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Abstract 

Communities of microbes in natural environments, referred to as microbiomes, are 

commonly profiled with DNA sequencing approaches. Sequencing results are typically 

partitioned so that the relative abundances of microbes (taxonomic data) and genes 

(functional data) are analyzed separately. It is challenging to biologically interpret these 

data, partially due to the lack of computational frameworks for joint analysis of 

taxonomic and functional data. Herein, I present my work to address this issue from three 

perspectives. 

First, I did so in the context of an investigation into the microbiome of pediatric 

Crohn's disease patients. Our main goal with this work was to compare the performance 

of microbiome data types for classifying samples in both independent and combined 

models. We found that genera identified through marker-gene sequencing performed best 

in these models, but that in combined models functions performed best for classifying 

treatment response. Although these and other insights were valuable, it became clear that 

improved methods for generating and analyzing taxa-function links were needed. 

One method for generating these links is through metagenome prediction 

methods. Although these approaches are widely used, they suffer from several major 

caveats and have been inconsistently validated. Accordingly, I developed a new 

bioinformatic method, PICRUSt2, for generating predicted taxon-function links based on 

several hypothesized improvements. Although I confirmed that this new approach 

performed moderately better than alternative methods, I also identified issues with 

analyzing metagenome predictions in general. 

  My final project focused on partially addressing these and related problems in 

functional data analysis. I did this by developing a novel method to better integrate 

taxonomic and functional data types to identify functional biomarkers. This tool, POMS, 

accurately identified genes under selection in simulated data and performed well when 

applied to actual case-control metagenomics datasets. 

Taken together, this thesis represents several valuable developments in joint taxa-

function analysis that enabled improved interpretation of microbiome data. In several 

instances, particularly with the application POMS, this joint analysis approach yielded 

novel insights that would be overlooked by analyzing each data type individually.
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Chapter 1 - Introduction 

Microbial communities encompass most of the genetic and species-level diversity on 

Earth. These communities are commonly characterized through DNA sequencing, which 

can be used to identify the presence and relative abundance of microbes in a community. 

These communities, including both the microbes, their constituent genes, and 

metabolites, are referred to as microbiomes. Due to technological improvements and the 

reduced cost of sequencing, the number of sequenced microbiomes has substantially 

grown in recent years. For instance, in 2017 the Earth Microbiome Project published a 

meta-analysis of 23,828 sequencing samples from all seven continents (Thompson et al. 

2017). This data represented 109 environmental groupings and 21 major biomes, such as 

animal secretions, saline water, and soil. A key goal of microbial ecology research is to 

robustly analyze and correctly interpret these and other such microbial profiles. 

But is DNA sequencing the best method for characterizing microbial 

communities? It is commonly observed that microbiome research would benefit from 

more emphasis on culturing, which enables individual microbes to be isolated and 

precisely studied in the lab. Traditionally, microbial communities were difficult to study 

by culturing alone because the vast majority of environmental microbes, particularly 

bacteria, could not be grown under standard culturing conditions (Staley & Konopka 

1985). This issue remains unresolved even after gradual improvements to standard 

culturing conditions; a recent evaluation of six major environments only identified 34.9% 

of bacteria as culturable under standard conditions (Martiny 2019). However, modified 

culturing conditions can largely resolve this problem. By systematically applying 66 

different conditions it was demonstrated that 95% of bacterial species in human stool 

samples could be grown in the lab (Lau et al. 2016). Therefore, it is no longer true for 

human stool samples, and likely other environments as well, that the majority of 

constituent bacteria cannot be cultured. 

Despite these advances, a clear remaining advantage of DNA sequencing is that it 

enables microbial communities to be characterized in place, which theoretically enables 

the exact community relative abundances to be profiled. In practice, biases during sample 

collection and sequencing library preparation can perturb microbial relative abundances 

(Jones et al. 2015; Bukin et al. 2019; Watson et al. 2019). But nonetheless, DNA 
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sequencing provides a more accurate view of the relative abundances of the community 

members than would be possible from culturing alone. For this reason, DNA sequencing 

remains the predominant method for characterizing microbial communities, although it is 

well-complemented by culturing (Lau et al. 2016). 

DNA sequencing is typically analyzed to identify specific associations between 

individual features (e.g. individual microbes) and sample groupings of interest. Most 

commonly, researchers are interested in identifying associations between disease states 

and the relative abundances of features. A similar goal is often to investigate whether 

different measures of diversity in the studied dataset are associated with the sample 

groupings. These measures of diversity are divided into alpha and beta diversity 

(Goodrich et al. 2014). Alpha diversity metrics refer to within-sample measures, such as 

richness, the number of taxa, and the Shannon diversity index (or entropy), which 

incorporates both the abundance and evenness of taxa within a sample (Jost 2006). In 

contrast, beta diversity refers to metrics that summarize variation between samples, which 

is most often performed by metrics that take the presence and abundance of features into 

account, such as the Bray-Curtis dissimilarity metric (Goodrich et al. 2014). Other 

microbiome-specific metrics have also been developed, such as the weighted UniFrac 

distance, which also takes the phylogenetic distance between taxa into account 

(Lozupone & Knight 2005). There is often more statistical power to detect overall 

differences based on alpha and beta diversity metrics than to detect associations with 

individual features, but diversity-level insights are also less actionable (Shade 2017). 

 There are many sub-categories of DNA sequencing approaches for characterizing 

microbial communities. One key distinction is between approaches that aim to 

characterize taxa (i.e. a group of organisms) and those that characterize genes and 

pathways, referred to as functions, that could be active in the community. These data 

types are referred to as taxonomic and functional microbiome data, respectively. 

Biologically this dichotomy is counter-intuitive; clearly genes are encoded in the 

genomes of taxa. So why does this distinction exist? 

 The reason is entirely related to methodological challenges. The most common 

and cost-effective sequencing approach focuses on sequencing marker genes. This 

method provides no direct information on the genomes of sequenced microbes, and 
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instead is used to profile taxa. In contrast, shotgun metagenomics sequencing (MGS) 

provides information on all DNA present in a sample. MGS data can be used for 

analyzing both taxonomic and functional profiles. However, it is difficult to integrate the 

two data types, largely due to the complexity of microbial communities: it is relatively 

straight-forward to identify genes in MGS data but challenging to determine from which 

genomes they originated. In this thesis, I present several projects that leverage both data 

types with the common theme of integrating functional and taxonomic microbiome data 

(Langille 2018) to yield more robust and novel insights. 

 This thesis is in publication-format, which means that each main chapter is a 

published or draft manuscript. The exception is that the methods of each manuscript are 

all presented in Chapter 2. In Chapter 3 I present a reproduction of my work exploring the 

microbiome pediatric Crohn’s disease patients (Douglas et al. 2018). Our main goal with 

this work was to compare the performance of microbiome data types for classifying 

samples in both separate and combined models. Although our insights based on this 

approach were useful, it became clear that improved focus on taxa-function links is 

needed. One method for generating these links is through metagenome prediction 

methods. In Chapter 4 I present my work developing an improved prediction method and 

also the novel validations I performed (Douglas et al. 2020). As described below, 

improved statistical approaches for analyzing taxa-function links are sorely needed in the 

microbiome field. To help address this issue, I developed a novel bioinformatics method 

which I present in Chapter 5. Last, I briefly present my overall conclusions and key 

discussion points arising from these projects in Chapter 6. 

A consequence of presenting this thesis in publication format is that the depth of 

introductory information provided is constrained by journal formatting requirements. 

Accordingly, this chapter will provide pertinent introductory material to complement the 

subsequent chapters. I will first provide a detailed introduction to microbiome data types, 

followed by a discussion of the analysis challenges particular to these data. Next, I will 

explicitly discuss areas where microbiome data types have or could be integrated. One 

focus of this discussion is on generating links between data types with predicted 

metagenome data. I also describe several approaches for integrating taxonomic and 

functional data types in statistical analyses. In closing I will focus on a case example of a 
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human disease highly associated with the microbiome. This section will not only aid the 

reader better appreciate my work on Crohn’s disease pediatric patient microbiomes, but 

also provide useful examples of representative associations between microbes and traits 

of interest. 

The paragraphs below that discuss metagenomics assembly are reproduced from a 

review paper I previously published (Douglas & Langille 2019). This was done with 

permission from the publisher (see Appendices) and is also indicated again directly above 

that sub-section. 

 

1.1 - Marker-gene Sequencing 

The earliest developed and most common form of microbiome sequencing is marker-gene 

sequencing, also known as amplicon sequencing. Under this approach specific genes are 

PCR-amplified and then sequenced. There are two key requirements for robust marker 

genes. First, they must be encoded by all taxa of interest. Second, the observed sequence 

divergence between orthologs should be approximately equal to the neutral mutation 

fixation rate multiplied by double the divergence time between orthologs (Woese 1987). 

Note that the divergence time should be doubled because mutations could accumulate in 

either lineage since the organisms diverged. Genes displaying this second requirement 

have been referred to as molecular chronometers. This term highlights the close link 

between these marker genes and the concept of the molecular clock (Zuckerkandl & 

Pauling 1965): given equal mutation rates and equal fixation rates for neutral mutations, 

the number of neutral substitutions between organisms is directly proportional to the 

evolutionary divergence between them. 

However, there are many reasons why a gene might be an unreliable molecular 

chronometer (Janda & Abbott 2007). One reason is that if a gene varies in function across 

taxa then contrasting selection pressures could result in different non-synonymous 

substitution rates (Wheeler et al. 2016). For instance, as previously observed (Woese 

1987), the cytochrome complex gene is a useful molecular chronometer in eukaryotes, 

but suffers from drawbacks. This gene was valuable for building early phylogenetic trees 

representing both long evolutionary distances across eukaryotes and between human 

populations (Fitch & Margoliash 1967). However, within prokaryotes the cytochrome 
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complex systematically varies in size, which is believed to be due to positive selection 

(Ambler et al. 1979). Because positive selection is likely driving divergence between 

orthologous cytochrome complexes, in at least some cases it would be an invalid 

molecular chronometer to study in prokaryotes. Similarly, if a gene is sufficiently 

divergent between organisms then it can be difficult to accurately align residues. 

Misalignments lead to inaccurate estimates of evolutionary divergence, which is 

particularly true if the gene accumulates insertions and deletions. Such highly divergent 

regions, particularly in areas under no selective constraint, have been referred to as 

“evolutionary stopwatches” (Woese 1987), because they are useful only at short 

evolutionary distances. Therefore, to select a robust marker gene one should adhere in 

some ways to the Goldilocks principle: some nucleotide conservation is needed, but not 

too much. 

The 16 Svedberg (16S) ribosomal RNA (rRNA) gene fits well with this principle. 

This gene features highly conserved regions surrounding nine less conserved regions 

(referred to as variable regions). It is also encoded by all prokaryotes and represents 50 

helical RNA regions encoded by approximately 1,500 base-pairs (Woese et al. 1980). 

This high number of independent functional domains is valuable in a marker gene 

(Woese 1987). This is because if there are non-random substitutions within a single 

domain, but substitutions in the majority of other domains are driven by random 

processes, there likely would be little effect on estimates of evolutionary divergence. This 

gene also encodes a highly conserved function across both prokaryotes and eukaryotes 

(where it is called the 18S rRNA gene). The 16S rRNA molecule is part of the 30S small 

subunit (SSU) of the ribosome, which helps initiate protein synthesis by binding the 

Shine-Dalgarno sequence in messenger RNA (mRNA) to align the ribosome with the 

encoded start codon. Many changes in the highly conserved region of the 16S rRNA gene 

affect its binding affinity to the ribosome and mRNA. The strong negative selection 

acting against such substitutions makes these regions valuable for detecting rare 

substitutions between distant relatives, anchoring alignments of 16S rRNA genes, and for 

primer design (Wang et al. 2013b). 

Since the 16S rRNA gene was identified as a useful molecular chronometer, it has 

been the prime marker gene used to develop phylogenetic models of the tree of life. Most 
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famously, an alignment of 16S (and 18S) rRNA gene sequences from across life lead to 

distinguishing archaea, bacteria, and eukaryotes into distinct domains (Woese & Fox 

1977). In these early days, research focused on analyzing the rRNA sequences of isolated 

microbes. This was painstaking work, as illustrated by the prediction in 1987 that future 

research groups could plausibly sequence on the order of one hundred 16S rRNAs a year 

(Woese 1987). 

 Thirty-three years later, through next-generation sequencing technology, 

insufficient availability of sequenced rRNA genes is no longer a common complaint. 

Databases such as SILVA contain enormous collections of sequenced SSU fragments; as 

of August 2020 SILVA contained 9,469,124 non-clustered, independent sequences 

(Quast et al. 2013). Software such as redbiom also enables unique 16S rRNA gene 

variants to be compiled from the growing number of 16S rRNA gene sequencing 

(hereafter referred to as 16S sequencing) studies (McDonald et al. 2019). These 16S 

datasets are produced to characterize and compare the relative abundances of prokaryotes 

across communities. However, despite the ubiquity of such datasets, they are non-trivial 

to analyze and interpret. There are numerous methodological reasons for this difficulty. 

 First, due to sequencing length constraints, only certain 16S rRNA gene variable 

regions are typically amplified and sequenced. Each variable region has particular 

strengths and limitations (Chen et al. 2019; Johnson et al. 2019). My colleagues and I 

have previously compared the biases between the amplified fragments from variable 

regions four and five and from regions six to eight (written as V4-V5 and V6-V8, 

respectively) on a mock community from the Human Microbiome Project (HMP) 

(Comeau et al. 2017). We found the V4-V5 region overrepresented Firmicutes and 

Bacteroides while drastically underestimating Actinobacteria. In contrast, the V6-V8 

region overrepresented Proteobacteria and underrepresented Bacteroides. These biases 

highlight that choice of variable region can depend on which taxa are of interest. For 

example, region V4-V5 was recently shown to be superior to region V6-V8 for 

identifying archaea in the North Atlantic Ocean (Willis et al. 2019). In this case the 

authors were particularly interested in archaeal diversity so the V4-V5 region was more 

appropriate.  
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Typically, however, the taxonomic scope of interest and region biases in a 

particular environment are not clear and little or no rationale is given for the variable 

region selection. This is a problem, because analyses of the same communities with 

different variable regions can result in not only systematic biases in the raw data, but also 

in strikingly different biological interpretations. For example, key species that modulate 

human vaginal health are underrepresented or missing in V1-V2 sequencing datasets, 

such as Gardnerella vaginalis, Bifidobacterium bifidum, and Chlamydia trachomatis 

(Graspeuntner et al. 2018). Application of this region for profiling vaginal samples, 

instead of the more appropriate choice of the V3-V4 region, can result in entirely missing 

associations between vaginal health and the microbiome. Similarly, a comparison of the 

tick microbiome based on six sequenced 16S rRNA gene regions found a wide range of 

the number of prokaryotic families and in the Shannon diversity index for each individual 

tick (Sperling et al. 2017). The problem of such biases in variable region selection is 

beginning to recede as long-read technology enables full-length 16S sequencing 

(Callahan et al. 2019; Johnson et al. 2019). However, it will remain an important issue for 

the foreseeable future as long as the microbiome is largely studied by short-read 

sequencing. 

 Regardless of the sequenced region, most reads originating from the same 

biological molecule will differ due to sequencing errors. Raw reads are either clustered 

based on sequence identity into operational taxonomic units (OTUs) or alternatively 

errors are corrected to produce amplicon sequence variants (ASVs). OTUs are typically 

clustered at 97% identity (Goodrich et al. 2014), which often results in merging different 

species into a single OTU (Mysara et al. 2017). This issue has long plagued 16S rRNA 

gene-based analyses. For instance, Bacillus globisporus and Bacillus psychrophilus are 

problematic cases because their 16S genes share 99.5% sequence identity, but are highly 

distinct at the genome level (Fox et al. 1992). 

In contrast to clustering approaches, error-correcting approaches, referred to as 

denoising methods, theoretically can correct raw reads sufficiently well to produce exact 

biological molecules. Several different denoising approaches have emerged recently. 

DADA2 is the most sophisticated approach, which generates a different parametric error 

model for every input sequencing dataset (Callahan et al. 2016a). The raw sequencing 
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reads are then corrected to generate ASVs based on this error model. Deblur and 

UNOISE3 are two other denoising tools that are based on rapidly clustering raw reads 

and using predetermined hard cut-offs related to the expected error rates to generate 

ASVs. My colleagues and I evaluated the performance of these three tools and open-

reference OTU clustering (which combines both de novo and reference-based clustering) 

and found that all three denoising methods result in similar overall microbial 

communities (Nearing et al. 2018). In contrast, we found that open-reference OTU 

clustering resulted in a high rate of spurious OTUs compared to these methods. 

Nonetheless, there were important differences between the three methods, particularly in 

terms of richness and when profiling rare taxa (Nearing et al. 2018). A more recent 

independent validation based on a higher number of test datasets reached similar 

conclusions (Prodan et al. 2020). 

 In addition to the choice of clustering or denoising method and selected variable 

regions, there are numerous other steps of sample preparation and analysis that are 

contentious (Pollock et al. 2018). My co-authors and I have been concerned about these 

and related issues throughout (and before) my doctoral program. Accordingly, throughout 

my thesis analyses of 16S rRNA gene sequencing data were based on the recommended 

best-practices at the time, but these best-practices have rapidly changed over the years. 

For instance, in Chapter 3 we clustered raw sequencing data into OTUs, while in Chapter 

4 the focus is on ASVs. Although we acknowledge that these and other similar 

differences in analysis can affect the interpretation of analyses, in key places we used 

multiple approaches to ensure our interpretations were robust to the bioinformatics 

pipeline employed. 

 In addition to 16S rRNA gene sequencing data, one section of this thesis focuses 

on eukaryotic marker genes specifically. As mentioned above, the 18S rRNA gene is the 

homolog of the 16S rRNA gene in eukaryotes and is widely used to profile that domain. 

However, fungi are more difficult to distinguish based on the 18S rRNA gene, because 

fungi lack several variable regions for this gene (Schoch et al. 2012). Instead, the internal 

transcribed spacer (ITS) region, although not strictly a marker gene, is more often 

amplified to study fungal communities, because it typically has more resolution to 

distinguish fungi than the 18S rRNA gene (Liu et al. 2015a). This region is within the 
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nuclear rRNA cistron of fungi genomes, which contains the 18S, 5.8S, and the 28S rRNA 

genes. The ITS regions encompasses the two intergenic regions, which have relatively 

high rates of insertions and deletions, and the 5.8S rRNA gene (Schoch et al. 2012). Only 

a single intergenic region is typically amplified, referred to as ITS1 or ITS2, which have 

better discriminatory resolution for the major phyla Basidiomycota and Ascomycota, 

respectively (Saroj et al. 2015).  

 Although the above described marker genes are the most commonly profiled loci, 

in many cases there are marker genes more appropriate for specific lineages. For 

example, several halophilic species of Haloarcula encode multiple 16S copies that can 

differ by more than 5% sequence identity within the same genome (Sun et al. 2013). 

Consequently, different marker genes are often used when building phylogenetic trees 

representing a single species or genera. For instance, six housekeeping genes have been 

shown to be valuable for discriminating strains of Helicobacter pylori (Palau et al. 2016), 

which could be separately amplified and sequenced in gastric biopsy samples to produce 

complementary OTUs (Palau et al. 2020). More generally, marker genes for specialized 

comparisons are often chosen to match the defining function of a given lineage. For 

example, the methyl coenzyme M redundance A (mrcA) gene and a nitrate reductase gene 

have been previously profiled to explore the diversity of methanogens (Hallam et al. 

2003) and nitrogen-fixing microbes (Comeau et al. 2019), respectively. 

 

1.2 - Shotgun Metagenomics Sequencing 

Shotgun metagenomics (MGS) is a qualitatively different method from marker-gene 

sequencing, because it involves sequencing all DNA in a community. This advantage 

means that MGS data can profile any taxa, including viruses and microbial eukaryotes. 

MGS approaches were first applied to study ocean water communities through a Fosmid 

cloning approach (Stein et al. 1996). Building upon such early studies, the potential for 

leveraging MGS was widely publicized by an investigation into the microbial diversity of 

the Sargasso Sea (Venter et al. 2004). This study identified 1.2 million previously 

unknown genes and many other microbial features that would be impossible to study with 

16S rRNA gene sequencing. These and other related observations sparked an explosion 

of interest in profiling microbial communities with MGS approaches. This interest has 
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culminated in the generation of enormous MGS datasets such as the ongoing work on the 

Earth Microbiome Project (Thompson et al. 2017) and the Human Microbiome Project 

(Lloyd-Price et al. 2017). 

 There are two main approaches for analyzing MGS data: read-based workflows 

and metagenomics assembly. Each of these approaches has strengths and weaknesses, but 

in both cases the generated profiles will likely only imprecisely reflect biological reality. 

For instance, the number of species identified by read-based methods can differ by three 

orders of magnitude (McIntyre et al. 2017). The exact species relative abundances can 

also drastically differ across tools as well, as recently shown in a comparison of read-

based methods applied to simulated datasets (Ye et al. 2019). As discussed below, 

different approaches for metagenomic assembly will produce different assembled contigs 

and microbial profiles as well (Olson et al. 2019). Unsurprisingly, given this wide 

variation, there is also low concordance between 16S sequencing and MGS data taken 

from the same samples. For example, one comparison found that fewer than 50% of 

phyla identified in water samples based on 16S sequencing were also identified in the 

corresponding MGS profiles (Tessler et al. 2017). This wide variation in results 

highlights that any interpretation of MGS profiles should be done cautiously. It is crucial 

to appreciate that any approach will have important weaknesses and that the generated 

profile will only partially represent the actual microbial diversity. 

With those important caveats in mind, an understanding of the different 

approaches is nonetheless important to give context to MGS data analysis. Read-based 

workflows involve little or no assembly of the reads and instead each read (or pair of 

reads) is treated independently. This is the most common approach for analyzing MGS 

data, particularly because it can be performed with low sequencing depth (Hillmann et al. 

2018) and in complex communities (Zhou et al. 2015). However, an important 

disadvantage of this approach is that taxonomic and functional annotations are typically 

generated and treated as entirely independent data types. When generated independently, 

the most common approach for generating taxonomic profiles is either based on a 

marker-gene or k-mer method. 

Marker-gene approaches are based on the insight that specific genes can be used 

to identify the presence and relative abundance of certain taxa. An extreme example is to 
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use solely the 16S rRNA gene for taxonomic classification (Hao & Chen 2012). More 

commonly, marker-gene approaches base classifications on many genes. For instance, 

PhyloSift (Darling et al. 2014) leverages 37 nearly universal prokaryotic marker-genes 

(Wu et al. 2013) in addition to eukaryotic and viral gene sets to make a combined set of 

approximately 800 (mainly viral) gene families for classification. Aligned reads are 

placed into a phylogenetic tree of reference sequences and taxonomic classification is 

performed based on summing the likelihood of each taxa based on each read placement 

(Darling et al. 2014). MetaPhlAn2 is a contrasting approach that instead bases taxonomic 

predictions on the presence of clade-specific marker genes, which are genes only found in 

that given lineage, and found in all members (Truong et al. 2015). This method has 

rapidly become the most popular marker-gene MGS approach and is what my co-authors 

and I used when analyzing the data presented in Chapter 3. Given that this approach is 

limited by the existence of robust clade-specific genes, it is not surprising that it tends to 

have low sensitivity (Tessler et al. 2017; Miossec et al. 2020), meaning that it misses taxa 

that are actually present. 

In contrast, k-mer-based approaches are much more sensitive but have slightly 

lower specificity than marker-gene methods (Miossec et al. 2020). These approaches 

search for exact matches of short DNA sequences (k-mers) within reference genomes. An 

algorithm such as lowest-common ancestor is then performed to determine the likely 

taxonomic classification based on all matching genomes. Two common kmer-based 

approaches are kraken2 (Wood et al. 2019) and centrifuge (Kim et al. 2016), both of 

which match k-mers against a compressed database of reference genomes. In contrast to 

the marker-gene results, the main challenge of analyzing taxonomic profiles output by 

these methods is the high number of rare taxa of different ranks identified, some of which 

may be false positives. Summarizing the output profiles with an additional approach, 

such as the Bayesian abundance re-estimation tool Bracken (Lu et al. 2017) in the case 

kraken2 data, can help partially mitigate this problem. 

 In contrast to taxonomic analyses, there are fewer options for functional 

annotation of MGS reads. Most functional read-based methods are based on a similarity 

search of reads against a database of known gene families. This is primarily done in 

protein space, because protein similarity matches are more informative and the database 
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requirements are lower (Koonin & Galperin 2003). The common similarity searching tool 

BLASTX is prohibitively slow when scanning millions of reads, which has driven the 

development of faster alternatives like DIAMOND (Buchfink et al. 2015) and MMseqs2 

(Steinegger & Söding 2017). These faster alternatives are leveraged by workflows 

implemented in software such as MEGAN (Huson et al. 2007) and HUMAnN2 (Franzosa 

et al. 2018) to identify gene family matches and output overall metagenome profiles. 

HUMAnN2 is a unique approach in that it first screens reads that map to reference 

genomes of taxa identified as present with MetaPhlAn2. This step enables a small subset 

of gene families to be linked directly to particular taxa. However, the vast majority of 

gene families typically have no taxonomic links and are only part of the community-wide 

metagenome. There are clear issues with the general approach implemented by these gene 

profiling approaches, as has been previously observed: “genes are expressed in cells, not 

in a homogenized cytoplasmic soup” (McMahon 2015).  

Linking functional annotations to specific taxa by assembling raw reads is the 

ideal approach to resolve this problem, but this too comes with caveats. Most 

importantly, insufficiently high read depth, which depends on the complexity of a sample, 

can result in too few assembled contigs to sensibly analyze. Nonetheless, with 

sufficiently high read depth metagenome assembly can be a valuable way to leverage 

information about microbial communities. Note that the below description of 

metagenome assembly workflows (which runs until the end of this section) is a lightly 

edited reproduction of a review paper section that I previously published (Douglas & 

Langille 2019).  

There has recently been enormous growth in the number of metagenome 

assembled genomes (MAGs) generated from MGS data (Pasolli et al. 2019; Almeida et 

al. 2019). With this growth of available genomes there have been renewed discussions 

about the need for genome quality control, particularly for MAGs (Shaiber & Eren 2019). 

Either composite assemblies of multiple taxa or incomplete genomes missing genes of 

interest could result in false inferences. One extreme example is of the tardigrade 

genome, which was falsely identified as having 17% of genes acquired through horizontal 

gene transfer due to contaminant sequences within the assembly (Koutsovoulos et al. 

2016). Such false inferences are more likely in metagenome assemblies compared with 
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genome assemblies due largely to the challenge of distinguishing many organisms at 

different abundances (Ayling et al. 2019). Mis-assemblies can also affect the detection of 

other genic events as well. For instance, repetitive regions of assemblies are difficult to 

resolve with current short-read sequencing (Chin et al. 2013), which can make 

duplication events difficult to identify. Due to these challenges an understanding of the 

workflows for generating MAGs is needed. 

 There are many metagenome assembly tools currently available, which are 

predominately based on De Bruijn graphs of overlapping k-mers (Ayling et al. 2019; 

Vollmers et al. 2017). The outputs of these tools are assembled contigs, which typically 

vary in length from ~500 bp to near-complete genomes. Some of the most popular freely 

available assembly tools are MetaSPAdes (Nurk et al. 2017), Ray Meta (Boisvert et al. 

2012), Omega (Haider et al. 2014), IDBA-UD (Peng et al. 2012), and Megahit (Li et al. 

2015). Choice of assembly tool can have a major influence on the resulting assembled 

contigs, and so careful consideration needs to be taken at this stage. An independent 

evaluation of these and other methods found that MetaSPAdes performed best overall 

with the caveat that it may not be appropriate for distinguishing highly similar genomes 

(Vollmers et al. 2017). However, no assembly tool performed best across all 

environments and it was suggested that the best choice of assembly tool depends on the 

study environment and research question. 

 Contig binning, where contigs from the same species or strain are grouped, is 

another key step when generating MAGs. Binning approaches typically group contigs 

based on sequence composition (e.g. GC or tetranucleotide content) and similar coverage 

of mapped reads (Ayling et al. 2019). The most popular freely available binning tools are 

CONCOCT (Alneberg et al. 2014), MaxBin2 (Wu et al. 2016), and MetaBAT (Kang et 

al. 2015). As above, the choice of binning software can have drastic effects on the 

resulting MAGs (Meyer et al. 2018). One partial solution to this issue is to run multiple 

binning tools and use the software Das Tool (Sieber et al. 2018) to identify the consensus 

output, which has been shown to produce high quality bins (Meyer et al. 2018). 

Evaluating the quality of MAGs is a crucial step once the final contig bins have 

been generated and guidelines on how to categorize MAGs based upon quality metrics 

have recently been established (Bowers et al. 2017). The two key metrics are 
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completeness and contamination, which are based on the counts of universal single-copy 

genes (USCGs) identified in an assembly. Completeness is measured based on the 

proportion of USCGs identified in an assembly and contamination is defined as the 

proportion of USCGs found more than once in an assembly. Hard cut-offs for these 

metrics have been suggested for categorizing the overall quality of a MAG, for instance 

high-quality draft MAGs are defined as being >90% complete with <5% contamination 

(Bowers et al. 2017). CheckM (Parks et al. 2015) and BUSCO (Simão et al. 2015) are 

two tools that will estimate the completeness and contamination of prokaryotic 

assemblies and BUSCO can also be used to evaluate eukaryotic assemblies. Determining 

strain heterogeneity, the degree of contamination due to different strains, within an 

assembly is also important, which can be measured using CheckM or alternatively 

custom methods to identify polymorphisms in an assembly (Pasolli et al. 2019). An 

assembly with high strain heterogeneity can still be useful but should be considered 

differently than an assembly of a single strain. 

 

1.3 - Characteristics of Microbiome Count Data 

Regardless of the sequencing technology and workflow used for profiling a microbial 

community, the final product is typically a count table. This is true for many sequencing 

approaches, such as RNA sequencing, but there are several differences. First, unlike in 

the case of RNA sequencing where there are a known number of genomic loci, novel taxa 

and functions are frequently identified in microbiome data. For instance, novel OTUs, 

ASVs, and contigs are frequently identified in taxonomic analyses. Similarly, 25-85% of 

proteins in MGS are novel microbial genes of unknown function (Prakash & Taylor 

2012). Second, no statistical distribution fits microbiome data in all contexts. For 

instance, many statistical distributions, including the negative binomial (Love et al. 

2014), beta binomial (Martin et al. 2020), and Poisson (Faust et al. 2012) distributions  

have been proposed as appropriate fits to microbiome data. However, upon analysis with 

real data these and other distributions fit with inconsistent accuracy (Weiss et al. 2017; 

Calgaro et al. 2020). Last, microbiome count tables typically have high sparsity, meaning 

that there is a high proportion of features not found across many samples (Thorsen et al. 
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2016). Both of these characteristics make microbiome data analysis challenging for all 

taxonomic analyses and most functional analyses (see Microbial Functions section). 

 These challenges are exacerbated by the inherent compositionality of sequencing 

data. Compositional data refers to data that is constrained to an arbitrary constant sum 

(Aitchison 1982), such as the arbitrary number of raw sequencing reads output per 

sample. This characteristic means that the observed abundance of any given feature is 

dependent on the observed abundance of all other features. A simple example can help 

illustrate the implications of this characteristic. Imagine a microbe, microbe X, at low 

relative abundance in sample A and at high relative abundance in sample B. An observer 

might naively infer that there is more of microbe X in sample B than in sample A. 

However, there are many reasons this could be false. For instance, the absolute 

abundance of microbe X could be the same in each sample but the abundance of other 

microbes in general might be higher in sample A. This higher total microbial load would 

push the relative abundance of microbe X in sample A down. Depending on the total 

microbial cell count it is even possible that the absolute abundance of microbe X could be 

higher in sample A than in sample B, but that the relative abundance is simply lower. 

This example highlights a necessary consideration regarding microbiome sequencing data 

analysis: it only provides information on the relative abundances, or percentages, of 

features and does not provide insight on feature absolute abundances. 

This important characteristic was not widely appreciated in the field until 

relatively recently, when researchers identified fatal issues with common approaches for 

analyzing microbiome data (Gloor et al. 2016, 2017). Standard differential abundance 

approaches, such as the t-test and Wilcoxon test, when applied to relative abundances, 

and microbiome-specific tools such as LEfSe (Segata et al. 2011) do not account for this 

compositionality. Common summary metrics for microbiome data, such as the UniFrac 

distance, also suffer from this problem (Gloor et al. 2017). This is a major issue, because 

ignoring this characteristic is known to lead to spurious discoveries with compositional 

data (Aitchison 1982; Jackson 1997; Fernandes et al. 2014). 

Fortunately, there is active work in the field to resolve this issue and numerous 

compositional approaches have been developed. The focus has primarily been on 

developing novel correlation (Friedman & Alm 2012; Kurtz et al. 2015; Schwager et al. 
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2017) and differential abundance approaches, such as ALDEx2 (Fernandes et al. 2013, 

2014) and ANCOM (Mandal et al. 2015). A common theme of these compositional 

approaches is that the data is transformed based on the ratio of feature relative 

abundances to some reference frame (Aitchison 1982; Morton et al. 2019). This choice of 

reference frame varies substantially between approaches. For instance, ALDEx2 

transforms relative abundances by the centred log-ratio (CLR) transformation (Fernandes 

et al. 2013), which essentially normalizes feature relative abundances by the mean 

relative abundance per sample. This approach transforms the original data but maintains 

the interpretation of individual features. In contrast, it has been suggested that analyses 

could instead be based on ratios between features (Morton et al. 2019), which converts 

the data type into comparisons of features rather than individual features. 

There are no best-practices regarding approaches that compositionally transform 

individual features. More generally, differential abundance tests commonly produce 

widely different sets of significant taxa from each other (Thorsen et al. 2016; Weiss et al. 

2017; Hawinkel et al. 2019). This wide variation is largely due to specific characteristics 

of microbiome count data. A large proportion of the variation in results is driven by high 

false discovery rates. Although many methods advertise that only approximately 5% of 

significant taxa are likely false positives, it has been estimated that for some methods the 

actual false discovery rate is substantially higher (Hawinkel et al. 2019). This particular 

validation observed this trend for several methods, including ANCOM (Mandal et al. 

2015) and metagenomeSeq (Paulson et al. 2013), two microbiome-oriented methods that 

are otherwise considered conservative (Paulson et al. 2013; Weiss et al. 2017). In 

addition, a recent evaluation of differential abundance tools found that compositional 

methods are actually less robust than several non-compositional alternatives (Calgaro et 

al. 2020). 

Given this wide variation in differential abundance tool performance and unclear 

best-practices, how is a microbiome researcher to proceed? One possible answer is that a 

change in expectations regarding the interpretability of microbiome data analysis is 

needed. In particular, analyses using ratios between the relative abundances of taxa has 

been shown to be robust, although it comes at the cost of interpretability (Morton et al. 

2019). However, an important issue is how to determine which taxa should be the 
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numerator and denominator of each ratio. One solution is to leverage the bifurcating 

structure of a clustered tree (Egozcue & Pawlowsky-Glahn 2011; Morton et al. 2017) or 

phylogenetic tree (Silverman et al. 2017) of features. Analyses can be focused on the 

ratios in relative abundances between features on the left-hand and right-hand of each 

node in the tree. Despite the potential of this approach, it is rarely used for standard 

microbiome analyses because it is unclear how to biologically interpret any differences in 

the values of these ratios across samples. In Chapter 5 I discuss a novel bioinformatics 

approach that leverages these tree-based compositional approaches and integrates 

microbial functional information to provide improved interpretability.  

The above discussion focused on taxonomic features, which were either based on 

16S sequencing or read-based MGS data analysis. However, it is important to emphasize 

that count tables produced from MAGs do not resolve this issue. In fact, attempting to 

account for these challenging characteristics of microbiome count data and the links 

between taxa and function makes the analysis more difficult. 

 

1.4 - Microbial Functions 

To this point I have only discussed functional microbiome data in vague terms as 

referring to microbial gene abundances. When based on DNA sequencing data this 

information summarizes the functional potential, meaning the functions that are present, 

but not necessarily active in a community. However, rather than individual gene 

sequences, research is typically focused on gene families, which are gene clusters. 

Alternatively, the focus is sometimes on higher-order functional categories like pathways. 

To complicate matters further, there are several different functional ontologies, which are 

different frameworks for studying functions at different resolutions. Depending on which 

of these functional ontologies and sub-categories are analyzed, the characteristics of the 

data can drastically differ. 

 The Universal Protein Resource (UniProt) Reference Clusters (UniRef) database 

contains all protein sequences from the Swiss-Prot (manually curated) and TrEMBL 

(automated) databases clustered at either 50%, 90%, or 100% identity (Apweiler et al. 

2004). The most recent versions of these clusters have been generated with the MMseqs2 

algorithm (Steinegger & Söding 2018). As of June 30th, 2020, the 100% identity clusters 
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(called UniRef100), corresponded to 235,561,514 unique protein sequences, which 

provides a detailed summary of almost all known protein sequences. Despite being 

clustered at lower identity thresholds, UniRef50 and UniRef90 nonetheless contain 

enormous numbers of protein clusters: 41,883,832 and 115,885,342, respectively. 

 The UniRef database contrasts with another common functional ontology, the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa & Goto 2000; 

Kanehisa et al. 2016). KEGG is based on 23,530 individual gene families (as of 

September 10th, 2020), which are called KEGG orthologs (KOs). The advantage of KOs 

is that the majority have well-described molecular functions that can be linked to higher-

order KEGG pathways and modules. Accordingly, any analysis of KEGG data will likely 

result in less sparse count tables than the corresponding UniRef-based database, simply 

because KOs are shared across more taxa than UniRef clusters. To illustrate this point, 

my colleagues and I previously compared the taxonomic coverage of each function 

within these two functional ontologies and each sub-category (Inkpen et al. 2017). We 

found that all UniRef functions, including those in UniRef50 clusters, are on average 

found in a single domain and encoded by fewer than four species. In contrast, we found 

that KOs were encoded in 1.3 domains and 184.3 species on average. Similarly, the high-

level KEGG modules and pathways were predicted to be potentially active in a mean of 

1.7 and 2.5 domains and 671 and 1267.6 species, respectively (Inkpen et al. 2017). Based 

on these statistics, clearly a shift in the abundance of a UniRef cluster should not be 

treated the same as a KEGG function: the former corresponds to the activity of a small 

number of species while the latter could correspond to a large assemblage. This example 

highlights that the choice of how function is defined in a given analysis can have 

profound effects on the biological interpretation. 

 In addition to UniRef and KEGG, several other functional ontologies were 

leveraged for analyses that are presented in this thesis. These additional function types 

include: Clusters of Orthologous Genes (COGs) (Tatusov et al. 2000; Makarova et al. 

2015), Enzyme Commission (EC) numbers, Protein families (Pfam) (Punta et al. 2012; 

Finn et al. 2014), and TIGRFAMs (Haft et al. 2003). These categories represent a range 

of approaches for defining gene families and functional categories. 
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The COG strategy for functional annotation was originally intended to 

phylogenetically classify proteins into groups of orthologs (Tatusov et al. 2000). This 

one-to-one approach of matching individual orthologs has now been expanded to allow 

for more complex relationships between genes, such as paralogs and horizontally 

transferred homologs (Makarova et al. 2015; Galperin et al. 2019). As of 2015, there 

were 4,631 independent COGs (Galperin et al. 2015). The COG framework is similar to 

that of the eggNOG database (Jensen et al. 2008), which is a more high-throughput, 

automated approach. However, the key advantage of the COG database is that 

orthologous genes are clustered into 26 interpretable functional categories, which are 

expanded from categories originally defined to functionally bin Escherichia coli genes 

(Riley 1993). 

The EC number framework, which was developed in 1992 by the “International 

Union of Biochemistry and Molecular Biology”, is a contrasting approach for functional 

annotation. Instead of focusing on orthologous genes, EC numbers specify particular 

enzyme-catalyzed reactions. An interesting characteristic of this database is that these 

reactions can be performed by non-homologous isofunctional enzymes (Omelchenko et 

al. 2010). As of August 12th, 2020, there were 6,520 EC numbers, which correspond to 

one of four levels of granularity. For example, the accession EC 3.5.1.2 corresponds to 

glutaminases, while the higher-level categories correspond to hydrolases (3.-.-.-), that act 

on carbon-nitrogen bonds other than peptide bonds (3.5.-.-), and that are in linear amides 

(3.5.1.-). One major advantage of EC numbers is that because they specify exact 

enzymatic reactions they are straight-forward to link into pathway ontologies based on 

reactions, such as MetaCyc pathways (Caspi et al. 2013). 

 The Pfam database categorizes protein families, which are protein regions that 

share sequence homology (Punta et al. 2012). Individual proteins with multiple domains 

can thus belong to multiple Pfam families. Each Pfam family is represented by a hidden 

Markov model (HMM), which models the likely amino acids at each residue and the 

likely adjacent amino acids based on curated alignments of representative protein 

sequence. This approach identified homologous protein regions, which are often 

hypothesized to have a shared evolutionary history, but not necessarily. As of May 2020, 

there were 18,259 Pfam families. 
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 Lastly, TIGRFAMs are manually curated protein families, which are also 

identified based on HMMs, but also additional pertinent information (Haft et al. 2003). 

As of September 16th, 2014, there were 4,488 TIGRFAMs. The distinguishing feature for 

this database is that different information supplements each HMM. For instance, certain 

TIGRFAM are annotated based on species metabolic context and neighbouring genes, 

while others are based on validated functions from the scientific literature. This database 

has been less commonly analyzed in recent years and is best known as the annotation 

system for early large-scale metagenomics projects (Venter et al. 2004). Alternative 

approaches, such as the FIGfam protein database are now more commonly used than 

TIGRFAMs. FIGfams are based on a similar approach, but instead of being manually 

curated they are aggregated into isofunctional groups based on shared roles in specific 

subsystems (Meyer et al. 2009). 

  A recurrent question thus far has been that given a range of comparable, or 

contrasting, bioinformatics options, how is one to proceed? Fortunately, in the case of 

selecting functional ontologies, the choice is much clearer than other bioinformatics 

areas. Each functional database typically excels for different purposes. For instance, 

UniRef is useful for identifying uncharacterized genes that may be of interest in an 

environment, but quickly becomes challenging to interpret and analyze in diverse 

communities. 

In contrast, KEGG is useful for looking for shifts in well-described functions at a 

high level, which means this database is more robust to granular functional diversity. Due 

to also being more robust to granular functional diversity and because they are more 

interpretable, pathway-level functions are often of particular interest. For instance, 

obesity is associated with an enrichment of phosphotransferase systems involved in 

carbohydrate processing in human and mouse gut microbiomes (Turnbaugh et al. 2008, 

2009a). This straight-forward explanation quickly communicates the pertinent biological 

details, which might be lost by focusing on more granular levels. However, it is worth 

noting that pathways identified based on DNA sequencing are merely predictions based 

on the identified gene families. Although there are several pathway reconstruction 

approaches, they all require some mapping from gene families or reactions to pathways. 
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This mapping can be structured, meaning that optional and required contributors can be 

specified, or non-structured, meaning that all genes and/or reactions are treated equally. 

The naïve approach for pathway reconstruction is to assume that a pathway is 

present if any gene or reaction involved is present in the community. This was the 

predominant approach used for pathway inference in early functional analyses (Moriya et 

al. 2007; Meyer et al. 2008) and in several pathway inference tools such as PICRUSt 

(Langille et al. 2013). Pathway abundance under this framework is calculated by 

summing the abundance of each contributing gene family. This approach errs towards 

avoiding missing the presence of a pathway, which is a concern in metagenomes as key 

genes may be missing due to mis-annotations. However, this approach comes at the cost 

of spurious annotations. Based on the naïve mapping approach the human genome was 

previously annotated as including the KEGG pathway equivalent of the reductive 

carboxylate cycle (Ye & Doak 2011). This pathway is restricted to autotrophic microbes 

and is similar to reversing the Krebs cycle. Consequently, several gene families are 

shared in both processes. Under the naïve mapping approach, the presence of genes 

involved in the Krebs cycle are also evidence for the predicted presence of this atypical 

microbial pathway in humans. Similarly, vitamin C biosynthesis would also be predicted 

in humans based on the naïve approach (Ye & Doak 2011). However, the GLO gene, 

which encodes the protein involved in the key last step of vitamin C biosynthesis in 

mammals, is pseudogenized in humans (Drouin et al. 2011), which makes vitamin C 

biosynthesis impossible. 

The Minimal set of Pathways (MinPath) approach is an approach developed to 

address this issue (Ye & Doak 2011). This tool identifies the smallest set of pathways, 

based on maximum parsimony, that are required to explain the presence of a set of 

proteins. In this way, the approach is more conservative than naïve mapping and also 

accounts for incomplete protein sets. This method has been applied in numerous contexts, 

including for the “HMP Unified Metabolic Analysis Network 2” (HUMAnN2) 

(Abubucker et al. 2012; Franzosa et al. 2018) MGS gene family profiling and pathway 

reconstruction framework. This popular framework reconstructs pathways based on 

MinPath and infers pathway abundance based on different approaches, depending if the 

pathway mapping is structured. For unstructured mappings, the arithmetic mean of the 
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upper half of individual gene family abundances is taken to be the pathway abundance 

(Abubucker et al. 2012). For structured mappings, the harmonic mean of the key (i.e. 

required) genes families is computed for pathway abundance (Franzosa et al. 2018). Both 

these approaches are motivated by the need to be robust to variable abundance in 

alternative gene families. 

Although this approach for MGS pathway reconstruction is commonly performed, 

it is important to emphasize that it has not been universally accepted and there remains 

disagreement about best-practices. For example, Evidence-based Metagenomic Pathway 

Assignment using geNe Abundance DAta (EMPANADA) is a method that addresses the 

same issue as MinPath and HUMAnN2 in a different way (Manor & Borenstein 2017a). 

This method focuses pathway reconstruction on distinguishing genes that are shared with 

multiple pathways from those that are unique to a single pathway. Pathway support 

weightings are first given by the average abundance of gene families unique to each 

given pathway. The abundance of all shared gene families is then partitioned between all 

pathways according to their relative support values. Pathway abundances are then taken 

as the sum of the unique gene family relative abundances and the partitioned relative 

abundances of the shared gene families (Manor & Borenstein 2017a). 

The exact reconstructed pathways and their respective abundances differ 

depending on whether naïve mapping, MinPath/HUMAnN2, or EMPANADA are used 

(see Chapter 4). Validating pathway reconstructions is challenging without a gold-

standard comparison, particularly in metagenomes. Even in isolated genomes, as 

demonstrated by the above examples of the human pathway reconstructions, pathway 

reconstruction is non-trivial. However, the advantage in these cases is that experimental 

validation of pathway reconstructions is possible (Francke et al. 2005; Oberhardt et al. 

2008). Such validations would be possible if predictions are based on individual members 

of a microbiome, but it is less clear what experiments could validate pathways predicted 

for an overall community. In MGS data pathways are typically inferred as though all gene 

families were free to interact with each other. In other words, they are inferred as though 

there was universal cross-feeding. All three approaches described above are intended to 

be used for such community-wide gene family profiles. However, as mentioned above, 

this assumption is invalid because clearly not all proteins and metabolites in the 
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microbiome can freely interact (McMahon 2015). The implications of this assumption 

being invalid remain unclear, but nonetheless it is an important caveat when interpreting 

pathway reconstruction data based on community-wide MGS data. 

 This section would be incomplete without addressing the most common 

discussion regarding microbiome functional data: its ostensible high stability. Functional 

pathways are commonly at similar relative abundances across the same sample-types 

whereas taxonomic features, such as phyla, can vary substantially (Turnbaugh et al. 

2009a; Burke et al. 2011; HMP-consortium 2013; Louca et al. 2016). This functional 

consistency is often taken to be evidence of environmental selection for particular 

microbial functions (Turnbaugh et al. 2009a; Louca & Doebeli 2017). However, the 

validity of comparing variation between these two data types is rarely discussed. My 

colleagues and I investigated this question from a philosophical perspective and 

concluded that any meaningful comparison of the relative variation between taxonomic 

and functional profiles is likely impossible (Inkpen et al. 2017). This difficulty is largely 

because it is unclear which levels of granularity would be meaningful to compare 

between each data type. In other words, each data type is qualitatively different from the 

other and the choice of how to compare the two is based on arbitrary decisions. 

For instance, as discussed above, the sparsity and number of possible functional 

categories differs drastically across ontologies and sub-categories. My colleagues and I 

demonstrated how observations of functional and taxonomic stability are entirely 

dependent on how function and taxa are defined (Inkpen et al. 2017). We did this by 

comparing human stool sample profiles at each possible taxonomic rank and also each 

functional level for both the KEGG and UniRef functional ontologies. As expected, phyla 

were less stable across the samples than KEGG pathways, but more stable than UniRef50 

protein clusters. However, this area remains an area of active debate. Others have also 

argued that taxonomic variability never unambiguously reflects functional variation, 

which they believe is strong evidence for functional conservation (Louca et al. 2018a). 

Nonetheless, this example demonstrates once again the common theme throughout this 

section: “function” has many meanings.  
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1.5 - Metagenome Prediction Methods 

Ideally, analyses of microbial functions are based on MGS data. However, including in 

the discussion on Crohn’s disease and the microbiome presented below (Morgan et al. 

2012; Davenport et al. 2014), predicted functions based on 16S rRNA gene (hereafter 

16S) sequencing are often analysed instead. Metagenome prediction, predicting complete 

genomes for each individual ASV or taxon weighted by their relative abundance, when 

based on 16S data is much cheaper than performing MGS. 

There are additional advantages of predicted metagenomes over actual MGS data. 

Namely, MGS is often prohibitively expensive for samples where host DNA overwhelms 

microbial DNA. The high read depths required to yield sufficient microbial read depths is 

infeasible in many cases (Gevers et al. 2014). Similarly, low-biomass samples are 

difficult to accurately quantify with MGS, but they can be profiled with PCR-based 16S 

sequencing. For example, applying MGS to profile human tumours is currently 

infeasible, but it is straight-forward to apply 16S sequencing (Nejman et al. 2020). In 

both cases, for host DNA contaminated and low-biomass samples, metagenome 

prediction based on 16S profiles is a useful alternative to MGS. 

 However, metagenome prediction suffers from important drawbacks. The key 

problematic assumption is that the marker gene used for predictions, typically the 16S, is 

strongly associated with genome content. This broad assumption is correct: genera such 

as Lactobacillus and Desulfobacter can be easily distinguished based on the 16S and they 

are enriched for extremely different functions. Namely, Lactobacillus can often perform 

lactic acid fermentation whereas Desulfobacter can typically oxidize acetate to CO2. Such 

comparisons of characteristic functions between distantly related taxa are 

uncontroversial. The difficulty arises when approaches attempt to predict entire genome 

contents for an entire community, including for closely related taxa. 

 This issue is highlighted by classic DNA hybridization experiments (Mandel 

1966; Brenner 1973). These experiments are based upon mixing single-stranded DNA 

from two organisms and recording the melting temperature required to separate the 

strands. Higher melting temperatures are required to break apart DNA that shares more 

complementary bases connected by hydrogen bonds. This approach provides a rough 

estimate of the genetic distance between different strains or species. An early comparison 
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of these genetic distances with 16S dissimilarity across 34 bacteria computed a linear 

correlation of 0.728 (Devereux et al. 1990). However, the relationship between these two 

metrics is not linear: many bacteria with highly similar 16S genes have hybridization 

rates much lower than 70% (Stackebrandt & Goebel 1994), which is the traditional cut-

off for delineating species. This trend has been corroborated across diverse prokaryotes 

(Hauben et al. 1997, 1999; Kang et al. 2007). In addition, a meta-analysis of 16S gene 

sequencing and DNA hybridization data from 45 bacterial genera further clarified these 

observations (Keswani & Whitman 2001). This analysis established that 78% of the 

variability in hybridization rates could be accounted for by 16S similarity, based on a 

non-linear model. However, they also identified that a minority of hybridization rates 

were extremely poorly predicted by 16S similarity (Keswani & Whitman 2001). 

 These observations agree well with genomic comparisons of strains, which can 

drastically differ in genome content. For example, across 17 E. coli genomes there are 

~13,000 genes that are variably distributed and only ~2,200 core genes (Rasko et al. 

2008). This enormous range of genomic variation is not reflected at the 16S level, where 

E. coli strains are typically >99% identical (Suardana 2014). These genomic differences 

can translate to enormous variation at higher taxonomic levels as well. For instance, a 

comparison of the genomes from 11 Yersinia species found a range of genome sizes from 

3.7 – 4.8 megabases (Chen et al. 2010). A closer comparison of three pathogenic species 

of Yersinia determined that they shared 2,558 protein clusters while 2,603 were variably 

distributed. These species-level differences are also not proportionally reflected by 

divergence in Yersinia species 16S genes, which are typically > 97% identical (Ibrahim et 

al. 1993). These examples highlight that 16S similarity can be a poor predictor of 

genomic similarity. This issue is compounded when there are divergent 16S copies within 

the same genome, although typically these are >99.5% identical (Větrovský & Baldrian 

2013). 

Variation in gene content within a taxonomic lineage is a recurrent observation 

across microbial communities. Variably present genes are often linked to putative niche-

specific adaptations (Wilson et al. 2005), such as genes affecting antibiotic resistance 

(Kallonen et al. 2017), carbohydrate catabolism (Arboleya et al. 2018), and wound 

healing (Kalan et al. 2019). Based on these and other observations, the understanding of 
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bacterial genomic content has shifted from that of a static genome to a pan-genome, 

consisting of core and variable genes (Tettelin et al. 2005). Variably present genes are 

transmitted between genomes through horizontal gene transfer, which typically occurs 

between closely related organisms (Popa & Dagan 2011). However, horizontal gene 

transfer can also occur between distantly related organisms, such as between different 

bacterial phyla (Beiko et al. 2005; Kloesges et al. 2011; Martiny et al. 2013). 

 The high variability between bacterial genomes and extensive horizontal gene 

transfer highlights the major challenges facing metagenome prediction. Despite these 

challenges, interest in performing metagenome predictions has continued, supported by 

several observations. First, although there are important outliers, 16S sequence identity 

does logarithmically correlate well with the average nucleotide identity between 

genomes, with an R2 of 0.79 (Konstantinidis & Tiedje 2005). Second, 16S sequence 

similarity does provide some information on the ecological similarity of bacteria 

(Chaffron et al. 2010). This was demonstrated by the fact that co-occurring 

environmental bacteria are more likely to have similar 16S sequences. In addition, overall 

differences in inferred KEGG pathway potential are strongly associated with 16S 

divergence (Chaffron et al. 2010). Last, within a given environment, such as the human 

gut, 16S divergence was shown to be particularly predictive of divergence in average 

gene content (Zaneveld et al. 2010). 

Originally, metagenome prediction workflows were based on matching 16S 

sequences to reference genomes. In addition to predicting microbial functions linked to 

Crohn’s disease (Morgan et al. 2012), this approach has also been used to profile diet-

related microbial functions across mammals (Muegge et al. 2011) and the functions of 

invasive bacteria within corals (Barott et al. 2012). Although bioinformatics tools for 

metagenome prediction are now typically used for performing this task, this 16S-

matching approach is still used for custom analyses (Verster & Borenstein 2018; Bradley 

& Pollard 2020). 

The first metagenome prediction tool to expand beyond this approach, and 

specifically intended for 16S sequencing data, is ‘Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States’ (PICRUSt) (Langille et al. 2013). 

To distinguish this software from the tool I present in Chapter 4, I will hereafter refer to 
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this version as PICRUSt1. This tool is based on leveraging classical ancestral-state 

reconstruction methods, which have been widely used in phylogenetics (Zaneveld & 

Thurber 2014). The key extension of this framework is to extend trait predictions from 

internal, or ancestral, nodes in a phylogenetic tree to tips with unknown trait values. This 

approach has been termed hidden-state prediction (HSP) (Zaneveld & Thurber 2014). 

PICRUSt1 bases genome predictions on genomes from the Integrated Microbial 

Genomes (IMG) database (Markowitz et al. 2012). Generating predictions for individual 

16S sequences is time and memory-consuming with this approach, so for typical usage 

predictions for all OTUs from the Greengenes database (DeSantis et al. 2006) are pre-

computed in advance and then provided to users. However, it is possible for users to 

conduct ancestral-state reconstruction with custom reference genome databases, although 

this is a laborious process. In fact, the construction of one alternative database focused on 

cow rumen-associated bacteria, called CowPI, was deemed sufficient work to be 

published as a standalone paper (Wilkinson et al. 2018). 

This approach requires a phylogenetic tree based on an alignment of 16S 

sequences from reference genomes and 16S sequences without known genome content. 

The known genome annotations typically correspond to KEGG or COG gene families by 

default. A range of phylogenetic ancestral state reconstruction methods can be used to 

reconstruct trait values at ancestral nodes. Many of these methods are implemented by the 

Analyses of Phylogenetics and Evolution (APE) R package (Paradis et al. 2004), which is 

used by PICRUSt1. Faster and extended versions of these methods were recently 

implemented in the castor R package as well (Louca & Doebeli 2018). The default 

PICRUSt1 predictions are based on the Phylogenetic Independent Contrasts (PIC) 

reconstruction method (Felsenstein 1985). PIC is a fast method for reconstructing 

continuous traits, which can also be applied to discrete traits like gene counts if they are 

treated continuously. Under the PIC model evolution occurs through Brownian motion 

(i.e. a random walk), where differences between organisms are normally distributed 

around a mean of 0 with a variance proportional to their phylogenetic distance. A least 

squares approach is used to predict ancestral trait values, based on this model and the 

input data (Langille et al. 2013). The key hidden-state prediction step implemented in 

PICRUSt1 is performed for each OTU (with unknown genome content) by taking the 
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average of its ancestral and close relatives’ value weighted by the branch-length distance 

to each value. Metagenome prediction can then be performed by multiplying the relative 

abundance of each OTU by the abundance of each gene family within each OTU’s 

predicted genome. PICRUSt1 predicts pathway levels through naïve mapping of genes to 

pathways (see Microbial Functions section). 

PICRUSt1 introduced the step of normalizing relative abundances by the 

predicted number of 16S copies within each genome, which is intended to control biases 

in 16S sequencing due to copy number (Farrelly et al. 1995). Importantly, although 16S 

copy number correction has become a common step for metagenome prediction (Angly et 

al. 2014), accurately predicting 16S copy number is particularly challenging. An 

independent validation of several 16S copy number prediction methods, including 

PICRUSt1, identified poor agreement of predicted copy numbers against existing 

reference genomes (Louca et al. 2018b). In some cases, less than 10% of the variance in 

actual 16S copy number was explained by these predictions. In addition, these predictions 

were often only slightly correlated between prediction methods. 

 The original validation of PICRUSt1 predictions focused on comparing predicted 

KEGG orthologs (KOs), pathways, and modules with the corresponding functions 

identified with MGS data on matched samples (Langille et al. 2013). This approach 

uncovered a high Spearman correlation between these data types on the same samples. In 

particular, predicted KOs from Human Microbiome Project (HMP) samples across 

numerous body sites were highly correlated with the matching MGS-identified data 

(Spearman r = 0.82). Principal component analysis based on 16S-predicted and MGS-

derived KEGG modules also identified close matching by sample-type, regardless of 

whether the data was predicted or not. Lastly, PICRUSt1 predictions also matched with 

particular functional shifts in MGS datasets. For example, uronic acid metabolism was 

found to be at higher levels across all compared HMP body sites in both data types, with 

the exception of urogenital samples where this signal was largely absent (Langille et al. 

2013). 

Although PICRUSt1 was shown to perform well in these validations, it 

nonetheless suffers from certain limitations. First, as mentioned above, by default 

PICRUSt1 requires input sequences to be OTUs that can be linked with the Greengenes 
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database. This means that some form of closed-reference OTU picking is required to 

identify these links, which eliminates the possibility of generating predictions for novel 

16S sequences. This is a major disadvantage, because in certain communities, such as in 

soil and ocean samples, de novo 16S sequences can account for a large proportion of the 

data. In addition, due to this limitation, PICRUSt1’s default implementation is 

incompatible with sequence denoising methods (Callahan et al. 2016a; Edgar 2016; Amir 

et al. 2017), which are rapidly becoming the predominant approach as they enable 

sequence resolution down to the single-nucleotide level. This improved resolution allows 

closely related organisms to be better distinguished and thus more precise gene 

annotations are associated with a given 16S sequence. Another major drawback is that 

PICRUSt1 cannot be used with 18S rRNA gene and internal transcribed spacer 

sequencing data as its database is limited to prokaryotic community predictions. The 

feasibility of making such eukaryotic predictions with PICRUSt1 is unclear. Lastly, the 

prokaryotic reference databases used by PICRUSt1 have not been updated since 2013 and 

lack many recently added gene families and pathway mappings. I hypothesized that 

making these and other improvements to the PICRUSt workflow, which I implemented in 

PICRUSt2, would improve the accuracy and flexibility of the tool. I also identified an 

important issue related to how to interpret concordance between 16S-predicted and MGS-

derived functional data. As described in the manuscript (see Chapter 4), high correlations 

can occur in these comparisons by chance, which has major implications for how 

metagenome prediction approaches in general are evaluated. 

Since PICRUSt1 was published a number of similar metagenome prediction tools 

have been developed. All of these approaches aim to capture the shared phylogenetic 

signal in the distribution of functions across taxa; however, they differ in many 

fundamental ways. Tax4Fun (Aßhauer et al. 2015) is a similar approach that pre-

computes predictions in advance and restricts input data to OTUs corresponding to the 

SILVA database (Quast et al. 2013). Predictions are based on converting SILVA OTUs to 

prokaryotic KEGG organisms, which have pre-computed functional profiles. An updated 

version of this tool, Tax4Fun2 (Wemheuer et al. 2020), extended this approach to allow 

for ASVs and de novo OTUs to be used. Input 16S sequences are mapped against 
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reference sequences in Tax4Fun2 to identify the closest match, which allows novel 

sequences to be used. 

Piphillin is another metagenome prediction approach, which is based on a nearest-

neighbour search between input and reference 16S sequences within a global alignment 

(Iwai et al. 2016). The genome content of the matching nearest neighbour is taken to be 

the genome for each input 16S sequence. This procedure is fast and is re-run for each 

input dataset, meaning that either reference OTUs or novel ASVs can be input. A major 

advantage of this tool is that it has an online web-portal, which allows straight-forward 

usage. This tool was shown to have minor performance improvements over PICRUSt1, 

which at the time was hypothesized to be due to the higher number of genomes included 

in the reference database (Iwai et al. 2016). The Piphillin authors also introduced the 

notion of using the concordance of differential abundance results between actual and 

predicted metagenomics profiles as a novel validation. Although this is a valuable idea, 

thus far it has only been applied with a limited number of tool and differential abundance 

test comparisons (Iwai et al. 2016; Narayan et al. 2020; Sun et al. 2020). 

Pangenome-based Functional Profiles (PanFP) is a contrasting method that bases 

metagenome prediction on the taxonomic classifications of 16S sequences, rather than on 

exact sequences (Jun et al. 2015). The taxonomic lineage for each OTU is mapped to 

RefSeq lineages and then genome predictions are performed by averaging the genome 

content of all organisms within a given lineage. PICRUSt1 differs from this approach, in 

addition to Tax4Fun and Piphillin, because PICRUSt1 explicitly accounts for each 

unknown organism’s position in a phylogenetic tree. Accounting for this phylogenetic 

information enables more sophisticated methods for inferring hidden states to be 

employed. 

PAthway PRedction by phylogenetIC plAcement (PAPRICA) is another approach 

that leverages phylogenetic information (Bowman & Ducklow 2015). This method uses a 

phylogenetic placement approach, originally pplacer (Matsen et al. 2010) and now the 

next-generation of the Evolutionary Placement Algorithm (EPA-ng) (Barbera et al. 

2019), to place input 16S sequences into a reference phylogenetic tree. The advantage of 

placing sequences into a reference tree is that it more accurately represents the 

phylogenetic relationship between reference and query sequences than if an entirely new 
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alignment and tree are created (Janssen et al. 2018). Genome predictions are acquired 

differently depending on how query sequences are placed (Bowman & Ducklow 2015). If 

a query’s most likely placement is on an edge leading to a tree tip, then the genome 

content is taken to be that tip. Alternatively, if query sequences are placed at internal 

nodes then the predicted genome content is taken to be the core genome of all descendent 

tips. The major drawback of PAPRICA is that it has not been evaluated using standard 

MGS-16S comparisons. Instead, it has largely been evaluated by its utility in practice for 

explaining variation across aquatic microbial communities compared with PICRUSt 

(Bowman & Ducklow 2015). The original database for this tool also was focused on 

marine microbes and originally the tool was challenging to use because it required raw 

reads, rather than OTUs or ASVs, to be input. Another important difference of this tool 

compared with the others is that it focuses on EC number predictions rather than KOs or 

COGs. 

In addition to these prediction methods that predict gene families across 

metagenomes, alternative methods have focused instead on predicting more interpretable 

phenotypes. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) is a database 

that enables prokaryotic taxonomic labels to be linked with specific high-level functions 

(Louca et al. 2016). This database focuses on over 80 interpretable functions, such as 

nitrate respiration and methanogenesis. These taxa-function links were collated through a 

systematic literature review. BugBase is a similar approach that instead focuses on 

categorizing six main phenotypes: Gram stain, oxygen tolerance, biofilm forming, mobile 

element content, pathogenicity, and oxidative stress tolerance (Ward et al. 2017). Rather 

than literature searches, these phenotypes were inferred based on the genome content of 

reference genomes. The key advantage of both FAPROTAX and BugBase is that the 

high-level traits they predict are typically more robust within taxonomic lineages than 

lower level functions, such as individual gene families (Martiny et al. 2013). 

 

1.6 - Current State of the Integration of Taxonomic and Functional Data Types 

The above discussion has described the many faces of microbiome data types. Taxonomic 

and functional microbiome data are typically generated independently, but in some cases 
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can be directly linked. Regardless of the exact processing workflow for these data types, I 

have yet to address one question: how are they integrated? 

 For independent taxonomic and functional data types this is largely done 

anecdotally. For example, this is commonly done in regards to the nine genera that are the 

primary producers of short-chain fatty acids (SCFAs) in the human gut (Moya & Ferrer 

2016). SCFA levels have long had an ambiguous link with Crohn’s disease (CD) (Treem 

et al. 1994), although they are typically negatively associated with disease activity 

(Venegas et al. 2019). Due to this association, there has been long-standing interest in 

identifying microbial taxa that are associated with altered SCFA levels. Accordingly, CD 

microbiome studies commonly hypothesize that shifts in the relative abundance of any 

known SCFA-producing taxa likely cause altered SCFA levels. For example, 

Faecalibacterium prausnitzii is a well-known commensal SCFA-producer in the human 

gut and is consistently found at lower levels in the CD patient microbiomes (Wright et al. 

2015). Although potential links between lower levels of this species, in addition to other 

taxa such as Roseburia (Laserna-Mendieta et al. 2018), and SCFA levels are often 

discussed, this is rarely formally investigated. 

 More often, anecdotal links between function and taxa are based on observed 

associations between significant features. Several such cases have previously been noted 

as representative examples (Manor & Borenstein 2017b). For instance, 

Propionibacterium acnes has been identified as strongly correlated with NADH 

dehydrogenase levels in the skin microbiome (Oh et al. 2014). Consequently, this species 

was implicated as the likely cause for changes in NADH dehydrogenase levels. Similarly, 

Bacteroides thetaiotaomicron relative abundance has been identified as positively 

correlated with microbial genes involved with the degradation of complex sugars and 

starch in the infant gut (Bäckhed et al. 2015). Based on this observation, this species was 

hypothesized to be the key contributor to increased levels of these degradation genes. 

Such insights are valuable, but as previously discussed (Manor & Borenstein 2017b), 

these anecdotal links alone are not convincing evidence that particular taxa are the 

primary contributors to functional shifts. 

 Linked taxonomic and functional data alone is not sufficient to resolve this issue. 

There are substantial challenges facing the integration of these data types besides simply 
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generating a combined format. For example, two massive datasets have recently been 

published as part of the next iteration of the Human Microbiome Project. Both datasets 

include numerous sequencing and profiling technologies, including 16S and MGS, from 

the stool and various body-sites of IBD (Lloyd-Price et al. 2019) and individuals with 

pre-diabetes (Zhou et al. 2019). However, in each case there was little integration of 

microbiome functional and taxonomic data types. Instead, these features were largely 

tested independently, despite the availability of links between the data types, and 

associations between top features were discussed (Lloyd-Price et al. 2019; Zhou et al. 

2019).  

In contrast to these examples, there have been calls for improved integration of 

these microbiome data types, which is rooted in a systems-level biology outlook 

(Greenblum et al. 2013). ‘Functional Shifts’ Taxonomic Contributors’ (FishTaco) is one 

bioinformatics method developed for this purpose, which quantifies taxonomic 

contributions to functional shifts (Manor & Borenstein 2017b). Significant shifts in 

functional abundances are first identified using a standard differential abundance test, 

typically a Wilcoxon test. Subsequently, a permutation analysis is undertaken, which 

consists of randomly shifting the relative abundance of a subset of taxa, while 

maintaining the rest. A large collection of such permutations is performed, which include 

permutations of single and multiple taxa in different replicates. Based on this approach an 

estimate of the relative contribution of each taxon to a functional shift can be estimated 

(Manor & Borenstein 2017b). These relative contributions are then presented as stacked 

bar charts breaking down the direction and magnitude of each functional contribution. 

These visualizations help distinguish when a functional shift is due to the enrichment or 

depletion of taxa and also which sample grouping the shift occurred within. This 

approach was motivated by Shapley values, which were introduced in game-theory to 

summarize the contribution of each player in a multiplayer game (Shapley 1953). 

Specifically, FishTaco leverages a modified version of this approach that enables the 

contribution of individual features to be estimated in large datasets without exhaustively 

testing every possible permutation (Keinan et al. 2004). 

 FishTaco represents an important advancement in integration and improved 

interpretability of taxonomic and functional microbiome data. However, it nonetheless 
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suffers from major limitations. First, although the taxonomic breakdown of contributors 

to a function is valuable, the FishTaco approach requires significant functions to be 

identified based on the relative abundance of individual gene families and pathways. This 

is done by systematically testing all functions across the entire metagenome, which is 

problematic when performed with a non-compositional approach like a Wilcoxon test. 

This approach also treats gene families under the bag-of-genes model, which is 

inappropriate, as discussed above. An improved method would conduct a compositionally 

sound analysis and integrate taxonomic information when identifying significant 

functions. 

 An alternative method is phylogenize, which does address each of these issues 

(Bradley et al. 2018; Bradley & Pollard 2020). This approach tests for significant 

associations between the presence of a taxa within a given sample grouping and the 

probability that a taxon encodes a given gene family. This is performed through 

phylogenetic linear regression, which accounts for the genetic similarity of co-occurring 

taxa that might trivially be due to a shared evolutionary history. A separate phylogenetic 

linear model is fitted for each gene family. The key distinction of this approach from a 

normal linear model is that instead of the residuals being independent and normally 

distributed, they covary so that phylogenetically similar microbes have higher covariance 

(Bradley et al. 2018). This overall approach was partially motivated by an attempt to 

address a similar problem by comparing the species and gene trees of gut and non-gut 

microbes (Lozupone et al. 2008). Based on simulated random data (i.e. data with no real 

functional shifts) the phylogenize authors demonstrated that performing standard linear 

models without controlling for phylogenetic structure results in false positive rates 

ranging from 20% - 68%. In contrast, controlling for phylogenetic structure with 

phylogenize resulted in a uniform P-value distribution and an appropriate false positive 

rate of 5%. One interesting feature is that phylogenize does not directly analyze relative 

abundances. Instead, the tool converts taxa relative abundance into one of three formats: 

(1) binary presence/absence across all samples, (2) overall prevalence within each sample 

grouping, (3) or the specificity within each sample grouping (Bradley et al. 2018). 

 Although phylogenize is undeniably an invaluable contribution to microbiome 

data analysis, it also has several limitations. First, information on taxa abundance is 
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discarded entirely in favour of presence/absence data. From one perspective this is an 

advantage; eliminating taxa relative abundances enables phylogenize to circumvent 

compositionality issues. However, relative abundance data is often more important to 

investigate, because key taxonomic shifts might not be detected by presence/absence 

alone. In addition, phylogenize reports significant gene families for each phylum in a 

dataset. This is performed to reduce the memory usage and to enable phylum-specific 

rates of evolution for each function (Bradley et al. 2018). This focus on the phylum level 

makes the results difficult to interpret for two reasons. First, it is insufficiently broad, 

because it limits the potential to identify functions distributed across multiple phyla that 

might be linked with a condition of interest. From another perspective, this focus on the 

phylum level is also not specific enough; although phylum-function associations are 

valuable they do not provide information on the relative contributions of lower-level taxa, 

such as species, to the association. Accordingly, there is room for improvement in both 

the statistical analysis and interpretation of the phylogenize approach. 

 Despite the availability of approaches for integrating functional and taxonomic 

data, they have yet to become a mainstay of microbiome analyses. However, it is 

becoming common to visualize stacked bar-charts of taxonomic contributors to functions 

of interest. This is typically performed on predicted metagenome output by PICRUSt or 

alternatively on HUMAnN2 output, although this could be performed with any linked 

taxa-function data. As discussed above, the HUMAnN2 pipeline includes a step for 

identifying particular strains in MGS dataset, which allows gene families to be linked to 

those strains (Franzosa et al. 2018). In some cases this approach enables complete links 

between taxa and function to be identified. For instance, F. prausnitzii was shown to be 

the obvious principal contributor to glutaryl-CoA biosynthesis in the HMP gut MGS 

samples (Franzosa et al. 2018). However, more commonly there are numerous taxonomic 

contributors to a single given function, and it is difficult to interpret which taxa are the 

key contributors by looking at visualizations alone. Nonetheless, even in the presence of 

many taxonomic contributors, the HUMAnN2 authors demonstrated that these 

visualizations can provide information about the diversity of taxa contributing to a 

function, termed the contributional diversity (Franzosa et al. 2018). This is most often 
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quantified with the Gini-Simpson index, which is the complement of Simpson’s evenness 

(Jost 2006). 

 Contributional diversity has been shown to be a useful approach for delineating 

housekeeping pathways encoded by many taxa, intermediate pathways, and those rarely 

encoded, which can correspond to opportunists or keystone species. For instance, F. 

prausnitzii has previously been linked with several human microbiome pathways 

identified through MGS that have intermediate contributional diversities (Abu-Ali et al. 

2018). When present, this species tended to contribute the majority of all pathways it 

encoded. 

This approach has also been valuable for profiling shifts in the contributions to 

microbial pathways over time, such as in the infant gut profiled with MGS (Vatanen et al. 

2018). In this case, several microbial pathways, such as siderophore biosynthesis, were 

found to display decreasing contributional diversity with age. This is an interesting 

observation because siderophores are costly to produce but are highly beneficial in the 

human gut. In particular, siderophores can confer a strong benefit to multiple community 

members, including those that do not produce siderophores, by providing access to iron. 

Siderophores have previously been presented as microbial functions whose distribution is 

consistent with the Black Queen Hypothesis (Morris et al. 2012). This hypothesis states 

that adaptive gene loss may occur for functions that are costly to produce, provided that 

the function is provided by other community members. This hypothesis was discussed in 

the context of the infant microbiome as an explanation for why siderophore 

contributional diversity decreases over time (Vatanen et al. 2018): perhaps gene loss 

confers an adaptive benefit by avoiding the production of a costly metabolite. Although 

this is an interesting hypothesis, a less controversial interpretation of this result is that 

siderophores became less stably encoded over time. 

 Related to this point, two additional metrics have also been developed to 

summarize the stability of taxonomic contributions to microbial functions (Eng & 

Borenstein 2018). More specifically, these metrics are intended to summarize functional 

robustness across samples, which is the stability in the relative abundance for a given 

function in response to taxonomic perturbation. This is performed by generating a taxa-

response curve that describes the average change in functional relative abundances in 
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response to taxonomic perturbations of different magnitudes. Two metrics are then 

computed based upon these curves: attenuation and buffering. Attenuation captures how 

rapidly a function shifts with increasing taxonomic perturbation magnitudes. In contrast, 

buffering represents how well functional shifts are suppressed at smaller taxonomic 

perturbation magnitudes. 

Applying these metrics to PICRUSt-predicted metagenomes from 16S sequencing 

of human body sites, validated by a subset of MGS samples, yielded several novel 

perspectives. First, attenuation and buffering were conserved across body sites for 

microbial house-keeping pathways but varied for several others. For instance, robustness 

in the biosynthesis of unsaturated fatty acids varied substantially across body sites. In 

addition, human gut samples were found to have higher values of both attenuation and 

buffering than compared to vaginal samples. These trends were shown to be driven by 

more than simply lower richness in vaginal samples by subsampling to comparable 

diversity levels across each body-site (Eng & Borenstein 2018). These observations are 

consistent with the controversial hypothesis that microbial communities may be under 

varying selection strengths for functional robustness, depending on the environment 

(Naeem et al. 1998; Ley et al. 2006). 

 The development of these metrics for summarizing functional contributions 

represent an important goal of microbiome research, which is to leverage sequencing data 

to yield novel biological insights. In contrast, another major goal is to answer a more 

practical question: how useful is microbiome data for classification and prediction tasks? 

 There is great interest in applying machine learning approaches to microbiome 

sequencing data (Knights et al. 2011). Most commonly this is performed with either 

Support Vector Machine or Random Forest (Breiman 2001) models. Applications of 

these and other machine learning approaches to microbiome data are primarily aimed at 

classifying healthy and diseased samples (Zhou & Gallins 2019). On rare occasions this 

is performed on functional data types, which was the focus of one MGS meta-analysis 

that identified informative functional biomarkers across several human diseases (Armour 

et al. 2019). However, more commonly taxonomic features are the focus of these 

machine learning approaches, which is true for both 16S (Duvallet et al. 2017) and MGS 

(Pasolli et al. 2016) data. 
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Regardless of the data type, one major motivation of these projects is to leverage 

the gut microbiome to improve disease diagnoses. The microbiome of IBD patients has 

been analysed through machine learning for this purpose on numerous occasions (Gevers 

et al. 2014; Tedjo et al. 2016; Sprockett et al. 2019). In addition to classifying patients by 

diseases, this work has also focused on leveraging 16S-based taxonomic profiles to 

classify patients by remission status (Tedjo et al. 2016) and disease sub-type (Gevers et 

al. 2014). This latter approach has particularly been valuable as a proof-of-concept that 

intestinal biopsies from multiple regions of the GI tract perform comparably in a machine 

learning context. In general, the observed within-study performances typically are 

relatively high. For instance, one influential study computed accuracy scores (the area 

under the curve [AUC] in this case) ranging from 0.66 – 0.85 (Gevers et al. 2014). 

However, the generalizability of these models is rarely assessed across different study 

cohorts. This issue applies not only to CD, but also to most human diseases associated 

with the microbiome. 

One major exception is microbiome-based models for colorectal cancer, which in 

one investigation were shown to be generalizable across five independent datasets 

(Wirbel et al. 2019). This landmark study also systematically compared the utility of 

functional and taxonomic data types in these models and found them to be comparable 

overall. This finding is consistent with a past comparison of the classification 

performance of 16S-based taxa and predicted metagenome data (Ning & Beiko 2015). In 

the case of predicted metagenomes, which are based on 16S profiles, it is perhaps less 

surprising that they yield comparable classification performance. However, with MGS 

data in particular it might be possible to detect robust, informative functions that might be 

undetectable with taxonomy alone due to taxonomic variability (Doolittle & Booth 2017). 

 Despite this great interest in applying machine learning to different microbiome 

data types, there has been little focus on integrating across them. The aforementioned 

comparison of 16S-based taxa and predicted functions is one exception where a hybrid 

classification model of both data types was created (Ning & Beiko 2015). In this case, 

there was a small increase in classification performance for distinguishing nine human 

oral sub-locations. The original OTU and KO-based models yielded accuracies of 76.2% 

and 76.1%, respectively, while the hybrid model resulted in an accuracy of 77.7% (Ning 
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& Beiko 2015). This result indicates that predicted functions may provide some 

additional information in combination with taxonomic data, but the consistency and 

biological significance of this small effect remains unclear. Further investigation into the 

integration of these data types within a machine learning context is needed to ensure that 

the highest-quality models possible are constructed. 

 

1.7 - Microbial Associations with Disease: Crohn’s Disease as a Case Example 

The above sections have described microbiome data types in detail. I have discussed the 

different sequencing technologies, data types, and introduced challenges facing 

microbiome data analysis. However, I have neglected to describe the motivation driving 

most human microbiome research: to identify links between the microbiome and disease. 

 Myriad associations have been identified between microbiome features and 

disease, such as asthma (Arrieta et al. 2015; Hufnagl et al. 2020), obesity (Ley et al. 

2005; Turnbaugh et al. 2009a; Castaner et al. 2018), and colorectal cancer (Zeller et al. 

2014; Flemer et al. 2018). A review of microbial associations with disease in general is 

beyond the scope of this work, and detailed reviews on this topic are available elsewhere 

(Durack & Lynch 2019; Nørreslet et al. 2020; Willis & Gabaldón 2020). Instead, I will 

focus on a single disease, Crohn’s disease (CD), which has a complicated etiology 

associated with the microbiome. Understanding this disease is important to appreciate 

Chapter 3, which focuses on the microbiomes of intestinal biopsy samples from pediatric 

CD patients. 

 CD is an inflammatory bowel disease (IBD) characterized by chronic mucosal 

inflammation. Any part of the gastrointestinal (GI) tract can be discontinuously affected, 

but the ileum and/or colon are most often inflamed (Thia et al. 2010). This disease has 

many symptoms, including diarrhea, abdominal pain, GI bleeding, and fatigue. In 

addition to physical issues, these symptoms often have negative social and psychological 

impacts on CD patients, which drastically decrease patients’ quality-of-life (Casati & 

Toner 2000; Sewitch et al. 2001). Common treatments for CD include prescribing 

corticosteroids, 5-aminosalicylates, purine antimetabolites, and anti-tumour necrosis 

factor suppressive strategies (Ho & Khalil 2015). In addition, 71% of CD patients 
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eventually undergo invasive intestinal surgery (a surgical resection), which unfortunately 

leads to relapses (up to 10 years later) in 44% of cases (Bernell et al. 2000). 

CD diagnosis has become more common in the Western world over the last 60 

years. As of 2011, CD prevalence varied from 44 – 201 per 100,000 persons across North 

American cohorts (Cosnes et al. 2011). Although historically CD has typically developed 

in young adults (Ekbom et al. 1991), there is increasing incidence in pediatric patients 

(Jabandziev et al. 2020). Canada has one of the highest incidence rates for pediatric CD: 

9.68 per 100,000 children under 16 from 1999-2010 (Benchimol et al. 2017). Although 

all surveyed Canadian provinces have similar incidence rates, Nova Scotia has the highest 

incidence rate for CD. In addition, younger children seem to be a growing risk group for 

CD in Canada as disease incidence was found to be increasing only for children under 

five (Benchimol et al. 2017). In general, CD in younger individuals can be more complex 

and aggressive (Goodhand et al. 2010). Current treatments can be less effective for 

treating these cases, or alternatively can have severe side effects on pediatric patients, 

such as corticosteroids that may interfere with growth during puberty (Alemzadeh et al. 

2002). Immunosuppressive treatments are also associated with increased infection risks, 

likely caused by impaired immune responses (Bonovas et al. 2016). These issues, in 

addition to the lack of long-term solutions for CD, have motivated renewed efforts to 

develop novel treatments. 

Exclusive enteral nutrition (EEN) is one such alternative first-line therapy to 

standard approaches such as corticosteroids. This treatment involves providing all 

nutrition via a liquid formula, which can be done orally or with a feeding tube for 6-8 

weeks (Whitten et al. 2012). EEN has been investigated with variable success for over 30 

years (Morain et al. 1984). With the exception of Japan, EEN is not an effective treatment 

for adults, partially because it requires strict dietary adherence (Wall et al. 2013). In 

contrast, EEN is highly effective for treating active disease and inducing remission in 

pediatric patients (Day et al. 2006; Critch et al. 2012). Although the mechanism of action 

remains unknown, EEN provides additional benefits than corticosteroids, such as higher 

rates of mucosal healing, greater weight gain, and enhanced bone turnover (Wall et al. 

2013). 
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There is a high genetic predisposition for CD as indicated by twin-studies 

(Orholm et al. 2000; Halfvarson et al. 2003; Halme et al. 2006). A meta-analysis of six 

CD twin-studies determined that the overall concordance rate is 30.3% and 3.6% for 

identical and fraternal twins, respectively (Brant 2011). The higher concordance rate in 

identical twins indicates that CD risk is highly heritable. Accordingly, there have been 

many investigations into genetic variants underlying CD (Liu & Anderson 2014). Many 

risk loci have been identified and one interesting discovery has been that the genetic 

variants associated with CD susceptibility are largely independent from those related to 

disease prognosis (Lee et al. 2017). 

A major focus has been to develop genetic risk score models based on combining 

the odds-ratios of hundreds of single-nucleotide polymorphisms (SNPs). This approach 

has partially accounted for CD heritability estimated from twin-studies and to develop 

CD screening methods based on relatively few genetic variants (Wang et al. 2013a; 

Zupančič et al. 2016). Genetic risk score estimates for 34,819 IBD patients based on 

approximately 200 SNPs demonstrated that this approach could also be used for 

distinguishing disease sub-types (Cleynen et al. 2016). In particular, CD could not only 

be distinguished from another IBD, ulcerative colitis, but ileal and colonic CD sub-types 

could also be distinguished. This result highlights that genetic risk score can in principle 

be leveraged to rapidly stratify patients into different disease sub-types, which could have 

treatment implications. 

The primary disease risk gene for CD was identified in 2001 as the nucleotide-

oligmerization-domain-2 (NOD2) locus (Hugot et al. 2001; Ogura et al. 2001). This gene 

is an apoptosis regulator expressed in monocytes and variants of the encoded protein 

activate the pro-inflammatory transcription factor NF-κB. NOD2 is also a pattern 

recognition receptor that can detect cell wall components of both Gram-positive and 

Gram-negative bacteria as well as other microbes (Moreira & Zamboni 2012). NOD2 

variants have also been associated with extreme microbial shifts following antibiotic 

usage and with failure to control microbial pathogens (Al Nabhani et al. 2017).  

 Many environmental factors are also thought to contribute to the etiology of CD, 

which likely explains the rising rates of pediatric CD (Feeney et al. 2002). Smoking is 

strongly associated with CD, with an odds ratio of 3 to 4-fold increased risk of 
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developing disease (Halfvarson et al. 2006; Ng et al. 2012). Early-life GI infections and 

antibiotic usage are also associated with developing CD (Nguyen et al. 2020). In addition, 

differences in dietary intake have been linked to CD, for instance diets with high fibre 

and fruit content are protective (Hou et al. 2011). Lastly, reduced exposure to sunlight 

may be linked with CD risk as vitamin D insufficiency is common in CD patients 

(Raftery & O’Sullivan 2015). Many of these etiological factors, such as dietary 

differences, GI infections, and antibiotic usage are intuitively potentially linked with the 

microbiome. Consequently, there has been a long-standing interest in investigating links 

between the gut microbiome and CD etiology. 

The most consistent microbial signal in the gut microbiome of CD patients has 

been reduced alpha diversity (Manichanh et al. 2006; Hansen et al. 2012; Pascal et al. 

2017). However, different alpha diversity metrics are often significant (or tested) across 

different studies. For instance, it was previously typical to assess alpha diversity based on 

richness alone (Manichanh et al. 2006). In some cases richness has not significantly 

differed between CD and control samples, but other measures of alpha diversity such as 

Shannon’s entropy and evenness, have significantly differed (Hansen et al. 2012). 

Therefore, lower alpha diversity metric values in general are characteristic of the gut 

microbiome of CD patients, but there can be subtleties regarding how to interpret that 

difference depending on the cohort and analysis. Importantly, CD patients also have 

significantly lower microbial load compared with healthy control individuals, which 

likely accounts for the observed differences in alpha diversity metrics (Vandeputte et al. 

2017). 

However, higher alpha diversity should not be equated with healthiness in general 

(Shade 2017). EEN typically causes a rapid reduction in alpha diversity, but nonetheless 

is able to induce remission in 80% of patients (MacLellan et al. 2017). In fact, patients 

who exhibit sustained remission after EEN have significantly lower alpha diversity 

following treatment, whereas an increase in alpha diversity has been observed in patients 

who relapse after treatment (Dunn et al. 2016a). After several weeks the microbiome of 

patients in sustained remission eventually becomes more similar to healthy samples 

(Lewis et al. 2015), which suggests that EEN does not cause a permanent reduction in 

alpha diversity. 
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Specific bacterial taxa are also at differential relative abundances in the gut 

microbiome of CD patients. In general, many bacterial commensals are at lower levels or 

absent in CD patients (Duvallet et al. 2017), which is consistent with the lower alpha 

diversity in these samples. The most consistent signal is that of higher relative 

abundances of Proteobacteria and lower relative abundances of Firmicutes (Frank et al. 

2007; Sartor 2008; Gevers et al. 2014). In particular, members of the Proteobacteria 

family Enterobacteriaceae, such as E. coli, are often highly associated with CD (Frank et 

al. 2007; Willing et al. 2009). In addition, certain NOD2 risk alleles are associated with 

increased levels of enterobactin synthesis, which enables Enterobacteriaceae to inhibit the 

bactericidal host enzyme myeloperoxidase (Bonder et al. 2016). Inhibiting this enzyme 

likely confers a survival advantage to E. coli and other Enterobacteriaceae in the gut 

(Singh et al. 2015). 

Although most CD microbiome research has focused on bacteria, fungi and 

viruses are also associated with patient disease state. Interestingly, fungal alpha diversity 

is largely unaffected in CD samples, which indicates that fungi may have an advantage 

over bacteria under inflammatory conditions (Sokol et al. 2017). In addition, there are 

reproducibly higher levels of Basidiomycota and lower levels of Ascomycota in CD 

patient microbiomes (Mukhopadhya et al. 2015; Sokol et al. 2017). The pathogenic 

Ascomycota Candida albicans is an important exception, which frequently infects CD 

patients (Sokol et al. 2017; Stamatiades et al. 2018). 

Bacteriophages are highly associated with the specific bacteria they infect, so 

perhaps unsurprisingly many bacteriophages have also been linked with CD (Norman et 

al. 2015; Ungara et al. 2019b). However, these associations do not necessarily merely 

reflect trivial associations with CD-linked bacteria: bacteriophages can also directly 

modulate host immunity. This was demonstrated by inoculating germ-free mice with 

bacteriophages specific to Lactobacillus, Escherichia, and Bacteroides (Gogokhia et al. 

2019). Direct stimulation of toll-like-receptor nine was shown to result in the production 

of the pro-inflammatory cytokine interferon gamma. The key bacteriophage signature of 

IBD is an increase in Caudovirales taxonomic richness (Norman et al. 2015). In contrast 

to bacteriophages, any connections between CD and eukaryotic viruses are less clear 

(Ungara et al. 2019b), but nonetheless several associations have been identified. In 
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particular, Hepeviridae and Virgaviridae have been observed at higher and lower relative 

abundances, respectively, in the gut of CD patients compared with control subjects 

(Ungara et al. 2019a). Importantly however, analyzing and preparing viral MGS data is 

particularly challenging (Rose et al. 2016): these results should be interpreted with the 

understanding that the field of viral metagenomics is rapidly changing and improving.  

In humans, it remains unclear whether these microbial differences are a cause or 

an effect of disease. In mice, there are clearer links between the relative abundances of 

certain bacteria and intestinal anti-inflammatory and pro-inflammatory responses (Khan 

et al. 2019). In particular, Clostridia and Bacteroides are known to induce regulatory T 

cells that initiate anti-inflammatory cytokine responses (Geuking et al. 2011; Atarashi et 

al. 2013). In contrast, segmented filamentous bacteria are sufficient to induce pro-

inflammatory cytokine activation by T helper 17 cells (Ivanov et al. 2009). 

 Although identifying similar causal links is challenging in humans, it is possible 

to make more robust inferences by controlling for confounding factors in observational 

studies. One important confounding factor is the effect of treatment on the microbiome. 

This was the motivation driving the collection of samples at or near the time of diagnosis 

in the large BISCUIT (Hansen et al. 2013) and RISK (Gevers et al. 2014) IBD cohorts. 

Similarly, the microbial profile of stool samples represents an aggregate of microbial 

communities from across the GI tract. Accordingly, stool sample profiles often 

substantially differ from biopsy microbial profiles. Even in the case of colon biopsies, 

which correspond to the region of the GI tract with the highest microbial load (Hillman et 

al. 2017), stool samples nonetheless are highly distinct (Stearns et al. 2011). Because CD 

can affect the GI tract at different locations it is important to differentiate microbial 

signals identified in particular GI tract locations compared with in the stool overall. 

Sequencing biopsy samples of inflamed regions of the GI tract can address this issue. 

Based on this idea, a comparison of the 16S sequencing profiles of the stool, ileal 

biopsies, and rectal biopsies taken from CD patients was undertaken as part of the RISK 

project (Gevers et al. 2014). The stool profiles qualitatively differed from the biopsy 

sample-types, but interestingly there were only minor differences overall between the 

microbial composition between the two biopsy locations. In fact, microbial profiles at 

either biopsy site could accurately diagnose CD regardless of the location of 
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inflammation (Gevers et al. 2014). Although the authors performed MGS on a subset of 

stool samples, this was deemed infeasible at the time for the biopsy samples due to the 

high proportion of unintended human DNA that would be sequenced. 

 MGS profiling of the stool of CD patients has nonetheless yielded valuable 

insights regarding the disease (Morgan et al. 2012; Gevers et al. 2014). One key 

observation is that the shift in the gut microbiota from obligate anaerobes, such as many 

Firmicutes, to facultative anaerobes, such as Enterobacteriaceae, is consistent with the gut 

environment shifting to a more oxygenated environment (Byndloss et al. 2018). IBD is 

known to result in higher levels of free oxygen species and oxidant levels in general, 

particularly near inflamed tissue (Keshavarzian et al. 2003). More generally, a shift from 

obligate anaerobic to facultatively aerobic commensals has been observed in several 

contexts where the microbiome is associated with diseases or treatments. For instance, 

similar microbial shifts are observed following antibiotic therapy, colorectal cancer, and 

Salmonella infection (Litvak et al. 2018). 

An oxygen-dependent shift in the metabolism of colonocytes could account for 

these observations. Under homeostatic conditions the colon is typically an anaerobic 

environment, that is partially maintained by the microbial production of butyrate, a short-

chain fatty acid, through the digestion of dietary fibres primarily by Clostridia (Rivera-

Chávez et al. 2016). To perform one of the colon’s primary functions, water absorption, 

an osmotic gradient is created by first absorbing Na+ into colonocytes. The majority of 

ATP required for Na+ transport by colonocytes under these conditions is generated by 

oxidizing butyrate, which produces CO2 (Velázquez et al. 1997). This process maintains 

the hypoxic conditions of the colonocytes, and because oxygen can diffuse freely across 

biological membranes, it is also thought to greatly contribute to depleted oxygen levels in 

the lumen. A key observation was that if there is a perturbation to this process at one of 

several key steps, this can result in a shift of colonocyte ATP production to require less 

oxygen (Rivera-Chávez et al. 2017). This could occur through direct inflammatory 

damage to colonocytes or the perturbation of butyrate-producing commensal bacteria 

(Litvak et al. 2018). In either case, facultative aerobes will bloom at the expense of 

obligate anaerobes, which agrees well with the common microbial signatures in CD 

patient microbiomes. 
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 In the context of this larger model, several more specific microbial functions have 

also been linked with disease state. In particular, bacteria that produce the short-chain 

fatty acids acetate and propionate, in addition to butyrate, are commonly at lower levels 

in CD patient microbiomes (Wang et al. 2014; Takahashi et al. 2016). This observation 

has also been corroborated with metabolite data from CD patient samples (Lloyd-Price et 

al. 2019). Bacteria involved with nucleotide biosynthesis are also often found at lower 

levels in CD patient microbiomes (Morgan et al. 2012). One hypothesis for this recurrent 

observation is that there are fewer carbohydrates available for bacterial metabolism in 

inflamed tissue, which could select for bacteria that are able to perform amino acid and 

lipid metabolism (Davenport et al. 2014). In addition, microbes that encode genes related 

to glutathione production and sulfate transport have been found at higher levels in CD 

microbiomes, which could indicate a response to inflammation-related oxidative stress 

(Morgan et al. 2012). Lastly, microbial functions related to xenobiotic degradation, such 

as nitrotoluene degradation, have also been linked with CD (Dunn et al. 2016b). The 

mechanism underlying this observation is unclear, but it could have implications for CD 

treatment efficacies (Clarke et al. 2019). 

 

1.8 - Outlook 

As discussed above, an increased focus on the integration of functional and taxonomic 

microbiome data types is needed. In many cases, linked taxa and functions are available, 

but integration between them is only performed anecdotally. In addition, although there 

are methods available for analyzing integrated datasets, there are major issues with the 

implementation and interpretation of the results. There are several areas where 

methodological improvements could resolve these issues and yield improved insights 

regarding microbiomes. My goal was to address these issues, which I present from three 

perspectives in this thesis. 

My first results chapter focuses on my work that compared the utility of different 

microbiome data types for classifying pediatric CD (Douglas et al. 2018). This is 

presented in Chapter 3 and the methods are presented in Chapter 2, where I describe all 

methods used in this thesis. These analyses focused on functional and taxonomic data 

types from both 16S and MGS data at different levels of granularity. One motivation of 
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this work was to both corroborate known and identify novel microbial links with CD 

based on these data types. Another major goal was to compare the performance of 

machine learning models based on each individual data type and on combined data types. 

Although this machine learning approach yielded valuable insights, it is difficult 

to make more than anecdotal biological insights regarding taxa and function without 

explicit links between them. These linkages are commonly generated with 16S data by 

performing metagenome prediction. Although this approach has been widely applied, 

particularly with the tool PICRUSt, there are limitations of this approach. In addition, 

there have been suggestions that past validations have not fully captured the variability in 

performance across metagenome prediction tools. I developed PICRUSt2 to address these 

problems (Douglas et al. 2020), which is presented in Chapter 4. I show that improved 

metagenome predictions, and the resulting taxa-function links, are produced by this 

method compared with alternative metagenome prediction approaches. In addition, my 

evaluations highlighted major issues with the reproducibility and interpretability of both 

predicted and actual functional data. 

Such issues are commonly encountered when analyzing microbiome data, which 

could be partially addressed by better integrating data types in statistical analyses. To 

complement existing integration approaches like FishTaco and phylogenize, I developed 

a novel bioinformatics tool called POMS. This method is described in Chapter 5. The 

main goal of POMS is to incorporate functional information into a pre-existing 

framework for identifying taxonomic differences. This framework provides a method for 

organizing functional signals by how consistently they are found in independent 

taxonomic groups at relatively higher or lower abundance in sample groupings. The 

intuition underlying this approach is that functions that show consistent signals of 

enrichment are more likely to represent actual cases of enrichment due to the effects of 

the function rather than due to indirect effects. Based on applying POMS on simulated 

and real data we showed that the top functional features are more reliable than current 

differential abundance methods. This body of work represents several useful advances in 

microbiome data analysis, particularly from the perspective of improved integration of 

functional and taxonomic data types. In some cases, as discussed below, my work 

resulted in more questions than answers, and identified alarming issues with current 
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analysis approaches. However, although not always the answers we might want, this 

gradual progress is needed to provide substantive improvements to the microbiome field. 
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Chapter 2 – Materials & Methods 

This section contains the methods sections corresponding to the manuscripts presented in 

Chapters 3, 4, and 5. This separate presentation of the methods is due to a Microbiology 

& Immunology department thesis formatting requirement. 

 

2.1 – Methods for Chapter 3 

2.1.1 - Sequenced Samples 

Intestinal biopsies were previously taken from 20 Crohn’s disease (CD) and 20 normal 

colon control patients as part of the “Bacteria in Inflammatory bowel disease in Scottish 

Children Undergoing Investigation before Treatment” (BISCUIT) cohort (Hansen et al. 

2012, 2013). We did not perform a power test to predict what effect sizes could be 

detected with this sample size, but instead chose this sample size due to sequencing cost 

constraints. These patients were all under 17 years old with a mean age of 12.7 years. CD 

biopsies were obtained at the diagnostic endoscopy prior to commencing any therapy. We 

based CD diagnosis on the Paris Classification (Levine et al. 2011). None of these 

patients used systemic antibiotics or steroids in the 3 months prior to their colonoscopy or 

immunosuppression at any point. Treatment response was classified as sustained 

remission following induction treatment response and was defined by physician global 

assessment and the requirement for treatment escalation (repeat induction therapy) before 

24 weeks. 

 

2.1.2 - Metagenomics Sequencing and Bioinformatics Pipeline 

Shotgun MGS preparation and sequencing was conducted by Génome-Québec (McGill 

University, Montréal, Québec) on an Illumina HiSeq. A mean of 110 million PE 100 

base-pair (bp) MGS reads were produced with a range of 72.7-135 million reads over all 

samples. We first concatenated FASTQ files containing forward and reverse reads into a 

single FASTQ per sample. We then screened out contaminant sequences by mapping all 

reads against the human (hg19) and PhiX (RTA) genomes using bowtie2 (Langmead & 

Salzberg 2012) (v2.1.6), which resulted in a mean of 90% of reads being excluded. This 

high percentage of contaminant reads is mainly due to the high proportion of human cells 
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in biopsy samples, which is less of an issue for microbiome studies that focus on stool 

samples. After screening out these non-microbial reads we classified the remaining reads 

taxonomically using MetaPhlAn2 (Segata et al. 2012) (v2.1.0) with the “–very-sensitive” 

global alignment option and into KEGG orthologs (KOs) using HUMAnN2 (Abubucker 

et al. 2012) (v0.11.1; http://huttenhower.sph.harvard.edu/humann2). Importantly, we 

found that running bowtie2 in local alignment mode with MetaPhlAn2 resulted in many 

spurious hits, which were mainly represented by viruses. These taxa were not identified 

when global alignment was performed. We ran MUSiCC (Manor & Borenstein 2015) 

(v1.0.2) to normalize the KO abundances within each sample by the median universal 

single-copy gene abundance, which controls for inter-sample variation in microbial 

genome sizes. We then ran HUMAnN2 on these normalized values to reconstruct KEGG 

module and pathway abundances within each sample. No taxa or functions were 

identified in the MGS of two samples, S34 and S38 (16S sequencing also failed for these 

samples, see below), which were excluded from downstream microbiome analyses. 

 

2.1.3 - Calling Human Variants 

Due to the large percentage of human DNA in our MGS (see above), we were also able to 

call human variants from the same dataset. Although we used 133 loci for calculating the 

genetic risk score (see below), we called genome-wide variants to improve imputation 

accuracy in cases where samples were missing data at these sites. We began by mapping 

all MGS reads to the human genome (hg19) using the Burrows-Wheeler Alignment 

Tool’s (Li & Durbin 2009) (v0.7.12) mem algorithm, which resulted in a 98% mapping 

rate. This mapping rate is higher than the rate for the metagenomic microbial pipeline due 

to the different algorithms used for each workflow. We then followed the Genome 

Analysis ToolKit’s (McKenna et al. 2010) (GATK) Best Practices workflow (DePristo et 

al. 2011; Van der Auwera et al. 2013) for variant calling. Pre-processing steps included 

marking duplicate reads, recalibrating base quality scores based on a model trained on 

known variants, and re-alignment of reads around known insertions and deletions. We 

then ran the GATK (v3.5) program HaplotypeCaller to call variants using default 

parameters and variant quality score recalibration per the Best Practices workflow. These 

steps resulted in 16,333,869 raw variants based on a genome-wide mean coverage of 7.5 

http://huttenhower.sph.harvard.edu/humann2


 

 51 

reads across all 40 individuals. Due to the low genome-wide coverage, we also discarded 

variants based on several hard filters implemented by VCFtools (Danecek et al. 2011) 

(v0.1.13): any variant not in Hardy-Weinberg equilibrium (cut-off significance of P < 

1×10-4), any variant called by < 6 reads, or any variant with > 50% missing data. We 

retained 7,604,626 variants following these hard cut-offs. The 133 known risk loci were 

not required to pass these hard cut-offs.                

 

2.1.4 - Imputing Missing Genotypes 

After calling variants genome-wide, we next imputed the missing genotypes for the 133 

known CD risk loci. Three variants (rs9264942, rs11209026, rs6927022) were missing 

genotype calls in all samples and were excluded. Haplotype phasing and the first pass of 

imputation was performed with SHAPEIT (Delaneau et al. 2012) (v2.r837). IMPUTE2 

(Howie et al. 2009, 2011) (v2.3.2) was then run on SHAPEIT’s phased output to impute 

the final genotypes. The HapMap phase II b37 genetic map was used for both imputation 

steps and the 1000 Genomes Phase 3 (1000 Genome Project Consortium 2015) phased 

haplotypes were used as reference haplotypes. Default parameters were used for running 

both SHAPEIT and IMPUTE2.     

 

2.1.5 - Genetic Risk Scores 

A custom Perl script was used to parse the IMPUTE2 output into variant call format and 

then PLINK (Purcell et al. 2007) (v1.90b3.29) was used to convert this table into PED 

and MAP files. Per-sample genetic risk scores (GRS) were calculated using the 

Mangrove R package (Jostins et al. 2013). To calculate the GRS, we used the genotypes 

at these imputed risk loci, odds-ratio information for risk alleles, and minor allele 

frequencies from previously published genome-wide association studies (Jostins et al. 

2012; Liu et al. 2015b). We assumed a CD prevalence of 1% when calculating GRS (K 

value = 0.01).   

 

2.1.6 - 16S rRNA Gene Sequencing 

The intestinal biopsy samples were prepared for 16S sequencing using our Microbiome 

Amplicon Sequencing Workflow (Comeau et al. 2017). Briefly, the pre-extracted DNA 
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(Hansen et al. 2013) was first amplified in duplicate using dual-indexing Illumina primers 

(forward: ACGCGHNRAACCTTACC; reverse: ACGGGCRGTGWGTRCAA) that 

targeted the V6-V8 region (438 bp) of the bacterial 16S rRNA gene. The pooled duplicate 

PCR products were verified using high-throughput E-gels (Invitrogen), then purified and 

normalized using the SequalPrep 96-well Plate Kit (Invitrogen). Following quantification, 

the pooled samples were run on an Illumina MiSeq using PE 300+300 bp v3 chemistry at 

the Integrated Microbiome Resource (Dalhousie University, Halifax, Nova Scotia). 

 

2.1.7 - 16S rRNA Gene Bioinformatic Pipeline 

We followed the Microbiome Helper standard operating procedure (Comeau et al. 2017) 

to process the 16S rRNA gene data. Two CD samples (S34 and S38) were excluded from 

this pipeline due to low DNA quality and repeated sequencing failures, which left a total 

of 38 samples remaining (20 CN and 18 CD). A mean of 21,793 raw PE read pairs were 

produced over these remaining samples (min=9,503; max=40,392). Forward and reverse 

reads were then stitched together using PEAR (Zhang et al. 2014) (v0.9.6) with an 

assembly rate >80% for all samples except for sample S22 (68.7% of reads assembled). 

We then filtered out stitched reads with a quality score < 30 over 90% of bases using the 

FASTX toolkit (v0.0.14; http://hannonlab.cshl.edu/fastx_toolkit/). We also filtered out 

reads < 400 bp or that did not have exact matches to the forward and reverse primers 

using BBMap (v35.82; https://sourceforge.net/projects/bbmap/). An average of 18.7% of 

the assembled reads per sample were discarded by these filters. Next, we removed 

chimeric sequences using UCHIME (Edgar et al. 2011) (v6.1) with the parameters 

mindiv=1.5 and minh=0.2, which resulted in an average of 16.3% of the assembled reads 

being discarded. Following these filters a mean of 13,815 reads were remaining per 

sample (min=4,427; max=27,472). We ran open-reference 97% OTU picking using 

QIIME (v1.9.0) wrapper scripts with these filtered reads. Reference OTU picking was run 

against the Greengenes (DeSantis et al. 2006) (v13_8) database using SortMeRNA 

(Kopylova et al. 2012) (v2.0-dev, 29/11/2014) with a minimum query coverage of 80% 

and de novo OTU picking using SUMACLUST (v1.0.00; 

https://git.metabarcoding.org/obitools/sumatra/wikis/home/). We filtered out OTUs that 

were called by < 0.1% of reads and then rarefied read counts to 4,000 reads per sample, 

http://hannonlab.cshl.edu/fastx_toolkit/)
https://sourceforge.net/projects/bbmap/)
https://git.metabarcoding.org/obitools/sumatra/wikis/home/)
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which resulted in a final set of 984 OTUs. PICRUSt (Langille et al. 2013) (v1.0.0) was 

used to predict KEGG ortholog and pathway abundances based on reference OTU 

abundances. We compared the rarified OTU abundances to non-rarified abundances after 

performing a centered log-ratio transformation (Gloor et al. 2016). Read counts were 

imputed with the count zero multiplicative method in the zCompositions R package 

(Palarea-Albaladejo & Martín-Fernández 2015) (v1.1.1) before performing the centered 

log-ratio transformation. We compared these workflows by evaluating how well models 

performed using abundance tables produced by each workflow. To evaluate concordance 

between MGS and 16S-identified genera we calculated the Spearman’s correlation (𝜌) of 

the relative abundances of 16S genera at greater than 10% frequency and identified in 

both datasets.  

 

2.1.8 - RISK Validation Cohort 

We downloaded single-end sequencing of the V4 region of the 16S gene produced for the 

“Risk Stratification and Identification of Immunogenetic and Microbial Markers of Rapid 

Disease Progression in Children with Crohn’s Disease” (RISK) cohort (Gevers et al. 

2014) from the National Center for Biotechnology Information under study accession 

PRJEB13679. We reduced this data to 773 biopsy samples that were either controls or 

CD patients and <= 18 years old. To process this data, we first merged together 

sequencing replicates for the same samples. We then trimmed all reads to 130 nucleotides 

using Trimmomatic (Bolger et al. 2014) (v0.36). The remaining steps were the same as 

the 16S processing pipeline described above. The OTU table was rarefied to 4000 reads 

(42 samples with depth below this cut-off were discarded), which resulted in 2564 OTUs 

being called over 731 samples. 

 

2.1.9 - Random Forest Classification 

For each dataset, we ran random forest (RF) models to classify disease state and 

treatment response separately. Each dataset was pre-processed so only features with > 

10% non-zero values were retained. Each table was then standardized by sample 

(subtracted the sample’s mean and then divided by the sample’s standard deviation). We 

ran RF models using the randomForest (Liaw & Wiener 2002) (v4.6.12) R package with 
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default mtry values and used 712 as the random seed. All models were run with 10,001 

trees except for the KO models which were run with 501 trees to reduce running time. RF 

model significance was determined by the permutation test implemented in the rfUtilities 

(Murphy et al. 2016) (v2.0.0) R package. This test involves building a null distribution of 

out-of-bag (OOB) errors from RF models with randomized classes (e.g. the disease state 

column of the input table was randomized). Model significance is then determined by 

calculating whether < 5% of random permutation models have an OOB error less than or 

equal to the observed OOB error. Significance of RF models as tested by the above 

permutation procedure was treated as an omnibus test for any association between the 

signal derived from genetic data and the feature labels of each sample. This allowed us to 

identify at what level (e.g., family, genus and species) further investigation was 

warranted, and supported our investigation of variable importance in some “datasets” and 

not others. Note that RF models make no assumptions about how the input features are 

distributed. Leave-one-out cross-validation was also run on each dataset to output an 

accuracy for each model with the R package caret (Kuhn 2008) (v6.0.77). 

 

2.2 – Primary Methods for Chapter 4 

This section describes the methods primarily related to the main-text results. In contrast, 

the Supplementary Materials section which is later in this file describes the methods 

underlying the Supplementary Results. 

 

2.2.1 - Data Availability 

The raw sequencing reads analyzed in this study are available from the following online 

repositories. The Human Microbiome Project (HMP) raw data is available from 

https://www.hmpdacc.org/HMIWGS/healthy/. The mammalian stool sequencing data is 

available from the Short Read Archive (SRA) under accessions SRP115632 (shotgun 

metagenomics [MGS]) and SRP115643 (16S rRNA gene). The ocean sample sequencing 

data is available from SRA project SRP056891. The blueberry soil samples are available 

at SRA project accessions PRJNA484230 (MGS) and PRJNA389786 (16S rRNA gene). 

The Cameroonian MGS data is available under European Nucleotide Archive (ENA) 

project PRJEB27005 and the 16S rRNA gene sequencing data is available at MG-RAST 

https://www.hmpdacc.org/HMIWGS/healthy/
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under accession mgp15238. All of the Indian sequencing data is available under ENA 

project PRJNA397112. The primate metagenomics data and 16S rRNA gene sequencing 

data (with processed outputs) are available in the QIITA repository under accession 

11212.  

 The blueberry 18S rRNA gene sequencing data are available under SRA project 

accessions PRJNA391782 (soil) and PRJNA434067 (root). The matching MGS data for 

these blueberry root and soil samples are available under accession PRJNA484230. The 

processed ITS output files for the wine fermentation dataset are available as part of a 

GigaDB dataset (http://gigadb.org/dataset/100309), and the raw MGS data are available 

as part of SRA project accession PRJNA305659. 

 

2.2.2 - PICRUSt Pipeline Updates 

The analyses in this paper are based on PICRUSt2 version 2.1.0-b. In addition to the 

improvements reported in the main text, several other updates have also been made to the 

PICRUSt pipeline. Since the hidden-state prediction (HSP) step is now run using the 

castor R package, other inference approaches like maximum parsimony (MP) may be 

performed in realistic time-frames besides phylogenetic independent contrasts 

(Felsenstein 1985), which was the default approach in PICRUSt1. The default HSP 

method is now MP with a parameter weighting the contribution of branch lengths set to 

0.5 (edge_exponent option in castor package). This parameter value was chosen because 

setting this parameter to a non-zero value resulted in more reproducible predictions. 

In addition, now that any study sequences can be input to PICRUSt, and not just 

Greengenes closed-reference OTUs, a nearest-sequence taxon index (NSTI) screening 

step is recommended to eliminate sequences above a certain cut-off. The default NSTI 

cut-off in PICRUSt2 is two, which was chosen as an extremely lenient cut-off intended to 

eliminate problematic sequences. Only one ASV in the test inflammatory bowel disease 

dataset (see below) was above this cut-off, which corresponded to a mitochondrial 

sequence. The only sequences above this cut-off in the HMP validation dataset 

corresponded to two 18S rRNA gene ASVs that were clustered within the 16S rRNA 

gene dataset. Similarly, although 13/1148 of ASVs in the ocean dataset were above the 

NSTI cut-off of two, these ASVs corresponded to candidate taxonomic groups that have 

http://gigadb.org/dataset/100309
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no representative reference genomes in the default PICRUSt2 database. Based on these 

observations, we believe this cut-off should be suitable for most scenarios; however, 

users can select a NSTI value that best fits their study design and environment (i.e. 

whether to maximize precision or recall). 

Transforming gene family predictions to pathway abundances in PICRUSt1 was 

done by assuming that the abundance of each gene family contributed equal abundance to 

all pathways containing the gene family (i.e. if a gene family can be involved in 10 

pathways the gene family abundance would be added equally to the abundance of all 10 

pathways). Although this approach is easy to understand, it results in a high false-positive 

rate of identifying pathways present. To improve on this approach, we adapted the 

approach taken by HUMAnN2 (Franzosa et al. 2018) v0.11.1 into the PICRUSt2 

pipeline. MinPath (Ye & Doak 2011) (v1.2 as modified for the HMP workflow 

(Abubucker et al. 2012)) is first run to identify the minimum pathways present given the 

gene families present. By default, these predictions are made based on the EC number 

predictions after regrouping them to MetaCyc reactions to predict MetaCyc pathway 

abundances. The mappings files and code for regrouping to MetaCyc reactions and 

mapping from reactions to structured pathways were taken from HUMAnN2. We further 

split the pathway mapping files into prokaryotic and fungal sets based on the taxa where 

these pathways have been identified (as reported in the MetaCyc online database). 

 

2.2.3 - 16S rRNA Gene Database Processing 

The 16S rRNA gene sequences and gene family counts from a total of 52,217 genomes 

were acquired from IMG on 8 Nov. 2017. These data were based on IMG annotations and 

we did not work with the raw genome sequences. Genomes lacking a 16S rRNA gene 

length of at least 1,250 bp or that were identified as eukaryotic marker genes were 

removed. The gene families in these annotations corresponded to these databases: Kyoto 

Encyclopedia of Genes and Genomes (Kanehisa et al. 2012) (KEGG; v77.1), Protein 

Families(Finn et al. 2014) (Pfam; v30), The Institute for Genomic Research’s database of 

protein FAMilies (Haft et al. 2003) (TIGRFAM; v15), Clusters of Orthologous Genes 

(Tatusov et al. 2000) (COG; v2014), and Enyzme Commission (EC) numbers (as of 21 

Jan 2016). 
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We also created an alternative trait database containing phenotypes defined by 

IMG (Chen et al. 2013). Use of this database was motivated by the predictions made by 

the tools FAPROTAX (Louca et al. 2016) and Bugbase (Ward et al. 2017). These 

phenotypes are more directly interpretable than the gene family databases described 

above. Files listing IMG genome ids positive for one of 65 phenotypes were downloaded 

on 8 Jan 2019. The presence and absence of phenotypes was re-coded as 1 and 0. 

Prototrophic and auxotrophic phenotypes for the same compound were combined into a 

single prototrophic phenotype (auxotrophs are coded as 0 and unknown phenotypes are 

coded as NA). After this merging step, and removing two extremely rare phenotypes, 

there was a final set of 41 phenotypes remaining.  

To identify low-quality, incomplete genomes, and possible misassembled 

assemblies we calculated the median number of single-copy KEGG orthologs (KO) as 

previously identified for the tool MUSiCC (Manor & Borenstein 2015). Since these 

genes are expected to be found in single copies within each genome, we reasoned that 

incomplete or contaminated genomes could be identified by a median copy number less 

or greater than one, respectively. Accordingly, we discarded all genomes with a median 

number of single-copy genes that differed from one. In addition, we discarded genomes 

lacking a sufficient number of genes within any gene family. The minimum number of 

gene families per genome was chosen based on visualizing the distribution of gene family 

numbers over all genomes and choosing a cut-off that eliminated outliers (minimum cut-

offs of unique gene families were 500, 250, 500, 750, and 350 for the COG, EC, KO, 

Pfam, and TIGRFAM databases). Importantly, this filtering means that endosymbionts 

and other organisms with reduced genome sizes will be underrepresented in the 

PICRUSt2 reference database. After these filtering steps, a total of 10,291 genomes were 

discarded, producing a final set of 41,926 genomes. Gene family copy numbers higher 

than 10 in this final set were re-coded to be 10 to decrease the number of possible 

prediction states. 

 Since prokaryotes often have multiple 16S rRNA gene copies, the centroid 16S 

rRNA gene per genome was identified using the VSEARCH (Rognes et al. 2016) (v2.4.4) 

cluster-fast command with an identity cut-off of 90%. In cases where multiple centroid 

sequences were found, a single centroid was chosen randomly. Identical centroid 16S 
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rRNA gene sequences across genomes were then identified to produce genome clusters. 

There were 3,002 such clusters with more than one genome and the sequences contained 

in these clusters made up 59.5% of the original 41,926 genomes. Among the total 20,000 

sequence clusters (including clusters with one genome), there was a mean of 2.1 

sequences per cluster (standard deviation = 562.5). The cluster with the highest sequence 

count of 1,379 corresponded to strains of Staphylococcus aureus. We observed a mean 

clustered-sequence length of 1489.6 base-pairs (bp; standard deviation = 65.8) overall. 

The final 16S rRNA gene sequences were used to build a multiple sequence 

alignment (MSA) using ssu-align (v0.1.1; http://eddylab.org/software/ssu-align/) against 

the bacteria alignment model. Note that although the majority of the reference 16S rRNA 

gene sequences correspond to bacteria, there are archaeal sequences as well, for which 

the bacteria ssu-align alignment model is likely less appropriate. Only weak masking of 

this output MSA was performed (ssu-mask options: --pf 0.001 --pt 0). The custom Python 

script derep_fasta.py was used to identify sequences in this alignment after this masking 

step. A phylogenetic tree was built from this MSA with RAxML-ng (Kozlov et al. 2019) 

(v0.6.0) using the GTR+G model. The custom Python script 

mean_16S_function_counts.py was used to calculate the mean gene family abundances 

for all sequences within a cluster. These values were then rounded to the nearest integer. 

The full NCBI taxonomic lineage of all 16S rRNA gene clusters was called by the 

taxizedb R package (https://github.com/ropensci/taxizedb) using the species name 

provided by the IMG FASTA metadata. Gene family trait depths were calculated using 

the castor R package function get_trait_depth with default settings, which is based on the 

consenTRAIT metric (Martiny et al. 2013). 

 

2.2.4 - Amplicon Dataset Processing 

As described in the main text, we analyzed the following datasets: 

1. 57 stool samples from Cameroonian individuals (Morton et al. 2015; Lokmer et 

al. 2019) 

2. 91 stool samples from Indian individuals (Dhakan et al. 2019) 

3. 137 samples from different body sites, but primarily stool (part of the Human 

Microbiome Project (Huttenhower et al. 2012) [HMP]) 

http://eddylab.org/software/ssu-align/
https://github.com/ropensci/taxizedb
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4. 77 non-human primate stool samples (Amato et al. 2019) 

5. Eight mammalian stool samples (Finlayson-Trick et al. 2017) 

6. Six ocean samples (Gillies et al. 2015) 

7. 22 bulk soil and blueberry rhizosphere samples (Yurgel et al. 2019) 

An in-depth comparison of the technologies and sequencing depths for each of the seven 

16S rRNA gene validation datasets is shown in Table 4.2. The processing pipelines and 

filtering criteria differed for each dataset due to technical differences between them. The 

key difference was that DADA2 (Callahan et al. 2016a) was run for the HMP dataset 

because this was Roche 454 sequence data. Deblur (Amir et al. 2017) was run on all other 

validation datasets since they were Illumina sequence data (Table 4.2).  

The HMP reads were filtered using DADA2 (v1.6.0) options. Denoising these 

sequences with DADA2 resulted in 1,865 ASVs after discarding ASVs with a minimum 

frequency of 10 and discarding 17 samples with fewer than 2,000 reads. The reverse 

complement of these sequences was taken before running the functional prediction 

pipelines. The mammalian stool dataset was run using deblur with the default options in 

QIIME 2 (Bolyen et al. 2019) (v2017.12), which resulted in 323 ASVs after discarding 

two samples with final read counts less than 3,220. The Cameroonian, Indian, ocean, and 

blueberry soil datasets were also processed with deblur and no post-processing was done 

(besides discarding samples that did not overlap with the MGS data) because all samples 

had high depth, which resulted in 4,077, 2,237, 1,148, and 3,333 ASVs for each dataset 

respectively. The primate dataset previously processed by deblur was acquired through 

the QIITA database (Gonzalez et al. 2018), which contained 7,452 ASVs after excluding 

samples with no MGS data available. 

Before running PICRUSt1 on each dataset, ASVs were matched against the 

Greengenes v13_8 OTUs using the VSEARCH command –usearch_global with an 

identity cut-off of 97%. The ASVs were then regrouped to be the best matching 

Greengenes OTU to be compatible with the default PICRUSt1 pipeline. 

The alternative functional prediction tools discussed in this paper were the 

following versions (with default reference databases): PICRUSt version 1.1.3, Tax4Fun2 

version 1.1.3, PanFP from a specific GitHub commit 

(1f49bd1b7341b47d46fa7eaa45d7771044d0efde), Piphillin online interface as of 7th Nov. 
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2019 at http://piphillin.secondgenome.com (KEGG v88.1) and PAPRICA (Bowman & 

Ducklow 2015) version 0.5.2. 

We also created several shuffled prediction datasets to help evaluate the 

PICRUSt2 predictions. These shuffled datasets were based on shuffling the predicted 

genome content and not the relative abundance of the ASVs across samples. This 

shuffling was performed on entire predicted genomes, i.e. each ASV was assigned the 

genomic content of a randomly sampled ASV (see below). This approach allowed us to 

assess how randomizing predicted genomic content for ASVs across samples in a dataset 

affects the concordance with MGS data. These shuffled datasets also provide a baseline 

of the performance expected by chance for the differential abundance validations. In 

other words, they give a baseline of the expected concordance (e.g. precision and recall) 

based on differential abundance testing compared to MGS data given the same ASV 

relative abundance across samples but shuffled predicted genomes. 

More specifically, these datasets were produced by shuffling the ASV ids in each 

PICRUSt2 prediction table (i.e. the first column of the PICRUSt2 output prediction 

tables). This was performed 10 times for each dataset and then averaged to produce a 

single shuffled table per dataset. Shuffled MetaCyc pathway abundances were produced 

by running the PICRUSt2 pathway pipeline on the shuffled EC metagenome tables. 

These shuffled datasets are referred to as the “Shuffled ASVs” category in the main-text 

and figures. 

 

2.2.5 - Shotgun Metagenomics Sequencing Validation Dataset Processing 

All shotgun metagenomic sequencing (MGS) datasets were processed using the same 

pipeline, which is described below. Each dataset was filtered using kneaddata (v0.6.1; 

https://bitbucket.org/biobakery/kneaddata/wiki/Home) to run (1) Trimmomatic (Bolger et 

al. 2014) (v0.36) to exclude low-quality reads with the options SLIDINGWINDOW:4:20 

and MINLEN:50 and (2) bowtie2 (Langmead & Salzberg 2012) (v2.3.2) to exclude reads 

that mapped to the human and PhiX genomes with the options –very-sensitive and --

dovetail. For the blueberry-associated samples we also mapped reads against the northern 

highbush blueberry (Vaccinium corymbosum) genome (Gupta et al. 2015) version W8520 

(downloaded from https://www.vaccinium.org on October 29, 2018) to exclude 

http://piphillin.secondgenome.com/
https://bitbucket.org/biobakery/kneaddata/wiki/Home
https://www.vaccinium.org/
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additional contaminant reads. For samples with paired-end reads the forward and reverse 

reads were concatenated into the same file. HUMAnN2 was then run to identify the 

abundances of annotated UniRef50 gene families in each sample. The abundances of 

gene families were regrouped into other gene family databases as indicated in the text 

using humann2_regroup_table. Pathway abundances and coverages were produced by 

the default HUMAnN2 mapping files. These steps were parallelized when possible with 

GNU Parallel (Tange 2011) (v20170722). 

 To compare how different metagenomics processing pipelines can affect the 

resulting functional abundance tables, we also ran HUMAnN2 directly against the KEGG 

v56 database using default options. This pipeline only involved mapping translated reads 

against this database (i.e. it skipped the nucleotide alignment step) and results in KO 

abundances directly for each sample. This differs from the other pipeline described 

above, because in the above case UniRef50 ids were regrouped to KOs based on a 

mapping file rather than based on direct read mappings. These KO abundances are 

referred to as the alternative MGS pipeline (“Alt. MGS”) in the main-text and figures. 

 

2.2.6 - 16S rRNA Gene-MGS Validation Analyses 

The simulation approach to illustrate the issue of high null Spearman correlation 

coefficients was based on the following procedure. First, for each N in the set of integers 

that span 1 to 100, two subsets of N genomes were sampled randomly from the reference 

database. The abundance of each sampled genome was taken from a negative binomial 

distribution family implemented in the R function, rnbinom, with parameters size=10 and 

prob=0.7, which aimed to simulate the over-dispersed count data frequently encountered 

in sequenced data sets. Gene family abundance tables were then computed for each of the 

two subsets of genomes based on the abundance of each genome and the abundances of 

gene families within each genome. Spearman correlation coefficients were then computed 

between the two gene family tables. This procedure was replicated 10 times for each N. 

This simulation inspired the use of null distributions in our validation analyses. 

We calculated the correlations between the MGS metagenome or gene table and a 

synthetic gene table comprised of the mean gene count number across all reference 

genomes in the database, which is referred to as the “null expectation” through-out the 
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main-text. The null Spearman correlation coefficient distributions of pathway abundances 

and coverages were similarly based on the reference genome pathways inferred from the 

EC reference database. 

For the purposes of comparing functional prediction tools, gene family tables 

were filtered to only those gene families present in the databases of all tested functional 

prediction tools. Gene families absent in all samples were retained as zeros and were not 

removed. We converted the predictions to binary presence (positive) and absence 

(negative) format before calculating precision and recall (any abundance greater than zero 

was considered as evidence for presence). Precision and recall are defined as 𝑇𝑃/ (𝑇𝑃 +

 𝐹𝑃) and 𝑇𝑃/ (𝑇𝑃 +  𝐹𝑁), respectively, where TP=number of true positives (i.e. 

functions correctly called as present), FP=number of false positives, TN=number of true 

negatives, and FN=number of false negatives. The F1 score is the harmonic mean of 

precision and recall: 2 * ((precision * recall) / (precision + recall)). 

We also conducted differential abundance tests to compare how results differ 

between predicted metagenomes and actual MGS data. To conduct these analyses, we 

subset four of the validation datasets into sample groupings appropriate for pairwise 

testing. The other datasets were excluded because they resulted in no significant results 

based on the MGS data after restricting the data to appropriate sample groupings. The 

comparisons were: 

1. Stool samples from 19 Entamoeba-positive vs 36 Entamoeba-negative 

Cameroonian individuals 

2. 22 supragingival plaque vs 36 tongue dorsum samples from the Human 

Microbiome Project (i.e. samples from two different oral body sites). 

3. Stool samples of 51 individuals from Bhopal, India vs 38 individuals from Kerala, 

India 

4. Stool samples of 29 old world monkeys vs 29 new world monkeys 

In the main-text the differential abundance results are focused on Wilcoxon tests on 

relative abundance values for the KOs (after normalizing function abundances by the 

median number of universal single-copy genes per sample (Manor & Borenstein 2015)). 

The pathway differential abundance results are also based on Wilcoxon tests, but on the 

relative abundance of pathways instead. 
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As a comparison point we also ran ALDEx2 (Fernandes et al. 2014) (Wilcoxon 

test with 128 Monte Carlo samples) and DESeq2 (Love et al. 2014) to see how these 

choices affect the resulting significant functions. DESeq2 was run twice on each dataset: 

once with default options and separately with options specifically recommended for 

microbiome data. In the latter case, these options included first calculating the geometric 

means of the data to estimate size factors and then using the option fitType=“local”. This 

second method is referred to as “DESeq2 GMeans” in Additional File 1. We also tested 

for differential prevalence of functions based on the presence and absence of functions 

with Fisher’s exact tests. 

ALDEx2 is a general method for compositional data analysis that uses a Dirichlet-

multinomial model to infer sampling and biological variation. The significance reported 

by this tool is based on Wilcoxon tests after abundances are estimated from the count 

data. DESeq2 is also a compositional data analysis method for read counts, based on the 

negative binomial distribution. Lastly, the Fisher’s exact tests tested for differential 

prevalence rather than abundance. In this case, the tests were focused on the counts of 

how many samples were positive (i.e. had the specific function) compared to those that 

were negative in each group based on the binary presence/absence of functions. 

ALDEx2 and DESeq2 require count tables as input, which required the prediction 

tables to be rounded. Tax4Fun2 and PanFP were excluded from these analyses, because 

they do not output predictions in a format that corresponds to the original ASV relative 

abundances (i.e. the output tables cannot be meaningfully rounded). In all cases 

significant functions were identified based on Benjamini-Hochberg corrected P-values < 

0.05. 

 

2.2.7 - Additional Notes on Statistical Analyses 

No tests for statistical power were conducted to determine sample sizes for this study. In 

the boxplots throughout this paper the centre line corresponds to the median and the 

lower and upper hinges (i.e. the edges of the “box”) represent the 25th and 75th 

percentiles, respectively. The boxplot whiskers extend to the most extreme values no 

further than 1.5 multiplied by the inter-quartile range in each direction. The points 

overlaid on the boxplots correspond to each individual sample unless otherwise stated. 
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2.3 –Methods for Chapter 4 Supplementary Results 

This section describes the methods relevant to the supplementary results published as 

additional online available with the letter presented in Chapter 4. In addition, the methods 

for the additional, unpublished analysis presented in Chapter 4 are also described below 

in Section 2.3.4. 

 

2.3.1 - Inflammatory Bowel Disease Data Processing and Analyses 

We ran PICRUSt2 on a dataset of ileal biopsies from an inflammatory bowel disease 

(IBD) cohort to highlight how metagenome inferences can be generated for datasets 

where MGS is infeasible. Raw 16S rRNA gene reads and processed human host 

transcriptome and metabolome tables were downloaded from https://ibdmdb.org. The 16S 

rRNA gene data was processed using deblur and QIIME 2 as described above for the 

validation datasets. Only ASVs found in at least two samples and called by at least 10 

reads were retained, which resulted in 1,419 final ASVs. The MGS raw reads were 

processed using the same workflow as the validation datasets described above. PICRUSt2 

was run with default options except for the option --per_sequence_contrib, which was set 

to get pathway abundances within each predicted genome for ASV-specific analyses. The 

unstratified pathway abundances were then calculated by summing over the pathways 

contributed by each ASV within each sample. Only features present in at least 33% of 

samples were retained for all analyses. In addition, any pathways described as 

“superpathways” or “engineered” were excluded from these analyses. ALDEx2 

(Fernandes et al. 2014) (v1.12.0) was run with default options to identify features at 

differential relative abundance between Crohn’s disease and control subjects for taxa and 

pathways independently.  

Partial Spearman correlations between predicted pathway abundances and both 

the metabolomic and transcriptome data was conducted with the R package ppcor (v1.1). 

Subject consent age was controlled for when calculating the partial correlations. Before 

calculating these correlations, pathway abundance data was first transformed by the 

arcsine square-root transformation, and the metabolomic and transcriptomic datasets were 

https://ibdmdb.org/
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transformed by log10 after adding a pseudocount of one. Metabolites were limited to those 

with non-empty compound names and the gene expression data was limited to 11 genes 

known to be biomarkers of CD-associated ileal inflammation (Haberman et al. 2014): 

DUOXA2, MMP3, AQP9, IL8, DUOX2, APOA1, NAT8, AGXT2, CUBN, FAM151A, 

and NOD2. Because several of these genes are highly correlated, we removed redundant 

genes based on hierarchical clustering of the complement of Spearman correlation 

coefficients between all genes. Six clear clusters of genes were then identified and the 

following six representative genes for each cluster were retained for further analyses (the 

other genes in each cluster are indicated in parentheses): DUOX2 (DUOXA2), MMP3, 

AQP9 (IL8), APOA1, NAT8 (AGXT2, CUBN, FAM151A), and NOD2. 

 

2.3.2 - 18S rRNA Gene and ITS Database Processing 

A total of 574 publicly available fungi genomes were downloaded from the 1000 Fungal 

Genomes Database (http://1000.fungalgenomes.org) on November 16, 2018. The 18S 

rRNA genes were annotated using barrnap (v0.9-dev; 

https://github.com/tseemann/barrnap), and 18S rRNA genes were parsed from the 

genomes using the custom Python script rRNA_from_gff3.py. ITS sequences were 

identified and parsed from all genomes using ITSx (Bengtsson-Palme et al. 2013) 

(v1.0.11) using the --only_full T and –heuristics options. Sequence length cut-offs for the 

18S rRNA genes and ITS sequences were 605-3,076 bp and 146-2,570 bp, respectively. 

BUSCO (Simão et al. 2015) (3.0.2) was run to identify incomplete and contaminated 

genomes with the fungi_odb9 database. Only the genomes with a completeness of at least 

70%, and a duplicated metric (which is based on the copy number of single-copy genes) 

of at maximum 10% were retained. After restricting genomes to those that passed these 

quality cut-offs that also had at least one passing amplicon region, there were 229 

genomes in the 18S rRNA gene database and 201 genomes in the ITS database. 

The 18S rRNA gene and ITS sequences were then dereplicated using the same 

approach as used for the 16S rRNA genes. The 18S rRNA gene MSA was built using the 

ssu-align pipeline as for the prokaryotic database (using the eukarya alignment model) 

whereas the ITS MSA was built using MAFFT (Katoh et al. 2002) (v7.407) with the –

genafpair and –maxiterate 1000 options. Phylogenetic trees for both MSAs were built 

http://1000.fungalgenomes.org/
https://github.com/tseemann/barrnap
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with RAxML-ng (v0.8.0) as for the prokaryotic database except a guide tree enforcing a 

taxonomic topology was also used. EC number copy numbers per genome were 

downloaded for these genomes also from the 1000 Fungal Genomes Database. Mean EC 

number abundances were calculated for dereplicated amplicon sequences using the same 

approach implemented for the prokaryotic databases. 

 

2.3.3 - 18S rRNA Gene and ITS Amplicon Data Processing 

The blueberry soil 18S rRNA gene data was processed the same as the blueberry soil 16S 

rRNA gene data except the output ASVs were restricted to those classified as fungi. This 

resulted in a total of 1,048 ASVs and a minimum sample depth of 1,981 reads. A total of 

3,691 ASVs and a minimum depth of 2,091 ASVs was produced when re-running this 

pipeline with all blueberry-associated 18S rRNA gene samples (i.e. including blueberry 

root and soil samples with no matching MGS data). The R package rfPermute (v2.1.6) 

was run with 501 trees, 1,000 replicates, and the default mtry setting to identify 

significantly different predicted pathways between the three environments based on 

PICRUSt2 predictions run on this full blueberry-associated dataset. Previously clustered 

ITS sequences and a processed abundance table were acquired for the wine fermentation 

dataset (Sternes et al. 2017). These files were used because no raw ITS reads could be 

located for this dataset. When comparing these amplicon datasets with the corresponding 

shotgun metagenomics data, the percent of eukaryotic DNA in the MGS data was 

identified with Metaxa2 (Bengtsson-Palme et al. 2015) (v2.2), which parses rRNA genes 

from the raw reads. 

 

2.3.4 – Evaluating the Contribution of Individual Updates to PICRUSt2 Performance  

The validation 16S rRNA gene datasets were re-run with PICRUSt2 v1.1.0-b with a 

range of input files and parameter settings. This was done to better compare the relative 

contributions of the individual updates to the increased performance observed for 

PICRUSt2. To perform these analyses, the original PICRUSt1 reference files (the 

abundance tables of KOs and 16S copy numbers across IMG genomes) were formatted 

for PICRUSt2. In addition, the Greengenes 13_5 phylogenetic tree and multiple-sequence 

alignment for all corresponding Greengenes OTUs to these IMG genomes were prepared 
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for input. Last, we created trees with FastTree (Price et al. 2010) for all validation 

datasets that included both query and reference sequences as tips. These trees were 

computed based on MAFFT (Katoh et al. 2002) alignments of all 16S sequences per 

dataset. This workflow was performed with QIIME 2 v2020.2 commands. 

 

2.4 - Methods for Chapter 5 

2.4.1 - POMS Framework 

The standard Phylogenetic Organization of Metagenome Signals (POMS) workflow starts 

by pre-processing three input files: (1) a table of taxon abundances, (2) a tree of the taxa 

in this table, and (3) a table of the gene copy numbers in the genome of each of these 

taxa. Two separate groupings of samples must also be specified. Currently only two-

group comparisons can be performed by default. Rare gene families are first excluded, 

which by default includes functions that occur across fewer than 10 taxa and/or less than 

0.1% of taxa. If an unrooted tree is input, it is rooted using midpoint rooting. Last, nodes 

in the input tree with sufficient underlying taxa are then identified. By default this 

includes nodes with at least ten underlying taxa on the left and right-hand sides. 

 Balances at each passing node are then calculated for all samples (see Isometric 

Log-Ratio section below). By default, the POMS pipeline tests for nodes with 

significantly different balances between sample groupings based on Wilcoxon tests. This 

testing is also conservative by default: only nodes with Benjamini-Yekutieli corrected P-

values (BY) < 0.05 are identified as significantly different. This multiple correction 

approach was chosen because it better controls for false positives in the presence of 

dependencies between variables compared with standard methods (Benjamini & 

Yekutieli 2001). However, users can specify the significance cut-off and multiple-test 

correction approach to use for specific applications. The taxonomic breakdown of taxa on 

each side of a significant node can be parsed out based on the lowest possible taxonomic 

grouping shared by at least 75% of taxa. 

Although this overall testing approach is effective, a major advantage of 

converting relative abundances to phylogenetic balances is that the resulting balances are 

orthonormal and can be used with a wide range of statistical approaches. Accordingly, the 

user can also use an alternative statistical approach to the Wilcoxon test and simply 
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identify the significant nodes for POMS to use instead. This capability is especially 

useful for cases where controlling for confounding variables is required when testing for 

differences in balances. 

 Enriched gene families are then identified within taxonomic lineages on one side 

of each tested node compared with the other. In the main text we predominately focus on 

KOs, but POMS is agnostic to the functional ontology used. In addition, this is performed 

for all tested nodes and not only for those that are significant. This is crucial, because it 

enables a pseudo-null distribution to be generated based on different subsets of 

significant nodes (see below). In addition, the number of enrichments for each gene 

family at non-significant nodes is also provided to the user to provide context on how 

commonly this function varies across lineages. These enrichment tests are performed 

with Fisher’s exact tests and by default raw P-values < 0.05 are taken as a cut-off for 

enrichment (although this can be changed by the user). 

 This functional enrichment information is then combined with the significant 

nodes to determine the direction of functional enrichment. In other words, POMS will 

determine which group has relatively higher levels of the taxa (based on the balances at 

that node) that are enriched for the function. In the main text we refer to this as being 

positive or negative when the enrichment is in the direction of case and control patients, 

respectively. 

 Finally, the key output by POMS is a table that summarizes the number of nodes 

that are positively or negatively enriched for each gene family from the perspective of the 

first sample group specified. Optionally additional information can also be provided to 

the user, such as the mean internode distances of all nodes that are either positively or 

negatively enriched for each function. This information is provided to enable further 

exploratory analyses. 

 Significantly enriched gene families can be identified based on a pseudo-null 

distribution approach (see below). Whether based on this approach or simply hard cut-

offs to identify outliers, enriched pathways can be identified based on a set of gene 

families of interest with Fisher’s exact test. This test compares the numbers (and 

proportion) of gene families within the set of significant genes to all genes in the 

background. 
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2.4.2 - POMS Dependencies 

POMS is written in R (R Core Team 2019) and is dependent on the following R packages 

(versions used in this manuscript are indicated, but these exact versions are not required): 

ape v5.3 (Paradis et al. 2004), parallel v3.6.0, phangorn v2.5.5 (Schliep 2011), and stringr 

v1.4.0 (Wickham 2019). R v3.6.0 and RStudio v1.2.5033 were used for testing and 

developing this tool, which was on a server running Ubuntu v16.04.5. 

 Several additional R packages are required to follow the current analysis 

workflow after running POMS (again the versions indicated were used for this paper, but 

are not required versions): ggtree v1.16.1 (Yu et al. 2017; Yu 2020), ggplot2 v3.3.0 

(Wickham 2016), plyr v1.8.4 (Wickham 2011), and reshape2 v1.4.3 (Wickham 2007). 

All multi-panel plots displayed were created with the cowplot (v1.0.0) R package (Wilke 

2019). 

 

2.4.3 - Isometric Log-Ratio 

Phylogenetic balances in POMS are calculated based on the isometric log-ratio of taxa on 

one side of the node compared to the other (Morton et al. 2017; Silverman et al. 2017). 

The balance for a sample at node i is calculated based on this equation:  

𝑏𝑖 = √
𝑛𝐿𝑖𝑛𝑅𝑖

𝑛𝐿𝑖 +  𝑛𝑅𝑖
 log

𝑔(𝑦𝐿𝑖)

𝑔(𝑦𝑅𝑖)
 

Where 𝑛𝐿𝑖 and 𝑛𝑅𝑖correspond to the number of taxa on the right and left-hand side of the 

node. Similarly, 𝑔(𝑦𝐿𝑖) and 𝑔(𝑦𝑅𝑖) correspond to the geometric mean of the relative 

abundances of taxa on the left and right-hand side of the node. Note that the choice of 

which lineage is considered the left or right-hand side of a given node is arbitrary. The 

ratio of geometric means is the key component of this approach that converts microbiome 

relative abundance data to ratios. The fraction including the numbers of taxa on each of a 

node is included simply to scale the balance to give it unit length (i.e. to make the 

balances comparable despite varying numbers of taxa at each node). 

The geometric mean of the relative abundance of a set of taxa (e.g. on the left-

hand side) is calculated based on the below equation: 



 

 70 

𝑔(𝑦𝐿𝑖) = (∏ 𝑦𝑗

𝑛𝐿𝑖

𝑗=1

)

1
𝑛𝐿𝑖

=  √𝑦1𝑦2 … 𝑦𝑛𝐿𝑖

1
𝑛𝐿𝑖  

 

2.4.4 - Pseudo-Null Distribution 

To identify significantly enriched nodes, we employed a pseudo-null distribution 

approach. This method is based on re-sampling random nodes as the “significant” set 

from the set of all tested nodes. The POMS pipeline then proceeds with the directionality 

given for sampled nodes based on whichever sample grouping has higher mean balances. 

This approach yields the number of nodes that are positively and negatively enriched for 

each function for each of 1000 replicates. A P-value can then be calculated for each gene 

family based on the proportion of the permutation replicates with absolute enrichment 

values (the absolute difference between the number of positively and negatively enriched 

nodes) greater or equal to the observed value. Based on this approach we identified gene 

families as significant with a BY < 0.05 in the main text.  

Importantly, this approach can result in different sets of significant genes 

compared with simply setting a hard cut-off for a given absolute enrichment value. This 

is because the pseudo-null distribution is different for each gene family as it depends on 

the dispersion and variation in encoding of each function. In other words, a gene family 

might be significant based on the pseudo-null distribution based on an intermediate 

absolute enrichment that would otherwise be difficult to notice by eye.  

 We refer to this approach as generating a “pseudo-null” distribution, because we 

think it would be misleading to suggest that it represents a true null distribution; we do 

not believe it is guaranteed to represent what the pattern of gene enrichments would look 

like in the absence of signal between sample groupings. As discussed in the main text, 

there are many factors that could result in co-occurrences between significant nodes and 

increased likelihoods of certain nodes being significant over others. Nonetheless, this 

approach is a convenient method for identifying major outliers in the POMS output. 
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2.4.5 - Metagenome-Assembled Genome-Based Simulations 

The MAG-based simulations were based on 704 control samples from a large human 

meta-analysis dataset (Almeida et al. 2019). These simulations proceeded as described in 

the Results section. First, the samples were randomly split into two groupings for each of 

the 500 replicates. Then, for each replicate a random focal gene family was randomly 

chosen and then within one group all MAGs encoding this gene family underwent a ten-

fold increase in relative abundance. These simulated profiles were then input to POMS 

and the results are referred to as the “focal gene” profiles in the main text. We also 

performed parallel simulations where the relative abundance of random taxa were 

randomly inflated by ten-fold in one group only. Importantly, the same number of taxa 

were perturbed as were affected in each matching focal gene simulation replicate. The 

resulting output based on these simulated profiles are referred to as the “random taxa” 

profiles. Significant gene families were identified conservatively based on a cut-off of 

BY < 0.0001 with Wilcoxon tests. Default input parameters were used with POMS. In 

addition, all comparisons of summary distributions between the two tests were 

themselves compared with Wilcoxon tests. The summary metrics for these tests are 

reported in the main text. 

 

2.4.6 - Reference Genome-Based Simulations 

The reference genome-based simulations were based on genomes from the Integrated 

Microbial Genomes database (Markowitz et al. 2012) that were previously parsed for use 

with PICRUSt2 (Douglas et al. 2020). Per-genome KO annotations were taken from the 

default PICRUSt2 database. We created a de novo phylogenetic based on a set of 

universal single-copy genes (USCGs) with GToTree v1.4.16 (Lee & Ponty 2019). This 

approach parses out USCGs from genome sequences and wraps several tools to build a 

phylogenetic tree. The tool was run with the bacterial hidden-Markov model setting and 

with FastTree v2.1.10 (Price et al. 2010). GToTree also returns estimates of the percent 

completeness and redundancy for each genome. We excluded all genomes with 

completeness below 95% and/or redundancy above 5%. We then randomly sampled 3000 

of the remaining high-quality genomes for the subsequent analyses. 



 

 72 

 We next simulated random abundances of these genomes across 1000 samples 

based on the zero-inflated beta-distribution implemented in the rBEZI function of the 

gamlss.dist v5.1.7 R package (Stasinopoulos & Rigby 2020). Simulations under this 

model can be modified with three key metrics: mu (the mean), nu (the probability of zero 

abundance), and sigma (the standard deviation). The selection of these parameters has 

drastic effects on the resulting abundance profiles. Accordingly, we chose parameter 

values for mu and nu to represent a range of genome abundances across samples. The 

sigma parameter was set to 1 in all cases. Specifically, we generated abundance tables 

with four parameter settings: mu=0.1 and nu=0.5 (Setting 1); mu=0.1 and nu=0.9 (Setting 

2); mu=0.1 and nu=0.99 (Setting 3); and mu=0.01 and nu=0.99 (Setting 4). These tables 

are referred to based on each respective setting number in the Results section. 

 

2.4.7 – Case-Control Shotgun Metagenomics Dataset Validations 

We focused our validation analyses on three datasets that were part of the large meta-

analysis of human shotgun metagenomics datasets (Almeida et al. 2019). These datasets 

are defined based on dataset accession identifiers in the European Nucleotide Archive. 

The largest dataset focused on obese and control individuals (which we refer to as the 

primary obesity dataset) that corresponded to data accession ERP002061. The secondary 

obesity dataset corresponds to accession ERP003612 and the colorectal cancer data is 

under accession ERP012177.  We used the previously generated MAGs, sample MAG 

abundance profiles, and MAG phylogenetic tree as input to POMS after performing pre-

processing. Importantly, we excluded MAGs from each sample with mapped read 

coverage lower than 25%.  

The alternative differential abundance tools compared in this study were: 

Wilcoxon tests based on relative abundances, ALDEx2 v1.16.0 (Fernandes et al. 2014), 

and Limma-Voom v3.40.6 (Law et al. 2014). Venn diagrams comparing the number of 

overlapping significant gene families identified by these approaches were created with 

ggVennDiagram v0.3 (Gao 2019). 
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2.4.8 - Code Availability 

The code for all analyses presented in this manuscript is available at: 

https://github.com/gavinmdouglas/POMS_manuscript/. The source code for POMS is 

available at: https://github.com/gavinmdouglas/POMS 

https://github.com/gavinmdouglas/POMS_manuscript/
https://github.com/gavinmdouglas/POMS
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Chapter 3 - Multi-omics Differentially Classify Disease State and Treatment 

Outcome in Pediatric Crohn’s Disease 

This chapter is a close reproduction of the paper of the same name published in the 

journal Microbiome (Douglas et al. 2018). I was co-first author on this work with Dr. 

Richard Hansen, a clinician in the department of Paediatric Gastroenterology at the Royal 

Hospital for Children in Glasgow, United Kingdom. Dr. Hansen designed the project, 

recruited all participants, collected raw data from patients, contributed to reviewing 

treatment response, and performed all DNA extraction. I conducted all analyses and 

wrote the paper. 

 The additional authors on this paper were: Casey M. A. Jones, Katherine A. 

Dunn, André M. Comeau, Joseph P. Bielawski, Rachel Tayler, Emad M. El-Omar, 

Richard K. Russell, Georgina L. Hold, Morgan G. I. Langille, and Johan Van Limbergen. 

This paper was published under a Creative Commons CC BY license, which 

allows unrestricted use with attribution (see Appendix – Copyright Permissions). All 

additional files referred to in this chapter are freely available as part of the publication on 

the Microbiome journal website. The original author funding statements, author 

contributions breakdown, and acknowledgements are also available in the original 

publication.  

 

3.1 – Abstract 

Crohn's disease (CD) has an unclear etiology, but there is growing evidence of a direct 

link with a dysbiotic microbiome. Many gut microbes have previously been associated 

with CD, but these have mainly been confounded with patients' ongoing treatments. 

Additionally, most analyses of CD patients' microbiomes have focused on microbes in 

stool samples, which yield different insights than profiling biopsy samples. 

We sequenced the 16S rRNA gene (16S) and carried out shotgun metagenomics 

(MGS) from the intestinal biopsies of 20 treatment-naïve CD and 20 control pediatric 

patients. We identified the abundances of microbial taxa and inferred functional 

categories within each dataset. We also identified known human genetic variants from the 

MGS data. We then used a machine learning approach to determine the classification 
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accuracy when these datasets, collapsed to different hierarchical groupings, were used 

independently to classify patients by disease state and by CD patients' response to 

treatment. We found that 16S-identified microbes could classify patients with higher 

accuracy in both cases. Based on follow-ups with these patients, we identified which 

microbes and functions were best for predicting disease state and response to treatment, 

including several previously identified markers. By combining the top features from all 

significant models into a single model, we could compare the relative importance of these 

predictive features. We found that 16S-identified microbes are the best predictors of CD 

state whereas MGS-identified markers perform best for classifying treatment response. 

We demonstrate for the first time that useful predictors of CD treatment response 

can be produced from shotgun MGS sequencing of biopsy samples despite the 

complications related to large proportions of host DNA. The top predictive features that 

we identified in this study could be useful for building an improved classifier for CD and 

treatment response based on sufferers' microbiome in the future. The BISCUIT project is 

funded by a Clinical Academic Fellowship from the Chief Scientist Office (Scotland)-

CAF/08/01. 

 

3.2 - Background 

Crohn’s disease (CD) is an inflammatory bowel disease (IBD) classically characterized 

by abdominal pain, rectal bleeding and weight loss. Recurring flares of IBD cause 

lifelong, far-reaching consequences for patients that can affect lifestyle and overall health 

(Cleynen et al. 2016; Neovius et al. 2013). CD differs from the other form of IBD - 

ulcerative colitis - in that CD can affect any part of the gastrointestinal tract, can be 

discontinuous, and can involve granulomatous inflammation (Cho 2008). There is a 

growing need to understand the etiology of CD due to the worldwide increase in annual 

incidence (Molodecky et al. 2012), particularly in children (Henderson et al. 2012). 

Although the etiology of CD is unclear (Ananthakrishnan 2015), there is growing 

evidence for the dysbiosis hypothesis. This model postulates that a shift in the balance 

between commensal and pathogenic intestinal microbes interacting with the host’s 

immune system contributes to CD onset. In support of this model, large-scale differences 

in bacterial abundances have long been associated with CD (Seksik et al. 2003). The most 
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reproducible finding has been a decrease in alpha diversity in CD patients compared to 

controls (Gevers et al. 2014; Hansen et al. 2012; Pascal et al. 2017). Several particular 

changes in taxonomic abundances have been linked to this dysbiotic state, for instance 

Firmicutes tend to be at lower proportion and Gammaproteobacteria at higher proportion 

in CD patients (Sokol & Seksik 2010). Most taxonomic profiles of CD patients have been 

based on stool samples, which yield drastically different insights into CD pathogenesis 

when compared with mucosal washing of the mucosal-luminal interface (MLI) and 

intestinal biopsy samples (Gevers et al. 2014). Irrespective of body site, it is unclear 

whether these shifts in microbiota are a cause or a symptom of the disease. However, 

there is reason to believe that the microbiome contributes to CD etiology due to several 

observations. Firstly, children that are exposed to antibiotics in the first year of life are 

more likely to develop IBD (Shaw et al. 2010), which could be related to acquiring a 

dysbiotic state. Also, many CD risk loci are linked to pattern recognition receptors 

(PRRs) and cytokines that regulate the host immune system (McGovern et al. 2015).  

PRRs generate responses against pathogenic bacteria while identifying 

commensal bacteria within the human microbiome. The best-known example of a PRR 

linked to CD is the nucleotide-binding oligomerization domain containing 2 (NOD2) 

gene that codes for an intracellular PRR. Loss of function mutations in the gene lead to 

increased inflammation due to impaired clearance of intestinal bacteria that are harmful 

to the gut (De Souza & Fiocchi 2016). Despite these reproducible links to CD, risk 

mutations account for <14% of disease variance across patients (Jostins et al. 2012). 

However, the concordance rate of CD between monozygotic twins ranges from 20-50%, 

which is higher than several other complex diseases (Halme et al. 2006). Nonetheless, 

risk loci alone do not explain CD onset and the relative importance of the microbiome in 

the onset of this disease is not well understood. 

Here, we compare the relative importance of genetic risk loci and microbiota 

identified from intestinal biopsy samples for classifying treatment-naïve pediatric patients 

by disease state. We also demonstrate that CD patients’ treatment response status can be 

classified by microbial features with high accuracy. Taxonomic and functional profiles 

discussed in this study are based on both 16S sequencing and MGS sequencing of the 
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same intestinal biopsy samples. To our knowledge, this is the first report of shotgun MGS 

of CD intestinal biopsy samples.  

 

3.3 - Results 

3.3.1 - Identifying Crohn’s Disease Related SNPs, Microbial Taxa, and Functions from 

Intestinal Biopsy Samples 

To investigate which microbial and genetic features best classify pediatric CD patients by 

disease state and treatment response, we sequenced the intestinal microbiomes of 20 CD 

and 20 normal colon controls prior to any treatments. Both MGS and 16S sequencing 

were performed on the same biopsy samples. Much of the MGS data was comprised of 

human DNA (90%), which was separated from the microbial DNA and used to call 

human genotypes. We combined the human genotypes at 133 known CD risk loci with 

known odds-ratios and allele frequencies to calculate a genetic risk score (Jostins et al. 

2013) (GRS) per sample. We then used the remaining microbial MGS reads, a mean of 

10.7 million paired-end (PE) reads per sample, to call 115 independent taxa (summarized 

at the class level in Figure 3.1). 

 

Figure 3.1: Stacked bar-chart showing percentages of classes across metagenomic 

samples. Note the presence of archaea and viruses, which are absent in the 16S data. 
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Also, note the high prevalence of viral DNA in several samples. The metadata groupings 

of these samples are indicated at the bottom. 

 

All microbial MGS reads were also used to identify the relative abundances of Kyoto 

Encyclopedia of Genes and Genomes (Kanehisa & Goto 2000) (KEGG) orthologs, 

pathways, and modules within each sample. Similarly, after filtering the 16S amplicon 

reads, we retained an average of 13,815 stitched reads per sample. We performed open-

reference clustering to call 984 operational taxonomic units (OTUs; summarized at the 

class level in Figure 3.2).  

 

Figure 3.2: Stacked bar-chart showing percentages of classes across 16S rRNA gene 

sequencing samples. Colours were chosen to help with discerning different taxa; 

however, several taxa have the same the colour so the taxa ordering should be 

considered when interpreting this figure. The metadata groupings of these samples are 

indicated at the bottom. 

 

Overall the relative abundances of MGS and 16S-identified genera were similar within 

the same biopsy samples (mean Spearman’s 𝜌=0.51, standard deviation=0.18). Since 
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sequencing read counts are a form of compositional data, we tested whether a centered 

log-ratio transform of the non-rarified read counts (Gloor et al. 2016) would result in 

improved model performance compared to rarefaction of all samples. Although the 

compositional-based methods performed slightly better for some feature tables, in the 

majority of cases this transformation resulted in less accurate classification of patients 

(Figure 3.3) and so we focused on the rarified datasets for our analyses. We used these 

OTUs to infer the relative abundances of KEGG orthologs and pathways within each 

sample (see Additional File 2 for sample sequencing coverage and metadata). Two of the 

CD patients’ microbial profiles were discarded due to low 16S and MGS sequencing 

depth. These different datasets are outlined in Figure 3.4 (see Table 3.1 for sample 

details). 

 

Figure 3.3: Comparison of taxonomic dataset accuracies either transformed by 

centered log-ratio or rarified. The accuracies of random forest models trained on 

taxonomic datasets for each taxonomic level to classify patients by (A) disease and (B) 

treatment response are shown. 

 

We then replicated two well-known predictors of CD: increased GRS (Cleynen et al. 

2016) and a reduction in microbial alpha diversity as proof of principle. We chose the 

simplest measure of alpha diversity: the observed number of OTUs per sample (# OTUs). 

Both GRS (one-tailed Mann-Whitney-Wilcoxon [M-W-W] test, W=288, P=0.00837) and 

# OTUs (one-tailed M-W-W test, W=261.5, P=0.00894) significantly differed between 

patients based on disease state in the expected directions (Additional file 1; Figure 3.5). 
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To make these known predictors comparable to classification accuracies using datasets 

containing multiple features, we used an analogous method to calculate accuracy. 

Importantly, these metrics produced only marginal accuracies when used to classify 

patients by disease state (GRS: 62.5%; # OTUs: 71.1%).  

 

Figure 3.4: Diagram of the different datasets used for classification in this study. 

Datasets in orange were derived from the shotgun metagenomic sequencing (MGS) data 

(n=40) and the datasets in blue were derived from the 16S rRNA gene (16S) sequencing 

data (n=38*). These datasets were used to classify both disease state and treatment 

response as input to random forest machine learning models. *Note two Crohn’s disease 

samples were removed from both the 16S sequencing and MGS datasets due to low 

sequencing coverage, but their genetic profile was inferred from the MGS.  
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Table 3.1: Demographic and phenotypic characteristics of pediatric patients. with 

Crohn’s disease (highlighted in light blue) and normal colon controls from the 

BISCUIT study. 
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Figure 3.5: Boxplots of (A) genetic risk scores on a natural log scale and (B) the 

number of observed OTUs, which is a measure of alpha diversity. Samples are shown as 

black points. Red dotted lines correspond to the best cut-offs to distinguish the classes. 

There are 20 control and 18 Crohn’s disease samples shown in each panel. The Mann-

Whitney-Wilcoxon test were used to compare these groups since it is a non-parametric 

test whose main assumption is only that the data-points be independently distributed. 

 

 

3.3.2 - Classifying Samples by Disease State 

We next investigated how well microbial datasets classify CD disease state. MGS and 

16S taxonomic datasets included strain and OTU-level relative abundances respectively 

and were also collapsed at each level from species to phylum (Figure 3.4). Functional 

datasets included KEGG ortholog and pathway counts for both sequencing technologies, 

as well as KEGG modules for MGS samples. In total, 19 datasets were entered as 

classifiers for disease state after standardization (each mean-centered and scaled by the 

standard deviation for each sample). We ran independent random forest (RF) models to 

determine each dataset’s classification accuracy (Figure 3.6A; see Additional File 3). 

Each of the 16S taxonomic datasets, except for the OTU level, could classify patients by 

disease state with high accuracy (maximum accuracy of 84.2% and P < 0.001 based on 

genus level). The MGS strain, genus, family, and phylum taxonomic datasets also 

classified patients, but with lower accuracy than the 16S datasets (maximum accuracy of 

68.4% and P=0.016 based on strain level). The predicted KO abundances based on the 
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16S data and the MGS-identified KEGG modules both significantly classified patients as 

well (accuracies of 68.4% and 65.8% respectively). 

 

Figure 3.6: Classification accuracies for all datasets classifying (A) disease state and 

(B) treatment response. Each bar corresponds to a different model. Accuracies are based 

on random forest (RF) leave-one-out cross-validation (LOOCV) in all cases, except for 

number of observed OTUs (# OTUs) and genetic risk scores (GRS) which are based on 

LOOCV of simple linear cut-off models. The symbols *, **, and *** indicate significance 

at P < 0.05, P < 0.01, and P < 0.001, respectively. RF model significances were based 

on a permutation test. P-values for # OTUs and GRS are based on one-tailed Mann-

Whitney-Wilcoxon Tests.   

 

One advantage of RF models is that they output variable importance metrics for each 

feature used in a model. We considered each RF model to be an omnibus test for each 

dataset, which enabled us to look at the ranking of variable importance in significant 

models to identify important features (see Additional File 4). Based on these metrics, the 

three most informative 16S genera were Desulfovibrio, Akkermansia, and Butyricimonas 

(Figure 3.7), whereas the top MGS genera were Alistipes, Oscillibacter, and Dorea. 

These top genera could differ since both top 16S genera were close to the detection limit 

threshold of the MGS data: they were only identified in a small number of samples 

(Figure 3.8). Nonetheless, Akkermansia was ranked 4th in the MGS genus model despite 
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being missed in several samples. The top features in the MGS strain model were strains 

of Alistipes putredinis, Clostridium symbiosum, and Faecalibacterium prausnitzii. The 

16S-inferred KOs and the MGS modules were the only functional datasets that 

significantly classified samples by disease state (Accuracy=68.4%, P=0.043 and 

Accuracy=65.8%, P=0.03, respectively). The three top 16S KOs were (1) K03785, which 

is involved in amino acid biosynthesis, (2) K09013, an Fe-S cluster assembly ATP-

binding protein, and (3) K03809, a tryptophan repressor binding protein. The three top 

MGS modules were (1) M00144, NADH: quinone oxidoreductase, (2) M00362, 

nucleotide sugar biosynthesis, and (3) M00239, peptides/nickel transport system. 

Importantly, the datasets collapsed to different taxonomic and functional levels were not 

independent from each other, which is reflected by the fact that the top features in each 

taxonomic dataset tended to be part of the same lineage (e.g. the ranks above 

Desulfovibrio and Akkermansia were also top hits). 
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Figure 3.7: Genera identified through 16S rRNA gene sequencing ranked by their 

importance for classifying disease state. Features that significantly differed (raw P < 

0.05) between Crohn’s disease (CD) and healthy colon control patients based on a two-

tailed Mann-Whitney-Wilcoxon are indicated in red (if more abundant in CD patients) or 

blue (if lower in CD patients). Features that did not differ between the two classes are 

shown in grey. 
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Figure 3.8 Boxplots of the natural log relative abundance of the genera (A) 

Desulfovibrio and (B) Akkermansia for both sequencing technologies. These two 

genera had the highest variable importance in the most accurate disease classification 

random forest based on 16S rRNA gene sequencing data. Crohn’s disease (CD) patients 

are indicated by black points and healthy colon controls (CN) are indicated as white 

points. A pseudocount of 1 was added to each sample’s relative abundance since the log 

of 0 cannot be taken. Note that Desulfovibrio was absent in all metagenomic samples. 

 

3.3.3 - Classifying Samples by Treatment Response 

Next, we used these same 19 microbial datasets, after excluding normal colon control 

patients, to classify the CD patients as responders (RS) and non-responders (NR) to 

induction of remission treatments, started at the time of diagnosis (Figure 3.6B; see 

Additional File 3). Clinical CD phenotypes were heterogeneous, but all included active 

colonic disease at the sampled location. Treatments were similarly not consistent across 

all patients, reflecting heterogeneity of phenotype, but instead were different 

combinations of exclusive enteral nutrition (EEN) therapy and immunosuppressive 

medications, as such representing ‘real-world’ CD treatment: 11 patients were on EEN, 3 

were on Prednisolone and EEN therapy, 4 were on Mesalazine alone, and 2 were on 

Prednisolone alone, as decided by their gastroenterologist at the time of diagnosis. 

Sustained response or non-response was defined as need for a second induction within 

150 days of diagnosis or not (Table 3.2). After classifying CD patients based on their 
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response to induction treatment, 16S genera were again the top dataset (accuracy=77.8%; 

P=0.008). However, the MGS strain (P=0.029), genus (P=0.013), and KEGG pathway 

(P=0.018) datasets could also classify patients with only slightly lower accuracy 

(Accuracy=72.2% for all three). We also found that alpha diversity and GRS did not 

significantly differ between RS and NR patients (Figure 3.9). 

 

 

Figure 3.9: Boxplots of (A) natural log genetic risk scores (GRS) and (B) number of 

observed OTUs (# OTUs) based on Crohn’s disease patients’ response to treatment. 

Both metrics did not significantly differ between non-responders and responders based 

on one-tailed Mann-Whitney-Wilcoxon tests (GRS: W=42, P=0.736; # OTUs: W=47, 

P=0.282). One-tailed tests were conducted based on the hypothesis that responders 

would have lower GRS and increased # OTUs. 

 

 

 

 

 

 

Table 3.2: Phenotypic characteristics and treatments of children with Crohn's disease 

from the BISCUIT study. Non-responders to treatment are the red rows while 

responders to treatment are the white rows. The EEN treatment was Modulen. 
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Using the same omnibus test approach as above, we were again able to identify the 

most informative features in each significant dataset (see Additional File 5). The top 16S 

genera were Dialister, Bilophila, and Aggregatibacter in this analysis. The top MGS 

strains were subtypes of Parabacteroides merdae, Sutterella wadsworthensis, and an 

unclassified strain within the Lachnospiraceae family. The top MGS genera included 

Parabacteroides, Bacteroides, and an unclassified genus of Lachnospiraceae. The top 

MGS KEGG pathways included (1) ko00633, nitrotoluene degradation, (2) ko00250, 

alanine, aspartate and glutamate metabolism, and (3) ko00230, purine metabolism. The 

top KOs were (1) K02954, a ribosomal protein, (2) K07259, which is involved in 

peptidoglycan biosynthesis, and (3) K07793, a putative tricarboxylic transport membrane 

protein. 
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3.3.4 - Comparing the Relative Importance of Top Features 

Although comparing RF model accuracies allows individual datasets to be evaluated, it 

does not allow the relative importance of features across datasets to be evaluated. To this 

end, we next compared the relative importance of the overall top features by running RF 

models using the top three features from the significant datasets for both CD state (Figure 

3.10A) and treatment response (Figure 3.10B). The combined model for disease state 

classification performed with high accuracy (Accuracy=78.9%, P<0.001), but notably 

this was lower than the 16S genera alone. In contrast, the combined model for treatment 

response classification performed better than the independent datasets (Accuracy=94.4%, 

P<0.001). As expected, many of these features in both models are highly correlated 

(Figure 3.11 and Figure 3.12), nonetheless this approach yielded several useful results. 

Firstly, Akkermansia muciniphila was ranked as the most important feature for 

classifying disease state, followed by Verrucomicrobia and Verrucomicrobiales, which 

represent the phylum and order of A. muciniphila respectively. Number of OTUs was 

ranked 4th amongst these features, whereas GRS and other MGS-derived features were 

ranked lower. Notably, 29/37 (78%) of the microbial features in this model were at lower 

relative abundances in CD patients compared to controls. The top three features for 

classifying treatment response in the combined model were ko00633, the nitrotoluene 

degradation pathway, K07793, the putative tricarboxylic transport membrane protein, and 

Erysipelotrichi (the class containing the family Erysipelotrichaceae). Unlike for the 

combined disease model, MGS-derived functions were among the most highly ranked 

features (all 6 MGS functions are within the first 8 top features). 
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Figure 3.10: Variable importance of features in combined random forest models for 

(A) disease state classification and (B) treatment response classification. Red and blue 

are used to indicate which class has a higher mean standardized relative abundance. 

Features that did not significantly differ (P >= 0.05) between classes based on a two-

tailed Mann-Whitney-Wilcoxon test are indicated in grey. Features in black and green 

font indicate 16S rRNA gene and shotgun metagenomics sequencing origins, respectively. 

“Un” stands for “Unclassified” when used in taxa names. 
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Figure 3.11: Heatmap of Spearman correlation coefficients for features in the 

combined disease random forest model that were significantly correlated (P < 0.05). 

Metagenomics-identified feature names are coloured green. Only the bottom triangle is 

shown for simplicity. OTU: Operational Taxonomic Unit, GRS: Genetic Risk Score, Un: 

Unclassified. 
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Figure 3.12: Heatmap of Spearman correlation coefficients for features in the 

combined treatment response random forest model that were significantly correlated 

(raw P < 0.05). Metagenomics-identified feature names are coloured green. Only the 

bottom triangle is shown for simplicity. “Un” stands for “Unclassified”. 
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Figure 3.13: The top features from the disease state combined random forest model 

ranked by their variable importance in a new model trained on the RISK validation 

data. Note that the 16S-identified unclassified species in Desulfovibrio was excluded 

since it was not present in the RISK data. All MGS features (including the genetic risk 

scores) were excluded from this analysis since MGS biopsy data was not available for 

this cohort. Features are coloured by whether they are significantly more abundant (raw 

P < 0.05) in Crohn’s disease (CD; red) or normal colon control (CN; blue) samples, or 

not significantly different based on a two-tailed Mann-Whitney-Wilcoxon test. 

 

 

3.3.5 - Validating the Best 16S Disease Feature Rankings in an Independent Cohort 

We validated the rankings of a subset of the 16S features (excluding the unclassified 

species in Desulfovibrio) used in the combined model for disease state by training a new 

model based on these features on the RISK cohort (Gevers et al. 2014), a large previously 

published dataset, that consisted of 16S data for 731 biopsy samples (444 CD and 287 

CN) after processing. The goal of this analysis was to determine if the top features for 

classifying disease state would have similar relative importance ranks across both 

cohorts. Only 16S sequencing of biopsy samples is available in this dataset and so we 

excluded GRS and the MGS features from this analysis. The new RF model based on this 

subset of features and trained on the RISK dataset was highly significant although less 
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accurate than what we observed in our data (Accuracy=73.2%, P<0.001). However, the 

relative ranking of these features was substantially different within the BISCUIT and 

RISK cohorts (Figure 3.10A and Figure 3.13). The top features in the RISK model were 

the class Erysipelotrichi, the phylum Actinobacteria, and the KO K09013. In addition, 

8/21 16S features were not statistically different between CD and control patients (M-W-

W test P >= 0.05). In particular, both Desulfovibrio and Akkermansia, did not 

significantly differ between CD and control patients within the RISK cohort.  

 

3.4 - Discussion 

In this study, we have classified treatment-naïve pediatric CD patients by both their 

disease state and treatment response with high accuracies with many different microbial 

datasets. Since these microbial profiles were taken from intestinal biopsy samples the 

main challenge of this study was to identify true microbial markers above the background 

of human DNA in the MGS data. Although we could identify microbial markers by 

generating much higher sequencing depth than is usual, the interpretation of analyses of 

this data come with the caveat that important rare taxa may have been below the detection 

threshold. For instance, although the RF models based on the MGS datasets were less 

accurate classifiers of disease state this likely was impacted by the fact that the most 

informative genera in the 16S data were undetected in many MGS samples. This 

observation suggests that the discrepancy between the 16S and MGS taxonomic 

classification accuracies could be partially due to a relatively greater taxonomic depth of 

16S sequencing, currently cost-prohibitive for MGS of biopsy samples, which enabled 

rarer taxa to be identified. 

Since the 16S data does not face these challenges, interpreting the analyses based 

on these datasets is more straightforward. Indeed, many of the top features in the 

significant 16S datasets used to classify disease state (see Additional File 4) have 

previously been associated with IBD. For instance, sulfur-reducing species within the 

Desulfovibrio genus have previously been positively linked to another form of IBD - 

ulcerative colitis (Rowan et al. 2010), and Mottawea et al. recently showed the 

importance of hydrogen sulfide producers in colonic CD (Mottawea et al. 2016). 

However, we found Desulfovibrio to be negatively associated with CD in our data, which 
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could highlight a difference in microbiota between these two forms of IBD or merely 

reflect the different sampling strategies (stool, biopsy and MLI) between IBD studies to 

date. We also found Akkermansia muciniphila to have lower relative abundance in CD 

patients’ biopsies, which has been previously observed (Dunn et al. 2016a). The top 16S-

inferred KOs are also related to functions previously associated with CD symptoms. The 

lower proportion of K09013 (Fe-S cluster assembly ATP-binding protein) in CD patients 

is interesting to find since intestinal inflammation in general has been associated with the 

breakdown of Fe-S clusters (Schumann et al. 2012). Similarly, both K03809 (tryptophan 

repressor binding protein) and K03785 (3-dehydroquinate dehydratase I), which is 

involved in tryptophan and other amino acid biosynthesis, in CD patients could be 

interesting markers since lower serum tryptophan levels has previously been associated 

with CD (Gupta et al. 2012; Nikolaus et al. 2017). However, in this analysis these 

markers were both at higher levels in the unexpected direction (K03809 was lower in CD 

and K03785 was higher in CD). 

The top MGS-identified features for classifying disease state also include several 

previously identified markers. The genus Alistipes is a known producer of short-chain 

fatty acids (SCFAs) (Brown et al. 2011). This genus was at lower relative abundance in 

CD patients, which could be related to lower levels of certain SCFAs that have long been 

a hallmark of IBD (Treem et al. 1994; Huda-Faujan et al. 2010; Morgan et al. 2012). In 

addition, although several key taxa identified by 16S sequencing appeared to be below 

the detection threshold in the MGS samples, both Alistipes and Oscillibacter, which has 

previously been negatively associated with CD (Mondot et al. 2011), were not identified 

in the 16S data. The absence of these informative taxa is likely related to how certain 

lineages cannot be identified with high-resolution based on 16S sequences. This 

difference highlights a trade-off in the MGS taxonomic results: improved taxonomic 

resolution at the cost of lower sensitivity, which has been discussed elsewhere (Tessler et 

al. 2017). The identification of the MGS-identified KEGG module M00144, which is 

involved in ATP synthesis, as being informative for classifying disease state is also 

interesting since IBD patients are known to have lower levels of intestinal ATP 

(Schürmann et al. 1999). 
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Similar to the RF models for disease state, many of the top features for classifying 

treatment response agreed with previous studies (see Additional File 5). For instance, the 

top 16S genus, Dialister, was at higher abundance in RS patients, which is consistent 

with previous work (Mondot et al. 2016). Similarly, the bacterial family 

Erysipelotrichaceae has been linked to human health in several ways (Kaakoush 2015). 

Although this taxon was not ranked highly, it is the only family within the top 16S-

identified order, Erysipelotrichales, to pass pre-processing cut-offs. This order is found at 

higher relative abundance in RS patients. Erysipelotrichaceae are particularly of interest 

since they have been shown to decrease in abundance in CD patients given EEN therapy 

(Kaakoush et al. 2015) and species within this family are positively linked to 

inflammation (Dinh et al. 2015).  

Several of the top MGS-identified KEGG functions also consistent with past 

work. The pathway ko00633, nitrotoluene degradation, has previously been identified as 

the most distinguishing pathway between EEN-treated CD patients and healthy controls 

(Dunn et al. 2016b). Similarly, microbial glutathione and purine biosynthesis have 

previously been positively and negatively associated with Crohn’s disease respectively 

(Morgan et al. 2012). In our dataset, the pathway ko00250, glutamate and other amino 

acid metabolism, was found at higher relative abundance in RS patients whereas 

ko00230, purine metabolism, was found at lower relative abundance in RS patients. In 

addition, both the genera Parabacteroides and Bacteroides have previously been found at 

higher abundance in CD patients at the time of surgical resection who remain in 

remission (De Cruz et al. 2015), which is the same direction we find here. Our previous 

work in this cohort determined that Sutterella wadsworthensis is unlikely to be involved 

in IBD pathogenesis (Mukhopadhya et al. 2011). However, since this species was one of 

the best predictive features for treatment response and was found at lower abundance in 

RS patients it may still be clinically relevant. Although these results indicate that future 

CD treatments could be informed by the presence of these and other microbial markers, 

further work will be required to disentangle which markers are predictive of response to 

specific treatments.  

The findings of Akkermansia muciniphila and the order and phylum 

(Verrucomicrobiales and Verrucomicrobia, respectively) that contain this species as the 
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top three features for classifying disease state, highlights the importance of this taxon in 

our dataset. High levels of A. muciniphila in donor’s stool has recently been found to be a 

strong predictor of remission in ulcerative colitis patients undergoing fecal microbiota 

transplantation treatment (Kump et al. 2018). This finding taken together with our and 

others’ observation of lower A. muciniphila abundance in CD patients suggests that this 

species is a useful biomarker for gut health. Similarly, the relative importance of alpha 

diversity compared to genetic risk was also shown in this combined model. This finding 

illustrates the importance of microbial features in CD development, as compared with the 

weak contribution of genetic markers for CD development and the influence of the 

inherited variants on microbiome composition (Turpin et al. 2016). The top MGS-

identified features largely performed worse than the 16S-identified functions in the 

combined RF model for classifying disease. One interesting exception is the genus 

Alistipes (and its corresponding family Rikenellaceae). 

In the combined RF model for treatment response it is notable that MGS-

identified functions were the most informative features. This observation could indicate 

that major metabolic shifts in the microbiome could be more informative for predicting 

treatment response than the presence of particular taxa, which is consistent with past 

results indicating that functions shift more consistently than taxa in CD patients (Morgan 

et al. 2012). Interestingly, functions were only found to be more informative for 

classifying patients by treatment response, and not by disease state. However, it is 

possible that with higher sequencing depth MGS-identified features may have been more 

informative. Note that patients’ GRS were not significantly different between RS and NR 

samples, which is consistent with a recent study indicating that the genetic contributions 

to CD susceptibility are largely independent from the genetic contributions to CD 

prognosis (Lee et al. 2017).  

Ideally the combined RF model trained on the top features from our cohort would 

also have been tested on the validation cohort. However, due to technical differences 

across the studies, such as different sampling protocols and different 16S variable regions 

sequenced, the same model cannot be implemented for both datasets. In addition, 

variation in pathophysiology due to geography as well as differential microbial profiles 

due to different distributions of patient age and sex across the cohorts could also result in 
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differences in predictive markers across the two cohorts. This issue highlights that 

additional work in this area is needed to facilitate the comparison of microbiome datasets 

from different studies. Nonetheless, the independent validation cohort enabled the 

ranking of features within the combined model for disease state to be evaluated. The 

ranking of these features did differ in this cohort although the number of OTUs, 

Verrucomicrobiales, and Verrucomicrobia remain within the top 6 features (Figure 3.13). 

However, the genera Desulfovibrio and Akkermansia were not significantly different 

between CD and control patients within the RISK samples, which highlights the issue of 

comparing predictive features across different cohorts. Unfortunately, we were unable to 

validate the ranking of the top features for classifying treatment response on an 

independent dataset since there is no paired 16S and MGS dataset with adequate sample 

size available to our knowledge. 

 

3.5 - Conclusions 

Here, we have integrated human genetic data with 16S and MGS intestinal biopsy data to 

classify CD patients by disease state and treatment response for the first time. We found 

genera identified from 16S data to be the best classifiers of each outcome. One possible 

explanation for why 16S data was found to have higher performance than the MGS data 

could be that it enables much higher read depth for taxonomic assignment. This increased 

depth allows rare taxa to be identified, which was the case for the top 16S-identified 

genera. The biological importance of rare taxa in CD pathogenesis warrants further 

consideration, and indeed rarity may prove an important bias in culture-based studies of 

the IBD microbiome. Although we found alpha diversity to be a clear marker for disease 

state, GRS was relatively less informative. This result is perhaps not surprising since 

microbial shifts are likely causally related to disease onset, although the direction is 

unclear. In contrast, GRS has been developed as a metric for assessing disease risk at any 

point in a patient’s life; including well before onset, but has not been of great influence in 

predicting onset or treatment stratification (Cleynen et al. 2016). The multi-genomics 

machine-learning approach presented in this study could be extended in the future to 

other diseases and to other data types such as transcriptomics and metabolomics to better 

understand the relative importance of each of these features. These models will provide 
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new insights into the multifactorial nature of CD, helping highlight cohort-specific as 

well as fundamental contributors to disease pathophysiology, and may result in novel 

signatures to predict and guide personalized treatments.  

 

3.6 - Declarations 

3.6.1 - Ethics Approval and Consent to Participate 

Ethical approval was granted by North of Scotland Research Ethics Service 

(09/S0802/24) and written informed consent was obtained from the parents of all 

subjects. Informed assent was also obtained from older children who were deemed 

capable of understanding the nature of the study. This study is publically registered on the 

United Kingdom Clinical Research Network Portfolio (9633). An ethics amendment 

allowed further review of the cohort participants’ therapies and clinical response for the 

first year following diagnosis. 

 

3.6.2 - Availability of Data and Material 

All custom scripts used for this study are available at: 

https://github.com/LangilleLab/CD_RF_microbiome. The 16S rRNA gene and 

metagenomic sequencing data used in this study are available under accession 

PRJEB21933 at the European Nucleotide Archive.  

  

https://github.com/LangilleLab/CD_RF_microbiome
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Chapter 4 - PICRUSt2 for Prediction of Metagenome Functions 

This chapter is a reproduction of my letter (and supplementary information) published in 

Nature Biotechnology (Douglas et al. 2020). The short published letter is presented first 

followed by the supplementary results section. This was done with permission from the 

journal and I was first author on this paper (see Appendices). I wrote the first draft and 

conducted all analyses and programming for this work. The other authors on this paper 

were: Vincent J. Maffei, Jesse R. Zaneveld, Svetlana N. Yurgel, James R. Brown, 

Christopher M. Taylor, Curtis Huttenhower, and Morgan G. I. Langille. The additional 

file and acknowledgements statement are available as part of the original publication on 

the Nature Biotechnology website. Note that the methods are presented separately in 

Chapter 2. 

 

4.1 – Published Main Text 

4.1.1 – Published Letter 

To the editor - One limitation of microbial community marker-gene sequencing is that it 

does not provide information about the functional composition of sampled communities. 

PICRUSt (Langille et al. 2013) was developed in 2012 to predict the functional potential 

of a bacterial community based on marker gene sequencing profiles, and now we present 

PICRUSt2 (https://github.com/picrust/picrust2), which improves upon the original 

method. Specifically, PICRUSt2 contains an updated and larger database of gene families 

and reference genomes, provides interoperability with any OTU-picking or denoising 

algorithm, and enables phenotype predictions. Benchmarking shows that PICRUSt2 is 

more accurate than PICRUSt and other competing methods overall. PICRUSt2 also 

allows the addition of custom reference databases.  We highlight these improvements and 

also important caveats regarding the use of predicted metagenomes.  

 The most common method for profiling bacterial communities is to sequence the 

conserved 16S rRNA gene. Functional profiles cannot be directly identified using 16S 

rRNA gene sequence data owing to strain variation so several methods have been 

developed to predict microbial community functions from taxonomic profiles (amplicon 

sequences) alone (Langille et al. 2013; Iwai et al. 2016; Jun et al. 2015; Aßhauer et al. 

https://github.com/picrust/picrust2
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2015; Wemheuer et al. 2020).  Shotgun metagenomic sequencing (MGS) which 

sequences entire genomes rather than marker genes can also be used to characterize the 

functions of a community, but does not work well if there is host contamination e.g. in a 

biopsy, or if there is very little community biomass.  

PICRUSt (Langille et al. 2013) (hereafter “PICRUSt1”) was the first tool 

developed for prediction of functions from 16S marker sequences, and is widely used but 

has some limitations. Standard PICRUSt1 workflows require input sequences to be 

operational taxonomic units (OTUs) generated from closed-reference OTU-picking 

against a compatible version of the Greengenes database (DeSantis et al. 2006). Due to 

this restriction to reference OTUs, the default PICRUSt1 workflow is incompatible with 

sequence denoising methods, which produce amplicon sequence variants (ASVs) rather 

than OTUs. ASVs have finer resolution, allowing closely related organisms to be more 

readily distinguished. Plus, the bacterial reference databases used by PICRUSt1 have not 

been updated since 2013 and lack thousands of recently added gene families. 

 We hypothesized that optimizing genome prediction would improve accuracy of 

functional predictions. Therefore, the PICRUSt2 algorithm (Figure 4.1a) includes steps 

that optimize genome prediction, including placing sequences into a reference phylogeny 

rather than relying on predictions limited to reference OTUs (Figure 4.1b); basing 

predictions on a larger database of reference genomes and gene families (Figure 4.1c); 

more stringent prediction of pathway abundance (Figure 4.2); enabling predictions of 

complex phenotypes and integration of custom databases. 
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Figure 4.1: PICRUSt2 algorithm. (a) The PICRUSt2 method consists of phylogenetic 

placement, hidden-state-prediction and sample-wise gene and pathway abundance 

tabulation. ASV sequences and abundances are taken as input, and gene family and 

pathway abundances are output. All necessary reference tree and trait databases for the 

default workflow are included in the PICRUSt2 implementation. (b) The default 

PICRUSt1 pipeline restricted predictions to reference operational taxonomic units (Ref. 

OTUs) in the Greengenes database. This requirement resulted in the exclusion of many 

study sequences across four representative 16S rRNA gene sequencing datasets. 

PICRUSt2 relaxes this requirement and is agnostic to whether the input sequences are 

within a reference or not, which results in almost all of the input amplicon sequence 
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variants (ASVs) being retained in the final output. (c) An increase in the taxonomic 

diversity in the default PICRUSt2 database is observed compared to PICRUSt1. 

 

 

Figure 4.2: The number of predicted pathways as phylogenetic diversity varies in 

samples from the Human Microbiome Project. A comparison of (a) KEGG pathways 

output by PICRUSt1, (b) KEGG pathways output by PICRUSt2, and (c) MetaCyc 

pathways output by the PICRUSt2 default pipeline. The number of KEGG pathways 

plateaus almost immediately whereas there is a much greater range in the MetaCyc 

pathways present. In addition, a mean of 1.6-fold more pathways are called as present in 

PICRUSt1 that are not called as present in PICRUSt2, which is due to the more stringent 

pathway pipeline intended to reduce false positives. 

 

PICRUSt2 integrates existing open-source tools to predict genomes of 

environmentally sampled 16S rRNA gene sequences. ASVs are placed into a reference 

tree, which is used as the basis of functional predictions. This reference tree contains 

20,000 full 16S rRNA genes from bacterial and archaeal genomes in the Integrated 

Microbial Genomes (IMG) database (Markowitz et al. 2012). Phylogenetic placement in 

PICRUSt2 is based on running three tools: HMMER (www.hmmer.org) to place ASVs, 

EPA-ng (Barbera et al. 2019) to determine the optimal position of these placed ASVs in a 

reference phylogeny, and GAPPA (Czech & Stamatakis 2019) to output a new tree 

incorporating the ASV placements. This results in a phylogenetic tree containing both 

reference genomes and environmentally sampled organisms, which is used to predict 

individual gene family copy numbers for each ASV. This procedure is re-run for each 

http://www.hmmer.org/
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input dataset, allowing users to utilize custom reference databases as needed, including 

those that may be optimized for the study of specific microbial niches.  

As in PICRUSt1, hidden state prediction approaches are used in PICRUSt2 to 

infer the genomic content of sampled sequences. The castor R package (Louca & Doebeli 

2018), which is substantially faster than the approach used in PICRUSt1, is used for core 

hidden state prediction functions. As in PICRUSt1, ASVs are corrected by their 16S 

rRNA gene copy number and then multiplied by their functional predictions to produce a 

predicted metagenome. PICRUSt2 also provides the ASV contribution of each predicted 

function allowing for taxonomy-informed statistical analyses to be conducted. Lastly, 

pathway abundances are inferred based on structured pathway mappings, which are more 

conservative than the ‘bag-of-genes’ approach used in PICRUSt1. 

The PICRUSt2 default genome database is based on 41,926 bacterial and archaeal 

genomes from the IMG database (Markowitz et al. 2012) (November 8, 2017) which is a 

>20-fold increase over the 2,011 IMG genomes used by PICRUSt1. Many of the 

additional genomes are from strains of the same species and have identical 16S rRNA 

genes. We de-replicated the identical 16S rRNA genes across these genomes, which 

resulted in 20,000 final 16S rRNA gene clusters. The taxonomic diversity of the 

PICRUSt2 reference database is increased compared with PICRUSt1 (Figure 4.1c). The 

clearest increases in diversity is at the species and genus levels (5.3-fold and 2.2-fold 

increases respectively) but all taxonomic levels are more diverse including the phylum 

level where the coverage increased from 39 to 64 phyla (1.6-fold increase).  

PICRUSt2 predictions based on several gene family databases are supported by 

default, including the Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al. 2012) 

(KEGG) orthologs (KO) and Enzyme Commission numbers (EC numbers) (Table 4.1). 

PICRUSt2 distinctly improves on PICRUSt1 by including gene families more recently 

added to the KEGG database. Specifically, the total number of KOs is 10,543 in 

PICRUSt2 compared to 6,909 in PICRUSt1, a 1.5-fold increase. 

We validated PICRUSt2 metagenome predictions using samples from seven 

published datasets generated using both 16S rRNA marker-gene and shotgun 

metagenomics sequencing (MGS). We used three human-associated microbiome datasets: 

57 stool samples from Cameroonian individuals, 91 stool samples from Indian 
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individuals, and 137 samples spanning the human body (from the Human Microbiome 

Project [HMP]). We used four non-human-associated datasets including 77 non-human 

primate stool samples, eight mammalian stool samples, six ocean samples, and 22 bulk 

soil and blueberry rhizosphere samples. These datasets present a good variation of types 

of sequences and environments (Table 4.2). 

 

Table 4.1: Summary statistics of PICRUSt2 trait reference databases 

 

 

 

 

Table 4.2: Descriptions of the paired 16S rRNA gene and shotgun metagenomics 

sequencing validation datasets used 

 

*Final number of samples overlapping between 16S rRNA gene and MGS datasets. 
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PICRUSt2 KO predictions from 16S rRNA marker gene data were produced for 

each dataset. We compared these predictions to KO relative abundances profiled from the 

corresponding MGS metagenomes, which served as a gold-standard to evaluate 

prediction performance. We performed the same analyses with four alternative prediction 

pipelines: PICRUSt1, Piphillin (Iwai et al. 2016), PanFP (Jun et al. 2015) and Tax4Fun2 

(Aßhauer et al. 2015; Wemheuer et al. 2020). We calculated Spearman correlation 

coefficients (hereafter “correlations”) for matching samples between the predicted KO 

abundance and MGS KO abundance tables after filtering all tables to the 6,220 KOs that 

could be output by all tested databases (Figure 4.3). The correlation metric represents the 

similarity in rank ordering of KO abundances between the predicted and observed data. 

The correlations based on PICRUSt2 KO predictions ranged from a mean of 0.79 

(standard deviation [SD] = 0.028; primate stool) to 0.88 (SD = 0.019; Cameroonian stool 

dataset). For all seven datasets, PICRUSt2 predictions were either better than or 

comparable with the best prediction method (paired-sample, two-tailed Wilcoxon tests 

[PTW] P < 0.05). Correlations based on PICRUSt2 predictions were substantially better 

for non-human associated datasets. This result could indicate an advantage of 

phylogenetic-based methods over non-phylogenetic-based methods, such as Piphillin, for 

environments poorly represented by reference genomes. 
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Figure 4.3: PICRUSt2 performance characteristics. Validation of PICRUSt2 KEGG 

ortholog (KO) predictions comparing metagenome prediction performance against gold-

standard shotgun metagenomic sequencing (MGS). (a) Boxplots of Spearman correlation 

coefficients observed in stool samples from Cameroonian individuals (n=57), the human 

microbiome project (HMP, n=137), stool samples from Indian individuals (n=91), non-

human primate stool samples (n=77), mammalian stool (n=8), ocean water (n=6), and 

blueberry soil (n=22) datasets. The significance of paired-sample, two-tailed Wilcoxon 

tests is indicated above each tested grouping (*, **, and ns correspond to P < 0.05, P < 

0.001, and not significant respectively). (b) Comparison of significantly differentially 

abundant KOs between predicted metagenomes and MGS. Precision, recall, and F1 

score are reported for each category compared to the MGS data. Precision corresponds 

to the proportion of significant KOs for that category also significant in the MGS data. 

Recall corresponds to the proportion of significant KOs in the MGS data also significant 

for that category. The F1 score is the harmonic mean of these metrics. The subsets of the 

four datasets compared are indicated above each panel (the Cameroonian parasite is 

Entamoeba). Wilcoxon tests were performed on the KO relative abundances after 

normalizing by the median number of universal single-copy genes per sample. 
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Significance was defined at a false discovery rate < 0.05. The “Shuffled ASVs” category 

corresponds to PICRUSt2 predictions with ASV labels shuffled per dataset. The “Alt. 

MGS” category corresponds to an alternative MGS processing pipeline with reads 

aligned to the KEGG database rather than the default HUMAnN2 pipeline. 

 

Gene families regularly co-occur within genomes, so the use of correlations to 

assess gene-table similarity may be limited by the lack of independence of gene families 

within a sample (Figure 4.4). To address this dependency, we compared the observed 

correlations between paired MGS and predicted metagenomes to correlations between 

MGS functions and a null reference genome, comprised of the mean gene family 

abundance across all reference genomes. For all datasets, PICRUSt2 metagenome tables 

were more similar to MGS values than the null (Figure 4.3a). However, this increase over 

the null expectation is predominately driven by each dataset’s predicted genome content 

(rather than that of individual samples). This is demonstrated by the fact that these 

correlations are actually only slightly significantly higher than those observed when ASV 

labels are shuffled within a dataset (Figure 4.5). The observed correlations for the 

shuffled ASVs ranged from a mean of 0.77 (SD = 0.196; primate stool) to 0.84 (SD = 

0.178; blueberry rhizosphere). Biologically these results are consistent with several 

patterns. First, gene families are correlated in copy number across diverse taxa (as 

captured by the ‘Null’ dataset). Second, these correlations are stronger within than 

between environments (as shown by the difference between the ‘Null’ and ‘Shuffled 

ASV’ results). Lastly, environment-to-environment differences tend to be larger than 

sample-to-sample differences within an environment (as shown by the differences 

between PICRUSt2 predictions and the ‘Shuffled ASV’ results). 
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Figure 4.4: Spearman correlations between number of gene families in two random 

subsets of genomes. As the size of the random subsets increases the correlation 

coefficient between the two subsets approaches 1. Ten replicates are plotted for each 

number of genome subsets. These correlations are shown for all functional databases 

that can be used with PICRUSt2 by default. Clusters of Orthologous Genes (COG); 

Enzyme Commission Numbers (EC); Kyoto Encyclopedia of Genes and Genomes 

Ortholog (KO); Protein Families (Pfam); and The Institute for Genomic Research’s 

database of protein FAMilies (TIGRFAM). 

 

 



 

 110 

 

Figure 4.5: Full KEGG ortholog validation results of PICRUSt2 comparing 

metagenome prediction performance against gold-standard shotgun metagenomics 

sequencing. The data shown here is the same as in Figure 4.3 except the performance at 

different nearest-sequenced taxon index (NSTI) cut-offs for the ASV input data and based 

on the ‘Shuffled ASVs’ data are also shown. HMP: Human Microbiome Project. 

Significance of paired-sample, two-tailed Wilcoxon tests is indicated above each tested 

grouping (*, **, and ns correspond to P < 0.05, P < 0.001, and not significant 

respectively). 
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 A complementary approach for validating metagenome predictions is to compare 

the results of differential abundance tests on 16S-predicted metagenomes to MGS data. A 

recent analysis of Piphillin suggested that this tool out-performs PICRUSt2 based on this 

approach (Narayan et al. 2020). We similarly performed this evaluation on the KO 

predictions for four validation datasets (Figure 4.3b). Overall, PICRUSt2 displayed the 

highest F1 score, the harmonic mean of precision and recall, compared to other prediction 

methods (ranging from 0.46-0.59; mean=0.51; SD=0.06). However, all prediction tools 

displayed relatively low precision, the proportion of significant KOs that were also 

significant in the MGS data. In particular, precision ranged from 0.38-0.58 (mean=0.48; 

SD=0.08) for PICRUSt2 and 0.06-0.66 (mean=0.45; SD=0.27) for Piphillin. In all cases, 

PICRUSt2 predictions out-performed ASV-shuffled predictions, which ranged in 

precision from 0.22-0.42 (mean=0.30; SD=0.09). In addition, differential abundance tests 

performed on MGS-derived KOs from an alternative MGS-processing workflow resulted 

in only marginally higher precision (ranging from 0.57-0.67; mean=0.62; SD=0.04). 

Taken together, these results highlight the difficulty of reproducing microbial functional 

biomarkers with both predicted and actual metagenomics data. 

MetaCyc pathway abundances are now the main high-level predictions output by 

PICRUSt2 by default. The MetaCyc database (Caspi et al. 2013) is an open-source 

alternative to KEGG and is also a major focus of the widely-used metagenomics 

functional profiler, HUMAnN2 (Franzosa et al. 2018). MetaCyc pathway abundances are 

calculated in PICRUSt2 through structured mappings of EC gene families to pathways. 

These pathway predictions performed better than the null distribution for all metrics 

overall (PTW P < 0.05; Figure 4.6a; Figure 4.7;  Figure 4.8) compared to MGS-derived 

pathways. Similar to our previous analysis, shuffled ASV predictions representing overall 

functional structure within each dataset accounted for the majority of this signal (Figure 

4.7). In addition, differential abundance tests on these pathways showed high variability 

in F1 scores across datasets and statistical methods with the ASV shuffled predictions 

contributing the majority of this signal (Figure 4.9; F1 scores ranged from 0.23-0.62 

[mean=0.41; SD=0.17] and 0.22-0.60 [mean=0.34; SD=0.18] for the observed and ASV 

shuffled PICRUSt2 predictions, respectively). Again, these results suggest that 
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identifying robust differentially abundant metagenome-wide pathways is difficult and 

highlights the challenge of analyzing microbial pathways in general. 

 

 

Figure 4.6: PICRUSt2 accurately predicts MetaCyc pathways and phenotypes for 

characterizing overall environments. (a) Spearman correlation coefficients between 

PICRUSt2 predicted pathway abundances and gold-standard metagenomic sequencing 

(MGS). Results are shown for each validation dataset: stool from Cameroonian 

individuals, The Human Microbiome Project (HMP), stool from Indian individuals, 

mammalian stool, ocean water, non-human primate stool, and blueberry soil. These 

results are limited to the 575 pathways that could potentially be identified by PICRUSt2 

and HUMAnN2. (b) Performance of binary phenotype predictions based on three 

metrics: F1 score, precision, and recall. Each point corresponds to one of the 41 

phenotypes tested. Predictions assessed here are based on holding out each genome 

individually, predicting the phenotypes for that holdout genome, and comparing the 

predicted and observed values. The null distribution in this case is based on randomizing 

the phenotypes across the reference genomes and comparing to the actual values, which 

results in the same output for all three metrics. The P-values of paired-sample, two-tailed 

Wilcoxon tests is indicated above each tested grouping (* and ** correspond to P < 0.05 

and P < 0.001, respectively). Note that in panel a the y-axis is truncated below 0.5 rather 

than 0 to better visualize small differences between categories. The sample sizes in panel 

a are 57 (Cameroonian), 137 (HMP), 91 (Indian), 8 (mammal), 6 (ocean), 77 (primate), 

and 22 (soil). 
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Predictions for 41 microbial phenotypes, which are linked to IMG genomes (Chen 

et al. 2013), can also now be generated with PICRUSt2. These represent high-level 

microbial metabolic activities such as “Glucose utilizing” and “Denitrifier” that are 

annotated as present or absent within each reference genome. We performed a hold-out 

validation to assess the performance of PICRUSt2 phenotype predictions, which involved 

comparing the binary phenotype predictions to the expected phenotypes for each 

reference genome. Based on F1 score (mean=84.8%; SD=9.01%), precision 

(mean=86.5%; SD=6.21%), and recall (mean=83.5%; SD=11.4%), these predictions 

performed significantly better than the null expectation (Figure 4.6b; Wilcoxon tests P < 

0.05). 

 There are two main criticisms of amplicon-based functional prediction. First, the 

predictions are biased towards existing reference genomes, which means that rare 

environment-specific functions are less likely to be identified. This limitation is 

decreasing over time as the number of high-quality available genomes continues to grow. 

PICRUSt2 also allows user-specified genomes to be used for generating predictions, 

which provides a flexible framework for studying particular environments. The second 

criticism is that amplicon-based predictions cannot provide resolution to distinguish 

strain-specific functionality. This is an important limitation of PICRUSt2 and any 

amplicon-based analysis, which can only differentiate taxa to the degree they differ at the 

amplified marker gene sequence.  

 PICRUSt2 provides improved accuracy and flexibility for marker gene 

metagenome inference. We have highlighted these improvements while also describing 

limitations with identifying consistent differentially abundant functions in microbiome 

studies. We hope that the expanded functionality of PICRUSt2 will continue to enable the 

identification of insights into functional microbial ecology from amplicon sequencing 

profiles.  
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Figure 4.7: Spearman correlation coefficients of predicted MetaCyc pathway 

abundances compared to shotgun metagenomics on same samples for (a) stool samples 

from Cameroonian individuals, (b) the human microbiome project (HMP), (c) stool 

samples from Indian individuals, (d) mammalian stool samples, (e) ocean samples, (f) 

non-human primate stool samples, and (g) soil samples. PICRUSt2 predictions based on 

varying nearest sequenced taxon index (NSTI) cut-offs are shown to illustrate how this 

parameter affects prediction performance. In addition, the ‘Shuffled ASVs’ group shows 

that the majority of the performance signal is driven by the predicted genomic content of 
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the ASVs in each environment rather than within each sample. Significance of paired-

sample, two-tailed Wilcoxon tests is indicated above each tested grouping (*, **, and ns 

correspond to P < 0.05, P < 0.001, and not significant, respectively). 

 

 

 

Figure 4.8: (a) Precision and (b) recall of predicted MetaCyc pathway abundances 

compared to shotgun metagenomics on the same samples from the seven validation 

datasets. PICRUSt2 predictions based on varying nearest sequenced taxon index (NSTI) 

cut-offs are shown to illustrate how this parameter affects prediction performance. 

Significance of paired-sample, two-tailed Wilcoxon tests is indicated above each tested 

grouping (* and ** correspond to P < 0.05 and P < 0.001, respectively). 
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Figure 4.9: (a) Differential abundance and prevalence of predicted MetaCyc pathways 

vary across datasets and with statistical methods used and are similar to predictions 

based on shuffled ASVs. The F1 score is plotted to summarize the agreement between 

the statistical testing of predicted pathways with pathways identified from HUMAnN2. All 

pathway abundances for this analysis were based on Enzyme Commission numbers over 

the entire metagenome sample (i.e. assuming a bag-of-genes model), rather than 

restricting pathway predictions to each Amplicon Sequence Variant’s (ASV) predicted 

genome. Each of these statistical tests has a different null hypothesis, but the first three 

methods are all commonly used to perform differential abundance analyses on 

microbiome data. NA indicates cases where either the recall or precision could not be 

calculated (which means the F1 scores was not applicable). The sample groupings for 
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these analyses are the same as for all the other differential testing results reported and 

are indicated by “subset” here simply to save space. 

 

4.1.2 - Code and Data Availability 

PICRUSt2 is available at: https://github.com/picrust/picrust2. The Python and R code 

used for the analyses and database construction described in this paper are available 

online at https://github.com/gavinmdouglas/picrust2_manuscript. This repository also 

includes the processed datafiles that can be used to re-generate the figures and findings in 

this paper. The accessions for all sequencing data used in this study are listed in 

Supplementary Results section below. 

 

4.2 – Supplementary Results 

The below results were published as part of the Supplementary Information to the above 

letter. The exception is Section 4.2.4 below, which was requested by my committee after 

we submitted this manuscript and so that section includes additional unpublished results. 

 

4.2.1 - Paired 16S rRNA Gene and Shotgun Metagenomics Validations 

We previously developed the nearest sequenced taxon index (NSTI) as a metric for 

summarizing a microbial taxonomic profile’s novelty relative to isolate genomes 

(Langille et al. 2013). This measures the abundance-weighted distances in the 

phylogenetic tree between taxa (ASVs) from a community and the tips of the nearest 

sequenced neighbours. These NSTI distributions are calculated automatically in 

PICRUSt2 and differed significantly among the evaluation datasets, demonstrating their 

range of “unusualness” relative to sequenced isolates (Kruskal-Wallis 𝛘2=19,499, P < 2.2 

x 10-16; Figure 4.10, panels a and b). Datasets from more well-characterized communities 

have lower mean NSTI values overall as expected, ranging from 0.10 (SD: 0.11) in the 

Indian dataset to 0.51 (SD: 2.06) in the ocean dataset. A maximum NSTI cut-off of two is 

implemented by default in PICRUSt2, as a guideline to prevent unconsidered 

interpretation of overly speculative inferences, which resulted in a mean of 0.27% (SD: 

0.4) of ASVs being excluded across these datasets. These excluded ASVs mainly 

https://github.com/picrust/picrust2
https://github.com/gavinmdouglas/picrust2_manuscript
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correspond to either eukaryotic sequences or microbial phyla with no reference genomes 

available. 

 

 

Figure 4.10: Reference-based quality metrics for amplicon sequence variants (ASVs) 

of validation datasets. (a) Nearest sequenced taxon index (NSTI) for ASVs (branch length 

to nearest reference sequence). The grey horizontal dotted line at two indicates the 

default maximum NSTI value over which ASVs will be excluded. (b) Same as panel a 

except y-axis is truncated so visualizing these differences is easier. (c) Per-sample 

weighted NSTI values, which corresponds to the NSTI values in panels a and b under the 

maximum cut-off weighted by the abundance of each ASV. (d) Complement of percent 

identities of ASVs against reference database sequences 

 

 In addition to the Spearman correlations reported in the main text, we also 

investigated metagenome predictions based on the presence and absence of output KOs 

by calling any function with non-zero abundance as present and assessing relative 

differences in precision, recall, and F1 score (see methods for definitions). PICRUSt2 and 

Piphillin exhibited the best (or non-statistically different) F1 score across 3/7 (HMP, 
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mammalian stool, and ocean) and 4/7 (Cameroonian stool, HMP, Indian stool, and soil 

datasets) datasets, respectively (Figure 4.11); and were substantially better than the null 

(<0.6 in all datasets). Investigating precision and recall revealed that Piphillin tended to 

have higher precision scores (fewer false positives) while PICRUSt2 had better recall 

(fewer false negatives) (Figure 4.12). The slightly lower precision of PICRUSt2 is driven 

by falsely called KOs that are on average at significantly lower relative abundance in the 

PICRUSt2 results compared to the Piphillin results (PTW P < 0.05; mean of 0.0020% 

[SD: 0.0015] for PICRUSt2 vs mean of 0.0055% [SD: 0.0047] for Piphillin). However, it 

remains unclear what proportion of these disagreements between PICRUSt2 KO 

predictions and the MGS data are in fact false negatives in the MGS data due to low 

sequencing depth or annotation limitations from short MGS reads. Indeed, there is a 

significant positive relationship between the number of annotated MGS reads per sample 

and the observed precision of PICRUSt2 predictions (Spearman correlation coefficient 

across all datasets combined: 0.80; P < 2.2 x 10-16; mean coefficient of 0.49 [SD: 0.15] 

for individual datasets). 

 

Figure 4.11: KEGG ortholog prediction performance in terms of F1 score, which is the 

harmonic mean of precision and recall. The datasets and prediction categories shown 

here are the same as in Figure 2 except the PICRUSt2 performance at different nearest-

sequenced taxon index (NSTI) cut-offs for the ASV input data is also shown. Boxplot 

colours refer to three different category groupings: the null expectation (grey), 
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alternative prediction tools (red), and PICRUSt2 predictions (cyan). The significance of 

paired-sample, two-tailed Wilcoxon tests is indicated above each tested grouping (*, **, 

and ns correspond to P < 0.05, P < 0.001, and not significant respectively). HMP: 

Human Microbiome Project. 

 

 

 

Figure 4.12: KEGG ortholog prediction performance in terms of (a) precision and (b) 

recall. The datasets and prediction categories shown here are the same as in Figure 4.3 

except the PICRUSt2 performance at different nearest-sequenced taxon index (NSTI) cut-

offs for the ASV input data is also shown. Boxplot colours refer to three different 

category groupings: the null expectation (grey), alternative prediction tools (red), and 

PICRUSt2 predictions (cyan). The significance of paired-sample, two-tailed Wilcoxon 

tests is indicated above each tested grouping (*, **, and ns correspond to P < 0.05, P < 

0.001, and not significant respectively). HMP: Human Microbiome Project. 
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 We also evaluated the performance of the PICRUSt2 EC predictions by 

comparing with PAPRICA (Bowman & Ducklow 2015), which is another EC-based 

prediction tool. Correlations between EC predictions with the EC gene families observed 

in MGS data were significantly higher than PAPRICA for 4/7 validation datasets (PTW P 

< 0.05; Figure 4.13). In addition, the recall of PICRUSt2 predictions was significantly 

higher than PAPRICA although this came at a cost of precision (PTW P < 0.05; Figure 

4.14). 

 

Figure 4.13: Spearman correlation coefficients of predicted Enzyme Commission (EC) 

number abundances compared to shotgun metagenomics on same samples for (a) stool 

samples from Cameroonian individuals, (b) the human microbiome project (HMP), (c) 

stool samples from Indian individuals, (d) mammalian stool samples, (e) ocean samples, 

(f) non-human primate stool samples, and (g) soil samples. PICRUSt2 predictions based 

on varying nearest sequenced taxon index (NSTI) cut-offs are shown to illustrate how this 

parameter affects prediction performance. Significance of paired-sample, two-tailed 

Wilcoxon tests is indicated above each tested grouping (*, **, and ns correspond to P < 

0.05, P < 0.001, and not significant, respectively). 
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Figure 4.14: (a) Precision and (b) recall of predicted Enzyme Commission (EC) 

numbers (based on presence/absence) compared to shotgun metagenomics for all seven 

validation datasets. PICRUSt2 predictions based on varying nearest sequenced taxon 

index (NSTI) cut-offs are shown to illustrate how this parameter affects prediction 

performance.  Significance of paired-sample, two-tailed Wilcoxon tests is indicated above 

each tested grouping (* and ** correspond to P < 0.05 and P < 0.001, respectively). 

 

The predicted MetaCyc pathways generated by PAPRICA drastically differ from 

the metagenomics pathway abundances (Figure 4.15) likely because PAPRICA 

implements a different approach for inferring pathway abundances. For this reason, 

evaluating the performance of the PAPRICA pathway predictions against HUMAnN2 

pathways may not be appropriate. 
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Figure 4.15: Poor concordance of PAPRICA pathway abundance predictions 

compared to pathways identified by HUMAnN2 in shotgun metagenomics data based 

on (a) Spearman correlation coefficients, (b) precision, and (c) recall. Only 193 MetaCyc 

pathways are considered here since this is the only set that could be identified by both 

PAPRICA and HUMAnN2. In contrast, 575 pathways could potentially be identified by 

both PICRUSt2 and HUMAnN2. The poor concordance shown here may be due to the 

differing approach for inferring pathway levels used by PAPRICA, which may mean that 

comparing these predictions with HUMAnN2 is not a fair evaluation. 
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In addition to the differential abundance validations reported in the main text we 

also tested several other statistical methods. These methods included ALDEx2 and 

DESeq2 (with default options and options specifically recommended for microbiome 

data) as well as Fisher’s exact tests to test for differences in prevalence between samples. 

The raw results of these analyses are reported in Additional File 1 (available on Nature 

Biotechnology website). The DESeq2 results with both option selections were extremely 

similar, so we excluded the results based on non-default DESeq2 options from 

subsequent analyses. Overall, the different statistical methods result in different sets of 

significant functions for both the MGS data and the predicted metagenomes. In addition, 

the F1 scores based on the different differential abundance tools can vary substantially 

(Figure 4.16). Fisher’s exact tests for differential prevalence between sample groupings 

have especially low F1 scores (ranging from 0.02-0.29 for PICRUSt2). We believe that a 

more in-depth comparison of these statistical tests is beyond the scope of this manuscript, 

but this result does nonetheless highlight the challenge of reliably reproducing 

biomarkers from predicted metagenomes. 
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Figure 4.16: Differential abundance and prevalence of PICRUSt2 predicted KEGG 

orthologs (KOs) agree only marginally, but best overall, with shotgun metagenomics 

data. The F1 score is plotted to summarize the agreement between the statistical testing 

of predicted KOs with KOs identified from HUMAnN2. PanFP and Tax4Fun2 are 

missing from the ALDEx2 and DESeq2 results because these statistical methods require 

count tables as input. Each of these statistical tests has a different null hypothesis, but the 

first three methods are all commonly used to perform differential abundance analyses on 

microbiome data. NA indicates cases where either the recall or precision could not be 

calculated (which means the F1 scores was not applicable). “Alt. MGS” refers to the 

alternative shotgun metagenomics processing pipeline. 

 

This challenge is especially apparent for the MetaCyc pathways (Figure 4.7), for 

which the PICRUSt2 predictions agreed only slightly better with the MGS pathways 

compared to the ASV shuffled datasets. The PICRUSt2 predicted pathways varied in 

precision and F1 score from 0.23-0.63 (mean=0.39; SD=0.19) and 0.23-0.62 (mean=0.41; 
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SD=17), respectively. The shuffled ASV-based pathway predictions had similar 

performance, ranging from 0.16-0.58 (mean=0.31; SD=0.19) and 0.22-0.60 (mean=0.34; 

SD=0.18) for the precision and F1 scores, respectively. These values are based on 

running Wilcoxon tests on the relative abundances of MetaCyc pathways. The alternative 

differential abundance (and prevalence) statistical methods resulted in similar 

concordances between the observed and ASV shuffled pathway predictions (Figure 4.9). 

 

4.2.2 - Functional Profiling of Inflammatory Bowel Disease using PICRUSt2 

To demonstrate the utility of PICRUSt2 in making functional inferences in a human 

health context where only amplicon sequencing is feasible, we profiled 27 ileal biopsy 

samples from subjects with Crohn’s disease (CD) and 20 control subjects (non-IBD). 

These data are a subset of the Inflammatory Bowel Disease Multi’Omics Database 

(Lloyd-Price et al. 2019), which provides “multi-omics” data to identify host and 

microbial features associated with inflammatory bowel disease (IBD). Our analysis was 

based on 16S rRNA gene libraries collected from biopsy samples in this dataset. 

Importantly, MGS could not practically be performed on these (or any typical) biopsy 

samples due to the overwhelming predominance of human host DNA, which competes 

with microbial DNA for sequencing reads. As such, MGS data was produced only for 

subject stool samples for this study, which are analyzed here in addition to accompanying 

human RNA-seq transcriptional profiles (from the same biopsies) and metabolomic 

profiles from paired stool. 

 We first analyzed these data with a typical testing framework for identifying 

significant microbial features: testing for significantly differentially abundant ASVs 

clustered by taxonomy as well as inferred pathway abundances. Based on this standard 

approach we identified no pathways that significantly differed between CD and non-IBD 

subjects (FDR < 0.1). However, five taxa were identified with a differential relative 

abundance between non-IBD and CD subjects based on a lenient FDR q-value cut-off of 

0.2. These included four taxa within the Clostridiales order, which were increased in 

relative abundance in control subjects, and the phylum Proteobacteria at higher relative 

abundance in CD subjects. 
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 We next focused on the predicted MetaCyc pathways inferred by PICRUSt2 for 

ASVs underlying the significantly differentially abundant taxa: (1) 35 significant 

Clostridiales ASVs and (2) 192 Proteobacteria ASVs. For each predicted pathway in the 

community, we calculated the ratio of the abundance of that pathway contributed (i.e. 

potentially produced) by ASVs within the group of interest compared to the pathway’s 

abundance contributed by all other ASVs. Based on this approach we identified three 

pathways significantly contributed by Proteobacteria (Figure 4.17a; Wilcoxon test FDR < 

0.05). In addition, the relative contribution to 78 pathways by Clostridiales significantly 

differed between CD and non-IBD subjects (Wilcoxon test FDR < 0.05). These results 

demonstrate how PICRUSt2 stratified outputs allow integration of functional predictions 

with taxonomic findings as opposed to treating the two independently as in non-

contributor stratified metagenomic analyses. 

 

 

Figure 4.17: Applying PICRUSt2 to Crohn’s disease cohort yields novel insights. (a) 

Predicted MetaCyc pathways significantly contributed by Proteobacteria in the ileum of 

subjects with Crohn’s disease (CD, n=27) compared to healthy controls (non-IBD, n=20) 

based on PICRUSt2 inference from 16S rRNA gene sequencing. These significant 

pathways are: PWY-5188 (tetrapyrrole biosynthesis I [from glutamate]), PWY-5189 
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(tetrapyrrole biosynthesis II [from glycine]), and PWY1G-0 (mycothiol biosynthesis). (b) 

The mean number of classified genera contributing to each of the 313 MetaCyc pathways 

identified in either the ileum 16S rRNA gene sequencing (by PICRUSt2) or shotgun 

metagenomics sequencing (MGS) of the stool of the same CD subjects. (c) The top 

classified genera contributing to the relative abundance of PWY-5188 based on 

PICRUSt2 predictions of 16S rRNA gene sequencing in ileum tissue or MGS of the stool 

of the same subjects. Only the top 10 contributing genera are shown. Genera of the same 

phylum are shades of the same colour (Firmicutes and Proteobacteria are shades of red 

and blue, respectively). (d and e) Taxonomic breakdown of genera contributing to the 

predicted relative abundance of (d) PWY-6572 and (e) PWY0-1533 across all CD 

samples. Unclassified genera were included in these stacked bar charts, unlike in panel c. 

Only the top ten genera contributing to either PWY-6572 or PWY0-1533 are labelled. 

 

 We next investigated whether analysis of stool MGS data rather than ileal 

PICRUSt2 predictions resulted in substantially different conclusions, either due to 

methodology or body site. The number of classified genera contributing to each pathway 

within CD subjects differed strikingly depending on whether the contributors were 

identified through ileal 16S rRNA gene sequencing or stool MGS (mean difference: 7.3; 

SD: 10.2; Figure 4.17b). While a small number of pathways were uniquely identified by 

stool MGS, for most pathways a greater number of contributing taxa were identified by 

PICRUSt2. This is most likely due to the much greater taxonomic diversity accessible 

through amplicon databases than through reference genome isolates. This result could 

also be due to biological differences between the stool and ileal samples. However, we 

also identified a similar trend in the paired 16S rRNA gene-MGS datasets, although the 

magnitude of difference depended greatly on sequencing technology and sampling 

environment (Figure 4.18). Not just the number of taxa, but also their identities, differed 

between stool metagenomes versus biopsy inferences. For instance, for the tetrapyrrole 

biosynthesis I (from glutamate) pathway (PWY-5188), the top contributors differ 

between phylum Proteobacteria in biopsy 16S rRNA gene profiles, while Akkermansia 

(in phylum Verrucomicrobia) is the top contributor identified in the MGS data (Figure 

4.17c). 
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Figure 4.18: The mean number of classified genera contributing for every MetaCyc 

pathway identified in either the 16S rRNA gene sequencing (by PICRUSt2) or shotgun 

metagenomics sequencing (MGS) of four representative datasets. (a) the Human 

Microbiome Project (HMP), (b) mammalian stool, (c) ocean, or (d) blueberry soil 

samples. This figure is meant to complement the analysis performed on the Crohn’s 

disease biopsy data, because in this case the comparison is made between 16S rRNA 

gene sequencing and MGS on the same samples. Note that the number of characterized 

genera could be affected by sampling environment as labelled here, but importantly these 

datasets also differ in several technological ways as outlined in Table 4.2. 

 

Last, we tested whether the PICRUSt2 predictions give novel insights into CD 

biomarkers by associating 207 predicted pathways with both 583 metabolites from paired 

stool metabolomic profiles and the ileal transcription levels for six human host genes of 

interest. We identified no significant associations between predicted pathway and stool 

metabolite levels, but 29 associations between the predicted pathway and ileal transcript 

levels (FDR < 0.1; Table 4.3). Some of these significant associations are driven largely 

by individual taxa. For example, since the predicted relative abundance of chondroitin 



 

 130 

sulfate degradation is entirely contributed by Bacteroides (Figure 4.17d), the association 

between this pathway and NAT8 expression (partial R=-0.58) is trivially due to the 

relative abundance of this genus. However, not all significant associations are driven by 

individual taxa. For instance, there is no single taxon driving the association of the 

predicted relative abundance of the methylphosphonate degradation I pathway with 

MMP3 expression (partial R=-0.62; Figure 4.17e). This association is an example of 

PICRUSt2 predictions yielding potentially novel insights beyond those of the originating 

amplicon-based taxonomic profiles. 

 

Table 4.3: Predicted pathways significantly associated (based on partial Spearman 

correlation [R]) with gene expression levels of Crohn’s disease biomarkers in ileal tissue 

of subjects with Crohn’s disease 
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4.2.3 - Validation of Fungal Metagenome Inference 

We next assessed PICRUSt2’s new capabilities for predicting metagenomes based on 

fungal amplicon sequencing of either the 18S rRNA gene or internal transcribed spacer 

(ITS) regions. Data used for these predictions included EC abundances from 294 fungal 

genomes from the 1000 Fungal Genomes Project that were publicly available as of 

November 16, 2018 and passed quality control criteria. Unlike the prokaryotic database, 

only a minority of 18S rRNA gene and ITS sequences were redundant across genomes 

(7.5% and 8.5%, respectively). A total of 7 and 8 phyla as well as 183 and 209 genomes 

are represented in the ITS and 18S rRNA gene databases, respectively (see Table 4.4 for 

the database counts at all taxonomic levels). 

 

Table 4.4: Counts of taxa in the tested internal transcribed spacer (ITS) and 18S rRNA 

gene databases 

 

 We first evaluated the performance of PICRUSt2 18S rRNA gene and ITS 

metagenome predictions by leave-one-out cross-validation of individual genomes. 

Spearman correlations were calculated between the predicted EC abundance profiles in 

each held-out genome and the EC abundances in the known genome. For both the 18S 

rRNA gene (Spearman Rho mean=0.821; SD=0.141) and ITS databases (Spearman Rho 

mean=0.822; SD=0.135), the predictions were significantly better than the null 

expectation (Wilcoxon test P < 0.001; Figure 4.19). Similar to the 16S rRNA gene-based 

validations, genome prediction accuracy decreased as reference genomes were artificially 

held out of the training dataset at increasing taxonomic scale, suggesting that overall 

accuracy is hampered for those lineages without comprehensive representative genomes. 
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Figure 4.19: Validating test fungi databases and key prokaryotic database discussed in 

main-text with genome holdout analysis. (a) fungi 18S rRNA gene-predicted Enzyme 

Commission (EC) Numbers, (b) fungi internal transcribed spacer (ITS)-predicted EC 

Numbers, and (c) 16S rRNA gene-predicted KEGG orthologs (KOs). The prokaryotic 

database is included here as a point of reference for the fungi databases. For each 

database shown above, predictions were made for all genomes within each clade at a 

given taxonomic level after pruning all those genomes from the reference tree. The mean 

Spearman correlation coefficient between the predicted and expected gene family 

abundances was then calculated for each clade. The “Assembly” level refers to 

individual genomes. The “Assembly Null” category corresponds to the correlation 

between the gene family abundances for each genome and the mean abundance of gene 

families across all genomes. The ** annotation indicates a significant Wilcoxon test (P < 

0.001). Note that for the prokaryotic KO analysis that a maximum of 100 clades at each 

taxonomic level were selected randomly for this analysis to decrease computation time. 

In this plot the points correspond to outliers outside the boxplot whiskers only and all 

other points are not shown. 

 

Next, we evaluated the performance of fungal EC predictions on two amplicon 

sequencing datasets with paired MGS data using the same approach as with 16S rRNA 

gene predictions. The two validation datasets used were the same 22 blueberry soil 
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samples described in the main-text, which also underwent 18S rRNA gene sequencing 

(Yurgel et al. 2017), and eight wine fermentation internal transcribed spacer (ITS1) 

sequencing samples (Sternes et al. 2017). EC predictions for both of these datasets were 

significantly more similar to the MGS gold-standard compared to the null expectation 

based on correlations (Figure 4.20a; P=9.5x10-7 and P=7.8x10-3 for the blueberry soil and 

wine fermentation datasets respectively). However, the correlations observed for these 

datasets was substantially lower than for the 16S rRNA gene-based validations, which is 

to be expected as these metagenomes include a substantial amount of functions from non-

fungal origins. The mean correlations in the blueberry soil dataset were 0.340 (SD: 0.016) 

and 0.365 (SD: 0.019) for the null expectation and PICRUSt2 predictions, respectively. 

There was a larger mean difference for the wine fermentation dataset where the mean 

correlations were 0.492 (SD: 0.004) and 0.611 (SD: 0.028) for the null expectation and 

PICRUSt2 predictions, respectively. Interestingly, the correlations based on predicted 

MetaCyc pathway abundances were slightly lower than the null values for the blueberry 

soil 0.461 (SD: 0.009) and wine fermentation 0.501 (SD: 0.008) datasets (Figure 4.20b). 

 

 

Figure 4.20: PICRUSt2 18S rRNA gene and internal transcribed spacer predictions 

exceed null prediction accuracy. (a) Spearman correlation coefficients between 

amplicon predicted Enzyme Commission number abundances and gold-standard shotgun 

metagenomic (MGS) profiles from the same biological samples. (b) Spearman 
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correlation coefficients between amplicon-predicted MetaCyc pathway abundances and 

MGS on the same biological samples. For panels a and b, the P-values of paired-sample, 

two-tailed Wilcoxon tests is indicated above each tested grouping (* and ** correspond 

to P < 0.05 and P < 0.001, respectively). (c) The Spearman correlation coefficients as 

shown in panel a re-plotted against the percent of non-animal and non-plant eukaryotic 

DNA within each sample. The blueberry soil dataset consists of 22 18S rRNA gene 

sequencing samples and the wine fermentation dataset consists of eight internal 

transcribed spacer region one (ITS1) sequencing samples. (d) The relative abundance of 

significantly informative EC numbers (P < 0.001) in a Random Forest model for 

distinguishing blueberry soil and root samples by sample type. Only significant EC 

numbers with a mean relative abundance greater than 0.15% are shown. The EC 

numbers shown correspond to carbonyl reductase (NADPH) (EC:1.1.1.184), choline 

dehydrogenase (EC:1.1.99.1), mannan endo-1,6-alpha-mannosidase (EC:3.2.1.101), 

adenosine deaminase (EC:3.5.4.4), chaperonin ATPase (EC:3.6.4.9), and carbonate 

dehydratase (EC:4.2.1.1). There are 26, 33, and 32 samples for the bulk, rhizosphere 

(rhizo), and root environments, respectively. 

 

One potential factor affecting these results is the percent of eukaryotic DNA within the 

MGS data. A low percent of eukaryotic DNA would result in prokaryotes mainly 

contributing to gene family abundances. The percent of eukaryotic DNA (after excluding 

plant and animal DNA) within the MGS datasets differed dramatically between the 

blueberry soil (mean: 8.17%; SD: 5.82) and wine fermentation datasets (mean: 96.72%; 

SD: 1.44; Figure 4.20c). This low percent of eukaryotic DNA in the blueberry soil dataset 

could partially account for the relatively poor performance we observed. 

To investigate whether the PICRUSt2 predictions for the blueberry soil dataset 

can nonetheless distinguish sample groupings, we ran PICRUSt2 on 18S rRNA gene 

sequencing data from additional blueberry soil samples with no matching MGS data as 

well as blueberry root samples from the same sampling location (Yurgel et al. 2018). We 

then generated a Random Forest model to identify the most informative predicted EC 

numbers that distinguish samples by whether they were taken from a bulk soil, 

rhizosphere, or root environment. This model resulted in a classification accuracy of 
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68%, which was substantially better than the random expectation (accuracy 36%) and 

identified 32 significantly informative EC numbers (P < 0.001; Figure 4.20d). 

Importantly, although this model was more accurate than random, this analysis does not 

prove that the predicted EC numbers themselves were accurately predicted. Instead, these 

combined analyses demonstrate a proof-of-concept that fungal metagenomes can be 

predicted more accurately than expected by chance. However, due to the low correlation 

values we observed, these predictions are unlikely to provide reliable biological insights 

in practice. 

 

4.2.4 – Relative Contributions of PICRUSt2 Updates to Improved Performance 

After submitting our manuscript describing PICRUSt2 my supervisory committee 

requested that I do an additional analysis to better compare the relative contributions to 

performance of the key improvements made in PICRUSt2. Although this was not 

included in the published manuscript, this analysis provides valuable insight into these 

improvements. 

 I re-ran PICRUSt2 on the seven 16S validation datasets used in the manuscript 

while varying three settings: (1) the reference database, (2) the HSP approach, and (3) the 

tree-building approach. The reference databases corresponded to the default PICRUSt2 

database files and the PICRUSt1 database files formatted for PICRUSt2 (including the 

Greengenes phylogenetic tree and multiple-sequence alignment). The two HSP 

approaches compared were maximum parsimony (MP; the default in PICRUSt2) and 

phylogenetic independent contrasts (PIC; the default in PICRUSt1). Last, we compared 

the utility of running sequence placement with EPA-ng to re-building the tree for each 

dataset with FastTree. We compared the concordance between the MGS-based KO 

profiles and the predicted profiles output by PICRUSt2 based on Spearman correlations. 

 The PICRUSt1 database includes many fewer KOs compared to the updated 

database in PICRUSt2 so I compared the PICRUSt2 outputs based on the above input 

settings based on first the KOs that overlap between both tools and also KOs found in 

PICRUSt2. In both cases, the KOs evaluated were restricted by those that could be output 

by HUMAnN2 for the matching MGS data as well, as in the main text. 
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 The predicted profiles based on the PICRUSt1 and PICRUSt2 database files differ 

in almost every case for both human (Figure 4.21) and non-human datasets (Figure 4.22). 

In particular, using the PICRUSt2 database provides a mean performance increase of 

4.53% (SD=3.34%) across all samples and input settings. Although the concordance 

based on the null expectations differ in several cases, this is inconsistent: overall the null 

expectations are similar. Based on this set of restricted KOs that are present in each 

database and in HUMAnN2 (6,379), there is little shift in the concordance of the 

predicted profiles based on the HSP and tree-building settings. 

  

 

Figure 4.21: PICRUSt2 KO prediction performance on human-associated datasets 

based on PICRUSt1 and PICRUSt2 default databases. Spearman correlations between 

predicted KEGG ortholog (KO) abundance profiles and shotgun metagenomics-based 

KO profiles computed with HUMAnN2. In contrast to the main text only PICRUSt2 is 

being compared in this figure. However, different database inputs are specified: 

PICRUSt1 (red) and PICRUSt2 (green). The null expectation was computed separately 

for each database. The hidden-state prediction and tree-building approaches are also 

varied across these results. The hidden-state prediction approach was either maximum 

parsimony (mp) or phylogenetic independent contrasts (pic). The tree-building approach 

was either sequence placement into the reference tree with EPA-ng (epa_ng) or building 

a de novo tree with FastTree (fasttree). 
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Figure 4.22: PICRUSt2 KO prediction performance on non-human-associated datasets 

based on PICRUSt1 and PICRUSt2 default databases. These are the results for the non-

human datasets based on the same comparisons described in Figure 4-21. 

 

 Clearer differences are apparent when this comparison includes all 9,915 KOs that 

could be output by both PICRUSt2 and HUMAnN2. In particular, the MP hidden-state 

prediction approach results in higher correlations for both human (Figure 4.23) and non-

human (Figure 4.24) associated datasets. The mean percent increase across all samples in 

the mp.epa_ng output profiles compared to pic.epa_ng profiles was 6.43% (SD=3.02%). 

This increased performance was also largely observed for predicted profiles based on 

FastTree (mean increase of 5.01% [SD=2.55%]). However, there were no consistent 

differences between MP-based predictions based on either EPA-ng or FastTree built 

phylogenetic trees (mean increase of 0.76% [SD=2.37]). This result highlights that based 

on these validation datasets that sequence placement did not provide any advantage over 

simply creating a de novo phylogenetic tree. In addition, the key improvement that 

provided a boost to performance, in addition to the new database, is the use of maximum 

parsimony for HSP by default in PICRUSt2. 
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Figure 4.23: PICRUSt2 KO prediction performance on human-associated datasets 

based on varying parameter settings. Spearman correlations between predicted KEGG 

ortholog (KO) abundance profiles and shotgun metagenomics-based KO profiles 

computed with HUMAnN2. The hidden-state prediction and tree-building approaches are 

varied across these results. The hidden-state prediction approach was either maximum 

parsimony (mp) or phylogenetic independent contrasts (pic). The tree-building approach 

was either sequence placement into the reference tree with EPA-ng (epa_ng) or building 

a de novo tree with FastTree (fasttree). 

 

 

 

 

Figure 4.24: PICRUSt2 KO prediction performance on human-associated datasets 

based on varying parameter settings. Spearman correlations between predicted KEGG 
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ortholog (KO) abundance profiles and shotgun metagenomics-based KO profiles 

computed with HUMAnN2. These are the results for the non-human datasets based on the 

same comparisons described in Figure 4-23. 
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Chapter 5 – Phylogenetic Organization of Metagenome Signals 

The below sections correspond to a draft manuscript soon to be submitted for publication. 

I am the lead author of this manuscript and conducted all analyses and programming. I 

was also involved with formulating the underlying ideas for this project in collaboration 

with the supervisors of this work: Dr. Elhanan Borenstein (Tel Aviv University) and Dr. 

Morgan Langille (Dalhousie University). The methods section for this manuscript is 

presented separately in Chapter 2.  

 

5.1 - Abstract 

Microbiome functional data are frequently analysed to identify associations between 

microbial gene families and sample groupings of interest. This is most commonly 

performed with approaches focused on the metagenome-wide relative abundance of 

microbial functions. Although this method can provide valuable insights, these 

differential abundance tools often provide drastically different profiles of significant 

associations. In addition, it is impossible to distinguish different possible explanations for 

variation in community-wide functional profiles by looking at functions alone. To help 

address these problems, we have developed a novel framework to expand taxonomic 

balance tree approaches to enable enriched functions to be more accurately identified. 

The key focus of our approach is on identifying functions that are consistently enriched in 

sample groupings amongst independent lineages of taxa. Our implementation of this 

framework is available in the R package POMS. Based on simulated data we demonstrate 

that POMS more accurately identifies gene families under selection compared to a 

representative differential abundance approach. POMS also identifies enriched gene 

families in several case-control metagenomics datasets that are putative targets of strong 

selection on the overall microbiome. This framework is unable to identify all likely 

functional enrichments, but the top enrichments are more interpretable and conservative 

than existing differential abundance methods. More generally, POMS is a novel method 

for exploring microbiome functional data, which could be used to complement standard 

analyses. POMS is freely available at: https://github.com/gavinmdouglas/POMS. 

https://github.com/gavinmdouglas/POMS
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5.2 - Introduction 

Microbiome sequencing has been applied to characterize myriad environments and is 

typically analyzed based on the relative abundance of microbial features. These features 

are split into taxa, the microbes present, and functions, the genes they encode and 

pathways that might be active. Both data types have been leveraged to make valuable 

observations, but they are typically analyzed independently of each other because joint 

analyses of these datatypes are challenging. However, linking these data types is often 

required to make coherent interpretations of microbiome data. Nonetheless, as previously 

noted (Manor & Borenstein 2017b), due to the complexity of these data they are often 

only linked anecdotally. In particular, mere co-occurrence between particular taxa and 

functions is often discussed as potential evidence of a direct link between them. 

This approach is unreliable because different genic relative abundances between 

communities can be driven by numerous processes that cannot be distinguished by 

considering functional profiles alone. For example, increases in the relative abundance of 

Escherichia coli are associated with traveller’s diarrhea (Nakamura et al. 2011). 

However, the corresponding microbial functions that increased in this case would be 

similar to those increased if a wider range of Enterobacteriaceae also increased. For 

instance, shifts in colonocyte metabolism have been associated with blooms of facultative 

anaerobes in general, including Enterobacteriaceae, at the expense of obligate anaerobes 

(Litvak et al. 2018). It would be difficult to distinguish these explanations for increased 

abundances of Enterobacteriaceae-related functions based on analyzing such functional 

profiles alone.  

Instead, information on the taxonomic contributors to variable functions is needed 

to interpret these signals. One approach for addressing this issue is to identify the 

taxonomic contributors to functional shifts identified by differential abundances tests. 

FishTaco is a useful tool for generating this information (Manor & Borenstein 2017b). 

However, a limitation of FishTaco is that it is a post-hoc approach that is applied after 

identifying significant microbial functions. Ideally functional and taxonomic data would 

be integrated while testing for differential functions to better identify strong enrichment 

candidates. In particular, in cases where a small number of closely related taxa encode a 

function linked with a given context, it is challenging to identify a clear functional 
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candidate driving the association. In other words, closely related taxa often share many 

functions in common and so it is difficult to hypothesize which functions are pertinent to 

the given context without extraneous information. In contrast, clearer interpretations of 

the data are possible by first organizing microbial functions by how they are linked with 

differentially abundant taxa. 

One method that explicitly integrates functional and taxonomic data is 

phylogenize (Bradley et al. 2018; Bradley & Pollard 2020). This approach identifies 

functional associations based on the prevalence of taxa that encode each gene family. 

This is performed with phylogenetic linear models, which account for genetic similarity 

of co-occurring taxa due to their shared evolutionary history. Significant gene families 

and pathways identified by phylogenize as being contributed by a diverse set of taxa from 

within a given phylum. Although this approach is a key improvement over past methods, 

it also has limitations. In particular, it focuses solely on the binary presence/absence of 

gene families and does not incorporate taxa relative abundances. 

This choice to focus on presence/absence profiles rather than abundances is 

largely because raw microbiome data cannot be used with standard statistics due to their 

compositionality. Fortunately, there is growing interest in improved compositional 

approaches for analyzing microbiome data. Analyzing ratios of microbiome feature 

relative abundances rather than independent features has recently been proposed as a 

solution to the compositionality problem inherent in sequencing data (Gloor et al. 2016; 

Morton et al. 2019). One major challenge of this approach is that it is unclear which 

features should be used for stably computing these ratios. Without a clear reference 

feature to compare to, one proposed solution has been to compare ratios of taxa on each 

side of every node in a phylogenetic tree (Silverman et al. 2017). These ratios are 

calculated based on the isometric log-ratio transformation between taxa on each side of a 

node. This general approach is now commonly referred to as analyzing balance trees 

(Morton et al. 2017). The downside of these approaches is that although they are 

statistically robust, they are less biologically satisfying because it is often unclear how to 

interpret differences in the ratio of taxon abundances. Nonetheless, it may be that 

inferences based on reference frames are the primary type of findings that can be reliably 

identified with microbiome sequencing data (Morton et al. 2019). 



 

 143 

 Here, we introduce the idea of testing for functional enrichment between 

reference frames, and specifically based on phylogenetic-based reference frames. This 

approach has the added benefit of providing improved interpretability over taxonomic 

reference frames alone. Our approach is focused on identifying consistent functional 

enrichments over phylogenetic balance trees, which is implemented in the Phylogenetic 

Organization of Metagenome Signals (POMS) R package. Although it is impossible to 

absolutely distinguish scenarios where functional enrichments are biologically relevant or 

occurring by chance, it is possible to leverage taxonomic data to give more weight to one 

scenario over another. In particular, it is possible to identify cases where multiple taxa 

that encode a given function are consistently associated in the same direction with a 

sample grouping. Such cases provide more support to the scenario where specific 

functions are under selection rather than just hitchhiking with taxa that might be 

blooming for other reasons. 

POMS is primarily intended for identifying such cases, which are potential 

microbiome-wide targets of natural selection. The key assumption of this approach is that 

gene families and pathways that provide an advantage in a specific context are encoded 

by a range of phylogenetically disparate taxa. This means that many gene families with 

limited taxonomic breadth cannot be identified as highly enriched based on this approach. 

Therefore, POMS is not a replacement for current approaches, but is instead intended as a 

complementary tool. POMS also enables exploratory data analysis of all functional 

enrichments between sample groupings over a phylogenetic tree of taxa. 

 We demonstrate the POMS framework outperforms existing differential 

abundance tools in simulated datasets. In particular, POMS is a better approach for 

identifying gene families under strong selection across multiple lineages, which are 

challenging to identify using current ‘bag-of-genes’ approaches for metagenome 

analyses. POMS also identifies several gene families that are strongly associated with 

disease state in three case-control datasets. These top enriched gene families are 

reasonable candidates as potential targets for strong selection, which highlights that 

POMS provides improved interpretability over existing methods. Although our approach 

has limitations, it is a valuable proof-of-concept that integrating functional enrichments 

into reference frame analyses provides improved interpretation and novel insights. 
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5.3 – Results 

5.3.1 – POMS Workflow 

Phylogenetic Organization of Metagenome Signals (POMS) is a novel bioinformatics 

workflow for identifying microbial gene families linked with sample groupings of 

interest. The POMS R package is available at https://github.com/gavinmdouglas/POMS. 

The key assumption of this approach is that gene families and pathways that provide an 

advantage in a specific context are encoded by a range of phylogenetically disparate taxa. 

 The POMS workflow implements a modified balance tree framework for 

analyzing compositional data (Figure 5.1). The isometric log-ratios (ILR) of the relative 

abundances of all taxa on the left-hand and right-hand side of each node is first 

computed, which are referred to as balances (see Methods). Nodes with significantly 

different balances between sample groupings are then identified based on Wilcoxon rank-

sum tests. Because the ILR cannot be reliably computed based on few taxa, by default we 

restrict the set of evaluated nodes to those with at least 10 tips (e.g. genomes) on both the 

left and right-hand of the node. Our extension to the general balance tree approach 

includes three steps after identifying these significant phylogenetic balances. First, for 

each significant node we determine whether the ILRs are significantly higher or lower for 

the focal sample group, which throughout this manuscript typically correspond to disease 

samples. We then compute Fisher’s exact tests for each gene family based on the counts 

of taxa that either do or do not encode the gene family on either side of the significant 

node. This step also allows us to determine whether a significant gene family is either 

enriched or depleted in genomes that are at relatively higher abundance in the focal 

sample group. Last, we summarize this information over all significant nodes and gene 

families to categorize gene families that are more likely to specifically be under selection. 

The key summary metric is the number of significant nodes where the gene family 

is either enriched or depleted from the perspective of the focal group. This is described as 

genes that are positively or negatively enriched, respectively, throughout this work. 

Significantly enriched gene families can be identified based on a pseudo-null distribution 

approach. This approach computes the probability of acquiring as equally extreme or 

greater enrichment pattern for a given gene family based on a random set of significant 

nodes (see Methods). This approach provides insight into highly enriched gene families 

https://github.com/gavinmdouglas/POMS
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but is imperfect (see Discussion). A simpler alternative approach, particularly for 

exploratory analyses, is to use hard cut-offs of enrichment for defining highly enriched 

gene families.  

 

 

Figure 5.1: POMS workflow overview. (a) Significant nodes are first identified based on 

differing sample balances, which represent the isometric log-ratio of the abundances of 

all taxa between the left and right-hand side of each node. Genes enriched on one side of 

each significant node compare with the other side are then identified. The direction of 

this enrichment refers to whether the gene is enriched taxa that are relatively higher in 

one sample group over another. In the above example, gene Z is positively enriched in 

taxa that are at relatively higher levels in case samples (based on the balances at this 

node). (b) Patterns of enrichment for a given gene are then summarized across all 

significant nodes on the tree. This can be done by visualizing the enrichments on the tree 

itself or alternatively by analyzing summary metrics, such as the absolute enrichment, 

which are discussed in the main text. Our approach for visualizing this data throughout 

this manuscript is to colour nodes depending on the enrichment pattern for a given gene. 

Grey nodes are significantly different nodes that do not show differential enrichment of 

the gene. Blue and red nodes correspond to those that are enriched on the side of the 

node that is relatively higher in control and case samples, specifically. 

The POMS workflow is written modularly and is agnostic to the processing 

pipeline used to generate the input files. The key required input files are tables of 

taxonomic and functional abundances and a fully-resolved phylogenetic tree of the taxa. 

The functional abundance table could be based on MAGs, known genome annotations for 

strains identified in an environment, or alternative custom analyses. Metagenome 
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predictions based on 16S rRNA gene sequencing could also be used as input. Because 

POMS is modular, users can bypass or use alternative approaches for custom analyses. 

 

5.3.2 – Validating POMS with MAG-Based Simulated Data 

Our first approach for validating POMS focused on in silico alterations to samples 

containing metagenome-assembled genomes (MAGs). The MAGs from MGS control 

samples, with corresponding relative abundances and phylogenetic tree, were taken from 

a large MGS meta-analysis (Almeida et al. 2019). These MAGs had previously been 

annotated with KEGG orthologs (KOs) (Kanehisa et al. 2016), which were the gene 

families we focused on for this analysis. We subsampled 704 control samples into two 

equally sized groups 500 times to create random test datasets. As expected, POMS 

detected extremely few significantly different nodes and functions across these replicates. 

This is reflected by the observation that only 0.14% of all tested KOs were enriched at 

any significant nodes, and only at a maximum of two nodes. Similarly, a more standard 

approach for performing differential abundance testing, the Wilcoxon rank-sum test, 

identified no significantly different functions based on these raw random datasets (P < 

0.05). 

 We then conducted two straight-forward sets of simulations to compare the 

performance of POMS and Wilcoxon rank-sum tests (Figure 5.2). We first randomly 

selected a KO encoded by at least one genome for each of the previous 500 random test 

datasets, which we refer to as the focal genes. To simulate selection acting upon the 

genomes encoding a focal gene we multiplied the relative abundance of all genomes that 

encode the gene by ten-fold. This was performed in one sample group only and 

corresponds to the ‘focal gene’ replicates. We also conducted similar simulations where 

instead of genomes that encode the focal gene being under selection, random genomes 

instead underwent selection. For each matching focal gene replicate, the same number of 

random genomes were perturbed as encode the gene. These profiles are referred to as the 

‘random taxa’ results below. In each case, we applied POMS and the Wilcoxon rank-sum 

test to identify KOs that differed between the two sample groupings for each simulation 

replicate. 
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Figure 5.2: Workflow diagram for metagenome-assembled genome-based simulations. 

Intermediate outputs are indicated in grey boxes and final simulation outputs are 

indicated in coloured boxes. 

For these analyses we identified enriched KOs based on hard cut-offs. Below we 

refer to functional enrichment interchangeably with statistical significance for ease of 

reading, but importantly the highly enriched genes output by POMS are based on 

identifying outliers above the selected cut-off rather than a statistical test. Due to 

variation in dataset characteristics the selection of specific cut-offs must be performed 

separately for each new dataset when using this approach. Based on the unperturbed 

datasets, POMS did not identify KOs that were consistently enriched in three nodes 

positively or three nodes negatively (and never in the opposite direction); therefore, we 

primarily used this cut-off for binning enriched genes for this analysis. However, we also 

tested two other cut-offs to ensure our results were robust to this selection. The first 

alternative cut-off was to classify enriched genes as those enriched in three or more nodes 

in one direction and at most one node in the opposite direction. The final alternative cut-

off evaluated was to classify enrichment as KOs enriched in two or more nodes in one 

direction and never in the opposite direction.  

Significant nodes were first identified and then, based on the above cut-offs, 

significant KOs were also identified for each simulation replicate. For the random taxon 

simulations there was no correlation between the number of significant nodes per 

replicate and the number of significant KOs (Spearman R=-0.055; P=0.26; Figure 5.3a). 
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Note that this correlation was computed only for replicates with at least five significant 

nodes, because there is a trivial positive association at lower numbers simply because at 

least some significant nodes are required for gene families to be identified as enriched 

with POMS. In contrast, there is negative relationship between the number of significant 

KOs and the number of significant nodes within the focal gene simulations (Spearman 

R=-0.54; P < 2.2*10-16; Figure 5.3b). In other words, under this simulation approach, 

replicates with the highest number of significant KOs were associated with fewer 

significant nodes. This observation is consistent with the number of significant KOs 

under the focal gene simulations increasing largely due to other factors besides the 

number of significant nodes. For instance, the proportion of significant KOs was also 

weakly correlated with the number of MAGs that encoded the focal gene per replicate 

(Spearman’s correlation coefficient = 0.127; P=0.004). This overall finding of a negative 

association between the proportion of significant KOs and the number of significant 

MAGs was robust to alternative cut-offs, (Figure 5.3, panels c – f). 

 

 

Figure 5.3: Proportion of significant gene families compared with the number of 

significant nodes in MAG-based simulations based on POMS cut-offs. Results are 
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shown separately for all (a, c, and e) taxa and (b, d, and f) gene-based simulation 

replicates. Each point corresponds to one of 500 replicates. Pearson correlation 

coefficient and P-values are indicated in each panel. Cut-off #1, the primary cut-off used 

for these evaluations, refers to defining enriched KOs as those enriched in at least three 

significant nodes in the same direction and never in the opposite direction. Cut-off #2 

(panels a and b) refers to defining enriched KOs as those enriched in at least three 

significant nodes in the same direction and at most once in the opposite direction. Cut-off 

#3 (panels c and d) refers to defining enriched KOs as those enriched in at least two 

significant nodes in the same direction and never in the opposite direction. MAG: 

metagenome assembled genome; KOs: KEGG orthologs. 

 

We next compared the proportion of significantly different KOs identified based 

on POMS and a standard Wilcoxon rank-sum test (hereafter referred to as Wilcoxon test). 

The Wilcoxon test is a representative of the most common framework for performing 

differential abundance testing on microbiome functional data, which is to focus on the 

relative abundance of genes from across the community. The proportion of significantly 

different KOs in the random taxa simulated profiles was ten-fold lower based on POMS 

(mean=0.044; standard deviation [SD] = 0.040) compared with the Wilcoxon test 

approach (mean: 0.441; SD=0.244) (Figure 5.4a). This overall trend also held for the 

focal gene simulated profiles as well (Figure 5.4b). However, the random taxa and focal 

gene simulated profiles resulted in substantially different POMS results, whereas there 

was little difference based on applying Wilcoxon tests. More specifically, the proportion 

of significant KOs in the focal gene simulated profiles for POMS (mean=0.109; 

SD=0.084) was significantly higher compared with the random taxa simulated profiles 

(mean=0.044; W=181,877; P < 10-15), and represents a 148% increase. In contrast, this 

same proportion based on applying Wilcoxon tests to the focal gene simulated profiles 

(mean=0.428; SD=0.242) was not significantly higher compared with the random taxa 

simulated profiles (W=117,467; P=0.099). As above, these overall results were robust to 

the cut-off choice for identifying significant KOs with POMs (Figure 5.4, panels c-f). 
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Figure 5.4: Proportion of significant gene families identified in MAG-based 

simulations based on POMS with primary cut-off compared with a Wilcoxon test. 

Results are shown separately for all (a, c, and e) taxa and (b, d, and f) gene-based 

simulation replicates. Each point corresponds to one of 500 replicates. The marginal 

distributions are plotted on the x and y-axes. Cut-off #1, the primary cut-off used for 

these evaluations, refers to defining enriched KOs as those enriched in at least three 

significant nodes in the same direction and never in the opposite direction. Cut-off #2 

refers to defining enriched KOs as those enriched in at least three significant nodes in the 

same direction and at most once in the opposite direction. Cut-off #3 refers to defining 

enriched KOs as those enriched in at least two significant nodes in the same direction 
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and never in the opposite direction. MAG: metagenome assembled genome; KOs: KEGG 

orthologs. 

 We next evaluated the POMS output by determining the relative ranking in 

enrichment of the focal gene for each simulation replicate compared with all other KOs. 

Because under our straight-forward focal gene-based simulations the focal gene was the 

only direct target of selection, it would be expected to be highly ranked. KOs were ranked 

in the POMS output based on the absolute difference in the number of nodes positively 

and negatively enriched for each KO, which we refer to as the absolute enrichment. In the 

Wilcoxon test output, the KOs were ranked based on P-value. A drastic difference can be 

seen through ranking the resulting KOs based on these approaches (Figure 5.5, panels a 

and b). Specifically, the focal genes in the POMS output are ranked significantly higher 

(mean=0.204 percentile; SD=0.262 percentile; W=41,406; P < 10-15) compared with the 

Wilcoxon test output (mean=0.535 percentile; SD=0.262 percentile). In addition, the 

variation across all replicates is largely associated with the number of MAGs that encode 

the focal gene (Figure 5.5, panels c and d). In the POMS results the focal genes are 

ranked highly overall with the exception of focal genes encoded by either very few or the 

majority of MAGs. For example, focal genes identified by POMS with relative rankings 

above the top 1% of KOs are encoded by a median of 38 MAGs. In addition, focal genes 

encoded by more than 2,300 MAGs are ranked qualitatively lower in the POMS output. 

These trends are partially reversed for the Wilcoxon test results; focal genes in the top 1% 

of KOs are encoded by a median of 22 MAGs. These relative ranking analyses, in 

addition to the supporting results presented above, indicate that POMS performs better in 

this simulated context compared to standard Wilcoxon tests. 
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Figure 5.5: Ranking percentiles of KOs in both POMS and Wilcoxon test gene-based 

simulated profile outputs. The focal gene was the KO under selection randomly selected 

for each simulation replicate. The ranking of all KOs was computed based on the 

enrichment effect size and P-value for POMS and the Wilcoxon test approach, 

respectively. The ranking of the focal gene is reported as its percentile in the distribution 

of all KOs (not just significant KOs) to illustrate where it lies on this distribution (panels 

a and b). Low ranking percentiles correspond to KOs that are identified as amongst the 

most enriched genes by the tool. Each point corresponds to a different simulation 

replicate, which were based on different focal genes. MAG: metagenome assembled 

genome; KOs: KEGG orthologs. 
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5.3.3 – Validating POMS with Reference Genome-Based Simulated Data 

The above observations based on the MAG-based simulations yielded valuable insights, 

but the quality of published MAGs is often questionable (Shaiber & Eren 2019). To 

ensure that misassembled MAGs were not driving our results, we repeated the key steps 

of our simulation analysis based on reference genomes. In particular, we investigated 

whether the drastic difference in rankings of the focal genes between POMS and the 

Wilcoxon test approach could be reproduced in an independent dataset of 3000 reference 

genomes. We simulated the abundance of these reference genomes based on a zero-

inflated beta-distribution model for 1000 samples split into two equally sized groups. We 

created four such simulated datasets based on different parameter selections (see Methods 

for settings descriptions), which had a large impact on the sparsity and inter-sample 

overlap (Figure 5.6a). At one extreme (Setting 1), genomes are present at a mean of 385 

samples (38.5%), while at the other extreme (Setting 4) they are present in an average of 

2.35 samples (0.235%). These simulated datasets represent different partitions of the 

MAG-based abundance profiles analysed in the previous simulation analyses (Figure 

5.6a), which had a mean MAG prevalence of 6.81%. We then repeated the focal gene-

based simulation, including applying POMS and Wilcoxon tests, over 100 replicates for 

each of the four datasets. The ranking percentiles of focal genes varied substantially 

depending on the abundance table simulation approach (Figure 5.6b). In all cases the 

ranking percentiles of focal genes was lower in the POMS output (P < 0.0006), with one 

exception (Setting 2; W=4,563; P=0.285).   
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Figure 5.6: Genome prevalence and ranking percentiles of focal genes varies across all 

simulated datasets. (a) The prevalence (%) of each genome (or MAG) across all samples 

in a dataset. (b) The ranking percentiles for each simulated dataset setting, which differs 

depending on the data characteristics. The reference genome-based simulated datasets by 

four parameter settings (see Methods), which greatly affect genome prevalence. The 

“MAG-based sim.” group corresponds to the (a) the original sample abundances 

leveraged for the MAG-based simulations and (b) the ranking percentile output based on 

the primary POMS cut-off. This category is displayed to enable clear comparisons with 

the MAG-based simulation results reported in the previous section. MAG: metagenome 

assembled genome. 

 

We next investigated the relationship between the number of genomes encoding 

the focal gene and the relative ranking of that gene. Similar to the MAG-based simulation 

results, focal genes at high ranking percentiles (i.e. not identified as highly enriched) in 

the POMS output were largely encoded by very few or almost all genomes in the dataset 

(Figure 5.7 and Figure 5.8). This effect became especially clear with simulated datasets 

with lower genome prevalence (e.g. Setting 4). In contrast, the focal gene ranking 

percentiles based on Wilcoxon test P-values displayed a distinct relationship with the 

number of encoding genomes at higher genome prevalence settings (Figure 5.7 and 
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Figure 5.8). In particular, these focal gene ranking percentiles were low overall with rare 

exceptions. For example, all focal gene were ranked lower than the 10th percentile under 

Setting 2 except for a subset of KOs encoded by more than 2,455 genomes (81.83% of all 

genomes). Notably, the Wilcoxon test focal gene ranking for Setting 2 (mean=2.5%; 

SD=9.7%) were at significantly lower percentiles compared with those at Setting 1 

(mean=3.5%; SD=6.5%; W=6,677; P=3.8*10-5), indicating that this method performs 

best with intermediate feature prevalence. For Settings 3 and 4, which represent highly 

sparse datasets, the focal gene ranking percentile showed a clear linear relationship with 

the number of encoding genomes. This relationship is particularly clear for the sparsest 

simulated dataset, which was under Setting 4, which is highly linearly correlated (Pearson 

R=0.968; P < 10-15). Although this relationship is more simplistic, it captures the key 

signal represented by the matching analysis for the MAG-based simulations (Figure 

5.5c). Overall, these reference genome-based simulation results are consistent with the 

key observations from the MAG-based simulations. In addition, the reference genome 

simulations based on tables of varying sparsity highlight how data characteristics can 

have substantial effects on the performance of both POMS and the Wilcoxon test. 
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Figure 5.7: Ranking percentiles of focal gene based on most extreme reference 

genome-based simulation settings. Visualization of the ranking percentiles for Setting 1 

and 4 illustrates the overall shift for both methods. The ranking percentiles of focal genes 

based on Wilcoxon test P-values of all KOs are indicated in green (panels a and c). The 

ranking percentiles of focal genes based on the absolute enrichment all KOs in the POMS 

output are indicated in blue (panels b and d). KO: KEGG ortholog; MAG: metagenome 

assembled genome. 
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Figure 5.8: Ranking percentiles of focal gene based on two intermediate reference 

genome-based simulation settings. Visualization of the rankings for Setting 2 and 3 helps 

illustrate the transition in relative ranking percentiles distributions depending on 

simulation approach. The ranking percentiles of focal genes based on Wilcoxon test P-

values of all KOs are indicated in green (panels a and c). The ranking percentiles of 

focal genes based on the absolute enrichment all KOs in the POMS output are indicated 

in blue (panels b and d). KO: KEGG ortholog; MAG: metagenome assembled genome. 
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5.3.4 – Exploring Human Gut Metagenome Assembled Genomes Dataset 

We next investigated how POMS performs on actual metagenomics datasets. We focused 

on a large dataset of MAGs compiled from human-associated microbiomes that were 

published as part of a recent large-scale meta-analysis (Almeida et al. 2019). We used 

subsets of this large dataset corresponding to three disease datasets: two obesity datasets 

and one colorectal cancer dataset (see Methods). 

 The primary obesity dataset we analyzed included 477 obese and 257 control 

individuals that harbour a total of 1,401 MAGs in their stool microbiomes. We applied 

POMS to this dataset and identified 23 nodes with significantly different balances 

between obese and control individuals (Figure 5.9a; Benjamini-Yekutieli-corrected P-

values (BY) < 0.05). These nodes correspond to a range of taxonomic separations, which 

would be difficult to interpret based on this information alone (Table 5.1). The 

consistency and number of node enrichments for each KO can be visualized to identify 

outliers (Figure 5.9b). The KO showing the strongest enrichment signal was K00941, 

which is involved in synthesis of the amino acid thiamine. This gene family was enriched 

positively in 15 nodes and never negatively enriched (Figure 5.10a). A major outlier in 

the opposite direction was K00091, which encodes a dihydroflavonol-4-reductase. This 

gene family was enriched in the direction of control samples (i.e. negatively enriched 

from the perspective of obese samples) at 11 significant nodes and never in the opposing 

direction.  

To identify which gene families were significantly enriched, and not merely major 

outliers, we applied our pseudo-null approach. This approach confirmed that the major 

outliers we observed were significant. For example, the observed enrichment pattern for 

K00941 is entirely outside the computed pseudo-null distribution for that gene family 

(Figure 5.10b). Based on this approach, 21 KOs in total were identified as significantly 

enriched (Table 5.2). The KOs that were positively linked with obesity were also 

enriched for the phosphotransferase system KEGG pathway (ko02060; Fisher’s exact 

test: odds ratio [OR] = 16.57; BY=4.33*10-5).  
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Figure 5.9: Significant nodes and KO enrichments between the stool of obese and 

control individuals. (a) Phylogenetic tree of all metagenome assembled genomes in the 

validation dataset. Red and blue nodes are those with significantly different balances in 

the direction of obese and control individuals, respectively. Yellow circles indicate tested 

nodes that were not significantly different. (b) Number of significant nodes (on log-scale) 

where each KEGG ortholog (KO) is enriched, either positively (in direction of obese 

samples) or negatively (in direction of control samples). Each value in this heatmap 

represents a single KO. 

 

Table 5.1: Taxonomic breakdown at significant nodes in primary obesity dataset 

Node Higher 

balances 

fff 

 

higher 

ratio 

Left-hand side taxa / Right-hand side taxa 

n386 Control Alphaproteobacteria (Class) / Proteobacteria (Phylum) 

n459 Control Bacteroidales (Order) / Bacteroidales (Order) 

n914 Control Clostridiales (Order) / Blautia (Genus) 

n8 Control Clostridiales (Order) / Clostridiales (Order) 

n816 Control Clostridiales (Order) / Clostridium (Genus) 

n16 Control Clostridiales (Order) / Oscillibacter (Genus) 

n725 Control Clostridium (Genus) / Clostridiales (Order) 

n912 Control Lachnospiraceae (Family) / Clostridiales (Order) 

n913 Control Lachnospiraceae (Family) / Lachnospiraceae (Family) 

n246 Control Mollicutes (Class) / Solobacterium (Genus) 

n499 Control Porphyromonadaceae (Family) / Bacteroidales (Order) 

n170 Control Tenericutes (Phylum) / Erysipelotrichaceae (Family) 

n172 Control Tenericutes (Phylum) / Tenericutes (Phylum) 
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Node Higher 

balances 

fff 

 

higher 

ratio 

Left-hand side taxa / Right-hand side taxa 

n67 Control Ambiguous / Clostridiales (Order) 

n298 Obese Coriobacteriaceae (Family) / Ambiguous 

n133 Obese Lactobacillales (Order) / Tenericutes (Phylum) 

n1248 Obese Ruminococcus (Genus) / Ruminococcaceae (Family) 

n74 Obese Selenomonadales (Order) / Tenericutes (Phylum) 

n173 Obese Tenericutes (Phylum) / Tenericutes (Phylum) 

n183 Obese Tenericutes (Phylum) / Tenericutes (Phylum) 

n5 Obese Ambiguous / Clostridiales (Order) 

n72 Obese Ambiguous / Clostridiales (Order) 

n68 Obese Ambiguous / Ruminococcaceae (Family) 

 

 

 

Table 5.2: Significant KOs in primary obesity dataset based on pseudo-null distribution 

KOa Posb Neg KO Description 

K00941 

 

15 

 

0 

 

thiD; hydroxymethylpyrimidine/phosphomethylpyrimidine 

kinase 

K13038 

 

14 

 

0 

 

coaBC, dfp; phosphopantothenoylcysteine decarboxylase / 

phosphopantothenate---cysteine ligase 

K11752 

 

 

14 

 

 

1 

 

 

ribD; diaminohydroxyphosphoribosylaminopyrimidine 

deaminase / 5-amino-6-(5-phosphoribosylamino)uracil 

reductase 

K02110 12 0 ATPF0C, atpE; F-type H+-transporting ATPase subunit c 

K00091 0 11 Dihydroflavonol-4-reductase 

K01933 11 0 purM; phosphoribosylformylglycinamidine cyclo-ligase 

K02114 11 0 ATPF1E, atpC; F-type H+-transporting ATPase subunit epsilon 

K07040 13 2 Uncharacterized protein 

K00020 10 0 mmsB, HIBADH; 3-hydroxyisobutyrate dehydrogenase 

K00526 

 

9 

 

0 

 

E1.17.4.1B, nrdB, nrdF; ribonucleoside-diphosphate reductase 

beta chain 

K02745 

 

10 

 

1 

 

PTS-Aga-EIIB, agaV; PTS system, N-acetylgalactosamine-

specific IIB comp. 
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KO Pos Neg KO Description 

K02746 

 

10 

 

1 

 

PTS-Aga-EIIC, agaW; PTS system, N-acetylgalactosamine-

specific IIC comp. 

K02747 

 

10 

 

1 

 

PTS-Aga-EIID, agaE; PTS system, N-acetylgalactosamine-

specific IID comp. 

K05846 10 1 opuBD; osmoprotectant transport system permease protein 

K06956 9 0 Uncharacterized protein 

K01232 8 0 glvA; maltose-6'-phosphate glucosidase 

K02773 

 

8 

 

0 

 

PTS-Gat-EIIA, gatA, sgcA; PTS system, galactitol-specific IIA 

component 

K09773 

 

8 

 

0 

 

ppsR; [pyruvate, water dikinase]-phosphate phosphotransferase 

kinase 

K01878 7 0 glyQ; glycyl-tRNA synthetase alpha chain 

K01879 7 0 glyS; glycyl-tRNA synthetase beta chain 

K02822 

 

7 

 

0 

 

PTS-Ula-EIIB, ulaB, sgaB; PTS system, ascorbate-specific IIB 

component 

aGreen rows indicate KOs positively enriched in the direction of obese subjects while the 

orange row indicates the KO negatively enriched in obese subjects. 

bNumber of significant nodes where KO is enriched in the direction of obese samples. 
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Figure 5.10: K00941 is the top enriched gene in the primary obesity dataset. (a) 

Phylogenetic tree of all metagenome assembled genomes in the validation dataset. Red 

nodes are significant nodes with K00941 enriched in the direction of obese samples. Grey 

nodes are significant nodes based on balances where there is no significant enrichment 

of this gene family. (b) Pseudo-null distribution for K00941 showing the number of 

significant nodes where this gene family is enriched with randomly selected significant 

nodes. Each value in this heatmap represents one of 1000 replicates used to create the 

pseudo-null distribution. The actual observed enrichment values for K00941 are 

indicated by the gold x. 

We also applied POMS to a smaller dataset of 251 obese and 159 control samples 

from the same meta-analysis. Stool samples from these individuals contained 1,161 

MAGs. There were 20 nodes with significantly different balances between obese and 

control individuals in this dataset (BY < 0.05). The top enriched KO was K13038 (Figure 

5.11), which encodes an enzyme that interacts with cysteine and is involved in 

pantothenate and Coenzyme A biosynthesis. Based on computing P-values based on our 

pseudo-null approach, we identified six KOs positively linked with obesity (BY < 0.05; 

K00833, K01935, K03150, K07799, K13038, and K21498). Two of these KOs, K00833 

and K01935, encode proteins involved in biotin biosynthesis and K03150 is involved in 

thiamine biosynthesis. We identified two KOs negatively linked with obesity based on 

this approach (BY < 0.05; K06374 and K18707). 
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Figure 5.11: K13038 is the top enriched gene in the secondary obesity dataset. (a) 

Phylogenetic tree of all metagenome assembled genomes in the validation dataset. Red 

nodes are significant nodes with K13038 enriched in the direction of obese samples while 

the blue node represent an enrichment in the direction of control samples. Grey nodes 

are significant nodes based on balances where there is no significant enrichment of this 

gene family. (b) Pseudo-null distribution for K13038 showing the number of significant 

nodes where this gene family is enriched with randomly selected significant nodes. Each 

value in this heatmap represents one of 1000 replicates used to create the pseudo-null 

distribution. The actual observed enrichment values for K13038 are indicated by the gold 

x. 

 Last, we applied POMS to the microbial profiles of stool samples from 75 

colorectal cancer patients and 53 controls, which contained 1,187 MAGs. In this case, 

only five nodes were significantly different between case and control samples (BY < 

0.05). Based on our pseudo-null distribution approach, two KOs were significantly linked 

with control samples in this dataset (K00702 and K09691), but none were linked with 

cancer samples. The top hit was K00702 (Figure 5.12), which encodes cellobiose 

phosphorylase: an enzyme that plays a key role in cellulose degradation. The other top hit 

was K09691, which encodes a lipopolysaccharide (LPS) transport system ATP-binding 

protein. 
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Figure 5.12: K00702 is the top enriched gene in the colorectal cancer dataset. (a) 

Phylogenetic tree of all metagenome assembled genomes in validation dataset. Red nodes 

are significant nodes with K00702 enriched in the direction of colorectal cancer samples. 

(b) Pseudo-null distribution for K00702 showing the number of significant nodes where 

this gene family is enriched with randomly selected significant nodes. Each value in this 

heatmap represents one of 1000 replicates used to create the pseudo-null distribution. 

The actual observed enrichment values for K00702 are indicated by the gold x. 

 

We next investigated the concordance of enriched KOs in these three datasets identified 

by POMS with common differential abundance tools. We tested three common 

approaches: Wilcoxon tests based on relative abundances, ALDEx2, and Limma-Voom. 

These approaches each test different hypotheses, but it is appropriate to compare these 

tools because they are often used interchangeably in the microbiome field. We were 

interested in determining how different the biological interpretation would be depending 

on the choice of tool. 

 The three datasets markedly differ in terms of the concordance between the tested 

methods (Figure 5.13). In the primary obesity dataset there was relatively high 

concordance between POMS and the alternative differential abundance methods (Figure 

5.13a): 16/20 (80%) of significant KOs were also called as significant by at least one 
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other method. In addition, all of the alternative methods agree well overall for this 

dataset. 

 

 

Figure 5.13: Overlap in significant KOs between common differential abundance tools 

and POMS. (a) Primary obesity dataset, (b) Secondary obesity dataset, and (c) colorectal 

cancer dataset. 

 

The phosphotransferase pathway was positively enriched in the set of significant 

KOs in the output of all tools for the primary obesity dataset. Additional pathways were 

also identified by at least one tool in this dataset, including these obesity-associated 

pathways: ABC transporters (Limma-Voom), ascorbate and aldarate metabolism 

(Limma-Voom), fructose and mannose metabolism (ALDEx2), and galactose metabolism 

(ALDEx2 and Limma-Voom). These pathways were down-regulated in obese patients in 

this dataset based on both the Limma-Voom and Wilcoxon results: aminoacyl-tRNA 
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biosynthesis, flagellar assembly (by ALDEx2 as well), homologous recombination, and 

ribosome. Bacterial chemotaxis was enriched in the KOs identified as downregulated in 

both the ALDEx2 and Wilcoxon test output. 

For the two other datasets there is much lower concordance, particularly in terms 

of KOs identified as significant by POMS (Figure 5.13, panels a and b). Consistent with 

the overall consensus in significant KOs, the enriched pathways drastically differed for 

these two datasets across tools. In particular, in the secondary obesity dataset the only 

overrepresented pathways in obese individuals were identified based on the Wilcoxon test 

output as LPS biosynthesis and metabolic pathways. The only underrepresented pathways 

in this dataset were identified based on the Limma-Voom output to be bacterial 

chemotaxis and flagellar assembly. For the colorectal dataset, only these pathways were 

identified based on up-regulated KOs identified by Limma-Voom: arginine biosynthesis, 

lysine biosynthesis, 2-oxocarboxylic acid metabolism. 

 Last, we compared the effect sizes of the top enriched KOs identified by POMS 

compared with the mean differences in relative abundance (raw and centre log-ratio 

(CLR) transformed). As expected, these effect sizes are roughly positively correlated: 

KOs consistently positively enriched at nodes in case samples also tend to have higher 

relative abundance in those samples (Figure 5.14). However, there were many exceptions 

as several of the top enriched KOs identified by POMS showed displayed little or no 

difference in relative abundance between sample groupings. This included the top KO 

enrichments identified by POMS in both obesity datasets. These observations highlight 

that POMS is a qualitatively different approach than current bag-of-genes differential 

abundance tools. 
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Figure 5.14: Concordance between POMS enrichment and difference in relative 

abundances for top KOs identified. (a) Log2-fold difference of relative abundance and 

(b) the mean difference between centred log-ratio (CLR) transformed relative 

abundances. Mean differences higher than zero represent KOs higher in case samples. 

Similarly, the POMS enrichment difference corresponds to the difference in positively 

and negatively enriched nodes per KO (e.g. positive values indicate enrichment in case 

samples). The dotted lines indicate zero. KO: KEGG ortholog. 

 

5.4 - Discussion 

Herein we have presented the framework and validations for POMS, which is a novel 

approach for identifying functional microbiome biomarkers. Based on straight-forward 

simulations based on both MAGs and reference genomes, we have demonstrated that 

POMS can accurately identify widely encoded microbial functions that are under strong 

positive selection. The most convincing evidence was that focal genes in our simulations 

were extremely highly ranked in the POMS output, whereas this is not the case for the 

Wilcoxon test when applied to sparse microbiome data. In addition, as discussed below, 

the enriched gene families identified by POMS in actual case-control datasets are 

consistent with the tool identifying functions encoded by numerous taxa that are strongly 

linked with a given microbial environment. 

 In these case-control datasets we identified enriched gene families as outliers in 

the pseudo-null distributions. However, it is important to emphasize that this is an 

imperfect process for several reasons. First, it is based on shuffling significant nodes in a 
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tree, which means that a user’s interpretation depends on the proportion of nodes that 

were originally significant. Throughout this manuscript, only a minority of nodes 

displayed significantly different balances between sample groupings. However, if the 

majority of nodes in a tree are significantly different then this pseudo-null approach 

would be overly conservative. This would simply be because most randomly sampled 

nodes would overlap with the original observed set. We do not anticipate that this 

situation will be common, but nonetheless it is an important caveat that users should keep 

in mind. Conversely, the POMS approach for identifying functional enrichments requires 

significant nodes to be identified in the phylogenetic tree of taxa. Without a sufficient 

number of these nodes to test for consistent patterns in gene enrichments this approach 

would not be useful. In addition, the approach of shuffling significant nodes to identify 

significantly enriched gene families assumes that every combination of nodes is equally 

possible to be significant by chance. This is partially invalid because different taxonomic 

groups are more likely to vary across individuals than others and taxa co-occurrence can 

occur even at long evolutionary distances (Ma et al. 2020). 

 For these reasons, POMS should predominately be considered an exploratory 

approach; it can be used to identify putative gene enrichments in particular sample 

groupings or environments, but how to clearly distinguish enriched and non-enriched 

genes is not always apparent. In addition, researchers must investigate the enrichment 

patterns of genes within the context of a specific dataset. The chosen cut-offs for 

identifying enriched genes will differ depending on characteristics of the dataset such as 

the overall number of significant nodes and the inter-sample taxonomic variability. In 

other words, it would be inappropriate to apply the same enrichment cut-off, such as 

calling genes enriched at three nodes consistently as significantly enriched, to all datasets. 

Application of the pseudo-null distribution approach can help address this problem, but 

this must be done with appreciation of the related caveats, as described above. Either 

way, gene enrichment effect sizes must be reported in the context of the entire dataset. 

Researchers should also appreciate that the set of enriched genes can substantially change 

depending on the choice of cut-off, as highlighted by the shifting distributions depending 

on the cut-off used for the MAG-based simulation analyses. 
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 There are also limitations in terms of the characteristics of enriched genes that 

POMS can identify. These genes must be adequately dispersed so that they can be 

enriched at multiple nodes but also be sufficiently conserved between closely related 

taxa. This requirement eliminates many possible gene enrichments. This limitation is 

especially clear for important functions encoded by keystone taxa. For instance, 

Methanobrevibacter smithii is the predominant gut symbiont that removes several 

fermentation products from other bacteria through methanogenesis (Samuel et al. 2007). 

A shift in methanogenesis between different human gut sample groupings would be 

challenging to identify with POMS due to the trait’s limited taxonomic breadth across the 

human gut microbiota. Similarly, not all taxa that encode a selected gene family will 

necessarily experience the same benefit. For instance, competition between strains 

through clonal interference has been well described experimentally (Lässig et al. 2017), 

but it is unclear how commonly this occurs in microbiomes (Garud & Pollard 2020). 

These limitations highlight that POMS will often miss putatively enriched genes. 

 Despite these limitations, the POMS framework represents a valuable alternative 

to existing differential abundance approaches for microbial functions. These approaches 

predominately consider this data type as a bag-of-genes, meaning that analyses are 

performed on the relative abundances of gene families across an entire community. 

Although this is the predominant method for analyzing functional data, it is 

fundamentally flawed (see Section 5.2). In addition to issues of interpretability, these 

methods also provide notoriously inconsistent outputs. This has largely been shown based 

on taxonomic data (Weiss et al. 2017), where in some contexts false discovery rates can 

be above 50% (Hawinkel et al. 2019). In addition, compositional approaches have not 

resolved this issue: a recent evaluation found that several non-compositional approaches 

produced more consistent results across a range of datasets (Calgaro et al. 2020).  

 Our application of standard differential approaches largely agrees with these 

assessments: the choice of method resulted in substantial differences in the number of 

significant KOs on the tested case-control datasets. In addition, focal genes under 

selection in our straight-forward MAG-based simulations were often mid-ranked amongst 

all KOs based on Wilcoxon tests. In other words, it would be impossible for a researcher 

to accurately identify the focal genes under strong selection with this test, even under our 
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straight-forward simulation framework. In contrast, POMS accurately identified the focal 

gene amongst the top ranked KOs. 

 Our simulations based on reference genomes provide insight on how these trends 

can change depending on the genome abundance profiles. In particular, the Wilcoxon test 

can accurately identify the focal gene in non-sparse data (Settings 1 and 2 in that section). 

In fact, the Wilcoxon test approach outperforms POMS based on these rankings 

specifically when genomes around found across a mean of 7.7% of samples (Setting 2). 

However, the actual MAG datasets we evaluated in this study exhibited high variance and 

sparsity, which are a common characteristics of microbiome data and likely explain why 

the standard differential abundance tests performed poorly overall on real data. 

 Given these troubling observations on the performance of standard differential 

abundances tests on sparse data, it is important to reconsider how standard differential 

abundance tools should be used. Although these methods provide P-values to enable 

significance to be determined, clearly these frameworks are flawed if biological 

interpretations largely vary depending on the choice of tool. Although granted, POMS 

provides only a limited statistical framework for identifying enriched genes based on P-

values, the effect sizes output by POMS are much more interpretable than looking at fold-

changes in relative abundance. 

 This improved interpretability is also reflected in the top enriched KOs identified 

by POMS in the validation case-control datasets. In particular, these KOs are consistent 

with functions that could confer a strong adaptive benefit in the human gut depending on 

disease status. Although enrichment of these KOs is not proof of selection acting upon 

these gene families, it does enable more precise hypothesis generation than would be 

possible based on a bag-of-genes approach. For instance, in the primary obesity dataset 

the significant KOs identified based on POMS were enriched for one KEGG pathway: 

phosphotransferase system (PTS). These bacterial transport systems are involved in 

carbohydrate uptake and have previously been identified at higher levels in obese 

individuals (Greenblum et al. 2012). Higher PTS levels have also been observed in mice 

given a Western diet (Turnbaugh et al. 2009b). Importantly, PTS was also enriched based 

on all three tested differential abundance tools with obesity. Several other pathways were 

enriched in the output of these tools as well with clear links to obesity, such as galactose 
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metabolism. However, there were also pathways identified with unclear connections, 

such as bacterial chemotaxis. This highlights that the enriched pathways identified by 

POMS are highly conservative, but that our approach likely will miss enriched pathways 

identified by more common approaches. 

Nonetheless, POMS is valuable for identifying specific gene families that are 

linked with overall shifts in environment. In particular, many of the top enriched KOs in 

the case-control datasets identified by POMS are involved with resource limitation in the 

case gut environment. For instance, multiple KOs identified by POMS as enriched in 

obese patients are involved with thiamine biosynthesis. Thiamine (vitamin B1) is an 

essential micronutrient involved in glucose metabolism. More generally, it is a co-factor 

in several metabolic pathways, including the Krebs cycle and the pentose phosphate 

pathway. Thiamine levels are often recorded before and after bariatric surgery due to the 

high risk of micronutrient deficiencies following bariatric surgery (Kazemi et al. 2010). 

Although thiamine deficiency is quite common after surgery, it has also been reported in 

12-15.5% of obese patients prior to bariatric surgery (Carrodeguas et al. 2005; Coupaye 

et al. 2009). It is unclear whether these percentages reflect the overall obese population 

(Kerns et al. 2015). In particular, thiamine deficiency rates could be higher for obese 

individuals in general because attempts at alternative weight-loss approaches, such as 

dieting, are typically required before turning to surgery. In addition, individuals with 

thiamine deficiency can display a wide range of ambiguous symptoms, which can make it 

difficult to diagnose (Kerns et al. 2015). Accordingly, there is reason to believe that 

thiamine availability might be limited in the gut of obese individuals, which could result 

in an adaptive benefit to microbiota that produce their own thiamine. 

A similar mechanism could explain the enrichment gene families involved with 

producing other micronutrients as well. In particular, genes families involved with biotin 

synthesis were also linked with obesity. The biotin levels of obese individuals have not 

been well-studied, but biotin deficiency has been linked with higher blood glucose levels 

and insulin resistance (Via 2012). These functional shifts could be enabled by 

environmental changes in the gut of obese individuals. For instance, one of the significant 

KOs involved with thiamine biosynthesis and linked with obesity, K03150, metabolizes 
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tyrosine, which in turn is known to be at higher levels in the serum of obese individuals 

(Adams 2011). 

Similarly, higher levels of cysteine have been linked with obesity in numerous 

epidemiological studies and animal experiments (Elshorbagy et al. 2012a). In fact, it has 

been argued that cysteine may be the only obesogenic amino acid (Elshorbagy et al. 

2012a, 2012b), meaning that it may partially cause obesity independent of confounding 

factors. Accordingly, it is highly relevant that the top enriched KO in the secondary 

obesity dataset we analyzed, K13038, is a cysteine ligase. This gene family acts 

downstream of cysteine in the pantothenate and Coenzyme A biosynthesis pathway. The 

observed enrichment of this gene leads to the clear hypothesis that gut microbiota may 

gain an advantage by increased utilization of cysteine specifically in obese individuals. 

The two gene families negatively linked with colorectal cancer patients by POMS 

were a cellobiose phosphorylase, K00702, and an LPS transport system ATP-binding 

protein, K09691. The enrichment of the cellobiose phosphorylase gene family is 

noteworthy because cellulose has specifically been shown to be protective against colonic 

tumours in rat experiments (Nakaji et al. 2004). More generally, dietary fiber intake is 

moderately associated with decreased risk of developing colorectal cancer (Park et al. 

2005). In contrast, higher LPS levels have been associated with colorectal cancer (de 

Waal et al. 2020), which makes the negative enrichment of the LPS transport system 

ATP-binding protein unexpected. However, this protein was enriched at nodes splitting 

predominately Gram-positive lineages (largely Firmicutes), which do not encode LPS. It 

is possible that this gene family is involved in transporting other membrane proteins 

instead of LPS, such as teichoic acid. In any case, this example highlights that an 

understanding of the taxonomic contributors to a functional signal can help elucidate 

problematic cases. 

These observed top enriched gene families are encouraging overall, but there is 

room for further development of our framework. Although POMS is a valuable tool for 

exploratory data analysis, the key contribution of our work is the proof-of-concept that 

this framework can identify gene families highly enriched in specific environments. This 

general framework could be expanded to incorporate other advances in this area, such as 

more sophisticated approaches for analyzing balances across phylogenetic trees 
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(Silverman et al. 2017; Washburne et al. 2019). In particular, it would be straight-forward 

to apply our framework with different methods for computing balances (Silverman et al. 

2017) and/or phylogenetic reference frames (Washburne et al. 2019). In addition, POMS 

is intended to be used for two-group comparisons, but the overall framework could be 

expanded for multiple group comparisons as well. 

 To conclude, we have presented a novel framework for analyzing microbial 

functions with phylogenetic balance trees. This approach is implemented in the R 

package POMS, which can be used to identify gene families strongly enriched in one 

environment over another. Although this approach has limitations, it represents a valuable 

step towards more interpretable differential abundance testing with functional 

microbiome data. 
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Chapter 6 – Discussion 

The above investigations have explored integrating taxa-function data from three 

perspectives: classification models, metagenome prediction, and identifying functional 

biomarkers. These projects have provided valuable and novel insights. For instance, we 

identified that taxonomic data types perform best for classification on their own, but that 

MGS functions often are most informative in combined classification models. In addition, 

our work developing an improved metagenome prediction method highlighted the 

difficulty of evaluating functions predicted from taxonomic data. And last, our method 

POMS is a novel analysis framework that we demonstrated can identify intriguing 

enriched functions in case-control samples that would not be possible with standard tools. 

These and other specific observations have been discussed in each respective chapter, and 

for the most part are not the focus of this closing section. 

 Instead, this chapter will touch on the high-level observations and broad parallels 

between these chapters. First, a repeated observation throughout this thesis is that there is 

a lack of consistency and standardization when performing microbiome data analysis. 

This was true for virtually all of the analyses presented in this thesis and the implications 

of this problem are largely unappreciated by microbiome researchers. Second, since 

publishing our Crohn’s disease classification project in 2018 there have been subsequent 

developments and improvements to machine learning applications to microbiome data. 

However, there remain numerous open questions, and particularly the best approach for 

integrating data types in these models remains unclear. Next, our work on metagenome 

predictions raised numerous questions regarding the usefulness of this data type. 

Nonetheless, despite these major caveats, I believe predicted data types will remain 

relevant and likely will become more accurate as sequencing technology continues to 

improve. Last, our work on POMS represents a valuable alternative approach for 

identifying enriched microbial functions compared with existing tools. However, POMS 

has several important caveats and there remain several important issues to be addressed 

for improved joint taxa-function analysis in general. I will discuss these and other areas 

that I believe would benefit from further research. 
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6.1 – Biologically Interpreting Microbiome Data 

My thesis work was motivated by biological questions, such as how to best biologically 

interpret microbiome sequencing data. Unfortunately, a common thread through this 

thesis has been that technical variation in microbiome data analyses means that making 

robust biological inferences, particularly regarding specific microbial features, is 

challenging. Indeed, the lack of standardization in microbiome data analysis has 

previously been strongly criticized. An assessment of numerous papers attempting to 

define standard pipelines concluded that there was disturbingly little consensus (Pollock 

et al. 2018). This is true for many steps related to the processing, sequencing, and 

analysis of microbiome data. For instance, there have been contradictory results regarding 

the efficacy of different extraction protocols (Salonen et al. 2010). In particular, 

underrepresentation of Gram-positives has been observed (Maukonen et al. 2012), which 

may be partially resolved by using bead-beating extraction protocols (Guo & Zhang 

2013). There is also substantial technical variation related to bioinformatics choices, 

which represent the final steps of a microbiome project. For example, as discussed at 

length in the Introduction, the bioinformatics choices made when performing differential 

abundance testing on microbiome data can have severe impacts on any interpretations  

(Thorsen et al. 2016; Hawinkel et al. 2019). 

 This general lesson was reinforced during my analysis of the pediatric Crohn’s 

disease patients’ microbiome profiles (Chapter 3). An important characteristic of these 

data was that 98% of the sequenced reads mapped to the human genome (Douglas et al. 

2018). This characteristic made taxonomic profiling of these data especially prone to 

false positives. In particular, an initial draft of our manuscript was based on profiles that 

included large proportions of viral-identified DNA and matches to certain eukaryotic 

parasites. We were initially excited about these observations, because the abundances of 

these non-prokaryotic taxa were discriminative for classifying patient disease state and 

treatment response. However, the exact taxa identified were peculiar: they were 

predominately represented by a range of plant-associated viruses and the eukaryotic 

genus Plasmodium, which is best known as including the causative agent for malaria, 

Plasmodium falciparum. Upon closer investigation it became clear that this signal was 

driven entirely by a difference in how reads were mapped to lineage-specific marker 
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genes. Altering the parameter choice from local to global mapping entirely removed these 

taxa. This relatively small difference in parameter choice appeared to only affect our data 

and not more typical microbiome datasets, which we believe was due to the high 

proportion of human DNA in our data. 

 Although this error was moderately embarrassing, it was more importantly an 

example of how easily a single parameter setting can result in starkly different biological 

interpretations. In this case the difference was driven by an option used for a single 

bioinformatics tool, MetaPhlAn2. I highlighted similar issues in Chapter 4 and 5 of this 

thesis. In particular, our comparisons of differential testing on predicted metagenomes 

highlighted a range of performance in terms of concordance with matching MGS data 

(Chapter 4). In addition, the concordance in significant gene families was also relatively 

low in a comparison of differential abundance tests applied to MGS data generated by 

two different workflows. These workflows are both commonly performed and simply 

represent different ways of identifying gene families with HUMAnN2. In one workflow 

KEGG orthologs were mapped to directly and in the other UniRef gene families were 

first mapped to and then regrouped to KEGG orthologs using known links between the 

gene family databases. It is highly troubling that the biological interpretations can starkly 

differ depending on which of these common workflows is followed. 

Similarly, in Chapter 5 we demonstrated a representative bag-of-genes approach 

for conducting functional differential abundance testing (the Wilcoxon test) fails under 

straight-forward simulation conditions. More specifically, this tool was unable to identify 

gene families under strong selection as highly ranked in the resulting output. This 

observation is important, because it highlights that it is non-trivial to biologically 

interpret the top hits in a standard differential abundance analysis. This appeared largely 

true in highly sparse datasets as gene families under selection could be identified more 

clearly in less sparse simulated datasets (Chapter 5). However, a key characteristic of 

common microbiome sequencing datasets, such as those representing the human gut, is 

that they are highly variable and sparse across individuals (see Introduction). 

Accordingly, our troubling observations could be relevant to how data analysis is 

performed on the majority of existing microbiome datasets. 
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Such inconsistencies in microbiome analyses have previously been identified and 

been shown to make meaningful comparisons across studies challenging. For instance, 

associations between obesity and the human microbiome are commonly discussed as 

support for the utility of considering microbial links with human disease, despite 

inconsistencies across studies (Castaner et al. 2018; Muscogiuri et al. 2019). These 

inconsistencies are typically explained due to confounding variables that may differ 

between patient cohorts. Although this is a valid explanation, it is likely that technical 

variation, including in terms of bioinformatics analyses, also drives these inconsistencies. 

For instance, a meta-analysis of ten obesity human microbiome datasets identified only 

extremely weak signals when re-analyzing all datasets with a standardized approach (Sze 

& Schloss 2016). This finding greatly contrasts with how these studies were originally 

presented and again highlights how variation in bioinformatics can greatly affect how to 

biologically interpret microbiome data. 

Similarly lower alpha diversity in stool microbiomes has been frequently linked 

with disease states (Mosca et al. 2016). These observations are intuitively reasonable as 

reduced alpha diversity could enable pathogens to bloom (Vincent et al. 2013) or 

represent differences in resource availability (Turnbaugh et al. 2009a). However a re-

analysis of data from 28 studies representing ten diseases was unable to identify evidence 

for links between alpha diversity and disease states (Duvallet et al. 2017). The exceptions 

were diarrheal diseases and inflammatory bowel diseases. 

Such inconsistencies across analyses on the same data are gradually coming to the 

forefront of the microbiome field (Allaband et al. 2019). Indeed, a recent plea for 

improved standardization has been made to enable better comparisons across studies (Hill 

2020). This is a commendable goal, but given the diversity of opinions regarding best-

practices (Callahan et al. 2016b; Knight et al. 2018; Schloss 2020), it is difficult to 

coherently recommend a single workflow for analyses at the moment. Accordingly, 

further work and benchmarking of different bioinformatics is needed to convincingly 

argue for best practices in microbiome data analysis. 

Until a clear consensus is reached it is the responsibility of microbiome 

researchers to make the caveats and challenges facing this area clear to readers and 

newcomers to the field. This is crucial given the widespread interest in studying 
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microbiomes through DNA sequencing; the number of microbiome sequencing-related 

publications continues to rapidly grow. This is in tandem with funding for these projects, 

which has steadily increased in the USA from at least 2007 to 2016 (NIH 2019). 

According to the US National Health Institute, there was US$766 million dollars invested 

in microbiome research in 2019 (https://report.nih.gov/categorical_spending.aspx), which 

was the 63rd most highly funded health-related research category out of 291. Although 

comparing across research categories of varying granularity is difficult, it is noteworthy 

that microbiome research was more highly funded than both breast cancer and 

Alzheimer’s disease research. Importantly, an increased interest in microbiome research 

is warranted: recent technological developments are enabling improved investigations 

into this aspect of animal biology. However, as the monetary investment and research 

hours dedicated to microbiome research grows, it is crucial that scientists ensure the best 

use of these resources. Open discussions regarding that many aspects of microbiome data 

analysis are contentious and currently works in-progress would help with this issue. 

Indeed, such clarifications by leaders in the microbiome field are starting become more 

common (Allaband et al. 2019). Although these contributions are valuable, they do not 

adequately address the problem. In particular, instead of mentioning these issues in 

passing, they should be emphasized more clearly for the benefit of the uninitiated. 

Another practical improvement would be to normalize, and potentially require, 

explicit summaries of the effects of technical variation on any biological interpretations 

reported in microbiome studies. This is impossible to capture entirely, but it could be 

done by comparing how key results change depending on a subset of representative 

bioinformatics choices. For instance, researchers could compare how insights change 

depending on the combinations of denoising tools and differential abundance methods 

that they have applied when analyzing 16S data. Although these changes would result in 

increased workloads when conducting analyses and when communicating results, they 

would help ensure that any major biological findings are at least robust to a representative 

set of bioinformatics choices. 

 

https://report.nih.gov/categorical_spending.aspx
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6.2 - Microbiome-Based Classification Models 

Our work applying disease classification models to Crohn’s disease patients was one of 

numerous recent valuable investigations into the utility of leveraging microbiome data in 

machine learning models (Zhou & Gallins 2019). As described in Chapter 1, these 

investigations have successfully classified a range of diseases based on the microbiome, 

such as colorectal cancer (Wirbel et al. 2019), asthma (Saglani & Custovic 2019), and a 

range of others (Pasolli et al. 2016; Duvallet et al. 2017). However, it remains contentious 

how generalizable these disease classification models are across cohorts. Consistent with 

our results in Chapter 3, key classification models have been shown to have poor 

accuracy when applied to independent cohorts (Sze & Schloss 2016). But there are 

important exceptions. In particular, independently trained classifiers for colorectal cancer 

performed well with independent microbiome datasets (Wirbel et al. 2019). A global 

signal for non-specific disease state has also been hypothesized, as classifiers developed 

for certain diseases perform reasonably well when applied to cohorts with different 

diseases (Duvallet et al. 2017; Gupta et al. 2020). Accordingly, the generalizability of 

microbiome-based disease classification models remains an open area of investigation 

and further work should aim to address the underlying reasons for these inconsistent 

results. 

 Many other questions also remain to be answered regarding the use of 

microbiome data for disease classification, and more generally for classifying any 

arbitrary sample groupings. Several of these questions have parallels with other aspects of 

microbiome data analysis, in that the appropriateness of different data transformations 

and machine learning models remains unclear. For instance, when conducting our work 

on the pediatric Crohn’s disease profiles, we decided to convert all relative abundance 

values to standard scores within samples (i.e. to scale them). We also compared how our 

inferences would change if centred-log ratio transformation of the data was performed 

instead. In this case, performing this transformation resulted in lower classification 

accuracies compared to our original approach (Chapter 3).  

 A recent high-profile project focusing on performing classification with 

microbiome data opted to perform arcsine square root transformation of the raw count 

data instead (Lloyd-Price et al. 2019). This transformation has previously been shown to 
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yield higher classification performance with highly sparse shotgun metagenomics data 

(Liu et al. 2011), although it has not yet been ubiquitously accepted. Similarly, the 

application of different machine learning approaches remains inconsistent in the 

microbiome field (Zhou & Gallins 2019). Our preference for analyzing Random Forest 

models in Chapter 3 was largely motivated by the relatively straight-forward 

interpretation of the output of these models (Breiman 2001). Indeed, this approach has an 

intermediate level of complexity compared to other possible methods. For instance, basic 

linear regressions often only perform slightly worse than Random Forests and have 

extremely clear interpretations (Prifti et al. 2020). In contrast, deep learning and neural 

network approaches theoretically may allow heighted classification performance at the 

cost of interpretability (Namkung 2020). 

 A more biological open question is regarding the relative utility of functional and 

taxonomic data types for classification. Since publishing our work (Chapter 3) there have 

been few comparisons of these data types. However, these comparisons have consistently 

identified relatively equal classification performance with both data types (see 

Introduction). This recurrent observation is inconsistent with the hypothesis that 

environmental conditions should be more strongly associated with microbial functions 

than taxa (Doolittle & Booth 2017). However, more work is needed in this area to 

confirm that these observations are generalizable. It is possible that this may strongly 

depend on the environment of interest; for example, marine conditions have previously 

been shown to be strongly associated with functional, but not taxonomic, groupings in the 

ocean microbiome (Louca et al. 2016). 

 A similar open area of research is regarding the utility of directly integrating data 

types into the same classification model. Our work in Chapter 3 represents one of the 

only attempts to explicitly integrate multiple data types in the same model (see 

Introduction). I believe that this work represents an important step towards leveraging the 

most information out of microbiome profiles. However, our approach had several 

weaknesses. In particular, our integrated models included redundant features, which 

increased the complexity and difficulty of interpreting the output variable importance 

measures. I have several hypothesized solutions to this and other problems with 
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integrating data types in classification models, which I outline in detail below (see 

Section 6.4). 

 

6.3 - Metagenome Predictions 

Our work on developing an improved metagenome prediction approach, PICRUSt2, was 

motivated by several updates that we hypothesized would increase performance. The key 

hypothesized improvements included: the expansion of the database, the use of sequence 

placement to enable de novo query sequences, and more conservative hidden-state 

prediction and pathway reconstruction algorithms. Although we believe these 

improvements are useful, they provided only a moderate increase in prediction 

performance compared to PICRUSt1 and other tools (Chapter 4). It is unclear to what 

extent this relatively minor increase in the performance metrics (e.g. the Spearman 

correlation coefficient) is biologically significant. This is particularly due to the 

unreliable nature of using MGS data as a gold-standard for comparison: if that data is 

imperfect then perhaps it is impossible to reach perfect concordance. 

 However, it is important to recognize that this increased performance was even 

smaller when comparing PICRUSt2 with alternative methods. In particular, Piphillin 

performed only slightly worse than PICRUSt2 based on our validations overall and in 

some cases performed better. Piphillin is a much simpler approach as it is based on taking 

the predicted genome annotation for input 16S sequence as the nearest neighbour in the 

reference database. This has the advantage of being substantially faster than PICRUSt2 

because little computation is required. Another potential advantage is that it is easier to 

determine precisely why a predicted genome annotation was output with Piphillin. This is 

more challenging with PICRUSt2 because predictions for individual gene families are 

computed independently and are based on multiple sources of information: the 

annotations of all reference genomes and the inferred pattern of gain and loss in the 

reference phylogenetic tree. 

 Since PICRUSt2 was made available it has been independently used on many 

occasions. Most relevantly several of these independent users have conducted evaluations 

of our new approach compared to other metagenome prediction tools. The Piphillin 

authors determined that their tool performs better compared to PICRUSt2 on a small 
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dataset of oral samples from control and cancer patients (Narayan et al. 2020). In 

particular, they determined that Piphillin had 54% higher precision compared to 

PICRUSt2 in terms of the concordance of differential abundance results with matching 

MGS data. These results were the key motivation for us to implement our independent 

comparisons based on differential abundance testing in our manuscript. As I showed in 

Chapter 4, there are often variable results in terms of concordance based on differential 

testing and so inferences are best made over a larger set of validation datasets. Based on 

my analysis the performance of both tools was quite similar overall based on this 

approach, although PICRUSt2 performed slightly better. 

 Another research group compared PICRUSt1, PICRUSt2, and Tax4Fun2 across 

seven paired MGS and 16S datasets and were unable to find a single tool that clearly 

performed best (Sun et al. 2020). However, they suggested that metagenome predictions 

are mainly useful for human-associated datasets as they observed decreased accuracy in 

five non-human datasets compared to two human datasets. These inferences were largely 

based on the concordance of differential abundance testing as well. This is an interesting 

observation, which will require larger numbers of test datasets to validate. However, it is 

noteworthy that the primate stool dataset I tested using a similar approach performed 

similarly to the human-associated datasets (Chapter 4). 

These independent evaluations highlight that the inferred performance of 

metagenome prediction tools can highly vary, which could be due to variation across 

datasets, but also due to the exact workflow for evaluating performance. Nonetheless, 

although the hidden-state prediction approaches implemented in the PICRUSt tools may 

not necessarily always result in the highest performance accuracy, they still 

fundamentally are capable of predicting functional patterns across genomes that other 

tools cannot. In particular, the likelihood of different possible predictions based on 

existing taxa can be computed with hidden-state prediction approaches (Zaneveld & 

Thurber 2014). 

These approaches, and specifically PICRUSt2, will likely perform better as 

higher-quality data is used as input. In particular, full-length ASV sequencing is rapidly 

becoming more common which enables higher resolution to distinguish closely related 

taxa (Callahan et al. 2019). It is foreseeable that additional marker genes or larger single 
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regions could also be profiled that would enable strains to be better distinguished. 

Similarly, as the number of reference genomes continues to grow, it will be possible to 

create more environment-specific genome databases for more targeted prediction 

(Wilkinson et al. 2018). 

A specific advantage of hidden-state prediction approaches is that a wide variety 

of algorithms can be implemented for conducting these predictions. For example, Markov 

models could be constructed for each individual gene family in a database (Louca & 

Doebeli 2018). This approach might better capture the specific pattern of gain and loss 

for given gene families than maximum parsimony. I attempted to implement this 

approach while developing PICRUSt2, but it currently takes a computationally 

prohibitively amount of time to run. However, as improved algorithms and computing 

resources continue to grow it is foreseeable that implementing individualized models for 

predicting gene families will soon be feasible, which would allow for improved 

prediction performance. 

Similarly, further improvements to genome reference databases and construction 

of phylogenetic trees may make the benefits of phylogenetic placement used with 

PICRUSt2 clearer. This approach was expected to perform better than simply re-

computing the phylogenetic tree of query and reference sequences for each dataset. 

However, based on the Spearman correlation coefficient validations, using phylogenetic 

placement had no consistent impact on the performance of PICRUSt2 compared with re-

computing trees with FastTree (Chapter 4). We anticipate this will change as data quality 

improves over time as phylogenetic placement has previously been shown to yield more 

robust inferences for standard 16S analyses compared to creating de novo phylogenetic 

trees (Janssen et al. 2018). 

A final important discussion point regarding metagenome prediction, is that it is 

frequently observed that metagenome predictions are becoming irrelevant given the 

availability of cost-effective MGS data (Hillmann et al. 2018). Although MGS data is 

indeed becoming more readily available, I believe metagenome predictions will remain 

relevant for two key reasons. First, marker-gene sequencing is currently the only feasible 

approach for profiling low-biomass and host-DNA contaminated samples. Although it is 

possible to apply alternative approaches like MGS to these sample types (as we did in 
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Chapter 3), it typically is not cost-effective. Accordingly, metagenome predictions of this 

marker-gene sequencing data will likely remain the predominant method for inferring 

microbial functions for these sample types. Second, a major advantage of metagenome 

prediction is that it enables complete taxa-function links to be generated. As discussed in 

Chapter 1, generating these links is uncommonly performed with MGS data. Although 

this is changing, for the time being metagenome predictions are, perhaps counter-

intuitively, a straight-forward method to generate complete taxa-function links. 

 

6.4 - Joint Taxa-Function Analysis 

As described in Chapters 1 and 5, joint analyses of functional and taxonomic data greatly 

increase the interpretability of microbiome data. The framework I investigated, as 

implemented in POMS, is a useful approach for identifying functional microbial 

biomarkers based on phylogenetic balances. It is an imperfect approach as discussed in 

detail in Chapter 5. Nonetheless, it also represents a qualitatively different framework 

compared to standard approaches for conducting differential abundance testing. Namely, 

the POMS framework is useful for identifying gene families that are putatively under 

selection. This was shown based on our simulations where POMS performed well at 

identifying selection acting on gene families encoded by at least several MAGs. In terms 

of high-level gene families this likely captures the vast majority of the segregating 

genetic variation: as stated in Chapter 1, KEGG orthologs are encoded by a mean of 

184.3 species (Inkpen et al. 2017). 

 The POMS framework is based on phylogenetic balances, because this approach 

provides a convenient and sensible way of computing ratios between groups of taxa 

(Silverman et al. 2017). However, there is a diverse range of other reference frame-based 

analyses that can be conducted with microbiome data (Morton et al. 2019). It remains 

contentious which is the best approach for determining appropriate sets of taxa to 

consider for reference frames. The basic idea of the POMS framework, to test for 

consistent functional enrichments across independent reference frames, could be 

expanded to these alternative approaches as well.  

 Improved integration of microbiome data types for biomarker identification is 

clearly needed, which POMS partially addresses. However, there are many other areas 
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where further development of integrated analyses is needed. One area where this is 

particularly needed is in the context of classification models, as discussed above. Recent 

work has involved applying classification models based on gene families and then 

subsequently identifying metagenome assembled genomes within a given dataset 

enriched for the top genes (Rahman et al. 2018). This still relies on follow-up analyses 

rather than integrating the data types. Instead, an improved approach could leverage the 

explicit hierarchical nature of microbiome data types. Functional and taxonomic data 

types form clear hierarchical structures independently (e.g. Phylum - Class - Order, etc.). 

The connection between taxa and gene families and pathways is more complex, but 

nonetheless, links between groups of strains or ASVs and microbial functions can be 

defined. A modified machine learning framework that explicitly accounted for these 

relationships could result in more interpretable outputs. 

For example, a Random Forest model could potentially be modified to account for 

these relationships. In each decision tree within a given Random Forest model a subset of 

features are randomly sampled at each node and the feature providing the best split of the 

sample groupings at that point is identified. It is possible that this could be modified so 

that the most informative features in a given hierarchy could be identified and that the 

least granular feature that was most informative would be selected. For instance, if the 

relative abundance of a phylum and a gene family were equally informative then it would 

be more conservative to identify the phylum as providing the best split at that node. This 

would provide the benefit that any interpretations regarding specific functions would 

require them to be more informative than any single taxonomic contributor. In other 

words, biological interpretations regarding functions would require stronger evidence. 

 Although I believe this general framework is promising it would still have 

important caveats. In particular, it is unclear how features would be sampled for testing in 

each individual decision tree to ensure that there was not a bias towards certain data type 

ranks simply due to differences in the total number of features. Similarly, the best 

approach for controlling for the compositionality of the data would need to be determined 

while using this approach. Despite these major caveats, I believe this approach, or a 

similar hierarchical modification of standard machine learning models, would greatly 

improve the interpretability of microbiome analyses. 
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Regardless of whether POMS or this proposed alternative method eventually 

becomes widely adopted, an increased focus on integrating microbiome data types is 

needed. As stated at the beginning of this work, it is odd to distinguish between 

functional and taxonomic datatypes: they are inextricably linked after all. The term 

“metagenome” itself is in some ways unfortunate as it implies that the genetic 

information for all organisms in a community can be simultaneously analyzed in a 

coherent way. This may be valid for high-level pathways (as discussed in Chapter 5), but 

for generating hypotheses regarding specific gene families it is too often misleading. This 

perspective is becoming more common, particularly as the availability of metagenome-

assembled genomes increases (Frioux et al. 2020). 

 Despite these open questions, my contributions to the improved understandings of 

classification models, metagenome prediction, and functional biomarker identification 

have provided useful insights that will enable better informed taxa-function analyses 

moving forward. A common thread throughout my work has been the recurrent 

observation of inconsistencies across bioinformatics tools. As I have discussed at length, 

better integration of taxonomic and functional data types could enable more conservative 

hypotheses to be generated based on microbiome data, which would help reduce the 

burden of false positives. However, such improvements do not only yield statistical 

benefits: they also make microbiome data easier to interpret. 
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