66226eb46

[81] K. Miyaki, “Time series split with scikit-learn,” 2019. [Online]. Available:
https://medium.com/keita-starts-data-science/time-series-split-with-scikit-lea
rn-74f5be38489e

[82] G. Ranjan, A. K. Verma, and S. Radhika, “K-nearest neighbors and grid search
cv based real time fault monitoring system for industries,” in 2019 IEEE 5th
international conference for convergence in technology (I2CT). IEEE, 2019, pp.
1–5.

[83] Qian, “Dynamic multi-scale convolutional neural network for time series classi-
fication,” IEEE Access, vol. 8, 2020.

[84] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks for
time series classification,” arXiv preprint arXiv:1603.06995, 2016.

[85] Zhao, “Time-series-approach with fully connected neural network,” https://towa
rdsdatascience.com/time-series-classification-with-deep-learning-d238f0147d6f.

[86] “Random forest.” [Online]. Available: https://www.stat.berkeley.edu/∼breiman
/RandomForests/cc home.htm

[87] K. RAJ, “Ml classification-why accuracy is not a best measure for assessing,”
2020. [Online]. Available: https://medium.com/@KrishnaRaj Parthasarathy/m
l-classification-why-accuracy-is-not-a-best-measure-for-assessing-ceeb964ae47c

[88] Jake, “Classification evaluation: It is important to understand both what a
classification metric expresses and what it hides,” in Nature Methods, Aug. 2016.

[89] Qian, “Time-dependent roc curve analysis in medical research: current methods
and applications.” BMC medical research methodology, vol. 17, no. 1, 2017.

[90] Sambit, “why-deep-learning-is-needed-over-traditional-machine-learning.” [On-
line]. Available: https://towardsdatascience.com/why-deep-learning-is-needed
-over-traditional-machine-learning-1b6a99177063

 https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-classification-56b1b0a07a57
 https://towardsdatascience.com/how-to-use-convolutional-neural-networks-for-time-series-classification-56b1b0a07a57
https://gist.github.com/orhermansaffar/2bd2342c81026de1c09c97d66226eb46
https://gist.github.com/orhermansaffar/2bd2342c81026de1c09c97d66226eb46
https://medium.com/keita-starts-data-science/time-series-split-with-scikit-learn-74f5be38489e
https://medium.com/keita-starts-data-science/time-series-split-with-scikit-learn-74f5be38489e
https://towardsdatascience.com/time-series-classification-with-deep-learning-d238f0147d6f
https://towardsdatascience.com/time-series-classification-with-deep-learning-d238f0147d6f
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://medium.com/@KrishnaRaj_Parthasarathy/ml-classification-why-accuracy-is-not-a-best-measure-for-assessing-ceeb964ae47c
https://medium.com/@KrishnaRaj_Parthasarathy/ml-classification-why-accuracy-is-not-a-best-measure-for-assessing-ceeb964ae47c
https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063
https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Contribution
	Thesis Outline

	Background and Data Description
	Background
	Data Pre-processing
	The Curse of High Dimensionality

	Dataset Balancing
	Learning Algorithms
	Ensemble Learning Method.
	Deep Learning based Models


	Data Explanation

	Literature Review 
	Related Works
	Topology Based 
	Machine Learning Based


	Research Methodology and Evaluation
	Data Pre-Processing
	Distance correlation.
	Data Combination
	Missing Data
	Categorical Feature Encoding
	Feature Selection
	Principal Component Analysis

	Data Preparation
	Data Segmentation
	Data Normalization 

	Model Training
	Neural Network based learning Methods
	Supervised Ensemble Learning Method

	Evaluation
	Performance metrics
	Parameter Tuning
	Model Comparisons


	Conclusion and Future work
	Conclusion
	Future Work

	Bibliography

