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Abstract 
In living specimens of Paramecium bursaria collected in Florida in 1992, we found 

a symbiotic association involving two coccoid algae. One organism had larger cell 
sizes and pyrenoids, and was identified as Chlorella aff. vulgaris, which could not 
be maintained in cultures. The other alga grew slowly in artificial conditions, had 
smaller cell sizes and lacked pyrenoids. This organism was identified as Choricystis 
minor, and its accommodation in P. bursaria is newly recorded. In cells of P. 
bursaria, cells of Chiarella aff. vulgaris were widely distributed within the 
cytoplasm while those of Choricystis minor were enclosed within visible perialgal 
vacuoles. The phylogenetic analyses using 18S rRNA gene sequences of the 
symbiotic strain of C. minor resolved that this organism is closely related to the 
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free-living strain of C. minor (SAG 251-1), and forms a monophyletic clade with 
Nannochloris aiomus (SAG 14.87) and Nannochloris sp. (SAG 251-2) in the 
Trebouxiophyceae. We discuss the exceptional simultaneous symbiotic mode in P. 
bursaria, and the phylogenetic relationships of C. minor and allied organisms. 

Keywords: Symbiotic algae, Chlorophyta, Choricystis minor, Nannochloris, Paramecium 
bursaria, molecular phylogeny, maximum likelihood, 185 rRNA gene 

1. Introduction 

Symbiotic associations of metazoans and algae have been well known, and 
Paramecium-algal intracellular associations have been described since the 
19th century (e.g., Brandt, 1882; Entz, 1882a and b cited in Reisser, 1984). 
Paramecium bursaria Ehrenberg is a common ciliate inhabiting freshwater 
ponds and small pools, and has been known to include green coccoid algae of the 
genus Chlorella as symbionts that have been generally called "zoochlorellae" 
in common terms. Many researchers made detailed descriptions of the 
symbiotic associations between P. bursaria and Chiarella spp. by light and 
electron microscopy (e.g., Beijerinck, 1890; Loefer, 1936; Siegel and 
Karakashian, 1959; Siegel, 1960; Reisser, 1975, 1976, 1984; Reisser et al., 1988; 
Ikeda and Takeda, 1995). Douglas and Huss (1986) demonstrated sugar releases 
from symbiotic algal cells under culture conditions, a characteristic which is 
one of remarkable differences from free-living cells. Reisser (1984) reported an 
auxotrophy in endosymbiotic Chlorella vulgaris and C. vulgaris-like algae, in 
which vitamins B1 and B12 were required for growth. These features clearly 
indicate the presence of physiological interactions between hosts and 
symbionts. Kessler and Huss (1989) studied differences in rates of DNA­ 
hybridization and GC contents of the symbiotic green algal cells, and Takeda 
(1995) researched the extent of variation of cell wall chemical compositions. 
Recently, Nakahara et al. (2003) reported that symbiotic algae assigned to a 
species of Chlorella from cells of one clone of P. bursaria had three 
physiological types of dependency on the host as revealed by appearances of 
pyrenoids and survival periods in artificial cultural conditions. In these 
previous investigations, it has been deemed that the relationship of host to 
symbiont in Paramecium-algal associations is restricted to one-to-one, that is, 
a single species exclusively accommodates in a single cell of Paramecium. 
In the present research we found an exceptional case, where two species of 

symbiotic algae of different sizes are associated with P. bursaria. The larger 
organisms were identified as Chlorella aff. vulgaris, which unfortunately 
could not be brought into culture of artificial media. The smaller alga grew in 
culture for prolonged periods, and we made light and transmission electron 
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microscopy on this isolate. In recent phylogenetic works using 185 rRNA gene 
sequences, free-living coccoid green algae allied to these symbionts are 
recognized as members of the two classes: Chlorophyceae and 
Trebouxiophyceae (Friedl, 1995; Huss et al., 1999; Katana et al., 2001). But the 
phylogenetic positions of intracellular symbiotic algae in unicellular hosts 
have not been studied in large-scale analyses to date. It is expected that the 
molecular phylogeny is efficacious to determine the evolutionary origin of 
symbiotic algae. 
The objectives of this study are: 1) to demonstrate the two-species 

association within P. bursaria, 2) to describe the detailed morphological 
features for identification of the smaller alga, and 3) to investigate the 
phylogenetic status of this symbiotic coccoid alga among the Chlorophyta. 

2. Materials and Methods 

Isolation, culture and light microscopy 

Living specimens of Paramecium bursaria were collected from a ditch of 
several meters in width at Walt Disney World in Orlando, Florida, USA, Dec. 
1992 by Dr. T. Kosaka (Hiroshima University, Japan). He isolated the 
individuals into test tubes as stock cultures at the University of Maryland, 
USA, which were sent to Japan in April, 1993 by airmail. The stock cultures 
were kindly donated to MN in April, 1998, from which symbiotic algae were 
isolated. The cultures of ciliates were maintained in Petri dishes containing 
the medium used by Sonneborn (1950) under conditions of ca 20°C, 36 µE/m2/s, 
12:12 h LD cycle. 
In order to isolate the algal symbionts, a single cell of P. bursaria was 

ruptured without giving damages to the algae after rinsing ten times in sterile 
water, and transferred with symbiotic cells to CA medium (Ichimura and 
Watanabe, 1974) for pre-culture for several weeks. The algal cells were 
maintained on agar slants in test tubes of the same medium for prolonged 
culture. Light microscopy was conducted on the cells living in P. bursaria and 
those cultured in artificial conditions. All strains used in this study were 
deposited in the Department of Biological Science, Graduate School of Science, 
Hiroshima University, Japan. 

Transmission electron microscopy (TEM) 

For transmission electron microscopy of the smaller-sized algal strain OL2- l, 
cells in logarithmic phase culture were pre-fixed using 2% glutaraldehyde in 
0.1 M cacodylate buffer (pH 7.2) for 3 hours at 4°C and rinsed for 2 hours with 
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0.1 M cacodylate buffer three times. Cells were post-fixed in 2% Os04 for 1 
hour at 4°C. The fixed material was dehydrated in an ethanol series and 
embedded in Spurr's resin (Spurr, 1969). Ultrathin sections were made with a 
diamond knife on a Leica Ultracut R (LKB, Bromma). The sections were 
mounted on grids coated with formvar, and were stained with 2% uranyl 
acetate and Reynold's lead citrate (Reynolds, 1963). Preparations were 
observed using a JEM-1010 transmission electron microscope (JEOL, Tokyo) 
operating at 80 kV. 

Phylogenetic analyses 

Total DNA was extracted from actively growing cells of strain OL2-l, using 
the modified CTAB method (Murray and Thompson, 1980). Several segments 
of 185 rRNA gene were amplified by standard polymerase chain reaction 
(PCR) or nested PCR with Ex Taq polymerase PCR amplification kit (Takara, 
Kyoto, Japan) on a DNA thermal cycler (ABI Thermal Cycler-9600, Tokyo, 
Japan) with synthetic primers (Table 1). The amplification products were 
checked on agarose gels and purified with concentrating filters (Takara). 
Direct DNA sequence analyses of the PCR products were performed by dideoxy 
chain termination method using the ABI kits with additional internal primers 
(Table 1). The sequences were electrophoresed on automated sequencers (ABI 
PRISM 310, ABI). 

The 18S rRNA gene sequence from OL2-1 (accession number AB109544) was 
aligned with 130 species/strains registered in the DNA database using the 
program Clustal W (Thompson et al., 1994), and refined by comparison with 
185 rRNA secondary structures proposed by Neefs et al. (1993). The dataset 
includes 35 OTUs of Chlorophyceae, 64 OTUs of Trebouxiophyceae, 8 OTUs of 
Ulvophyceae, 7 OTUs of Prasinophyceae, 15 OTUs of Streptophyta, and 
Cyanophora padoxa as the most distant outgroup (Table 2). Undetermined 
sites, gaps, and regions not clearly alignable were excluded from the data set, 
and thus, 1,412 bases were used for phylogenetic analyses. 

Phylogenetic analyses were performed by the maximum likelihood criteria 
with the HKY85 model (Hasegawa et al., 1985) using NucML in MOLPHY 
version 2.3b3 (Adachi and Hasegawa, 1996). Tree topologies for NucML were 
obtained by the neighbor-joining (NJ) method (Saitou and Nei, 1987) with the 
local rearrangement search by NucML and maximum parsimony (MP) method 
(Fitch, 1971) by PAUP* 4.0blO (Swofford, 2002) with PAUPRat (Sikes and 
Lewis, 2001) to implement the Parsimony Ratchet searches (Nixon, 1999). Tree 
comparison to evaluate the resulting trees was carried out with standard errors 
(SEs) of the difference in log-likelihood (Kishino and Hasegawa, 1989). For 
the best ML topology, we used MEGA2 software (Kumar et al., 2001) with 
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10,000 replications to apply a standard bootstrapping test (Felsenstein, 1985), 
using the Kimura (1980) 2-parameter distances, based on NJ. The program 
package CONSEL O.le (Shimodaira and Hasegawa, 2001) was used to 
calculate p-values of confidence of candidate topologies using the 
approximately unbiased (AU) test (Shimodaira, 2000, 2002), and a 50% 
majority-rule consensus tree for the topologies with high ranking log­ 
likelihood values that passed the AU test was also computed by PAUP*. 
DNA-homologies among different strains of Choricystis and Nannochloris 
were calculated manually. 

3. Results 

Symbiotic conditions zn P. bursaria and morphological features of the algae 

• 

Symbiotic conditions of algae in P. bursaria. In the cytoplasm of individual 
cells of P. bursaria (OL-2), two kinds of coccoid green algae were accommodated 
with numerous non-living small granules (Fig. 1). These algae were easily 
distinguished from each other by the size of vegetative cells and the presence 
or absence of pyrenoids. All algal cells and non-living small granules moved 
along with cyclosis occurring within the cytoplasm of P. bursaria. Two to 
dozens of the smaller cells were aggregated in perialgal vacuoles 
(Karakashian et al., 1968) which randomly distributed in the cytoplasm of 
hosts. 

Features of the larger alga. The larger alga has the following features in 
symbiotic conditions (Fig. 1). Cells are ellipsoidal and 3.0 x 4.0 urn in size 
when young, and become broadly ellipsoidal to spherical to attain 7.0 urn in 
diameter at maturity. The chloroplast is single and assumes saucer-, cup-, and 
girdle-shapes with a single pyrenoid. The pyrenoid is spherical to broadly 
ellipsoidal in shape, and surrounded by two starch sheaths. The cell wall is 
smooth and thin. Reproduction occurs by formation of 2 or 4 autospores of nearly 
equal size. 
These features of this symbiotic alga are identical to characteristics of 

Chiarella vulgaris described from free-living specimens. However, unlike in 
the culture of free-living strains of Chiarella vulgaris, it was very difficult to 
bring this symbiotic alga into culture, and we were unable to obtain isolated 
cells regardless of many trials. 

Features of the smaller alga. The smaller alga has the following features in 
symbiotic conditions (Fig. 1). Cells are ellipsoidal, ellipsoidal to spherical, or 
slightly kidney-shaped with rounded ends, and 1.2-2.0 x 1.9-3.0 um in size. 
The chloroplast is single, saucer- and cup-shaped, and lacks pyrenoids. The 
cell wall is smooth and thin. Reproduction occurs by formation of 2 or 4 
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Figure 1. Symbiotic association of Chlorella aff. vulgaris and Choricystis minor in their 
host Paramecium bursaria. Black arrowheads indicate cells of smaller species, 
C. minor, within a spherical cluster in perialgal vacuoles of various sizes 
(brackets). White arrowheads indicate cells of larger species, Chi. aff. uulgaris 
with a pyrenoid. Many small granules (arrows) are mixed with algae. Scale 
bar: 10 µm. 

autospores of nearly equal size; however, the breakdown of the mother cell 
wall was not observed after accomplishment of autosporulation in cells of 
P. bursaria. 
We isolated 24 strains of the smaller alga but their growth was generally 

very slow, and from them only 8 were maintained in culture long enough for 
observations. They varied in number of autospores in a mother cell, that is, 2, 
4, 8 or 16 (Fig. 2). Numbers of autospores formed in a cultured mother cell were 
generally more than those living in P. bursaria. In the logarithmic phase of 
growth, cells were ellipsoidal (Fig. 2A) when 2 autospores were formed in a 
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Figure 2. Light micrographs of Choricystis minor OL2-1 in culture isolated from 
P. bursaria. A. Ellipsoidal cell. B-E. Mother cells containing various numbers 
of autospores. B. Two autospores. C. Four autospores. D. Eight autospores. 
E. Sixteen autospores. F. Persistent sporangial walls after release of autospores. 
Scale bar: 5 um for all figures. 

• 
mother cell (Fig. 28), or suborbicular to spherical when more than 4 autospores 
were formed (Fig. 2C). In old cultures most cells became spherical, to attain 4.0 
x 4.0 µm at maximum. Autospores were released after the mother cell wall 
deeply split (Fig. 2F). Although some variations were observed in cultural 
strains of the smaller symbiotic alga, all of these isolates could be identified 
as Choricystis minor (Skuja) Pott. 

By transmission electron microscopy on OL2-l, the next ultrastructural 
features were observed. The chloroplast covers more than half of the 
peripheral region. Thylakoid bundles comprised of three to four lamellae 
extend into the chloroplast, and a few starch segments are located in the 
stroma (Figs. 3A, 3E). Absence of pyrenoids was ascertained from many sections 
of cells. In the cytoplasm of vegetative cells a single nucleus is situated beside 
the chloroplast, and a mitochondrion is positioned in the space between the 
nucleus and chloroplast (Fig. 3A). In the cytoplasm typical dictyosomes were 
not observed. The cell wall is composed of three layers (Fig. 38), that is, an 
outer and inner electron-dense layer, and between them an electron-sparse 
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Figure 3. Transmission electron micrographs of Choricystis minor OL2-1. A. Ellipsoidal 
vegetative cell, showing chloroplast (c), nucleus (n), mitochondrion (m), 
numerous ribosomes (r), and starch grain (s). B. Part of mother cell with two 
autospores. TL-layer is comprised of outer (black arrowhead) and inner (white 
arrowheads) electron-dense layers, and an electron-sparse layer between them. 
Note intracellular materials (arrow) continuous to mother cell wall. C. Close­ 
up image of part of cell wall including granulo-fibrillar layer (bar) between 
inner electron-dense layer (white arrowhead) and plasmalemma (arrow). Black 
arrowhead indicates the outer TL-layer. D. Mother cells containing two 
autospores. Structure of TL-layer (arrowhead) of mother cell wall is not clear. 
Note intracellular materials (arrow) continuous to mother cell wall. E. Close 
up image of part of vegetative cell, showing the thylakoid bundles comprised of 
three to four lamellae that extend into the chloroplast. Scale bars: 200 nm (A, 
D), 50 nm (B), 100 nm (C, E). 
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middle layer, which is called a triple-layered structure (TL-layer, Krienitz et 
al., 1996). The TL-layer is clear in autospores (Fig. 3B), but in mature 
vegetative cells differences between the outer and inner layers become unclear. 
Between the inner layer and the plasmalemma lies the granulo-fibrillar layer 
(Krienitz et al., 1996) (Fig. 3C), which is smooth or irregularly lined, and 9-40 
nm thick in vegetative and autospore-forming cells, attaining 120 nm thickness 
in mature cells. Processes of autosporulation, confirmed by transmission 
electron microscopy (Fig. 3D), show that 2 autospores are formed in a single 
mother cell. Cell wall materials that apparently connect to the inner TL-layer 
of the mother cell wall are present between autospores. 
In a rare occasion a mitochondrion is situated at the lateral periphery 

outside of the chloroplast in autospores (Fig. 3D). In autospores within a 
mother cell, the chloroplasts are placed in peripheral regions, while nuclei 
are settled in inner regions. These ultrastructural features were generally 
coincident with the previous report of Choricystis minor (Skuja) Pott by 
Krienitz et al. (1996). 

Phylogenetic analyses of OL2-1 

" 

A total of 557 topologies were constructed by the two methods, and analyzed 
by the maximum likelihood criteria with preparation of an AU test. A single 
ML tree was obtained and shown in Fig. 4. In the AU test, a total of 527 
topologies for the 557 topologies were passed. The ML tree resolved a united 
clade of the Chlorophyceae plus Chaetophora incrassata and Ulvophyceae, 
which is supported by 96% by the AU test. The Trebouxiophyceae appeared to 
be paraphyletic, forming five major clades: Clade I comprised of taxa from 
Chlorella kessleri (IAM C-531) to Chlorella minutissima (C-1.1.9) [97% AU]; 
Clade II from Microthamnion kuetzingianum to Nannochloris sp. (SAG 251-2) 
[89% AU]; Clade III from Leptosira obovata to Myrmecia biatorellae [61 % BP, 
98% AU]; Clade IV from Dictyochloropsis reticulata to Chlorella 
saccharophila (SAG 211-9b) [59% BP, 87% AU]; and Clade V from Stichococcus 
bacillaris (CCAP 379 /7) to Coenocystis inconstans [78% AU], although all 
clades were not well supported with a low bootstrap probability. 
Within Clade I, five species of Nannochloris including N. bacillaris 

(Ogawa et al., 1995), N. coccoides (CCAP 251/lb), N. maculata (CCAP 251/3), 
N. atomus (CCAP 251/7) and Nanochlorum eucaryotum (Mainz 1) constitute a 
weak branch. In this branch, N. bacillaris (Ogawa et al., 1995) and N. 
coccoides (CCAP 251/lb) formed the N. bacillaris clade [73% BP, 100% AU], 
which is sister to the N. maculata clade comprised of N. maculata (CCAP 
251/3), N. atomus (CCAP 251/7) and Nanochlorum eucaryotum (Mainz 1) [96% 
BP, 100% AU]. Clade I also includes a robust Chlorella minutissima clade that 
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Figure 4. The best-supported NucML tree (HKY85 model; 2cx/f3 = 3.83; In L = -17894.7 ± 
755.7) for 130 algal 185 rRNA gene sequences. The root is arbitrarily placed on 
the branch leading to the Cyanophora paradoxa. Bootstrap probabilities based 
on 10,000 replications by NJ (BPs; in%) and percentage of number of topologies 
which passed the AU test (AU; in%) more than 50% are shown on branches 
(BP/AU). 
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was comprised of Nannochloris eucaryotum (KSW0203) and two strains of 
Chiarella minutissima (SAG 1.80 and C-1.1.9) [100% BP, 100% AU]. 
Within Clade II, both the symbiotic and free-living strains of Choricystis 

minor (OL2-1 and SAG 251-1), Nannochloris atomus (SAG 14.87) and 
Nannochloris sp. (SAG 251-2) formed a monophyletic Choricystis clade [100% 
BP, 100% AU]. Numbers of intrans and homologies of nucleotide sequences were 
compared among the algal strains of this clade (Table 3). Both strains of C. 
minor commonly possess two intrans, while N. atomus and Nannochloris sp. 
lack them. The sequence homology including the intron regions between two 
strains of C. minor was 99.97%. When intrans of C. minor (OL2-1) were omitted 
from homology calculations, the value between C. minor (OL2-1) and N. atomus 
(SAG 14.87) was 99.94% and that between C. minor (OL2-1) and Nannochloris 
sp. (SAG 251-2) was 98.16%. 

4. Discussion 

Simultaneous symbiotic association in P. bursaria 

Simultaneous endosymbiotic associations with two different algal species in 
seawater have been reported from various host organisms. Muscatine (1971) 
reported the simultaneous mixed infection of zooxanthellae and marine 
zoochlorellae within tissues of sea anemones, Anthopleura. Lee and McEnery 
(1983) observed that a single cell of one species of Amphistegina has cells of 
Chiarella or diatoms in addition to a usual dinophycean symbiont 
Symbiodinium microadriaticum. 

However, simultaneous two-species associations of unicellular organisms in 
ciliates have not been reported in fresh-water environments. Nakahara et al. 
(2003) observed that the survival terms of 56 isolated algal clones from P. 
bursaria varied from one month to about 20. In these cultural periods the starch 
segments around pyrenoids disappeared and pyrenoids could not be detected by 
light microscopy. From these prolonged observations, Nakahara et al. (2003) 
emphasized that the symbiotic algae depend on the host for growth and they 
become different from free-living clones in physiological requirements. As 
Reisser and Widowski (1992) pointed out, heterotrophic hosts of fresh-water 
endosymbiotic associations with eukaryotic algae seem to be very fastidious in 
choosing a potential autotrophic partner. 

When we consider that the Chlorella-species has been currently known as a 
representative symbiotic alga of P. bursaria, and the association with C. minor 
is the first finding in a heterotrophic host, it could be appreciated that the 
accommodation of C. minor is rare and this species is possibly a secondary 
candidate of an association partner. 
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From the previous observations of endosymbiotic associations with 
Chlorella sp. (e.g., Vivier et al., 1967; Karakashian et al., 1968; Reisser, 1976; 
Meier and Wiessner, 1987), algal cells are enclosed in a perialgal vacuole of a 
single-layered membrane. Since symbiotic algae in the perialgal vacuoles 
reproduce two or four daughter cells and the membranes of vacuoles are newly 
formed to follow cell divisions, each algal cell is enclosed in a single perialgal 
vacuole. These phenomena involving the perialgal vacuoles have been 
reported in various hosts: P. bursaria (e.g., Vivier et al., 1967; Karakashian et 
al., 1968; Reisser, 1976; Meier and Wiessner, 1987; Ikeda and Takeda, 1995), 
Vorticella sp. (Graham and Graham, 1978), Hydra viridis (Oschman, 1967), 
Spongilla lacustris (Williamson, 1979; Masuda, 1990), Radiospongilla 
cerebellata (Masuda, 1990), R. sendai (Masuda, 1990), Heteromeyenia 
stepanowii (Masuda, 1990), Anthopleura elegantissima (Muscatine, 1971), 
Stentor polymorphus (Reisser, 1981), and Anthopleura xanthogrammica 
(Muscatine, 1971; O'Brien, 1978). 
However, in light microscopy on the symbiotic associations, we only 

observed perialgal vacuoles surrounding aggregations of cells of C. minor, but 
failed to find its membranous structure around each cells of Chiarella aff. 
vulgaris. In the present study the symbiotic association of P. bursaria and 
symbiotic algae was not observed by electron microscope; however, we consider 
that cells of Chlorella aff. vulgaris are surrounded by perialgal vacuoles, since 
cells of Chlorella, a single symbiotic organism of the host, were observed 
within individual perialgal vacuoles by electron microscopy in previous 
studies (e.g., Reisser, 1976; Ikeda and Takeda, 1995; Nakahara unpublished 
data). It is interesting that perialgal vacuoles housing numerous cells of C. 
minor were easily detected by the light microscopy. This may be caused by 
large aggregations of daughter cells that made the membranes of perialgal 
vacuoles visible. 

Phylogenetic and taxonomic relationships of C. minor and allied organisms 

The genus Choricystis was established by Fott (1976) with a type species C. 
minor (Skuja) Fott, which was originally described under the name of 
Coccomyxa minor Skuja. Bourrelly (1966) introduced that the genus Coccomyxa 
includes species with or without mucilage around cells, and those reproducing 
by autosporulation or binary division along the diagonal direction of the 
mother cell. Bourrelly (1966) also quoted a proposal by Skuja (1948) to 
subdivide the genus Coccomyxa into two sections, Coccomyxa with mucilage 
surrounding cells and Choricystis without it. To follow Skuja's idea, Fott (1976) 
transferred Choricystis from a rank of section to an independent genus which 
was circumscribed as lacking mucilage around cells and propagating by 
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autosporulation with two daughter cells. This species has been found free­ 
living from freshwater, terrestrial or aerial environments (e.g., Fott, 1976; 
Handa and Nakano, 1988; Nakano et al., 1991; Krienitz et al., 1996; Belykh et 
al., 2000). 

In the present phylogenetic study using 18S rDNA sequence data, the 
isolated strain OL2-1 formed a robust clade with the free-living strain of C. 
minor (SAG251-1), and between these strains 99.97% homology was obtained in 
the sequence of 2649 nucleotides including two introns (Table 3). In our 
prolonged cultural observations, the symbiotic strains survived in limited 
periods in artificial conditions, in which the free-living strains were easily 
maintained. From the morphological features the symbiotic strain was 
identical to the free-living one as supported by molecular analyses, but they 
obviously varied in physiological properties. It could be said that the 
symbiotic association with P. bursaria has influenced physiological 
requirements of C. minor to an extent to give difficulties in growing in artificial 
media. When C. minor is successively maintained in culture, we will 
understand the physiological dependency of this alga on the host. 

Our molecular analyses resulted in four clades to which strains of the genus 
Nannochloris belong: Choricystis clade, N. bacillaris clade, N. maculata clade 
and Chiarella minutissima clade. In phylogenetic analyses of seven isolates of 
Nannochloris using sequence data of actin and 18S rRNA genes, Yamamoto et 
al. (2003) showed that the strains of Nannochloris are members of the 
Trebouxiophyceae, and resolved into similar clades that we obtained here, 
with some topological differences. From our phylogenetic tree and Yamamoto 
et al. (2003), it appears that the Choricystis clade is distantly related to 
clades containing other species of Nannochloris. Nannochloris atomus 
(SAG14.87) and Nannochloris sp. (SAG251-2) are known to reproduce by 
autosporulation (Yamamoto et al., 2003), and the members of the Choricystis 
clade commonly have the same reproductive feature as circumscribed by Fott 
(1976) for a generic character. 

Symbiotic and free-living strains of C. minor share two introns, while 
Nannochloris atomus (SAG14.87) and Nannochloris sp. (SAG251-2) have no 
intron. Krienitz et al. (1996) determined partial sequences of 18S rDNA from 
two strains of C. minor, KR1986/ll and KR1986/27, which contain one group I 
intron and no intron respectively. Krienitz et al. (1996) considered that C. 
minor of SAG251-1 and two other strains are conspecific, since no discrepancy 
was detected among partial sequences of these strains. If their incomplete 
sequences are informative enough to compare, it may be suggested that the 
presence or absence of introns could not be regarded as features of even specific 
taxonomy. Given that C. minor had diverged to species either having introns 
or lacking, the symbiotic association of an intron-bearing strain of C. minor 
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with P. bursaria is possibly a recent event that has occurred after the 
acquisition of introns. 
The present phylogenetic analyses and those by Yamamoto et al. (2003) 

resolved that C. minor is very close to N. atomus (SAG14.87). Differences 
between these species are found in the presence or absence of introns; however, 
this feature may be infraspecific as suggested by Krienitz et al. (1996). It will 
be necessary to compare detailed morphological attributes and molecular data 
of members of the Choricystis clade to obtain a better understandings of 
taxonomic status of these organisms. 
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