
ON VARIATIONS OF DIFFUSION

by

Todd Mullen

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

March 2020

c© Copyright by Todd Mullen, 2020

To my beautiful fiancée Bekah and her incredible patience!

ii

Table of Contents

List of Tables . v

List of Figures . ix

Abstract . x

List of Abbreviations and Symbols Used xi

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Terminology . 5

1.2 Previous Work on Parallel Diffusion 11

Chapter 2 Related Questions . 17

2.1 Chip Firing . 18

2.2 Brushing . 23

2.2.1 Sequential Brushing . 23

2.2.2 Parallel Brushing . 28

Chapter 3 Parallel Diffusion . 30

3.1 Basic Definitions and Lemmas . 30

3.2 Period Orientations . 39

3.2.1 Complete Graphs . 39

3.2.2 Paths . 43

3.2.3 Stars . 56

3.3 p2-Configurations on Paths . 56

3.4 Period Configurations on Complete Graphs 76

3.5 p2-Configurations on Stars . 87

iii

Chapter 4 Quantum Parallel Diffusion 89

4.1 02-invoking subsets . 91

4.1.1 02-invoking subsets on Paths 97

4.2 Counting 0-Preorientations . 106

Chapter 5 Variants . 119

5.1 Two-One Diffusion . 121

5.2 Pay It Backward . 126

5.2.1 P3 analysis of Pay It Backward 127

5.2.2 Pay it Backward on Other Graphs 156

5.3 Sequential Diffusion . 159

5.3.1 Millpond . 162

Chapter 6 Discussion . 166

Bibliography . 168

iv

List of Tables

Table 3.1 Multiplier based on neighbourhood 63

Table 3.2 Number of board-pile polyominoes containing n unit squares for

1 ≤ n ≤ 11. 78

Table 4.1 Colourings of the last three vertices of a path 99

Table 4.2 Colourings of the last three vertices of a path 100

Table 4.3 Colourings of the last three vertices of a path 101

Table 4.4 Orientations of P3 . 108

Table 4.5 Orientations of P3 with X’s signifying those that are not 0-

preorientations . 109

Table 4.6 Illegal suborientations given that en−1 is directed ← 110

Table 4.7 Illegal suborientations given that en−1 is directed → 111

Table 4.8 Given that en−1 is directed ←, illegal orientations are labelled

with their corresponding illegal suborientation, and legal orien-

tations are labelled with their corresponding case number . . . 112

Table 4.9 Given that en−1 is directed →, illegal orientations are labelled

with their corresponding illegal suborientation, and legal orien-

tations are labelled with their corresponding case number . . . 113

Table 5.1 On the left, each possible initial orientation of P3 is shown with

a corresponding name to make future referencing simpler. Given

a configuration that induces an orientation on the left, the next

column represents the list of all possible orientations that may

be induced by the resulting configuration at time t = 1, and the

rightmost column contains their corresponding names. 128

v

List of Figures

Figure 1.1 Several firings in Parallel Diffusion on P5 4

Figure 1.2 Graph orientation R and suborientation R′. 7

Figure 1.3 Configuration C . 7

Figure 1.4 Configuration C0 fires, yielding C1. Directed edges depict the

flow of chips from richer vertices to poorer vertices. 8

Figure 1.5 Configuration on P5 and its induced graph orientation. 10

Figure 2.1 Some steps of a Chip Firing process on P5. 20

Figure 2.2 Sequential Brushing example on P5 which will return no dirty

vertices. 25

Figure 3.1 Two equivalent configuration sequences. 33

Figure 3.2 Inadmissible and admissible graph orientations with a configu-

ration that induces the admissible graph orientation. 34

Figure 3.3 A period orientation R that can be induced by both a period

configuration and a non-period configuration 36

Figure 3.4 Flat-directed cycle x1yx2. 40

Figure 3.5 Graph orientation on P5. 42

Figure 3.6 Configuration C on P5. 46

Figure 3.7 Every p2-orientation of P2, P3, and P4 50

Figure 3.8 Two possible p2-orientations of Pn with en−2 flat. Note that the
orientation of e1, signified by a double sided arrow, is uncertain

in both instances. 51

Figure 3.9 Two possible p2-orientations of Pn in which en−2 agrees with

en−3. Note that the orientation of e1, signified by a double

sided arrow, is uncertain. 52

vi

Figure 3.10 P10 under orientation R . 57

Figure 3.11 List of orientations which cannot exist as suborientations within

a p2-orientation . 64

Figure 3.12 Pn with edge vkvk+1 removed. 69

Figure 3.13 Graph orientations R and R′, created by contracting two adja-

cent agreeing edges and reversing the direction of all subsequent

directed edges . 70

Figure 3.14 Three plane-figures: X, Y , and Z are shown with their h-strips

differentiated by shading. X is not a board-pile polyomino be-

cause the strips are not connected edge on edge. Y is not a

board-pile polyomino because there exists a row with multiple

h-strips. Z is a board-pile polyomino since each row contains

at most one h-strip. 79

Figure 3.15 Board-pile 6-omino X with shading differentiating between S1,

S2, and S3. 80

Figure 3.16 Configuration on an unlabelled complete graph 80

Figure 3.17 Mapping a board-pile 10-omino to its corresponding configura-

tion of K10. 82

Figure 3.18 Board-pile with two strips “flipping” 84

Figure 4.1 Quantum firing of the quantum set H of V (P6) with directed

edges depicting the flow of chips from elements of H to elements

excluded from H. 90

Figure 4.2 Graph P6 with complementary component dominant vertex sub-

set, H . 92

Figure 4.3 Graph, G, with CCD subset, H, of V (G) 93

Figure 4.4 Graph G with no proper nontrivial 02-invoking subsets 95

Figure 4.5 Graph G with v2 in H . 95

Figure 4.6 Graph G with v2 and v6 in H 95

vii

Figure 4.7 Graph G with v2 and v5 in H 96

Figure 4.8 The two vertices, vn and vn−1 must have different colours since

they are adjacent to different numbers of blue vertices. 99

Figure 4.9 Quantum sets on P4 that yield a period of length 2. 105

Figure 4.10 More quantum sets on P4 that yield a period of length 2. . . . 106

Figure 4.11 Two 0-pre-positions on K2 with different induced graph orien-

tations . 108

Figure 4.12 Four 0-pre-positions on P3 with different induced graph orien-

tations . 109

Figure 4.13 All four possible cases represented with forbidden suborienta-

tions excluded . 112

Figure 4.14 The orientations of Case 1 on Pn shown as extensions of non-

forbidden orientations on Pn−1. 114

Figure 4.15 The orientations of Case 2 on Pn shown as extensions of non-

forbidden orientations on Pn−2. 115

Figure 4.16 The orientations of Case 3 on Pn shown as extensions of non-

forbidden orientations on Pn−2. 116

Figure 4.17 The orientations of Case 4 on Pn shown as extensions of non-

forbidden orientations on Pn−3. 117

Figure 5.1 Three steps in a process with firing rules 4 → 5 and 6 → 2.

Directed edges depict the flow of chips. 120

Figure 5.2 P2n with the 2-1 configuration 122

Figure 5.3 Period of P 2−1
2 . 122

Figure 5.4 Period of P 2−1
4 . 123

Figure 5.5 Period of P 2−1
8 . 123

Figure 5.6 First 8 steps on 16+ . 124

Figure 5.7 First 16 steps on 32+ . 125

viii

Figure 5.8 First 32 steps on 64+ . 125

Figure 5.9 P3 with x ∼ −y and y ∼ −z 126

Figure 5.10 One firing in Pay it Backward on P3. 127

Figure 5.11 P3 with x ∼ −y and y ∼ −z 127

Figure 5.12 Directed graph showing the possible resulting orientations from

a firing on a given orientation 133

Figure 5.13 Sample firings in Pay it Backward with corresponding orienta-

tions labelled . 136

Figure 5.14 Triangle created by adding a third edge labelled −x ∼ z . . . 137

Figure 5.15 The configurations from Figure 5.13 shown in 3-space. 138

Figure 5.16 100 configurations arising from the initial configuration |x|C =

3, |y|C = −2, |z|C = 2. 139

Figure 5.17 100 configurations arising from the initial configuration |x|C =

3, |y|C = −2, |z|C = 2 with an additional edge, labelled −x ∼ z,

added forming a triangle. 140

Figure 5.18 Period 1 example . 156

Figure 5.19 Pay it Backward period 1 example 157

Figure 5.20 PIB-auxiliary graph from Figure 5.19 157

Figure 5.21 PIB-auxiliary graph which cannot exist with period 1 configu-

ration . 159

Figure 5.22 Several steps in a Sequential Diffusion process on P5. 161

ix

Abstract

This thesis will examine the Chip Firing variant, diffusion, in many of its different

iterations. We will look at a previously studied version, Parallel Diffusion [9], along

with four new variants: Quantum Parallel Diffusion, Two-One Diffusion, Pay it Back-

ward, and Sequential Diffusion. The results discussed will center around the topics

of regularity and periodicity.

Chip-firing processes move chips from vertex to vertex in a graph at discrete time

increments. A specific distribution of chips on the vertices of a graph at a specific time

is referred to as a configuration. We will show that most of these processes exhibit

periodic behaviour, meaning that configurations recur as time increases. Also, in

the instance of Pay it Backward, we see that not every variation guarantees periodic

behaviour. It is with Pay it Backward, however, that we discover some of our most

interesting results regarding the regularity of the movement of chips.

Of those variations which exhibit periodic behaviour, we will show examples of

very large periods and very short periods, and we will also count the number of

periodic configurations that exist in some processes. Specifically, we use Long and

Narayanan’s result [14] that every instance of Parallel Diffusion is eventually periodic

with period 1 or 2 to determine the number of non-equivalent configurations that

exist on paths, complete graphs, and star graphs.

x

List of Abbreviations and Symbols Used

−x ∼ y Edge label dictating that the negative stack size of
x will compared to the stack size of y

A \B Set of all elements that are in A but not in B

A ⊆ B A is a subset of B

An Number of period configurations that exist on alter-
nating arrow orientations of paths with n vertices

C + k Configuration created by adding an integer k to ev-
ery stack size in C

Ck Configuration at time k of the Seq(C)

Cn Cycle graph with n vertices

E(G) Edge set of a graph

Fn The number of p2-configurations that exist on Pn

Kn Complete graph with n vertices

K1,n Star graph with n+ 1 vertices

N(v) Open neighbourhood a vertex v

P 2−1
n Pn with the 2− 1 configuration

Pn Path graph with n vertices

QQ(G) Quantum quiescent number G

QQ2(G) 2-quantum quiescent number G

S(X) Set of all h-strips in board-pile polyomino X

Sk kth h-strip from the bottom in a board-pile poly-
omino

Seq(C) Configuration sequence initiated by C

V (G) Vertex set of a graph

Zn Number of 0-preorientations R on Pn such that R
is not the fixed orientation

ZC
+ (v) Set of all vertices in C which are richer than v

ZC
− (v) Set of all vertices in C which are poorer than v

Seq(C0) Singleton or ordered pair of configurations in
Seq(C0)

L(G) Set of all periods that exist on G

di Difference between the greatest x-coordinate in Si

and the least x-coordinate in Si−1.

xi

deg+t (v) Out-degree of v at time t

m → n, m,n ∈ Z Firing rule dictating that vertices with stack size m
will send to adjacent vertices with stack size n

n+ Pn with the 2− 1 configuration

n− Pn with the 1− 2 configuration

skn The kth stage of Pn

sgn(m) = 1 if m > 0, = 0 if m = 0, and = −1 if m = −1

u → v, u, v ∈ V (G) Directed edge from vertex u to vertex v in graph G

uv Edge with endpoints u and v

x ∼ −y Edge label dictating that the stack size of x will
compared to the negative stack size of y

L(G) Set of all configurations on G

CCD Complementary component dominant

xii

Acknowledgements

It truly takes a village to raise a mathematician.

Firstly, I would like to acknowledge my immediate and extended family for their

continual support throughout my education. If education had not been so valued, I

would never have gotten this far. Having parents that have encouraged me to further

my education is why I am here today. Thank you mom and dad!

Secondly, I’d like to acknowledge all my friends who have remained by my side

throughout my undergraduate and graduate studies. Huge thank you to my friends:

Bill, Amber, Sarah, Kyle, Chris, and so many others. I am so thankful that I wasn’t

able to do this on my own, because otherwise I would not have made so many great

friends at the Mount.

Thank you to Dalhousie University and Mount Saint Vincent University for their

financial support from the start. I would like to also thank all of my professors who

have played such an influential role in my education. Notably my supervisors Dr.

Seager, Dr. Nowakowski, Dr. Messinger, Dr. Janssen, and Dr. Cox each deserve a

huge shout-out for their efforts.

Finally, I would like to specifically thank Kyle MacKeigan and Chris Cawthra for

all of their help. This thesis would be much different if it were not for the results that

we discovered together while sitting around Chris’ kitchen table.

To all of you who have helped me in achieving this academic accomplishment, I

sincerely say thank you and God Bless!

To Him Be The Glory!

xiii

Chapter 1

Introduction

This thesis will examine diffusion in many of its different variations. Diffusion is a

chip-firing process defined on a simple graph, G, in which each vertex is assigned an

integral number which we refer to as its stack size (think of a positive number as the

number of chips that reside on that vertex and a negative number as a level of debt

that that vertex has fallen into). An assignment of stack sizes to the vertices of a

graph is called a configuration. During each time step, a subset of these vertices “fire”.

When a vertex “fires”, it sends a chip to a number of its neighbours dependent on the

rules of the process. We refer to the original diffusion process from Duffy et al. [9]

as Parallel Diffusion since each vertex fires at every time step. In Parallel Diffusion,

at every time step, each vertex sends a chip to each of its poorer neighbours. An

example of Parallel Diffusion is provided in Figure 1.1. It is in this original version

that diffusion holds most truly to its name, as the chips diffuse simultaneously from

areas of high concentration to areas of low concentration.

The first important question is “Is Parallel Diffusion periodic?” Let C be a config-

uration on a graph G, and let M be the sum of all of the stack sizes in C. Since stack

sizes can be negative in diffusion processes, we cannot suppose that every stack size

in every future configuration must be an integer from 0 to M . Thus, since vertices

may have an infinite number of possible stack sizes, it is not immediately clear that

diffusion processes necessarily exhibit periodic behaviour with some configuration

eventually recurring. It is however true that Parallel Diffusion is always eventually

periodic, as shown by Long and Narayanan [14], but this result is far from trivial.

With Theorem 1.2.1, we extend Long and Narayanan’s result to cover graphs with

multi-edges.

Unlike some other chip-firing processes like Chip Firing [3], [15] and Brushing [11],

[17], in Parallel Diffusion it is possible for a stack size to initially be positive but to

become negative as time goes on. For example if some vertex v with a stack size

of n, n ∈ N, is adjacent to n + 1 vertices, and each of which has a stack size of 0,

then after firing, v would have at stack size of −1. However in [9], it was shown that

Parallel Diffusion is such that an addition of some constant k, k ∈ Z, to each stack

1

2

size will have no effect on determining when and if a chip will move from one vertex

to another. So if one wanted to view Parallel Diffusion as a process in which stack

sizes are never negative, one would only need to add a sufficient constant k, k ∈ N,

to each stack size.

In Chapter 2, we discuss some previous work on processes similar to diffusion

and look at some of the methods that others have used to prove results in this field.

With only two previous publications on diffusion [9], [14], it is important to study

the methods used by others in related problems and also the types of questions that

others have sought to answer. None of the work in Chapter 2 is the work of the

author.

Diffusion initially arose from a discrete math seminar at Dalhousie University

given by Dr. Kolokolnikov in 2015. Dr. Nowakowski formulated the discrete version

(now called Parallel Diffusion). At that time, approximately 500 simulations were

run on various cartesian grids (with dimensions a× b, 10 ≤ a ≤ 20, 40 ≤ b ≤ 50) and

configurations with random stack sizes from 10 to 50. The periodic nature of these

simulations gave rise to the conjecture that every configuration in Parallel Diffusion

eventually leads to a period of length 1 or 2. This means that eventually either a

configuration C arises such that every future configuration is C (period 1) or there

exists a pair of configurations C and D such that as soon as either one arises, they will

alternate in every future step (period 2). This conjecture was eventually published

by Duffy et al. [9]. Later Dr. Kolokolnikov asked for the number of configurations

possible on a path that existed in period 2. With Long and Narayanan’s proof [14]

of the conjecture from Duffy et al., we are now able to provide a solution for Dr.

Kolokolnikov. In Chapter 3, we look at some counting problems relating to Parallel

Diffusion, with our main results being the number of unique configurations that can

exist on paths, complete graphs, and stars. With Theorem 3.3.8, we give a recurrence

relation for counting the number of unique configurations on a labelled path. With

Corollary 3.3.13, we see the asymptotic solution for the kth value of this recurrence to

be approximately 0.1564×3.6090k. With Corollary 3.4.8, we give a recurrence relation

for counting the number of unique configurations on an unlabelled complete graph.

With Corollary 3.4.9, we see the asymptotic solution for kth value of this recurrence

is approximately 0.1809× 3.2056k. With Theorem 3.5.1, we give an explicit solution

for the number of period configurations which exist on a labelled star graph.

Only configurations that contain a number of chips divisible by the number of ver-

tices in the graph can possibly have a period length of 1 (See Lemma 3.1.16). Chapter

4 considers the cases which eventually lead to a period of length 1. Specifically, we

3

take a graph in which every stack size is 0, and suppose some subset of vertices

each send a chip to each of their respective neighbours. We refer to this process as

Quantum Parallel Diffusion because it permits a vertex to send chips to its neigh-

bours despite no discernible difference in their stack sizes. The word quantum evokes

thoughts of randomness rather than the deterministic nature of Parallel Diffusion.

Quantum Parallel Diffusion varies only slightly from Parallel Diffusion because after

some subset of vertices initially sends chips despite having no poorer neighbours, the

process continues exactly as Parallel Diffusion. The question that we ask is “When

will this process result in every vertex having 0 chips?” Theorem 4.1.3 is a characteri-

zation of the graphs that return to the configuration in which every stack size is equal

to 0 in two steps. The characterization is in terms of partitioning the graph into two

dominating sets with special properties. The main conjecture from this chapter is

that in Quantum Parallel Diffusion, if a graph returns to the configuration in which

every stack size is 0, then it must happen within the first two firings of the vertices.

Parallel Diffusion is ultimately period 1 or 2 [14]. If the process is modified, can

the period lengths change? Must there even exist a period at all? In Section 5.2,

we show that the process Pay it Backward, which is created by slightly altering the

rules of Parallel Diffusion, exhibits some regularity but is not, in general, periodic.

Also, Section 5.1 gives examples of very long periods in the diffusion variant Two-

One Diffusion. In Sequential Diffusion, the vertices still have integral stack sizes, but

each time step only permits the firing of a single vertex. In Section 5.3, we look at

Sequential Diffusion under a specific configuration and show an instance in which

it exhibits periodic behaviour on trees with period length equal to the number of

vertices in the tree. The number of ways that this single vertex can be chosen at each

time step allows for much variation even in instances with the same initial integral

assignments.

Any results not cited are the work of the author.

4

v5

0
v4

2
v3

0
v2

4
v1

1

Initial firing

v5

1
v4

0
v3

2
v2

2
v1

2

Second Firing

v5

0
v4

2
v3

1
v2

2
v1

2

Third Firing

v5

1
v4

0
v3

3
v2

1
v1

2

Fourth Firing

v5

0
v4

2
v3

1
v2

3
v1

1

Fifth Firing

v5

1
v4

0
v3

3
v2

1
v1

2

Sixth Firing

v5

0
v4

2
v3

1
v2

3
v1

1

Figure 1.1: Several firings in Parallel Diffusion on P5

5

1.1 Terminology

We begin with some basic graph theory definitions that can be found in [18].

Definition 1.1.1. A graph is a triple consisting of a vertex set V (G), an edge

set E(G), and a relation that associates with each edge two vertices (not necessarily

distinct) called its endpoints.

Definition 1.1.2. When u and v are endpoints of an edge, they are adjacent and

are said to be neighbours. When e, f ∈ E(G) and e and f share an endpoint, they

are adjacent. If vertex v is an endpoint of edge e, then v and e are incident.

Definition 1.1.3. A loop is an edge whose endpoints are the same vertex. Multiple

edges are edges having the same pair of endpoints. A simple graph is a graph having

no loops or multiple edges.

A simple graph is specified by its vertex set and edge set. The edge set is treated

as a set of unordered pairs of vertices. We write e = uv or e = vu for an edge e with

endpoints u and v.

Definition 1.1.4. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G)

and E(H) ⊆ E(G) and the assignment of endpoints to edges in H is the same as

in G. We then write H ⊆ G and say that G contains H. Given a set of vertices

A ⊆ V (G), the subgraph induced by A, G|A, is the subgraph of G containing the

vertices of A and every edge in E(G) that has both endpoints in A.

Definition 1.1.5. A path is a simple graph whose vertices can be ordered so that

two vertices are adjacent if and only if they are consecutive in the list. A path with n

vertices will be written as Pn. A cycle is a graph with an equal number of vertices and

edges whose vertices can be placed around a circle so that two vertices are adjacent

if and only if they appear consecutively along the circle. A cycle with n vertices will

be written as Cn. A complete graph is a simple graph whose vertices are pairwise

adjacent. A complete graph with n vertices will be written as Kn. A graph G is

connected if each pair of vertices in G belong to a subgraph of G which is a path.

For the purposes of this thesis, we will restrict ourselves to simple, finite, connected

graphs, unless otherwise stated.

6

Definition 1.1.6. The degree of vertex v in a simple graph G, written deg(v), is

the number of edges incident with v. The open neighbourhood of v, written N(v),

is the set of vertices adjacent to v.

Definition 1.1.7. In a graph G, contraction of an edge e with endpoints u and v

is the replacement of u and v with a single vertex whose incident edges are the edges

other than e that were incident to u or v.

Definition 1.1.8. A directed graph G is a triple consisting of a vertex set V (G),

an edge set E(G), and a function assigning each edge an ordered pair of vertices.

The first vertex of the ordered pair is the tail of the edge, and the second is the head;

together they are the endpoints. We say that an edge is an edge from its tail to

or toward its head. The edges of a directed graph are called directed edges due

to their assignment from this function. We use the notation a → b to represent a

directed edge (a, b) with tail a and head b. An edge a → b is an out-edge of a and

an in-edge of b.

Definition 1.1.9. A mixed graph is a graph that can contain both directed and

undirected edges.

Definition 1.1.10. In a mixed graph or directed graph, a vertex v is a source if, for

all u ∈ V (G), every edge of the form uv is directed v → u. A vertex y is a sink if,

for all x ∈ V (G), every edge of the form xy is directed x → y.

Definition 1.1.11. In a mixed graph or directed graph, for all v ∈ V (G), the out-

degree of v is equal to the number of directed edges in which v is the tail. The in-

degree of v is equal to the number of directed edges in which v is the head. Undirected

edges play no part in calculating in-degree and out-degree.

We now introduce some terminology specific to this thesis. We make a small

change to the definition of graph orientation in [18], by allowing for undirected edges.

Definition 1.1.12. A graph orientation of a graph G is a mixed graph obtained

from G by choosing an orientation (x → y or y → x) for each edge xy in some

A ⊆ E(G). We refer to the edges that are in E(G)\A as flat. We refer to the

assignment of either x → y, y → x, or flat to an edge xy as xy’s edge orientation.

Definition 1.1.13. Let R be a graph orientation of a graph G. A suborientation

R′ of R is a graph orientation of some induced subgraph G′ of G such that every edge

xy in G′ is assigned the same edge orientation as in R.

7

An example of a graph orientation and a suborientation is given in Figure 1.2.

R v1 v2

v3 v4 v5

R′
v2

v3 v4

Figure 1.2: Graph orientation R and suborientation R′.

Definition 1.1.14. A configuration is an assignment of integer values to the ver-

tices of a graph.

An example of a configuration is given in Figure 1.3.

C v1

1
v2

21

v3

-4

v4

7

v5

18

Figure 1.3: Configuration C

Definition 1.1.15. The assigned value of a vertex v in configuration C is its stack

size in C and is denoted |v|C. We omit the superscript when the configuration is

clear. A vertex v is said to be richer than another vertex u in configuration C if

|v|C > |u|C. In this instance, u is said to be poorer than v in C. If |v|C < 0, we say

v is in debt in C.

Definition 1.1.16. In Parallel Diffusion, given a graph G and a configuration C

on G, to fire C, or to fire the vertices of C, is to decrease the stack size of every

vertex v ∈ V (G) by the number of poorer neighbours v has and increase the stack

size of v by the number of richer neighbours v has. More formally, for all v, let

ZC
− (v) = {u ∈ N(v) : |v|C > |u|C} and let ZC

+ (v) = {u ∈ N(v) : |u|C > |v|C}. Then,

firing results in every vertex v changing from a stack size of |v|C to a stack size of

|v|C + |ZC
+ (v)| − |ZC

− (v)|.

An example of a firing of a configuration in Parallel Diffusion is given in Figure 1.4.

8

C0 v1

6
v2

2

v3

5

v4

2

v5

6

C1

v1

3
v2

4

v3

4

v4

5

v5

5

Figure 1.4: Configuration C0 fires, yielding C1. Directed edges depict the flow of
chips from richer vertices to poorer vertices.

Definition 1.1.17. We refer to the discrete time increments in diffusion processes as

steps. The initial configuration of a graph G is referred to as the configuration at

step 0 or the configuration at t = 0 and the configuration of G at any subsequent

step k is referred to as the configuration at step k or the configuration at t = k.

At every step, a subset A of V (G) is chosen to be fired. So a step k consists of both a

configuration, Ck, and the firing of a subset A of V (G) yielding the configuration at

step k + 1, Ck+1. The firing of vertices at step 0 yielding the configuration at step 1

is called the initial firing.

In some variants of Parallel Diffusion, the subset A is chosen by the player and

in others it is dictated by the rules of the process. Specifically, in Parallel Diffusion,

A = V (G). Note that by Definition 1.1.16, a vertex may fire without actually sending

any chips, if it is not adjacent to any poorer vertices. This is an important distinction.

In Parallel Diffusion every vertex fires at each step, but by Definition 1.1.16, the only

vertices to send chips are those which have poorer neighbours.

Definition 1.1.18. In diffusion processes, the assigned value of a vertex, v, at step

t, is referred to as its stack size at time t. If the initial configuration is C, then

the stack size at time t is denoted |v|Ct . This implies that |v|C = |v|C0 . We omit the

superscript when the configuration is clear.

As an extension of Definition 1.1.15, a vertex v is said to be richer than another

vertex u at time t if |v|t > |u|t. In this instance, u is said to be poorer than v at

time t.

Definition 1.1.19. In diffusion processes, given a graph G and an initial configura-

tion C0, then Cn = {(v, |v|Cn) : v ∈ V (G)}. A configuration sequence

9

Seq(C0) = (C0, C1, C2, . . .) is the sequence of configurations that arises as the time

increases.

The configuration sequence clearly depends on both the initial configuration and

the graph G. However, it will always be clear to which graph we are referring, so

we omit any reference to G in our notation, Seq(C0). Note that given C0, Paral-

lel Diffusion will have a unique configuration sequence but in Sequential Diffusion

(Section 5.3), many configuration sequences can possibly arise from the same initial

configuration depending on when each vertex fires.

Definition 1.1.20. Given two configurations, C and D, of a graph G, C and D are

equal if |v|C = |v|D for all v ∈ V (G).

Definition 1.1.21. Let Seq(C0) = (C0, C1, C2, . . .) be the configuration sequence on

a graph G with initial configuration C0. A positive integer p is a period length if

Ct = Ct+p for all t ≥ N for some nonnegative integer N . In this case, N is a pre-

period length. For such a value, N , if k ≥ N , then we say that the configuration,

Ck, is inside the period.

Comment 1.1.22. For the purposes of this thesis, all references to period length will

refer to the minimum period length p. Also, all references to pre-period length will

refer to the minimum pre-period length that yields that minimum period length p in a

given configuration sequence. If Seq(C0) has minimum period length p and minimum

pre-period length N , then we will say Seq(C0) has period p and pre-period N .

In Figure 1.1, the period is 2 and the pre-period is 3.

Observation 1.1.23. In diffusion processes, every configuration induces a graph ori-

entation.

Proof. Let G be a graph and Ct a configuration on G. For all pairs of adjacent vertices

u, v in G at step t, either u sends a chip to v, v sends a chip to u, or no chip is moved

between u and v in Ct. Let uv be an edge. Assign directions as follows:

• If u sends a chip to v at time t, assign uv the edge orientation u → v.

• If v sends a chip to u at time t, assign uv the edge orientation v → u.

• If no chip is sent from u to v or from v to u at time t, do not direct the edge

uv.

10

Thus, a graph orientation on G results.

We say that this graph orientation is induced by Ct, the configuration of G at

time t. Note that the orientation induced depends on which vertices fire at a given

step (Definition 1.1.17). So for instance, the orientation induced by Ct in Parallel

Diffusion may differ from the orientation induced by Ct in Sequential Diffusion. We

see an example of a graph orientation induced by a configuration in Parallel Diffusion

in Figure 1.5.

v1

15
v2

9
v3

8
v4

2
v5

12

v1 v2 v3 v4 v5

Figure 1.5: Configuration on P5 and its induced graph orientation.

With diffusion processes, one must first decide on an initial configuration. The

infinite number of ways that this can be done can make it difficult to study the process

in a thorough or systematic way.

Three types of configurations in particular have been studied: the standard con-

figurations, the Millpond configurations, and the fixed configurations. Defined in [9],

the standard configuration assigns chips to each vertex equal to that vertex’s degree.

In the Millpond configuration [9], one vertex has stack size 1 and every other vertex

has stack size zero. The name Millpond refers to the “ripple” effect that is created as

the effect of that single chip diffuses throughout the graph. In Section 5.3, we analyze

the Millpond configuration in Sequential Diffusion. Fixed configurations are those in

which every stack size is equal. In Parallel Diffusion, this results in no movement

of chips, so we instead look at the variant Quantum Parallel Diffusion. In Quantum

Parallel Diffusion (Chapter 4), every vertex begins with a stack size of 0, and the pro-

cess begins with a “quantum firing”, where one or more vertices are initially chosen to

send a chip to each of their neighbours, even though no vertex is poorer than another

at this point. After the quantum firing, the process continues as Parallel Diffusion

with no further quantum firings.

11

1.2 Previous Work on Parallel Diffusion

The study of Parallel Diffusion and its variants is a very young one, with the first

paper on Parallel Diffusion by Duffy et al. published in 2018 [9], and the only other

publication on the subject being Long and Narayanan’s paper [14] which proves that

Parallel Diffusion is always a periodic process with period lengths of 1 and 2.

The questions of periodicity and finding a minimum number of chips for a con-

figuration such that no vertex has a negative stack size at any future step were first

proposed by Duffy et al. The paper by Duffy et al. proves that a number of graph

classes are necessarily periodic, and that any connected bipartite graph with the

Millpond configuration will have a period of length 2. Also, they show that a configu-

ration is periodic with period at most two if and only if each edge in the configuration

can be assigned a single chip, which is the only chip that will ever be sent across that

edge at any future step. Duffy et al. stated that Parallel Diffusion is such that an

addition of k chips to each stack size in a configuration will have no effect on de-

termining whether or not a vertex will fire in any future step. We prove this with

Lemma 3.1.1.

Aside from these two papers, the author knows of two additional unpublished

works: a master’s thesis by Degaetani [8] which looks into Parallel Diffusion on infinite

graphs, and a paper on ArXiv by Carlotti and Herrman [6] in which they determine

that if a graph with n vertices is given a configuration in which every stack size is at

least n−2, then every stack size will be nonnegative at every future step. Degaetani’s

work was in response to a question posed by Duffy et al., and Carlotti and Herrman’s

work answered a question posed by both Long and Narayanan, and Duffy et al.

Duffy et al. [9] conjectured that every configuration sequence in Parallel Diffusion

has a period length of 1 or 2. This was proven by Long and Narayanan [14]. We

now prove an extension of Long and Narayanan’s result for a variation of Parallel

Diffusion defined on graphs with multiple edges. Since Long and Narayanan’s result

trivially holds for graphs which are disconnected or contain loops, this multiple edge

result is all that is needed to prove that for all graphs, whether simple or not, Parallel

Diffusion is periodic with period 1 or 2. We present this proof to show how Long and

Narayanan’s methods can be used to solve similar problems. In Chapter 5, we will

see examples of variants of diffusion for which Long and Narayanan’s methods do not

seem useful because these variants are not necessarily periodic with short periods.

Theorem 1.2.1. In the variant of Parallel Diffusion in which, at every step, vertices

send to their poorer neighbours a number of chips equal to the number of edges shared

12

between the two vertices, every configuration sequence has period 1 or 2.

We will closely follow Long and Narayanan’s methods from [14], only varying

at points to allow for the existence of multiple edges. Long and Narayanan’s proof

involved the use of a non-increasing potential function

P (t) =
n∑

v=1

|v|t × |v|t+1

where n represents the number of vertices in the graph, v represents each individual

vertex in the graph labelled from 1 through n, and |v|t represents the number of chips

on vertex v at time t.

We begin by introducing some notation. Let G be a graph, and let v ∈ V (G). For

all neighbours u of v, let E(uv) represent the number of edges with endpoints u and

v. Let A′v(t) be the sum

∑
|u|t>|v|t

E(uv),

and B′v(t) be the sum

∑
|u|t<|v|t

E(uv).

The result of a firing on a vertex’s stack size is |v|t+1 = |v|t + A′v(t)− B′v(t).

For the purposes of this proof, we will view vertices as being elements of the set

{1, 2, . . . , n}. So, if u is said to be greater than v, then u is a greater element in

the set {1, 2, . . . , n} than v. Let sgn(m) be a function that returns −1 if m < 0, 0

if m = 0, and 1 if m > 0. Supposing u < v, let x′uv(t) = E(uv) × sgn(|u|t − |v|t)
and y′uv(t) = E(uv) × sgn(|u|t+1 − |v|t+1). Let (x′uv(t), y

′
uv(t)) be a label assigned to

every edge uv at time t. Whenever the edge uv does not exist, we let x′uv(t) = 0 and

y′uv(t) = 0. We now present the proof of Theorem 1.2.1.

Proof. Our method will involve first showing that this potential function, P (t), is

bounded below and then showing that it is monotonic decreasing. This will show

the function to be eventually constant and we will show that this implies that every

configuration sequence in Parallel Diffusion has period 1 or 2.

We begin by showing that this potential function is bounded below. We will use

the fact that the stack size of a vertex can increase or decrease by no more than

|E(G)| in a single step.

13

Using this, we get that

|(|v|t+1 − |v|t)| ≤ |E(G)|
(|v|t)2 + (|v|t+1)

2 − 2(|v|t+1 × |v|t) ≤ |E(G)|2
−(|v|t)2 − (|v|t+1)

2 + 2(|v|t+1 × |v|t) ≥ −|E(G)|2
2|v|t+1 × |v|t ≥ −|E(G)|2

|v|t+1 × |v|t ≥ −1

2
|E(G)|2

So,

P (t) =
n∑

v=1

|v|t × |v|t+1 ≥ −1

2
n|E(G)|2.

Next, we will show that the function is non-increasing with time. That is, we will

show that

P (t+ 1)− P (t) =
n∑

v=1

|v|t+1 × (|v|t+2 − |v|t) ≤ 0.

Now,

|v|t+1 = |v|t + A′v(t)− B′v(t)

|v|t+2 = |v|t+1 + A′v(t+ 1)− B′v(t+ 1)

|v|t+2 = |v|t + A′v(t) + A′v(t+ 1)− B′v(t)− B′v(t+ 1)

Supposing that u < v, we label each edge uv with the label (x′uv(t), y
′
uv(t)). With

the convention that (x′uv(t), y
′
uv(t)) = (0, 0) whenever uv is not an edge of G, we get

that the amount of change that occurs to a particular stack size |v|t over the course

of two firings can be exhibited by

A′v(t) + A′v(t+ 1)− B′v(t)− B′v(t+ 1) =
∑
u<v

(x′uv(t) + y′uv(t))−
∑
u>v

(x′vu(t) + y′vu(t)).

14

We break the sum into two pieces because the definitions of x′uv(t) and y′uv(t)

represent the flow of chips to and from a vertex v differently depending on if v is the

greater or lesser vertex in a particular edge. Thus, one sum represents the effects of

two firings from the lesser vertices, and the other sum represents the effects of two

firings from the greater vertices.

So,

|v|t+2 = |v|t +
∑
u<v

(x′uv(t) + y′uv(t))−
∑
u>v

(x′vu(t) + y′vu(t))

|v|t+2 − |v|t =
∑
u<v

(x′uv(t) + y′uv(t))−
∑
u>v

(x′vu(t) + y′vu(t)).

P (t+ 1)− P (t) =
n∑

v=1

(
|v|t+1

(∑
u<v

(x′uv(t) + y′uv(t))−
∑
u>v

(x′vu(t) + y′vu(t))
))

.

The actions of these multiple sums can be grouped together by using a sum over

all ordered pairs of vertices. The two sums with indices u < v and u > v for some v

can be brought together under a single summation with all ordered pairs of vertices

u < v as the index.

P (t+ 1)− P (t) =
∑
u<v

(|v|t+1 − |u|t+1)(x
′
uv(t) + y′uv(t)).

Next we will show that each term of this sum is at most 0 since each factor is

positive if and only if the other is nonpositive. Let u < v. Remember that x′uv(t) is

equal to −E(uv), 0, or E(uv) and that the same is true of y′uv(t). If x′uv(t) + y′uv(t)

is positive, then y′uv(t) is nonnegative and this implies that v does not have a greater

stack size than u at time t+ 1, so |v|t+1 − |u|t+1 ≤ 0. Conversely if x′uv(t) + y′uv(t) is

negative, then y′uv(t) ≤ 0, implying that |v|t+1 − |u|t+1 ≥ 0.

Therefore, we can conclude that as t increases, P (t) does not increase. Since P (t)

is bounded, there exists some T such that for all t ≥ T , P (t) is constant.

As long as our sum

∑
u<v

(xuv(t) + yuv(t))(|v|t+1 − |u|t+1)

has a nonzero term, then the function has not yet reached such a T value. This is

because P (t+1)−P (t) being negative implies that P (t+1) is less than P (t). When

P (t) has reached its minimum, P (t+1) will be equal to P (t). This will only occur when

15

every summand is equal to zero. So, we seek to characterize the instances in which this

sum has a negative summand. This will occur any time that both x′uv(t) + y′uv(t)
=
0 and y′uv(t)
= 0. So, if the label (deg(uv), deg(uv)), (0, deg(u, v)), (0,−deg(u, v)),

or (−deg(u, v),−deg(u, v)) appears on any edge, then P (t) has not yet reached its

minimum value.

So, if P has reached its minimum value, then every label fits into the set

{(deg(u, v),−deg(u, v)), (−deg(u, v), deg(u, v)), (0, 0), (deg(u, v), 0), (−deg(u, v), 0)}.

Suppose we have reached such a point. Note that the labels applied to each edge at

a given time speak to the direction that chips will be travelling across that edge not

just at the current step, but also at the next step. So a label of (i, j) at time t and

a label of (k, �) at time t + 1 implies that j = k. Thus, we get that every edge that

has the label (deg(u, v), 0) or (−deg(u, v), 0) will at the next step have the label (0, 0)

and at no future step will have any other label. So there will reach a step T ′ in which

every label belongs to the set

{(deg(u, v),−deg(u, v)), (−deg(u, v), deg(u, v)), (0, 0)}.

So from step T ′ onward, if chips are sent from u to v at step t, then chips must be

sent from v to u at step t+1. This implies that it must be true for every edge u that

|u|t = |u|t+2. Thus, the least period length of a configuration sequence must be at

most 2.

In the proof of Theorem 1.2.1, it is shown that once inside the period, the only

edge labels which can exist belong to the set

{(deg(u, v),−deg(u, v)), (−deg(u, v), deg(u, v)), (0, 0)}.

This implies that if chips are sent from a vertex u to another vertex v at step t, then

chips must be sent from v to u at step t + 1. Also, this implies that if no chips are

sent along the edge uv at time t, then no chips will be sent along the edge uv at time

t+1. We will be using this result in future chapters, so we set it aside as the following

corollary.

16

Corollary 1.2.2. In Parallel Diffusion, let Ct be the configuration at time t, suppose

Ct is inside the period, and suppose the vertices u and v are neighbours. If |u|t > |v|t,
then |v|t+1 > |u|t+1. Also, if |u|t = |v|t, then |u|t+1 = |v|t+1.

Chapter 2

Related Questions

In this chapter, we look at two previous processes which are similar to Parallel Diffu-

sion. The two examples we explore are Chip Firing [3], [15] and Brushing [11], [17].

Since there are only two published papers on Parallel Diffusion and one pre-print

[9],[14],[6], there are not yet any standard proof techniques. We present some of the

theorems and proofs regarding Chip Firing and Brushing to illustrate techniques that

others have used. We include a number of results and proofs to show the similarities

and differences between these previous processes and the new ones found in this the-

sis. Diffusion, Chip Firing, and Brushing all share a number of qualities: a graph,

integers representing quantities residing on the vertices of the graph, a rule dictating

the way that quantities can change by sending or receiving, and periodic tendencies.

One of the observations from all three processes is that once periodicity has been

achieved, the chips are assigned to edges in Parallel Diffusion and Chip Firing, and to

paths in Brushing. So the chips can be tracked as they move throughout the graphs;

we do not simply lose track of them when they are added to a neighbour’s stack size.

In Chip Firing, only one vertex fires at a time and when a vertex does fire, it

sends a chip to each of its neighbours. Vertices are not permitted to go into debt,

so only vertices with at least degree-many chips can fire. Both Parallel Diffusion and

Chip Firing have the possibility of chips being sent for an infinite number of steps

or for chips to at some point stop being sent. In Parallel Diffusion, if no chips are

sent, then every vertex must have the same stack size. These configurations have

period length of 1. In Chip Firing, firings will terminate if and only if every vertex

has fewer than degree-many chips. The sequential nature of Chip Firing is another

way that it differs from Parallel Diffusion. However, it is shown in [3] that in Chip

Firing, the order of the firings will not determine whether or not the process will

terminate. For Chip Firing, there are results pertaining to the total number of chips

in the initial configuration that one can use to help determine whether or not the

firings will terminate. The problem of determining which initial configurations in

Parallel Diffusion will eventually lead to a configuration with an induced orientation

of all flat edges is still very much open.

17

18

In Brushing, a number of brushes are initially placed on the vertices of a graph

with the goal of eventually cleaning the graph. Every edge and vertex is initially

dirty and at every step, a dirty vertex with at least degree-many brushes is chosen to

send a brush to each of its neighbours, cleaning itself and all of its incident edges in

the process. Much like in Chip Firing, the process terminates when no dirty vertex

has at least degree-many brushes. Because of the sequential nature of the process,

Sequential Diffusion is the closest analog to Brushing in this thesis. The difference

between Sequential Diffusion and Parallel Diffusion is that in Sequential Diffusion,

only one vertex is chosen at each step to send a chip to its poorer neighbours. The

number of steps shown in this chapter to be required to clean a graph is |V (G)|. This
is equal to the period length of a tree in Sequential Diffusion under the Millpond

configuration shown in Section 5.3.

The results in this chapter are not the work of the author.

2.1 Chip Firing

In [3], Chip Firing is introduced. This one-player process is played on a connected

graph G with each vertex having a stack containing a non-negative integral number

of chips. A move is choosing a vertex that has at least degree-many chips and having

it send one chip to each of its neighbours. The process ends when every vertex has

fewer than degree-many chips. It is possible, depending on the number of chips in

the initial configuration, that the process will never end.

One concern of Bjorner et al. [3] is to study the finiteness of the Chip Firing

process. Bjorner et al. show that the order of firings does not matter. Whether or

not the process is finite will depend entirely on the initial configuration. If a process

is finite, then that implies that there exists some step t, after which no chips will be

sent. This is analogous to a configuration in Parallel Diffusion in which every vertex

has the same stack size, no chips will be sent. If a Chip Firing process is infinite and

the chips are chosen to fire consistently in the same order, then that implies that there

exists some period since the total number of chips in the process does not change as

time increases and negative stack sizes are not possible. The following results on Chip

Firing foreshadow the work on Sequential Diffusion under the Millpond configuration

in Subsection 5.3.1. This is due to the sequential nature of both processes and the

issue of determining whether or not the order of the firings matters. In Chip Firing,

if the process is infinite and the chips are chosen to fire consistently in the same

order, then the period is n, the number of vertices in the graph. This is implied by

19

Lemma 2.1.3. See [2] for a parallel version of Chip Firing. Bitar and Goles conjectured

that Parallel Chip Firing also exhibited period n in every infinite case [2]. However,

Kiwi et al. [12] show that there are configurations for which the period is much larger.

In Figure 2.1, we give an example of Chip Firing. In this example, when more

than one vertex is capable of firing at a particular step, the choice is made arbitrarily.

20

v1

0
v2

2
v3

0
v4

4
v5

1

v2 fires

v1

1
v2

0
v3

1
v4

4
v5

1

v1 fires

v1

0
v2

1
v3

1
v4

4
v5

1

v5 fires

v1

0
v2

1
v3

1
v4

5
v5

0

v4 fires

v1

0
v2

1
v3

2
v4

3
v5

1

v4 fires again

v1

0
v2

1
v3

3
v4

1
v5

2

Figure 2.1: Some steps of a Chip Firing process on P5.

21

We now go over some results regarding when a configuration yields a Chip Firing

process of infinite length.

Lemma 2.1.1. (Theorem 2.3(a) in [3]) Let C be a configuration on a graph G. If

the sum of all integer value assignments in C is greater than 2 · |E(G)|− |V (G)|, then
the Chip Firing process will never terminate.

Proof. Let C be a configuration on a graph G such that the sum of all integer value

assignments is greater than 2 · |E(G)| − |V (G)|. Suppose, by contradiction, that at

some step t, the Chip Firing process has terminated. This means that for all v ∈ V (G),

|v|t < deg(v). By definition, the total degree of G is 2 · |E(G)|. At time t, each vertex

v must have no more than deg(v)− 1 chips. Therefore, the total number of chips on

the graph must be less than or equal to 2 · |E(G)| − 1 · |V (G)| = 2 · |E(G)| − |V (G)|.
This is a contradiction.

Lemma 2.1.2. (Lemma 2.1 in [3]) If a Chip Firing process is infinite, then every

vertex is fired infinitely often.

Proof. A Chip Firing process can only be infinite if at least one vertex, v, is fired at

infinite different steps. Suppose the initial configuration has a total of N chips. No

vertex can ever have more than N chips. So, every vertex adjacent to v will have to

fire infinitely often. Since we only view Chip Firing on connected graphs, this implies

that every vertex is fired infinitely often.

Lemma 2.1.3. (Lemma 2.2 in [3]) If the Chip Firing process terminates, then there

is a vertex which is not fired at all.

Proof. We prove the contrapositive. So we suppose that every vertex has fired at least

once by time t; we will reach that the process will not terminate. Let v be the vertex

that last fired the greatest number of steps in the past. Then v must have received

a chip from every one of its neighbours since the last time it fired and thus, must be

ready to fire. So, if every vertex has fired, then the process will never terminate.

Theorem 2.1.4. (Theorem 2.3(c) in [3]) Let N be the total number of chips dis-

tributed on G. If N < |E(G)|, then the process is finite.

Proof. Note that directions can be added to the edges of any graph such that no

directed cycles exist by assigning real number values to every vertex and having

22

edges always go from the greater value to the lesser value. This implies the existence

of a source vertex. Let deg+t (v) be the out-degree of v at time t. Let

T =
∑

v∈V (G)

max{0, |v|t − deg+t (v)}.

We say that a vertex u is deficient at time t if |u|t < deg+t (u). Since there are

fewer chips than edges, the total number chips is less than the total out-degree of

the directed graph, so at least one vertex is initially deficient. Note that a deficient

vertex will return 0 in the T calculation. Let v be the vertex that fires at the first

step. After v fires, change out-edges from v to in-edges. In the T summation, the

value represented by v will:

• not be affected by the number of vertices adjacent to v with which v is the

tail since the decrease of one in the stack size of v is counteracted by the edge

changing direction so that v is now the head.

• decrease by one for every adjacent vertex with which v is the head since the

stack size of v decreases but there is no edge changing direction to counteract

it in the T calculation.

In the T summation, the value of any vertex u adjacent to v will:

• not be affected if u is the head of uv since the increase of one to its stack size

is counteracted by the direction of uv changing.

• not be affected if u is the tail of uv and u is deficient since the increase of one

to its stack size does not change its value in the T calculation.

• increase by one if u is the tail of uv and u is not deficient since the increase of

one to its stack size is not counteracted by any edge changing direction.

So, T will be unchanged unless a deficient vertex received a chip. In this case,

that deficient vertex will still return 0 in the T calculation but the vertex that sent

the chip has decreased its value in the T calculation. So, we get that T will decrease

at every step in which a deficient vertex receives a chip. However, T cannot decrease

infinitely; its minimum is 0. Therefore, the firings must cease at some time step.

Thus, the process is finite.

23

In [15], Merino looks at a variant of the Chip Firing process and in particular,

critical configurations. In Merino’s version, a vertex q is chosen to have a nonposi-

tive integral number of chips. Every other vertex begins with a non-negative integral

number of chips such that the total number of chips is 0. The process runs as normal

with every step involving a vertex with at least degree-many chips sending a chip to

each neighbour, except in the event that no vertex has at least degree many chips,

q sends a chip to each of its neighbours (thus further decreasing q’s stack size). In

this way, no matter what the initial configuration is, the process will never termi-

nate. The following definitions and theorem are from Merino’s paper [15]. Merino’s

work foreshadows the work done on Quantum Parallel Diffusion in Section 4 as both

processes allow for a firing when the normal rules would not. Also, Merino uses the

term recurrent to refer to a configuration that comes back to its starting point, like

the work with Quantum Parallel Diffusion on restoring the fixed configuration.

Definition 2.1.5. A configuration is stable if only q is able to fire in the next time

step. A configuration C is recurrent if, after some sequence of firings, we arrive

again at C. A critical configuration is a configuration that is both stable and

recurrent.

Definition 2.1.6. The weight of a configuration, w(C), at time t is the sum of all

stack sizes except q. So, w(C) =
∑

v �=q |v|t. The level of a critical configuration, C,

is given by level(C) = w(C)− |E(G)|+ deg(q).

Theorem 2.1.7. (Theorem 3.3 in [15]) If G is a graph and C a critical configuration

on G, then 0 ≤ level(C) ≤ |E(G)| − |V (G)|+ 1.

2.2 Brushing

In this section, we discuss the problem of “cleaning” a graph from a regenerating

contaminant (like algae in a network of pipes [17]). In Brushing, each vertex of a

graph is given a number of brushes and during each step a number of brushes travel

along their incident edges “cleaning” them. We will look at both the sequential [17]

and parallel [11] versions of Brushing.

2.2.1 Sequential Brushing

In [17], a method of “cleaning” a graph is introduced. Instead of chips, brushes are

placed on some of the vertices. Every edge and vertex is initially “dirty” and when

24

a vertex fires, it is “cleaned” and it sends a brush down each incident dirty edge

“cleaning” them as well. So, every time a brush is fired down an edge, one endpoint

loses a brush and the other endpoint gains a brush. Note that a vertex can fire even

if it is not adjacent to any dirty edges.

One goal with this process is to find a brush configuration that is capable of

cleaning the entire graph (vertices and edges) and is such that once the graph has

been cleaned, if it were to be labelled dirty again, the final configuration of brushes

would be capable of once again cleaning the graph. Let ωt(v) be the number of

brushes on a vertex v at time t. Let Dt(v) be the number of dirty edges incident to

v at time t.

The cleaning algorithm labels all vertices dirty and then fires vertices in any order

that follows the rule: a vertex v only fires at time t if ωt(v) ≥ Dt(v). When no such

vertex exists, the algorithm completes and returns the set of remaining dirty vertices.

This firing rule foreshadows the Algorithm for Trees used in Section 5.3 to show

that trees can exhibit periodic behaviour in Sequential Diffusion under the Millpond

configuration. Only one vertex fires during each step. The reversibility theorem,

Theorem 2.2.2, foreshadows the work in Chapter 4 regarding trying to find quantum

sets that return the fixed configuration.

We begin with an example. In Figure 2.2, all edges and vertices will begin dirty,

cleaned edges will be represented by dotted lines, and cleaned vertices will have a line

through them.

25

v1

0
v2

2
v3

0
v4

4
v5

1

v2 fires

v1

1
v2

0
v3

1
v4

4
v5

1

v3 fires

v1

1
v2

0
v3

0
v4

5
v5

1

v4 fires

v1

1
v2

0
v3

0
v4

4
v5

2

v5 fires even though it has no incident dirty edge since v5 must itself get cleaned

v1

1
v2

0
v3

0
v4

4
v5

2

v1 fires even though it has no incident dirty edges since v1 itself must become clean

v1

1
v2

0
v3

0
v4

4
v5

2

Figure 2.2: Sequential Brushing example on P5 which will return no dirty vertices.

26

Theorem 2.2.1. (Theorem 2.1 in [17]) Given a graph G and the initial configuration

of brushes ω0, the cleaning algorithm returns a unique final set of dirty vertices.

Proof. We will suppose that we have two cleaning processes and reach that they return

the same set of dirty vertices. Suppose we have two sequences of vertices, A = (a1,

a2, . . . , an) and B = (b1, b2, . . . , bm), that satisfy the cleaning algorithm. Since any

vertex firing will result in every incident edge being cleaned, it suffices to prove that

the sets {a1, a2, . . . , an} and {b1, b2, . . . , bm} are equal, with the order of firings

not mattering. Suppose, by contradiction and without loss of generality, that some

vertex in B is not in A. Let b�, 1 ≤ � ≤ m, be the first such vertex. Clearly, when

sequence A completed at time n, b� had fewer brushes than dirty neighbours, since

otherwise, this would have resulted in another firing occurring before the algorithm

terminated. Also, we know that A contains the vertices b1, b2, . . . , b�−1. This implies

that the number of dirty vertices adjacent to b� at the conclusion of firing sequence

A is less than or equal to the number of dirty vertices adjacent to b� at time � − 1

in firing sequence B. This is because the additional firings contained in A may have

served to clean additional vertices but could not have possibly caused more vertices

to become dirty. If we let Dt(v) be the number of dirty edges incident to v at time

t under sequence A and Ct(v) be the number of dirty edges incident to v at time t

under sequence B, then this statement can be expressed as Dn(b�) ≤ C�−1(b�). We

now calculate the number of brushes on b� at the conclusion of firing sequence A.

Since b� never fired, it still has all of its initial brushes. Also, b� has gained a brush

from every one of its clean neighbours. If we let ωt(v) be the number of brushes on v

at time t under sequence A and τt(v) be the number of brushes on v at time t under

sequence B (with τ0(v) = ω0(v)), then we get

ωn(b�) = ω0(b�) + deg(b�)−Dn(b�)

≥ τ0(b�) + deg(b�)− C�−1(b�)

= τ�−1(b�)

Since b� was the �th firing in sequence B, τ�−1(b�) ≥ C�−1(b�). So, ωn(b�) ≥ τ�−1(b�) ≥
C�−1(b�) ≥ Dn(b�). This is a contradiction.

27

Theorem 2.2.2. (Theorem 2.3 in [17]: The Reversibility Theorem) Given the initial

configuration ω0, suppose G can be cleaned yielding final configuration ωn, where

n = |V (G)|. Then, given initial configuration τ0 = ωn, G can be cleaned yielding the

final configuration τn = ω0.

Proof. Let A = (a1, a2, . . . , an) be a firing sequence of vertices that will successfully

clean G. That is, the cleaning algorithm will return an empty set of dirty vertices.

Let ωt(v) be the number of brushes on v at time t under sequence A and let Dt(v) be

the number of dirty edges incident to v at time t under sequence A. Let N−(at) =

|atai ∈ E(G) : i < t| and N+(at) = |atai ∈ E(G) : i > t|. Note that since A will clean

the entire graph, A must contain every vertex in G. So, deg(at) = N−(at) +N+(at).

Note that after a vertex fires, its number of brushes will not change again before the

algorithm completes. Also note that the number of brushes on a vertex before it has

fired is equal to its initial number of brushes plus its number of clean neighbours.

Using these facts, we get that

ωn(at) = ωt(at)

= ωt−1(at)−Dt−1(at)

= ω0(at) + deg(at)−Dt−1(at)−Dt−1(at)

= ω0(at) + deg(at)−N+(at)−N+(at)

= ω0(at) +N−(at)−N+(at)

(2.1)

Now, let B = (an, an−1, . . . , a1). We will let τt(v) be the number of brushes on

v at time t under sequence B (with τ0 = ωn) and we will let Ct(v) be the number of

dirty edges incident to v at time t. By induction on t, we will show that at each step

t, the tth vertex in B can fire. This will show that B will clean G. The tth vertex in

B is an−t+1. For our base case we look at t = 0.

τ0(an) = ωn(an) = ω0(an) +N−(an)−N+(an) ≥ N−(an) = C0(an)

Thus, the first firing does occur and the algorithm will continue since an has no fewer

brushes than it has dirty neighbours.

For our induction step, we will assume that the vertices an, an−1, . . . , ak (n ≥
k > 1) have already fired at the time n− k+1. We check to see that ak−1 can fire in

the next step.

28

τn−k+1(ak−1) = τ0(ak−1) + deg(ak−1)− Cn−k+1(ak−1)

= ωn(ak−1) +N+(ak−1)

= ω0(ak−1) +N−(ak−1)

≥ N−(ak−1)

= Cn−k+1(ak−1)

To finish the proof we must show that τn = ω0. By performing the calculations in

Equation 2.1 again for τn instead of ωn, we get that τn(at) = τ0(at)+N+(at)−N−(at).

So, τn(at) = ωn(at)+N+(at)−N−(at) and substituting in our known value for ωn(at),

we get

τn(at) = ω0(at) +N−(at)−N+(at) +N+(at)−N−(at) = ω0(at)

Theorem 2.2.3. (Theorem 4.3 in [10]) It is an NP-complete problem to determine

whether k brushes will clean a graph.

2.2.2 Parallel Brushing

In [17], the parallel version is also discussed and it is expanded on in [11]. In parallel

brushing, at every step, each vertex with at least as many brushes as incident dirty

edges fires. As in the sequential version, once the algorithm terminates, because no

vertices are capable of firing, it returns the set of dirty vertices. Since every vertex

has the chance to fire at each step, and thus at no point does the player have to

choose which vertex to fire, there is a unique firing sequence for each configuration.

Let b(G) be the minimum number of brushes needed to clean every vertex of G

before sequential algorithm terminates. Let pb(G) be the minimum number of brushes

needed to clean every vertex of G under the parallel algorithm. Unlike Sequential

Brushing, there is no Reversibility Theorem for Parallel Brushing to imply that a

graph can be continually cleaned, although some results exist for specific cases.

Theorem 2.2.4. (Theorem 2.2 in [17]) For any graph G, b(G) = pb(G).

Proof. Suppose that G can be cleaned using the parallel brushing algorithm. So there

exists a unique firing sequence (Jt) where Ji is a set containing every vertex that fired

29

at time i. This can obviously serve also as a sequential brushing firing sequence in

which, the ordering of the sets remains the same and some permutation is chosen of

the elements in each Ji. So, b(G) ≤ pb(G).

Now, by contradiction, suppose that b(G) < pb(G). Suppose also that we have a

firing sequence A = (a1, a2, a3, . . . , an) of vertices in G that satisfies the sequential

brushing algorithm, uses exactly b(G) brushes and returns 0 dirty vertices. Since

b(G) < pb(G), it must be true that the parallel brushing algorithm on the same

configuration returns a non-empty set of dirty vertices. Let ai be the vertex in A with

the least index that returns dirty in the parallel brushing algorithm. The existence

of this vertex shows that the parallel brushing algorithm should not have terminated

when it did since it has received at least the same number of brushes by the end of

the parallel brushing algorithm as it had at time i in the firing sequence provided

for use in the sequential brushing algorithm. Thus, we have a contradiction. So,

b(G) = pb(G).

Definition 2.2.5. A graph G can be continually cleaned in K steps using the

parallel cleaning process beginning from configuration ω0 if every for every step, t, ωt

can serve as the initial configuration of a parallel cleaning process that will clean the

graph in K steps.

Definition 2.2.6. The continual parallel brush number, cpb(G), of a graph G

is the minimum number of brushes needed to continually clean G using a parallel

cleaning process.

Theorem 2.2.7. (Theorem 4.1 in [11]) For any cycle Cn with n ≥ 2,

cpb(Cn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if n is even

3 if n = 3

4 otherwise

Theorem 2.2.8. (Theorem 4.4 in [11]) For any tree T , cpb(T) = pb(T) = b(T).

Chapter 3

Parallel Diffusion

In this chapter, we attempt to count configurations that exist inside the periods

of their respective configuration sequences in Parallel Diffusion. This is however a

problematic concept because in the original Parallel Diffusion paper by Duffy et al. [9],

it is noted that a uniform addition of a constant k to the stack sizes of a configuration

results in no change in the flow of chips (Lemma 3.1.1). This implies that there exist

infinite configurations which exist inside the periods of their respective configuration

sequences. Due to this fact, we will restrict our search by fixing a single vertex at

0 chips, understanding that the configurations we are now interested in counting

are merely representatives from a set of infinitely many configurations which can be

created by adding a constant to each stack size. We will show that this restriction is

sufficient to reduce the number of configurations in which we are interested to a finite

number, and additionally, we calculate the number of such representatives that exist

on all stars, paths, and complete graphs. These results are stated in Theorem 3.3.8,

Corollary 3.4.8, and Theorem 3.5.1, respectively. In addition to Lemma 3.1.1 from

Duffy et al. [9], the work in this chapter relies on Long and Narayanan’s result that

every configuration eventually has period 1 or 2 [14]. With only these two publications

on the subject, this thesis has the privilege of establishing not only the basic corollaries

of Long and Narayanan’s periodicity result, but also the much less obvious counting

arguments regarding configurations which exist inside of their respective periods.

3.1 Basic Definitions and Lemmas

We begin with some basic definitions and lemmas regarding Parallel Diffusion. Recall

the definition of graph orientation (Definition 1.1.12) as we will be counting graph

orientations in this section. The following lemma is stated in [9], but is not proven.

We present a proof here.

Lemma 3.1.1. (from [9]) Let C and D be configurations on a graph G. Let k be an

integer. Suppose that for all v ∈ V (G), |v|C = |v|D+k. Then for all t, |v|Ct = |v|Dt +k.

Proof. We will prove this by induction on t. Let C and D be configurations on a

30

31

graph G. Let k be an integer. Suppose that for all v ∈ V (G), |v|C = |v|D + k. So

for all u, v ∈ V (G), |u|C > |v|C if and only if |u|C = |u|D + k > |v|D + k = |v|C .
Thus after the first firing, we get that |u|C1 = |u|D1 + k for all u ∈ V (G). We will

consider this as the base case of an induction. Our induction hypothesis is that

|v|Ct = |v|Dt + k for all v ∈ V (G). So for all u, v ∈ V (G), |u|Ct > |v|Ct if and

only if |u|Ct = |u|Dt + k > |v|Dt + k = |v|Ct . Thus, after the firing at step t, we

get that |u|Ct+1 = |u|Dt+1 + k for all u ∈ V (G). Thus, we conclude that for all t,

|v|Ct = |v|Dt + k.

Definition 3.1.2. Let L(G) = {Seq(C) : C is a configuration on G}.

Since the set of integers is infinite, on any graph G, L(G) is an infinite set. Recall

by Theorem 1.2.1, that the period length of any configuration sequence in Parallel

Diffusion is 1 or 2.

Definition 3.1.3. Let Seq(C0) be the singleton or ordered pair of configurations

contained within the period of a configuration sequence Seq(C0). If Seq(C0) has period

2, define the first element of the ordered pair Seq(C0) to be the one which occurs first

in the configuration sequence.

Definition 3.1.4. Let C be a configuration on a graph G. Let C + k be the con-

figuration created by adding an integer k to every stack size in the configuration

C. Two configuration sequences, Seq(C) and Seq(D) in L(G), are equivalent if

Seq(C + k) = Seq(D) for some integer k. For all configurations C and all inte-

gers k, we say that C and C + k are equivalent. Let L(G) = {Seq(C) : C is a

configuration on G}.

In Sections 3.3 and 3.5, we determine the sizes of the largest subsets of L(Pn) and

L(K1,n) such that no two elements are equivalent.

We see an example of equivalent configuration sequences in Figure 3.1. We see

an example of L(G) and a largest subset of L(G) such that no two elements are

equivalent in Example 3.1.1.

Example 3.1.1. P2

L(P2) = {. . . , {(0, 0)}, {1, 1}, . . . }⋃{. . . , {(0, 1), (1, 0)}, {(1, 0), (0, 1)}, {(1, 2), (2, 1)}, . . . }

32

A largest subset of L(P2) such

that no two elements are equivalent: {{(0, 0)}, {(0, 1), (1, 0)}, {(1, 0), (0, 1)}}

33

Configuration sequence Seq(C0)

v1

0
v2

1
v3

1
v4

1
v5

0
C0

Firing at step 0

v1

1
v2

0
v3

1
v4

0
v5

1
C1

Firing at step 1

v1

0
v2

2
v3

-1
v4

2
v5

0
C2

Firing at step 2

v1

1
v2

0
v3

1
v4

0
v5

1
C3

Configuration sequence Seq(C ′0)

v1

-1
v2

1
v3

-2
v4

1
v5

-1
C ′0

Firing at step 0

v1

0
v2

-1
v3

0
v4

-1
v5

0
C ′1

Firing at step 1

v1

-1
v2

1
v3

-2
v4

1
v5

-1
C ′2

Firing at step 2

v1

0
v2

-1
v3

0
v4

-1
v5

0
C ′3

Figure 3.1: Two equivalent configuration sequences.

34

Lemma 3.1.5. Equivalence among configurations is an equivalence relation.

Proof. Reflexivity holds by setting k = 0. Now let C and D = C + k, k ∈ Z, be

two configurations. We know that D = C + k and C = D + (−k). Thus, symmetry

holds. For transitivity, let C, D, and E be configurations. Suppose D = C + k and

E = D + j, where j, k ∈ Z. Then, E = C + k + j. Thus, transitivity holds.

Lemma 3.1.6. Equivalence among configuration sequences is an equivalence relation.

Proof. Reflexivity holds by setting k = 0. Symmetry holds because if Seq(C + k) =

Seq(D) for some integer k, then Seq(D+(−k)) = Seq(C). Transitivity holds because

if Seq(C+k) = Seq(D) for some integer k, and Seq(D+j) = Seq(E) for some integer

j, then Seq(C + k + j) = Seq(E).

Definition 3.1.7. A graph orientation R on a graph G is admissible if there exists

a configuration C on G such that R is induced by C. Conversely, a graph orientation

R′ on a graph G′ is inadmissible if there is no configuration which induces R′.

An example of an inadmissible graph orientation and an admissible graph orien-

tation is given in Figure 3.2. The first graph orientation in Figure 3.2 is inadmissible

because of the existence of a directed cycle. The directed cycle implies that any

configuration inducing this orientation must have v1 both richer and poorer than v2.

v1 v2

v3v4 v5

Inadmissible

v1

10
v2

4

v3

2

v4

-1

v5

17

Admissible

Figure 3.2: Inadmissible and admissible graph orientations with a configuration that
induces the admissible graph orientation.

Definition 3.1.8. A configuration D on a graph G is a period configuration if

D is in Seq(C) for some configuration C. A configuration D on a graph G is a p2-

configuration if D is in Seq(C) for some configuration C and Seq(C) has exactly

2 elements. A configuration D on a graph G is a fixed configuration if D is in

Seq(C) for some configuration C and Seq(C) has exactly 1 element.

35

Definition 3.1.9. A period orientation is an admissible graph orientation that is

induced by a period configuration. A p2-orientation is an admissible graph orien-

tation that is induced by a p2-configuration. A fixed orientation is an admissible

graph orientation that is induced by a fixed configuration.

Note that the set of all period orientations on G is a subset of the set of all

admissible graph orientations on G, and the set of all admissible graph orientations

on G is a subset of the set of all graph orientations on G.

The orientation induced by a period configuration must be a period orientation,

but not every configuration that induces a period orientation is itself a period config-

uration. In Figure 3.3, we see an example of a period orientation that can be induced

by both a period configuration and a non-period configuration.

36

Orientation R

v1 v2 v3 v4 v5

Period configuration Seq(C0)

v1

0
v2

-1
v3

0
v4

-1
v5

0
C0

Firing at step 0

v1

-1
v2

1
v3

-2
v4

1
v5

-1
C1

Firing at step 1

v1

0
v2

-1
v3

0
v4

-1
v5

0
C2

Non-period configuration Seq(C ′0)

v1

0
v2

-1
v3

7
v4

3
v5

7
C ′0

Firing at step 0

v1

-1
v2

1
v3

5
v4

5
v5

6
C ′1

Firing at step 1

v1

0
v2

1
v3

4
v4

6
v5

5
C ′2

Figure 3.3: A period orientation R that can be induced by both a period configuration
and a non-period configuration

Definition 3.1.10. Let G be a graph and let R be a graph orientation on G. The

set of vertices S = {v0, v1, . . . , vk} ⊆ V (G) is a flat-directed cycle in R if for each

i (indices taken modulo k + 1), the edge vivi+1 exists and it is either directed toward

37

vi+1 or is flat, and there is at least one directed edge.

Definition 3.1.11. Let G be a graph and let R be a graph orientation on G. Let

x, y ∈ V (G). The flat relation ≈ relates x and y if and only if either x = y or there

exists a path P in G with endpoints x and y such that every edge in P is flat in R.

This is the same as viewing all flat related vertices as having equal stack sizes in

a given configuration on a connected graph.

For our next lemma, we will require a definition from West [18].

Definition 3.1.12. A walk is a list v1, e1, v2, . . . , ek, vk+1 of vertices and edges such

that for 1 ≤ i ≤ k, the edge ei has endpoints vi and vi+1.

Lemma 3.1.13. The flat relation is an equivalence relation.

Proof. We know reflexivity holds since every vertex is defined to be related to itself.

We know symmetry holds since if x and y are connected by a path in which every

edge is flat, then y and x are also connected by a path in which every edge is flat.

We know transitivity holds since if x and y are connected by a path in which every

edge is flat and so are y and z, then x and z are connected by a walk in which every

edge is flat. Since a walk from x to z exists in which every edge is flat, there must

exist some shortest walk from x to z in which every edge is flat. This shortest walk

must be a path because otherwise, some edge or vertex is listed more than once, and

thus it is not the shortest walk.

Lemma 3.1.14. Let x, y be flat related vertices. If the edge xy exists in an admissible

graph orientation, then xy is flat.

Proof. Let G be a graph and let R be an admissible graph orientation on G. Suppose

x and y are flat related in R. If x = y, then the edge xy does not exist (this thesis only

looks at simple graphs unless otherwise stated). So there exists a path P in G with

endpoints x and y such that every edge in P is flat in R. Thus, in any configuration

which induces R, every vertex in P must have the same stack size. Therefore, if xy

exists in G, then xy is flat in R.

Lemma 3.1.15. For all graphs G, a graph orientation of G contains a flat-directed

cycle if and only if it is inadmissible.

38

Proof. (⇒) Suppose a graph orientation R on a graph G contains a flat-directed

cycle, S = (v0, v1, ..., vk). Since S being a flat-directed cycle implies the existence of

at least one directed edge in S, any configuration C which induces R must be such

that |vi|C < |vi+1|C and |vi+1|C < |vi|C for some integer i. Thus, R is inadmissible.

(⇐) We will prove the contrapositive. So suppose that R is a graph orientation

on a graph G which does not contain a flat-directed cycle. We will reach that R

is admissible. We will create a configuration which induces R to show that R is

admissible. Since R does not contain a flat-directed cycle, there must exist some flat

equivalence class X1 such that no vertex in X is the tail of an edge in R. Assign 1

chip to each vertex in X1. If we were to remove X1 from the orientation, we would

be left with a suborientation, R′, in which no flat-directed cycles exist. So there must

exist some flat equivalence class X2 such that no vertex in X2 is the tail of an edge

in R. We continue assigning increasing large stack sizes to these equivalence classes

until every vertex has been assigned a stack size. A configuration which induces R

will result.

Lemma 3.1.16. Let G be a graph. Up to equivalence, the only fixed configuration on

G is the one in which every vertex has 0 chips.

Proof. Let C be a fixed configuration on a graph G. We know that, by convention,

at least one vertex in C has exactly 0 chips. Let R be the graph orientation induced

by C. Suppose, by way of contradiction, that an edge in R is directed. Without loss

of generality, let that directed edge be u → v.

Case 1: There exists a directed cycle D in R.

By Lemma 3.1.15, since all directed cycles are also flat-directed cycles, R is inad-

missible. Thus there does not exist a configuration which induces R.

Case 2: There does not exist a directed cycle in R.

Let P be a maximal directed path in R, containing u → v. Let x be the endpoint

of this path which is a head of some directed edge but not the tail of any directed

edge in P . Note that x may be v. This vertex, x, is receiving a chip in the initial

firing, but it is not sending a chip. Therefore, the stack size of x will change. Thus,

C is not a fixed configuration. This is a contradiction.

We can conclude that no directed edges exist in R and thus, all stack sizes in C

are equal to 0.

39

3.2 Period Orientations

In this section, we take a look at period orientations on paths, stars and complete

graphs. In each case, we develop a method to count the number of period orientations

on arbitrarily large graphs. These results on period orientations will prove useful when

we count the number of configurations which exist inside the period of paths, complete

graphs, and stars, in Sections 3.3, 3.4, and 3.5, respectively. We begin this section

with some results that will apply to all graphs.

Theorem 3.2.1. If R is a graph orientation on a graph G, and R does not contain

a vertex with in-degree 0, then R is inadmissible.

Proof. Let R be a graph orientation on a graph G such that R does not contain a

vertex with in-degree 0. We will create a directed cycle using the following algorithm:

1. A = ∅.

2. Choose a vertex, v0 and add it to A. Set i = 1.

3. Select an edge in which vi−1 is the head, and call the tail vi.

4. If vi /∈ A, add vi to A, i = i+ 1, back to 3. Else, end.

Since G only has finitely many vertices, this algorithm will terminate and thus,

locate a directed cycle. Since R contains a directed cycle, by Lemma 3.1.15, R is

inadmissible.

3.2.1 Complete Graphs

We now approach each of our graph families individually, beginning with the complete

graphs, Kn. In Theorem 3.2.5, we show a method of counting all period orientations

on Kn, n ≥ 1.

Claim 3.2.2. Let R be an orientation of a complete graph, Kn, n ≥ 1. If no flat-

directed cycles exist in R, then transitivity of directed edges holds. That is, x → y

and y → z implies x → z.

Proof. This result is trivial for n ≤ 2, since fewer than two edges exist. So suppose

n ≥ 3. Let R be an orientation of a complete graph, Kn. Suppose R contains no flat-

directed cycles. Suppose that x, y, z ∈ V (Kn) and that, in R, x → y and y → z. The

40

edge xz exists since R is an orientation of the complete graph. The edge xz cannot

be flat or directed z → x because this would imply the existence of a flat-directed

cycle. Thus, in R, x → z.

Claim 3.2.3. Let R be an orientation of a complete graph Kn, n ≥ 1. If no flat-

directed cycles exist in R, then given two flat equivalence classes X and Y in R with

X
= Y , all edges of the form xy with x ∈ X and y ∈ Y are assigned the same

direction.

Proof. This result is trivial if n ≤ 2, since fewer than two edges exist. So suppose

n ≥ 3. Let R be an orientation of a complete graph Kn. Suppose no flat-directed

cycles exist in R. Let X and Y be two flat equivalence classes in R with X
= Y .

Case 1: Both X and Y contain exactly one vertex. In this case, only one edge exists

with an endpoint in X and an endpoint in Y . So trivially, all edges of the form xy

with x ∈ X and y ∈ Y are assigned the same direction.

Case 2: Either X or Y contains at least two vertices. Without loss of generality,

suppose X contains at least two vertices. Let x1, x2 ∈ X and y ∈ Y . The edges

x1y, x1x2 and x2y exist since R is an orientation of a complete graph. Since x1 and

x2 are elements of the same flat equivalence class in R, the edge x1x2 is flat in R.

Since X
= Y , we know that the edges x1y and x2y are not flat. Suppose, without

loss of generality, that x1 → y in R. Now suppose, by contradiction, that y → x2

in R. This would create a flat-directed cycle x1yx2 as shown in Figure 3.4. This is

a contradiction. Thus, x2 → y in R. So, all edges of the form xy with x ∈ X and

y ∈ Y are assigned the same direction.

X

Y

x1 x2

y

Figure 3.4: Flat-directed cycle x1yx2.

41

Lemma 3.2.4. A graph orientation R of Kn, n ≥ 1, is a period orientation if and

only if R has no flat-directed cycles.

Proof. (⇒) Suppose R is a period orientation. By definition, all period orientations

are admissible. By Lemma 3.1.15, if R is admissible, then R has no flat-directed

cycles.

(⇐) Now suppose R has no flat-directed cycles. Trivially, our result holds for

n = 1 and n = 2 since those complete graphs do not contain any cycles. So we will

suppose n ≥ 3. Let x, y, z ∈ V (Kn).

By Claim 3.2.2, transitivity holds. By Claim 3.2.3, if X and Y are two different

flat equivalence classes, each edge with endpoints in both X and Y must be assigned

the same direction. This shows that the flat equivalence classes form a linear ordering

based on their directed edges. We number the equivalence classes from 1 to j with

X1 containing vertices with in-degree 0 and Xj containing vertices with out-degree 0,

where j is the number of equivalence classes.

Let C be the configuration in which n chips are assigned to each of the vertices of

X1, n− 1 chips to the vertices of X2, . . . , and n− j + 1 chips to the vertices of Xj.

We will show that for each pair of vertices u and v, if |v|0 < |u|0, then |v|1 > |u|1
and also if |v|0 = |u|0, then |v|1 = |u|1.

Let u ∈ Xa and v ∈ Xb with a < b. So, |u|0−|v|0 = b−a. In the first firing, u gives

a chip to every vertex that v gives a chip to, and v receives a chip from every vertex

that u receives a chip from. However, u gives an additional chip to every vertex in

Xb, Xb−1, . . . , Xa+1. Note that this list of sets contains at least b− a vertices. Thus,

since u will lose at least b − a chips to the vertices in Xb ∪Xb−1 ∪ · · · ∪Xa+1 and v

will gain at least b− a chips from the vertices in Xb ∪Xb−1 ∪ · · · ∪Xa+1, this results

in |v|1 − |u|1 ≥ b− a.

Since it is true that every vertex within the same equivalence class will have the

same number of chips following the first firing (having given to and received from the

same number of vertices), we can conclude that Xj will be the richest equivalence

class following the first firing, X1 will be the poorest and the others will follow in

order. The next firing will revert the vertices back to their original stack size since

they will send to every vertex they previously received from, they will receive from

every vertex they previously sent to, and all flat edges have been maintained. Thus,

we are inside the period. So, if R has no flat-directed cycles, then R is a period

orientation.

42

Can this lemma be extended to all graphs? In Figure 3.5, we see an example of a

graph for which this lemma does not hold.

v1 v2 v3 v4 v5

Figure 3.5: Graph orientation on P5.

Obviously, no graph orientation on a path can have a flat-directed cycle. In this

example, the initial configuration is such that the stack size of both v3 and v4 will

remain the same following the initial firing. However, in order for this orientation

R to exist inside the period, there must exist a configuration C which induces R

and exists within the period of some configuration sequence. Since the edge v3v4 is

directed from v3 to v4 in both step 0 and 1, we have a contradiction by Corollary 1.2.2.

In order to count the number of period orientations that exist on a complete

graph, we must partition the n vertices into k non-empty distinct sets, where each

set induces a clique of flat edges (a flat equivalence class). How many ways can we

partition these vertices?

Theorem 3.2.5. Let R(Kn) be the number of period orientations that exist on Kn.

For n ≥ 2,

R(Kn) =
n∑

i=1

(
n
i

) ·R(Kn−i)

Proof. Let R be a period orientation on Kn. Let i be the number of vertices in the

equivalence class of vertices with in-degree 0, X1, in the orientation R. If we removed

all of these vertices from our orientation, we must be left with a period orientation on

n− i vertices by Lemma 3.2.4. There are
(
n
i

)
ways to choose the elements of X1. So

the number of ways for there to be i elements in X1 in R is
(
n
i

) ·R(Kn−i). There are

n possible distinct cardinalities of X1: the integers from 1 to n. This creates a list of

n mutually exclusive and exhaustive cases based on the cardinality of X1. Summing

over each of these possible cardinalities of X1, we get

R(Kn) =
n∑

i=1

(
n
i

) ·R(Kn−i).

In the OEIS [16], this sequence of numbers: 1, 3, 13, 75, 541, 4683, . . . is

A000670, the number of ways n competitors can rank in a competition, allowing for

43

the possibility of ties (also known as Fubini numbers or ordered Bell numbers). This

is an equivalent question to the one we are asking if we suppose that the higher

ranking competitors are richer than the lower ranking competitors. The nth term of

this sequence is approximately equal to n!
2(ln 2)n+1 [1].

The number of ways to distribute the n vertices of a graph into k non-empty

equivalence classes is given by the Stirling numbers of the second kind, S(n, k) [5].

Thus, we get the following corollary.

Corollary 3.2.6. The number of period orientations on Kn, n ≥ 2, is given by

R(Kn) =
n∑

k=1

S(n, k)k!

Here, k represents the number of equivalence classes. So, the first term is the one

in which every edge is flat and the final term is the one in which no flat edges appear.

The k! term is a factor to account for the number of ways that these equivalence

classes can be ordered.

3.2.2 Paths

We now approach the problem of counting all of the p2-orientations on a path. We will

draw our paths along a horizontal axis so as to allow for the terms “left” and “right”

to have an obvious meaning. We will label the vertices from right to left with the

rightmost vertex labelled v1 and we will fix v1 at zero chips. By Theorem 1.2.1, we

know every configuration is eventually periodic with either period 1 or 2. Since we

are fixing v1 at zero chips, by Lemma 3.1.16, the only possible period 1 configuration

on any path is the one in which every vertex has zero chips. So, we will restrict our

view to only counting p2-orientations as opposed to all period orientations. We will

make frequent use of Corollary 1.2.2 in justifying the flow of chips inside the period.

Definition 3.2.7. On a path drawn along a horizontal axis, a left edge is a directed

edge in which the head is to the left of the tail. A right edge is a directed edge in

which the head is to the right of the tail.

Definition 3.2.8. When referring to edges contained within a path defined on a

horizontal axis, two edges agree if they are either both right edges or both left edges.

Two edges disagree if one is right and the other is left.

Definition 3.2.9. An alternating arrow orientation is a path orientation in

which every pair of adjacent edges disagree.

44

Note that this means an alternating arrow orientation cannot contain any flat

edges.

In order to find all of the p2-orientations on Pn, we begin by characterizing when

a path orientation is a p2-orientation.

Theorem 3.2.10. A path orientation R is a p2-orientation if and only if (a), (b),

(c), and (d) are true.

(a) R does not contain this suborientation.

(b) R does not contain any of these suborientations.

(let a square represent a leaf)

(c) R does not contain either of these suborientations.

(d)

and

only exist as suborientations of R within the larger suborientations

We express the proof with a series of lemmas. In particular, we prove the necessary

condition with Lemmas 3.2.11–3.2.14, and we prove the sufficient condition with

Lemma 3.2.15.

Lemma 3.2.11. Case (a) in Theorem 3.2.10: No p2-configuration on a path contains

two incident flat edges.

Proof. Suppose, by contradiction, that it were possible to have two flat edges adjacent

to each other. Call these edges ek and ek+1, and call the vertices vk, vk+1, and vk+2.

So, the subpath in question is X = vk+2ek+1vk+1ekvk. Since the period is two, we

know that some edge in the graph must not be flat. Without loss of generality,

45

suppose that the edge immediately to the right of X, ek−1, is oriented left or right.

This would result in vk+1 maintaining its number of chips in step 1, but in step 2,

it is now adjacent to a vertex that either increased or decreased its stack size in the

last step. Thus, the flat edge between vk+1 and vk has not been maintained. So by

Corollary 1.2.2, the orientation is not inside the period. This is a contradiction.

Lemma 3.2.12. Case (b) in Theorem 3.2.10: No p2-configuration on a path induces

an orientation in which a flat edge is incident with a leaf.

Proof. Suppose, by contradiction, that it were possible for an edge incident with a leaf

to be flat in an orientation induced by a p2-configuration, C. Call the edge e1 and its

endpoints v1 and v2. Initially, v1 and v2 have equal stack sizes. By Lemma 3.2.11, we

know that e2, the edge adjacent with e1, is not flat. So, v2 either gains or loses a chip

in the initial firing, while v1’s stack size remains unchanged. So, in the subsequent

firing, a chip will move across e1, indicating that it is not flat. This contradicts our

supposition that C is a p2-configuration.

Lemma 3.2.13. Case (c) in Theorem 3.2.10: Every flat edge in an orientation

induced by a p2-configuration, C, on a path is incident with two edges: one right and

one left.

Proof. Suppose, by contradiction, that it were possible for a flat edge to exist without

being adjacent to one left and one right edge. Call this flat edge ek and its endpoints

vk and vk+1. In the initial firing, no chips will move across ek since it is flat. In step

1, the same must be true by Corollary 1.2.2.

Case 1: ek is incident with a leaf. By Lemma 3.2.12, we know that no flat edge can

be incident with a leaf. This is a contradiction.

Case 2: At least one edge adjacent to ek is flat. By Lemma 3.2.11, this is impossible.

This is a contradiction.

Case 3: ek is adjacent to two left edges. Then |vk|1 = |vk|0+1 and |vk+1|1 = |vk|0−1.

So, the stack sizes of vk and vk+1 are not equal at step 1. This is a contradiction.

Case 4: ek is adjacent to two right edges. Then |vk|1 = |vk|0−1 and |vk+1|1 = |vk|0+1.

So, the stack sizes of vk and vk+1 are not equal at step 1. This is a contradiction.

Thus, every flat edge in a p2-configuration on a path is incident with two edges:

one right and one left.

Lemma 3.2.14. Case (d) in Theorem 3.2.10: Let R′ be a suborientation of the

orientation, R, induced by a p2-configuration on a path, Pn, n ≥ 3. If R′ consists

46

of three vertices and two right edges, then R′ must be incident with two left edges in

R. Conversely, if R′ consists of three vertices and two left edges, then R′ must be

incident with two right edges in R.

Proof. Let C be a p2-configuration on Pn. Let R be the orientation induced by C.

Let R′ be the suborientation of R on the subpath P ′n = vk+1ekvkek−1vk−1 of Pn.

Suppose, without loss of generality, that R′ contains two right edges. In the initial

firing, vk gives and receives a single chip, maintaining its stack size. Initially, we

have |vk+1|0 > |vk|0 > |vk−1|0. At step 1, these inequalities must reverse since we are

already inside the period, by Corollary 1.2.2. So, since vk maintains its stack size,

vk+1 must lose at least 2 chips in step 0 so as to go from richer than vk in step 0

to poorer than vk in step 1. Also, vk−1 must gain at least 2 chips in step 0 so as to

go from poorer than vk in step 0 to richer than vk in step 1. However, this is only

possible if both edges in E(R) \ E(R′) that are incident with R′ are left edges.

Lemma 3.2.15. Any path orientation with no suborientations of the forms outlined

in Theorem 3.2.10, is a p2-orientation.

Proof. We must now show that any orientation that does not contain one of these

mixed graphs as a suborientation is a p2-orientation. Our method will involve taking

an arbitrary orientation R that does not contain any of the suborientations listed in

Theorem 3.2.10, and proving that there exists a configuration that both induces R

and exists within the period. There are 3 orientations that an edge may have: flat,

left, and right. Let C be the configuration on Pn such that, moving from right to left,

every vertex vi has been assigned an initial stack size using the following rule:

|vi|0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|vi−1|0 + 1 if edge vi−1vi is directed right.

|vi−1|0 − 1 if edge vi−1vi is directed left.

|vi−1|0 if edge vi−1vi is flat.

and v1 has been assigned 0 chips. See Figure 3.6 for an example.

v5

1
v4

2
v3

1
v2

1
v1

0

Figure 3.6: Configuration C on P5.

We will show for every edge vivi+1

47

• if |vi|0 > |vi+1|0, then |vi+1|1 > |vi|1

and

• if |vi|0 = |vi+1|0, then |vi|1 = |vi+1|1.

This will imply that for all vi ∈ V (Pn), |vi|0 = |vi|2. Therefore, we can conclude

that C exists inside the period and thus, the orientation R induced by C is a period

orientation. Finally, since we have supposed that R does not have any pair of adjacent

flat edges, we will know by Lemma 3.1.16, that R is a p2-orientation.

We now inspect an edge ej = vjvj+1 in R.

Case 1: The edge ej = vjvj+1 is flat.

We know that neither vj nor vj+1 is a leaf by Lemma 3.2.12. Our rule shows

that vj and vj+1 have both been initially assigned to have the same number of chips.

However, in order for this configuration to be a p2-configuration, we must also have

that |vj|1 = |vj+1|1, by Corollary 1.2.2. In order to determine this, we must know

the stack sizes of vj and vj+1 at step 1. This will depend on the initial orientation of

edges ej−1 = vj−1vj and ej+1 = vj+1vj+2 (both of these edges are known to exist since

ej, being flat, cannot be adjacent to a leaf by Lemma 3.2.12). We know that since ej

is flat, no adjacent edge can be flat by Lemma 3.2.11. Also, ej−1 and ej+1 cannot be

both right or both left by Lemma 3.2.13. So, ej−1 and ej+1 must disagree. Without

loss of generality, suppose ej−1 is directed right and ej+1 is directed left. So, our rule

dictates that |vj−1|0 + 1 = |vj|0 = |vj+1|0 = |vj+2|0 + 1. Thus, with both vj and vj+1

sending one chip and receiving zero chips at step 0, we have that |vj|1 = |vj+1|1.
Case 2: The edge ej = vjvj+1 is directed.

Suppose, without loss of generality, that ej is directed right. Our rule shows that

|vj+1|0 = |vj|0 + 1. In order for this configuration to be a p2-configuration, we must

have that |vj+1|1 < |vj|1, by Corollary 1.2.2. In order to determine this, we must know

the stack sizes of vj and vj+1 at step 1. This will depend on the initial orientation

of edges ej−1 = vj−1vj and ej+1 = vj+1vj+2. Note that either ej−1 or ej+1 may not

exist depending on if either vj or vj+1 is a leaf. However, the absence of either of

these edges has the same effect on the stack size of the incident vertices as a flat edge

would. We consider the possible orientations of ej−1 and ej+1.

(i) Both ej−1 and ej+1 are flat.

48

vj+2

|vj|0 + 1

vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0
ej+1 ej−1ej

So,

|vj+1|1 = |vj+1|0 − 1 and |vj|1 = |vj|0 + 1

Thus, |vj+1|1 = (|vj|0 + 1)− 1 = |vj|0 < |vj|0 + 1 = |vj|1
So |vj+1|1 < |vj|1.

(ii) ej−1 is flat and ej+1 is directed left.

vj+2

|vj|0
vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0
ej−1ejej+1

So

|vj+1|1 = |vj+1|0 − 2 and |vj|1 = |vj|0 + 1

Thus, |vj+1|1 = (|vj|0 + 1)− 2 = |vj|0 − 1 < |vj|0 + 1 = |vj|1
So |vj+1|1 < |vj|1.

(iii) ej−1 is flat and ej+1 is directed right.

vj+2

|vj|0 + 2

vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0
ej−1ejej+1

This suborientation cannot exist by assumption.

(iv) ej−1 is directed right and ej+1 is flat.

vj+2

|vj|0 + 1

vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0 − 1

ej+1 ej ej−1

This suborientation cannot exist by assumption.

(v) ej−1 is directed right and ej+1 is directed left.

49

vj+2

|vj|0
vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0 − 1

ej−1ejej+1

So

|vj+1|1 = |vj+1|0 − 2 and |vj|1 = |vj|0
Thus, |vj+1|1 = (|vj|0 + 1)− 2 = |vj|0 − 1 < |vj|0 = |vj|1

So |vj+1|1 < |vj|1.

(vi) Both ej−1 and ej+1 are directed right.

vj+2

|vj|0 + 2

vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0 − 1

ej+1 ej ej−1

This suborientation cannot exist within the period by Lemma 3.2.14.

(vii) ej−1 is directed left and ej+1 is flat.

vj+2

|vj|0 + 1

vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0 + 1

ej+1 ej−1ej

So

|vj+1|1 = |vj+1|0 − 1 and |vj|1 = |vj|0 + 2

Thus, |vj+1|1 = (|vj|0 + 1)− 1 = |vj|0 < |vj|0 + 2 = |vj|1
So |vj+1|1 < |vj|1.

(viii) Both ej−1 and ej+1 are directed left.

vj+2

|vj|0
vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0 + 1

ej−1ejej+1

So

50

|vj+1|1 = |vj+1|0 − 2 and |vj|1 = |vj|0 + 2

Thus, |vj+1|1 = (|vj|0 + 1)− 2 = |vj|0 − 1 < |vj|0 + 2 = |vj|1
So |vj+1|1 < |vj|1.

(ix) ej−1 is directed left and ej+1 is directed right.

vj+2

|vj|0 + 2

vj+1

|vj|0 + 1

vj

|vj|0
vj−1

|vj|0 + 1

ej−1ejej+1

So

|vj+1|1 = |vj+1|0 and |vj|1 = |vj|0 + 2

Thus, |vj+1|1 = |vj|0 + 1 < |vj|0 + 2 = |vj|1
So |vj+1|1 < |vj|1

So, for all possible graph orientations R, R is a p2-orientation.

Let Rn be the number of p2-orientations on Pn, n ≥ 1. Quick calculations show

that R1 = 0, R2 = 2, R3 = 2, and R4 = 4 (see Figure 3.7).

v2 v1

v2 v1

v3 v2 v1

v3 v2 v1

v4 v3 v2 v1

v4 v3 v2 v1

v4 v3 v2 v1

v4 v3 v2 v1

Figure 3.7: Every p2-orientation of P2, P3, and P4

Theorem 3.2.16. The number of p2-orientations, Rn, on a path Pn, n ≥ 4, is given

by the recurrence relation Rn = Rn−1 + 2Rn−2 − Rn−4 with initial values R1 = 0,

R2 = 2, R3 = 2, and R4 = 4.

51

Proof. Let R be a p2-orientation on Pn = v1e1v2e2v3 . . . vn−1en−1vn. There are three

cases: en−2 is flat, en−2 agrees with en−3, or en−2 is neither flat nor agreeing with en−3.

For each of the three mutually exclusive and exhaustive cases, we will determine the

number of p2-orientations of that form which exist. We will then add together the

three values to determine the recurrence relation for the number of p2-orientations

that exist on Pn.

Case 1: Suppose that in R, en−2 is flat (see Figure 3.8). We will show that the

number of p2-orientations of Pn in which en−2 is flat is equal to Rn−2. Let R′ be the

induced suborientation of R on Pn−2 = v1e1v2 . . . vn−3en−3vn−2. We must check that

R′ is a p2-orientation by using our criteria from Lemmas 3.2.11 - 3.2.14.

vn vn−1 vn−2 vn−3 v2 v1

vn vn−1 vn−2 vn−3 v2 v1

en−2

en−2

en−1 en−3

en−1 en−3

Figure 3.8: Two possible p2-orientations of Pn with en−2 flat. Note that the orientation
of e1, signified by a double sided arrow, is uncertain in both instances.

Lemma 3.2.11 states the non-existence of adjacent flat edges. Since R is a p2-

orientation, it does not contain adjacent flat edges. Therefore R′, being an induced

suborientation of R, also does not contain adjacent flat edges.

Lemma 3.2.12 states the non-existence of flat edges incident with a leaf. Since R

is a p2-orientation, it does not contain a flat edge incident with a leaf. The vertex

vn−2 is a leaf in R′ but not in R. However, we know, by Lemma 3.2.13, that en−3 and

en−1 disagree. This implies that en−3, the only edge incident with vn−2 in R′, is not

flat. Therefore, R′ does not contain a flat edge incident with a leaf.

Lemma 3.2.13 states that every flat edge must be adjacent to a pair of disagreeing

edges. Since R is a p2-orientation, each flat edge in R is adjacent to disagreeing edges.

Since en−3 is not flat, every flat edge in R′ is adjacent to the same set of edges in R.

Therefore, every flat edge in R′ is adjacent to disagreeing edges.

Lemma 3.2.14 states that any edge e adjacent to an edge f with which it agrees

must also be adjacent to an edge d with which it disagrees. We know by Lemma 3.2.14,

that since R is a p2-orientation and en−2 is flat, en−3 does not agree with en−4. So,

every pair of adjacent agreeing edges in R′ is adjacent to the same set of edges in

R. Therefore, in R′, every edge e adjacent to an edge f with which it agrees is also

52

adjacent to an edge d with which it disagrees.

By Theorem 3.2.10, we can conclude thatR′ is a p2-orientation. Also, R is uniquely

determined by R′. That is, given R′ and that en−2 is flat, we know by Lemma 3.2.13

that in R, en−1 disagrees with en−3. So, there is exactly one extension of R′ to a

p2-orientation on Pn. Therefore, there exist exactly Rn−2 different p2-orientations on

Pn in which en−2 is flat.

Case 2: Suppose that in R, en−2 agrees with en−3 (see Figure 3.9). We will show that

the number of p2-orientations of Pn in which en−2 agrees with en−3 is equal to Rn−2−
Rn−4. Let R′ be the induced suborientation of R on Pn−2 = v1e1v2 . . . vn−3en−3vn−2.

We must check that R′ is a p2-orientation by using our criteria from Lemmas 3.2.11

- 3.2.14.

vn vn−1 vn−2 vn−3 vn−4 v2 v1

vn vn−1 vn−2 vn−3 vn−4 v2 v1

en−1 en−2 en−3

en−2en−1 en−3

Figure 3.9: Two possible p2-orientations of Pn in which en−2 agrees with en−3. Note
that the orientation of e1, signified by a double sided arrow, is uncertain.

Lemma 3.2.11 states the non-existence of adjacent flat edges. Since R is a p2-

orientation, it does not contain adjacent flat edges. Therefore R′, being an induced

suborientation of R, also does not contain adjacent flat edges.

Lemma 3.2.12 states the non-existence of flat edges incident with a leaf. Since R

is a p2-orientation, it does not contain a flat edge incident with a leaf. The vertex

vn−2 is a leaf in R′ but not in R. However, we know that en−3 and en−2 agree. This

implies that en−3, the only edge incident with vn−2 in R′, is not flat. Therefore, R′

does not contain a flat edge incident with a leaf.

Lemma 3.2.13 states that flat edges must be adjacent to disagreeing edges. Since

R is a p2-orientation, each flat edge in R is adjacent to disagreeing edges. Since en−3
is not flat, every flat edge in R′ is adjacent to the same set of edges in R. Therefore,

every flat edge in R′ is adjacent to disagreeing edges.

Lemma 3.2.14 states that any edge e adjacent to an edge f with which it agrees

must also be adjacent to an edge d with which it disagrees. We know by Lemma 3.2.14,

that since R is a p2-orientation and en−2 agrees with en−3, then en−3 disagrees with

en−4. So, every pair of adjacent agreeing edges in R′ is adjacent to the same set of

53

edges in R. Therefore, in R′, every edge e adjacent to an edge f with which it agrees

is also adjacent to an edge d with which it disagrees.

By Theorem 3.2.10, we can conclude thatR′ is a p2-orientation. Also, R is uniquely

determined by R′. That is, given R′ and that en−2 agrees with en−3, we know that

in R, en−1 disagrees with en−2 by Lemmas 3.2.12 and 3.2.14. By Lemma 3.2.14, the

number of p2-orientations of Pn in which en−2 agrees with en−3 is equal to the number

of p2-orientations of R′ in which en−3 disagrees with en−4. We can determine this

value recursively. From Case 1, we can see that the number of p2-orientations of R
′ in

which en−3 disagrees with en−4 is equal to Rn−2 minus the number of p2-orientations

of R′ in which en−2 is flat. Thus we get that there exist Rn−2−Rn−4 p2-orientations

of Pn in which en−2 agrees with en−3.

Case 3: Suppose that in R, en−2 is neither flat nor agreeing with en−3. We will

show that the number of p2-orientations in which en−2 is neither flat nor agreeing

with en−3 is equal to Rn−1. Let R′ be the induced suborientation of R on Pn−1 =

v1e1v2 . . . vn−3en−3vn−2en−2vn−1. We must check that R′ is a p2-orientation by using

our criteria from Lemmas 3.2.11 - 3.2.14.

Lemma 3.2.11 states the non-existence of adjacent flat edges. Since R is a p2-

orientation, it does not contain adjacent flat edges. Therefore R′, being an induced

suborientation of R, also does not contain adjacent flat edges.

Lemma 3.2.12 states the non-existence of flat edges incident with a leaf. Since R

is a p2-orientation, it does not contain a flat edge incident with a leaf. The vertex

vn−1 is a leaf in R′ but not in R. However, we know that en−2, the only edge incident

with vn−1 in R′, is not flat. Therefore, R′ does not contain a flat edge incident with

a leaf.

Lemma 3.2.13 states that flat edges must be adjacent to disagreeing edges. Since

R is a p2-orientation, each flat edge in R is adjacent to disagreeing edges. Since en−2
is not flat, every flat edge in R′ is adjacent to the same set of edges in R. Therefore,

every flat edge in R′ is adjacent to disagreeing edges.

Lemma 3.2.14 states that any edge e adjacent to an edge f with which it agrees

must also be adjacent to an edge d with which it disagrees. Since en−2 does not agree

with en−3, every pair of adjacent agreeing edges in R′ is adjacent to the same set of

edges in R. Therefore, in R′, every edge e adjacent to an edge f with which it agrees

is also adjacent to an edge d with which it disagrees.

By Theorem 3.2.10, we can conclude thatR′ is a p2-orientation. Also, R is uniquely

determined by R′. That is, given R′, we know that in R, en−1 disagrees with en−2.

So, there is exactly one extension of R′ to a p2-orientation on Pn. Therefore, there

54

exist exactly Rn−1 different p2-orientations of this form on Pn. Adding together the

values from our three cases, we get that Rn = Rn−1 + 2Rn−2 −Rn−4.

In the OEIS [16], this sequence: 0, 2, 2, 4, 8, 14, 28, 52, 100, 190, 362... is A052535,

the sequence with generating sequence is (1−x2)
(1−x−2x2+x4)

[16].

In order to find the explicit formula, we begin by finding the characteristic equation

for this linear recurrence:

Rn = Rn−1 + 2Rn−2 −Rn−4

Rn −Rn−1 − 2Rn−2 +Rn−4 = 0 Let Rn = xn

xn − xn−1 − 2xn−2 + xn−4 = 0

xn−4(x4 − x3 − 2x2 + 1) = 0

x4 − x3 − 2x2 + 1 = 0

The roots of this equation are α1 ≈ 0.6710, α2 ≈ 1.9052, α3 ≈ −0.7881− 0.4014i,

and α4 ≈ −0.7881 + 0.4014i. Since these are all of the nonzero roots of the function,

our general solution is a linear combination of all four values:

Rk = c1(α1)
k + c2(α2)

k + c3(α3)
k + c4(α4)

k.

In order to solve for c1, c2, c3, and c4, we must solve a system of four linear

equations using the four initial values of our recurrence: R1 = 0, R2 = 2, R3 = 2, and

R4 = 4. See [5] for more on solving recurrence relations. Our system of equations is:

R1 = c1(α1) + c2(α2) + c3(α3) + c4(α4) = 0

R2 = c1(α1)
2 + c2(α2)

2 + c3(α3)
2 + c4(α4)

2 = 2

R3 = c1(α1)
3 + c2(α2)

3 + c3(α3)
3 + c4(α4)

3 = 2

R4 = c1(α1)
4 + c2(α2)

4 + c3(α3)
4 + c4(α4)

4 = 4

Solving this system of equations, we get

55

c1 =
2(α2α3 + α2α4 + α3α4 − α2 − α3 − α4 + 2)

α1(α1 − α2)(α1 − α3)(α1 − α4)

c2 =
2(α1α3 + α1α4 + α3α4 − α1 − α3 − α4 + 2)

α2(α2 − α1)(α2 − α3)(α2 − α4)

c3 =
2(α1α2 + α2α4 + α1α4 − α1 − α2 − α4 + 2)

α3(α3 − α1)(α3 − α2)(α3 − α4)

c4 =
2(α1α2 + α1α3 + α2α3 − α1 − α2 − α3 + 2)

α4(α4 − α1)(α4 − α2)(α4 − α3)

Plugging in our roots, we get

c1 ≈ 0.5797

c2 ≈ 0.3017

c3 ≈ 0.5593− 0.1023i

c4 ≈ 0.5593 + 0.1023i

So,

Rk ≈ 0.5797(0.6710) k

+ 0.3017(1.9052) k

+ (0.5593− 0.1023i)(−0.7881− 0.4014i) k

+ (0.5593 + 0.1023i)(−0.7881 + 0.4014i) k.

The dominating term, out of the four roots, is the one which has the greatest modulus.

These moduli are roughly 0.6710, 1.9052, 0.8844, and 0.8844. Thus, the dominant

term in the equation

Rk ≈ 0.5797(0.6710) k

+ 0.3017(1.9052) k

+ (0.5593− 0.1023i)(−0.7881− 0.4014i) k

+ (0.5593 + 0.1023i)(−0.7881 + 0.4014i) k

is c2(α2)
k ≈ (0.3017)(1.9052) k.

56

Corollary 3.2.17. Rk has an asymptotic value of approximately 0.3017× (1.9052)k.

3.2.3 Stars

We now turn our attention to counting the number of period orientations that exist

on the star graph K1,n, n ≥ 2.

Theorem 3.2.18. There are 3 period orientations on a star graph, K1,n, n ≥ 2.

Proof. Case 1: All edges flat.

This graph orientation can be satisfied by placing the same number of chips on

each vertex. This is a fixed configuration.

Case 2: All edges directed toward the center.

This graph orientation can be satisfied by placing 0 chips in the center and 1 chip

on every other vertex. This is a p2-configuration.

Case 3: All edges directed from the center.

This graph orientation can be satisfied by placing 1 chip in the center and 0 chips

on every other vertex. This is a p2-configuration.

Case 4: There exists an edge directed toward the center and there exists an edge

directed from the center.

In order for both of these edges to reverse at the next step, the center would need

to both be richer and poorer than its initial stack size. Thus, there cannot exist both

an edge directed toward the center and an edge directed away from the center.

Case 5: There exists both a flat edge and a directed edge.

In order for the directed edge to reverse direction at the next step, the center’s

stack size would need to either increase or decrease. However, for the flat edge to be

maintained, the center’s stack size must remain the same. Thus, there cannot exist

both a flat edge and a directed edge.

Therefore, there are only 3 period orientations on K1,n.

3.3 p2-Configurations on Paths

We have already calculated the number of p2-orientations that exist on a path. Now,

we will calculate, given a p2-orientation, the number of p2-configurations that exist.

For each vertex on a path, we determine the number of possible stack sizes that that

vertex can have. We call this number the multiplier of that vertex.

57

Definition 3.3.1. Given a graph orientation R on a path Pn, n ≥ 1, the multiplier

assigned to a vertex v represents the number of possibilities for the initial stack size

of v in a p2-configuration, supposing that an initial stack size has already been chosen

for every vertex to the right of v, and the rightmost vertex v1 has been chosen to have

0 chips.

Given an assignment of stack sizes to the vertices v1, v2, · · · vi−1, the multiplier

of vi in R is the number of possibilities for the stack size of vi in a p2-configuration

which induces R. Note that the multiplier of a vertex does not depend on the stack

size of any vertex, only the graph orientation. Since we are assuming that we are

already inside the period of a configuration with period 2, these calculations can be

conducted locally as is shown in Example 3.3.1. That is, the multiplier of a vertex

vk depends only on the orientation of the edges incident to vk and those incident to

vk−1.

We now look at an example:

v10 v9 v8 v7 v6 v5 v4 v3 v2 v1

Figure 3.10: P10 under orientation R

Example 3.3.1. We assign P10 to have induced orientation R pictured in Figure 3.10.

Moving from right to left, we determine the number of possible stack sizes each vertex

can take on:

1. We fix v1 at 0 chips by convention. So, v1 has a multiplier of 1.

2. We have that v2 must have a negative stack size (so as to receive from v1 in

the initial firing) that is large enough to already be in the period. We know

that the stack size of v1 will decrease by 1 in the first step and the stack size

of v2 will increase by 2 in the first step. This means that |v2|0 < |v1|0 = 0 and

|v2|0 + 2 > |v1|0 − 1 = −1. So, 0 > |v2|0 > −3. Thus, the two possible values

that |v2|0 can take on are −1 and −2. So, v2 has a multiplier of 2.

3. Given a value for |v2|0, we calculate the number of possible initial stack sizes

that v3 can take on. We know |v3|0 > |v2|0 and |v3|0 − 2 < |v2|0 + 2. So, we

have that |v2|0 < |v3|0 < |v2|0 +4. Thus, the three possible initial stack sizes for

v3 are |v2|0 + 1, |v2|0 + 2, and |v2|0 + 3.

58

4. Given a value for |v3|0, we calculate the number of possible initial stack sizes

that v4 can take on. We know |v4|0 < |v3|0 and |v4|0 + 2 > |v3|0 − 2. So, we

have that |v3|0 > |v4|0 > |v3|0 − 4. Thus, the three possible initial stack sizes for

v4 are |v3|0 − 1, |v3|0 − 2, and |v3|0 − 3.

5. Given a value for |v4|0, we calculate the number of possible initial stack sizes

that v5 can take on. We know |v5|0 > |v4|0 and |v5|0 + 1− 1 < |v4|0 + 2. So, we

have that |v4|0 < |v5|0 < |v4|0 + 2. Thus, the only possible initial stack size for

v5 is |v4|0 + 1.

6. Given a value for |v5|0, we calculate the number of possible initial stack sizes

that v6 can take on. We know |v6|0 > |v5|0 and |v6|0 − 2 < |v5|0 + 1− 1. So, we

have that |v5|0 + 2 > |v6|0 > |v5|0. Thus, the only possible initial stack size for

v6 is |v5|0 + 1.

7. Given a value for |v6|0, we calculate the number of possible initial stack sizes

that v7 can take on. We know that |v7|0 < |v6|0 and |v7|0 + 1 > |v6|0 − 2. So,

we have that |v6|0 − 3 < |v7|0 < |v6|0. Thus, the two possible initial stack sizes

for v7 are |v6|0 − 2 and |v6|0 − 1.

8. Given a value for |v7|0, we calculate the number of possible initial stack sizes

that v8 can take on. We know |v8|0 = |v7|0. Thus, the only possible initial stack

size for v8 is |v7|0.

9. Given a value for |v8|0, we calculate the number of possible initial stack sizes

that v9 can take on. We know that |v9|0 > |v8|0 and |v9| − 2 < |v8|+ 1. So, we

have that |v8|0 < |v9|0 < |v8| + 3. Thus, the two possible initial stack sizes for

v9 are |v8|0 + 1 and |v8|0 + 2.

10. Given a value for |v9|0, we calculate the number of possible initial stack sizes

that v10 can take on. We know that |v10|0 < |v9|0 and |v10|0 + 1 > v9 − 2. So,

we have that |v9|0 − 3 < |v10|0 < |v9|0. Thus, the two possible initial stack sizes

for v10 are |v9|0 − 2 and |v9|0 − 1. Thus, the multiplier for v10 is 2.

Multiplying all of these possibilities together we get 1×2×3×3×1×1×2×1×2×2 =

144 p2-configurations on this period orientation.

Our goal now is to determine the multiplier for any vertex vk in any p2-configuration

on a path. In order to determine the multiplier of a given vertex vk in a path Pn, we

59

would like to be able to assume that vk and vk−1 are each incident with two edges.

We will begin with a smaller theorem that deals with calculating the multiplier for

vertices in which this assumption fails.

Theorem 3.3.2. (Little Multiplier Theorem) Let Pn = v1e1v2e2 . . . en−1vn be a path

on n ≥ 3 vertices and let R be a p2-orientation on Pn. Then

• v1 has a multiplier of 1.

• If e2 is flat, then the multiplier of v2 is 1.

• If e2 is directed, then the multiplier of v2 is 2.

• If en−2 is flat, then the multiplier of vn is 1.

• If en−2 is directed, then the multiplier of vn is 2.

Proof. The multiplier for v1 is always 1 because, by convention, we set v1 at 0 chips.

By Lemma 3.2.12, we know that e1 cannot be flat. By Lemma 3.2.14, we know that

e2 does not agree with e1. So, when calculating the multiplier for v2, there are two

cases. Either e2 disagrees with e1, or e2 is flat. That is, we can exclude the following

suborientations

v3 v2 v1

v3 v2 v1

v3 v2 v1

v3 v2 v1

v3 v2 v1

We will begin by supposing that e2 is flat and reaching that v2 has a multiplier of

1. There are two possibilities.

60

(i) e1 is directed right.

v3 v2 v1

The net effect of the first firing on v2 is a decrease of one chip, and the net effect

of the first firing on v1 is an increase of one chip. This means that |v2|0 > |v1|0
and |v2|0 − 1 < |v1|0 + 1. So, |v1|0 < |v2|0 < |v1|0 + 2. Therefore, |v1|0 + 1 is

the only possible initial stack size for v2. Since there is only one possible initial

stack size, v2 has a multiplier of 1.

(ii) e1 is directed left.

v3 v2 v1

The net effect of the first firing on v2 is an increase of one chip, and the net effect

of the first firing on v1 is a decrease of one chip. This means that |v2|0 < |v1|0
and |v2|0 + 1 > |v1|0 − 1. So, |v1|0 > |v2|0 > |v1|0 − 2. Therefore, |v1|0 − 1 is

the only possible initial stack size for v2. Since there is only one possible initial

stack size, v2 has a multiplier of 1.

We will now suppose instead that e2 disagrees with e1 and reach that v2 has a

multiplier of 2. There are two possibilities.

(i) e2 is directed right.

v3 v2 v1

The net effect of the first firing on v2 is an increase of two chips, and the net effect

of the first firing on v1 is a decrease of one chip. This means that |v2|0 < |v1|0
and |v2|0 + 2 > |v1|0 − 1. So, |v1|0 > |v2|0 > |v1|0 − 3. Therefore, |v1|0 − 1 and

|v1|0 − 2 are the only possible initial stack size for v2. Since there are only two

possible initial stack sizes, v2 has a multiplier of 2.

(ii) e2 is directed left.

v3 v2 v1

The net effect of the first firing on v2 is a decrease of two chips, and the net effect

of the first firing on v1 is an increase of one chip. This means that |v2|0 > |v1|0
and |v2|0 − 2 < |v1|0 + 1. So, |v1|0 < |v2|0 < |v1|0 + 3. Therefore, |v1|0 + 1 and

|v1|0 + 2 are the only possible initial stack size for v2. Since there are only two

possible initial stack sizes, v2 has a multiplier of 2.

61

We now turn our attention to vn. By Lemma 3.2.12, we know that the edge

en−1 is not flat. By Lemma 3.2.14, we know that the edge en−2 does not agree

with the edge en−1. So, when calculating the multiplier for vn, there are two cases.

Either en−2 disagrees with en−1 or en−2 is flat. That is, we can exclude the following

suborientations

vn vn−1 vn−2

vn vn−1 vn−2

vn vn−1 vn−2

vn vn−1 vn−2

vn vn−1 vn−2

We will suppose first that en−2 is flat and reach that vn has a multiplier of 1.

There are two possibilities.

(i) en−1 is directed right.

vn vn−1 vn−2

The net effect of the first firing on vn is a decrease of one chip, and the net

effect of the first firing on vn−1 is an increase of one chip. This means that

|vn|0 > |vn−1|0 and |vn|0 − 1 < |vn−1|0 + 1. So, |vn−1|0 < |vn|0 < |vn−1|0 + 2.

Therefore, |vn−1|0 + 1 is the only possible initial stack sizes for vn. Since there

is only one possible initial stack size, vn has a multiplier of 1.

(ii) en−1 is directed left.

vn vn−1 vn−2

The net effect of the first firing on vn is an increase of one chip, and the net

effect of the first firing on vn−1 is a decrease of one chip. This means that

|vn|0 < |vn−1|0 and |vn|0 + 1 > |vn−1|0 − 1. So, |vn−1|0 > |vn|0 > |vn−1|0 − 2.

62

Therefore, |vn−1|0 − 1 is the only possible initial stack sizes for vn. Since there

is only one possible initial stack size, vn has a multiplier of 1.

We will now suppose instead that en disagrees with en−1 and reach that vn has a

multiplier of 2. There are two possibilities.

1. en is directed right.

vn vn−1 vn−2

The net effect of the first firing on vn is a decrease of one chip, and the net

effect of the first firing on vn−1 is an increase of two chips. This means that

|vn|0 > |vn−1|0 and |vn|0 − 1 < |vn−1|0 + 2. So, |vn−1|0 < |vn|0 < |vn−1|0 + 3.

Therefore, |vn−1|0 + 1 and |v1|0 + 2 are the only possible initial stack sizes for

vn. Since there are only two possible initial stack sizes, vn has a multiplier of 2.

2. en is directed left.

vn vn−1 vn−2

The net effect of the first firing on vn is an increase of one chip, and the net

effect of the first firing on vn−1 is a decrease of two chips. This means that

|vn|0 < |vn−1|0 and |vn|0 + 1 > |vn−1|0 − 2. So, |vn−1|0 > |vn|0 > |v1|0 − 3.

Therefore, |vn−1|0 − 1 and |vn−1|0 − 2 are the only possible initial stack sizes for

vn. Since there are only two possible initial stack sizes, vn has a multiplier of 2.

We will now look at the multipliers of the other vertices.

Theorem 3.3.3. (The Multiplier Theorem) Let R be a p2-orientation on a path

Pn = v1e1v2e2 . . . en−1vn with n ≥ 4. If a vertex vk and its neighbour vk−1 each

have exactly two neighbours, then the multiplier of vk is 1, 2, or 3 depending on the

suborientation within which it exists, as outlined in Table 3.1.

63

Multiplier

3

vk

vk

2

vk

vk

vk

vk

1

vk

vk

vk

vk

vk

vk

vk

vk

Table 3.1: Multiplier based on neighbourhood

Proof. We will begin by proving that no suborientation omitted from Table 3.1 can

be contained within a p2-orientation.

Every edge has 3 possible orientations. Therefore, there exist 33 = 27 graph

orientations of P4. However, we know several of these orientations cannot exist as

suborientations within a p2-orientation by Theorem 3.2.10. We now list these orien-

tations which cannot exist within a p2-orientation.

64

The following 5 suborientations cannot exist within a p2-orientation by Lemma 3.2.11.

The following 2 suborientations cannot exist within a p2-orientation by Lemma 3.2.13.

The following 6 suborientations cannot exist within a p2-orientation by Lemma 3.2.14.

Figure 3.11: List of orientations which cannot exist as suborientations within a p2-
orientation

65

What remains are the 27 − 13 = 14 suborientations listed in Table 3.1. We

will break these 14 suborientations into 7 pairs of suborientations and show their

multipliers using a case analysis. Each orientation will be paired with the orientation

created by reversing the direction of every directed edge contained within. We will

see that these pairs always have the same multiplier and can be proven using similar

arguments. Note that by Corollary 1.2.2, every period that contains one of these

orientations must also contain the one with which it is paired.

Case 1: Alternating arrow suborientation.

vk

vk

First assume that vk is losing two chips in the first firing. The net effect of the

first firing on vk is a decrease of two chips, and the net effect of the first firing on vk−1
is an increase of two chips. This means that |vk|0 > |vk−1|0 and |vk|0−2 < |vk−1|0+2.

So, |vk−1|0 < |vk|0 < |vk−1|0+4. Therefore, |vk−1|0+1, |vk−1|0+2, and |vk−1|0+3 are

the only possible initial stack sizes for vk. Since there are only three possible initial

stack sizes, vk has a multiplier of 3.

Now assume that instead, vk is gaining two chips in the first firing. The net

effect of the first firing on vk is an increase of two chips, and the net effect of the

first firing on vk−1 is a decrease of two chips. This means that |vk|0 < |vk−1|0 and

|vk|0 + 2 > |vk−1|0 − 2. So, |vk−1|0 > |vk|0 > |vk−1|0 − 4. Therefore, |vk−1|0 − 1,

|vk−1|0 − 2, and |vk−1|0 − 3 are the only possible initial stack sizes for vk. Since there

are only three possible initial stack sizes, vk has a multiplier of 3.

Case 2:

vk

vk

First assume that vk is losing two chips in the first firing. The net effect of the first

firing on vk is a decrease of two chips, and the net effect of the first firing on vk−1 is no

change in the number of chips. This means that |vk|0 > |vk−1|0 and |vk|0−2 < |vk−1|0.
So, |vk−1|0 < |vk|0 < |vk−1|0+2. Therefore, |vk−1|0+1 is the only possible initial stack

size for vk. Since there is only one possible initial stack size, vk has a multiplier of 1.

66

Now assume that instead, vk is gaining two chips in the first firing. The net effect

of the first firing on vk is an increase of two chips, and the net effect of the first firing

on vk−1 is no change in the number of chips. This means that |vk|0 < |vk−1|0 and

|vk|0 + 2 > |vk−1|0. So, |vk−1|0 > |vk|0 > |vk−1|0 − 2. Therefore, |vk−1|0 − 1 is the only

possible initial stack size for vk. Since there is only one possible initial stack size, vk

has a multiplier of 1.

Case 3:

vk

vk

First assume that vk−1 is losing two chips in the first firing. The net effect of

the first firing on vk is no change in the number of chips, and the net effect of the

first firing on vk−1 is a decrease of two chips. This means that |vk|0 < |vk−1|0 and

|vk|0 > |vk−1|0 − 2. So, |vk−1|0 > |vk|0 > |vk−1|0 − 2. Therefore, |vk−1|0 − 1 is the only

possible initial stack size for vk. Since there is only one possible initial stack size, vk

has a multiplier of 1.

Now assume that instead, vk−1 is gaining two chips in the first firing. The net

effect of the first firing on vk is no change in the number of chips, and the net effect

of the first firing on vk−1 is an increase of two chips. This means that |vk|0 > |vk−1|0
and |vk|0 < |vk−1|0 + 2. So, |vk−1|0 < |vk|0 < |vk−1|0 + 2. Therefore, |vk−1|0 + 1 is

the only possible initial stack size for vk. Since there is only one possible initial stack

size, vk has a multiplier of 1.

Case 4:

vk

vk

First assume that vk is losing two chips in the first firing. The net effect of the

first firing on vk is a decrease of two chips, and the net effect of the first firing on vk−1
is an increase of one chip. This means that |vk|0 > |vk−1|0 and |vk|0 − 2 < |vk−1|0 +1.

So, |vk−1|0 < |vk|0 < |vk−1|0 + 3. Therefore, |vk−1|0 + 1 and |vk−1 + 2 are the only

possible initial stack sizes for vk. Since there are only two possible initial stack sizes,

vk has a multiplier of 2.

67

Now assume that instead, vk is gaining two chips in the first firing. The net

effect of the first firing on vk is an increase of two chips, and the net effect of the

first firing on vk−1 is a decrease of one chip. This means that |vk|0 < |vk−1|0 and

|vk|0 + 2 > |vk−1|0 − 1. So, |vk−1|0 > |vk|0 > |vk−1|0 − 3. Therefore, |vk−1|0 − 1 and

|vk−1 − 2 are the only possible initial stack sizes for vk. Since there are only two

possible initial stack sizes, vk has a multiplier of 2.

Case 5:

vk

vk

First assume that vk is losing one chip in the first firing. The net effect of the first

firing on vk is a decrease of one chip, and the net effect of the first firing on vk−1 is an

increase of one chip. This means that |vk|0 > |vk−1|0 and |vk|0 − 1 < |vk−1|0 + 1. So,

|vk−1|0 < |vk|0 < |vk−1|0 + 2. Therefore, |vk−1|0 + 1 is the only possible initial stack

size for vk. Since there is only one possible initial stack size, vk has a multiplier of 1.

Now assume that instead, vk is gaining one chip in the first firing. The net

effect of the first firing on vk is an increase of one chip, and the net effect of the

first firing on vk−1 is a decrease of one chip. This means that |vk|0 < |vk−1|0 and

|vk|0 + 1 > |vk−1|0 − 1. So, |vk−1|0 > |vk|0 > |vk−1|0 − 2. Therefore, |vk−1|0 − 1 is

the only possible initial stack size for vk. Since there is only one possible initial stack

size, vk has a multiplier of 1.

Case 6:

vk

vk

First assume that vk is losing one chip in the first firing. The net effect of the first

firing on vk is a decrease of one chip, and the net effect of the first firing on vk−1 is

a decrease of one chip. This means that |vk|0 = |vk−1|0 and |vk|0 − 1 = |vk−1|0 − 1.

Therefore, |vk−1|0 is the only possible initial stack size for vk. Since there is only one

possible initial stack size, vk has a multiplier of 1.

Now assume that instead, vk is gaining one chip in the first firing. The net

effect of the first firing on vk is an increase of one chip, and the net effect of the

first firing on vk−1 is an increase of one chip. This means that |vk|0 = |vk−1|0 and

68

|vk|0 + 1 = |vk−1|0 + 1. Therefore, |vk−1|0 is the only possible initial stack size for vk.

Since there is only one possible initial stack size, vk has a multiplier of 1.

Case 7:

vk

vk

First assume that vk is losing one chip in the first firing. The net effect of the first

firing on vk is a decrease of one chip, and the net effect of the first firing on vk−1 is

an increase of two chips. This means that |vk|0 > |vk−1|0 and |vk|0 − 1 < |vk−1|0 + 2.

So, |vk−1|0 < |vk|0 < |vk−1|0 + 3. Therefore, |vk−1|0 + 1 and |vk−1|0 + 2 are the only

possible initial stack sizes for vk. Since there are only one two possible initial stack

sizes, vk has a multiplier of 2.

Now assume that instead, vk is gaining one chip in the first firing. The net

effect of the first firing on vk is an increase of one chip, and the net effect of the

first firing on vk−1 is a decrease of two chips. This means that |vk|0 < |vk−1|0 and

|vk|0 + 1 > |vk−1|0 − 2. So, |vk−1|0 > |vk|0 > |vk−1|0 − 3. Therefore, |vk−1|0 − 1 and

|vk−1|0− 2 are the only possible initial stack sizes for vk. Since there are only one two

possible initial stack sizes, vk has a multiplier of 2.

We now state a number of corollaries that come from the results regarding the

multipliers of specific vertices found in Theorem 3.3.3.

Corollary 3.3.4. The number of p2-configurations that exist on alternating arrow

orientations on Pn, n ≥ 3, is 8× 3n−3.

Proof. In an alternating arrow orientation, every edge ei, 2 ≤ i ≤ n, disagrees with

the previous edge ei−1. So, an alternating arrow orientation is unique based on the

orientation of e1 = v1v2. Therefore, there exist two alternating arrow orientations on

a given path Pn, n > 2.

From Theorems 3.3.2 and 3.3.3, we get that the multiplier for v1 is 1, the multiplier

for both v2 and vn is 2, and every other multiplier is 3.

Thus, the number of p2-configurations that exist on a particular alternating arrow

orientation on Pn is 1× 2× 2× 3n−3. Multiplying by two different alternating arrow

orientations depending on the orientation of the first edge, we get that the number

of p2-configurations that exist on alternating arrow orientations on Pn, n ≥ 3, is

1× 2× 2× 3n−3 × 2 = 8× 3n−3.

69

Define a sequence An to represent the number of p2-configurations that exist on

alternating arrow orientations on the path with n vertices.

So An = 0, 2, 8, 24, 72, 216, 648, ..., Ak, 3Ak, 3× 3Ak,

Corollary 3.3.5. For all n ≥ 3, 3An = An+1.

Corollary 3.3.6. Let R be a p2-orientation of Pn, n ≥ 2. Let R1, R2, . . . , Rk, be

the suborientations of R on the k disjoint paths created by removing k − 1 flat edges

from Pn. The number of p2-configurations that exist on R is equal to the product of

the number of p2-configurations that exist on the suborientations R1, R2, . . . , Rk.

Proof. Let R be a period orientation on Pn with at least one flat edge. Let R1 and

R2 be the suborientations of R on the disjoint paths created by removing a single flat

edge from Pn.

vn vn−1 vn−2 vk+2 vk+1 vk vk−1 v3 v2 v1

Figure 3.12: Pn with edge vkvk+1 removed.

Suppose we removed just one flat edge, vkvk+1 = ek. The only vertices that could

have an altered multiplier are those which are endpoints of ek or ek+1. The vertices in

question are vk, vk+1, and vk+2. However, since what is measured in calculating the

multiplier is the net effect of the firing, being incident to a flat edge is equivalent to

not being incident to an edge at all. In particular, note that vk+1, appearing to the

left of the flat edge ek, has only one possible initial stack size, that being |vk|0. This
is equivalent to vk+1 having only one possible initial stack size, by convention, when

viewed as the right leaf in R2 (by Lemma 3.1.1, we can subtract |vk|0 from every stack

size in R2 without altering the movement of chips). So, it follows that any number of

flat edge removals will still maintain this result.

Next, we present a corollary of the multiplier theorem (Theorem 3.3.3) which will

be useful in determining the number of p2-configurations that exist which induce ori-

entations with adjacent agreeing arrows. It will be shown that, given a p2-orientation

of Pn which contains some suborientation vk+2ek+1vk+1ekvk such that ek+1 agrees with

ek, the orientation of Pn−2 created by contracting the edges ek+1 and ek and reversing

70

the direction of all directed edges ei, i > k + 1, is induced by the same number of

p2-configurations. We see an example of two such graph orientations in Figure 3.13.

v9R v8 v7 v6 v5 v4 v3 v2 v1

v9R′ v8 v7 v6 v3 v2 v1

e8 e7 e6 e5 e4 e3 e2 e1

e8 e7 e6 e5 e2 e1

Figure 3.13: Graph orientations R and R′, created by contracting two adjacent agree-
ing edges and reversing the direction of all subsequent directed edges

Note how the edges e3 and e4 have been contracted, removing v4, and v5, and

every directed edge occurring to the left of the contraction has reversed direction.

Corollary 3.3.7. Suppose there exist adjacent agreeing edges ek = vkvk+1 and

ek+1 = vk+1vk+2 in a period orientation, R, on a path, Pn, n ≥ 4. Let R′ be the graph

orientation created by contracting ek and ek+1, reversing direction of every directed

edge ei, i > k+1, and maintaining every other edge orientation from R. The number

of p2-configurations on R is equal to the number of p2-configurations on R′.

Proof. By Theorem 3.3.3, given a suborientation vk+2ek+1vk+1ekvk of a p2-orientation

on a path Pn in which ek and ek+1 agree, the multipliers of vk+2 and vk+1 are both

equal to one. By contracting ek and ek+1, we are removing vk+2 and vk+1 from

the orientation. By removing these vertices, assuming every other multiplier has

been maintained, the number of p2-configurations that exist inducing the resulting

orientation is the same as the number of p2-configurations that exist inducing the

original orientation. Due to the reversing direction of every subsequent directed edge,

vk remains within the same P4 suborientation from Theorem 3.3.3 and thus, maintains

the same multiplier. Finally, every vertex appearing to the left of this contraction

has had any incident directed edges reverse direction. However, by Theorem 3.3.3,

such a flipping of directed edges does not change a vertex’s multiplier. Therefore, the

product of multipliers must only be divided by 1× 1 (the product of the multipliers

of the removed vertices) to accommodate the edge contraction, and thus, the number

of p2-configurations does not change.

So, we get that the number of configurations on R is equal to the number of

configurations on R′ and this process can be repeated until all pairs of adjacent

71

agreeing edges have been removed.

Let Fn be the number of p2-configurations that exist on Pn.

Theorem 3.3.8. For all paths Pn, n ≥ 4,

Fn+4 = 3Fn+3 + 2Fn+2 + Fn+1 − Fn

with F1 = 0, F2 = 2, F3 = 8, and F4 = 26.

We will prove this theorem with the help of a number of claims.

In order to count the number of p2-configurations on Pn, we will divide the set

of all p2-orientations into 3 cases. We have already solved for the number of p2-

configurations that exist on alternating arrow orientations on n vertices, An. Our

other two cases will be the case in which, moving from right to left, a flat edge appears

before the first pair of adjacent agreeing edges, and the case in which, moving from

right to left, the first pair of adjacent agreeing edges appears before the first flat. We

will then add up these three totals to determine the number of p2-configurations that

exist on Pn.

Claim 3.3.9. The number of p2-configurations on Pn, n ≥ 4, in which, moving from

right to left, a flat appears before the first pair of adjacent agreeing edges is

n−2∑
k=2

1

2
Ak × Fn−k

Proof. Suppose that, moving from right to left, the graph orientation R is alternat-

ing until the first flat appears. That is, the first flat appears before the first pair of

adjacent agreeing edges appear. By Corollary 3.3.6, the number of p2-configurations

that exist on a graph with some flat edge ek is equal to the product of the numbers

of p2-configurations that exist on the two suborientations created by removing ek.

Let ek = vk+1vk be the flat edge with the least index. We know that the suborien-

tation R1 = vkek−1vk−2ek−2 . . . e1v1 is an alternating arrow orientation by supposi-

tion. We know less about the suborientation R2 = vnen−1vn−1en−2 . . . ek+1vk+1. By

Lemma 3.2.13, we know that ek+1 disagrees with ek−1. The number of configurations

of Pn−k which induce an orientation in which the orientation of the edge with the

least index is given (without loss of generality suppose it is right) is equal to 1
2
Fn−k

since half of the possibilities are excluded because the direction of the first edge is

72

already known. So by Corollary 3.3.6, the number of p2-configurations which induce

R is 1
2
Fn−k ×Ak. Summing this value over all possible edges that could represent the

first flat edge, we get
n−2∑
k=2

1

2
Ak × Fn−k

Definition 3.3.10. The kth stage of a path is the total number of p2-configurations

that exist on that path in which either a pair of adjacent agreeing edges or a flat

appears within the first k + 1 edges, e1, . . . , ek+1.

For example, on P8, the 1st stage is the number of p2-configurations that exist in

which the second edge is flat. The 2nd stage is the number of p2-configurations that

exist in which either the second or third edge is flat, or the third edge agrees with

the second edge. And the 3rd stage is the number of p2-configurations that exist in

which either the second, third, or fourth edge is flat, or either the third or fourth edge

agrees with its previous edge. We denote the kth stage of Pn by skn.

Claim 3.3.11. If n ≥ 3, then skn = Fn for all k ≥ n−1 and skn = Fn−An if k = n−2

or k = n− 3.

Proof. Case 1: k = n− 3

From the definition of stage, we are counting the number of p2-configurations

that exist on Pn in which either a pair of adjacent agreeing edges or a flat appears

within the first n − 2 edges. The edge en−1 cannot be flat or agree with en−2 by

Theorem 3.2.10. So sn−3n counts every p2-configuration except for those that induce

an alternating arrow orientation. Thus sn−3n = Fn − An.

Case 2: k = n− 2

We are counting every configuration from Case 1, but also including the possi-

bility of en−1 being flat and the possibility of en−1 agreeing with en−2. However, by

Theorem 3.2.10, there are no p2-orientations in which either of these situations arise.

So, sn−2n = sn−3n = Fn − An.

Case 3: k ≥ n− 1

We are counting every configuration from Case 2, but also including the possibility

that there does not exist a flat edge or pair of adjacent agreeing edges within the n−1

edges. So, every p2-configuration must be counted. So, skn = Fn for all k ≥ n− 1.

73

Claim 3.3.12. The number of p2-configurations on Pn, n ≥ 5, in which, moving from

right to left, a pair of adjacent agreeing edges appear before a flat is

n−3∑
k=3

(Fn−2 − sk−2n−2).

Proof. We say n ≥ 5 since, by Theorem 3.2.10, no pair of adjacent agreeing edges

can exist in a p2-configuration on a path with fewer than 5 vertices. We are assuming

that, moving from right to left, the graph orientation is entirely alternating until

the first pair of adjacent agreeing edges appears. That is, the first pair of adjacent

agreeing edges appears before the first flat appears. When adjacent agreeing edges

appear, the number of p2-configurations is equal to the number of p2-configurations

on the path with two fewer vertices in which the agreeing edges are removed and

subsequent directed edges are reversed as outlined in Corollary 3.3.7. So every graph

orientation of this form on Pn can be viewed as a similar graph orientation on Pn−2
without changing the multipliers of any vertices. This allows for a recurrence, helping

us to evaluate Fn using Fn−2. However we have supposed that up to some edge ek,

the graph orientation is alternating. So we must subtract the proper stage of the

path on n − 2 vertices. This will remove the possibility of agreeing edges and flat

edges appearing to the right of ek. Taking this sum over all possible edges that could

represent, moving from right to left, the first edge that agrees with its immediate

predecessor, we get

n−3∑
k=3

(Fn−2 − sk−2n−2)

We now calculate Fn based on Fn−1, Fn−2, Fn−3, and Fn−4. Given a p2-orientation

on Pn, there are 4 mutually exclusive and exhaustive cases: en−2 is flat, en−3 is

flat, en−2 and en−3 agree, en−2 and en−3 disagree. We know that these are the only

possibilities by Theorem 3.2.10.

For each of these four cases, we will determine the number of p2-configurations

that exist in that case. We then add up these four totals to calculate Fn.

Case 1: en−2 is flat.

This calculation is equivalent to the first flat edge being e2. We know that this is

A2 × 1
2
Fn−2 = Fn−2. This is the k = 2 summand from Claim 3.3.9.

Case 2: en−3 is flat.

74

This calculation is equivalent to the first flat edge being e3. A3 × 1
2
Fn−3 = 4Fn−3.

This is the k = 3 summand from Claim 3.3.9.

Case 3: en−2 and en−3 agree.

We use our rule from Corollary 3.3.7 for contracting agreeing arrows. What we get

is every solution on Pn−2 that begins with two disagreeing arrows. This is equivalent

to just subtracting the possibility that the first edge is flat. When e2 is flat, we get

A2 × Fn−4 = Fn−4. So, we get Fn−2 − Fn−4.

Case 4: en−2 and en−3 disagree.

This can be viewed as adding a new leftmost vertex to Pn−1. This vertex adds a

multiplier of 3 (being amongst an alternating arrow suborientation) unless en−3 is flat.

However, since we know en−3 to not be flat, we can remove that possibility from our

calculation. If en−3 is flat in Pn−1, then there are A2× 1
2
Fn−3 = Fn−3 p2-configurations.

So, we get 3(Fn−1 − Fn−3).

The total sum is thus,

Fn = Fn−2 + 4Fn−3 + Fn−2 − Fn−4 + 3(Fn−1 − Fn−3)

= 3Fn−1 + 2Fn−2 + Fn−3 − Fn−4.

In order to find the explicit formula, we begin by finding the characteristic equation

for this linear recurrence:

Fn = 3Fn−1 + 2Fn−2 + Fn−3 − Fn−4

Fn − 3Fn−1 − 2Fn−2 − Fn−3 + Fn−4 = 0 Let Fn = xn

xn − 3xn−1 − 2xn−2 − xn−3 + xn−4 = 0

xn−4(x4 − 3x3 − 2x2 − x+ 1) = 0

x4 − 3x3 − 2x2 − x+ 1 = 0

The roots of this equation are α1 ≈ 3.6096, α2 ≈ 0.4290, α3 ≈ −0.5193− 0.6133i,

and α4 ≈ −0.5193 + 0.6133i. Since these are all of the nonzero roots of the function,

our general solution is a linear combination of all four values:

Fk = c1(α1)
k + c2(α2)

k + c3(α3)
k + c4(α4)

k.

In order to solve for c1, c2, c3, and c4, we must solve a system of four linear

75

equations using the four initial values of our recurrence: F1 = 0, F2 = 2, F3 = 8, and

F4 = 26. The approximate solutions are

c1 ≈ 0.1564

c2 ≈ 0.4449

c3 ≈ 0.6995− 0.0234i

c4 ≈ 0.6995 + 0.0234i

So,

Fk ≈ 0.1564(3.6096) k

+ 0.4449(0.4290) k

+ (0.6695− 0.0234i)(−0.5193− 0.6133i) k

+ (0.6695 + 0.0234i)(−0.5193 + 0.6133i) k.

The dominating term, out of the four roots, is the one which has the greatest modulus.

These moduli are roughly 3.6096, 0.4290, 0.8036, and 0.8036. Thus, the dominant

term in the equation

Fk ≈ 0.1564(3.6096) k

+ 0.4449(0.4290) k

+ (0.6695− 0.0234i)(−0.5193− 0.6133i) k

+ (0.6695 + 0.0234i)(−0.5193 + 0.6133i) k

is c1(α1)
k ≈ (0.1564)(3.6096) k.

Corollary 3.3.13. Fk has an asymptotic value of approximately 0.1564× 3.6096k.

Suppose now that a graph Gk is composed of some graph G0 connected to a path

Pk, k ≥ 4, with a bridge (an edge which, upon removal, would disconnect the graph).

Due to the fact that multiplier calculations are localized for each vertex in a path,

we conjecture that if a new vertex v were added to the end of this path then the

new vertex will be such a distance away from G0 that this recurrence relation will

hold. That is, if we know the number of p2-configurations that exist on the four

76

graphs Gi, i = 0, 1, 2, 3, then this same recurrence relation can calculate the number

of p2-configurations that exist on G4. In this way, we conjecture that our recurrence

relation solution extends to any graph connected to a path of length at least 4.

Conjecture 3.3.14. Let Gk be a graph composed of some graph G0 connected to a

path Pk, k ≥ 3, with a bridge. Then the number of p2-configurations on Gk, F (Gk),

can be determined using the recurrence

F (Gk) = 3F (Gk−1) + 2F (Gk−2) + F (Gk−3)− F (Gk−4).

3.4 Period Configurations on Complete Graphs

In this section, we count the number of period configurations that exist on complete

graphs. In contrast with the results on paths, we will be counting the number of

period configurations that exist on unlabelled complete graphs. We do not label the

vertices in order to best exhibit the unexpected relationship between the number of

period configurations on the complete graph of size n and the number of board-pile

polyominoes containing n unit squares. We will show that these two totals are in

fact, equal. The number of board-pile polyominoes containing exactly n unit squares

comes from the sequence A001169 in the OEIS [16], and the values are exhibited in

Table 3.2. The generating function is x(1−x)3
(1−5x+7x2−4x3)

[16]. This sequence of numbers

follows the recurrence relation an = 5an−1 − 7an−2 + 4an−3 for n ≥ 5, with initial

values a1 = 1, a2 = 2, a3 = 6, and a4 = 19.[13]

In order to find the explicit formula, we begin by finding the characteristic equation

for this linear recurrence:

an = 5an−1 − 7an−2 + 4an−3

an − 5an−1 + 7an−2 − 4an−3 = 0 Let an = xn

xn − 5xn−1 + 7xn−2 − 4xn−3 = 0

xn−3(x3 − 5x2 + 7x− 4) = 0

x3 − 5x2 + 7x− 4 = 0

The roots of this equation are α1 ≈ 3.2056, α2 ≈ 0.8972 − 0.6655i, and α3 ≈
0.8972 + 0.6655i. Since these are all of the nonzero roots of the function, our general

solution is a linear combination of all three values:

77

ak = c1(α1)
k + c2(α2)

k + c3(α3)
k.

In order to solve for c1, c2, and c3, we must solve a system of three linear equations

using three initial values of our recurrence: a2 = 2, a3 = 6, and a4 = 19. The

approximate solutions are

c1 ≈ 0.1809

c2 ≈ 0.0658 + 0.0391i

c3 ≈ 0.0658− 0.0391i

So,

ak ≈ 0.1809(3.2056) k

+ (0.0658 + 0.0391i)(0.8972− 0.6655i) k

+ (0.0658− 0.0391i)(0.8972 + 0.6655i) k.

The dominating term, out of the three roots, is the one which has the greatest modu-

lus. These moduli are roughly 3.2056, 1.1171, and 1.1171. Thus, the dominant term

in the equation

ak ≈ 0.1809(3.2056) k

+ (0.0658 + 0.0391i)(0.8972− 0.6655i) k

+ (0.0658− 0.0391i)(0.8972 + 0.6655i) k

is c1(α1)
k ≈ (0.1809)(3.2056) k.

Corollary 3.4.1. ak has an asymptotic value of approximately 0.1809× 3.2056k.

78

n # of board-pile polyominoes
1 1
2 2
3 6
4 19
5 61
6 196
7 629
8 2017
9 6466
10 20727
11 66441

Table 3.2: Number of board-pile polyominoes containing n unit squares for 1 ≤ n ≤
11.

We will begin by introducing the concept of polyominoes. These definitions are

from David Klarner’s paper, reworded slightly to make our proofs easier to follow.

[13]

Definition 3.4.2. [13] A polyomino is a plane figure composed of a number of

connected unit squares joined edge on edge. A polyomino with exactly n unit squares

is called an n-omino.

Definition 3.4.3. [13] In a polyomino X, a horizontal strip, or h-strip, is a

maximal rectangle of height one.

By convention, we will set each h-strip in the plane so that its height spans from

an integer k to k + 1.

Definition 3.4.4. [13] The infinite area enclosed by the lines y = k and y = k+1 is

called a row.

Definition 3.4.5. [13] A board-pile polyomino is a polyomino which has at most

one h-strip per row. A board-pile polyomino with n unit squares is called a board-pile

n-omino.

Figure 3.14 provides examples of some plane figures that are not board-pile poly-

ominoes and one which is a board-pile polyomino.

79

1

1

2

2

3

3

X

1

1

2

2

3

3

Y

1

1

2

2

3

3

Z

Figure 3.14: Three plane-figures: X, Y , and Z are shown with their h-strips dif-
ferentiated by shading. X is not a board-pile polyomino because the strips are not
connected edge on edge. Y is not a board-pile polyomino because there exists a row
with multiple h-strips. Z is a board-pile polyomino since each row contains at most
one h-strip.

We will now develop a notation for polyominoes that will eliminate the necessity

of a pictorial representation, define a mapping from the set of all polyominoes on

n unit squares to the set of all period configurations of (an unlabelled) Kn up to

equivalence, and then show that mapping to be a bijection.

We will use the convention of labelling the first h-strip from the bottom as S1,

the next one up as S2, and so on. Let S(X) be the set of all h-strips in a board-pile

polyomino X and let N be the number of h-strips in X.

A board-pile polyomino X, can be represented as a sequence of ordered pairs of

the form X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)}, where |Si| is the number

of unit squares in the h-strip Si, and di is the difference between the greatest x-

coordinate in Si and the least x-coordinate in Si−1. By convention, d1 = 0. See

80

Figure 3.15 for an example.

1

1

2

2

3

3

S1

S2

S3

= {(0, 2), (3, 3), (2, 1)}

S(X) = {S1, S2, S3}

Figure 3.15: Board-pile 6-omino X with shading differentiating between S1, S2, and
S3.

A configuration of an unlabelledKn can be represented by a multiset of cardinality

n with the stack sizes as elements. We will use the notation ak to represent k instances

of stack size a in the configuration. An example is shown in Figure 3.16.

3 5

5

4

4

C = {3, 42, 52}

Figure 3.16: Configuration on an unlabelled complete graph

Given n, define a map f from the set of all board-pile n-ominoes to the set of all

complete graph configurations on Kn.

For a board-pile n-omino X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)}, let

81

f(X) = f({(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dn, |SN |)})

=
{
0|S1|,

(2∑
i=1

di

)|S2|
,
(3∑

i=1

di

)|S3|
, . . .

(N∑
i=1

di

)|SN |}
.

So, for all Sk ∈ S(X), the complete graph configuration f(X) has |Sk| vertices,
each of which contain

∑k
i=1 di chips.

We denote the set of vertices in f(X) corresponding to the strip Sk to be Vk for

all k ≤ N . An example of this mapping is shown in Figure 3.17.

82

1

1

2

2

3

3

4

4

S1

S2

S3

S4

X = {(0, 2), (3, 2), (2, 4), (3, 2)}

v1

0
v2

0

v3

3
v4

3

v55 v6 5

v7

5

v8

5

v9

8

v10

8

f(X) = {02, (0 + 3)2, (0 + 3 + 2)4, (0 + 3 + 2 + 3)2}
= {02, 32, 54, 82}

Figure 3.17: Mapping a board-pile 10-omino to its corresponding configuration of
K10.

We will show that only period configurations of Kn exist in the range of f and

that f is a bijection.

Claim 3.4.6. Let X = {(d1, |S1|), (d2, |S2|), (d3, |S3|), . . . (dN , |SN |)} be a board-pile

polyomino with exactly N h-strips. If 1 ≤ i ≤ N−1, then 1 ≤ di+1 ≤ |Si|+ |Si+1|−1.

Proof. Since Si and Si+1 are adjacent h-strips, and polyominoes, by definition, are

joined edge on edge, the distance from the least x-coordinate of Si to the greatest

83

x-coordinate of Si+1 must be less than the sum of the two lengths (|Si|+ |Si+1|). So,
di+1 must be less than |Si|+ |Si+1|. Since di+1 is equal to the difference between the

greatest x-coordinate in Si+1 and the least x-coordinate in Si, and since Si+1 and Si are

connected edge on edge, di+1 ≥ 1. Thus, we conclude 1 ≤ di+1 ≤ |Si|+ |Si+1|− 1.

Theorem 3.4.7. For any board-pile polyomino, X, on n unit squares, n ≥ 1, f(X)

is a period configuration of Kn and for any period configuration, C, of Kn, n ≥ 1,

there is some board-pile polyomino X on n unit squares such that C = f(X).

Proof. (⇒) A board-pile polyomino with only a single h-strip maps trivially to a

period configuration of Kn. In this case, every stack size is equal to 0. Therefore, the

configuration is a period configuration with a period length of 1. We will now show

that any board-pile polyomino with only two h-strips maps to a period configuration.

Let X be such a board-pile polyomino. These two h-strips, S1 and S2, map to two sets

of vertices, V1 and V2, with distinct stack sizes, d1 = 0 and d2 respectively. We know

from Claim 3.4.6 that in f(X), the vertices of V2 must have between 1 and |S1|+|S2|−1

chips. Hence, the vertices of V2 have d2 chips with 1 ≤ d2 ≤ |S1|+ |S2| − 1. After the

initial firing, the vertices of V1 will each have |S2| chips, having just received from |S2|
richer neighbours, and the vertices of V2 will each have d2 − |S1| chips, having just

sent to |S1| poorer neighbours. By Lemma 3.1.1, we can normalize this by subtracting

d2 − |S1| from both totals, leaving |S1| + |S2| − d2 chips on each of the vertices in

V1 and leaving 0 chips on each of the vertices in V2. Note that since the x-distance

from the least x-coordinate of S1 to the greatest x-coordinate of S2 is d2, then the

x-distance from the least x-coordinate of S2 to the greatest x-coordinate of S1 must,

when added to d2, equal the sum of the two strip lengths. So, the x-distance from

the least x-coordinate of S2 to the greatest x-coordinate of S1 is |S1|+ |S2| − d2. To

show that the relative sizes have changed and that in the second firing, the vertices

of V1 will send chips to the vertices of V2, we must show that |S1|+ |S2| − d2 > 0. We

know that the maximum value that d2 can take on is |S1|+ |S2| − 1. So,

|S1|+ |S2| − 1 ≥ d2

|S1|+ |S2| − d2 ≥ 1

|S1|+ |S2| − d2 > 0

Thus, we can conclude that the vertices of V1 are now richer than the vertices of

V2.

84

This gives us that the configuration following the initial firing, call it [f(X)]′, is

itself equal to f(X ′) for some board-pile n-omino X ′. In fact, X ′ is the board-pile

n-omino created by reflecting X about the horizontal axis since [f(X)]′ represents an

interchange of the relative stack sizes of the two sets of vertices, V1 and V2, corre-

sponding to the two h-strips in X. So, after the second firing, the vertices of V2 will

have |S1| chips and the vertices of V1 will have |S1| − d2 chips. By adding d2− |S1| to
both totals (to counteract our subtracting of d2 − |S1| chips previously), we get back

where we started with the vertices of V1 having 0 chips and the vertices of V2 having

d2 chips. So, we have that f(X) is a period configuration.

1

1

2

2

3

3

4

4

5

5

S1

S2

0 0

4 4 4 4 4

1

1

2

2

3

3

4

4

5

5

S2

S1 5 5

2 2 2 2 2

Figure 3.18: Board-pile with two strips “flipping”

We will use this case as the basis of an induction. We will induct on the number

of h-strips to show that for all board-pile n-ominoes, X, the initial firing of f(X)

yields f(X ′) (up to an addition of a constant to each of the stack sizes) where X ′ is

the board-pile n-omino created by reflecting X about the horizontal axis. This will

imply that f(X) is a period configuration of some complete graph because two firings

85

will return to the original configuration.

Our inductive hypothesis is that for all board-pile polyominoes X with at most

k h-strips, the initial firing of f(X) yields f(X ′) (up to an addition of a constant to

each of the stack sizes) where X ′ is the board-pile polyomino created by reflecting X

about the horizontal axis.

Now suppose we have a board-pile polyomino, Y , with exactly k + 1 h-strips.

Then, f(Y) is some configuration of some complete graph. Thus, by Claim 3.4.6,

dk+1 is bounded so that 1 ≤ dk+1 ≤ |Sk| + |Sk+1| − 1. We know by our inductive

hypothesis that if Sk+1 were removed from Y , that the resulting polyomino would

map to a period configuration of some complete graph. Also, the vertices of Vk+1 in

f(Y) will act as source vertices enriching every other vertex upon firing. The addition

of such a source strip cannot affect the relative stack sizes of the other vertices within

the graph. We know from our base case that the board-pile polyomino Z composed

of just the squares of Sk and Sk+1 is such that f(Z ′) = [f(Z)]′. Therefore, since the

effect of the vertices in V (f(Y))\V (f(Z)) will enrich the remaining stack sizes of the

graph equally upon firing, we have that Y satisfies our criteria with f(Y ′) = [f(Y)]′.

(⇐) Now let C be a period configuration of Kn. We seek to show that there exists a

board-pile polyomino X such that f(X) = C.

Suppose the vertices of C have N distinct stack sizes

{0a1 , (
2∑

i=1

di)
a2 , (

3∑
i=1

di)
a3 , . . . (

N∑
i=1

di)
aN}

in ascending order for some a1, a2, . . . , aN ∈ N and some d1 = 0, d2, d3, . . . , dN with

d2, . . . , dN ∈ N. Note that by Lemma 3.1.1, we can alter the stack sizes of any con-

figuration so that the minimum stack size becomes zero. Thus, we have not lost

generality by assuming that our least stack size is zero. Let Vj be the set of all

vertices in C with stack size (
∑j

i=1 di)
aj for all j ≤ N . Let X be a collection of N

h-strips on a plane with exactly one h-strip per row for y = 1, 2, . . . , N . Call these

h-strips S1, S2, . . . , SN , containing |V1|, |V2|, . . . , |VN | unit squares, respectively, with
Si spanning y-coordinates i − 1 to i for all i ≤ N . Arrange these strips so that

dj is equal to the x-distance from the leftmost coordinate of Sj−1 to the rightmost

coordinate of Sj. X is a board-pile polyomino if and only if it is a connected plane

figure.

In particular, we must prove that dj+1 ≤ |Vj| + |Vj+1| − 1 for all j. This will

86

imply that every pair of strips |Sj| and |Sj+1| are connected edge on edge, proving

that a single board-pile polyomino will result rather than a number of disconnected

board-pile polyominoes in the plane.

By contradiction, suppose dj+1 > |Vj|+ |Vj+1| − 1 for some j. Then, following the

initial firing, the vertices of Vj would each have (
∑j

i=1 di) + |Vj+1| + r chips, where

r represents the difference between the number of vertices richer than those in Vj+1

and the number of vertices poorer than those in Vj. Also, following the initial firing,

the vertices of Vj+1 would each have (
∑j+1

i=1 di) − |Vj| + r chips. Since C is a period

configuration, we know that (
∑j

i=1 di) + |Vj+1| + r > (
∑j+1

i=1 di) − |Vi| + r. But, this

implies that dj+1 < |Vj+1| + |Vj| which implies that dj+1 ≤ |Vj+1| + |Vj| − 1 which

contradicts our assumption. So, for all period configurations, C, C = f(X), for some

board-pile polyomino X.

With it now proven that the number of unlabelled period configurations of Kn is

equal to the number of board-pile n-ominoes, we know the following two results to

be true of unlabelled complete graph period configurations.

Corollary 3.4.8. The number of period configurations of an unlabelled complete graph

on n vertices follows the recurrence relation an = 5an−1 − 7an−2 + 4an−3 for n ≥ 5

with initial values a1 = 1, a2 = 2, a3 = 6, and a4 = 19 (the same recurrence shown

to calculate the number of board-pile polyominoes on n vertices [13]).

Corollary 3.4.9. The number of period configurations of an unlabelled Kk has an

asymptotic value of approximately 0.1809× 3.2056k.

How many period configurations exist on labelled complete graphs? We know

that a configuration C is a period configuration if and only if f−1(C) is a board-pile

polyomino.

Our method must involve finding all labelled ordered partitions of the vertices.

Then, given a labelled ordered partition, we must determine the number of ways that

the ith part can be connected edge on edge with parts i− 1 and i+ 1.

Let Kn be a complete graph. The number of labelled ordered partitions of a

complete graph is just the ordered Bell numbers. We can view this as all of the ways

that a set of labelled unit squares can be grouped together into ordered strips but

without yet affixing the strips together to form a polyomino.

For every possible ordered partition, we must determine all of the possible stack

sizes which could be shared by the vertices in each respective part. Recall that this is

87

equivalent to determining all of the ways that an ordered set of strips can be oriented

with respect to each other so as to create a polyomino.

For each period orientation of Kn, assign all possible stack sizes by using the

product
∏N

i=1(|Si−1 + |Si| − 1) (the product of the number of ways each strip Si with

length |Si| can be adjacent to its neighbours). Give the period orientations ofKn some

ordering from 1 to R(Kn). Let |Sj
i | be the length of the ith strip in the jth period

orientation of Kn. Then we reach that the number of labelled period configurations

that exist on Kn is

R(Kn)∑
j=1

N∏
i=1

(|Sj
i−1|+ |Sj

i | − 1).

3.5 p2-Configurations on Stars

Unlike paths and complete graphs, the number of period configurations on a star,

K1,n, n ≥ 2, can be proven quickly and can be calculated with an explicit formula.

Theorem 3.5.1. There exist 2nn + 1 different period configurations on K1,n, n ≥ 2.

Proof. By Theorem 3.2.18, there are only 3 period orientations on any star K1,n,

n ≥ 2. Those being the orientation with all flat edges, the orientation with all edges

directed toward the center vertex, and the orientation with all edges directed away

from the center.

Case 1: All edges are flat.

In this case, each vertex must have zero chips. So, there is only one period

configuration which induces this orientation on any star K1,n, n ≥ 2.

Case 2: All edges are directed toward the center vertex.

Suppose that the center vertex has 0 chips. Then every other stack size must be

positive. Also, we know that following the initial firing, every arrow in the induced

orientation must change direction. In K1,n, the center vertex will come out of the

initial firing with exactly n chips. The leaves must have between 1 and n chips

initially, so as to be richer than the center vertex initially yet poorer than the center

vertex following the initial firing. There exist nn period configurations which induce

this orientation.

Case 3: All edges are directed away from the center vertex.

By Corollary 1.2.2, every period of length 2 must contain one configuration which

induces an orientation from Case 2 and one configuration which induces an orientation

88

from Case 3. Thus, there must exist exactly one period configuration in which the

induced orientation has all edges pointing away from the center vertex for every

period configuration in which the induced orientation has all edges pointing toward

the center vertex. Thus, this case must have nn possible period configurations as well.

Thus, K1,n has 2nn + 1 different period configurations.

Chapter 4

Quantum Parallel Diffusion

We define Quantum Parallel Diffusion on a graph G as the variant of Parallel Diffusion

in which the initial configuration is the configuration in which every stack size is zero,

and the firing at step 0 is such that for some H ⊆ V (G), for each vertex v ∈ H, v

sends a chip to each of its neighbours. We call H a quantum set. In every subsequent

step, Quantum Parallel Diffusion is identical to Parallel Diffusion. Quantum Parallel

Diffusion allows for chips to be sent in instances where chips would not normally be

sent in Parallel Diffusion. In Parallel Diffusion, chips will be sent at every step unless

every stack size is equal. Quantum Parallel Diffusion, on the other hand, is only

defined on initial configurations in which every stack size is equal.

By Lemma 3.1.16, up to equivalence, the configuration in which every stack size

is zero is the only fixed configuration. We will refer to this configuration as the fixed

configuration. Our study of Quantum Parallel Diffusion will focus on finding quantum

sets that will eventually, after some number of steps, return the fixed configuration.

We wanted to study Quantum Diffusion because it shows us how the model could

conceivably continue after reaching the fixed configuration, when normally no further

chips would be sent. What we ended up finding was that the results in this chapter

involved more topics in graph theory than perhaps any other chapter, from dominance

to independence to colouring.

After a basic lemma and definition, we present our results that apply to all graphs

before moving on to a detailed analysis and counting argument on paths. In The-

orem 4.1.3, we show that a quantum set will return the fixed configuration in two

steps if and only if it follows a particular domination criterion, complementary com-

ponent dominance. There is an associated concept called quantum quiescence and

in Theorem 4.1.13, we count the number of QQ2 (or 2-Quantum Quiescent) sets

that exist on paths of any length. In Theorem 4.2.1, we show that the number of

pre-positions of the fixed configuration that exist on Pn, Zn, follows the recurrence

Zn = Zn−1 + 2Zn−2 +Zn−3. In Corollary 4.2.2, we show that the asymptotic value of

Zk is approximately 0.3885× 2.1479k.

In this chapter, much like Chapter 3, we have very few previous results to lean

89

90

on. Long and Narayanan’s result regarding periodicity was very useful throughout

Chapter 3, but it will be much less useful in this chapter. In this chapter we will

be studying configurations that can arise after the initial firing in Quantum Parallel

Diffusion and configurations which eventually lead to the fixed configuration. These

are questions about pre-period configurations, a topic which Long and Narayanan did

not touch on.

Definition 4.0.1. Let G be a graph with the fixed configuration and H be a subset of

V (G). A quantum firing of H is when the vertices of H each send a chip to each

of their respective neighbours in G. We call H a quantum set.

Definition 4.0.2. Given a configuration C, a pre-position of C is a configuration

D such that if D is the configuration at step t, then C is the configuration at step

t+ 1.

An example of a quantum firing is shown in Figure 4.1.

H

0

H

0 0

H

0

H

0 0

0 -1 2 -1 -1 1

Figure 4.1: Quantum firing of the quantum set H of V (P6) with directed edges
depicting the flow of chips from elements of H to elements excluded from H.

Due to the similarities between the rules of Parallel Diffusion and Quantum Par-

allel Diffusion, the following lemma applies to both processes.

Lemma 4.0.3. Given a graph, G, and an orientation R, if there exists a configuration

which induces R and is a pre-position of the fixed configuration (all stack sizes equal

to zero), then it is unique and can be determined based on R.

Proof. Let G be a graph and R an orientation of G. The orientation R dictates the

number of chips that each vertex will send and receive at the next firing. Thus, for

each vertex vk in G, the stack size of vk following the next firing is equal to the current

stack size of vk plus the number of edges directed toward vk, Avk , minus the number

of edges directed away from vk, Bvk . So, if we have that |vk|+Avk −Bvk = 0, then the

stack size of vk can be determined because it is the only unknown in the equation.

91

Definition 4.0.4. A configuration at step t in a configuration sequence is a 0-pre-

position if the configuration at step t+ 1 is the fixed configuration. An orientation,

R, is a 0-preorientation if there exists a 0-pre-position which has R as its induced

orientation.

4.1 02-invoking subsets

We establish the concept of 02-invoking subsets and apply it to all graphs before

focusing on paths in particular. In Theorem 4.1.13, we determine the number of 02-

invoking subsets that exist on any given path. The following definitions will help us

to answer our primary question about Quantum Parallel Diffusion: Which quantum

sets eventually lead us back to the fixed configuration?

Definition 4.1.1. Let G be a graph and let H be a subset of V (G).

• We say H is 0-invoking if a quantum firing of H in G results in a configuration

C such that Seq(C) has a period length of 1.

• H is 02-invoking if a quantum firing of H results in a configuration C such

that the configuration at the next time step, call it C1, is the fixed configuration.

• The quantum quiescent number or QQ number of a graph G, denoted

QQ(G), is the size of a smallest nontrivial 0-invoking subset of V (G). So,

QQ(G) = min{|H| : H
= ∅ is 0-invoking}.

• The 2-quantum quiescent number or QQ2(G) is the size of a smallest

nontrivial 02-invoking subset of V (G). So, QQ2(G) = min{|H| : H
= ∅ is

02-invoking}.

In other words, a 0-invoking set is one which eventually, after some number of

steps, yields the fixed configuration (recall from Lemma 3.1.16 that the fixed config-

uration is the only configuration that can exist inside a period of length one, up to

equivalence). Note that QQ(G) and QQ2(G) are well-defined because V (G) is itself

both a 0-invoking subset and a 02-invoking subset of V (G).

Definition 4.1.2. Let G be a graph. A subset H of V (G) is Complementary Com-

ponent Dominant (or CCD) if

92

• For all adjacent pairs of vertices, x, y ∈ H, the number of neighbours of x in

V (G) \H is equal to the number of neighbours of y in V (G) \H
and

• For all adjacent pairs of vertices, u, v ∈ V (G) \H, the number of neighbours of

u in H is equal to the number of neighbours of v in H.

Note that this definition implies that if H is complementary component dominant

in G, then so is V (G) \ H. An example of a complementary component dominant

subset is given in Figure 4.2.

H H H

1 -2 2 -1 -1 1

Figure 4.2: Graph P6 with complementary component dominant vertex subset, H

Theorem 4.1.3. Let G be a graph with the fixed configuration. A subset H of V (G)

is 02-invoking in G if and only if H is CCD.

Proof. (⇐) Let a graph G have the fixed configuration. Suppose H ⊆ V (G) is CCD.

In Figure 4.3, we see G|H and G|V (G)\H separated into their respective connected

components.

93

H V (G) \H

Figure 4.3: Graph, G, with CCD subset, H, of V (G)

Remember that when every vertex in H quantum fires, the edges that have both

endpoints in H will have chips travelling along them both ways. So, we can equiva-

lently see these as flat edges. For all vertices h in H, let degV (G)\H(h) be the number

of vertices in V (G) \ H that are adjacent to h, and for all vertices g in V (G) \ H,

let degH(g) be the number of vertices in H that are adjacent to g. Thus, if every

vertex in H were to fire a chip to each of its neighbours, the resulting configuration

would leave every vertex, h, in H with a number of chips equal to 0− degV (G)\H(h).

Every vertex, g, in V (G) \ H would be left with 0 + degH(g) chips. We know from

the definition of CCD that every pair of adjacent vertices in H must be adjacent to

the same number of vertices in V (G) \H. By transitivity, this will extend to entire

connected components within G|H .
Since the definition of CCD also dictates that the vertices of V (G) \H follow the

same rule with every adjacent pair of vertices being adjacent to the same number

of vertices in the complement, we get, by transitivity, that this extends to entire

connected components in G|V (G)\H . This will leave each connected component within

G|H with a common stack size and each connected component within G|V (G)\H with

a common stack size.

94

Every vertex in H has a negative stack size and each vertex in the complement

has a positive stack size. So, when the vertices fire at the next step, every vertex in

H will receive from each of its neighbours in V (G)\H and will not send to or receive

from any vertices in H. Likewise, every vertex in V (G) \ H will send to each of its

neighbours in H and will not send to or receive from any vertices in V (G) \ H. So

for each h ∈ H, we get that

|h|2 = |h|1 + degV (G)\H(h)

= −degV (G)\H(h) + degV (G)\H(h)

= 0

and for all g ∈ V (G) \H,

|g|2 = |g|1 − degH(g)

= degH(g)− degH(g)

= 0

Thus, the fixed configuration is restored in two steps.

(⇒) Let H be a quantum set in V (G). Suppose H is 02-invoking. This means that

if the configuration at t = 0 is the fixed configuration, then so is the configuration at

t = 2. This implies that the net effect of two steps of firings on each vertex is +0.

Note that every vertex in H will necessarily send a chip to each of its neighbours in

V (G) \ H in the initial firing and receive from those same vertices in the firing at

step 1. So, for all vertices h in H, if h receives a chip from a vertex in H during

the firing at step 1, then h must also send a chip to a vertex in H at step 1 as well.

However following the initial firing, for each connected component Hi in H, there

must exist some vertex in Hi that has no poorer neighbours in Hi. So if any chip is

sent from a vertex in H to another vertex in H during the firing at step 1, then there

will exist at least one vertex hi that received a chip from a neighbour in H, but did

not send a chip to a neighbour in H. This implies that hi will have a positive stack

size at step 2, having received more chips in the firing at step 1 than it sent in the

initial firing. This, however, contradicts our assumption that H is 02-invoking. Thus,

we can conclude that every vertex in a connected component in G|H has a common

stack size after the initial firing. This implies that each vertex belonging to the same

95

connected component in G|H shares the same number of neighbours in V (G) \H. A

similar argument will show the result for vertices in V (G)\H. Thus, we can conclude

that all 02-invoking subgraphs are CCD.

Corollary 4.1.4. If H is 02-invoking in G, then so is V (G) \ (H).

Note that not all graphs have a proper non-trivial 02-invoking subset. In Fig-

ure 4.4, we see such a graph.

v6

v5 v4

v3 v2 v1

G

Figure 4.4: Graph G with no proper nontrivial 02-invoking subsets

Claim 4.1.5. Graph G from Figure 4.4 has no proper non-trivial 02-invoking subsets.

Proof. Suppose, by way of contradiction, that H is a 02-invoking subset of V (G). By

Corollary 4.1.4, we know that if H is 02-invoking, then so is V (G) \ (H). So we can

suppose without loss of generality that v2 is in H.

v6

v5 v4

v3 H v1

G

Figure 4.5: Graph G with v2 in H

Since H is 02-invoking, proper, and non-trivial, and since v6 is a leaf, we know

that exactly one of v5 and v6 is in H by Theorem 4.1.3.

Case 1: Suppose v6 is in H.

H

v5 v4

v3 H v1

G

Figure 4.6: Graph G with v2 and v6 in H

If v3 is in H, then every vertex adjacent to v3 which is in H must be adjacent to

exactly one vertex from V (G) \H. This implies that both v1 and v4 must be in H.

This is a contradiction since v1 is not adjacent to any vertices from V (G) \H.

96

Otherwise if v3 is not in H, then v5 must be adjacent to exactly one vertex in H.

This is a contradiction.

Case 2: Suppose v5 is in H.

v6

H v4

v3 H v1

G

Figure 4.7: Graph G with v2 and v5 in H

We know that neither v3 nor v6 can be in H since they are not adjacent to any

vertices in V (G) \H. Thus, since v5 is adjacent to both of these vertices, every edge

in H must be adjacent to at least two vertices in V (G) \H. So neither v1 nor v4 can

be in H. Since the set H = {v2, v5} is not CCD, we get a contradiction.

Definition 4.1.6. [18] In a graph G, S ⊆ V (G) is a dominating set if every vertex

not in S has a neighbour in S. The domination number γ(G) is the minimum

size of a dominating set in G.

Corollary 4.1.7. Given a graph G, all non-trivial 02-invoking subsets of V (G) are

also dominating sets.

Proof. Let G be a graph and let H ⊆ V (G) be a 02-invoking subset. By Theo-

rem 4.1.3, H is CCD. By the definition of CCD, every vertex in the complement of H

must be adjacent to at least one vertex in H unless H is empty. So if H is non-trivial,

then H is dominating.

From [4], an efficient dominating set, or perfect code, is an independent subset,

A, of the vertex set of a graph, G, such that every vertex in V (G) \ A is adjacent to

exactly one vertex in A.

Corollary 4.1.8. Efficient dominating sets (or perfect codes) are CCD and thus 02-

invoking.

Lemma 4.1.9. Every minimal dominating set on Pn, n ≥ 2, is CCD and thus,

02-invoking.

Proof. Let H be a minimal dominating set on Pn. We will show that H is CCD.

Since H is a dominating set, every vertex in V (Pn) \ H that is adjacent to another

97

vertex in V (Pn) \H must also be adjacent to exactly one vertex in H. Since H is a

minimal dominating set, every vertex in H that is adjacent to another vertex in H

must also be adjacent to exactly one vertex in V (Pn) \H. Thus, H is CCD.

Question 4.1.10. Is there a characterization of minimal dominating sets that are

also 02-invoking subsets?

If γ(G) = 1, then there must be a dominating vertex. This vertex is itself a

02-invoking set. If γ(G) = 2, with dominating set {x, y}, then the solution is not

so simple. We will break the problem into two cases: x not adjacent to y, and x

adjacent to y. Suppose first that x and y are not adjacent to each other. For this

pair of vertices to also be a 02-invoking set, it must be true that the set {x, y} is also

complementary component dominant.

So, every vertex in a given connected component in G\{x, y} must be adjacent to

the same number of vertices in {x, y} (either 1 or 2). Consider the subset of vertices

adjacent to x and not adjacent to y, call it Vx, and the subset of vertices adjacent to

y and not adjacent to x, call it Vy, and the subset of vertices adjacent to both x and

y, call it Vxy. In order for {x, y} to be complementary component dominant, it must

be true that no edges exist between Vxy and Vx ∪ Vy.

Now, if x and y are adjacent,we must also have an additional rule since {x, y} is

CCD. If x is adjacent to y, then we have the additional rule that |Vx| = |Vy| since
both x and y must be adjacent to the same number of vertices. Moving to dominating

sets of size 3 or greater appears to be much more difficult.

In complete multi-partite graphs, minimal dominating sets come in two forms:

either one vertex from two different parts, or an entire part. The former is not neces-

sarily CCD, while the latter is necessarily CCD. In a multi-partite graph Kn,n,n,...,n,

a set composed of one vertex from each part is not minimally dominating, but is

02-invoking.

Question 4.1.11. Is there a graph such that some subset of its vertex set is 0-invoking

but not 02-invoking.

4.1.1 02-invoking subsets on Paths

Let Jn represent the number of 02-invoking sets that exist on Pn. We will now look

at the issue of counting all 02-invoking subsets on a path with n vertices. With

Theorem 4.1.13, we determine a recurrence relation for calculating Jn for all n ≥ 3.

98

Lemma 4.1.12. Let H ⊂ V (Pn) = {v1, v2, . . . , vn−1, vn} be proper, non-trivial, and

02-invoking. Then vn ∈ H if and only if vn−1 ∈ V (G) \H.

Proof. Let H ⊂ V (Pn) = {v1, v2, . . . vn−1, vn} be 02-invoking, proper and nontrivial.

(⇒) Suppose first that vn ∈ H. We know that vn−1 is the only neighbour of vn in

Pn. If vn−1 ∈ H, then vn would be adjacent to 0 vertices in V (Pn) \ V (H) and thus,

since H is 02-invoking, every vertex in the same connected component as vn in G|H
would be adjacent to 0 vertices in V (G) \H. Since Pn is connected, this implies that

H is not a proper subset of V (Pn) which is a contradiction. Thus, if vn ∈ H, then

vn−1 ∈ V (G) \H.

(⇐) Suppose now that vn−1 ∈ V (G)\H. Then if vn ∈ V (G)\H, it would be adjacent

to 0 vertices in H and thus, since H is 02-invoking, every vertex in the same connected

component as vn in G|H would be adjacent to 0 vertices in H. Since Pn is connected,

this implies that H is the trivial subset of V (G) which is a contradiction. Thus, if

vn−1 ∈ V (G) \H, then vn ∈ H.

Theorem 4.1.13. Jn = Jn−1 + Jn−2 − 2, for n ≥ 3, with J1 = 2 and J2 = 4.

Proof. Note first that we are including the trivial and improper cases, so as to count

every 02-invoking set on Pn. We begin with the initial values. The path with only

one vertex cannot send chips because it has no edges. Thus, whether the lone vertex

quantum fires or not, the chosen set is 02-invoking. So, P1 has two 02-invoking

subsets: ∅ and V (P1). On P2, a quantum firing of any subgraph will return to the

fixed configuration after another step. Thus, P2 has four 02-invoking subsets.

Trivially, the empty subset and the entire vertex set are 02-invoking in Pn. We

will take note of this and move forward counting the 02-invoking subgraphs that are

both nonempty and have nonempty complement.

We will view the problem of partitioning the vertices of a path intoH and V (G)\H
as a colouring problem, colouring the vertices of Pn, n ≥ 2, red if they are in H and

blue if they are in V (G)\H. Suppose we have Pn coloured in such a way that H (and

thus, also V (G) \ H) is a 02-invoking subset. Suppose also that at least one vertex

is red and at least one vertex is blue. We will now count all such possible colourings

and we will refer to these as 02-invoking colourings.

By Lemma 4.1.12, we know that vn and vn−1 must be different colours, see Fig-

ure 4.8.

99

vn

Blue

vn−1

Red

vn−2

Figure 4.8: The two vertices, vn and vn−1 must have different colours since they are
adjacent to different numbers of blue vertices.

Suppose Pn has a 02-invoking colouring. Look at the colours assigned to the final

three vertices: vn, vn−1, and vn−2. By Lemma 4.1.12, we are able to exclude some

possible colourings of these final three vertices. See Table 4.1.

Colouring of vnvn−1vn−2 # of 02-invoking colourings
RRR · ·· 0
RRB · ·· 0
RBR · ·· ?
RBB · ·· ?
BRR · ·· ?
BRB · ·· ?
BBR · ·· 0
BBB · ·· 0

Table 4.1: Colourings of the last three vertices of a path

For the four remaining possible colourings of vn, vn−1, and vn−2, we will develop a

recurrence relation, building on values from smaller paths.

Case 1: Suppose Pn has a 02-invoking colouring in which vn is red, vn−1 is blue,

and vn−2 is red. By Theorem 4.1.3, a colouring is 02-invoking if and only if the two

colour classes are CCD. Clearly if we were to remove vn from this colouring, yielding

a colouring on Pn−1, the resulting colouring would be CCD since vn−1, the only vertex

which was adjacent to vn, is not adjacent to any other blue vertices. Thus, for every

02-invoking colouring of Pn in which vn is red, vn−1 is blue, and vn−2 is red, there

exists exactly one 02-invoking colouring of Pn−1 in which vn−1 is blue and vn−2 is

red. Since there is no fundamental difference between the colours red and blue, and

the final two vertices must have opposing colours by Lemma 4.1.12, the number of

02-invoking colourings of Pn−1 in which vn−1 is blue and vn−2 is red is equal to half

of the total number of 02-invoking colourings of Pn−1. The number of 02-invoking

colourings of Pn−1 is equal to Jn−1−2 (remembering to account for the improper and

trivial cases which are 02-invoking but are not defined to be 02-invoking colourings).

Thus, the number of 02-invoking colourings of Pn in which vn is red, vn−1 is blue and

vn−2 is red is equal to 1
2
(Jn−1 − 2) = 1

2
Jn−1 − 1.

100

Case 2: Suppose Pn has a 02-invoking colouring in which vn is blue, vn−1 is red, and

vn−2 is blue. Since there is no fundamental difference between the colours red and

blue, we know that there are also 1
2
Jn−1−1 02-invoking colourings of this form on Pn.

Colouring of vnvn−1vn−2 . . . # of 02-invoking colourings
RRR · ·· 0
RRB · ·· 0
RBR · ·· 1

2
Jn−1 − 1

RBB · ··
BRR · ··
BRB · ·· 1

2
Jn−1 − 1

BBR · ·· 0
BBB · ·· 0

Table 4.2: Colourings of the last three vertices of a path

Case 3: Suppose Pn has a 02-invoking colouring in which vn is red, and both vn−1
and vn−2 are blue. By Theorem 4.1.3, we know that both colour sets are CCD. So

we know that vn−2 must be adjacent to a red vertex. Thus, vn−3 is red. However, we

do not know whether vn−4 is red or blue. We have no knowledge of the remainder of

the colours except that both colour sets are CCD. If we were to remove vn and vn−1,

the resulting colouring of Pn−2 would be 02-invoking because the only vertex adjacent

to either of these vertices is vn−2, and in the resulting colouring of Pn−2, vn−2 is not

adjacent to any other blue vertices. Thus, the number of 02-invoking colourings of

Pn in which vn is red, and both vn−1 and vn−2 are blue is equal to the number of

02-invoking colourings of Pn−2 in which vn−2 is blue and vn−3 is red. Since there is no

fundamental difference between the colours red and blue, and the final two vertices

must have opposing colours by Lemma 4.1.12, the number of 02-invoking colourings

of Pn−2 in which vn−2 is blue and vn−3 is red is equal to half of the total number

of 02-invoking colourings of Pn−2. The number of 02-invoking colourings of Pn−2 is

equal to Jn−2 − 2 (remembering to account for the improper and trivial cases which

are 02-invoking but are not defined to be 02-invoking colourings). Thus, the number

of 02-invoking colourings of Pn in which vn is red, and both vn−1 and vn−2 are blue is

equal to 1
2
(Jn−2 − 2) = 1

2
Jn−2 − 1.

Case 4: Suppose Pn has a 02-invoking colouring in which vn is blue, and both vn−1
and vn−2 are blue. Since there is no fundamental difference between the colours red

and blue, we know that there are also 1
2
Jn−2 − 1 02-invoking colourings of this form

on Pn.

101

Colouring of vnvn−1vn−2 . . . # of 02-invoking colourings
RRR · ·· 0
RRB · ·· 0
RBR · ·· 1

2
Jn−1 − 1

RBB · ·· 1
2
Jn−2 − 1

BRR · ·· 1
2
Jn−2 − 1

BRB · ·· 1
2
Jn−1 − 1

BBR · ·· 0
BBB · ·· 0

Table 4.3: Colourings of the last three vertices of a path

So Jn − 2 = Jn−1 − 2 + Jn−2 − 2. Therefore Jn = Jn−1 + Jn−2 − 2.

Corollary 4.1.14. Let Fi be the ith Fibonacci number with F0 = 0, F1 = 1, and

Fi = Fi−1 + Fi−2. Then Jk+1 = 2(Fk + 1).

Proof. Note that

J1 = 2(F0 + 1) = 2;

J2 = 2(F1 + 1) = 4;

J3 = 2(F2 + 1) = 4.

Assume for 2 ≤ i ≤ k that Ji = 2(Fi−1 + 1). Then

Jk+1 = Jk + Jk−1 − 2

= 2(Fk−1 + 1 + Fk−2 + 1)− 2

= 2(Fk−1 + Fk−2 + 1)

= 2(Fk + 1).

With Theorem 4.1.3 we determined what 02-invoking subsets look like and with

Theorem 4.1.13 we determined the number of 02-invoking subsets that exist on a path

of any length. With the following lemma, we combine these ideas to determine what

properties are known about 02-invoking subsets on paths.

Lemma 4.1.15. Let C be a 0-pre-position, which is not itself the fixed configuration,

on a path, Pn. Let R be the orientation induced by C. If there exists some 02-invoking

subset H of V (Pn) such that when H is quantum fired from the fixed configuration, it

results in the configuration C. Then the following three statements are all true.

102

• R has no agreeing pair of adjacent arrows (recall Definition 3.2.8);

• Pn|H has no P3 subgraph (recall Definition 1.1.4);

• C has no stack sizes equal to 0.

Proof. Let C be a 0-pre-position, which is not itself the fixed configuration, on a

path, Pn. Let R be the orientation induced by C, and let H be the set of vertices

that would need to fire from the fixed configuration to create C.

First, we will prove that R has no agreeing pair of adjacent arrows. Suppose, by

way of contradiction, that R contains a pair of adjacent agreeing arrows. Then, since

C is a 0-pre-position, we know that the vertex adjacent to both of these agreeing

arrows, call it vi, must have a stack size of 0 in C. Without loss of generality, we

suppose these are both right arrows. Since vi−1 is receiving from vi, we know that

|vi−1|C < 0 and since vi+1 is sending to vi, we know that |vi+1|C > 0.

vi+1 vi

0

vi−1

Since vi is adjacent to a vertex with fewer than 0 chips in C, call it vi−1, we know

that both vi and vi−1 are in H. Also, since |vi+1|C > 0, we know that vi+1 /∈ H.

However, this implies that the quantum firing left vi with a stack size of −1 which is

a contradiction.

We now prove that C has no stack sizes equal to 0. Suppose, by way of contra-

diction, that C contains a vertex with stack size 0, call it v. Then either v is incident

to a pair of agreeing arrows, or v is incident to only flat edges. The case in which v is

incident with a pair of agreeing arrows has already been contradicted. If v is incident

to only flat edges, then all of v’s neighbours must have a stack size of 0 and thus, be

incident to only flat edges. This implies that every vertex in C has a stack size of 0.

So, C is the fixed configuration. This is a contradiction.

We now prove H has no P3 subpath. Suppose, by way of contradiction, that H

contains a P3 subpath. Then C contains a vertex with a stack size of 0. This has

already been contradicted.

Theorem 4.1.16. QQ2(Pn) = �n
3
� (where QQ2(Pn) is as in Definition 4.1.1).

103

Proof. We will first prove that QQ2(Pn) ≥ �n
3
�, and then prove that QQ2(Pn) ≤ �n

3
�.

(⇒) The domination number of a path Pn is �n
3
�, see [7]. Let H be a nontrivial 02-

invoking subset of V (Pn). By the definition of 02-invoking, if a vertex v in V (Pn) \H
does not have any neighbours in H, then neither do the neighbours of v. This implies

that either H is trivial or every vertex in V (Pn) \ H is adjacent to a vertex in H.

Since we have supposed that H is nontrivial, we conclude that H is a dominating set.

So QQ2(Pn) ≥ �n
3
�.

(⇐) We will partition the possible numbers of vertices into three cases: paths of

length 3k, 3k+1, and 3k+2, where k is an integer. We will represent the 02-invoking

subsets as red vertices.

Case 1:

v3k v3k−1

Red

v3k−2 v3k−3 v3k−4

Red

v3k−5 v5

Red

v4 v3 v2

Red

v1

Case 2:

v3k+1

Red

v3k v3k−1

Red

v3k−2 v6 v5

Red

v4 v3 v2

Red

v1

Case 3:

v3k+2

Red

v3k+1 v3k v3k−1

Red

v3k−2 v6 v5

Red

v4 v3 v2

Red

v1

In both Case 1 and Case 3, the coloured vertices are simply the vertices with index

equal to 2 (mod 3). In Case 2, since v3k+2 is excluded, we instead colour the leaf,

v3k+1. Note that in each case, �n
3
� vertices are shown to be in H. So QQ2(Pn) ≤ �n

3
�.

We do not yet have an example of a configuration on any graph that can arise from

a quantum firing that will eventually lead to the fixed configuration in any more than

104

1 step. That is, we have not yet found a graph for which any subset of its vertices

is 0-invoking but not 02-invoking. For a thorough example, we will show that every

subset of the vertices in P4 = v1v2v3v4 is either 02-invoking or yields a configuration

sequence with period 2. The 02-invoking subsets are {∅}, {v1, v4}, {v2, v3}, {v1, v3},
{v2, v4}, and {v1, v2, v3, v4}. This means that the remaining subsets that must be

tested to determine if they are 0-invoking are:

• {v1} (which is equivalent to {v4})

• {v2} (which is equivalent to {v3})

• {v1, v2} (which is equivalent to {v3, v4})

• {v1, v3} (which is equivalent to {v2, v4})

• {v1, v2, v3} (which is equivalent to {v2, v3, v4})

• {v1, v2, v4} (which is equivalent to {v1, v3, v4})

We will show that on P4 no other quantum set yields a period of length 1.

105

v4 v3 v2 v1

v4 v3 v2 v1
Step 0 0 0 0 0
Step 1 0 0 1 -1
Step 2 0 1 -1 0
Step 3 1 -1 1 -1
Step 4 0 1 -1 0

v4 v3 v2 v1

v4 v3 v2 v1
Step 0 0 0 0 0
Step 1 0 1 -2 1
Step 2 1 -1 0 0
Step 3 0 1 -1 0
Step 4 1 -1 1 -1
Step 5 0 1 -1 0

v4 v3 v2 v1

v4 v3 v2 v1
Step 0 0 0 0 0
Step 1 0 1 -1 0
Step 2 1 -1 1 -1
Step 3 0 1 -1 0

Figure 4.9: Quantum sets on P4 that yield a period of length 2.

106

v4 v3 v2 v1

v4 v3 v2 v1
Step 0 0 0 0 0
Step 1 1 -2 2 -1
Step 2 0 0 0 0

v4 v3 v2 v1

v4 v3 v2 v1
Step 0 0 0 0 0
Step 1 1 -1 0 0
Step 2 0 1 -1 0
Step 3 1 -1 1 -1
Step 4 0 1 -1 0

v4 v3 v2 v1

v4 v3 v2 v1
Step 0 -1 2 -1 0
Step 1 0 0 1 -1
Step 2 0 1 -1 0
Step 3 1 -1 1 -1
Step 4 0 1 -1 0

Figure 4.10: More quantum sets on P4 that yield a period of length 2.

4.2 Counting 0-Preorientations

Previously, when counting configurations, we used a method of first counting the

orientations that could possibly be induced (Section 3.2). However, given a path, Pn,

and an orientation, R, by Lemma 4.0.3, we know that there is a maximum of one

configuration that both induces R and is a 0-pre-position. Thus, we can equivalently

107

count all of the orientations of Pn and then subtract those that cannot exist as the

induced orientation of a 0-pre-position. Very little is known about pre-periods in

Parallel Diffusion. In this section we look at counting all of the pre-positions of

just the fixed configuration. This is the first step in solving for which pre-period

configurations will eventually lead to the fixed configuration and which will lead to a

p2-configuration, a problem which remains open.

In order to count all 0-pre-positions that exist on paths, we are now going to do

a forbidden subgraph characterization to exclude every suborientation which cannot

exist within a graph orientation induced by a 0-pre-position.

Theorem 4.2.1. Let Zn be the number of orientations R that exist on Pn such that

R is a 0-preorientation and not itself the fixed orientation. Then, Zn = Zn−1 +

2Zn−2 + Zn−3, with initial values Z1 = 0, Z2 = 2, and Z3 = 4. Additionally, a path

orientation, which is not itself the fixed orientation, is a 0-preorientation if and only

if none of the following mixed graphs exist as a suborientation (A square will represent

a vertex that must be a leaf. A circle will represent a vertex that may or may not be

a leaf.).

(a)

(b)

(c)

(d)

The proof of this theorem is composed of several steps. After a few base cases, we

use a case analysis to show that there does not exist an orientation which both contains

a forbidden suborientation and is induced by a 0-pre-position. Then, moving to the

converse, we begin by finding a way to partition every orientation on a path of length n

108

into four cases. We then use a case analysis to show that every orientation which does

not contain one of the four forbidden suborientations must be a 0-preorientation. This

case analysis also implies the recursive relation from the statement of this theorem.

Proof. We begin with the base cases. The path on 1 vertex clearly has no orientations

since there are no edges. The path on 2 vertices has one edge and thus, three possible

orientations. One of these three orientations is the fixed configuration. However, the

other two are 0-pre-positions as evidenced by Figure 4.11.

1 −1

−1 1

Figure 4.11: Two 0-pre-positions on K2 with different induced graph orientations

The path on 3 vertices has three edges and thus, nine possible orientations.

Orientation
→→
→ –
→←
– →
– –
– ←
←→
← –
←←

Table 4.4: Orientations of P3

Note that one of these orientations is the fixed orientation. On P3, no orientation

with a flat edge can be a 0-preorientation except for the fixed orientation itself. This

is because, in each of the four cases, one stack size incident with the flat edge will

change in the initial firing and the other will not. This implies that these two values

will not be equal at the next step. Thus, no configuration which induces any of these

four orientations can be a 0-pre-position, and thus, none of these four orientations is

a 0-preorientation.

109

Orientation
→→
→ – X
→←
– → X
– –
– ← X
←→
← – X
←←

Table 4.5: Orientations of P3 with X’s signifying those that are not 0-preorientations

The other four orientations, however, are 0-preorientations, as evidenced by Fig-

ure 4.12.

1 0 −1

1 −2 1

−1 2 −1

−1 0 1

Figure 4.12: Four 0-pre-positions on P3 with different induced graph orientations

Let R be a path orientation that contains a forbidden suborientation of form

(a), (b), (c), or (d), from the statement of this theorem. We will show that R is not a

0-preorientation.

(a) Suppose that in R, two flat edges are incident to one another. The vertex that

is incident to both of these edges must initially have 0 chips since its stack size will

go unchanged in the initial firing. This implies that both adjacent vertices must also

initially have 0 chips. Any vertex with 0 chips that is known to be incident with at

least one flat edge cannot be adjacent to any directed edges. Thus, every edge is flat.

Therefore, every vertex must initially have 0 chips. This configuration is the fixed

configuration.

(b) Suppose that in R, some leaf is incident to a flat edge. Then that leaf must

initially have 0 chips since its stack size will go unchanged in the initial firing. This

implies that the vertex adjacent to this leaf must also initially have 0 chips. Thus,

every vertex must initially have 0 chips. This configuration is the fixed configuration.

(c) Suppose that in R, some flat edge is adjacent to two agreeing arrows. The two

110

vertices incident with this flat edge must initially have equal stack sizes, but in the

initial firing one of them will increase and the other will decrease. Therefore, that

flat edge will not be maintained. Thus, no configuration inducing R can be a 0-pre-

position.

(d) Suppose that in R, some edge is adjacent to two arrows that agree with it. That

is, either all three edges are right edges or all three edges are left edges. Then, the

two vertices incident with this edge will not have their stack sizes change in the initial

firing. Therefore, the arrow will be maintained, not becoming a flat edge. Thus, no

configuration inducing R can be a 0-pre-position.

Thus, if R contains one of the four forbidden suborientations from the statement

of this theorem, then R is not a 0-preorientation.

For the converse, suppose we have an orientation, R, of a path, Pn, such that R

does not contain any of the forbidden suborientations. We seek to show that R is a

0-preorientation.

We will look at every orientation that does not contain one of the four forbidden

suborientations and show that they are all 0-preorientations.

We must first generate every orientation of Pn that does not contain a forbidden

suborientation. Our method will involve looking only at the final three edges, en−1,

en−2, and en−3, and supposing that the remainder of the path does not contain any

forbidden suborientations. This will allow us to construct a recursive way of calculat-

ing the number of 0-preorientations, Zn, that exist on Pn, based on Zn−1, Zn−2, and

Zn−3.

Begin by noting that if we are to construct every orientation of Pn that does not

contain any of our four forbidden subgraphs, then by suborientations (a) and (b),

en−1 cannot be flat.

We now construct Tables 4.6 and 4.7 to make clear which orientations can and

cannot exist. We will mark any illegal suborientations with their corresponding for-

bidden suborientation (a,b,c, or d). We will let a “–” represent a flat edge.

Firstly, Table 4.6 in which we suppose that en−1 is a left arrow.

en−3
– → ←

en−2

– a c
→
← d

Table 4.6: Illegal suborientations given that en−1 is directed ←

111

Secondly, Table 4.7 in which we suppose that en−1 is a right arrow.

en−3
– → ←

en−2

– a c
→ d
←

Table 4.7: Illegal suborientations given that en−1 is directed →

There are 12 empty cells between Tables 4.6 and 4.7. These 12 empty cells rep-

resent 12 combinations of orientations that en−1, en−2, and en−3 can have such that

they do not contain any forbidden subgraphs. This implies 12 cases that need to be

checked. However, we can group some of these cases together. The arrow combina-

tions in these 12 cases can be expressed as the following four mutually exclusive and

exhaustive cases:

112

vn vn−1 vn−2

vn vn−1 vn−2 vn−3

vn vn−1 vn−2 vn−3

vn vn−1 vn−2 vn−3

vn vn−1 vn−2

vn vn−1 vn−2 vn−3

vn vn−1 vn−2 vn−3

vn vn−1 vn−2 vn−3

Case 1
en−2 disagrees with en−1

Case 2
en−2 is flat

Case 3
en−2 agrees with en−1 and

disagrees with en−3

Case 4
en−2 agrees with en−1 and

en−3 is flat

en−1 en−2

Figure 4.13: All four possible cases represented with forbidden suborientations ex-
cluded

en−3
– → ←

en−2

– a 2 c
→ 1 1 1
← 4 3 d

Table 4.8: Given that en−1 is directed ←, illegal orientations are labelled with their
corresponding illegal suborientation, and legal orientations are labelled with their
corresponding case number

113

en−3
– → ←

en−2

– a c 2
→ 4 d 3
← 1 1 1

Table 4.9: Given that en−1 is directed →, illegal orientations are labelled with their
corresponding illegal suborientation, and legal orientations are labelled with their
corresponding case number

We now have four cases that account for every orientation which is not forbidden.

We will proceed by induction, using the cases of P1, P2, and P3 as base cases. For

our induction hypothesis, we will suppose that for all paths Pk, k ≤ n − 1, n ∈ N,

that every orientation of Pk which does not contain a forbidden suborientation is a

0-preorientation. This will conclude the converse portion of our proof and we will

be able to conclude that an orientation is a 0-preorientation if and only if it does

not contain any forbidden suborientation. We will also show that, Zn, the number

of 0-preorientations on Pn, is equal to Zn−1 + 2Zn−2 + Zn−3. From Lemma 4.0.3, we

will also be able to conclude that the number of 0-pre-positions on a path is equal to

Zn−1 + 2Zn−2 + Zn−3.

We will run through these four cases, proving not only that each one is a 0-

preorientation, but also determining how many 0-pre-positions exist with that particu-

lar induced orientation. Remember, Lemma 4.0.3 states that for every 0-preorientation,

R, there exists a unique 0-pre-position that induces R. However, our 4 cases do not

involve the entire orientation, but rather the orientation of a subgraph. This is why

each of our four cases can be induced, not by a single unique 0-pre-position, but by

multiple.

Let C be a 0-pre-position on Pn with induced orientation R having the form in

Case 1. That is, we know that en−1 and en−2 disagree in R. Note that, from forbidden

suborientations a and b, we know that every 0-preorientation on Pn−1 must have en−2
directed right or left. So by removing vn and its incident edge en−1 from C, what

remains is a configuration C ′ on Pn−1 which induces an orientation R′ that does

not contain any forbidden suborientations. By our induction hypothesis, there exist

Zn−1 such configurations. Given a 0-preorientation on Pn−1, there exists a unique

0-preorientation on Pn that can be created by adding a disagreeing edge. Thus, the

number of 0-pre-positions on Pn with an induced orientation of the form in Case 1 is

Zn−1. These orientations with associated stack sizes are shown in Figure 4.14.

114

vn−1

1

vn−2

?

vn−1

-1

vn−2

?

vn

-1

vn−1

2

vn−2

?

vn

1

vn−1

-2

vn−2

?

Figure 4.14: The orientations of Case 1 on Pn shown as extensions of non-forbidden
orientations on Pn−1.

Let C be a 0-pre-position on Pn with induced orientation R having the form in

Case 2. That is, we know that en−1 is flat. Note that, from forbidden suborientations

a and b, we know that every 0-pre-position on Pn−2 must have en−3 directed right

or left. So by removing vn and vn−1 along with their incident edges en−1 and en−2
from C, what remains is a configuration C ′ on Pn−2 which induces an orientation R′

that does not contain any forbidden suborientations. By our induction hypothesis,

there exist Zn−2 such configurations. Given a 0-preorientation on Pn−2, there exists

a unique 0-preorientation on Pn having the form in Case 2 (created by adding two

vertices vn and vn−1 along with a flat edge en−2 with endpoints vn−1 and vn−2, and a

directed edge en−1 with endpoints vn and vn−1 which disagrees with en−3). Thus, the

number of 0-pre-positions on Pn with an induced orientation of the form in Case 2 is

Zn−2. These orientations with associated stack sizes are shown in Figure 4.15.

115

vn−2

1

vn−3

?

vn−2

-1

vn−3

?

vn−1

1

vn

-1

vn−2

1

vn−3

?

vn

1

vn−1

-1

vn−2

-1

vn−3

?

Figure 4.15: The orientations of Case 2 on Pn shown as extensions of non-forbidden
orientations on Pn−2.

Let C be a 0-pre-position on Pn with induced orientation R having the form

in Case 3. That is, we know that en−2 agrees with en−1 and disagrees with en−3.

Note that, from forbidden suborientations a and b, we know that every 0-pre-position

on Pn−2 must have en−3 directed right or left. So by removing vn and vn−1 along

with their incident edges en−1 and en−2 from C, what remains is a configuration

C ′ on Pn−2 which induces an orientation R′ that does not contain any forbidden

suborientations. By our induction hypothesis, there exist Zn−2 such configurations.

Given a 0-preorientation on Pn−2, there exists a unique 0-preorientation on Pn having

the form in Case 3 (created by adding two vertices vn and vn−1 along with a directed

edge en−2 with endpoints vn−1 and vn−2 which disagrees with en−3, and a directed

edge en−1 with endpoints vn and vn−1 which also disagrees with en−3). Thus, the

number of 0-pre-positions on Pn with an induced orientation of the form in Case 3 is

Zn−2. These orientations with associated stack sizes are shown in Figure 4.16.

116

vn−2

1

vn−3

?

vn−2

-1

vn−3

?

vn−1

0

vn

-1

vn−2

2

vn−3

?

vn

1

vn−1

0

vn−2

-2

vn−3

?

Figure 4.16: The orientations of Case 3 on Pn shown as extensions of non-forbidden
orientations on Pn−2.

Let C be a 0-pre-position on Pn with induced orientation R having the form in

Case 4. That is, we know that en−2 agrees with en−1 and en−3 is flat. Note that,

from forbidden suborientations a and b, we know that every 0-pre-position on Pn−3
must have en−4 directed right or left. Also note that since R does not contain any

forbidden subgraphs, we know that en−4 disagrees with en−2. So by removing vn,

vn−1, and vn−2 along with their incident edges en−1, en−2 and en−3 from C, what

remains is a configuration C ′ on Pn−3 which induces an orientation R′ that does

not contain any forbidden suborientations. By our induction hypothesis, there exist

Zn−3 such configurations. Given a 0-preorientation on Pn−3, there exists a unique 0-

preorientation on Pn having the form in Case 4 (created by adding three vertices vn,

vn−1, and vn−2 along with three edges: a flat edge en−3 with endpoints vn−3 and vn−2,

a directed edge en−2 with endpoints vn−2 and vn−1 which disagrees with en−4, and a

directed edge en−1 with endpoints vn and vn−1 which also disagrees with en−4). Thus,

the number of 0-pre-positions on Pn with an induced orientation of the form in Case

4 is Zn−3. These orientations with associated stacks sizes are shown in Figure 4.17.

117

vn−3

1

vn−4

?

vn−3

-1

vn−4

?

vn−2

1

vn−1

0

vn

-1

vn−3

1

vn−4

?

vn−1

0

vn

1

vn−2

-1

vn−3

-1

vn−4

?

Figure 4.17: The orientations of Case 4 on Pn shown as extensions of non-forbidden
orientations on Pn−3.

Thus, we conclude that every orientation that does not contain any of the four

forbidden suborientations is a 0-preorientation. In addition, we conclude that Zn is

equal to the sum of our four cases. So, Zn = Zn−1 + 2Zn−2 + Zn−3.

This sequence is A218078 in OEIS [16] and its generating function is 2x(1+x)
1−x−2x2−x3

[16]. In order to find the explicit formula, we begin by finding the characteristic

equation for this linear recurrence:

Zn = Zn−1 + 2Zn−2 + Zn−3

Zn − Zn−1 − 2Zn−2 − Zn−3 = 0 Let Zn = xn

xn − xn−1 − 2xn−2 − xn−3 = 0

xn−3(x3 − x2 − 2x− 1) = 0

x3 − x2 − 2x− 1 = 0

The roots of this equation are α1 ≈ 2.1479, α2 ≈ −0.5740 − 0.3690i, and α3 ≈
−0.5740+0.3690i. Since these are all of the nonzero roots of the function, our general

solution is a linear combination of all three values:

Zk = c1(α1)
k + c2(α2)

k + c3(α3)
k.

118

In order to solve for c1, c2, and c3, we must solve a system of three linear equations

using three initial values of our recurrence: Z1 = 0, Z2 = 2, and Z3 = 4. The

approximate solutions are

c1 ≈ 0.3885

c2 ≈ 0.8057 + 0.1226i

c3 ≈ 0.8057− 0.1226i

So,

Zk ≈ 0.3885(2.1479) k

+ (0.8057 + 0.1226i)(−0.5740− 0.3690i) k

+ (0.8057− 0.1226i)(−0.5740 + 0.3690i) k.

The dominating term, out of the three roots, is the one which has the greatest modu-

lus. These moduli are roughly 2.1479, 0.6823, and 0.6823. Thus, the dominant term

in the equation

Zk ≈ 0.3885(2.1479) k

+ (0.8057 + 0.1226i)(−0.5740− 0.3690i) k

+ (0.8057− 0.1226i)(−0.5740 + 0.3690i) k

is c1(α1)
k ≈ (0.3885)(2.1479) k.

Corollary 4.2.2. Zk has an asymptotic value of approximately 0.3885× 2.1479k.

Chapter 5

Variants

In Parallel Diffusion, firing results in richer vertices giving to poorer vertices. However,

this idea of firing can be abstracted to obtain variants of Parallel Diffusion. In this

chapter we will define some variants of Parallel Diffusion in part by changing the

way in which different stack sizes interact with each other. By changing the firing

rules, we change the process by having, for example, stack sizes of 7 only send chips

to their neighbours who have less than 2 chips, or by having stack sizes of 10 only

send chips to neighbours that have exactly 12 chips, etc. These variants show us how

periodicity changes when the process changes. In this chapter, we will see an example

of a variant, Two-One Diffusion, with very large periods (Section 5.1) and an example

of a variant, Pay it Backward, which does not generally exhibit periodic behaviour

(Section 5.2). In Subsection 5.2.1, we show our results for a specific Pay it Backward

example on P3, concluding that it is not generally periodic (Lemmas 5.2.2 and 5.2.3),

its pre-positions are unique (Lemma 5.2.5), and that its configuration sequence, when

plotted into 3-space with its stack sizes as coordinates, generates a spiral outward

from its initial configuration, revealing regularities about the underlying orientations

(Figure 5.16). In Subsection 5.2.2, we characterize all configurations with period 1 in

Pay it Backward (Theorem 5.2.11).

Definition 5.0.1. A firing rule is an ordered pair (a, b) written as a → b, where

a, b ∈ Z, a
= b. Let S = {a → b : a, b ∈ Z} be the set of all possible firing rules. In

any particular diffusion process, the flow of chips is determined by a subset of S, call

it S ′. Let v be a vertex in G and let C be a configuration on G. Let Z(S ′, C, v) =

{u ∈ N(v) : |v|C → |u|C ∈ S ′} (Note how this set Z(S ′, C, v) corresponds to the set

ZC
− (v) in Definition 1.1.16). To fire v is to add one to the stack size of every vertex

in Z(S ′, C, v) and reduce the stack size of v by |Z(S ′, C, v)|. If u ∈ Z(S ′, C, v), we

say that u receives a chip from v and that v sends a chip to u.

Note that if (a, b) ∈ S ′ and (b, a) ∈ S ′, then if a vertex with stack size a is adjacent

to a vertex with stack size b, neither stack size will change as a result of chips being

sent across their shared edge. An example of a process with only two firing rules is

given in Figure 5.1.

119

120

C0 v1

6
v2

2

v3

5

v4

2

v5

6

C1

v1

4
v2

3

v3

5

v4

4

v5

5

C2

v1

3
v2

3

v3

7

v4

2

v5

6

C3

v1

3
v2

3

v3

7

v4

3

v5

5

Figure 5.1: Three steps in a process with firing rules 4 → 5 and 6 → 2. Directed
edges depict the flow of chips.

Note how this definition allows for the firing of only a single vertex and also

broadens the definition of how chips can move in a variant of Parallel Diffusion,

allowing for the possibility of only certain vertices sending chips to poorer vertices,

or even having poorer vertices send chips to richer vertices. In Section 5.1, we discuss

a diffusion variant with different firing rules.

Note also that Parallel Diffusion has infinitely many firing rules with

S ′ = {a → b : a, b ∈ Z, a > b}.

No matter what stack size a vertex u has, there exist infinitely many lesser possible

integral stack sizes which could be adjacent to u.

In the most general terms, diffusion is a process in which we compare stack sizes

of neighbouring vertices and fire according to our firing rules (Definition 5.0.1). If

we change the way we compare the stack sizes of neighbouring vertices or change the

firing rules, we obtain a new variant of diffusion. In this chapter, we will analyze three

121

diffusion variants: Two-One Diffusion, Pay it Backward, and Sequential Diffusion.

In Two-One Diffusion, the variation lies in a change to the firing rules. Instead

of chips being sent along every edge from richer to poorer, we restrict the rules so

that chips only move from stack sizes of two to stack sizes of one, and from stack

sizes of three to stack sizes of zero. So, rather than the infinitely many firing rules in

Parallel Diffusion, we have only two in Two-One Diffusion: 2 → 1 and 3 → 0. We

discuss Two-One Diffusion in Section 5.1 and with Conjecture 5.1.1 we propose that

the period lengths in Two-One Diffusion may be arbitrarily large.

Instead of changing the firing rules, another way that a diffusion variant can be

defined is by changing the way in which adjacent stack sizes are compared. That

is, rather than comparing the stack sizes of two adjacent vertices, |a|C and |b|C , and
having the greater fire to the lesser, we instead compare f(|a|C) with g(|b|C) where f
and g are functions, and have the greater of these two values fire to the lesser. In such

cases, a labelling of the edges is required so we know which endpoint will be assigned

function f and which endpoint will be assigned function g. In Pay it Backward, we use

this sort of variation with f(x) = x and g(x) = −x. In Pay it Backward, each edge

v1v2 is assigned a label v1 ∼ −v2 or −v1 ∼ v2 so it is clear, for each endpoint, which

function f or g is applied. Such an edge labelling could rightly be viewed as a graph

orientation, but we will avoid this terminology so as to prevent any confusion with

the graph orientation induced by the configuration (Lemma 1.1.23). In Section 5.2,

we show that Pay it Backward exhibits very regular behaviour but is not, in general,

periodic.

In Section 5.3, we look at a variant, Sequential Diffusion, in which the vertices do

not all fire at the same time. In Sequential Diffusion, the firing rules are equivalent to

those of Parallel Diffusion, but only a single vertex fires at each step. We examine this

process with the Millpond configuration and in Theorem 5.3.8, we show an instance

in which it displays periodic behaviour.

5.1 Two-One Diffusion

In this section, we analyze the diffusion variant, Two-One Diffusion. With Long and

Narayanan’s result that Parallel Diffusion always has period 1 or 2, we sought to

determine if every diffusion process with some subset of the infinite firing rules in

Parallel Diffusion also necessarily exhibits period 1 or 2. We show multiple examples

in which Two-One Diffusion has a period larger than 2 and then conjecture that for

any n ∈ N, there exists a configuration on the path of length 2n which exists inside a

122

period of length 2n.

Two-One Diffusion varies from Parallel Diffusion in its firing rules. Instead of the

infinitely many firing rules in Parallel Diffusion, in Two-One Diffusion, there are only

two: 2 → 1 and 3 → 0. As in Parallel Diffusion, every vertex will fire at each step.

Note that this implies that any vertex with a stack size greater than three or less than

zero will never increase or decrease in any future step. The only situations in which

chips are sent are when a vertex with two chips sends a chip to a vertex with one chip,

and when a vertex with three chips sends a chip to a vertex with zero chips. The

reason for the name Two-One Diffusion comes just as much from the useful initial

configuration on which we have decided to focus as it does from the firing rule.

We will work exclusively with paths and we will draw them on a horizontal axis so

that terms like ‘rightmost’ and ‘leftmost’ have a clear meaning. We will be particularly

interested in the configuration on a path, P2n , in which the stack size of the leftmost

vertex is 2 and the stack sizes alternate between 1 and 2 as shown in Figure 5.2. We

will refer to this configuration on a path as the 2-1 configuration, and a path on n

vertices with the 2-1 configuration will be referred to as P 2−1
n .

2 1 2 1 2 1 2 1 2 1 2 1

Figure 5.2: P2n with the 2-1 configuration

We will show the first few configurations from each of P 2−1
2 , P 2−1

4 , and P 2−1
8 in

Figures 5.3, 5.4, and 5.5, respectively.

2 1

1 2

2 1

Figure 5.3: Period of P 2−1
2

123

2 1 2 1

1 3 0 2

1 2 1 2

2 0 3 1

2 1 2 1

Figure 5.4: Period of P 2−1
4

2 1 2 1 2 1 2 1

1 3 0 3 0 3 0 2

1 2 2 1 2 1 1 2

2 1 1 3 0 2 2 1

1 2 1 2 1 2 1 2

2 0 3 0 3 0 3 1

2 1 1 2 1 2 2 1

1 2 2 0 3 1 1 2

2 1 2 1 2 1 2 1

Figure 5.5: Period of P 2−1
8

Each of these configuration sequences can be seen to be equal to the number of vertices

in the path. This leads us to our conjecture.

Conjecture 5.1.1. Let G be a path with the 2-1 configuration. In Two-One Diffusion,

if G has 2n vertices, then the configuration sequence will have period 2n.

124

We will make use of the path on n vertices in which stack sizes of 1 and 2 alternate,

and the leftmost vertex has stack size 1. We will refer to this path as having the 1-2

configuration.

Finally, we conclude with three more examples which provide evidence for our con-

jecture. Since these examples have many vertices, we will adopt a shorthand notation.

A path Pn with the 2-1 configuration will be signified by n+ and a path Pn with the

1-2 configuration will be signified by n−. For instance, the initial configuration in

Figure ?? could be written as 8+.

What follows are the even numbered steps from the configuration sequences initi-

ated by 16+, 32+, and 64+ (the longest period which we have calculated). Also, for

the purposes of these examples, we will adopt the notation of concatenating config-

urations. So we could write for instance, that P 2−1
n = P 2−1

2 P 2−1
n−4P

2−1
2 . We develop

these notations and exhibit the configuration sequences in this way to make it more

clear to the reader the similarities shared between the configuration sequences of dif-

ferent paths with the 2-1 configuration. We show for each of these examples that it

takes 2n−1 steps to turn n+ into n−. It will clearly then take 2n−1 steps to turn n−

into n+. So we can see that the period of each example is equal to the number of

vertices in the path.

16+

2−12+2−

4−8+4−

4+2−4+2−4+

16−

Figure 5.6: First 8 steps on 16+

125

32+

2−28+2−

4−24+4−

4+2−20+2−4+

8−16+8−

2+4−2+2−12+2−2+4−2+

8+4−8+4−8+

2−4+2−4+2−4+2−4+2−4+2−

32−

Figure 5.7: First 16 steps on 32+

64+

2−60+2−

4−56+4−

4+2−52+2−4+

8−48+8−

2+4−2+2−44+2−2+4−2+

8+4−40+4−8+

2−4+2−4+2−36+2−4+2−4+2−

16−32+16−

2+12−2+2−28+2−2+12−2+

4+8−4+4−24+4−4+8−4+

4−2+4−2+4−4+2−20+2−4+4−2+4−2+4−

16+8−16+8−16+

2−12+2−2+4−2+2−12+2−2+4−2+2−12+2−

4−8+4−8+4−8+4−8+4−8+4−

4+2−4+2−4+2−4+2−4+2−4+2−4+2−4+2−4+2−4+2−4+

64−

Figure 5.8: First 32 steps on 64+

126

5.2 Pay It Backward

In this section, we define and study Pay it Backward. We begin with a thorough

analysis of Pay it Backward on P3 with a specific labelling of the edges (Figure 5.9)

in Subsection 5.2.1, before moving on to more general results in Subsection 5.2.2.

x y z
x∼-y y∼-z

Figure 5.9: P3 with x ∼ −y and y ∼ −z

Our analysis of Pay it Backward will focus on periodicity and regularity. We

will analyze some instances in which Pay it Backward yields periodic configuration

sequences, but also (in contrast to Parallel Diffusion) some instances in which Pay

it Backward yields aperiodic configuration sequences. These aperiodic configuration

sequences, however, exhibit noteworthy regularity in their induced orientations.

In Subsection 5.2.1, we characterize configuration sequences which, given a specific

labelling of the edges, exhibit periodic behaviour and those which do not. Also,

in Subsection 5.2.1, we show that the pre-position of a given configuration is well-

defined (at least on some graphs). In Subsection 5.2.2, we define a useful type of

auxiliary graph. In Theorem 5.2.11, we use this auxiliary graph to show the necessary

conditions for a cycle to have a p1-configuration in Pay it Backward.

Given a graph G, suppose that each edge ab has been assigned either the label

a ∼ −b or −a ∼ b. Given a configuration C, when the vertices fire at each step,

rather than vertices sending chips to their poorer neighbours, every edge is evaluated

separately according to its label. An edge with label a ∼ −b will compare |a|C to

−|b|C , and the vertex with the greater value will send a chip to the vertex with the

lesser value. An edge with label −a ∼ b will compare −|a|C to |b|C , and the vertex

with the greater value will send a chip to the vertex with the lesser value. Notably, the

firing rules in Pay it Backward are identical to those of Parallel Diffusion, with greater

always firing to lesser. The variation lies in the edge labelling that may change which

value is greater and which one is lesser. An example of a firing in Pay it Backward is

given in Figure 5.10.

127

x

1
y

-10
z

10

x

2
y

-11
z

10

x∼-y y∼-z

x∼-y y∼-z

Figure 5.10: One firing in Pay it Backward on P3.

5.2.1 P3 analysis of Pay It Backward

We will now focus our attention on a particular edge labelling on P3, shown in Fig-

ure 5.11.

x y z
x∼-y y∼-z

Figure 5.11: P3 with x ∼ −y and y ∼ −z

We will explore the configurations that can exist in Pay it Backward on P3 under

this labelling of the edges, and the orientations that those configurations induce.

Through a number of lemmas, we will show that as time increases, a very regular

behaviour is exhibited, but the configuration sequence is, however, not generally

periodic.

The configuration sequences generated by configurations on P3 under this labelling

of the edges, are shown to be generally aperiodic in Lemma 5.2.3. In Lemma 5.2.5, it

is shown that every position has a unique pre-position (if a pre-position exists at all).

This is another way that Pay it Backward, under this labelling, differs from Parallel

Diffusion (recall Chapter 4, where we determined the number of pre-positions of the

fixed configuration in Quantum Parallel Diffusion and Parallel Diffusion).

We begin by determining, given a configuration C that induces an orientation R,

which of the possible induced orientations could exist at the next step. This result

will be referenced throughout this subsection. Recall that |x|C represents the stack

size of vertex x in configuration C (which may be negative).

Lemma 5.2.1. Given P3 with x ∼ −y, y ∼ −z, and an initial configuration C0,

the orientation induced by C1 is related to the orientation induced by C0 as shown in

Table 5.1.

128

Initial Orientation (t = 0) Possible Orientations at t = 1

R1
x y z x y z R1

R2
x y z x y z R6

R3
x y z x y z

R7

R4
x y z x y z

R8

R5
x y z x y z

R9

R6
x y z x y z R4

x y z R6

R7
x y z x y z

R5

x y z
R7

R8
x y z x y z

R3

x y z
R8

R9
x y z x y z R2

x y z
R9

Table 5.1: On the left, each possible initial orientation of P3 is shown with a cor-
responding name to make future referencing simpler. Given a configuration that
induces an orientation on the left, the next column represents the list of all possible
orientations that may be induced by the resulting configuration at time t = 1, and
the rightmost column contains their corresponding names.

Proof. With two edges, and three possible orientations per edge, there are 9 possible

initial orientations of this path. We now go through each of these 9 cases to show that

the possible orientations that can arise following the initial firing, given that we know

the orientation induced by the initial configuration, are those outlined in Table 5.1.

Case 1: The configuration at Step 0 is such that, in the initial firing, no chips will

be sent (R1).

x y z
x∼-y y∼-z

If both edges are flat, then the stack sizes will not change in the initial firing or

any subsequent firing. So, this orientation will always yield itself. We know that

this configuration sequence has a period of length 1 and pre-period of length 0. Any

configuration C which induces this orientation must be of the form |x|C = −|y|C =

|z|C .
Case 2: The configuration at Step 0 is such that, in the initial firing, x will send a

129

chip to y, and no chip will move across yz (R2).

x y z
y∼-zx∼-y

We know |x|0 > −|y|0 and |y|0 = −|z|0. Thus, |x|1 = |x|0 − 1, |y|1 = |y|0 + 1, and

|z|1 = |z|0.
So |y|1 = |y|0 + 1 = −|z|0 + 1 = −|z|1 + 1, which implies |y|1 > −|z|1. Also,

|x|1 + 1 = |x|0 > −|y|0 = −|y|1 + 1 which implies |x|1 > −|y|1.
Therefore, the only orientation that could arise as a result of a firing of Case 2 is

x → y, y → z.

x y z
x∼-y y∼-z

Case 3: The configuration at Step 0 is such that, in the initial firing, y will send a

chip to x, and no chip will move across yz (R3).

x y z
y∼-z

x∼-y

We know |x|0 < −|y|0 and |y|0 = −|z|0. Thus, |x|1 = |x|0 + 1, |y|1 = |y|0 − 1, and

|z|1 = |z|0.
So |y|1 = |y|0 − 1 = −|z|0 − 1 = −|z|1 − 1 which implies |y|1 < −|z|1. Also,

|x|1 − 1 = |x|0 < −|y|0 = −|y|1 − 1 which implies |x|1 < −|y|1.
Therefore, the only orientation that could arise as a result of a firing of Case 3 is

x ← y, y ← z.

x y z
x∼-y y∼-z

Case 4: The configuration at Step 0 is such that, in the initial firing, no chip will

move across xy, and y will send a chip to z (R4).

x y z
x∼-y y∼-z

We know |x|0 = −|y|0 and |y|0 > −|z|0. Thus, |x|1 = |x|0, |y|1 = |y|0 − 1, and

|z|1 = |z|0 + 1.

So |y|1 = |y|0 − 1 = −|x|0 − 1 = −|x|1 − 1 which implies |x|1 < −|y|1. Also,

|y|1 + 1 = |y|0 > −|z|0 = −|z|1 + 1 which implies |y|1 > −|z|1.

130

Therefore, the only orientation that could arise as a result of a firing of Case 4 is

x ← y, y → z.

x y z
x∼-y

y∼-z

Case 5: The configuration at Step 0 is such that, in the initial firing, no chip will

move across xy, and y will send a chip to z (R5).

x y z
x∼-y

y∼-z

We know |x|0 = −|y|0 and |y|0 < −|z|0. Thus, |x|1 = |x|0, |y|1 = |y|0 + 1, and

|z|1 = |z|0 − 1.

So |y|1 = |y|0 + 1 = −|x|0 + 1 = −|x|1 + 1 which implies |x|1 > −|y|1. Also,

|y|1 − 1 = |y|0 < −|z|0 = −|z|1 − 1 which implies |y|1 < −|z|1.
Therefore, the only orientation that could arise as a result of a firing of Case 5 is

x → y, y ← z.

x y z
x∼-y

y∼-z

Case 6: The configuration at Step 0 is such that, in the initial firing, x will send a

chip to y, and y will send a chip to z (R6).

x y z
x∼-y y∼-z

We know |x|0 > −|y|0 and |y|0 > −|z|0. Thus, |x|1 = |x|0 − 1, |y|1 = |y|0, and
|z|1 = |z|0 + 1.

So |x|1 + 1 = |x|0 > −|y|0 = −|y|1 which implies |x|1 + 1 > −|y|1. Also, |y|1 = |y|0 >
−|z|0 = −|z|1 + 1 which implies |y|1 > −|z|1.

Therefore, there exist two possible orientations that could arise as a result of a

firing of Case 6.

If |x|0 = −|y|0 + 1, then we get xy flat, y → z.

x y z
x∼-y y∼-z

Otherwise, we get x → y, y → z.

131

x y z
x∼-y y∼-z

Case 7: The configuration at Step 0 is such that, in the initial firing, y will send a

chip to x, and z will send a chip to y (R7).

x y z
x∼-y y∼-z

We know |x|0 < −|y|0 and |y|0 < −|z|0. Thus, |x|1 = |x|0 + 1, |y|1 = |y|0, and
|z|1 = |z|0 − 1.

So |x|1− 1 = |x|0 < −|y|0 = −|y|1, which implies |x|1− 1 < −|y|1. Also, |y|1 = |y|0 <
−|z|0 = −|z|1 − 1 which implies |y|1 < −|z|1.

Therefore, there exist two possible orientations that could arise as a result of a

firing of Case 7.

If |x|0 + 1 = −|y|0, then we get xy flat, y ← z.

x y z
x∼-y

y∼-z

Otherwise, we get x ← y, y ← z.

x y z
x∼-y y∼-z

Case 8: The configuration at Step 0 is such that, in the initial firing, y will send a

chip to x, and y will send a chip to z (R8).

x y z
x∼-y

y∼-z

We know |x|0 < −|y|0 and |y|0 > −|z|0. Thus, |x|1 = |x|0 + 1, |y|1 = |y|0 − 2, and

|z|1 = |z|0 + 1.

So, |x|1 − 1 = |x|0 < −|y|0 = −|y|1 − 2 which implies |x|1 < −|y|1. Also, |y|1 + 2 =

|y|0 > −|z|0 = −|z|1 + 1 which implies |y|1 + 1 > −|z|1.
Therefore, there exist two possible orientations that could arise as a result of a

firing of Case 8.

If |y|0 − 1 = −|z|0, then we get x ← y, yz flat.

132

x y z
y∼-z

x∼-y

Otherwise, we get x ← y, y → z.

x y z
x∼-y

y∼-z

Case 9: The configuration at Step 0 is such that, in the initial firing, x will send a

chip to y, and z sends a chip to y (R9).

x y z
x∼-y

y∼-z

We know |x|0 > −|y|0 and |y|0 < −|z|0. Thus, |x|1 = |x|0 − 1, |y|1 = |y|0 + 2, and

|z|1 = |z|0 − 1.

So |x|1 + 1 = |x|0 > −|y|0 = −|y|1 + 2 which implies |x|1 > −|y|1. Also, |y|1 − 2 =

|y|0 < −|z|0 = −|z|1 − 1 which implies |y|1 − 1 < −|z|1.
Therefore, there exist two possible orientations that could arise as a result of a

firing of Case 9.

If |y|0 + 1 = −|z|0, then we get x → y, yz flat.

x y z
y∼-zx∼-y

Otherwise, we get x → y, y ← z.

x y z
x∼-y

y∼-z

Therefore, the data in Table 5.1 are accurate.

We will show that the only periodic configuration sequence under the labelling

x ∼ −y, y ∼ −z on P3 is the one with period 1 and only contains configurations

that induce R1. This will happen whenever |x|0 = −|y|0 = |z|0. Table 5.1 can be

represented by a directed graph that provides insight into how these orientations are

related. In Figure 5.12, we see such a graph. Every directed edge represents a possible

pair of induced orientations at Steps 0 and 1, with the tail representing the induced

133

orientation at Step 0 and the head representing the induced orientation at Step 1.

R2 R6 R4 R8 R3 R7 R5 R9 R1

Figure 5.12: Directed graph showing the possible resulting orientations from a firing
on a given orientation

In Figure 5.12, the edges are directed toward the possible orientations that can

arise in the next step. So, if we suppose that a specific configuration exists inside the

period and that its induced orientation is not R1, then either that period contains

only one orientation or it contains each of the other orientations, except for R1.

Lemma 5.2.2. Given P3 with x ∼ −y, y ∼ −z, and an initial configuration C0, sup-

pose Seq(C0) exhibits periodic behaviour. That is, Ct = Ct+k for some non-negative

integers t and k. A configuration which induces R1 is in Seq(C0) if and only if every

configuration in the period of Seq(C0) induces the same orientation.

Proof. Suppose every configuration in the period of Seq(C0) induces the same orien-

tation and that orientation is not R1. Then some vertex v will change its stack size at

each step. Since the orientation never changes, this change will be the same increase

or decrease at every step. Therefore, v will have a distinct stack size at every step

(either increasing or decreasing by the same constant at every step). Therefore, there

is no period.

Conversely, if a configuration induces R1 in Seq(C), there will be no sending of

chips during any subsequent firing. Therefore, every configuration in the period of

Seq(C) will be equal and thus, will induce R1.

We will now show that every configuration sequence which contains each orienta-

tion Ri, for 2 ≤ i ≤ 9, is aperiodic with Lemma 5.2.3. With Lemmas 5.2.2 and 5.2.3,

we can conclude that the only periodic configuration sequences are those which only

contain configurations which induce R1.

Lemma 5.2.3. Given P3 with x ∼ −y, y ∼ −z, and an initial configuration C0, if

Seq(C0) is periodic, then Seq(C0) does not contain configurations which induce each

orientation Ri, for 2 ≤ i ≤ 9.

134

Proof. Suppose, by way of contradiction, that Seq(C0) is periodic and contains config-

urations which induce each orientation Ri, for 2 ≤ i ≤ 9. Without loss of generality,

we will choose initial configuration C0 which induces R2, assigning r, s, and t chips

to the vertices x, y, and z, respectively. We will show that as time increases, every

time we repeat orientation R2 it corresponds to a distinct configuration.

x

r
y

s
z

t

However, since we know how the edges are oriented, we can let s = −r + a and

t = r − a for some positive integer a.

x

r
y

−r + a
z

r − a

From Table 5.1, we know that at Step 1, the induced orientation must be R6. So, at

Step 1, the configuration is

x

r − 1
y

−r + a+ 1
z

r − a

From Table 5.1, we know that R6 either leads to itself or R4. So, we will suppose

that R6 is maintained for j steps before it yields R4, j ≥ 0.

x

r − j − 1
y

−r + a+ 1
z

r − a+ j

However, we know from this orientation that r − j − 1 = −(−r + a+ 1). So j = a.

x

r − a− 1
y

−r + a+ 1
z

r

From Table 5.1, we know that R4 can only lead to R8. So, at the next step, we have

x

r − a− 1
y

−r + a
z

r + 1

From Table 5.1, we know that orientation R8 can either lead to itself or R3. So, we

will suppose that R8 is maintained for k steps before it yields R3, k ≥ 0.

x

r − a+ k − 1
y

−r + a− 2k
z

r + k + 1

However, we know from this orientation that −r+a−2k = −(r+1+k). So, k = a+1.

This give us

x

r
y

−r − a− 2
z

r + a+ 2

From Table 5.1, we know that orientation R3 can only lead to orientation R7. So, at

the next step, we have

x

r + 1
y

−r − a− 3
z

r + a+ 2

135

From Table 5.1, we know that R7 can either lead to itself or R5. So, we will suppose

that R7 is maintained for � steps before it yields R5, � ≥ 0.

x

r + �+ 1
y

−r − a− 3
z

r + a− �+ 2

However, we know from this orientation that r+ �+1 = −(−r−a−3). So, � = a+2,

yielding

x

r + a+ 3
y

−r − a− 3
z

r

From Table 5.1, we know that R5 can only lead to R9. So, at the next step, we have

x

r + a+ 3
y

−r − a− 2
z

r − 1

From Table 5.1, we know that R9 can either lead to itself or R2. So, we will suppose

that R9 is maintained for m steps before it yields orientation R2, m ≥ 0.

x

r + a−m+ 3
y

−r − a+ 2m− 2

z

r −m− 1

However, we know from this orientation that −r − a + 2m− 2 = −(r −m− 1). So,

m = a+ 3 and we obtain

x

r
y

−r + a+ 4
z

r − a− 4

Thus, we have that every time the orientation R2 has returned, a distinct config-

uration with induced orientation R2 will be the result. Thus, no period can contain

configurations which induce all 8 of these orientations.

An example is given in Figure 5.13. Also, we have shown through the proof of

this lemma that the number of repetitions of the orientations containing no flat edges

increases by one consistently as time increases (from a to a+ 1 to a+ 2, etc.). So, if

we were to run the process in reverse, and watch that number slowly decrease to 0,

would we reach a terminal configuration? Is the process even well-defined in reverse?

We ask this question because the existence of a very few terminal configurations may

make a comprehensive analysis much more straight-forward.

136

x

3
y

-2
z

2
R2

x

2
y

-1
z

2
R6

x

1
y

-1
z

3
R4

x

1
y

-2
z

4
R8

x

2
y

-4
z

5
R8

x

3
y

-6
z

6
R3

x

4
y

-7
z

6
R7

x

5
y

-7
z

5
R7

x

6
y

-7
z

4
R7

x

7
y

-7
z

3
R5

x

7
y

-6
z

2
R9

x

6
y

-4
z

1
R9

x

5
y

-2
z

0
R9

x

4
y

0
z

-1
R9

x

3
y

2
z

-2
R2

Figure 5.13: Sample firings in Pay it Backward with corresponding orientations la-
belled

In order to represent the sequence of orientations induced by the configurations

within a configuration sequence succinctly, we will use superscripts to represent multi-

ple concurrent instances of the same induced orientation. So, the induced orientations

from Figure 5.13 can be written as R2R6R4R
2
8R3R

3
7R5R

4
9R2.

Corollary 5.2.4. Given P3 with x ∼ −y, y ∼ −z, and a configuration C which does

137

not induce orientation R1, the sequence of orientations induced by the configurations

of Seq(C) follows one of the following forms depending on the orientation induced by

C:

• R2R
a

6R4R
a+1

8 R3R
a+2

7 R5R
a+3

9 R2R
a+4

6 . . .

• R
b

6R4R
a

8R3R
a+1

7 R5R
a+2

9 R2R
a+3

6 R4 . . .

• R4R
a

8R3R
a+1

7 R5R
a+2

9 R2R
a+3

6 R4R
a+4

8 . . .

• R
b

8R3R
a

7R5R
a+1

9 R2R
a+2

6 R4R
a+3

8 R3 . . .

• R3R
a

7R5R
a+1

9 R2R
a+2

6 R4R
a+3

8 R3R
a+4

7 . . .

• R
b

7R5R
a

9R2R
a+1

6 R4R
a+2

8 R3R
a+3

7 R5 . . .

• R5R
a

9R2R
a+1

6 R4R
a+2

8 R3R
a+3

7 R5R
a+4

9 . . .

• R
b

9R2R
a

6R4R
a+1

8 R3R
a+2

7 R5R
a+3

9 R2 . . .

where 0 ≤ b < a.

If we look at the three stack sizes in this example as coordinates, we get that as

time increases, the resulting points will all exist on the same plane since the sum

of the three stack sizes will never change (no chips are ever added or removed from

the system). This allows us to view the changes from one orientation to the next in

another manner by graphing these coordinates into 3-space. In Figure 5.15, the 15

configurations from Figure 5.13 are shown as points in 3-space beginning with the

point (3,-2,2). From this first point, the points rotate outwards forming a spiral shape

with every 90 degree turn representing a change from one orientation to another. In

Figure 5.16, we see that the spiral effect becomes much more clear with 100 points

shown. In Figure 5.14, we have added a third edge to form a triangle. This edge

is labelled −x ∼ z. Figure 5.17 contains the first 100 points from the initial point

(3,-2,2) and shows the hexagonal shape that the spiral forms. This is a different graph

from the one have been studying, but we include it to show how the spirals may be

different for different graphs.

x y

z

x∼-y

y∼-z
-x∼z

Figure 5.14: Triangle created by adding a third edge labelled −x ∼ z

138

Figure 5.15: The configurations from Figure 5.13 shown in 3-space.

139

Figure 5.16: 100 configurations arising from the initial configuration |x|C = 3, |y|C =
−2, |z|C = 2.

140

Figure 5.17: 100 configurations arising from the initial configuration |x|C = 3, |y|C =
−2, |z|C = 2 with an additional edge, labelled −x ∼ z, added forming a triangle.

Returning to our example on P3 with x ∼ −y and y ∼ −z, we now show that no

configuration has more than one possible pre-position. If the time in Pay it Backward

moved in reverse, and we instead looked at all pre-positions of a given configuration,

then Figure 5.12 (with all of the directed edges flipped) would still show the possible

orientations that can arise from a given orientation. We must now prove that given a

configuration, its pre-position is well-defined. This result is particularly noteworthy

because it is not true of Parallel Diffusion. Recall for instance, Theorem 4.2.1, which

states the number of pre-positions of the fixed configuration in Quantum Parallel

Diffusion and Parallel Diffusion.

Lemma 5.2.5. Given P3 with x ∼ −y, y ∼ −z, and a configuration C, the pre-

position of C is either unique or does not exist.

Proof. We will look at each case individually. Note that, if we are given a configura-

tion Ct and the orientation induced by the configuration at the previous step, Ct−1,

then we can solve for Ct−1 since its stack sizes are uniquely determined by its induced

orientation and Ct.

Case 1: Orientation R1.

141

x y z
x∼-y y∼-z

From Table 5.1, the pre-position must induce R1. Therefore, the pre-position is

unique with |x|t = |x|t−1, |y|t = |y|t−1, and |z|t = |z|t−1.
Case 2: Orientation R2.

x y z
y∼-zx∼-y

From Table 5.1, the pre-position must induce R9. Therefore, the pre-position is

unique with |x|t = |x|t−1 − 1, |y|t = |y|t−1 + 2, and |z|t = |z|t−1 − 1.

Case 3: Orientation R3.

x y z
y∼-z

x∼-y

From Table 5.1, the pre-position must induced R8. Therefore, the pre-position is

unique with |x|t = |x|t−1 + 1, |y|t = |y|t−1 − 2, and |z|t = |z|t−1 + 1.

Case 4: Orientation R4.

x y z
x∼-y y∼-z

From Table 5.1, the pre-position must induce R6. Therefore, the pre-position is

unique with |x|t = |x|t−1 − 1, |y|t = |y|t−1, and |z|t = |z|t−1 + 1.

Case 5: Orientation R5.

x y z
x∼-y

y∼-z

From Table 5.1, the pre-position must induce R7. Therefore, the pre-position is

unique with |x|t = |x|t−1 + 1, |y|t = |y|t−1, and |z|t = |z|t−1 − 1.

Case 6: Orientation R6.

x y z
x∼-y y∼-z

From Table 5.1, the pre-position has two possible orientations: R2 and R6. We

know that |y|t > −|z|t.

(i) Suppose first that |y|t = −(|z|t − 1). It is then possible for the pre-position to

142

induce orientation R2 with |x|t = |x|t−1 − 1, |y|t = |y|t−1 + 1, and |z|t = |z|t−1.

x

|x|t + 1

y

|y|t − 1

z

−|y|t + 1

y∼-zx∼-y

Would it be possible for the pre-position to have induced orientation R6?

|y|t−1 = |y|t > −|z|t−1 = −(|z|t − 1) if the pre-position induced

orientation R6

|y|t = −|z|t + 1 by supposition

|y|t−1 = −(|z|t−1 + 1) + 1 = −|z|t−1 by substitution

However, if |y|t−1 = −|z|t−1, then the pre-position does not have induced orien-

tation R6. Thus, if |y|t = −(|z|t − 1), then the pre-position must have induced

orientation R2.

(ii) If we instead suppose that |y|t > −(|z|t − 1), we get that R6 is a possible

induced orientation for the pre-position with |x|t = |x|t−1 − 1, |y|t = |y|t−1, and
|z|t = |z|t−1 + 1.

x

|x|t + 1

y

|y|t
z

|z|t − 1

x∼-y y∼-z

Would it be possible for the pre-position to have induced orientation R2?

143

|y|t−1 + 1 = |y|t > −|z|t = −|z|t−1 if the pre-position induced

orientation R2

|y|t > −|z|t + 1 by supposition

|y|t−1 + 1 > −(|z|t−1) + 1 = −|z|t−1 + 1 by substitution

However, if |y|t−1 = −|z|t−1, then the pre-position does not have induced orien-

tation R2. Thus, if |y|t > −(|z|t − 1), then the pre-position must have induced

orientation R6.

Case 7: Orientation R7.

x y z
x∼-y y∼-z

From Table 5.1, the pre-position has two possible orientations: R3 and R7. We

know that |y|t < −|z|t.

(i) Suppose first that |y|t = −(|z|t + 1). It is then possible for the pre-position to

induce orientation R3 with |x|t = |x|t−1 + 1, |y|t = |y|t−1 − 1, and |z|t = |z|t−1.

x

|x|t − 1

y

|y|t + 1

z

|z|t

y∼-z

x∼-y

Would it be possible for the pre-position to induce orientation R7?

|y|t−1 = |y|t < −|z|t−1 = −|z|t − 1 if the pre-position induced

orientation R7

|y|t = −|z|t − 1 by supposition

|y|t−1 = (−|z|t−1 + 1)− 1 = −|z|t−1 by substitution

144

However, if |y|t−1 = −|z|t−1, then the pre-position does not have induced orien-

tation R7. Thus, if |y|t = −|z|t − 1, then the pre-position must have induced

orientation R3.

(ii) If we instead suppose that |y|t > −(|z|t + 1), we get that R7 is a possible

orientation for the pre-position with |x|t = |x|t−1 + 1, |y|t = |y|t−1, and |z|t =
|z|t−1 − 1.

x

|x|t − 1

y

|y|t
z

|z|t + 1
x∼-y y∼-z

Would it be possible for the pre-position to induce orientation R3?

|y|t−1 = |y|t + 1 < −|z|t = −|z|t−1 if the pre-position induced

orientation R3

|y|t > −|z|t − 1 by supposition

|y|t−1 − 1 > −|z|t−1 − 1 by substitution

However, if |y|t−1 > −|z|t−1, then the pre-position does not have induced orien-

tation R3. Thus, if |y|t > −|z|t − 1, then the pre-position must have induced

orientation R7.

Case 8: Orientation R8.

x y z
x∼-y

y∼-z

From Table 5.1, the pre-position has two possible orientations: R4 and R8. We

know that x < −y.

(i) Suppose first that |x|t = −(|y|t + 1). It is then possible for the pre-position to

induce R4 with |x|t = |x|t−1, |y|t = |y|t−1 − 1, and |z|t = |z|t−1 + 1.

145

x

|x|t
y

|y|t + 1

z

|z|t − 1

x∼-y y∼-z

Would it be possible for the pre-position to induce R8?

|x|t−1 + 1 = |x|t < −|y|t = −|y|t−1 + 2 if the pre-position induced

orientation R8

|x|t = −|y|t − 1 by supposition

|x|t−1 + 1 = −|y|t−1 + 1 by substitution

However, if |x|t−1 = −|y|t−1, then the pre-position does not have induced orien-

tation R8. Thus, if |x|t = −|y|t − 1, then the pre-position must induce R4.

(ii) If we instead suppose that |x|t < −(|y|t + 1), we get that R8 is a possible

orientation for the pre-position with |x|t = |x|t−1 + 1, |y|t = |y|t−1 − 2, and

|z|t = |z|t−1 + 1.

x

|x|t − 1

y

|y|t + 2

z

|z|t − 1
x∼-y

y∼-z

Would it be possible for the pre-position to induce R4?

|x|t−1 = |x|t < −|y|t = −|y|t−1 + 1 if the pre-position induced

orientation R4

|x|t < −|y|t − 1 by supposition

|x|t−1 < −|y|t−1 + 1− 1 = −|y|t−1 by substitution

146

However, if |x|t−1 < −|y|t−1, then the pre-position does not have induced orien-

tation R4. Thus, if |x|t < −|y|t − 1, then the pre-position must induce R8

Case 9: Orientation R9.

x y z
x∼-y

y∼-z

From Table 5.1, the pre-position has two possible orientations: R5 and R9. We

know that x > −y.

(i) Suppose first that |x|t = −(|y|t − 1). It is then possible for the pre-position to

induce R5 with |x|t = |x|t−1, |y|t = |y|t−1 + 1, and |z|t = |z|t−1 − 1.

x

|x|t
y

|y|t − 1

z

|z|t + 1

x∼-y

y∼-z

Would it be possible for the pre-position to induce R9?

|x|t−1 − 1 = |x|t > −|y|t = −|y|t−1 − 2 if the pre-position induced

orientation R9

|x|t = −|y|t + 1 by supposition

|x|t−1 − 1 = −|y|t−1 − 2 + 1 = −|y|t−1 − 1 by substitution

However, if |x|t−1 = −|y|t−1, then the pre-position does not have induced orien-

tation R9. Thus, if |x|t = −|y|t + 1, then the pre-position must induce R5.

(ii) If we instead suppose that |x|t > −(|y|t − 1), we get that I is a possible

orientation for the pre-position with |x|t = |x|t−1 − 1, |y|t = |y|t−1 + 2, and

|z|t = |z|t−1 − 1.

x

|x|t + 1

y

|y|t − 2

z

|z|t + 1

x∼-y

y∼-z

147

Would it be possible for the pre-position to induce R5?

|x|t−1 = |x|t > −|y|t = −|y|t−1 − 1 if the pre-position induced

orientation R5

|x|t > −|y|t + 1 by supposition

|x|t−1 > −|y|t−1 − 1 + 1 = −|y|t−1 by substitution

However, if |x|t−1 > −|y|t−1, then the pre-position does not have induced orien-

tation R5. Thus, if |x|t−1 > −|y|t−1, then the pre-position must induce R9.

So, we can conclude that every configuration has at most one possible pre-position.

We have shown that every configuration has at most one possible pre-position.

With our next lemma, we will show that not every configuration has a pre-position

and that with the exception of a trivial example, every configuration exists in a

configuration sequence generated by a configuration which has no pre-position.

Lemma 5.2.6. Given P3 with x ∼ −y, and y ∼ −z, if C is a configuration on P3

and does not induce R1, then C ∈ Seq(C0) for some configuration C0 which has no

pre-position.

Proof. By Corollary 5.2.4, we see that the number of concurrent instances of orienta-

tions R6, R7, R8, and R9 increases by one every time. That is, if R6 occurred exactly

m times concurrently in a configuration sequence, it would be followed by R4 and

then m + 1 concurrent instances of R8. Therefore, in reverse it will decrease by one

each time until we reach 0. This implies that there exists some set of configurations

with no pre-position and that every configuration shares a configuration sequence

with one such configuration (with the exception of sequences which induce R1 which

is the only induced orientation that can exist in a periodic configuration sequence by

Lemmas 5.2.2 and 5.2.3).

In general, what does a configuration with no pre-position look like?

148

Lemma 5.2.7. Given P3 and x ∼ −y, and y ∼ −z, the set of all configurations with

no pre-positions consists of four infinite families:

• x

r
y

-r+1
z

r-1

• x

r
y

-r-1
z

r+1

• x

r
y

-r
z

r+1

• x

r
y

-r
z

r-1

where r is an integer.

Proof. We will perform a case analysis based on the nine different possible induced

orientations and conclude that only configurations of the four families shown have no

pre-position.

Case 1:

x

r
y

-r
z

r

Any configuration that induces R1 is maintained at every step because no chips

will be sent. So, any configuration that induces Orientation R1 is such that its pre-

position exists and induces Orientation R1 as well.

Case 2:

x

r
y

-r+a
z

r-a

This configuration, call it Ct, with a ≥ 1, induces orientation R2. Suppose that

some pre-position of Ct exists. By Lemma 5.2.1, the induced orientation of a pre-

position of Ct must induce orientation R9.

x

|x|t−1
y

|y|t−1
z

|z|t−1

x∼-y

y∼-z

Thus,

149

r = |x|t = |x|t−1 − 1, − r + a = |y|t = |y|t−1 + 2, and r − a = |z|t = |z|t−1 − 1.

So, |x|t−1 = r + 1, |y|t−1 = −r + a− 2, and |z|t−1 = r − a+ 1.

Since |x|t−1 > −|y|t−1, we get that r + 1 > r − a+ 2 which implies r > r − a+ 1.

Also, since |y|t−1 < −|z|t−1, we get that −r + a− 2 < −r + a− 1.

The only possible value of a for which this pair of inequalities does not hold is

a = 1. Thus, the configuration |x|t = r, |y|t = −r + 1, |z|t = r − 1 is the only

configuration which induces R2 and has no pre-position.

Case 3:

x

r
y

-r-a
z

r+a

This configuration, call it Ct, with a ≥ 1, induces orientation R3. Suppose that

some pre-position of Ct exists. By Lemma 5.2.1, the induced orientation of a pre-

position of Ct must induce orientation R8.

x

|x|t−1
y

|y|t−1
z

|z|t−1
x∼-y

y∼-z

Thus,

r = |x|t = |x|t−1 + 1, − r − a = |y|t = |y|t−1 − 2, and r + a = |z|t = |z|t−1 + 1

So, |x|t−1 = r − 1, |y|t−1 = −r − a+ 2, and |z|t−1 = r + a− 1.

Since |x|t−1 < −|y|t−1, we get that r − 1 < r + a− 2 which implies r < r + a− 1.

Also, since |y|t−1 > |z|t−1, we get that −r − a+ 2 > −r − a+ 1.

The only possible value of a for which this pair of inequalities does not hold is

a = 1. Thus, the configuration |x|t = r, |y|t = −r − 1, |z|t = r + 1 is the only

configuration which induces orientation R3 and has no pre-position.

Case 4:

x

r
y

-r
z

r+a

150

This configuration, call it Ct, with a ≥ 1, induces orientation R4. Suppose that

some pre-position of Ct exists. By Lemma 5.2.1, the induced orientation of a pre-

position of Ct must induce orientation R6.

x

|x|t−1
y

|y|t−1
z

|z|t−1

x∼-y y∼-z

Thus,

r = |x|t = |x|t−1 − 1, − r = |y|t = |y|t−1, and r + a = |z|t = |z|t−1 + 1.

So, |x|t−1 = r + 1, |y|t−1 = −r, and |z|t−1 = r + a− 1.

Since |x|t−1 > −|y|t−1, we get that r + 1 > r.

Also, since |y|t−1 > |z|t−1, we get that −r > −r − a+ 1.

The only possible value of a for which this pair of inequalities does not hold is

a = 1. Thus, the configuration |x|t = r, |y|t = −r, |z|t = r+1 is the only configuration

which induces orientation R4 and has no pre-position.

Case 5:

x

r
y

-r
z

r-1

This configuration, call it Ct, with a ≥ 1, induces orientation R5. Suppose that

some pre-position of Ct exists. By Lemma 5.2.1, the induced orientation of a pre-

position of Ct must induce orientation R7.

x

|x|t−1
y

|y|t−1
z

|z|t−1
x∼-y y∼-z

Thus,

r = |x|t = |x|t−1 + 1, − r = |y|t = |y|t−1, and r − a = |z|t = |z|t−1 − 1.

So, |x|t−1 = r − 1, |y|t−1 = −r, and |z|t−1 = r − a+ 1.

Since |x|t−1 < −|y|t−1, we get that r − 1 < r.

151

Also, since |y|t−1 < −|z|t−1, we get that −r < −r + a− 1.

The only possible value of a for which this pair of inequalities does not hold is

a = 1. Thus, the configuration |x|t = r, |y|t = −r, |z|t = r−1 is the only configuration

which induces orientation R5 and has no pre-position.

Case 6:

x

r
y

−r + a
z

r − a+ b

This configuration, call it Ct, with a ≥ 1 and b ≥ 1, induces orientation R6.

If b
= 1, then a pre-position which induces orientation R6 exists: |x|t−1 = r + 1,

|y|t−1 = −r + a, |z|t−1 = r − a+ b− 1.

If b = 1, then a pre-position which induces orientation R2 exists: |x|t−1 = r + 1,

|y|t−1 = −r + a− 1, |z|t−1 = r − a+ 1.

Thus, every configuration which induces orientation R6 has a pre-position.

Case 7:

x

r
y

−r − a
z

r + a− b

x y

This configuration, call it Ct, with a ≥ 1 and b ≥ 1, induces orientation R7.

If b
= 1, then a pre-position which induces orientation R7 exists: |x|t−1 = r − 1,

|y|t−1 = −r − a, |z|t−1 = r + a− b+ 1.

If b = 1, then a pre-position which induces orientation C exists: |x|t−1 = r − 1,

|y|t−1 = −r − a+ 1, |z|t−1 = r + a− 1.

Thus, every configuration which induces orientation R7 has a pre-position.

Case 8:

x

r
y

−r − a
z

r + a+ b

This configuration, call it Ct, with a ≥ 1 and b ≥ 1, induces orientation R8.

If a > 1, then a pre-position which induces orientation R8 exists: |x|t−1 = r − 1,

|y|t−1 = −r − a+ 2, |z|t−1 = r + a+ b− 1.

If a = 1, then a pre-position which induces orientation R4 exists: |x|t−1 = r,

|y|t−1 = −r, |z|t−1 = r + b.

Thus, every configuration which induces orientation R8 has a pre-position.

152

Case 9:

x

r
y

−r + a
z

r − a− b

This configuration, call it Ct, with a ≥ 1 and b ≥ 1, induces orientation R9.

If a > 1, then a pre-position which induces orientation R9 exists: |x|t−1 = r + 1,

|y|t−1 = −r + a− 2, |z|t−1 = r − a− b+ 1.

If a = 1, then a pre-position which induces orientation R5 exists: |x|t−1 = r,

|y|t−1 = −r + a− 1, |z|t−1 = r − a− b+ 1.

Thus, every configuration which induces orientation R9 has a pre-position.

Can multiple different configuration sequences exist on the same plane? Yes, by

Lemma 5.2.7, on the plane x+ y + z = 3, there exist four configurations which have

no pre-position:

• x

3
y

-2
z

2

• x

3
y

-4
z

4

• x

2
y

-2
z

3

• x

4
y

-4
z

3

So, there exist 5 configuration sequences on the plane x + y + z = 3, in which

no configuration appears in multiple. These are the four initiated by the four con-

figurations just listed and also the configuration sequence which only contains the

configuration

x

3
y

-3
z

3

Corollary 5.2.8. For a fixed sum k, given an ordered integer triple (a, b, c) such that

a + b + c = k, the configuration of P3 defined by these three stack sizes exists in the

configuration sequence initiated by one of the following configurations:

• x

k
y

-k+1
z

k-1

153

• x

k
y

-k-1
z

k+1

• x

k-1
y

-k+1
z

k

• x

k+1
y

–k-1
z

k

• x

k
y

-k
z

k

Proof. Since (a, b, c) is an ordered triple of integers, |x|t = a, |y|t = b, |z|t = c is a

configuration of P3 at some time t. By Lemmas 5.2.6 and 5.2.7, every configuration

of P3 belongs to exactly one configuration sequence initiated by a configuration with

no pre-position (or a configuration which induces R1). By Lemma 5.2.7, these are the

five configurations that together generate every configuration with stack sizes adding

to k.

We now present images in 3-space of the four configuration sequences generated

by the four configurations from Lemma 5.2.7 with zero as the sum of the stack sizes.

Additionally, we include a fifth image of all of these configurations sequences overlay-

ing each other and the point (0,0,0) (the periodic configuration sequence with sum

0).

154

155

Given a plane x+y+z = k, every integer triple (x, y, z) on that plane exists in the

configuration sequence generated by exactly one of the five initial configurations in

Corollary 5.2.8. But how can we map from the configurations on the plane x+y+z = k

to the configurations on the plane x+ y + z = k + r?

Theorem 5.2.9. Suppose a + b + c = k and that the configuration at time t on

P3 in some configuration sequence Seq(C) is Ct = {|x|t = a, |y|t = b, |z|t = c}.
We know Ct can be mapped into 3-space on the plane x + y + z = k. Suppose the

configuration at time 0, C, is one of the five configurations from Corollary 5.2.8.

Then, the configuration |x|D = a + r, |y|D = b − r, |z|D = c + r exists at time t in

its respective configuration sequence initiated by one of the five configurations from

Corollary 5.2.8 (with k + r substituted in for k).

Proof. The five configurations from Corollary 5.2.8 (viewed as coordinates) are

• (k, −k + 1, k − 1)

• (k, −k − 1, k + 1)

• (k − 1, −k + 1, k)

• (k + 1, −k − 1, k)

• (k, −k, k)

Adding (r, −r, r) to each one, we get

• ((k + r), −(k + r) + 1, (k + r)− 1)

• ((k + r), −(k + r)− 1, (k + r) + 1)

156

• ((k + r)− 1, −(k + r) + 1, (k + r))

• ((k + r) + 1, −(k + r)− 1, (k + r))

• ((k + r), −(k + r), (k + r))

So, each of these five initial configurations on x+y+z = k map to their respective

corresponding initial configurations on x+ y + z = k + r by adding (r, −r, r).

Every configuration that lies on the plane x+ y + z = k exists in a configuration

sequence initiated by one of these five configurations.

Let L and M be two configurations with no pre-positions such that, when repre-

sented as triples, L = M + (r,−r, r) for some integer r. Then, when represented as

triples, Lt = Mt + (r,−r, r) because the induced graph orientations at every step i ,

0 ≤ i ≤ t, are equal in the two configuration sequences.

5.2.2 Pay it Backward on Other Graphs

We now look to other graphs. First, is it possible to have a configuration inside a

period of length one in Pay it Backward in which there exists an edge labelled a ∼ −b

with |a|
= −|b|? Yes, this is a difference between Pay it Backward and Parallel

Diffusion and it is evidenced in Figure 5.18. Recall Lemma 3.1.16 which states that,

up to equivalence, the only configuration that exists in a period of length one in

Parallel Diffusion is the one in which every stack size is 0.

v1

-2

v2

3

v3

-1

v4

0
v5

-1

v6

0

v7

1

v1 ∼ −v2

v2 ∼ −v3

−v3 ∼ v4

−v4 ∼ v5

−v5 ∼ v6

v6 ∼ −v7

v1 ∼ −v7

Figure 5.18: Period 1 example

157

To list all of the ways that a given cycle can yield a period of 1 in Pay it Backward,

we begin by defining a noteworthy type of auxiliary graph.

Definition 5.2.10. Given a graph G with n vertices, labelled v1 to vn, let G
′ be the

graph with 2n vertices, labelled ±v1 to ±vn, such that a directed edge exists from vi to

−vj in G′ if there exists an edge between vi and vj in G, that edge is labelled −vj ∼ vi,

and vi will send a chip to vj in the initial firing. We call G′ the Pay It Backward

Auxiliary Graph, shortened to PIB Auxiliary Graph.

Clearly, G′ is a bipartite graph, since for all vi and vj, there cannot exist an edge

between vi and vj and there cannot exist an edge between −vi and −vj.

For example, given the graph in Figure 5.19, the auxiliary graph is shown in

Figure 5.20.

v1

-2
v2

3
v3

-1
v4

-4v1 ∼ −v2 v2 ∼ −v3 −v3 ∼ v4

v1 ∼ −v4

Figure 5.19: Pay it Backward period 1 example

v1 v2 v3 v4

−v1 −v2 −v3 −v4

Figure 5.20: PIB-auxiliary graph from Figure 5.19

Note how the PIB-auxiliary graph is a graphical representation of a system of

inequalities. In the case of Figure 5.20, the system of inequalities is

|v2| > −|v3| > |v4|

−|v4| > |v1| > −|v2|

Theorem 5.2.11. Let G be a cycle and let G′ be a PIB-auxiliary graph of G with

orientation R such that R does not contain any flat edges, and some labelling of the

edges. G′ has no directed cycle and in-degree(v) + in-degree(−v) = out-degree(v) +

158

out-degree(−v) = 1 for all v ∈ V (G′) if and only if there exists a configuration C

satisfying G′ such that Seq(C) has period 1 and pre-period 0.

Proof. (⇐) Suppose that there exists some configuration C of G satisfying G′ such

that Seq(C) has period 1 and pre-period 0. Every vertex v ∈ V (G) has in-degree

= out-degree = 1. So it must be true in G′ that in-degree(v) + in-degree(−v) =

out-degree(v) + out-degree(−v) = 1 for all v ∈ V (G′). Suppose now, by contra-

diction, that there exists a directed cycle in G′. We have previously noted that the

PIB-auxiliary graph is equivalent to a system of inequalities. For some vi ∈ V (G′),

a directed cycle implies either |vi|0 > −|vi+1|0 > |vi+2|0 > · · · > |vi|0 or |vi|0 <

−|vi+1|0 < |vi+2|0 < · · · < |vi|0. This is a contradiction since this system of inequali-

ties cannot be satisfied.

(⇒) Suppose now that G′ has no directed cycle and that in-degree(vi) + in-

degree(−vi) = out-degree(vi) + out-degree(−vi) = 1 for all vi ∈ V (G′). Let G =

v1v2v3 . . . vnv1. Since there are no directed cycles in G′, there must exist a vi ∈
V (G′) such that either in-degree(vi) = out-degree(−vi) = 1 or in-degree(−vi) = out-

degree(vi) = 1. Choose such a vi and call it v1. As noted before, a PIB-auxiliary

graph is equivalent to a system of inequalities. Without loss of generality, suppose

the directed edge v1 → −v2 exists in G′. This implies that the edge vn → −v1 exists

as well in G′. Thus, |v1|0 > −|v2|0 and |v1|0 > −|vn|0.
We will assign stack sizes to the vertices using the following algorithm to create a

configuration which satisfies G′.

1. Let |v1|0 = n. Set i = 1. Set k = n− 1.

2. If −vi+1 → v((i+2)mod n) in G′, then let |vi+1|0 = −k. Otherwise, if vi+1 →
−v((i+2)mod n) in G′, then let |vi+1|0 = k. i = (i+ 1). k = k − 1.

3. If i = n, end. Else, back to 2.

Every time the algorithm repeats, an initial stack size is chosen for vi+1 such

that it will satisfy both of its directed edges. We can be certain that the final edge

vn → −v1 is also satisfied since the vn necessarily receives a stack size of 1 by our

algorithm and 1 > −n. Thus, since each vertex receives exactly one chip and sends

exactly one chip in the initial firing of C, we can conclude that C is a configuration

of G satisfying G′ such that Seq(C) has period 1 and pre-period 0.

159

For completeness, we note that the orientation of a cycle in which every edge is flat

can be induced by the configuration in which every stack size is 0. No orientation of a

cycle in which some edges are flat and others are not can be induced by a configuration

C such that Seq(C) has period 1 and pre-period 0. This is because there exists at

least one vertex v for which in-degree(v) + in-degree(−v)
= out-degree(v) + out-

degree(−v) in G′.

On cycles, the existence of a directed cycle in the PIB-auxiliary graph is necessary

and sufficient to identify an orientation that cannot exist with a period 1 configura-

tion. However, when there exist vertices with degree larger than 2, the PIB-auxiliary

graph becomes less useful in identifying orientations that cannot exist with a pe-

riod 1 configuration because directed cycles are no longer the only contradiction. In

Figure 5.21, we see a graph, G, that implies a system of inequalities

|v1| > −|v2| > |v3| > −|v4| > |v1|

v1 v2 v3 v4

−v1 −v2 −v3 −v4

Figure 5.21: PIB-auxiliary graph which cannot exist with period 1 configuration

which cannot be satisfied with real numbers. This implies that if we are looking for

period 1 orientations, any PIB-auxiliary graph that contains G as a subgraph fails.

This is problematic as G is not as easily classified from a Graph Theory perspective

as the directed cycles were from the previous theorem. However, a PIB-auxiliary

graph is just a system of inequalities, no matter how many edges are involved. There

exists a solution to the system of inequalities using integers if and only if there exists

a configuration with a period of 1 satisfying the PIB-auxiliary graph.

5.3 Sequential Diffusion

In this section, we introduce Sequential Diffusion. In Sequential Diffusion, at each

step, only a single vertex is chosen to fire. It will then send a chip to each of its poorer

neighbours. In this process, determining a rule for which vertex will fire at a given step

160

can be difficult, so in Subsection 5.3.1, we introduce the notion of a vertex ordering

to determine which vertex will fire at a given step. These processes are defined

broadly so that an ordering is not necessary and any vertex can be chosen to fire at a

given step, but by determining an ordering of firings at the onset, we can more easily

prove results. In Subsection 5.3.1, we examine Sequential Diffusion specifically on the

Millpond configuration. We clarify the notion of periodicity in Sequential Diffusion

and then in Theorem 5.3.8, we prove that trees can exhibit periodic configuration

sequences if their firing order is chosen using a certain algorithm. An example of

Sequential Diffusion is provided in Figure 5.22.

This is joint work with Dr. Margaret-Ellen Messinger of Mount Allison University.

161

v5

0
v4

2
v3

0
v2

4
v1

1

v5 fires but has no poorer neighbour

v5

0
v4

2
v3

0
v2

4
v1

1

v4 fires

v5

1
v4

0
v3

1
v2

4
v1

1

v3 fires

v5

1
v4

1
v3

0
v2

4
v1

1

v2 fires

v5

1
v4

1
v3

1
v2

2
v1

2

v1 fires but has no poorer neighbour

v5

1
v4

1
v3

1
v2

2
v1

2

Figure 5.22: Several steps in a Sequential Diffusion process on P5.

162

5.3.1 Millpond

We now examine Sequential Diffusion with the Millpond configuration. Recall that

this means that one vertex has a chip and every other vertex has 0 chips. In this

subsection, we look at the idea of a period in Sequential Diffusion and conclude with

Theorem 5.3.8, which shows that trees can have periodic configuration sequences if

a particular ordering is followed. In [9], Duffy et al. explore Millpond in Parallel

Diffusion. They conclude that given a graph G, the pre-period can have length no

larger than the greatest distance between any two vertices in G.

Definition 5.3.1. In Millpond, the initial vertex is the vertex that begins with a

chip.

In Sequential Diffusion, at each step, only one vertex will fire. For the purposes

of this section, we will suppose that the vertices fire based on a given ordering. That

is, if a vertex v fired at step t, then v will fire at step k if and only if k = t+ni where

i is an integer and n is the number of vertices in G.

In Sequential Diffusion, vertices need not follow such an ordering. However, for

the remainder of this section, we will suppose that they do.

Definition 5.3.2. In Sequential Diffusion on a graph G with n vertices, when the

vertices fire according to an ordering, every n steps signifies a round. So, Round

1 consists of steps 0 to n − 1, Round 2 consists of steps n to 2n − 1, and Round k

consists of steps (k − 1)n to kn− 1.

Lemma 5.3.3. Let M be the maximum stack size of an initial configuration C. In

Sequential Diffusion with initial configuration C, no stack size can ever exceed M .

Proof. Suppose, by contradiction, that the first time a vertex has a stack size greater

than M occurs at step t. In Sequential Diffusion, since vertices fire one at a time, no

vertex can gain more than one chip at a single step. So, at step t − 1, our vertex in

question, v, must have gained a single chip. So, |v|t−1 = M and for some vertex u

adjacent to v, |u|t−1 > M . This, however, is a contradiction.

Lemma 5.3.4. Let G be a graph and x ∈ V (G). In Sequential Diffusion on the

Millpond configuration, if t is the first step in which x sends a chip to a poorer

neighbour, then |x|t > 0.

Proof. Suppose, by way of contradiction, that step t is the first step in which a vertex

x sends a chip to a poorer neighbour, and suppose that |x|t ≤ 0. Suppose y is adjacent

163

to x and |y|t < |x|t. Since |y|t < 0, y must have sent a chip to one of its neighbours

during a previous step j < t. When y fired at step j, it must have had one chip since

t is the first step in which a vertex with 0 or fewer chips sends a chip to a poorer

neighbour, and, by Lemma 5.3.3, no vertex can ever have a stack size greater than

1. Before y fired at step j, x must have had at least 0 chips (having not yet sent a

chip to a poorer neighbour). When y fired at step j, either x had 1 chip or x had 0

chips and was thus, poorer than y. Therefore, after y fired, x must have had exactly

1 chip. But this contradicts that x had less than one chip when it first sent a chip

to a poorer neighbour. Thus, if t is the first step in which x sends a chip to a poorer

neighbour, then |x|t > 0.

Lemma 5.3.5. Let T be a tree on n vertices. In Sequential Diffusion on the Millpond

configuration, for any step t ≤ n−1, let Ut be the set of vertices that have sent a chip

to a poorer neighbour during any step i where i ≤ t. Let v0 be the initial vertex. For

any v ∈ Ut, there is a path Pv0v connecting v0 to v such that every vertex in Pv0v is

also in Ut.

Proof. Since T is a tree, there is a unique path connecting v0 to v for all v ∈ V (T).

We will induct on the number of steps that have occurred in which the firing vertex

had at least one poorer neighbour. The first such firing occurs when v0 sends a chip to

all of its neighbours. The second such firing occurs when one of the vertices adjacent

to v0 sends a chip to each of its poorer neighbours, including v0. Each of these vertices

has a unique path connecting it to v0 (consisting of just those two vertices). Thus,

our base case is satisfied. Suppose now that k firings have occurred that satisfy our

criteria and that the (k + 1)-th such firing comes from vk+1 at step t ≤ n− 1.

Case 1: |vk+1|t ≤ 0

Since step t occurs within the first round, we know that vk+1 did not fire in any

previous step. By Lemma 5.3.4, vk+1 does not have any poorer neighbours at time

t. This contradicts our assumption that vk+1 will fire at step t and have at least one

poorer neighbour. Thus, vk+1 has more than 0 chips at step t.

Case 2: |vk+1|t = 1

Initially, vk+1 had 0 chips, and vk+1 has not yet lost any of its chips. Thus, on

exactly one previous step, vk+1 received a chip from a neighbour. So, vk+1 is adjacent

to a vertex that has already fired, call it vj, and we know that vj had a poorer

neighbour when it fired. We know that there exists a unique path connecting v0 to

vj containing only vertices which have previously sent a chip to a poorer neighbour.

Thus, by adding the edge vjvk+1 and the vertex vk+1 to the end of this path, we get a

164

path connecting v0 to vk+1 containing only vertices that have previously sent a chip

to a poorer neighbour.

Corollary 5.3.6. Let T be a tree. In Sequential Diffusion on the Millpond configu-

ration, suppose x ∈ V (T) and x is not the initial vertex. Let step t ≤ n − 1 be the

first step in which x sends a chip to a poorer neighbour. Then at step t, x is adjacent

to exactly one vertex that has fired previously.

This corollary follows because, if there were more than one vertex adjacent to x

that had previously sent a chip to a poorer neighbour, then they could not both have

a unique path connecting them to the initial vertex without including x itself.

Lemma 5.3.7. Let T be tree, x ∈ V (T). In Sequential Diffusion on the Millpond

configuration, let i be the first step in which x sends a chip to a poorer neighbour.

Suppose that x is not the initial vertex and that i < n − 1. Then |x|t < 1 for all

i < t ≤ n− 1.

Proof. Let i < n − 1 be the first step in which a vertex, call it v, other than the

initial vertex both fires and has a poorer neighbour. After this firing, v must have

less than 1 chip. This first step in which a vertex other than the initial vertex sends

will serve as a base case. Let Dk be the set of all vertices that sent a chip to a poorer

neighbour at any time j ≤ k. For our induction hypothesis, we suppose that every

vertex in Dt, with i ≤ t < n − 1, has less than 1 chip. Suppose x fires at step t + 1

(still in the first round). By Corollary 5.3.6, at step t+1, x is adjacent to exactly one

vertex, call it y, that sent a chip at a previous step. By Lemma 5.3.4, at step t+1, x

has exactly one chip. By our induction, we get that |y|t < 1. So, when x fires, every

one of its neighbours has exactly 0 chips except for y which may have less. Thus,

the stack size of x will reduce from 1 to −deg(x) + 1. As the round progresses, the

stack size of x may increase as its neighbours fire (the size of the increase depending

on the ordering of the vertices). However, the stack size of x will only increase by

at most one chip per step and x has at most deg(x) − 1 neighbours that have yet

to fire. Thus, by the end of the round, the stack size of x can reach a maximum of

(−deg(x) + 1) + (deg(x)− 1) = 0.

Algorithm for Trees: Let T be a tree on n vertices. Consider any sequence derived

from the following rule: At each step, fire any vertex that both has a poorer neighbour

and has not yet fired, if one exists. After every vertex has fired, continue firing each

round using the same ordering.

165

Theorem 5.3.8. Orderings derived from the Algorithm for Trees have pre-period

0 and period n, where n is the number of vertices in the tree.

Proof. By the Algorithm for Trees, the first vertex in our sequence must be the

initial vertex. By Lemma 5.3.4, the second vertex must be one that is adjacent to

the initial vertex since these are the only vertices which have a chip at this point.

Suppose that we have reached some step t by using the Algorithm for Trees and

have not yet at any step failed to find an unfired vertex with a poorer neighbour.

Look now at the subtree within T consisting of all vertices that have fired thus far

(We know that it is a subtree as opposed to a subforest by Lemma 5.3.5). Call it T ′.

Note that every vertex in T \T ′ that is adjacent to a vertex in T ′ must have exactly 1

chip. This is because these vertices began at 0 chips, have yet to fire, and must have

received a chip from their unique neighbour’s firing in T ′. Thus, at step t, if there

exists a vertex that has not yet fired, then there exists a vertex with exactly 1 chip

that has a poorer neighbour (by Lemma 5.3.7). So, our algorithm will complete only

after every vertex has fired. That is, the Algorithm for Trees never fails to find a

vertex that both has a poorer neighbour and has not yet fired, until every vertex has

fired.

Because of this, we know that after a vertex x (other than the initial vertex) fires

in the first round, going from 1 chip to −deg(x) + 1 chips, there exist deg(x) − 1

vertices adjacent to x yet to fire. So, x must finish the first round with 0 chips. Since

the sum of chips in the tree can never change, this implies that the initial vertex

must finish the first round with one chip. Finally we note that this configuration of

chips could not occur at any point between the first and last steps of the first round

since at every step after the first, there exists a vertex (other than the initial vertex)

with exactly 1 chip. Thus, orderings derived from the Algorithm for Trees have

pre-period 0 and period n, where n is the number of vertices in the tree.

Chapter 6

Discussion

In this chapter, we look at the questions that remain open and may guide the future

study of these topics.

Question 6.0.1. Do similar recurrence relations exist to explain the number of Par-

allel Diffusion configurations that exist on cycles, trees, k-regular graphs, bipartite

graphs, etc.?

Thus far, recurrence relations have been discovered for complete graphs and paths,

with a simple explicit solution for stars. Finding a way to count period configurations

on other families of graphs appears to be the next logical step. However, much effort

has been put into solving for such recurrence relations on cycles, trees, and complete

bipartite graphs, with no results.

Question 6.0.2. In Parallel Diffusion, how can one quickly determine from an initial

configuration whether the period length of the configuration sequence will be 1 or 2?

For Chip Firing [3], there exist results which can help sort initial configurations

into those that will and those that will not eventually terminate. However, for Parallel

Diffusion, we know very little about mapping pre-period configurations to the period

configurations with which they share a configuration sequence.

Question 6.0.3. In Sequential Diffusion, under the Millpond layout, must the process

be eventually periodic when the same firing order is followed every round?

Our Algorithm for Trees can be used to yield a periodic configuration sequence.

However, we have no results regarding any other ways of determining an ordering.

Choosing another ordering appears to increase the pre-period, but we do not yet know

if the Millpond configuration always has a periodic configuration sequence, or what

periods it may exhibit.

Define Sign Diffusion to be the diffusion variant in which the firing rules are the

following subset of those in Parallel Diffusion:

S ′ =
⋃

a>0>b

{a → b}, a, b ∈ Z

166

167

Question 6.0.4. What period lengths are possible in Sign Diffusion?

Long and Narayanan’s result regarding periodicity [14] shows that Parallel Diffu-

sion is periodic with period 1 or 2. We already know that changing the rules too much

will create a process that is either not periodic or periodic with large periods like Pay

it Backward and Two-One Diffusion, respectively. With this question, we ask if the

same argument or a similar argument to the one used by Long and Narayanan can

be used to find period lengths on a process with similar rules, like Sign Diffusion.

Question 6.0.5. Beyond P3, do there exist more graphs for which pre-positions are

unique in Pay it Backward?

A lot of time and effort went into reaching the results for Pay it Backward on P3

in Subsection 5.2.1. Preliminary work on K3 and P4 under specific edge labellings

have shown that it will be a much more difficult problem to prove or disprove unique

pre-positions for these graphs than it was with P3.

Question 6.0.6. In Sequential Diffusion, what firing orders allow for the player to

force as many vertices as possible into debt? What firing orders allow for the player

to keep as many vertices as possible out of debt?

The biggest driving force in studying Sequential Diffusion is the desire to turn

the wealth sharing process of Parallel Diffusion into a one or two player game. There

are many possibilities as to what the goals of the respective players may be in these

games. Ideas have included one player games where the player is attempting to force

as many vertices as possible into debt, or attempting to keep as many stack sizes as

possible positive. Alternatively, we could define a two player game in which players

alternate choosing vertices to fire in which one player wants to divide wealth and

the other wants consolidate wealth. Answering these types of questions would make

analyzing such games much easier.

Bibliography

[1] R. W. Bailey, The number of weak orderings of a finite set, Social Choice and
Welfare, 1998, 15, 559-562.

[2] J. Bitar, E. Goles, 1992, Parallel chip firing games on graphs, Theoretical Com-
puter Science, 92, 291-300.

[3] A. Bjorner, L. Lovász, P. W. Shor, 1991, Chip-firing games on graphs, European
Journal of Combinatorics, 12, 283-291.

[4] A. Brandstädt, A. Leitert, D. Rautenbach, 2012, Efficient dominating and edge
dominating sets and hypergraphs, Algorithms and Computation, Lecture Notes
in Comput. Sci., Springer and Heidelberg, 7676, 267-277.

[5] R. Brualdi, Introductory Combinatorics, Prentice Hall, 2009.

[6] A. Carlotti, R. Herrman, 2018, Uniform bounds for non-negativity of the diffusion
game, arXiv:1805.05932v1.

[7] G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw Hill, 2005.

[8] J. Degaetani, Candy sharing and chip firing games on graphs, Masters Thesis,
Montclair State University, 2018.

[9] C. Duffy, T. F. Lidbetter, M. E. Messinger, R. J. Nowakowski, 2018, A Vari-
ation on Chip-Firing: the diffusion game, Discrete Mathematics & Theoretical
Computer Science, 20, #4.

[10] S. Gaspers, M. E. Messinger, R. J. Nowakowski, P. Pralat, 2009, Clean the graph
before you draw it! Inform Process Lett, 109(10):463-467.

[11] S. Gaspers, M. E. Messinger, R.J. Nowakowski, P. Pralat, 2010, Parallel cleaning
of a network with brushes, Discrete Applied Mathematics, 158, 467-478.

[12] M. A. Kiwi, R. Ndoundam, M. Tchuente, E. Goles, No polynomial bound for the
period of the parallel chip firing game on graphs, Theoretical Computer Science,
1994, vol. 136, pp. 527-532.

[13] D. A. Klarner, 1965, Some results concerning polyominoes, Fibonacci Quarterly,
3, 9-20.

[14] J. Long and B. Narayanan, 2019, Diffusion On Graphs Is Eventually Periodic,
Journal of Combinatorics, 10, no.2, 235-241.

[15] C. Merino, The chip firing game and matroid complexes, Discrete Mathematics
and Theoretical Computer Science Proceedings, Paris, 2001, 245-256.

168

169

[16] OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences,
http://oeis.org.

[17] M. E. Messinger, R. J. Nowakowski, P. Pralat, Cleaning a network with brushes,
Theoretical Computer Science, 2008, 399, 191-205.

[18] D. West, Introduction to graph theory, Prentice Hall, 2001.

