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Abstract 
The actinorhizal bacteria Frankia produce vesicles, specialized cell structures 

that are the site of nitrogen fixation. Vesicles were isolated and purified from 
Frankia strain EANl pee grown in culture. The physiological properties of these 
purified vesicles were characterized with respect to their metabolic capacity and 
compared to that of the intact mycelium. Our results indicate that the vesicle is 
unable to generate ATP. When compared on a protein basis, the total adenylate 
nucleotide pool of intact mycelium was 10-fold higher than total pool obtained with 
purified vesicles. Purified vesicles exhibit low rates of endogenous respiration, 
about 5-fold lower than the rates obtained with intact mycelia. The addition of 
succinate increased vesicle respiration by 1.6-fold, but several other carbon sources 
had no effect on respiration. Vesicle respiration showed a degree of insensitivity to 
cyanide. The addition of succinate, a respirable substrate, did not increase the 
energy charge or ATP level of purified vesicles. In the case of intact mycelium 
controls, the absence or presence of an energy source directly affected the energy 
charge and ATP levels. These results combined with those of previous studies 
indicate that the vesicle is dependent on the ATP supplied from the hyphae to which 
they are attached. 
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1. Introduction 

Members of the genus Frankia are filamentous actinomycetales that infect 
roots and induce nodule formation in a variety of woody dicotyledonous plants, 
leading to a symbiotic nitrogen-fixing association (for review see Benson and 
Silvester, 1993; Wall 2000). These bacteria are developmentally complex 
forming three cell types: vegetative hyphae, spores located in sporangia and 
the unique lipid-enveloped cellular structures, termed vesicles (Benson and 
Silvester, 1993). Vesicles are formed inside of the plant cells of the nodule or in 
culture under nitrogen limiting conditions and act as specialized structures for 
the nitrogen fixation process (for review see Benson and Silvester, 1993; Huss­ 
Danell, 1997). Their shape is strain-dependent and host-plant-influenced. 
Vesicles are formed terminally on short side branches of hyphae that have a 
septum near their base. The mature vesicle is surrounded by envelope that 
extends down the stalk of the vesicle past the basal septum which separates 
the vesicle from the hyphae. 
Techniques have been developed for the isolation and purification of intact 

vesicles from Frankia grown in culture (Noridge and Benson, 1986; Tisa and 
Ensign, 1987c). These purified vesicles retain nitrogenase activity. Initial 
investigations on the properties of purified vesicles have focused on nitrogen 
metabolism (Noridge and Benson, 1986; Schultz and Benson, 1989; Tisa and 
Ensign, 1987c). Carbon metabolism and bioenergetic properties of vesicles have 
been studied only briefly (Tisa and Ensign, 1987c). The nature of the in situ 
reductant and the source of energy necessary for nitrogen fixation by Frankia 
have not been determined. Frankia possess an adenylate nucleotide transport 
(ADP-ATP translocation) system, which exchanges ATP for ADP (Tisa and 
Ensign, 1988). This translocase may function to supply the vesicle with ATP for 
nitrogenase and to remove ADP. This hypothesis would suggest that the vesicle 
is dependent on the mycelia for the energy to drive nitrogen fixation. The major 
focus of this study was to measure the catabolic capacity of purified vesicles of 
Frankia EANlpec and to determine if the vesicle is capable of ATP production. 
Vesicles were isolated and purified from Frankia strain EANlpec grown in 
culture. The physiological properties of these purified vesicles were 
investigated and compared to the intact filamentous form of Frankia (hereafter 
referred to as intact mycelium). Our results described in this communication 
indicate that the vesicle is unable to generate ATP. 

2. Materials and Methods 

Organism and growth conditions 

Frankia strains Ccl.17 (Meesters et al., 1985), CN3 (Mirza et al, 1994), Cpll 

I 
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succinate variant [Cpll-S] (Callaham et al., 1978; Tisa et al., 1983), EANlpec 
(Lalonde et al., 1981), Eullc (Baker et al., 1980) and QA3 (Hafeez et al., 1984) 
were grown and maintained in basal growth medium with NH4Cl as the 
nitrogen source, as described previously (Tisa and Ensign, 1987a,c). Strain 
EANlpec was the primary strain that was used for the vesicle purification 
study while the other strains were used in the nucleotide pool analysis 
experiments on intact mycelium for comparative purposes. 

Large scale batch cultures of strain EANlpec were obtained by growing cells 
in a carboy with 15 liters of medium containing 20 mM succinate or 20 mM 
fructose with limited NH4Cl (0.5 mM), as described previously (Tisa and 
Ensign, 1987c). Under these conditions, the cells depleted their supply of 
NH4Cl after 7 to 8 days of growth and were growing with N2 as the nitrogen 
source when harvested. 

Vesicle isolation and purification 

Vesicles were isolated and purified as described previously (Tisa and Ensign, 
1987c) except that anaerobic techniques were not required or used. Freshly 
harvested or frozen cells were washed 2x with TM buffer (25 mM Tris-HCl/0.5 
M mannitol buffer pH 7.4) at 20°C. Vesicles were isolated by passing the 
washed culture through a French pressure cell at 69 to 138 MPa at 4°C. As a 
result of this treatment the mycelia are completely disrupted but the vesicles 
remain intact. Vesicles were purified from the cellular debris by a series of low 
speed centrifugations at 20°C. The numbers of vesicles were counted by using a 
Petroff-Hausser counting chamber with a phase-contrast microscope at a 
magnification of x400. 

Nucleotide pool analysis 

The nucleotide pool extracts of purified vesicles and intact mycelia were 
quantified by high-pressure liquid chromatography analysis. The total 
nucleotide pools were extracted with 2.5 ml of 0:25 M KOH at 0°C for 10 min. 
The samples were then centrifuged, and the supernatant fluids were analyzed 
for nucleotide content by HPLC (Stocchi et al., 1985). Nucleotide peaks were 
identified by co-migration and they were confirmed by "spiking" samples with 
an individual nucleotide. Adenylate nucleotide levels were expressed as 
nmoles/mg protein or nmoles/106 vesicles. The energy status of cells was 
expressed as energy charge [(ATP+ 1/2ADP) I (ATP+ ADP+ AMP)]. 

Respiratory studies 

Oxygen consumption by purified vesicles and intact mycelium was measured 
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with a Clarke oxygen electrode at 28°C. The 2.0-ml samples of cell or vesicle 
suspension in growth medium lacking a carbon source were mixed with small (3- 
mm-long) stirring magnets, and samples were monitored continuously. 

Enzyme assays I Crude extracts for enzyme assays were prepared from 1) purified vesicles, 2) 
the vegetative hyphal fraction of Nz-grown mycelia, and 3) NH4Cl-grown 
mycelia. Vesicles were broken by agitation with glass beads as previously 
described (Tisa and Ensign, 1987c). Intact mycelia were disrupted by passage 
through a French pressure cell at 69 MPa The disrupted mycelia and vesicles 
were centrifuged at 20,000 x g for 20 min to remove cellular debris, and the 
supernatant was used for the enzyme assays. 

Isocitrate dehydrogenase and malate dehydrogenase activities were 
determined spectrophotometrically as described previously (Reeves et al., 
1971). 

Other analytical methods 

Total protein was measured by a modified Lowry procedure (Daniels et al., 
1994). Cellular dry weights were determined as described previously (Tisa and 
Ensign, 1987a). 

3. Results 

Measurement of nucleotide levels in vesicles 

The nucleotide pools of purified vesicles and intact mycelia were extracted 
and the adenylate pool was analyzed by HPLC (Table 1). When compared on a 
protein basis, the total adenylate nucleotide pool of intact mycelia was about 
10-fold higher than the total pool obtained with purified vesicles. Nitrogen­ 
fixing cultures are reported to have lower energy charge of 0.60-0.65 compared 
to values of 0.70-0.80 for cultures growing on fixed nitrogen sources (Ludden, 
1991). Energy charge values for NH4Cl-grown intact mycelia from several 
Frankia strains were similar in the range of 0.70-0.80 (Table 1). The energy 
charge of purified vesicles was about 0.55, while the energy charge of intact 
mycelium had values above 0.70. These results indicate that the energy-state 
of purified vesicles is lower than intact mycelium. Similar results are obtained 
when we compare the % ATP in the total adenylate pool for intact mycelium 
and purified vesicles. 
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Determination the respiratory capacity of the vesicle 

Purified vesicles exhibited low rates of endogenous respiration (Table 2). 
These rates were about 5-fold lower than the rates obtained with intact 
mycelium. The endogenous rate of respiration for NH4Cl-grown or N2-grown 
intact mycelium is about 250 nmoles 02/mg (dry wt)/h, while the endogenous 
rate of purified vesicles is about 50 nmoles 02/mg (dry wt)/h. The addition of 
succinate resulted in an increase in the vesicle respiratory rate. The specific 
activity of the respiration rates of purified vesicles was still lower than the 
rates obtained with intact mycelium. However, this value represents a 1.6-fold 
increase in respiration over the endogenous rate. With the addition of 
succinate, intact mycelia exhibit a 1.3- to 1.8-fold increase in their rates of 
respiration. Several other potential substrates (fructose, malate, propionate, 
acetate, pyruvate, and mannitol) did not significantly increase the respiration 
rate of vesicles, but they did increase the rate of intact mycelia (data not 
shown). Frankia strain EANlpec has inducible and constitutive oxidation 
systems (Tisa et al., 1983). Succinate respiration is constitutive, while sugars 
and sugar alcohol respiration are inducible. Purified vesicles from fructose­ 
grown cultures only respired succinate, while intact mycelia respired fructose, 
succinate, malate, propionate, acetate and mannitol (data not shown). These 
results indicate that vesicles respiration used succinate but were unable to use 
several substrates which were respired by the hyphae. Ni-grown cells possess 
a cyanide-insensitive respiratory system that is absent in NH4Cl-grown 
Frankia (Tisa and Ensign, 1987b). Cyanide inhibited vesicle endogenous 
respiration by about 80% (Table 2). These results would suggest a portion of the 
vesicle respiration occurs via a cyanide-insensitive respiratory system. 

Enzyme content of intact vesicles 

Enzyme activities were measured for two TCA enzymes (Table 3). Vesicle 
enzyme activity levels were similar to those obtained with intact mycelia and 
vegetative hyphae. Enzyme activities were only detected when purified 
vesicles were disrupted. This would support the idea that the vesicles are 
intact undamaged units. These results also suggest that the vesicle is capable of 
catabolic activities. This catabolic activity may be involved in the generation 
of reductant and ATP that are necessary for nitrogen fixation. 

Determination of ATP production 

In our controls, the energy charge and ATP levels of intact mycelium were 
directly affected by the presence of an energy source (Table 4). Removal of an 
energy source lowered cellular ATP levels and the energy charge of the cells. 
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Table 1. Analysis of the adenylate nucleotide pools of Frankia strains. Nucleotides levels 
are expressed as nmoles/mg protein. Values represent the average of 3-7 
measurements ± standard deviation. 

ATP ADP AMP %ATP Energy 
in total charges 
adenylate 
pool 

NH4Cl-grown intact mycelium: 
Strain CN3 4.72 ± 0.33 1.58 ± 0.28 1.58 ± 0.12 59.6 ± 0.4 0.70 ± 0.02 
Strain Ccl.17 4.33 ± 1.74 0.66 ± 0.33 0.28 ± 0.14 82.7 ± 2.5 0.89 ± 0.02 
Strain Cpll-S 1.00 ± 0.7 0.71 ± 0.60 0.29 ± 0.08 48.8 ± 18.9 0.69 ± 0.07 
Strain Eullc 23.78 ± 6.58 3.54 ± 1.08 8.70 ± 1.18 58.2 ± 16.7 0.71 ± 0.12 
Strain QA3 3.05 ± 0.21 0.66 ± 0.10 0.57 ± 0.14 71.2 ± 2.2 0.80 ± 0.03 
Strain EANl pee 18.49 ± 4.70 3.56 ± 1.09 7.94 ± 1.07 61 ± 5 0.68 ± 0.05 

Nz-grown intact mycelium: 
Strain EANl pee 18.26 ± 6.39 8.33 ± 1.45 4.93 ± 1.21 58 ± 6 0.71 ± 0.06 

Purified vesicles: 
Strain EANlpec 1.24 ± 0.18 1.21 ± 0.25 0.72 ± 0.15 39 ± 4 0.55 ± 0.08 

aEnergy charge= [(ATP+ l/2ADP) I (ATP+ ADP+ AMP)]. 

Table 2. Oxygen consumption by intact mycelium and purified vesicles of Frankia 
EANlpec. 

Respiration ratea (nmoles Oz/rng (dry wt)/h) 
Intact myceliumb Purified vesicles 

Condition NH4Cl-grown Nz-grown Succinate-grown Fructose-grown 

Endogenous rate 228 ± 25 226 ± 60 53.4 ± 6.5 50.8 ± 6.8 
(no substrate) 

+ 20 mM succinate 442 ± 110 348 ± 90 81.2 ± 7.4 82.3 ± 6.1 

+ 20 mM succinate 0 97 ± 6 10.0 ± 4.2 7.4 ± 3.1 
and2mMKCN 

avalues represent the average of 3--7 experiments± standard deviation. bCultures grown 
in succinate medium. 
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Table 3. TCA enzyme activities in vesicles and intact mycelium of Frankia strain 
EANlpec. Enzyme activity was expressed as units/min/mg protein. Values 
represent the average of 3 measurements ± standard deviation. 

Crude extracts Isocitrate DH activity Malate DH activity 

Vegetative hyphal extracts 
Untreated purified vesicles 
Glass bead disrupted vesicles 

800 ± 14 
0 

790 ± 35 

820 ± 22 
0 

840 ± 67 

Table 4. Effect of different environmental conditions on the energy status of intact 
mycelium and purified vesicles. Values represent the average of 2-4 
measurements ± standard deviation. All cultures were grown in succinate 
growth medium. In experiment #2, intact mycelium was washed three times with 
MOPS-phosphate buffer and finally suspended in the same buffer with and 
without succinate. In experiment #3, intact mycelium was treated with the same 
procedures that were used to purify vesicles except they were not passed 
through a French pressure cell. 

Intact mycelium % ATP in total adenylate pool Energy chargee 

Experiment #1 
Control (untreated cells) 53 ± 5 
De-energized cellsb 15 ± 9 

Experiment #2 
Before treatment 49 ± 1 
Control (no substrate) 46 ± 6 
+ 20 mM succinate 55 ± 2 

Experiment #3 
Before treatment 56 ± 5 
Control (no substrate) 29 ± 4 
+ 20 mM succinate 63 ± 7 

Purified vesicles incubated 30 min 
Control (no substrate) 39 ± 4 
+ 20 mM succinate 38 ± 3 
+2mMKCN 38 ± 4 
+ 20 mM succinate and 2 mM KCN 39 :!;: 3 
+ 200 µM cccr= 37 ± 4 

0.71 ± 0.02 
0.29 ± 0.01 

0.65 ± 0.07 
0.67 ± 0.06 
0.84 ± 0.18 

0.67 ± 0.07 
0.51 ± 0.02 
0.74 ± 0.09 

0.58 ± 0.08 
0.53 ± 0.06 
0.54 ± 0.06 
0.53 ± 0.07 
0.56 ± 0.08 

aEnergy charge= [(ATP+ 1/2ADP) I (ATP+ ADP+ AMP)]. bintact mycelium was 
incubated overnight at 4°C in growth medium lacking a carbon source. ccccP, carbonyl 
cyanide-p-trifluoromethylhydrazone. 
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The addition of an energy source to starved or de-energized intact mycelium 
resulted in an increase in the ATP pool and energy charge. However, the 
addition of an energy source did not affect the energy charge and ATP levels of 
purified vesicles (Table 4), they remained constant. These results indicate that 
vesicles from Frankia EANlpec are incapable of ATP production. 

4. Discussion 

Purified vesicles are intact vesicles 

We have several lines of evidence which indicate that purified vesicles are 
intact structures that are not damaged. First, treating purified vesicles with 
detergents and other permeabilizing agents results in the loss of endogenous and 
succinate-stimulated respiration (data not shown). These types of treatments 
increased the permeability of purified vesicles to dithionite and these treated­ 
purified vesicles show increased nitrogenase activity (Tisa and Ensign, 1987c). 
Second, TCA enzymes activities detected in purified vesicles were measurable 
only in disrupted samples (Table 4). Intact purified vesicles gave no detectable 
measurements using these assays. Third, nitrogenase activity is associated 
with the vesicle and the enzyme as detected by enzyme activity does not leak 
from purified vesicles (Tisa and Ensign, 1987c). Vesicles that are isolated and 
purified by the use of French pressure cell disruption and differential 
centrifugation do not release nitrogenase from the vesicle during the 
purification process (Tisa and Ensign, 1987c). Glass bead disruption of purified 
vesicles releases nitrogenase (Tisa and Ensign, 1987c). Digestion of the vesicles 
with lysozyme also releases nitrogenase. Lysozyme digestion appears to affect 
the base of the stalk of the vesicle. The above lines of evidence indicate that 
purified vesicles are intact undamaged structures and they should have the 
potential to generate ATP. However, vesicles are not freely permeable. 
Substrates do not free diffuse into the vesicle, but are probably transported 
inside the structure at the base of the stem. The addition of succinate increased 
respiration by purified vesicles suggesting that vesicles are capable of 
transporting succinate inside the structure. 

Vesicles are incapable of ATP production 

The key question that we wanted to answer was whether or not the vesicles 
are capable of generating their own ATP for nitrogen fixation. To answer the 
question, the effect of respirable substrates on the ATP levels and energy charge 
of vesicles and intact mycelium was determined. Several different 
experimental conditions were tested on vesicles and intact mycelium (our 
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designated control). After these treatments, the nucleotide pools of intact 
mycelium and purified vesicles were extracted and analyzed by HPLC. Since 
the total adenylate pool of intact mycelium and vesicles differed, we looked 
for changes in both the % of ATP in the total adenylate pool and the energy 
charge. Although purified vesicles are intact structures, our results indicate 
that the vesicle is incapable of ATP production. Vesicles respired succinate 
(Table 2) but this respiration did not result in an increase in ATP production or a 
change in energy charge (Table 5). Control experiments with intact mycelium 
show that ATP levels and energy charge increased in the presence of succinate 
(Table 4) indicating that the ATP increase should be detectable. Since the 
vesicle appears to be unable to generate its own ATP for nitrogen fixation, this 
would indicate that vesicles are dependent on the mycelia for energy for 
nitrogen fixation. 

Our previous work has shown that the adenylate nucleotide pool of purified 
vesicles is changed after 1 h incubation with 1.0 mM ATP (Tisa and Ensign, 
1988). The resulting adenylate nucleotide pool of the treated vesicles contained 
only ATP and no detectable ADP or AMP. This shows that translocase activity 
is able to change the energy-state of the vesicle. 

Relationship to in planta studies 

Another approach toward studying Frankia physiologically involves the 
isolation of vesicle clusters from root nodules that are free of plant materials 
(for review see Huss-Danell, 1997). Several enzymes for sugar degradation 
have been detected in these preparations (Akkermans et al,, 1981; Huss-Danell 
et al., 1982; Lopez and Torrey, 1985; Vikman and Huss-Danell, 1987). The 
complex origin of these vesicle preparations brings into question their purity 
and makes it difficult to interpret the results of such studies. In our study, TCA 
enzyme activities for purified vesicles (Table 4) were similar to the values 
reported for symbiotic vesicles. Respiratory studies with vesicle cluster 
preparations are also complicated by presence of hyphae and some plant 
materials (Akkermans et al., 1981; Huss-Danell et al., 1982; Lopez and Torrey, 
1985; Vikman and Huss-Danell, 1987ab, 1991, 1992). Improved techniques have 
yielded isolated symbiotic vesicles free of hyphae (Vikman and Huss-Danell, 
1992). These isolated vesicles respire 6-phosphogluconate, NADH, and malate 
+ glutamate. The rate of respiration for intact vesicles from in culture (Table 2) 
was similar to the rate of respiration for symbiotic vesicles. 

A malate-aspartate shuttle has been proposed as a means of transporting 
reducing equivalents into the vesicle from the plant cytoplasm (Akkermans et 
al., 1981). Since malate dehydrogenase and glutamate-oxaloacetate 
aminotransferase activities are detected in vesicle clusters (Akkermans et al., 
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1981; Huss-Danell, 1982; Vikman and Huss-Danell, 1987, 1991; Vikman, 1992), 
one proposed explanation for the observed respiration of malate, glutamate and 
NAD+ by symbiotic vesicles is the presence of the malate-aspartate shuttle. It 
has been suggested that the permeability of symbiotic vesicles to low­ 
molecular weight molecules including NAD+, phosphorylated hexoses and ATP 
may reflect intrinsic membrane instability or difference between symbiotic 
vesicle and hyphal cell types (Benson and Eveliegh, 1979). We have also 
detected malate dehydrogenase activity in purified vesicles (Table 3). 
However, vesicle enzyme activity was only detected after the integrity of the 
intact vesicle was disrupted. These vesicles are intact sealed structures and do 
not appear to be damaged (see discussion above). One possible explanation for 
the above observations is that symbiotic vesicles are more permeability than 
vesicles developed in culture. The plant cell environment may be more 
conducive to maintain a higher permeability, which could be lethal in culture. 
This hypothesis requires further testing including the determination how 
physiologically similar purified symbiotic vesicles are to purified vesicles 
formed in culture? 

Vesicle respiration 

Frankia grown under N2 conditions contains two respiratory systems: one CN­ 
sensitive and another CN-insensitive (Tisa and Ensign, 1987b). NH4-repressed 
cells do not exhibit cyanide-insensitive respiration. In this study, respiratory 
experiments indicate that the vesicle possesses a CN-insensitive respiratory 
system (Table 2). One hypothesis is that cyanide-insensitive respiration is 
involved in the protection of nitrogenase from oxygen. The thick envelope of 
the vesicle acts as a diffusion barrier to protect the nitrogenase from oxygen 
inactivation. Low levels of oxygen would be consumed by the vesicle respiratory 
system to provide an anaerobic environment. Analysis of vesicles clusters 
isolated from root nodules of Alnus rubra detected the presence of cytochrome a­ 
a3, c, and o (Ching et al., 1983). These cytochromes were suggested to be 
involved in the mechanism of oxygen protection for nitrogenase. This 
hypothesis also requires further testing. 

What does the absence of ATP production mean? 

Catabolic capacity of the vesicle was investigated in this study. Purified 
vesicles respired succinate and exhibited malate dehydrogenase and isocitrate 
dehydrogenase activities that were comparable to those vegetative hyphae. 
Both the enzyme activities and respiration rates were similar to the values 
reported with vesicle clusters. These catabolic activities could be involved in 
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the generation of the low potential reductant that is required for nitrogen 
fixation. The lack of ATP production by purified vesicles implies that the 
vesicles are obtaining their ATP from another source. This idea would suggest 
that the ATP I ADP translocase plays a key role in the vesicle. 

What is the potential role of the ATP/ADP translocase in vesicle function? 

Our current working model is that the role of the translocase is to supply the 
ATP requirement for nitrogen fixation. The transport system might be involved 
in communication between mycelia and vesicles of Frankia. It is clear that 
there is a membrane barrier separating mycelial and vesicle cytoplasm 
(Lancelle et al., 1985). We hypothesize that the translocase functions to 
supply energy directly in the form of ATP to nitrogenase inside the vesicle. The 
system would remove ADP from the vesicles so that ADP would not accumulate 
to inhibitory levels. High levels of ADP in vitro (Lowe et al., 1980) inhibit the 
activity of purified nitrogenase. The presence of the translocase in Frankia is 
significant and may also be involved in transporting energy from mitochondria 
in plant tissue into Frankia vesicles in root nodules. The vesicles are 
compartmentalized by internal septation or ingrowth of the cell membrane 
(Huss-Danell and Bergman, 1990; Newcomb and Wood, 1987). It is possible 
that nitrogenase is also compartmentalized. The translocase would function to 
supply ATP to the compartmentalized nitrogenase. The data from our current 
study suggest that vesicles may be dependent on the mycelia for energy for 
nitrogen fixation. We are presently investigating the roles of ATP translocase 
and cyanide-insensitive respiratory system in the vesicle. 
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