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Abstract

The most essential technique in creating agents with ability to process and under-

stand the content of visual data is object recognition, which includes image content

classification, and object localization. Deep convolutional neural networks’ (CNNs)

performance gain in computer vision, there still are application scenarios with limited

training data and computing power for which using deep CNN based methods is not

feasible. On the other hand, the human engineered image representations require

less training data and computing power and can be enhanced by importing domain

specific knowledge. These representations may also benefit from the human vision

characteristics in reducing the gap between computed image representations and hu-

man vision perception. In this thesis we have proposed four methods to improve

image classification and object localization. All these methods utilize the perceptual

shape features of image since it is proved that the human vision perception on objects

mostly relies on shape features of the objects, while color and texture are utilized as

extra sources to complete this perception. In the first method, we have created a

static dictionary of perceptual shape features based on N-gram model and used that

in combination with spatial pyramid matching to represent images. In the second

method, a dynamic dictionary from image edge segments is formed where these seg-

ments are obtained from an octave of image in di↵erent scales. The third method

considers the curve partitioning points as descriptive features of the image and cre-

ated a dynamic dictionary from descriptors of these points. The proposed object

localization method utilizes the perceptual shape features of the image to improve

the location of objects determined by object recognition module. The initial location

may be obtained by any object recognition method, then the proposed method iter-

atively merges the edge segments with the detected object using a best first search

strategy. These proposed methods have been evaluated on di↵erent benchmark image

datasets. Judging on the overall performance of the proposed method, it is expected

that the proposed methods would bring some useful alternatives to support e�cient

tool development for applications lacking training data or no training data at all.

xi



Chapter 1

Introduction

Because of the invention of digital cameras, huge repositories of images and videos be-

come available. The production rate of these multimedia data increased substantially

by embedding digital cameras into the cellphones. A huge part from this amount of

data is now accessible for everyone through the internet. Since an image is worth

more than a thousand words, it is a vast amount of hidden information for experts

in computer vision and image processing domains to put much e↵orts towards its

extraction and representation. Much research has been done in computer vision to

create agents that extract information from image and video contents while the most

essential technique in creating this kind of agent is object recognition [7].

1.1 Background

Investigation in the literature of computer vision shows that there is ambiguty and

confusion in defining subtasks of computer vision. Terms such as detection, recog-

nition, localization and understanding are generally defined in various ways which

creates the impression that there is no universal agreement in their definitions and

usages [7]. To be clear about these terms, the definition of Andreopoulos is used in

this thesis [6]:

• Detection: Whether a single object exists in the image or not?

• Localization: Follow detection by finding the accurate location of the detected

object in the image.

• Recognition: Localization of all the objects present in the image.

• Understanding: Recognition of all the objects plus finding the role of each

object in the context of the image

1



2

(a) (b)

Figure 1.1: Definition of object in extremes of object definition spectrum. (a) Object’s
feature is defined as a set of templates [20]. (b) Object is defined in the context of
the image [157].

In this definition, localization consists of finding the location of the object, x and y

position in the image’s coordinate system, in addition to detecting the object in the

image. Recognition generalizes the localization task to all the presented objects. The

understanding task consists of recognition plus the ability to find the role of each

object in the context of the image [7].

Another ambiguous and confusing term in object recognition module is the def-

inition of the object by itself, since it depends on the task; detection, localization,

recognition, and understanding; that we are dealing with [7].

Considering the definition of [8], when we are dealing with simpler tasks, the

definition of the object is closer to a set of templates that define the features of

object in di↵erent conditions and viewpoints. On the other hand, when the problem

turns out to be more abstract, the object is defined by the contextual knowledge and

is less dependent of the existence of a set of features in the image. Two di↵erent

impressions of objects in the extremes of this spectrum are shown in Figure 1.1.

In this thesis, an object is defined as a region in the image whose visual charac-

teristics are already learned by the computer considering both the context and visual

features of the training instances (Figure 1.1.(b)). In this definition, the object recog-

nition does not solely rely on visual features of object which are helpful for recognizing
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Figure 1.2: The main pipeline for many object recognition methods

occluded objects.

1.2 Problem Statement

The object recognition module consists of three major sub-tasks of object proposal

generation, object detection, and object localization [8]. A review on the techniques

in each sub-task is represented in the Chapter 2.

In object proposal generation, the candidate regions in the image are found as

possible locations that an object may exist. These techniques mostly rely on visual

characteristics of the image such as its color [137], texture [150], edge segments [150]

and so on. After finding the candidate locations, the part of the image in each

candidate area is represented and classified to detect the correct objects among those

candidate regions and reject the regions with no object. Object detection, similar to

many other vision-based applications such as Image classification, and vision-based

Augmented Reality (AR) applications, relies on having an e�cient representation for

the image. A more descriptive representation results in an improved computer vision
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based application. There are many di↵erent ways of representing an image; locally,

globally or learning the representation.

Although the deep image representation methods using Convolutional Neural Net-

works (CNN) have performed similarly to humans [134], they require a huge amount

of training data, access to pre-trained models in cases with few training examples,

and powerful computing devices. There are many cases, such as Augmented Reality

applications, where any or all these requirements are not feasible. On the other hand,

global and local methods require less training data, and computing power besides

having more applicability of the prior knowledge, obtained from the current applica-

tion, in the representation. As an example, mobile Augmented Reality applications

have small application-specific training data and limited computing power. These

applications mostly rely on handcrafted features for image representation [66].

When the objects in the image are detected, a localization module is applied to

better estimate their location in the image. The localization module may use visual

information of the image such as color segments [30], or be a trained regression from

the ground truth area in the training set [59].

1.3 Research Contributions

In this research we are focusing on the object representation, and object localization

tasks which are highlighted in Figure 1.2 to improve the quality of object recognition

methods. In order to represent the image, we proposed three image representation

methods using the perceptual characteristics of the human vision system.

Based on the fact that human vision perception mostly relies on the object’s shape,

the boundaries of objects are more descriptive characteristics of the image. On the

other hand, according to the Gestalt Laws of grouping, the human vision perception

tends to group objects that are close (proximity) or similar (similarity) to each other

and are continuing one another (continuity) [28]. These characteristics of the human

vision system have inspired us to propose perceptual image representation methods

which improve the performance of computer vision applications.

First Image Representation Method: This method describes the image by

extracting their Generic Edge Tokens (GETs) and describing traces in the image using

the N-gram notation where its visual words are extracted GETs. In this method a
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static dictionary of visual words is created in which the words are the N-grams of the

image. The Bag of Words technique has been used for describing the image using this

statically-generated dictionary. By introducing the Shape Pyramid made of the flat

dictionaries of the N-grams, we created a hierarchical dictionary for our bag of visual

words. For further improvement, we applied a hierarchical structure on selection of

the local patches of the image by using the Spatial Pyramid structure. By combining

these two pyramids, we came up with a Spatio-Shape Pyramid structure in which each

level of the Shape pyramid is associated with a specific level in the Spatial pyramid.

The experimental results show performance of this image representation on some

benchmark datasets. The detailed discussion on this proposed image representation

method is presented in Chapter 3 and [46, 45].

Second Image Representation Method: This method extracts perceptual

structure-based edge segments from the image’s edge map, describes the region around

them, and clusters those segments to find edge tokens. Each image will be encoded

using these edge tokens learned from the training set. In this method, we have

considered octaves of images, versions of the original image smoothed with various

values for the smoothing parameter, and applied di↵erent smoothing filters to each

of them to extract edge maps. This smoothing using di↵erent parameters creates

a hierarchy of edge segments, in which the edges obtained from the most smoothed

image are coarser and less noisy and representative of objects’ boundaries, and edges

obtained from the least smoothed images are finer and represent smaller objects and

textures in the image. We utilize the Canny Edge detection algorithm [22] along

with the Hough transform [54] to find edge segments of the image in each level of

smoothing, and each octave. The feature vectors for these segments are created

by applying a local descriptor to the area around them. These feature vectors are

clustered using K-means algorithm to find edge tokens from the training set. These

tokens are utilized by the proposed method to find an encoding for each image. Our

proposed method has been tested on the multi-class multi-label image classification

problem and its performance comparison is elaborated in the experimental results

section. For more information on this proposed method, please review Chapter 4

and [44].
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Third Image Representation Method: The N-gram based image representa-

tion method utilizes PCPG [72] which is an edge tracker module based on the human

vision perception to extract N-grams of the image. This method improves PCPG by

generalizing the joint detection module and applying the laws of Gestalt to group

perceptual structure-based edge segments. In this method, we have considered edge’s

direction changes happening as a result of sign or magnitude change in the edge’s

pixels’ gradient to identify the Generic Edge Tokens (GETs). We have grouped these

GETs based on their proximities, and their slope and curvature similarities, while

preserving the continuity of the edge traces and found higher level Curve Partition-

ing Points (CPPs) which are utilized as descriptive points for the image. These CPPs

are described and clustered to create a Bag of CPPs (BoC) which contains the rep-

resentatives for di↵erent groups of similar CPPs in our training set. Each image is

encoded according to this BoC by calculating its Normalized Curve Histogram in all

levels of the Spatial Pyramid Matching [92]. The detail of this proposed method is

discussed in Chapter 5 and [42].

Object Localization Method: We proposed an object localization method by

relying on the fact that each object has boundaries which can be captured by the

edge tracker algorithms. We have used the PCPG [56] edge tracking method in order

to find the required edge map. Then we applied a Best-First search [122] among the

obtained edge segments and optimized the output score of the deep convolutional

neural network for each recognized object. This score is the confidence returned

by SVM when the representation of the cropped image obtained by CNN is fed for

classification. In our proposed method we tried di↵erent sets of edge segments from

the edge map, calling Trace, Generic Edge Tokens (GETs) and their combination.

The AlexNet model [90] has been used for conducting our experiments, although

our method is independent of the underlying convolutional network as far as they

generate scores for each input image to be in each class. The RCNN object detection

module [59] are used as the base method for object detection, that we applied our

model for improving their localization. The proposed method is also independent of

the object detection module. You may find a complete illustration of this proposed

method in Chapter 6 and [43, 41].
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1.4 Thesis Organization

This report is organized in the following order: a brief review of the current research

in object recognition is presented in Chapter 2. The proposed methods are discussed

and elaborated in Chapters 3, 4, 5, and 6. This thesis is concluded in Chapter 7 along

with some possible areas of future work and the limitations of the proposed method.



Chapter 2

Background

Nowadays, due to availability of digital cameras for everyone and everywhere, visual

data has a major share of digital content which is increasing exponentially. This

amount of data creates the need to process and understand the contents in this

visual digital world to facilitate humans’ life. Computer Vision is the procedure of

finding what exists in an image and where is it located [103]. Since 1960s, much

research has been done in computer vision to create agents that extract information

from image and video contents. The most essential task in creating this kind of

agent is object recognition [7] which relies on the quality of the utilized image or

video representation. In this chapter, we provide a brief survey on the existing image

representation methods in Section 2.1 and complete the review by covering techniques

to improve object recognition in Section 2.2. In the end of this chapter, we have

provided a brief discussion on some of the techniques and concepts we have utilized

in our proposed methods in Section 2.3. The organization of this chapter is depicted

in Figure 2.1.

2.1 Image Representation

Each image consists of a number of pixels with wide range of intensity values or

colors depending on the image color scale. The very first representation of the image

is its pixel map which describes the image by a set of numbers, one for each pixel.

However, this representation by itself is not suitable for complex computer vision

tasks (e.g. object recognition), since the intensity values of the pixels are susceptible

to environmental changes and the changes in the position of the objects in the scene;

it is the base for most of the existing image representation methods which describe

the image based on the texture, shape and color obtained from its pixel map.

8
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Figure 2.1: General organisation of the literature review chapter.

There are many di↵erent methods for representing images which can be cate-

gorized into four groups of local image representation (2.1.1), global image repre-

sentation (2.1.2), deep image representation (2.1.4), and combined methods (2.1.5).

The last category utilizes a combination of the other three for representing images.

Besides, there are many image representation methods that consider the perceptual

characteristics of the human vision (2.1.3). In this research our focus is on combin-

ing perceptual characteristics of the human vision and the local image representation

techniques to create a more accurate representation. This representation can also be

used for bridging the semantic gap of image representation between human perception

and program interpretation.

2.1.1 Image Representation Using Local Features

The image representation methods using local features extract several interest points

in the image and produce descriptors for those interest points which we call keypoints

in the following context. These descriptors are used by the Bag of Feature (BoF) tech-

nique to represent an image. The general processing pipeline for BoF is represented

in Figure 2.2. The major processes in BoF technique are Keypoint Detection, Local
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Region Description, and Feature Association [9]. In the following sub sections, we are

going to survey popular methods in each and every step of this pipeline.

Figure 2.2: General diagram of Bag of Features [74].

Keypoint Detection

There are several methods for detecting Keypoints which are mostly corners of objects

in the image. One group of the methods finds edges of the image, then finds corners

by tracing edges. Another group finds changes in direction for places with a larger

gradient. The other group tests small patches of the image to see if it is a corner

candidate or not [119].

The extracted keypoints must have special characteristics to be considered as

reliable keypoints. They have to be easy to extract and robust to rotation, scaling,

change in illumination and viewing direction. These keypoints have to be repeatable,

distinctive and robust to noise as well [10]. Various methods are investigated and

introduced for extracting keypoints of images, some of which are discussed briefly.

In 2004, Lowe proposed a novel keypoint detection method called SIFT [101].

They used the Scale Space Pyramid [147] technique to extract keypoints. They cal-

culate Di↵erence-of-Gaussian (DoG) by using adjacent image scales and extract points

which are local maxima between three scales and nine neighbors in each scale. They

fit a quadratic function to the extracted points and solve it to localize keypoints.

They also find orientation histograms for candidate keypoints and assign orientations

to them.

SIFT is invariant to scale and rotation while it is robust against noise, illumination

change and change in viewpoint [101]. However, this method requires heavy compu-

tation and is not suitable for real-time applications running on the current mobile
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devices [119]. To improve the SIFT algorithm, Ke proposed PCA-SIFT method later

in 2004 [85]. In this method, they extract a huge number of patches from a diverse

collection of images. They project the patches gradient to vector using their Eigen

space matrix. By applying PCA [83] to the covariance matrix of these vectors, the

size of the feature vector is reduced. By this technique, they improved SIFT execution

time for the matching phase, while the representation phase became slower than the

original SIFT [85].

FAST (Feature from Accelerated Segment Test) keypoint detector was introduced

by Rosten et al. [119]. This method extracts corners from a set of images by applying

Segment Test criterion. Then they create a Decision Tree to classify corners. For

extracting corners, they consider a circle area around candidate corners and examine

the number of pixels in that area to confirm if it is a corner or not. This method is

great for real-time applications [96], although its performance for large-scale features

is weak [119].

Speeded-Up Robust Feature (SURF) utilizes the Scale Space Pyramid for its key-

point extraction, but its innovation replaces image resizing with image smoothing

to create the pyramid [10]. They apply non-maximum suppression to three scales

and nine neighbors in each scale and extract the maxima as a keypoint candidate.

They assign orientation to these keypoints by calculating Haar-Wavelet response of

the candidate keypoint in both directions.

Later in 2008, an improvement on SURF was proposed by applying some modifi-

cations on Interest-point interpolation and Orientation Estimation to solve issues of

SURF such as computation time and the accuracy [9].

ORB is an enhanced combination of the Fast Keypoint extraction method with

the BRIEF keypoint descriptor [120]. In this method, they applied the Scale Space

Pyramid for their keypoint detection method while they find FAST keypoints in each

level of the pyramid as candidate keypoints. Later on these keypoints are sorted

according to their Harris Corner Measure [67], and a predefined number of them are

selected based on this measurement.

BRISK, introduced in 2011 by Leutenegger, is a feature detector and descrip-

tor [96]. It uses the Scale Space Pyramid for keypoint detection. It uses the FAST
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method to select candidate keypoints. They use the FAST score for keypoint neigh-

bors in current scale and also in a scale above and a scale below that. Finally, they

extract refined saliency maxima for each candidate keypoint.

Feature Description

When keypoints have been extracted, the patches around those keypoints should

be described in a stable and compact way. This representation should be robust

to scale, rotation, a�ne transforms and noise [4]. Several studies have shown that

the accuracy of the image representation mostly depends on the feature description

method rather than keypoint extraction [85, 120]. On the one hand, these descriptors

have to be distinctive, concise and robust to changes in the viewing condition and

errors of keypoint detectors [85]. On the other hand, having a local descriptor which

is fast to compute and memory-e�cient to use is a critical requirement [21].

The SIFT descriptor selects a patch around the keypoint, then it rotates the patch

using keypoint orientation information. It applies a Gaussian function to weigh gra-

dient magnitude around the keypoint. These values are calculated on an orientation

histogram around the keypoint to create the feature descriptor [101]. The dimension

of the feature vector is a drawback of the SIFT method since it results in high compu-

tation time and storage space demand [10, 21]. Later on PCA-SIFT was introduced

to solve problems with SIFT. It projects gradient images by using Eigen space which

helps it to describe the patch with a more compact feature vector [85].

SURF, introduced in 2006, is much faster than SIFT but its representation still

requires 256-bin-dimensional vector for each descriptor which is high when the number

of keypoints increases [4, 21]. SURF selects a patch around the keypoint and rotates

it to the orientation of the keypoint. It divides the patch to a number of cells and for

each cell, it calculates Haar-Wavelet responses in both x and y directions [10].

CHoG, which is 10 times faster than SIFT, devides the patch into localized cells

and local image gradients are computed for each cell [26]. This method applies Vector

Quantization to encode gradient distribution to a small set of bins. Feature descriptor

is created from these bins all over the patch.

BRIEF descriptor, however, utilizes a di↵erent method for feature description

where a set of tests are scattered through the keypoint’s patch. The descriptor vector
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is created based on the results of these tests on the patch. Each test compares the

intensity value of two points and its result is either 1 or 0 based on the result of

comparison [21]. This method is e�cient for computation and storing in the memory,

and as a result it is a satisfactory method for real-time applications [21, 96]. However,

BRIEF is not reliable and robust to distortions and transformations [96].

ORB which is a modification of BRIEF descriptor was proposed in 2011 [120]. It

uses the same method as BRIEF but on a steered version of the test matrix. This

steered version is obtained by rotating the matrix according to orientation of the

keypoint which is extracted using Oriented version of FAST keypoint detector. This

method is robust to rotation and noise, while it is e�cient in terms of time [4].

Continuing the trend that was started by BRIEF, a method called BRISK is pro-

posed in which they select a number of test points in a circle around the keypoint [96].

These points are classified to short-distance and long-distance pairs. By using long-

distance pairs, the direction pattern of the keypoint is extracted. The feature vector

is created by comparing intensities of pairs in the short-distance category.

FREAK uses a retina sampling grid [111] to describe the keypoint area. In this

model, they considered higher number of points near the keypoints while the density

of points in farther area is less. The feature vector is a binary string that is formed

by one-bit Di↵erence of Gaussian (DoG) between points in the area around the key-

point [4]. This method is faster in terms of computation and more e�cient in terms

of memory space. It is also more robust to changes compared with SIFT, SURF, and

BRISK [4].

Image Encoding

Refering to the pipeline of BoF framework (Figure 2.2), there are five major ap-

proaches for finding a global representation for the image by using its local features,

keypoint detection, feature description, dictionary generation, feature encoding and

feature pooling [74]. The first two approaches are discussed in the previous sub

sections, and in this section the focus is on the latter three for finding the global

representation.

In the dictionary generation phase, a dictionary created from the local features
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will be generated. There are many ways for creating dictionary from the local fea-

tures. Many methods use a clustering algorithm such as K-means on the local features

from the training set. The centroids of the obtained clusters are the words for the

dictionary. While various dictionary learning methods have been proposed, the ex-

periments conducted by [118, 34] demonstrate that the dictionary learning method

has less significance on the performance of the global image representation. As a

result of this observation, in this section we will focus only on the feature encoding

methods which are categorized into reconstruction-based methods [74].

The main approach in feature encoding is solving an optimization problem of

Equation 2.1. The solution for this equation is a vector of coe�cients that mini-

mizes the reconstruction error while some constraints are applied. In this equation,

B = [b1, b2, ..., bm] 2 <d⇥m is the dictionary, X = [x1, x2, ..., xd] 2 <d is the local

feature, and C = [c1, c2, ..., cm] 2 <m is the coe�cient which is the solution of this

optimization problem. In fact, by minimizing the reconstruction error, we are look-

ing for coe�cients that map the local features to the words in the dictionary with

the minimum loss. This optimization problem can be solved using a wide variety of

methods such as [19, 149, 153, 124].

C = argmin
C

kX � BCk2
2

s.t. Constraints. (2.1)

Most of the time there are two phases in solving the previously defined optimiza-

tion problem. In the first phase, a prebuilt dictionary exists which, in most cases,

is obtained by applying a clustering algorithm on the local features of the images in

the entire training set. By assuming that this dictionary is fixed, the optimization

algorithm will find the coe�cients which are able to map the local features to the

current dictionary properly [142].

In the next phase, the assumption is that the trained coe�cients obtained from

the first phase are good enough for encoding the local descriptors, and the focus is

on finding a better dictionary by solving the above mentioned optimization problem

this time by targetting the dictionary [142] (see Equation 2.2).

B = argmin
B

kX � BCk2
2

s.t. Constraints (2.2)

Considering the optimization problem for minimizing the reconstruction error,
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researchers applied di↵erent constraints on this problem and proposed a wide variety

of encoding techniques some of which we summarize.

A very basic encoding method is the Vector Quantization (VQ) or hard coding

technique. In this method, the optimization constraint forces to have only one non-

zero segment in the coe�cient matrix for the current input. Looking at Figure 2.3

for VQ, each input x is mapped to a single word in the codebook. The coe�cient in

this case is the weight associated to this single connection. The VQ method su↵ers

from quantization loss and ignores the relationship between di↵erent words in the

dictionary by encoding each descriptor to a single word in the dictionary [61].

The sparse coding (SC) technique is introduced by adding the sparsity regulariza-

tion term to the optimization constraints [95]. By this term, the quantization error of

VQ is reduced and the salient patterns of the local descriptor is taken into account as

well. This term helps the optimization problem to have only one unique solution. In

this method the regularization term is not smooth and it loses the correlation between

words of the dictionary. Each input descriptor x is encoded using some words in the

codebook, usually more than one word, and these words are selected sparsely for each

input (Figure 2.3).

The label constrained sparse coding method is similar to the sparse coding tech-

nique except that it takes the value of labels for each class into account. This method

uses label consistency constraints in combination with other constraints of sparse

coding. In this method, they create a visual similarity matrix for visual words and

compute the label similarity of local features based on that [98].

By adding the distance of the local features with words in the dictionary, the

Locality Constraint Linear Coding (LLC) is introduced [144]. By applying this

constraint on the optimization problem, each descriptor is represented by multiple

bases accurately. This method considers the correlation between similar descriptors

and ensures that similar patches will be encoded with similar words. In the LLC

representation when two input descriptors are similar to each other, there are more

common words in the codebook for their encoding, and these words are also similar

to each other (Figure 2.3).

While the discussed methods consider encoding a single local descriptor with a

set of words in the dictionary, there are some methods which consider encoding a
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Figure 2.3: Schematic comparison between three di↵erent coding methods [144].

group of words with a set of words in the dictionary, called group sparse coding. In

this method, they regularized the trade-o↵ between reconstruction error and suitable

mixed norm for reconstruction weights. By having a set of training groups, a good

dictionary estimation is done in this method [12].

The group sparse coding method works for the situations where we have knowledge

about the existing groups in the local features. If this information is not available, the

automatic group sparse coding can be used. The goal of this method is finding the

hidden groups of data and training a dictionary over di↵erent groups. This method

quantizes the data space by using di↵erent dictionaries. It minimizes the quantiza-

tion error of a sample with a dictionary and finds the dictionary whose produced

reconstruction error is minimum [142].

The Spatial Pyramid Matching technique is proposed to add a hierarchical struc-

ture to the encoding methods and has resulted in huge performance gain [92]. This

method divides the image into gradually smaller non-overlapping blocks and cre-

ates the encoding which is a concatenation of the representation for each of these

blocks. The size of the blocks for each level is smaller than the previous level’s

blocks’ size. The spatial pyramid matching technique is combined with other en-

coding methods [152], and deep learning image representation networks [68] and has

shown performance improvement on the benchmark datasets.

2.1.2 Image Representation Using Global Features

The global image representation methods describe an image as a whole by considering

di↵erent characteristics of the image such as its color, texture, shape, or perceptual

features of human vision. In this section, we are going to briefly summarize e↵orts
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which describe an image globally.

The use of color and texture features of the image as its representation is a common

practice for global representation method in which the color feature can be defined

based on the color space of the image [130]. The most common color spaces are RGB

and HSI color spaces [57]. In terms of texture there is no exact definition for it, but

the IEEE institute defined it as ”an attribute representing the spatial arrangement of

the gray levels of the pixels in a region or image” [109].

To capture the color feature, they used the color histogram of the image in HSI

color space. Color histograms represent the distribution of colors in an image. Each

histogram has a set of bins each of which corresponds to a color in the color space.

The value of each bin is the total number of pixels in the image whose color is the

color of the bin. To extract the texture of the image, they applied wavelet transform

to the image. The wavelet transform decomposes image to its frequency bands [130].

The orientation of the edges are detected by using the color space of the image

where the color di↵erence histogram is utilized to find the edge orientation of the

image [97]. The idea behind this technique is a psychological fact that human vision

is sensitive to the color and edge orientation [84, 99].

An image representation method based on the fusion of color and texture features

is introduced in which they have selected a number of colors from HSV color space

as an image representation. They also find the co-occurrence matrix of the gray-scale

image in four directions and calculate contrast, capacity, entropy and relevance of an

image as its texture features [154].

An image representation by using three major visual characteristics of the image

named color, texture and shape is introduced by Iqbal et al. [77]. To represent the

color of the image, they create three color histograms for di↵erent channels of RGB as

well as an intensity histogram based on the gray-scale image. To extract the texture

information of the image, they applied the Gabor wavelet algorithm. They applied Hu

moment invariant algorithm [73] to find shapes of the image [115]. They concatenate

these feature vectors to create the global image representation.

Another method that describes the image by considering its color, texture and

shape features is proposed by Wang et al. [145]. To find the color feature of the

image, they used RGB color space and quantized each channel to a number of colors.
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They apply an optimization problem to find which pixel of the image belongs to

which quantized color. To represent the color information, they used the fuzzy color

histogram. They applied the steerable filter to the image to find representation for

the texture of the image [79]. The Pseudo-Zernike moments is used to describe the

shape of the image in this method [86].

An image representation was introduced in 2015 to classify apple disease [39]

which considers three major factors of color, texture and shape to create the image

representation. To describe the color of the image, they used the color histogram along

with the color coherence vector [114]. Color coherence is a kind of color histogram

whose segments are super pixels (which create coherent areas) instead of pixels. In

this method, they applied Local Binary Patterns (LBP) [110] and complete LBP [65]

to extract texture information of the image. As the last part, they used Zernike

moments of the image as its shape descriptor.

2.1.3 Image Representation Using Perceptual Features

As a result of studies on human visual system, many researchers in computer vision

domain have utilized the perceptual characteristics of the human vision for describing

images [75]. In one hand the human visual system is capable of grouping elements

from complex scenes to simplify the image description, and on the other hand per-

ceived elements from natural scenes belonging to a single object are often grouped in

the human visual system [108].

Various characteristics of the human visual system such as attention system [102],

and color [105] or shape [156] characteristics of images are considered by many re-

searchers. Since our proposed method has focused on perceptual shape features, a

brief review of some of the existing methods are provided here.

Gestalt Laws is utilized for retrieving the human-made objects where it relies on

the fact that these objects usually have solid edges and corners [78]. In this method,

strong evidences of existance of an object which are obtained from relationships among

edge segments are extracted as image features. These features are classified using K-

nearest neighbour algorithm and the images that contain human-made objects are

retrieved.

The perceptual shape descriptors are also utilized for image retrieval where various
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tokens are extracted from each shape each of which corresponds to a salient attribute

of that shape [14]. These tokens are described according to its orienation in the image

space. These tokens are arranged to create an M � tree structure which is utilized

for image indexing.

The perceptual edge segments obtained from an image’s edge map are utilized

for its representation in the context of image retrieval [156]. They have divided the

image into non-overlapping blocks, varied sizes for edge segments and noises. For

each block, they have calculated the frequency and length of each edge segments and

by concatenating these features, they have described each image and used it for image

retrieval.

By importing the N-gram notation from natural language processing into the task

of image representation using perceptual features, Mukanova et al. have introduced

N-grams of shape by grouping the connected edge segments together and describing

each image using those N-grams [107].

2.1.4 Image Representation Using Deep Features

The very first Convolutional Neural Network is introduced in 1998 for classifying

handwirtten digits. LeNet with 2 convolution layers each followed with a pooling

layer is proposed by Lecun et al. [94] is shown in Figure 2.4. The outcome of

the second pooling layer is flattened and connected to a fully connected layer for

classification. This network has shown promising result in character recognition, but

it could not be applied on larger images with higher resolutions at that time because

of the limitations in computing power.

Figure 2.4: The LeNet architecture proposed in [94].

A deep convolutional neural network for classification of images in the huge dataset
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of Imagenet [38] is introduced in 2012 [90]. In this method they introduced a deep

network with eight layers five of which are convolutional layers and the other three are

fully connected layers. This network consists of 60 million parameters and 650.000

neurons. Each neuron uses ReLU nonlinearity function which is much faster than

the other tanh functions [90]. The overall architecture of this network is presented in

Figure 2.5.

The convolutional layers of this network convolve the input image with a number

of kernels whose sizes are di↵erent for each layer. For instance, the first convolutional

layer filters the input image of size 224⇥224⇥3 with 96 kernels of size 11⇥11⇥3 [90].

This structure improves the classification result by reducing the error rate of the top-1

test about 10 percent.

Figure 2.5: The CNN architecture proposed in [90].

The winner of ImageNet competition in 2013 has introduced a modification of the

Alexnet network which is called ZF-Net [155]. There are two main contribution in

this paper, modification of Alexnet, and visualizing the intermediate features. They

have changed the size and number of filters for the convolutional layers which resulted

in their superior performance in that competition. They reduced the size of the filter

in the first convolutional layer to 7⇥ 7⇥ 3 with a decreased stride value, the number

of pixels the filter slides over the image. This modification helped them to retain

most of the information in the image’s pixels. Their proposed visualization for the

intermediate features, deconv-net, also opened a way for the researchers to understand

the middle layers of the deep network.

GoogleNet [135] introduced by Google has won the ILSVRC competition in 2014
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by achieving a performance very close to human. This network introduces the in-

ception modules and utilized batch normalization, and RMSprop. Using inception

modules, this model could reduce the number of network parameters drastically. To

introduce inception layers, they have utilized Hebbian principles to move from fully

connected convolution layers to sparsely connected ones. In this architecture, they

utilized 1 ⇥ 1 convolutions to reduce dimension and to use rectified linear activa-

tions [116]. They have improved this inception modules and introduced modules

with coarser filters in [136].

(a) (b)

Figure 2.6: The Inception modules introduced in (a) [135] and (b) [136].

VGG-Net proposed by researchers of Oxford university in 2014 has 19 layers with

the filter size of 3⇥ 3 and stride of 1 [129]. Their reasoning for using a smaller filter

size and a deeper network is the fact that combining two 3 ⇥ 3 convolution layers

has an e↵ective receptive field of 5⇥ 5. This is similar to having a larger filter while

keeping the benefits of smaller filter sizes. Other benefits are a decreased number of

parameters, and using two ReLU layers, one for each convolution layer, instead of

one.

Sometimes the source task for training is di↵erent from the target task for the

test. This situation may occur due to using a pre trained model of deep learning.

A major problem in this situation is di↵erent labeling of the images in two separate

tasks. To solve this issue, the 8th layer of the architecture in Figure 2.5 is replaced

with two modified and adopted fully connected layers in the pre trained model and



22

the exact values of the trained parameters in the network are carried over to the

testing phase [112].

Using the input feature to the first fully connected layers of the network as the im-

age representation is investigated by Razavian et al. [117]. In their proposed method,

they applied the network similar to Figure 2.5 to extract image representation. They

proposed two di↵erent settings for image classification. In the first one, they simply

input the extracted representation to the SVM classifier. In the second setting, they

add some cropped and rotated versions of the training images to the training set and

classify the test images. Their experiments show that the second setting improves

the classification accuracy [117].

ResNet, or Residual Neural Network, utilizes gated recurrent units and heavy

batch normalization as layers of the deep network which are shown in Figure 2.6.

This network which contains 152 layers has lower complexity than VGGNet and

its performance is better than human. Not only these residual networks allow the

continuous information flow by using parameterless identity-mapping shortcuts, but

also they can have more than thousands layers without losing any performance [70,

69].

2.1.5 Image Representation Using Combined Features

However deep learning representations have achieved promising performances, there

are some research that have combined handcrafted local or global features with these

machine learned deep features for further improvement on the performance.

Combining the bag of words framework with learning deep features is investigated

in 2014 where the proposed architecture borrows the strength of both techniques [60].

In each level of this method SIFT local descriptors [101] are encoded using the spatial

aggregating restricted Boltzmann machines (RBM) [131]. They stacked several layers

to create a Deep Belief Networks (DBN) [71] to finalize their hybrid architecture.

By combining the handcrafted and deep feature, the performance of object recog-

nition has been improved using three dimensional data [81]. In this method, they

extracted the SIFT local descriptors [101] and encoded them using LLC [144]. At

the end, they utilized Spatial Pyramid Matching technique [93] to create the hand-

crafted representation. In Parallel, they have calculated deep representation using



23

the AlexNet convolutional network [90]. These two representations are combined and

fed into an SVM classifier for determining the type of the object.

A network with two main parallel representations is devised by Wu et al. [148]

which is inspired from [81]. For deep representation, they devised their own CNN

network consisting of five convolutional layers. This network generates an image

representation with the length of 4096. For finding the handcrafted features, they

calculated RGB, HSV, and YCbCr [82] histograms for representing the color feature.

They also utilized 8 Gabor filters [55] and 13 Schmid filters [123] to calculate texture

features of the image. At the end, they find a representation vector with the length

of 4096 from concatenating these local features. They use a fusion layer to combine

them and generate their final representation which is fed into a Softmax layer for

classification.

2.2 Object Recognition

Object recognition is the task of finding the locations and types of all the objects in

an image [6]. This task is a generalization of object detection and object localization

for targeting multiple objects instead of a single one. There are many researches that

have been conducted to improve the performance of object recognition as a whole,

or improve one of its sub-tasks which at the end results in the overall improvement.

The main sub-tasks which are involved in the object recognition are object proposal

generation, object detection, and object localization.

The goal of object proposal generation is finding the areas in the image where

the possibility of object existence is higher than the other areas. This possibility is

mostly determined using some heuristics on the visual characteristics of the image.

For instance regions with similar colors possibly belong to a single object. Some other

method utilize boundary information, texture information, or a combination of them.

A review of some of the works in this area is presented in 2.2.1.

After finding the candidate object using the object proposal generation, an object

detection technique applies on the area for the candidate object to determine the type

of the object there. Researchers have used many di↵erent methods such as template

matching, knowledge, OBIA (Object Based Image Analysis), and machine learning

based methods for detecting the type of the object [31], among which we have chose
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machine learning based methods. The machine learning based methods consists of

two major modules for finding the type of the object which are image representation,

and image classification. A survey of the machine learning based methods for object

detection is given in 2.2.2.

So far, the type of the objects in the image are determined, but their position

in the image is not yet regularized. The next step for object recognition, is finding

a better location for the detected objects in the image. This task is called object

localization and usually utilizes image characteristics such as color, edge, and texture

for improving the performance of localization by solving an optimization problem. A

survey of these methods is presented in 2.2.3.

As it was mentioned earlier, there are some methods that consider object recog-

nition as a single problem to target. A review of some of these technique is given

in 2.2.4. These techniques generally have modifications in more than a task.

2.2.1 Object Proposal Generation

The very first method for finding object proposals in the image is sliding a window

all over the image [5] which is used in many recognition methods such as [36, 63, 139].

A method using sliding window and applying linear SVM on HOG feature of each

window to find objects and their parts in the image is proposed in 2010 [52]. Despite

their impressive performance, their method is costly because of its exhaustive search

all over the image.

To mitigate the cost of finding object proposals, the Selective Search method is

proposed in 2013 [137]. This method utilizes Felzenszwalb’s method [53] for finding

initial regions in the image. A buttom-up grouping is performed on these initial

regions where in each step the most similar regions are combined to create a larger

region. This grouping continues until there is only one group which contains all the

regions of the image. For measuring similarity, a diverse combination of color, texture,

size and distance metrics is utilized.

Although the hierarchical grouping of Selective Search [137] has performed well,

a hierarchical segmentation for proposing candidate objects is also investigated [141].

They proposed a multi-branch algorithm where each branch classifies image regions

using a binary SVM classifier. For each class, the new branches are generated and
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this routine continues. At the end, the remaining segments are greedily merged to

create a single segment. The main contributions are training the binary classifiers for

each branch of the tree, and using linear SVM with weighted loss for each branch.

These weights are determined using the wrongly classified regions in the sibling of

this branch, to balance the weights of positive and negative regions. The classification

threshold for each branch is also determined using the previous levels classifiers.

However, having an e�cient grouping strategy to combine initial regions of the

image is important, the e↵ective distance metric has its significance for finding object

proposals. By defining a distance metric that considers the amount of complexity in

each group of superpixels, the object proposal generation research is advanced [150].

This method calculates color and texture distance between groups of superpixels by

using the color histogram and Gaussian derivatives. The Floyd Warshal algorithm [1]

is also used to calculate the distance of superpixels from a connectivity graph with

the intuition that superpixels belong to an object are mostly close to each other. The

level of complexity between two groups is determined by calculating their minimum

and maximum color and texture distance. A small maximum distance means that

both of them are similar and the complexity is low. On the other hand, a small

minimum means that there are at least two similar superpixels in these groups which

means that the complexity is high. By defining a complexity metric, a bottom-up

merging algorithm has been utilized to group superpixels.

Instead of having a fixed similarity metric for the regions in the image, Chen

et al. [29] have extracted the local regions by using the method presented in [53].

They utilized Fast R-CNN [58] for extracting the features for each of these local

regions. Then they designed a Recursive Neural Network (RNN) for grouping these

local regions and assigning an objectness score for their corresponding proposals.

2.2.2 Object Detection

After finding a set of candidate objects in the image, the type of each candidate ob-

ject should be determined. Over the years researchers have proposed many di↵erent

methods for detecting objects in the image which can be categorized into four main

groups of template matching based methods [20, 76, 13, 100], knowledge based meth-

ods [133, 25, 132], OBIA based methods, and machine learning based methods [31].
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Our focus is on machine learning based methods for detecting the type of the

object in an image. These methods contain two major parts of representing the

image in a way that computer can understand, and apply image classification on

those representations [31]. Since an extensive study on various image representation

methods is provided in Section 2.1, the classification techniques utilized in this report

are described in this subsection.

Support Vector Machine (SVM) [138] is one of the most famous machine learning

algorithm for object detection. The original SVM is a binary classifier which finds a

decision line with the maximum margin distance from instances of both classes. There

are techniques to make SVM suitable for multi-class classification problems among

which the one-versus-rest is the most popular one. In this technique, everytime SVM

choses one of the classes as positive and all others as negative and iterate this routine

for all classes to find all the decision boundaries. Some of the object detection methods

that have utilized SVM as their classifier are [37, 64].

Artificial Neural Networks (ANNs) [91] or specifically Multi Layer Perceptron

networks are among the widely used classifiers in object detection domain. ANNs

contain three main layers of input, hidden, and output. Each of these are made up

from sets of processing nodes which perform linear operation on their input signal, and

add some nonelinearity to create their output. Each node (neuron) may be connected

to all others in the next layer, or to a subset of them. A schematic diagram of a simple

ANN is displayed in Figure 2.7 where X and W are input features and networks

weights for the first layer respectively and f is the non-linearity function which can

be either of Sigmoid, Tanh or ReLU. In the training phase, each of these connections

are weighted with random numbers which will be tuned based on the training set.

This classifier is utilized in many object detection methods such as [3, 35, 128].

2.2.3 Object Localization

Finding a set of bounding boxes using one of the object proposal generation methods

and trying to improve its localization is a practice in object localization [30]. To

capture the localization, they used superpixel tightness as a measure. In their method,

at first they aligned the bounding box to be the tightest bounding box around the

object. To do so, at first they limited the bounding box to the area which is covered
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Figure 2.7: Samples of Gestalt psychology laws obtained from: [140, 15]

by all superpixels which are fully laid in the bounding box. Then they add the

superpixels that have overlap with the bounding box gradually, until they get to

a box close to the current box but tighter. In order to improve their localization,

they used straddling expansion with multiple thresholds. They select a set of five

thresholds, and they add all the superpixels whose overlaps with the bounding box is

greater than each threshold. At the end, they used a non-maximum suppression to

come up with a single bounding box per object.

By extracting the candidate objects using the Selective Search algorithm [137],

and describing them either by using a combination of SIFT and Fisher Vectors, or

a deep representation, a weakly supervised object localization is proposed [33]. For

finding the deep representation, they utilized the RCNN approach [59] using the

AlexNet[90] network. They proposed an approach for object localization, referred to

as Multiple Instance Learning (MIL) approach, which iteratively selects the highest

scoring detections as the positive training examples and trains the detection models.

Considering the observation that weakly supervised object localization methods

work better images with bigger objects, [127] proposed an object localization module

using MIL approach which devide the training images based on the estimated size

of the objects. In this method, the object proposal generation module [159] has

been used to find bounding boxes in the image. These areas are described using deep

learning network of AlexNet [90]. They used the Kernel Ridge Regressor (KRR) [126]

to estimate the size of the objects, and divide their training samples to some batches

based on the object size. For training on each batch, all of the samples whose objects’

size is greater than the threshold for that batch are used for finetuning the trained
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model obtained from the samples with the bigger objects.

2.2.4 Object Recognition

By adopting three main phases of generating object proposals, representing them, and

training a linear SVM classifier for each object class, Girshik et al. have proposed

their object recognition method [59]. They extract a predefined number of object

proposals from each image using the selective search algorithm and warp them into a

bounding box suitable for Ca↵e [80]. They treat the object proposals that their IoU

overlap with a ground truth example is higher than a threshold as positive samples

and the others as negative samples. They optimize a linear SVM for each class of the

objects using standard hard negative mining method.

After extracting outputs of convolutional layers of CNN, a max-pooling and de-

convolution upsampling have been performed to create features with the same size.

Then a convolution layer has been applied to these features for capturing more se-

mantics. These features are merged using local response normalization for creating

a hyper feature map. This feature map has been used by a convolutional network

to find object proposals. They added ROI pooling, followed by a convolution and a

fully connected layer into their designed network. The output of this layer, which are

bounding boxes and their scores, are fed into another network for object recognition

which has a convolutional layer, and two fully connected layers. The final output

of their designed network are object bounding boxes and their scores regarding each

class [89] .

DeepID-Net has used the selective search algorithm to find some bounding boxes in

the image [113]. It has used RCNN to reject boxes which are located in the background

of the image and defined and utilized the DeepID-Net network and introduced the

def-pooling layers. The output of this network is scores for di↵erent object classes.

It also got the results of the image classification deep network and used them as a

contextual information for refining their scores using linear SVM. At the end, they

perform model averaging to improve the performance of their method. The final

boxes are fed into a bounding box regression from RCNN to find a better box around

the image.

Learning an object detector which can determine the location of the object as well
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as the type of the object is the aim of much research [17]. For this purpose, they used

Selective Search algorithm to find a number of bounding boxes inside each training

image. They defined an optimization problem which learns the parameters of the

detector, and an optimization problem to predict the location and type of the object

in an image. In their objective function, they used CNN features for each box of the

image as its feature vector for calculating the similarity of two boxes. For the margin

loss, they used the soft-max latent SVM to be able to find boxes for multiple instances

of an object, and it makes their objective function less sensible to box initialization.

The latent SVM in combination with the DeCAF features of the CNN network

is utilized in order to detect objects in an image [16]. Their key contribution is in

applying two constraints on the loss function.The additional constraints are based

on two hypotheses: (a) If a box contains an object, its horizontally mirrored version

also contains the same object. (b) It is not possible to have two di↵erent objects in

a single spot of the image.

In order to do object detection, an energy function is defined with three sub

modules that utilize the information in the superpixels of the image [151]. The goal is

finding a set of labels for superpixels in the image that minimizes this energy function.

(a) One module is the appearance of the superpixel which is calculated using RCNN

scoring for a number of regions in the image. The score for each superpixel is the

summation over the score of all regions that have that superpixel. (b) The second

module is a smoothness term which is defined using the idea that the neighboring

superpixels should have similar labels and in the same time their appearance should

be similar. (c) The third module optimizes the number of labels in the image, since

there is a preferance for having concise and precise labels for each area of the image.

The use of image segmentation information for improving object detection perfor-

mance is studied by Zhu et al. [158]. They used RCNN in order to get the candidate

boxes and their scores. In order to have the segment information of the images, they

used CPMC method [24]. They defined an optimization algorithm which considers

the appearance of each candidate box, the features of the segment which the candi-

date box lays in, and the context information of the candidate box. For appearance,

they used the same feature vector as RCNN. For segment features, they calculate

histograms for the number of segment pixels inside and outside the candidate box,
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the number of background pixels inside or outside of the candidate box, IoU of the

candidate box and the box surrounding the segment, and scores of O2P classifiers

for each bounding box and segment [23]. To capture the context information, they

enlarged the bounding boxes (Ground truth for training and candidate box for test)

by a predefined factor. Then they trained network using these bounding boxes, whose

labels are the labels of the box that we already considered. The feature of last fully

connected layer of CNN is the context information. They used latent SVM in order

to find the best set of candidate segments in images. In order to add negative sam-

ples, they applied hard negative mining technique. As a post-processing step, they

used the bounding box regression method of RCNN in an iterative fashion. In each

iteration, they modify scores based the regressed boxes, if a box has changed more

than 20%.

For obtaining coarse sparselets for encoding parts of the objects and learning a

dictionary of sparselets, Cheng et al. used a single layer autoencoder [32]. They used

these coarse sparselets as initial value for a single layer neural network, where the last

layer is a softmax layer. By training this neural network, they find the fine sparselets

and the activation vectors. Using these parameters, they can find the response of

each feature vector for di↵erent part models.

2.3 Preliminaries

So far in this chapter, we have talked about existing methods for image representa-

tion and object localization which provided the base for our studies in the following

chapters. In this section, a brief review of some of the techniques that are adapted in

our proposed methods such as Gestalt laws of grouping (2.3.1), Generic Edge Tokens

(2.3.2), Canny edge detection (2.3.3), Hough transform (2.3.4), and the details of the

utilized datasets (2.3.5) are provided.

2.3.1 Gestalt Laws

Gestalt psychology school of thoughts has began by the research on the perception

of pure motion by Wertheimer et al. [146]. Since then many researches have been

performed on various aspects of human visual psychology for perceptual grouping and
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enriched the Gestalt Laws. Among the vast amount of grouping rules introduced, we

focus on the six perceptual grouping rules for contour integration.

Figure 2.8: Samples of Gestalt psychology laws obtained from: [140, 15]

One of the tasks of human vision is grouping parts of the projected image from

an object, which is simplified to contour integration whenever the object’s boundary

is a closed curve. Transferring to computer vision, this task becomes more di�cult

because of objects’ occlusion and contour loss due to the poor contrast in the image.

As a result, the computer will perceive fragmented curves each of which is a candidate

for continuing the current contour. Researchers in computer vision have considered

oriented edges of the image as primitives to apply grouping laws and find the object’s

boundary [140]. This is the list of Gestalt laws for contour integration with their

definitions:

• Proximity: The closer elements to each other are stronger for grouping. The

proximity example in Figure 2.8 shows the grouping of dots that are closer to

each other.

• Similarity: The similar elements are more likely to be grouped together. The

similarity example in Figure 2.8 shows that dots with similar size are grouped

together.

• Good continuation: The elements tend to be grouped to form smoothed con-

tours. In the example for good continuation (Figure 2.8), instead of observing

to ”c” characters, we observe two lines that are crossing each other.

• Convexity: The occluded contours that can be completed to create a convex

shape are stronger candidates for grouping comparing to those which may result

in concave shapes. In the first convexity example of Figure 2.8, we group the

black shapes together, while in the second one which has the same shape with
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alternate color we group the white ones. This happens because of the convex

edges of these areas in these examples.

• Closure: This law can be categorized as part of the good continuation law, but

with determination of the final perception of the elements. We see two moon

shapes in the closure example of Figure 2.8 because of their formation of a full

shape.

• Symmetry and parallelism: While symmetry is considered as a subrule of

good continuation and convexity for creatinng a good shape, parallelism deter-

mines the perceptual simplicity of lines. Our vision groups symmetric lines and

parallel lines together in the Figure 2.8’s examples provided for symmetry and

parallelism.

2.3.2 Generic Edge Tokens

Generic Edge Tokens (GETs) are perceptual segments of the image which are ex-

tracted using the PCPG (Perceptual Curve Partitioning and Grouping) package [56].

A set of psychological studies inspired the GET extraction procedure which is called

Gestalt Laws [140]. These laws describe the human vision system characteristics

in understanding the objects and are categorized into six major laws of continuity,

symmetry, simplicity, closure, similarity, and proximity.

For extracting the GETs, the gray scale image is scanned horizontally and verti-

cally according to Figure 2.9to find its objects edges. For horizontal scanning, some

of the rows in the pixel map of the image are selected to be processed for finding

the edge. The number of skipped rows is a parameter of the PCPG package which is

adjustable. In each row, the pixels where their values are di↵erent from their neigh-

bors are selected as an edge pixel. For each of these pixels, its 8-neighbor pixels are

investigated to find the trace which this pixel belongs to. This procedure continues to

find all of the pixels in the found trace. The same routine applies to all of the pixels

in that row. For vertical scanning, a similar method is used for the selected columns

of the pixel map. In the end of this procedure, the edge traces of the objects in the

image are found.

These traces are investigated to find the points where the curvature of the edge
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Figure 2.9: The main procedure of PCPG package for finding, the edge map, the
Generic Edge Tokens and the Curve Partitioning Points.

changes, Curve Partitioning Points (CPPs). There are two types of CPPs categorized

into Strong CPPs and Weak CPPs which are represented in Figure 2.9. The strong

CPPs can be found by just comparing the sign of derivatives, dx and dy, for the

curve in left side of the point to the curve in the right (i.e. zero-crossing), while

for detecting weak CPPs the Order Preserving Arctangent Bin Sequence (OPABS)

technique is used [72]. Using OPABS a histogram of arctangent values of derivatives

in each pixel is obtained. To create this histogram, the arctangent values are classified

into eight categories, each of which corresponds to a bin in histogram. This histogram

signifies the evidence for presence of a weak CPP.

By applying these techniques the CPP points of the image are obtained and cat-

egorized into eight groups of Figure 2.9. The first six categories are connections of

two curve edges, while one of them is the connection of a curve and a line, and the

other one is the connection of two lines.

When the CPPs are found in the image, the curves between CPPs form the set

of GETs of the image. These GETs are categorized into eight groups which are
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represented in Table 2.1. They are discernible based on their curvature and rotation

values. There are four groups of curve GETs and four groups of line GETs.

Table 2.1: Definition of 8 groups of GETs based on the properties of Tangent function
set ([56]).

GET Name f(x) '(x) f́(x) '́(x)

CS1 M+ M+ M+ M�

CS2 M� M� M+ M�

CS3 M+ M+ M� M+

CS4 M� M� M� M+

LS1 M� M� C c

LS2 M+ M+ C c

LS3 C N/A 1 0

LS4 N/A C 0 1

The GETs are classified by considering monotonic characteristics of the Tangent

Function set of S =
n
f(x),'(x), f́(x), '́(x)

o
. In this set, if y = f(x) is the corre-

sponding function for a curve, the x = '(y) is the inverse of the curvature function

and f́(x) and '́(x) are the first derivatives of f(x) and '(x) respectively. As an ex-

ample, LS1 is a line with negative slope, f(x) = (M�)x, where its inverse function

also has a negative slope, '(x) = (1/(M�))x, and since they are line their derivations

are constant values.

Figure 2.10: A sample of PCPG data structures for a trace with length = 2.
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By using the PCPG package, we end up to have data structures for CPPs and

GETs. We have an array of CPPs where each segment has the xy-coordination of a

CPP point in the image coordination system. We also have the information for the

left and right GETs which are connected through that CPP. We also have an array of

GETs where each segment has general information about a GET such as curvature,

coordination of the start and end points, type, and so on, as well as information about

two CPPs in both sides of the GET. A sample of these data structures for a trace

with length = 2 is represented in Figure 2.10.

As an example, consider the trace in Figure 2.10. Starting from the CPPs without

any GET in their left (CPP a), we trace the edge. In the right side of this CPP, we

have GET 1 whose type is CS1. The ending point for this GET, is CPP b. Since we

are looking for Bigrams (traces with two GETs), we have to continue tracing the edge

(if the length of trace is greater than or equal to two). The GET 2 is located in the

right side of the CPP b whose type is CS3 and ends in the CPP c. For this trace, we

have information about the types of its constituent GETs with their lengths, and the

coordination of the its ending points.

2.3.3 Canny Edge Detection

Canny is amongst the most popular edge detection methods in computer vision which

finds clean edges that are connected to each other [22]. This method starts with a

preprocessing step, then it calculates the gradients and forms the edges.

Since extracting edges is prone to noises in capturaing the image, as a preprocess-

ing step, the image must be smoothed by applying a filter such as Gaussian filter.

This step is usually not part of the Canny algorithm and is done separately before

extracting the edges.

Canny algorithm processes the image in two di↵erent phases to find all the edge

pixels in the image. In the first step, it utilizes a upper threshold value to extract

strong edge pixels, while in the second phase, it utilizes a lower threshold value to

find edge pixels that have weaker indicators.

In the first phase, magnitude and direction of gradient for all the pixels in the

image is calculated according to Eq. (2.3) using the sobel edge detector. The pixel

magnitude will be compared to the upper threshold to determine if a pixel has laid on
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an edge or not. The direction is perpendicular to the edge direction and determines

the edge’s orientation. In these equations, Gx and Gy are the first derivatives in the

current location in x and y directions.

m =
q

G2
x +G2

y ✓ = arctan

✓
Gy

Gx

◆
(2.3)

After calculating gradient’s magnitude and direction, Canny investigates all pixels

and performs non-maximum suppression to find the edge pixels. Two neighbors of

each pixel are selected based on the pixel’s gradient direction. The pixel will be chosen

as an edge pixel, if its magnitude is greater than these neighbor pixels’ magnitudes

and the upper threshold.

In the last step, the pixels with less confidence on being edge pixels must be

detected and added to the edge map. In this phase, for each edge pixel, its neighbors

are selected according to its gradient’s direction. If either of the neighbors’ gradient

direction is similar to the edge pixel, and its magnitude is greater than the lower

threshold while it is the maximum among its neighbors (non-maximum suppression

on the neighbor pixels), it will be marked as edge pixel.

2.3.4 Hough Transform

The Hough transform extract instances of a certain shape from the image [40]. In

this technique, all instances of a specific shape which pass each line are extracted

and among which the one with maximum vote is selected as the shape. The original

Hough transform have considered only line shape, while in later researches circular

and elliptical shapes are also examined. Since in this thesis we are extracting edge

segments with line shape, we will cover the way Hough transform is applied to extract

lines from the edge map.

Line’s definition in parameter space (y = mx+b) produces very large values for m

in the cases of vertical lines which causes calculation problems. To avoid this scenario,

Duda et al have defined lines in its Hesse normal form (Eq. (2.4)) in which r is the

radius from the origin and ✓ is the angle.

r = x cos ✓ + y sin ✓ (2.4)

Several lines in various angles will be passed through each edge pixel and their radiuses

(r) and angles (✓) are calculated. An accumulator bin will be generated for each pair



37

of (r, ✓) whose values will be incremented whenever a new line with those parameters

are found. At the end, the pairs with maximum occurances are selected as the existing

lines in the image’s edge map.

2.3.5 Datasets

We have selected the following four datasets to evaluate our methods. The first two

datasets contain multi-labeled images while the two latter are single-labeled datasets.

Pascal VOC 2007 was published for Pascal Visual Object Classes challenge in

2007 with the goal of recognizing objects from realistic images. It contains twenty

classes of images with their labels, including person, animals, vehicles, and indoor

objects. The main task in classification challenge is predicting the presence or absence

of an object in the test image. This dataset includes 2501 images for training, and

4952 images for the test [47].

Pascal VOC 2012 was published for the Pascal challenge in 2012 to recognize

objects from a set of real images. It contains the same classes as Pascal VOC 2007

while the images and their quantities have changed. There are 5717 training images

and 5823 validation images available for this dataset. Similar to Pascal VOC 2007, for

each single image, multiple labels have been provided. In all experiments regarding

this dataset, we have chosen its validation set as the test set while the learning process

does not have any information about the validation set [48].

Caltech 101 contains 102 di↵erent object categories, each of which has between

40 and 800 images approximately comprising 8677 images for all 102 categories. Im-

ages in this dataset come with the approximate size of 300⇥ 200 pixels. Two of the

common evaluation settings for this dataset is choosing 15 or 30 images as training

samples of each class and at most 50 images per class for test [51].

Caltech 256 includes 256 classes of objects, with a class of clutter, each of which

includes at least 80 images with a total of 30607 images across all classes. The image’s

dimensions and nature are similar to Caltech 101 with removing the rotation artifacts.

We have chosen 15 or 30 images per class for training purposes and up to 50 images

for the test [62].
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2.4 Summary

Having studied the summarized researches on the object recognition problem, each

of which targeted the problem partially or fully, we came up with the conclusion

that the object recognition is still a challenging topic, especially in the tasks related

to image representation, and localization. Despite similarly-to-human performance

of the image representation techniques using deep neural networks, this is still an

open problem to find methods that are working as good on small datasets and in

applications with limited computing power. On the other hand, using the deep-

learning-based image representation techniques, the object recognition still does not

perform similarly to human and one of its main reasons is lack of accurate object

localization [59]. This understanding has motivated us for focusing on these two

areas and find a way to solve them. First, we have targetted the image representation

problem and proposed a local image representation technique to solve that issue.

Second, we focused on object localization after the objects in the image are detected.

This will improve the performance of the entire object recognition pipeline. The

details about each of these methods are presented in the following chapters of this

report.



Chapter 3

Image Classification by N-grams of Shape Words and Spatial

Pyramids1

3.1 Introduction

As discussed in Literature Review (Chapter 2), object detection methods follow four

di↵erent ways for finding an object in the image which are: Template Matching

based methods, Knowledge based methods, Object based Image Analysis (OBIA)

based methods and Machine Learning based methods [31]. In this chapter the focus

is on Machine Learning based methods which contain three main steps of image

representation, representation fusion, and image classification.

In this research, we introduced a local representation for the image based on its

perceptual features. In the proposed methods, we extract the Generic Edge Tokens

(GETs) of the image and describe traces in the image by applying the N-gram notation

on GETs’ combinations. In this step, we have a dictionary of visual words i.e. the

N-grams of the image. These visual words are used for describing the image using

the Bag of Words technique. By introducing a Shape Pyramid structure from the

dictionaries of the N-grams, a hierarchical structure for our bag of visual words is

generated.

The image representation obtained from the Shape Pyramid structure shows more

accurate results in image classification task in comparison with local image represen-

tation methods. To achieve further improvements in our image representation, we add

a hierarchical structure on selection of the local patches of the image by using the

Spatial Pyramid structure applied on top of the Shape Pyramid structure. By com-

bining these pyramids, we came up with a Spatio-Shape Pyramid structure and used

it for describing the image. The experimental results show performance improvement

resulted from using this structure in the proposed method.

1The contents of this chapter is partially published in [46, 45].
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Figure 3.1: The main diagram of the image representation methods. By changing the
dictionary and the descriptive blocks from flat to hierarchical, we have improved our
proposed method.

We used image classification as evaluation platform for our proposed methods as

it is the last step in Machine Learning based Object Detection. Our experimental

results fall into two parts of parameter evaluation, and comparison. In the first part,

we chose the small dataset of Wang [143] for evaluating the parameter settings of

the proposed methods. In the second part, we compared our proposed methods with

the well-known methods on the benchmark datasets of Caltech 101 [51] and Caltech

256 [62]. We provided detailed discussion on the performance of the proposed methods

on each dataset as well as presenting class-based comparisons.

Following in this chapter, we introduced and discussed the proposed image rep-

resentation methods by illustrating the N-gram representation (Section 3.2.1), Shape

Pyramid (Section 3.2.2), and Spatial Pyramid structures (Section 3.2.4) and their

representations (Sections 3.2.3 and 3.2.5). We also evaluated the proposed methods

on benchmark datasets and compared our proposed methods to the well-known meth-

ods of the image representation in the experimental results (Section 3.3). Finally, a

discussion on the advantages and disadvantages of the proposed methods as well as

possible future work is provided.

3.2 GET-CPP based Representation Methods

In this research, we propose a local image representation method based on the per-

ceptual features of the image. In this method we use the well-known N-gram model
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of natural language processing for describing the image. In this analogy, the image,

its made-up edge traces and Generic Edge Tokens (GETs), are equivalent to the doc-

ument, its sentences, and its words respectively. In this context, we are considering

word N-grams of the image in which GETs are perceptual form segments of the im-

age and used to construct the N-gram visual words. These visual words are encoded

using the Shape Pyramid and the Spatio-Shape Pyramid structure for representing

the image. The entire routine for image representation is summarized in Figure 3.1.

3.2.1 N-gram Representation

The BoVW technique showed improvement in image representation methods. This

technique encodes the image using a set of visual words, a dictionary, which is called

the Bag of Visual Words. There are many ways to find this dictionary such as clus-

tering the local patches of the images in the training set to several clusters where each

word is the representative of one cluster. When the dictionary is built, an encoding

method will be applied to the images to represent them using this predetermined

dictionary.

In this method, we applied an innovative way to create this dictionary. In our

method, we extract N-grams of the image and treat them as the visual words. The

idea of using N-grams as visual words for representing the image came from the N-

gram models of Natural Language Processing (NLP). Word N-grams in NLP are sets

of words that are happening together in a sliding window of sizeN . This window slides

over the entire corpus to find the frequent N-grams. We use the same terminology

for sets of N GETs that are connected to each other on the edge traces of the image.

After using the PCPG package that extracts the perceptual features of the image

and organizes them into its GETs and CPPs, we are able to describe the edge traces

in the image which are sets of GETs connected through several CPPs. Each trace

consists of some GETs which are connected through several CPPs. If we treat an

image as a document, each trace in the image corresponds to a sentence in the doc-

ument. By this assumption, since each sentence can be described using the N-grams

language model [11], each trace can be described using the visual N-grams as well.

To extract the visual N-grams of the image we have utilized Mukanova’s definition

in which each N-gram is a set of N connected GETs [107]. The very basic N-grams are
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Algorithm 3.1. The algorithm to parse a single trace in an image

1: procedure ParseTrace(item Trace, item N)

2: . Input: The trace that needs to be parsed to its N -grams

3: . Input: Length of required N-grams

4: . Output: The set of N -grams exists in the trace

5: N �Grams set = � . N-grams found in the trace

6: while Trace.Length > N � 1 do

7: CPPs set = � . CPPs in the current N-gram

8: GETs set = � . GETs in the current N-gram

9: CPPs set = CPPs set [ CPP 0 . Select the current CPP

10: i = 0

11: while i < N do . Find N consecutive GETs

12: GETs set = GETs set [GET i

13: CPPs set = CPPs set [ CPP i+ 1

14: i = i+ 1

15: Trace = Trace� CPP0, GET0 . Slide the window for one GET

16: N � gram = CPPs set [GETs set

17: N �Grams set = N �Grams set [N � gram

defined as Unigrams which are N-grams with length = 1, i.e. sets with a single GET.

To extract N-grams of the image, we follow the method described in Algorithm 3.1.

In this method, a window with the size of N GETs slides over each edge trace in the

image with the stride of one GET and all the GETs inside this window create a set

that represents a single n-gram. This routine continues until the remaining length of

the trace is less than N .

Each extracted Bigram (an N-gram with N = 2) from the image is categorized

into one of the classes introduced in Table 3.1, like the clustering methods of the

BoVW technique. These classes of Bigrams are defined based on the characteristics

of the GET segments of each Bigram. The first characteristic which is considered

is the type of the constituent GETs. If the Bigram consists of two curves, its class

name comes from the similar objects in the real environment which can be observed

from the first set of Bigrams in Table 3.1 and defined based on types of the GETs.
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Figure 3.2: An N-gram with length = 7 is named to: Seagull+CurveObtuseAngle+
FlatAngle+HalfMoon+HalfMoon+HalfMoon

Whenever at least one of the GETs from the Bigram is not a curve, the naming

system uses the angle between the GETs to name the Bigram which can be seen from

the rows two and three of Table 3.1. In these cases, if we have a curve GET in our

Bigram, we use the word curve in the name of the category.

These categories of Bigrams are used for naming the longer N-grams. Each N-

gram is divided into its constituent Bigrams. The name of this N-gram comes from

the concatenation of the names of categories of its constituent Bigrams. An example

of this naming method is represented in Figure 3.2. In the very first step, all the

existing Bigrams in the N-gram are extracted and their categories are determined.

The name of the N-gram is a concatenation of the category names of its constituent

Bigrams. Algorithm 3.1 presents the pseudo code of this routine. Although we have

not utilized this naming system in our thesis, it is an important step to bridge the

gap between objects description from human and their visual display.

As the length of the N-gram increases, the likelihood of its occurrence decreases

which causes sparsity in the image representation that considers these N-grams. To

tackle this issue, in our experiments we have selected the N-grams whose lengths

are less than or equal to two GETs, i.e. Unigrams and Bigrams, to have a more

comprehensive bag of words while keeping the system robust to noises in the image and

sparsity of the feature vectors. A set consisting of Unigrams and Bigrams is treated

as the dictionary for encoding the image content. This set describes the shape of the

objects by encoding them using the visual words which are the perceptual segments

of their edges. An image representation which considers this set as its dictionary
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Table 3.1: A set of possible Bigrams for describing the shape of an image.

Bigram GET1 GET2 ✓ Name

CS CS ' 90 Half moon

CS CS < 90 Leaf

CS CS ' 0 Seagull

CS CS < 90 Shark fin

CS CS ' 180 S-Shape

CS LS < 90 Curve Acute Angle

CS LS ' 90 Curve Right Angle

CS LS > 90 Curve Obtuse Angle

CS LS ' 180 Curve Flat Angle

LS LS < 90 Acute Angle

LS LS ' 90 Right Angle

LS LS > 90 Obtuse Angle

LS LS ' 180 Flat Angle

creates a baseline perceptual representation for the image, but these flat dictionaries

result in representations which are sensitive to noise, scaling, and occlusion. E.g. a

curve visual word in a specific scale will be a line visual word in another scale. To

solve this issue, we have considered a hierarchical dictionary which is introduced as

Shape Pyramid in the next section.

3.2.2 Shape Pyramid

Although by defining the BoVW, containing Unigrams and Bigrams of the image,

we can encode the shape of the objects, considering a hierarchy of visual words im-

proves the performance of the proposed method. In this section, the Shape Pyramid

structure is defined and investigated.

The reason behind considering a hierarchy of visual words in our representation

is enhancing the robustness of the proposed method against changes in the scale of

the image. Due to scaling, some of the curve visual words with a small amount of

curvature may turn into lines. On the other hand, noise in the environment or noise

in capturing the image and extracting the GETs have the same e↵ect on the type of
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Figure 3.3: The Shape Pyramid structure.

extracted GETs. The Shape Pyramid structure (represented in Figure 3.3) improves

the base model to some extent.

At the first level, we assume that it is possible to represent all the edges of the ob-

ject by using only Unigram visual words. This is a valid assumption since Unigrams

are basic segments of the edges (GETs) and they can represent the edges together.

The detail definition of GETs are reviewed in Section 2.3.2 where the GETs are clas-

sified to eight groups of lines and curves according to their directions and curvatures.

At this level, we have also defined Uninoise which is a set of Unigrams whose lengths

are less than a predefined threshold. These noise Unigrams are treated in a similar

way and as a unique visual word. This visual word helps us to represent areas of the

image with simple texture such as the texture of the grass region of the image.

The dictionary of the second level of the pyramid not only has the Unigrams, but

also has very simple Bigrams of the image whose constituent GETs are just lines.

In this situation, we encode the relationship of line visual words together, while we

encode the curve edges just by using the Unigrams. This level adds a higher level of

representation by considering more visual words. In this level, we add a visual word

which is called Binoise. This visual word is the representative for all Bigrams shorter

than a predefined threshold. This visual word provides a tool for representing areas

with more complex texture such as leaves.
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The third level of the Shape Pyramid has more Bigrams to represent the relation-

ship between two curves as well as the relationship between two lines. Using this set

of visual words, we can represent objects which are made of curves such as balls and

the objects which are made of lines such as pens with Bigrams, while they previously

were encoded by Unigrams only. In this level, the Binoise visual word is represen-

tative of nine types of small Bigrams, where this visual word represented just four

small Bigrams in the previous level.

By adding the Bigrams that consist of a line and a curve, the set of visual words

becomes more mature. This means that we can represent almost everything with this

dictionary. From level two to level four of the pyramid, the Binoise visual word is

the representative for di↵erent sets of the small Bigrams depending on the Bigrams

which are considered in each level. For instance, in the fourth level of the pyramid,

the Binoise visual word is representative of 13 small Bigrams.

Each level of this pyramid, by itself, can represent the shape of objects in the scene.

Although, by having the hierarchy structure in our representation, we may have four

di↵erent representations for an object in the image to consider di↵erent scales of the

objects in the scene and resist against noise. On the other hand, di↵erent levels of

this pyramid have 9, 14, 19, and 23 visual words which means that each level has a

di↵erent capability for describing the scene from which the higher level is the more

descriptive one, and the lower level provides the very basic description for the objects

in the scene.

3.2.3 Shape Pyramid based Representation

In this section, the proposed image representation method using the Shape Pyramid

structure is illustrated. At first, the basic idea of representing an image using a

flat dictionary is discussed, then the proposed Shape Pyramid based representation

method is introduced.

The proposed image representation method is a local image descriptor. This

means that it describes the image using the descriptors of its local patches. These

local patches are obtained by dividing the image into N ⇥N non-overlapping blocks,

where each block is a local patch. To describe each block, we use a dictionary with M

visual words. The pseudo code of describing an image using a predefined dictionary
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Algorithm 3.2. Basic Image Representation

1: procedure BasicRepresentation(item GETMap,item Dictionary)

2: . Input: Divided GET Map of the image

3: . Input: Dictionary of Visual Words

4: . Output: Image Representation Histogram

5: N = Number of Local Patches

6: M = Dictionary Size

7: for j = 1 ! N ⇥N do

8: for i = 1 ! M do

9: SumFrequency = SumFrequency + fi,j

10: . Summation of frequencies of each word in the image.

11: SumLength = SumLength+ li,j

12: . Summation of lengths of each word in the image.

13: Frequency = [Frequency, fi,j ]

14: Length = [Length, li,j ]

15: Frequency = Frequency/SumFrequency

16: . Normalizing the frequency of each word in the patch.

17: Length = Length/SumLength

18: . Normalizing the length of each word in the patch.

19: Histogram = [Histogram,Frequency, Length]

20: . Concatenating the normalized frequency and length of the current patch with

others.

is presented in Algorithm 3.2.

For each of these local patches, we calculate two metrics of frequency and length.

The frequency represents the number of occurrences for each of the visual words in

that local patch, while the length shows the total length of each visual word in terms

of the pixels. Since, on one hand, the range of length values is di↵erent from the range

of the frequency values, and on the other hand, because the images’ dimensions are

di↵erent, the length values may be very di↵erent and we need to apply normalization

on both metrics.

NormalizedFrequency of visual word i in the local patch j is calculated using the

Eq. (3.1) where M is the number of visual words in the dictionary. In this equation,
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Algorithm 3.3. Shape Pyramid based Image Representation

1: procedure ShapeRepresentation(item GETMap,item ShapePyramid)

2: . Input: Divided GET Map of the image

3: . Input: Shape Pyramid structure

4: . Output: Image Representation Histogram

5: L = Shape Hierarchy Levels

6: for l = 1 ! L do

7: FindDictionaryl

8: RepLevell = BasicRepresentation(GETMap,Dictionaryl)

9: Histogram = [Histogram,RepLevell]

the number of occurrences of the selected visual word in the current local patch, fi,j,

is divided into the total number of occurrences of all the visual words in that local

patch.

NormalizedFrequencyi,j =
fi,jPM
k=1

fk,j
(3.1)

The NormalizedLength of visual word i in local patch j, when the size of the dic-

tionary is M , is calculated by dividing the length of the selected visual word in the

current local patch, li,j, into the total number of edge pixels in that local patch. The

formula for this calculation is presented in Eq. (3.2).

NormalizedLengthi,j =
li,jPM
k=1

lk,j
(3.2)

To represent an image using the Shape Pyramid, we create four basic representations,

one for each level of the Shape Pyramid. This means that we represent an image using

four di↵erent dictionaries corresponding to di↵erent sets of visual words for di↵erent

levels. The final representation for the image is obtained by concatenating these

basic representations together. The general algorithm of this method is represented

in Algorithm 3.3.

The Shape Pyramid based representation module su↵ers from the lack of location

information. Each local patch is described independently and their relationship to one

another is ignored. To mitigate this issue, we have considered integrating the spatial

pyramid coding method into our image representation method which is described in

the next section.
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Figure 3.4: The Spatio-Shape Pyramid structure.

3.2.4 Spatio-Shape Pyramid

Although the Shape Pyramid structure helps us to improve the accuracy of image clas-

sification, we may have more improvement by applying the Spatial Pyramid structure

to create the Spatio-Shape Pyramid which is represented in Figure 3.4. This pyramid

brings the advantages of both Spatial and Shape pyramids in a single pyramid of

their combination.

The Spatial Pyramid structure helps us to provide a coarse to fine representation

for the image. In the first level of this pyramid, the image is considered as a local

patch for description to provide a global understanding of the image. On the other

hand, in the fourth level of this pyramid, local patches are the smallest local patches

in this structure and provide local information about the image content. In the middle

levels of the Spatial Pyramid, the local patches with the larger size are considered for

description. Using this structure provides both global and local information about

the image. The Spatial Pyramid which is used in this research consists of four levels

where di↵erent levels are divided into N ⇥N blocks where N = 1, 2, 4, 8 correspond

to levels 1 to 4 of the pyramid respectively.

In the definition of the Spatio-Shape Pyramid structure, we assigned a spatial
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layout to each level of the Shape Pyramid to represent the image. This assignment is

performed by considering the size of the local patch and the approximate normalized

size of the visual words in the dictionary. For instance, when the spatial layout with

8⇥ 8 division is considered, the dictionary with only Unigrams and Uninoise is used

for image description. The reason for this choice comes from the idea that using

larger dictionaries will cause a sparse image representation since the probability of

occurrence for longer n-grams in those small patches is trivial.

On the other hand, for describing the image where the local patch equals the entire

image, we considered the largest dictionary which consists of all Unigrams, Bigrams,

Uninoise, and Binoise. In this case, we have more power for describing the image

since we have more visual words.

3.2.5 Spatio-Shape Pyramid based Representation

To represent an image using the Spatio-Shape pyramid which is defined in Sec-

tion 2.1.1, for each level of the pyramid, we have two choices to make: the spatial

layout, and the dictionary. For each level of the Spatio-Shape Pyramid, a basic im-

age representation is obtained where the spatial layout and the dictionary for this

description are selected based on the definition of the Spatio-Shape Pyramid. Af-

ter calculating four basic representations, the final representation for the image is

a concatenation of those basic representations together. The pseudo code for the

Spatio-Shape representation is illustrated in Algorithm 3.4. Although consider-

ing the spatio-shape pyramid improves the performance of the image representation

module, it increases the computation and memory complexity of the image represen-

tation. The choice for considering which of these methods depends on the nature of

the application and its computing power.

3.3 Experimental Results

In this section, we are going to evaluate our proposed methods on the benchmark

datasets. As an evaluation platform, we chose the image classification domain and

performed a set of preprocessing steps to make the testing datasets uniform, in terms

of their dimension and their color scale to be ready for this purpose. We performed

a set of experiments on a small size dataset to figure out which parameters are more
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Algorithm 3.4. Spatio Shape Pyramid based Image Representation

1: procedure SpatioShapeRepresentation(item GETMap,item ShapePyramid,item

SpatialPyramid)

2: . Input: Divided GET Map of the image

3: . Input: Shape Pyramid structure

4: . Input: Spatial Pyramid structure

5: . Output: Image Representation Histogram

6: . S=Spatio Shape Hierarchy Levels

7: S = [Ss, Sl]

8: for l = [Ss, 1] ! [1, Sl] do

9: Divide GETMap Into Ss Local Patches

10: LevelRepl = BasicRepresentation(GETMap,DictionarySl)

11: LevelRep = [LevelRep, LevelRepl]

12: Histogram = [Histogram,LevelRep]

suitable for the experiments. We also compared di↵erent settings of our proposed

methods with other well-known methods for image representation on larger datasets.

The global and class-based comparisons are provided. In our experimental results,

we used ⌫ SV C classifier from the LibSVM package [27] and chose the Radial Ba-

sis Function as the kernel for the SVM classifier. We selected ⌫ to be 0.5 in our

experiments and we chose the Gamma equal to 0.05.

Preprocessing

To perform our evaluation of the proposed methods, we tested our methods on dif-

ferent benchmark datasets which are introduced following in this section. Since the

images in each of these datasets have various dimensions and color scales, and since

the well-known methods that we compare with have some limitations in terms of the

color scale of the images, we chose to perform some preprocessing tasks on the im-

ages to unify their dimension and color. The first task is changing the color scale of

the image. Some images in datasets are in RGB color scale, while most of the com-

pared image representation methods use the images in their grayscale. To be able to

compare our method with other existing methods, and to unify our evaluation, we

have changed all the images in the dataset to grayscale images. After unifying the
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(a)

Figure 3.5: Preprocessing of an image. (a) The left image is in RGB color scale and
changed to Gray scale image of the right. (b) The image with rectangular dimension
(in the left) is transformed to a square image in the right side.

color scale, we make the image dimensions equal. Images in the dataset has di↵erent

dimension values and this makes it hard to process them in a constant way. In this

case, we changed the dimension of the images into a standard dimension of 256⇥256.

In the definition of the images, their dimensions represent the number of pixels in

each row and each column of the image. Figure 3.5 shows an image before and after

the re-sizing process.

3.3.1 Parameter Evaluation

There are some parameters in the proposed image representation methods whose

values may a↵ect its performance. To find the best setting of the proposed method,

we conducted a set of experiments on the small dataset of Wang [143].

The Wang dataset consists of ten classes with a hundred images in each class.

This dataset has classes of urban areas as well as some classes of nature and animals.

It has classes with very well-shaped contents such as Dinosaurs, as well as classes

with clutter areas such as beach and foods.

In the parameter evaluation phase, we used the 10-fold cross validation method [88]

to verify the reliability of the chosen parameters. The evaluation metric which is

utilized in this research, to investigate the parameters’ e↵ects on the performance of

the proposed method, is the accuracy metric which is defined using the Eq. (3.3).

The values of TP, TN, FP, FN are calculated as True Positive, True Negative, False
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Positive, and False Negative samples in each experiment respectively.

Accuracy =
TP + TN

P + N
Precision =

TP

TP + FP
(3.3)

Recall =
TP

TP + FN
F1 = 2⇥ Precision ⇥ Recall

Precision + Recall

In our experimental settings, we chose the threshold on the length of the visual

words to be considered as noise equal to 10 pixels. Considering the smallest local

patch in our experiments, this means that the size of the noise is at most 1/100 of

the size of the patch, where the patch size is 32⇥ 32 pixels, which is reliable.

1. We performed a set of experiments to see which sizes of the local patches, and

which sizes of the dictionary, produce more accurate results and represented

their corresponding results in Figure 3.6. This shows that by reducing the size

of the local patches and dividing the image into more blocks, the accuracy

results of the proposed methods are improved. We also see that considering

more visual words and increasing the size of the dictionary, slightly improves

the accuracy results of the proposed method.

2. We evaluated the number of hierarchy levels for each of the pyramids. We

considered 1,2,3, and 4 levels of hierarchy for the Spatial Pyramid and the

accuracy results are represented in Figure 3.6(a). This shows that increasing

the number of the hierarchy levels improves the accuracy performance of the

proposed method. This behavior was predictable since by adding more levels

of the hierarchy, we add more local information into our representation and

capture the distribution of the visual words more precisely.

To evaluate the number of hierarchy levels of the Shape Pyramid, we selected 1,

2, 3, and 4 levels of the pyramid where one level just consists of 9 visual words

while the pyramid with 4 levels consists of 9, 14, 19, and 23 visual words. The

evaluation results which are represented in Figure 3.6(b) show that the pyramid

with 4 levels of hierarchy produces more accurate representation of images.

Interestingly when we increase the number of blocks (local patches) of the image

from 4 ⇥ 4 to 8 ⇥ 8, the accuracy result of the larger dictionary sizes reduces

slightly. This happens due to the fact that many of the words will not happen in
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(a) (b)

Figure 3.6: (a) The e↵ect of changing the local patch size on the performance of the
proposed methods. (b) The e↵ect of considering di↵erent hierarchy structures for the
utilized Shape and Spatial pyramid.

small regions which makes the representation sparse. Due to this reduction, we

did not keep on dividing the image into smaller local patches, such as dividing

it into 16⇥ 16, and so on.

3.3.2 Comparison

To demonstrate our contribution in this research, we compared our proposed meth-

ods with the well-known local image representation methods of SIFT, SURF, ORB,

BRISK, and BRIEF on the benchmark datasets of Caltech 101 [51], and Caltech

256 [62]. For representing image using these feature vectors, we either used their

own keypoint detection methods; for SIFT, SURF, ORB, and BRISK ; or we used

the FAST keypoint detection method to find the local patches. We created a Bag

of Words with 500 visual words to represent the images using these local descriptors.

We also compared the proposed methods with the deep learning features obtained by

training the AlexNet model [90] using the Ca↵e framework [80] on these datasets.

Caltech 101 is a benchmark dataset for comparing the performance of di↵erent

image processing tasks such as image classification. This dataset consists of 102

classes of images with a di↵erent number of images in each class. In our experiments,

since we wanted to have a uniform distribution of samples per class, we chose at most

50 images from each class as a test set, and the other as the training set, to report
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(a) Caltech 101 (b) Caltech 256

Figure 3.7: Comparison of image representation methods on hard classes for classifi-
cation.

the accuracy results.

Caltech 256 is selected as another benchmark dataset for evaluating the image

representation. This dataset consists of 257 classes of images with a di↵erent number

of images per class. Again, for this dataset, we chose the number of test images per

class equal to 50 at most, and the other images as the training set.

We compared the accuracy results of the proposed and benchmark methods on

classes with the weakest and strongest predictions for at least one image representa-

tion methods. The ideas behind choosing these classes are showing the superiority of

the proposed methods on classes that are hard for other methods to represent, and

to show the similar performance on classes in which other representation methods

perform accurately.

The results of the weakest predictions, hardest categories to classify, are presented

in Figure 3.7 and show that for classes of Scissors and Strawberries (from Caltech

101 dataset) the proposed methods outperform all the others, while for Starfish and

Anchor they work like ORB while they are superior to the others. The reason for

this behavior is the well-shaped objects of these classes which help our representation

to encode images content more accurately. In the case of Dolphins, the proposed

method works weaker than ORB and like BRIEF and BRISK, while they are still

more accurate than SIFT and SURF. The shapes of both objects are rotation sensitive

and have unique shape features (ie. star, and arch shape). The possible reason for
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(a) Caltech 101 (b) Caltech 256

Figure 3.8: Comparison of the image representation methods on classes with higher
accuracy of prediction.

(a) Caltech 101 (b) Caltech 256

Figure 3.9: Comparison of the image representation methods on the number of classes
with more accurate prediction.

this behavior is the fact that ORB employs intensity centroid for strong rotation

invariance property, thus, the accuracy of ORB is higher since it can tolerate shape

variance. Though our GET/CPP has quasi-rotation invariance property, compared to

ORB, it is worthy of improving it in the future. Considering the Caltech 256 dataset,

these results show that the proposed methods provide more than 90% accuracy in

almost all the classes since most of them have well-defined shapes.

In comparison of the methods on the easiest classes (from Caltech 101 dataset)

to predict, presented in Figure 3.8, the proposed methods provide 100% accuracy for

Car side class while their accuracy on other classes is more than 94% which is better

than SIFT and SURF in general and like the others. A similar behavior is observable

from the results of the representation methods in Figure 3.8, where the proposed
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methods obtained 100% accuracy in four classes of Caltech 256. By having a closer

look at images from these classes, objects with precise boundaries can be found.

An interesting fact in a comparison of the proposed method with the other selected

methods is the percentage of classes where the proposed method predicts accurately.

These results, which are represented in Figure 3.9, show that while the best baseline

method predicts about 16% of classes from Caltech 101 with accuracy higher than

95%, our proposed methods accuracy for 30% of classes is higher than 95% while this

rate goes to higher than 90% for classes with 90% accuracy in prediction. This trend

exists in the experiments on Caltech 256 where the proposed methods predicted more

than 96% of classes with accuracy higher than 90%.

Comparing our proposed methods together shows that adding more features for

representing the image by using the Spatial Pyramid structure does not have an

obvious positive e↵ect on average on these datasets; although, in some of the classes

the SpatioShape structure provides better results, see group precision for both Caltech

101 and Caltech 256 datasets in Table 3.2 and Table 3.3 respectively. The choice of

considering the longer feature vector or the shorter one depends on the application

and the platform.

The global results of comparing the proposed methods with the well-known meth-

ods on both Caltech 101 and Caltech 256 are presented in Figure 3.10. The proposed

methods by obtaining more than 93% accuracy on average, on Caltech 101, and more

than 92% accuracy on Caltech 256; improved the accuracy results of the local image

classification methods while its accuracy is still less than the deep learning represen-

tation. On the other hand, by comparing the precision of the proposed methods with

all the benchmark methods, this figure shows the superiority of the proposed methods

in both datasets.

Not only were the accuracy results of the proposed methods compared with the

well-known methods, but also the precision, recall and F-measure values are con-

sidered as performance metrics for our evaluation. The evaluation results based on

these metrics, defined in Eq. (3.3), show that the proposed methods in both mean

and standard deviation values outperform the other local representation in all the

metrics, while its precision, recall, and F-measure outperform the deep learning rep-

resentation. These results are presented in Figure 3.10 for Caltech 101 and Caltech
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Table 3.2: Group precisions for di↵erent classes of Caltech 101 dataset.

Classes Size SIFT SURF ORB BRISK BRIEF CNN Shape Spatio

Shape

Animal 21 75.28 91.71 70.50 91.12 82.65 91.34 77.00 93.72

Toy 3 80.07 66.83 87.77 72.80 88.23 76.67 92.23 100.00

Transport 8 83.89 81.41 93.78 87.69 85.20 74.87 95.15 94.25

Fashion 2 87.90 84.65 92.25 95.85 92.35 85.96 96.15 97.95

Plants 5 84.00 81.30 93.96 88.50 92.62 78.56 92.50 96.00

Science 5 82.00 76.64 90.26 74.36 87.48 87.91 96.46 95.12

Desktop 5 76.70 68.76 89.98 87.06 91.28 83.67 95.24 95.98

Sport 2 89.20 89.70 89.50 83.40 95.95 91.67 96.25 89.70

Music 7 79.66 79.13 87.61 85.53 87.61 84.97 96.21 98.29

Tools 5 84.24 77.48 90.48 81.06 91.58 71.00 97.24 98.58

Military 4 90.88 72.45 87.55 93.93 89.63 98.33 95.43 95.83

Civilization 4 74.45 67.85 88.43 77.85 87.80 95.99 92.08 97.43

Restaurant 4 73.45 77.65 88.28 83.20 85.05 83.48 96.45 98.45

Insect 6 91.65 89.32 93.88 88.00 94.08 67.44 94.48 93.43

Design 7 80.51 75.21 93.29 86.86 92.19 81.18 92.39 96.59

Bird 5 88.40 73.08 92.16 90.58 94.62 85.71 92.70 96.36

Marine 9 75.94 81.57 95.26 87.81 92.81 59.37 92.56 93.18

256 respectively.

3.4 Summary

In this chapter, we proposed an image representation method based on the perceptual

segments of image’s objects’ shapes. We extracted Generic Edge Tokens (GETs) of

the image which represent the perceptual segments of the image using PCPG package.

These tokens are utilized to categorize N-grams of the image. These N-grams are used

as a dictionary of visual words for representing images. We applied a hierarchical

structure to the utilized dictionary for image representation by introducing the Shape

Pyramid structure. We augment our representation with the spatial structure of

the visual words in the scene by imposing the Spatial Pyramid structure on top of

the Shape Pyramid to introduce the Spatio-Shape Pyramid structure. We represent

images using the lengths and frequencies of these visual words in the image.

Parameters of the image representation methods are determined by performing a

set of evaluation experiments. Another experiment was also conducted to compare

the performance of the proposed methods with the well-known image representation
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Table 3.3: Group precisions for di↵erent classes of Caltech 256 dataset.

Classes Size SIFT SURF ORB BRISK BRIEF CNN Shape Spatio

Shape

Animal 28 73.94 83.57 90.10 88.34 82.21 69.32 92.00 94.24

Toy 10 79.65 81.15 89.59 87.36 85.87 63.27 93.96 94.40

Transport 22 80.28 76.81 83.49 85.81 74.91 67.21 94.09 93.29

Fashion 11 83.53 76.00 90.17 87.48 84.86 73.87 94.60 93.87

Plants 10 66.63 80.23 88.86 89.76 84.37 76.52 93.65 95.36

Science 13 80.13 81.79 84.26 85.42 75.05 74.89 91.95 93.07

Desktop 17 82.01 78.16 89.08 85.46 80.19 65.95 94.36 91.28

Sport 21 81.67 75.50 89.89 86.04 80.60 71.26 92.72 94.39

Music 14 81.25 69.64 86.14 84.21 78.00 76.47 93.37 95.31

Tools 19 84.55 77.18 86.66 83.78 80.79 69.91 92.88 95.84

Military 6 83.10 81.48 91.60 90.95 80.08 63.22 91.62 95.62

Civilization 13 85.18 76.51 86.08 87.92 80.67 78.23 93.82 97.66

Nature 7 60.06 75.49 87.94 91.79 83.76 75.68 93.03 96.91

Restaurant 24 77.44 76.10 84.33 88.11 79.73 62.49 89.76 89.77

Insect 9 80.61 72.10 84.87 84.63 82.56 69.37 93.40 93.00

Design 7 80.21 72.34 86.21 84.27 83.71 71.37 90.07 93.33

Bird 9 83.72 80.10 88.64 89.30 82.17 74.00 90.02 94.18

Marine 7 69.93 79.69 87.79 88.24 80.06 69.67 93.39 93.80

methods. These results illustrate the superiority of the proposed method in com-

parison with the well-known methods for image representation. Besides performance

gain, the proposed method incorporates perceptual shape features of the image. This

may be beneficial in applications that search for images by providing sketches of the

image. Usually sketches are simpler versions of the objects with only their shape and

boundaries. This can help our system to match sketches of objects with their real

version.
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(a) Accuracy (b) Precision

(c) Recall (d) F Measure

Figure 3.10: Global comparison of the image representation methods on Caltech 101
and Caltech 256 datasets.



Chapter 4

Hybrid Image Coding using Bag of Shape Tokens from

Octaves of Edge Segments 1

4.1 Introduction

Although the N-gram based image representation method considers the perceptual

characteristics of the human vision, it introduces classes of N-grams that are defined

using rule-based algorithms considering the curvature, direction, and angle between

their constituent GETs. This definition limits our words to those that are seen by

human and may ignore some of the frequent N-grams. As a result, we have decided

to create our Bag of Words automatically by using the clustering algorithm which

groups similar edge segments in a cluster.

Our proposed method extracts perceptual structure-based edge segments from

the image edge map, describes the area around them, and clusters those segments

to find edge tokens. Each image will be encoded using these edge tokens obtained

from the training set. In our proposed method, we have considered octaves of images,

where di↵erent smoothing filters are applied to each octave to extract edge maps.

Smoothing an image using di↵erent parameters helps us to have a hierarchy of edge

segments, since edges obtained from the most smoothed image are coarser and less

noisy and representative of objects’ boundaries. Going to less smoothed versions, we

will find finer edges representing smaller objects and textures in the image.

We utilize the Canny Edge detection algorithm [22] along with the Hough trans-

form [54] to find edge segments of the image in each level of smoothing, and each

octave. The feature vectors for these segments are created by applying a local de-

scriptor to the area around them. These feature vectors are clustered using K-means

algorithm to find edge tokens from the training set. These tokens are utilized by the

proposed method to find an encoding for each image.

1The contents of this chapter is partially published in [44].
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Figure 4.1: The main diagram of the proposed method for finding edge segments from
di↵erent octaves of image in di↵erent smoothing levels. (1) Remove the previously
seen edges. (2) Add new edges to the cumulative edge map. (3) Dilate the cumulative
edge map with kernel K.

Our proposed method has been tested on the multi-class multi-label image clas-

sification problem and its performance comparison is elaborated in the experimental

results section. In multi-class multi-label classification problems a single image has

multiple labels each of which considers one of its objects and the entire dataset con-

tains more than one object class. Our evaluation shows that the proposed method has

improved the results in this challenging task by around 2%, while its time complexity

is in the same range as the existing methods.

In Section 4.2 of this chapter, we introduce the details of our proposed method.

Our experimental setting, and evaluation results, followed by discussion on the ob-

tained performance, are presented in Section 4.3. Finally, this chapter is summarized

in Section 4.4.

4.2 Proposed Method

The proposed image representation method focuses on the fact that human visual

perception mostly relies on the shapes of objects. Since an object’s shape is defined by

its boundaries, just considering the corner points as descriptive areas is not su�cient
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to carry structural information. The edge map of the image is a representation of its

shape. In our proposed method, we consider octaves of an image to have robustness

against object scaling. Each octave has been created by re-sizing the input image

to a specified scale. For each octave we extract perceptual structure-based shape

descriptors (edge segments) from a hierarchy of edge maps using various smoothing

parameters. We extract edge segments from each of these edge maps and describe

their surrounding areas using a local descriptor. Descriptors in the training set are

utilized to find a set of edge tokens using K-means clustering algorithm. Each image

will be encoded according to these edge tokens.

The proposed keypoint detection method utilizes the edge characteristics of the

image as a tool to find important locations in the image. Edges are representing

boundaries of objects, and separate foreground objects from background. According

to this fact, not only the corners are important points in the image, but also the edge

segments. To extract these keypoints, we utilize the canny edge detection algorithm,

followed by the Hough transform to find the edge tokens in the image. For each token,

we have calculated the keypoint location, the descriptive area around it, and the

rotation of edges in respect to the image coordinates. These features are utilized by

existing local feature descriptors such as SIFT and SURF to produce more descriptive

features. The main diagram of the proposed method is represented in Figure 4.1.

4.2.1 Edge Segments

In the proposed method, we have considered several octaves of images for finding edge

segments each of which is a resized version of the input image to a specified scale of

2k and smoothed for finding the coarse and fine edge maps. Image scaling results

in extracting perceptual segments from various sizes of an object. As a result, more

descriptive and general edge tokens are generated, and the image representation is

more robust against object scaling.

The image from each octave is processed to create a hierarchy of edge maps

smoothed by applying the Gaussian filter to the image. In this equation, a filter

with the size of k is created whose elements are calculated according to Eq. (4.1) in

which � is the standard deviation. Each edge map obtained from a smoothed image

with a di↵erent value for � produces di↵erent edge segments. The higher the value
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for �, the smoother the image, and the less noisy and coarser the edge map. This hi-

erarchy creates edge segments with longer and less noisy structures, as well as shorter

and noisier structures. This wide range of edge segments can describe objects with

very well-defined boundaries and objects with noisy textures.

Hij =
1

2⇡�2
e(

�(i�(k+1))2+(j�(k+1))2

2�2 ), 1  i, j  (2k + 1) (4.1)

The Canny Edge Detection method [22] is applied to each smoothed image in

each octave to detect its edge map. Given the smoothed image, Canny calculates

the intensity gradient of the image, and cancels false detected edges by applying a

non-maximum suppression. By applying double thresholding, Canny finds potential

edges and tracks those edges to reject the detected segments which are not connected

to a strong edge.

We have applied the edge detection algorithm with di↵erent values of � to each

octave of the proposed method. Applying Gaussian filter to the image will result in a

blurred image, and edge detection on a blurred image using higher � creates coarser

edge segments, while on a blurred image using smaller � tends to find noisy edge

segments as well.

Since in our proposed method we are interested in finding longer and less noisy

edges whenever possible, we first extract edge segments from the most smoothed

image, the highest � value, using the Canny edge detection method. In the next

levels, we reduce the smoothing parameters to produce shorter and noisier edge maps.

As a result longer edges with more consistent lines are produced. If the image

contains very small objects in the foreground, this parameter setting cannot find any

edge in the image. To make the method more robust to objects with di↵erent sizes,

we considered a set of � values to extract edge segments.

This decision creates two di�culties to be handled. First, since a single edge in

the image may be extracted as a long straight line in one smoothing level, and as

a noisy curved in another, duplicate edges will be created from di↵erent smoothing

levels. Second, sometimes a very small contrast between the foreground object and

the background makes it impossible to extract edge maps from the original image.

To mitigate the first problem, we must keep the less noisy edge segment and ignore

all of its duplications. Since we utilize various Gaussian Filter parameters, these
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Figure 4.2: The dilation process slides the filter over the image, and whenever the
center of the filters hits a 1 all the pixels around it will turn to 1.

duplicated edges are not exactly in the same coordinate in the image for di↵erent

edge maps, but they are very close to each other. To solve this concern, in each level

we have dilated the edge map obtained from the previous level(s) with a 13⇥3 kernel

to make the detected edges thicker (Figure 4.2). Dilation is a morphological operation

on the image which slides a kernel K on the binary image P , i.e. the image’s edge

map, according to P �K =
S

p2P Kp.

Using the cumulative edge map of all previous levels, P , and the detected edge

map of the current level, D, the edge map obtained from the current level without

their duplications are obtained using the logical operation of N = P̄ ·D.

At the end of each smoothing level, the cumulative edge map, P , is updated by

adding the newly detected edges to the map using the logical operation of P = P+N .

The general diagram of this procedure is represented in Figure 4.1.

To address the second problem, we sharpen the image at the level where we apply a

very small �, near to zero, for smoothing the image. The sharpening filter of Eq. (4.2)

enhances the image’s contrast and increases the likelihood of detecting edges around

the foreground object in the image.

2

664

�1 �1 �1

�1 9 �1

�1 �1 �1

3

775 (4.2)
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Table 4.1: Overall performance of the proposed method (EDGE) and the other well-
known methods on two benchmark datasets using two di↵erent local descriptors.

Settings Method Accuracy Precision Recall F-Measure

VOC

2007

SIFT

SIFT 88.91 28.24 28.49 28.37

SURF 89.14 29.36 29.06 29.21

ORB 88.26 23.88 23.91 23.89

FAST 90.10 35.09 33.41 34.23

EDGE 91.33 42.01 32.66 36.75

Settings Method Accuracy Precision Recall F-Measure

VOC

2007

SURF

SIFT 88.33 25.26 26.24 25.74

SURF 89.17 29.56 29.29 29.43

ORB 87.94 23.71 25.44 24.54

FAST 91.31 41.35 30.47 35.09

EDGE 91.18 41.09 33.22 36.74

Settings Method Accuracy Precision Recall F-Measure

VOC

2012

SIFT

SIFT 89.14 27.79 26.73 27.25

SURF 89.19 27.95 26.70 27.31

ORB 88.29 22.23 21.57 21.90

FAST 89.88 33.02 32.14 32.58

EDGE 89.94 34.01 34.25 34.13

Settings Method Accuracy Precision Recall F-Measure

VOC

2012

SURF

SIFT 88.62 25.23 25.29 25.26

SURF 89.23 28.73 28.11 28.42

ORB 88.45 22.38 20.98 21.66

FAST 91.49 42.14 31.67 36.16

EDGE 92.30 49.05 29.62 36.94

After detecting edge maps in each octave and in each smoothing level, we utilize

the Hough transform [54] to extract the edge segments from the obtained edge map.

The Hough transform finds all instances of a specified shape in the image. Since in

our proposed method the local descriptor provides the appropriate description for

the area around each edge segment, considering complex shapes only increases the

complexity of the proposed method without any additional value. As a result, we

have utilized the Hough transform for finding the existing lines in the edge map.

4.2.2 Edge Tokens and Image Encoding

Edge tokens are defined as classes of common edge segments, or perceptual structure-

based shapes obtained from Hough transform, that can describe each image. In the
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Table 4.2: Time (miliseconds) comparison of the benchmarked methods on the entire
training set of VOC 2007 and 2012 using SIFT descriptor.

Method VOC 2007 SIFT VOC 2012 SIFT
SIFT 352.13 1081.31
SURF 271.38 973.25
ORB 214.48 917.52
FAST 186.42 804.55
EDGE 146.4 631.23

proposed method, we have utilized a local image descriptor such as SIFT [101] to

describe the area around each edge segment obtained from the previous steps. SIFT

descriptor calculates gradients of the image pixels in a local patch around the keypoint

and creates a numeric vector to describe that local region. We have calculated this

description by assuming a point in the centre of each edge segment,(Lx, Ly), and

describing the area whose length, A, is equal to the length of the edge segment,

around that point which is rotated according to the edge segment’s angle, ✓, with

respect to the image coordinate system. To localize each keypoint corresponding

to the detected edge token, we need to find its coordinates, size, and orientation

with respect to the image coordinate system whose notations are (Lx, Ly), A, and ✓

respectively. These characteristics are calculated according to Eq. (4.3) for an edge

segment whose starting and ending points are (Sx, Sy), and (Ex, Ey).

8w 2 {x, y}, Lw = Sw +
Ew � Sw

2

A =
q

(Ex � Sx)
2 + (Ey � Sy)

2 (4.3)

✓ = cos�1 (
Ey � Sy

(Ex � Sx)⇥ A
)

All descriptors from the training set are collected and fed into the K-means clus-

tering algorithm for finding edge tokens describing the current dataset. Each image

in the dataset can be encoded using these edge tokens. To encode each image, all

edge segments in that image are extracted and mapped to their corresponding edge

tokens which are the cluster centers with the shortest L2 � norm distance from the

edge segment according to Eq. (4.4) in which X is the described edge token and C is

the cluster center.



68

kX � Ck =
p
(X � C).(X � C) (4.4)

4.3 Experimental Results

We have tested our proposed method on the multi-label and multi-class image clas-

sification datasets of Pascal VOC 2007 test set (4952 images) [47], and VOC 2012

validation set (5823 images)[48]. In our experiments we utilized SIFT [101], and

SURF [10] to describe the areas around the edge segments and created 500 edge

tokens. We compared our proposed image representation method with other exist-

ing methods, such as SIFT [101], SURF [10], ORB [120], and FAST [119], using

SIFT [101] and SURF [10] as their descriptors.

We have trained a Multi-Layer Perceptron network with two hidden layers of

size 200, on 2501 and 5717 training images of VOC 2007 and 2012, with ADAM

solver until it reached a maximum of 5000 iterations, or until its calculated loss

in two consecutive epochs did not improve by 0.001. Our octaves resize factor was

selected fromK 2 {1, 0,�1,�2} and the standard deviations for Gaussian filters were

� = 3, 1, 0.01. The positive K values correspond to scales larger than the original

image while the negative values resize the image to smaller sizes.

The performance metrics that are adapted in this work are categorized into two

classes of overall performance, and per-class performance. For each of these categories

the Accuracy, Precision, Recall, and F-Measure are presented. The equations for

calculating the precision metric for these performance classes (Op and Pp for overall

and per-class precision) are shown in Eq. (4.5) and the same terminology is applied to

the other metrics. In these equations, K is the number of classes in the dataset, N c
k is

the number of correctly predicted instances, and Np
k is the total number of predicted

samples per class k.

Op =

PK
k=1

N c
kPK

k=1
Np

k

Pp =
1

K

KX

k=1

N c
k

Np
k

(4.5)

The overall performance results are represented in Table 4.1 where in each column

the method with the highest performance is bolded. Comparing these results shows
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the proposed method provides higher F-Measure for all di↵erent cases, where in some

cases the accuracy, precision, or recall of the FAST method is slightly higher. These

results prove that our proposed method provides a better trade-o↵ between precision

and recall compared to the other methods.

Besides performance comparison, we have performed time comparison among our

proposed method and the other methods which are shown in Table 4.2. These results

demonstrate that our proposed method is in the same scale as the others in terms of

time complexity.

The per-class and each individual class performance are presented in Table 4.3

and Table 4.4. These results demonstrate the superiority of our proposed method

against baseline methods in almost all metrics for two di↵erent datasets. Only for

the recall on Pascal VOC 2007 the FAST keypoint detection method shows slightly

higher performance, around 0.2% compared with our proposed method.

The interesting fact that is noticeable among the results in Table 4.3 and Table 4.4

is the superiority of the proposed method on classes with well-defined shapes, such

as human-made objects like aeroplane, boat, bus, and car.

The only classes where some other methods show higher performances are animals,

or plants whose shapes have many varieties and are not well-defined. Among these

classes, our proposed method performance is very close to the best method except for

the classes of sheep and plants.

The keypoints detected by di↵erent existing methods, and a single level of the

proposed method are presented in Figure 4.3. The first row of this figure represents

the weakness of methods such as SIFT and ORB in detecting keypoints where the

lighting condition is not appropriate. These methods were not able to extract any

keypoint in this image. SURF and FAST suggested keypoints that did not belong to

the foreground object. On the other hand, keypoints associated to the edge segments

of the proposed method are located on the object’s boundary.

In the sample image with an small scale airplane as foreground, we have noticed

that SIFT failed to detect keypoints on the foreground object which resulted in not

being able to describe the image appropriately (Figure 4.3). On the other hand SURF

was confused and detected the column in the image as foreground. ORB, FAST, and

EDGE detected keypoints on the airplane, while FAST produced more keypoints in
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the background.

The frequency of the extracted keypoints from an image with a noisy background

and noisy foregrounds shows how susceptible to noise the FAST algorithm is (Fig-

ure 4.3 ) . It is noticeable that FAST failed in detecting representative keypoints

for foregrounds. SURF and SIFT su↵ered from the same problem with slightly more

keypoints in the foreground, and less keypoints in the background. ORB produced

the closest output to the proposed method, although it has also missed one of the

foregrounds while detecting keypoints.

SIFT SURF ORB FAST EDGE

Figure 4.3: Qualitative comparison of the existing keypoint detection methods with
the points associated to edge segments of the proposed method (EDGE) on images
with low lighting condition, small object, and noisy background with noisy objects.

4.4 Summary

In this proposed method, we utilize the Canny edge detection algorithm to create oc-

taves of edge maps for each image. These edge maps are divided into their constituent
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edge segments using the Hough transform. Center point of each edge segment is uti-

lized as descriptive point and described using SIFT or SURF local descriptors. These

local descriptions are clustered to create the Bag of Words which is then utilized

for image representation. This algorithm produces higher performance compared to

other man-made local representations in multi-class and multi-label datasets. Com-

pared to N-gram based representation, this method detects perceptual elements and

creates the bag of word automatically without any human supervision. This makes

the method more scalable and robust to shape variation.
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Chapter 5

Image Representation Using Bag of Perceptual Curve

Features 1

5.1 Introduction

Although the proposed hybrid method (Chapter 4) has shown great performance on

the benchmark datasets, it does not consider the perceptual characteristics of the

human vision system. On the other hand, the N-gram based method has rule-based

dictionary which reduces from its generalization to all possible classes of edge segments

combinations. In this research, we are combining both of these features and proposed

our Bag of CPP method.

Our proposed method improves the PCPG model [72] by generalizing the joint

detection module and applying the laws of Gestalt to group perceptual structure-

based edge segments. In this method, we have considered direction changes as a

result of sign or magnitude change in the edge gradient which identifies the Generic

Edge Tokens (GETs). We have grouped these GETs based on their proximities, and

their slope and curvature similarities, while preserving the continuity of the edge

traces.

In the proposed method, the joint Curve Partitioning Points (CPPs) connect

groups of GETs and are utilized as descriptive points for the image. These CPPs

are described and clustered to create a Bag of CPPs (BoC) which contains the rep-

resentatives for di↵erent groups of similar CPPs in our training set. Each image is

encoded according to this BoC by calculating its Normalized Curve Histogram in all

levels of the Spatial Pyramid Matching [92].

We have evaluated our proposed method in single-label, and multi-label classifi-

cation scenarios on four datasets of Caltech 101 [51], Caltech 256 [62], Pascal VOC

2007 [47], and Pascal VOC 2012 [48]. The obtained results from the proposed method

1The contents of this chapter is partially published in [42].
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Figure 5.1: The main diagram of the proposed method. The top part illustrates the
routine for generating Bag of CPPs from the training set. The bottom part is image
encoding method using the Bag of CPPs and Spatial Pyramid Matching.

outperform the benchmarked local image representation methods.

Following in this Chapter, we have elaborated our proposed method in Section 5.2

and our evaluation settings and experimental results on some of the challenging

datasets are discussed in Section 5.3. Finally we summarize this chapter in Sec-

tion 5.4.

5.2 Proposed Method

We have proposed a hybrid image representation method by creating semantically rich

keypoints, Curve Partitioning Points (CPPs), and describing them using an existing

local descriptor. These CPPs are clustered to define a Bag of CPPs where each

cluster center is the representative of a group of similar CPPs in the dataset. We

have applied a hard coding technique for describing the image in various levels of a

spatial pyramid. These codes are combined to create the final representation for the

image. The overall diagram of the proposed method is depicted in Figure 5.1.
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(a) (b) (c) (d)

Figure 5.2: CPPs (a) and application of proximity (b), similarity (c), and continuity
(d) rules.

5.2.1 Perceptual Keypoints

Gestalt Psychology suggests that human vision perception relies mostly on special

relationships among its observations [28]. Based on this psychology, the human vi-

sion system groups its observations according to several characteristics, such as their

proximity, similarity, and continuity. In this research we have applied these rules for

grouping Generic Edge Tokens (GETs) of the image where the joint CPPs are utilized

for image representation. GETs are the perceptual constituents of an image’s edge

map which carry shape-related information, such as the slope and curvature of the

edge.

To create this edge map, we have horizontally and vertically scanned the image

in a predefined interval to find the initial points for tracking the edge pixels. In the

scanning process, each point’s gradients are calculated according to Eq. 5.1 where

(x, y) are the coordinates of the current pixel, and I is the image’s intensity function.

If any of these gradients of a certain point is greater than a predefined threshold, that

point is selected as a candidate initial point.

dx =
2X

i=�2

I(x+i,y) +
1X

i=�1

I(x+i,y) � 2I(x,y) (5.1)

dy =
2X

i=�2

I(x,y+i) +
1X

i=�1

I(x,y+i) � 2I(x,y)

Starting from each initial point, based on the signs and values of its dx and dy,

three neighbor pixels of the current point are chosen as candidate points for continuing

the edge tracking (see tables in Figure 5.3). For each of these candidates, the gradients

dx and dy are calculated and the one with maximum gradient is selected as the next
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Figure 5.3: The edge tracking routine. Starting from the initial point (textured red)
the algorithm follows two di↵erent directions. Based on the gradient values of the
current point (solid red), three neighbors are selected as candidate tracking points
(textured blue).

point, constrained to having a greater gradient than the predefined threshold. This

edge tracking process continues until we reach one of the three untraceable conditions:

reaching an already-visited edge point, the image’s borders, or a candidate point that

does not satisfy the gradient constraint.

Since each initial point may be located in the middle of a trace, the edge tracking

routine must be done in two di↵erent directions from the initial point, where a trace

is a connected set of edge pixels. This process is depicted in Figure 5.3 where for

each tracking direction, based on the signs of gradients and their values’ relationship

a di↵erent set of candidate points are investigated.

For each edge point, we must examine its features to find whether it is a candidate

CPP. For this purpose, we investigate two commonly observed scenarios for change

in the edge’s direction which are backed by our candidate point generation routine.
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These are changes in either signs or values of gradients when moving from the current

point to the new point along an edge trace. These conditions are formalized in

Eq. (5.2) where dxC and dyC are gradients for the current point, and dxN and dyN

are the gradients for the new point.

(dxC ⇥ dxN) < 0 or (dyC ⇥ dyN) < 0 (5.2)

|dxC � dxN |
|dyC � dyN |

> 0 and
|dyC � dyN |
|dyC � dxN |

> 0 (5.3)

Edge pixels between two consecutive CPPs (Figure 5.2(a)) form a GET which is clas-

sified into one of the eight groups of Table 2.1 according to its slope and curvature.

Each GET carries meaningful shape information in the image and perceptually de-

scribes the image’s content. The slope, S, and curvature, C, of each GET is calculated

using formulas in Eq. (5.4) where (xi, yi) are the coordinates of the point in the start,

s, middle, m, or end, e, of the GET.

S =
ye � ys
xe � xs

C =
|xm � xs|� |xe � xm|
|ym � ys|� |ye � ym|

(5.4)

The candidate curve partitioning points contain many noise CPPs which must be re-

moved for being compliant with the Gestalt Laws of grouping. Based on the proximity

rule, the human vision perception groups items in a close distance. To apply this rule,

if two CPPs are close enough, their distance is less than a predefined threshold, we

have merged them and created a single CPP which joins their connected GETs (Fig-

ure 5.2(b)). The similarity rule implies that the human vision system groups similar

objects when they are perceived. To apply this rule, for any two consecutive GETs,

if their slope and curvatures are similar, we have merged them together and removed

their connecting CPPs (Figure 5.2(c)). The continuity rule specifies that the human

vision system groups items that are connected to each other. This rule’s application

on the proposed method removes any extra CPP which does not separate di↵erent

classes of GETs (Figure 5.2(d)).

5.2.2 Encoding using Bag of Curve Partitioning Points

Although CPPs carry perceptual information, they su↵er from lack of specificity.

There are many similar CPPs in an image resulting in a redundant and weak rep-

resentation. To solve this issue, we have clustered CPPs using Kmeans clustering
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Table 5.1: Overall performance comparison on Pascal VOC 2007, Pascal VOC 2012,
Caltech 101 and Caltech 256 with 15 and 30 training images.

Settings Method Accuracy Precision Recall F-Measure

VOC

2007

SIFT 88.91 28.24 28.49 28.37

ORB 88.26 23.88 23.91 23.89

CPP 89.77 33.25 32.43 32.84

VOC

2012

SIFT 89.14 27.79 26.73 27.25

ORB 88.29 22.23 21.57 21.90

CPP 89.71 31.72 30.63 31.17

Caltech
101
15

SIFT 28.55 25.29 28.31 25.73

ORB 30.08 28.33 29.90 28.18

CPP 41.49 40.12 40.61 39.60

Caltech

101

30

SIFT 35.00 29.54 33.27 29.28

ORB 37.20 32.93 36.34 32.40

CPP 49.43 43.30 46.68 43.27

Caltech
256
15

SIFT 10.73 9.05 10.73 9.52

ORB 9.52 8.44 9.53 8.70

CPP 15.18 13.97 15.18 14.18

Caltech
256
30

SIFT 14.16 12.12 14.16 12.74

ORB 11.80 10.48 11.80 10.88

CPP 18.06 16.81 18.06 17.11

algorithm [104] and created a Bag of CPPs to be used for stronger and less noisy

application-specific image representation. For this purpose, we have described the

area around each CPP using a local patch descriptor such as SIFT [101]. These de-

scribed CPPs are fed into the Kmeans algorithm and, a single CPP is determined as

the representative for a group of CPPs belonging to any specific cluster.

To encode each image using this BoC, the vector quantization technique [61] has

been utilized and the frequency of each CPP in the BoC is calculated for the image

and a histogram of frequencies is created where each bin corresponds to a specific

CPP in BoC. This histogram is normalized and utilized as image representation.

The obtained histogram su↵ers from a lack of location information for CPPs, yet

this is an important source of information for image representation. To address this

drawback, we have adapted the Spatial Pyramid Matching method to find final repre-

sentation of the image. In this technique, the image has to be divided into gradually

smaller sub-images, for each of which a frequency histogram for the entire BoC is

generated. These histograms are concatenated to create the final representation of
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Table 5.2: Time (miliseconds) comparison of the benchmarked methods on the entire
training set of VOC 2007 and 2012 using SIFT descriptor.

Method VOC 2007 SIFT VOC 2012 SIFT
SIFT 352.13 1081.31
ORB 214.48 917.52
CPP 190.4 857.9

the image.

5.3 Evaluation

In this section we discuss the details of our evaluation method. Our implementation

details, and evaluation settings followed by the evaluation metrics that were adapted

are discussed in 5.3.1. Finally in 5.3.2 we have presented our results and provided

discussion on the e↵ectiveness of the proposed method over the other methods.

5.3.1 Experimental Settings

We have utilized Python 3.6 for implementing the proposed method, while we chose

OpenCV 3.0 implementation for SIFT [101], and ORB [120]. We have selected the

minimum gradient threshold for an edge pixel being 80 and a 10-pixels interval was

chosen for horizontal and vertical scanning of the image to find initial tracking points.

We have chosen the proximity and neighborhood threshold to be 5 pixels. To select

these parameters, one must consider the nature of underlying application. If the

algorithm is sensitive to very tiny edges, the gradient, interval, and neighborhood

thresholds must be reduced and vice versa. These values are considered for a moderate

sensitivity.

Multi-Label Classification: Pascal VOC 2007 [47] and 2012 [48] are selected

as multi-label datasets for evaluation in which we have utilized the K-means [104]

clustering algorithm for creating Bag of Visual Words and Bag of CPPs with the

size of 500 words. The image encoding of Section 5.2.2 is performed by creating a

normalized frequency histogram whose bins correspond to various words in the BoW.

These representations are fed into a Multi-Layer Perceptron Neural Network [121]

with two hidden layers with the size of 200. This classifier is trained using ADAM

solver [87] with the constant learning rate of 0.001 on the training images.
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The performance metrics that are adopted for this setting are categorized into

two classes of overall, and per-class performances (Accuracy, Precision, Recall, and

F-Measure). The precision metrics, Op and Pp, for overall and per-class precision

are formalized in Eq. (5.5). This terminology has been used for the other metrics.

In these equations, K is the number of classes in the dataset, N c
k is the number of

correctly predicted instances, and Np
k is the total number of predicted samples from

class k.

Op =

PK
k=1

N c
kPK

k=1
Np

k

Pp =
1

K

KX

k=1

N c
k

Np
k

(5.5)

Single-Label Classification: The Mini Batch Kmeans clustering algorithm [125]

is utilized for creating the Bag of Visual Words (Bag of CPPs) whose size is 1024

words. The images are encoded using Spatial Pyramid Matching with three layers

of {1, 2, 4}. For each sub-image, a normalized frequency histogram is generated and

all of them are concatenated to create the final image representation. The detail of

image encoding is described in Section 5.2.2. The image representations are fed into

a Linear SVM classifier [18] with C = 10 using the One versus Rest strategy for

multi-class classification.

We have utilized Caltech 101 [51] and Caltech 256 [62] for evaluating this setting in

which we have calculated the performance metrics such as precision, recall, accuracy,

and F-measure for the entire dataset. Showing the per-class evaluation is not feasible

because of the number of classes and is meaningless because of single label images.

The precision metric is calculated according to Eq. (5.5) for the overall precision and

the other performance metrics follow the same rule.

5.3.2 Experimental Results

We have compared the overall Accuracy, Precision, Recall, and F-Measure of the pro-

posed method (CPP) with two other image representation methods based on SIFT,

and ORB keypoints. The proposed method has gained a performance of approxi-

mately 5% higher than the closest competitor in terms of precision, recall, and F-

measure, while its accuracy improvement is around 1% for multi-label classification

(Table 5.1). On the other hand, it has outperformed the other methods by about

10% in the case of single-label classification.



82

(a) (b)

Figure 5.4: (a) Sample images from classes of Caltech 101 dataset with accuracy >=
70%. (b) Sample images from classes of Caltech 256 dataset with accuracy >= 80%.

Besides performance evaluation, we have compared our proposed method with

the benchmarked methods and presented the results in Table 5.2. These results

demonstrate that the proposed method takes approximately the same time as the

existing compared methods.

We have also compared the per-class metrics for Pascal VOC 2007, and 2012

datasets. Almost in all classes of these datasets, the proposed method outperforms

the rest and these results are presented in Tables 5.3 and 5.4. The only exceptions

are image categories of nature, such as sheep and plant where the proposed method

is marginally overcome by the SIFT or ORB methods. The probable reason for this

behavior is the noisiness of the shape of objects in nature.

On the other hand, for classes of human-made objects such as airplane, bottle, and

bus the proposed method shows more than 10% improvement. The sample images of

some classes in Caltech 101, and Caltech 256 whose accuracies are higher than 70%

or 80% respectively are shown in Figure 5.4. These results also illustrate the great

performance of the proposed CPP method on images with hand-made objects such

as laptops, cellphones, and cars.

5.4 Summary

In this chapter, we have proposed a perceptual image representation based on the

shape of objects which is its core feature according to the human vision perception.

Besides, we have relied on Gestalt psychology laws to group the generic edge tokens
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obtained from the image’s perceptual edge map into less noisy and more general

tokens. We have considered the proximity, similarity, and continuity rules for this

grouping and extracted the points that connect every two groups of edge tokens.

Those points are the more descriptive areas of the image and are utilized for creat-

ing a general Bag of CPPs used for image representation. This method has shown

superior performance compared with the baseline methods. Compared to the hybrid

representation method, the BOC method finds more robust keypoints because of ap-

plying the Gestalt laws of grouping. This reduces the sensitivity to noise and can be

applied specifically for human made objects with well-structured shapes.
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Chapter 6

Object Localization by using Generic Edge Features to

Optimize Convolutional Neural Network Detection Scores 1

6.1 Introduction

Object recognition is the task of finding all the objects in an image along with their

x and y locations in the image. This means that object recognition consists of two

major steps of object detection and object localization as discussed in Chapter 2.

Because of the strength of deep learning techniques in representing images, and their

recent progress in classifying images with similar or even better accuracy compared

with human, object detection task is almost solved. Despite this progress, the object

recognition still has room for improvement in the object localization task.

In this research, an object localization method is introduced which relies on the

fact that objects in the image have corresponding edge segments in the edge map

of the image. This method applies a Best First Search algorithm [122] on the edge

segments around the candidate objects, which are detected by an object detection

module, one at a time. In each iteration, the current candidate object is merged

with all its overlapping edge segments, and the detection score for each merged box is

obtained by feeding the Convolutional Neural Network (CNN) representation into an

SVM classifier. The merged box with the maximum score is selected as an improved

candidate object and is fed into the next iteration. This routine continues until there

is no more edge or no more improvement. The main flowchart of the proposed method

is represented in Figure 6.1.

The main di↵erence of the proposed method from the current object localization

methods such as bounding box regression [59] is its independence from any infor-

mation about the training dataset. This means the proposed method solely relies on

the information obtained from the current image. This feature creates the ability to

1The contents of this chapter is partially published in [43, 41].
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Figure 6.1: Main flowchart of the proposed object localization method.

apply the proposed method to the applications where a trained network exists, and

the training data either does not exist or is expensive to obtain.

This chapter is organized in the following order: The proposed method is explained

in Section 6.2. First the detection score (Sub-section 6.2.1) is defined, then the

candidate object detection module is discussed in Sub-section 6.2.2 followed by finding

overlapping edge segments (Sub-section 6.2.3) and merging them with the candidate

object (Sub-section 6.2.4). At the end the optimization algorithm (Sub-section 6.2.5)

is elaborated. The evaluation and discussion on the performance of the proposed

method are illustrated in Section 6.3. Section 6.4 concludes this chapter along with

some possible areas of future work and the limitations of the proposed method.
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6.2 Proposed Method

The proposed object localization method is applied to the result of the object detec-

tion method which is a set of candidate objects with their corresponding types and

detection scores in the image. It modifies the locations, (x, y) coordinates, of these

candidate objects to improve their detection scores for their corresponding types, or

for other types of objects with higher detection scores.

The proposed method (Figure 6.1) applies a Best First Search on the set of edge

segments, which represents the object boundaries in the image. The search space for

this method is edge segments of the image extracted from its edge map. This method

searches for the locations of objects in the image where the detection score of CNN

is maximized. The improved candidate object in each iteration is a modified box

whose detection score is higher than the original one, and is the input to the next

iteration of the searches. This search continues until the improvement is stabilized or

there is no more edge segment with positive overlap with the current candidate box.

Figure 6.2 shows several iterations of GET Loc and its positive impact on the object

localization.

6.2.1 Calculate Detection Score

Calculating score for an area in an image is the base module in the proposed object

localization method which is illustrated in this section. For the purpose of score cal-

culation, the feature vector that represents the specified area in the image is obtained,

normalized and fed into a classifier, all of these steps is elaborated in this section.

For finding the feature vector for the specified area of the image, it is scaled to the

suitable size for the selected Convolutional Neural Network (CNN). The scaling tech-

nique which is used in this research is image warping using the bilinear interpolation

method. The bilinear interpolation is a method for resampling that uses the distance

weighted average of four nearest pixel values to estimate a new pixel value [2] as is

represented in Figure 6.3a.

The warped image using the bilinear interpolation is fed into a CNN network

for extracting the representation for the specified area in the image. This feature

vector has to be normalized to be ready for using in the SVM classification. This
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Figure 6.2: Improved bounding boxes after several iterations of the Best First Search
on GETs. The detection score and IoU with ground truth object has improved.

normalization is done using the Eq. (6.1). In this equation, T is the training set, N

is its size and C is a constant value.

NormalizedFeature = C ⇥ Feature
1

N ⇥
P

T Feature
(6.1)

The last step in calculating the detection score of an area is feeding the normalized

feature into a classifier. In the proposed method, we have used the Liblinear [50]

classifier for this purpose. The optimization equation of this classifier is represented

in Eq. (6.2). In this equation, f ✓ z is the matrix of feature vectors, l ✓ L is the

vector of labels, and K is a reqularization weight.



90

(a) (b)

Figure 6.3: (a) The bilinear interpolation resampling method. (b) RCNN with correct
object and negative score.

w = min
ẃ

X

(f,l)2T

`(ẃ; (f, l)) +Kr(ẃ) (6.2)

For using the liblinear SVM classifier, we have used the `2 regularized - `1 hinge

loss setting for the regularizer and the loss function [106]. This setting specifies the

loss function as `(w; (f, l) = max (0, 1 + maxĺ 6=l

P
f2z w(f, ĺ)�

P
f2z w(f, l)) and the

regularizer as r2(w) =
P

f2z
P

l2L w
2(f1, l).

When the classifier has trained, the obtained weights of the classifier are used for

finding the detection score ('(A, T )) of the specified area according to the Eq. (6.3). In

this equation, f(A) is the normalized feature of CNN for specified area A, w(T ) is the

weights trained in Liblinear SVM, and b(T ) is a predefined bias, both corresponding

to class T , which Liblinear handle it by adding a dimension to its feature vector and

weight matrix [50].

'(A, T ) = f(A)⇥ w(T ) + b(T ) (6.3)
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6.2.2 Candidate Object Detection

Before applying the object localization method, it is required to find candidate ob-

jects in the image. For this purpose, we use the object detection method similar to

RCNN. This method, uses the Selective Search(SS) algorithm [137] to find a number

of bounding boxes that potentially contain objects. The SS algorithm finds super-

pixels of the image and merge them hierarchically to come up with larger areas in the

image.

The bounding boxes obtained from the SS algorithm are fed into the module of

Section 6.2.1 for calculating their detection scores. In this step, the bounding boxes

whose scores are greater than a specified threshold ⌧ are chosen as detected objects

and the others would be ignored.

At the end, since it is unpleasant to have multiple bounding boxes around a sin-

gle object, a Non-Maximum Suppression method (NMS) is applied to the bounding

boxes of detected objects. This technique selects the one with the highest detec-

tion score among all the bounding boxes whose overlaps are greater than a specified

threshold ⌫ and belong to similar object types. This technique is represented in Fig-

ure 6.4. The metric that is used for measuring the overlap between two bounding

boxes is Intersection over Union (IoU) which for boxes A and B is calculated using

the Eq. (6.4).

IoU(A,B) =
Area(A \ B)

Area(A [ B)
(6.4)

We have performed an investigation on the detection scores of the ignored bound-

ing boxes to determine the threshold of candidate objects generation module. The

Figure 6.4: The general diagram of the NMS technique in keeping the objects bound-
ing boxes.



92

(a) Image (b) GET (c) Trace

Figure 6.5: Sample Image, GET, and Trace. The area around each edge segment is
represented with a red box.

results show that there are many bounding boxes with the negative scores that con-

tain objects and this happens because of their inadequate localizations. Figure 6.3b

shows a bounding box with negative score that is ignored from detection.

While Object detection module of RCNN keeps the bounding boxes with the

positive score (⌧ > 0) as detected objects, in the proposed method we chose a negative

threshold ⌧ for determining the candidate objects in each image. The bounding

boxes whose scores are greater than ⌧ form the set of candidate objects for further

improvement in their localizations.

6.2.3 Edge Segments

The edge map of an image contains information about the boundary of objects in that

image. This information is a beneficial source for improving the object localization,

specially when the training images are not available. Using the PCPG package [56],

the edge map of the image are obtained and its traces and GETs are classified (Fig-

ure 6.5). The detail explanation on the PCPG method is elaborated in Section 2.3.2.

Each trace obtained from PCPG is a group of connected edge points tracked from

a single starting point (Figure 6.5). Each trace has a starting point and an ending

point that specify the bounding box around it.

These traces are investigated to find the points where the curvature of the edge

changes, Curve Partitioning Points (CPPs). The curves between CPPs form the set

of GETs of the image. Similar to traces in the image, GETs are used as edge segments

of object boundaries for improving the object localization. Each GET has a bounding
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(a) (b) (c) (d)

Figure 6.6: Merge a candidate object with an overlapping edge segment. (a) Equa-
tion 6.5, (b) Equation 6.6, (c) Equation 6.7, (d) Equation 6.8

box around it which is defined using its starting and ending points.

These edge segments provide guidance for better object localization. In one side

by considering the traces as search space, the area around the candidate object is

investigated with the larger step size while using the GETs as search space provides

smaller step size. In this research, we tested three di↵erent sets of edge segments as

search space for more precise localization. We have a set of Trace edge segments, a

set of GET edge segments, and a set consists of both types of edge segments to have

a variety of step sizes. We named each version of the proposed method, which are

di↵erent in their search space, by refering to the type of its edge segments and defined

TraceLoc, GETLoc, and GT(GET and Trace)Loc.

6.2.4 Merge Candidate Object with Edge Segments

For each bounding box in the set of candidate objects, all of the edge segments whose

overlaps with that candidate object are greater than zero (IoU > 0) are selected for

merging. Each of these edge segments is merged with the candidate object in four

di↵erent ways, according to Figure 6.6 and Algorithm 6.1, and four di↵erent merged

boxes are created for a single edge segment.

For creating these merged boxes, four di↵erent scenarios are considered which

are shown in Figure 6.6 and elaborated here respectively. In all of these equations

[(xso, yso), (xeo, yeo)] is the coordination of the candidate object, [(xse, yse), (xee, yee)]

is the coordination of edge segment, and [(xsm, ysm), (xem, yem)] is the coordination

of the merged box.

The first scenario is the case that the object exists in the intersection area of the

candidate object and the edge segment. In this case the coordination of the merged
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Algorithm 6.1. Merge candidate object with the overlapped edge segments

1: procedure FindMergedBoxes(CandidBox,EdgeMap)

2: . Input: Candidate object

3: . Input: List of edge segments in the edge map

4: . Output: List of merged bounding boxes

5: CandidObj = [(xso, yso), (xeo, yeo)]

6: Edgesegment = [(xse, yse), (xee, yee)]

7: MBox = [ ]

8: for Each Edge segment i do

9: . First Merged Box

10: Calculate [(xsm, ysm), (xem, yem)] according to Equation 6.5

11: MBox = [MBox; [(xsm, ysm), (xem, yem)]]

12: . Second Merged Box

13: Calculate [(xsm, ysm), (xem, yem)] according to Equation 6.6

14: MBox = [MBox; [(xsm, ysm), (xem, yem)]]

15: . Third Merged Box

16: Calculate [(xsm, ysm), (xem, yem)] according to Equation 6.7

17: MBox = [MBox; [(xsm, ysm), (xem, yem)]]

18: . Fourth Merged Box

19: Calculate [(xsm, ysm), (xem, yem)] according to Equation 6.8

20: MBox = [MBox; [(xsm, ysm), (xem, yem)]]

21: MBox = [MBox;MBSX,Y ,MBEX,Y ]

box is calculated using Eq. (6.5).

(xsm, ysm) = max (xso, xse),max (yso, yse) (6.5)

(xem, yem) = min (xeo, xee),min (yeo, yee)

The second scenario, is the merged box that contains both the candidate object

and the edge segment entirely and its coordination is calculated using Eq. (6.6).

(xsm, ysm) = min (xso, xse),min (yso, yse) (6.6)

(xem, yem) = max (xeo, xee),max (yeo, yee)

Considering the situation that the candidate object contains the entire object

along with some extra area of the image, defines the third scenario in merging the
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candidate object with the edge segment. This merged box is calculated using the

Eq. (6.7).

(xsm, ysm) = min (xso, xse),min (yso, yse) (6.7)

(xem, yem) = min (xeo, xee),min (yeo, yee)

The last scenrio occures when the third scenario exists in one hand and the can-

didate object does not have the entire object as well. For this situation, we use the

Eq. (6.8) to calculate the coordinates of the merged box.

(xsm, ysm) = max (xso, xse),max (yso, yse) (6.8)

(xem, yem) = max (xeo, xee),min (yeo, yee)

6.2.5 Optimization

For improving the precision of objects locations in the images, the Best First Search

(BFS) algorithm has been utilized in this research. The main method of the proposed

method is represented in Algorithm 6.2. BFS is an informed heuristic tree-based

search method which in each iteration chooses the node which is closest to the search’s

goal. This method defines an evaluation function which determines how close is the

current node to the goal [122]. To adapt the BFS method into the object localization

task, the search space, objective function, and the finishing conditions should be

specified.

In the application of object localization, we are looking for bounding boxes that

determine the location of the candidate object more precisely. This means that our

search space is a set o bounding boxes around that candidate object which may

provide higher precision. For creating this search space, in each iteration, the edge

segments whose bounding boxes have overlap with the candidate object are selected

for creating the search space.

In Figure 6.6, a candidate object with coordination of [xso, yso, xeo, yeo] is com-

bined in four di↵erent ways with an edge segment with a coordination of [xse, yse, xee, yee]

whose overlap with the candidate object is positive. As a result, for each overlapping

edge segment, a set of four merged boxes is created. The shaded areas in Figure 6.6

represent these merged boxes.
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Algorithm 6.2. Object localization using the Generic Edge Tokens of the image

1: procedure GETLoc(Image, CanObj)

2: . Input: Image

3: . Input: List of candidate boxes with their detection scores

4: . Output: List of detected boxes with their detection scores

5: for Each CandidBoxi do

6: while Detection Score Improves do

7: FindMergedBoxes(CandidBox,EdgeMap)

8: for Each Merged Box j do

9: . Calculate Detection Score DSi,j

10: DSi,j = CNNScore(MergedBoxj)

11: . Find the best merged box

12: SelectedBox = arg maxj2MergedBoxDSi,j

13: CandidBoxi = SelectedBox

All the merged boxes from all the edge segments whose overlaps with the current

candidate object is greater than zero create the search space for finding a more precise

location. For each segment in this search space, each merged box, the evaluation

function must be calculated. We have chosen the detection score of each merged

box as an evaluation metric. The higher detection score, the higher confidence in

detecting object, and the better location around the candidate object. As a result,

the goal of the BFS search is to find the maximum detection score in each iteration

of the search. Defining '(C, T ) as the detection score for an area inside the bounding

box C to be from class T , the optimization problem of each iteration is represented

in Eq. (6.9).

'(B, To) = argmax
Ce2E

'(Ce, Ti) (6.9)

In this equation, Ce is a merged box obtained from merging the current candidate

object with an edge segment from the edge map E. The result of this optimization in

each iteration (or level in the search tree) is a modified candidate object’s bounding

box B, its class type To, and its detection score '(B, To). This modified candidate

object is fed into the next iteration of the BFS algorithm for further improvements.

In search for improving each candidate object, two di↵erent cases may occur. As
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first case, if the candidate objects score is positive, the BFS search iterates on the

merged boxes around that to improve its detection score. This search continues until

there is no more edge segment with overlap, the search space is empty, or the detection

score does not improve in several iterations.

As another case, if the candidate object has a negative score, we search among all

merged boxes around it to find a bounding box with positive score. If this kind of

bounding box has found, the candidate object is replaced with the merged box with

the highest positive score. Eventually, this modified candidate object will endure the

BFS search of the first case. Otherwise, if there is no merged box with positive score,

this candidate object is ignored as it probably does not have any recognizable object.

6.3 Experimental Results

We have done some experiments on the proposed method to evaluate its perfor-

mance. In this section, the framework for these experiments is defined and an exten-

sive amount of results are represented. In defining the framework, we introduce the

datasets that we have evaluated on, the parameter settings that we have used, and

the task and measurement that we have chosen for reporting our results. Then the

obtained results on this framework are represented and discussed along with compar-

ing the outputs of the proposed method with ground truth and the baseline method

on some test images. Finally, some interesting observations that motivated us for

future areas of improvements are represented.

6.3.1 Experimental Framework

We have performed our evaluation on three datasets of Pascal VOC 2007 [47] test

set, Pascal VOC 2012 [48] test set, and Pascal VOC 2007 validation set. These are

the standard datasets for Pascal VOC competition that was held annually from 2005

to 2012 [49].

This competition contained di↵erent computer vision tasks such as image classifi-

cation, object detection, image segmentation, action recognition, and person layout;

from which we have used object detection competition for our evaluation. The sub-

mitted methods for this competition have to predict the bounding boxes of each object
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: Compare mAP of the proposed methods and the baseline model RCNN
for di↵erent IoU thresholds on Pascal VOC 2007 test set and validation set. (a), (b),
(c) represent the comparison of Trace Loc, GET Loc, and GT Loc on test set, while
(d), (e), and (f) show the same result on validation set.

from any type if it exists in the test image, with a confidence value for this prediction.

All of these datasets contain 20 classes of object types with annotation files for

images in the dataset. The annotation file for each image contains the ground truth

bounding boxes around all the objects in that image. Pascal VOC 2007 contains

9, 963 images and 24, 640 annotated objects. These images are divided into three sets

of train, validation, and test with 2501, 2510, and 4952 images respectively. Pascal

VOC 2012 is a larger dataset with 11, 530 images for train (5717) and validation

(5823) and 10991 images in the test set. This dataset has 27, 450 annotated objects

just in its train and validation images.

Our experimental results utilize two measurement of mean Average Precision

(mAP) and IoU for the purpose of evaluation, as they are norm among researchers

in the object recognition field. The mAP is calculated using the Eq. (6.10) and cal-

culates average precision for each class of objects and the final mAP would be the

mean value of all the average precisions of classes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.8: RCNN baseline model detects multiple bounding boxes around a single
object which some samples of that are represented in (a), (b), (c), (d), and (e). The
output of the proposed GT Loc method is also represented in the second row showing
that this issue is fixed.

AP =
number of detected objects

total number of objects
(6.10)

mAP =

P
N AP

N
, N = number of classes

We also calculate the IoU (Eq. (6.4)) between the bounding box around the de-

tected object and the ground truth bounding box in the annotation file. Using this

metric, we are able to compare the e↵ectiveness of our proposed method in finding

bounding boxes closer to the bounding boxes annotated by human and evaluate our

strength in improving object localization.

For evaluating the proposed method, we have selected the RCNN [59] with AlexNet

Convolutional Neural Network [90] as a baseline model in all the experiments. We

have used Ca↵e [80] toolbox for training and implementing the proposed method.

To find the edge segments, we have used the PCPG [56] package with the gradient

threshold of 10, scanning interval of 8, and minimum edge length of 11 pixels.

6.3.2 Comparison

We compared the performance of our proposed methods, such as RCNN with GET

localization (GET Loc), RCNN with trace localization (Trace Loc), and RCNN with
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Detected:
Bottle

Detected:
Aeroplane

Detected:
Bike

Detected:
Bus

Detected:
Car

Detected:
Cow

Detected:
MotorBike

Detected:
Sheep

Detected:
Train

Detected:
TV Monitor

Figure 6.9: Samples of objects whose types are detected wrongly.

GET and trace localization (GT Loc), with RCNN as a baseline method. The Average

Precision (AP) of the proposed methods and the baseline for di↵erent classes of these

datasets, along with the mAP for the entire datasets are represented in Table 6.1.

By comparing the overall mAP of the proposed method and the baseline model in

these datasets, an improvement of approximately 3% is noticeable. The results show

that the proposed method has improved the precision significantly for classes such as

‘bird’, ‘boat’, ‘bottle’, ‘chair’, ‘dog’, ‘horse’, ‘motorbike’, and ‘plant’ where the edge

information is precise in the images. This is concluded from the improved mAP of

around 10% for these classes.

The results of Table 6.1 show that the proposed methods can improve mAP for the

Pascal VOC 2007 validation set as well in which the RCNN baseline model represents

its best performance, since the images in this validation set are used for finetuning

the image representations. To conclude this paragraph, the proposed methods are

able to improve the best performance of the RCNN baseline model, without having

any knowledge about the undergoing image.

We compared the mAP of the proposed and the baseline methods for di↵erent

threshold values of IoU and represented the resulted diagrams in Figure 6.7. These

diagrams illustrate that the proposed methods are more precise compared with the

RCNN baseline method since in any of the overlap thresholds the proposed method
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has a higher average precision. This observation occures since our proposed method

not only improves the localization of objects detected by RCNN, but also detects

objects missed by RCNN because of their poor localizations.

Some examples of the objects detected by GT Loc are shown in Figure 6.12 along

with the outputs of the baseline RCNN model, and the ground truth annotation.

These are some of the samples that RCNN has ignored due to their negative detec-

tion score, while the proposed method has improved their locations’ precision which

resulted in their positive detection scores and yield to detection by the proposed

method. Besides this much improvement, the proposed method takes about 5 sec-

onds to process each object which is the major drawback of the proposed method

that should be improved in the future.

Our experiments show that the RCNN baseline model finds several bounding

boxes around a single object which is because of their ine�cient localization. The

proposed GT Loc method has solved this issue where it is due to insu�cient precision

of localization. Some sample images from this matter are represented in Figure 6.8.

Some images from the Pascal VOC 2007 test set are represented in Figure 6.11

along with the bounding boxes around their objects which is produced by the proposed

GT Loc method. These images show that the proposed method is able to detect

multiple instance of an object in a single image, and also is able to find di↵erent

objects in the image. The last row of this figure, shows the multiple instance detection

while the others have multiple objects and multiple instances detection.

6.3.3 Observations

While conducting experiments, we faced with some issues in the baseline method

which also exists in the proposed method. These issues opened new ideas to improve

the performance of our proposed methods following in our research. In this section,

these issues with some samples of them are represented.

Despite all the claims and news on the strength of deep learning methods, specifi-

cally convolutional neural networks, in representing images, we faced with some cases

where their representation was not adequate enough to result into a correct classifi-

cation of the object types. Some samples of this case are represented in Figure 6.9.

By looking at these images, a similarity between detected type and the annotated
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10: The e↵ect of NMS on ignoring correctly detected objects. First row is
before applying NMS and second row is after this technique has applied.

object exists. This shows that it is possible to improve the image representation by

adding more contextual information. This motivates us to enhance the image repre-

sentation of CNN based deep learning methods by using some local and global image

descriptors.

Considering images from the first row of Figure 6.4, it can be seen that some of

the object bounding boxes are detected correctly before applying the NMS technique

in the second row. But after applying the NMS technique, some of them are ignored

because they have overlap with other bounding boxes with the same object type.

This is really an issue with NMS technique. However, it works well in many cases

for ignoring multiple object boundary for a single image, in cases where di↵erent

instances really exist in the image and are occluded by each other this technique

does not work properly and results in losing some of the detected objects. To solve

this issue, we propose to have a supervised version of NMS which can handle this

condition that occures frequently in the images.

6.4 Summary

In this method, we proposed an object localization technique for improving the per-

formance of object recognition. The proposed method applies a BFS search for the
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object localization task and its search space, objective function and finishing condi-

tions are specified. The search space is a set of bounding boxes around the candidate

object that we want to improve its location. These bounding boxes are obtained

by merging the edge segments of the image extracted from its edge map with that

candidate object. The search iterates to optimize the detection score of the candi-

date object as its objective function. This detection score is calculated by using the

weights of a linear SVM which is trained on the object representation obtained from

CNN. This search for the better localization continues until there is no edge segment

for creating new merge box, new search space, or the improvement on the candidate

object is stabilized.

One advantage of the proposed method is the fact that it relies on each image’s

content for improving the localization and does not require any training set or any

information about other images in the dataset. This makes the method special for

cases where there is not enough training samples and the pretrained CNN model

are used for object representation. Another advantage is the reliance of the object

localization module on perceptual features of the image which guides the machine

learning algorithms to be tuned with the human vision perception of the objects

in the image to bridge the gap between human and computer understanding from

a scene. The proposed method has been tested on object detection datasets and

represents overall improvement compared with the baseline method of RCNN, while

individual improvements for some classes are significant. Some sample output of

the proposed method are also represented to prove the e↵ectiveness of the proposed

method.
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Yellow: Monitor
Green: Person
Red: Plant

Yellow: Person
Green: Bottle
Red: Table

Yellow: Horse
Green: Person

Red: Car

Yellow: Person
Green: Bicycle

Yellow: Monitor
Green: Cat

Yellow: Sofa
Green: Person

Yellow: Person
Green: Boat

Yellow: Aeroplane
Green: Person

Yellow: Person
Green: Bus

Yellow: Chair
Green: Table

Yellow: Person
Green: MotorBike

Yellow: Person
Green: Dog

Yellow: Sheep Yellow: Cow Yellow: Bird Yellow: Train

Figure 6.11: Samples of images from Pascal VOC 2007 test set along with their
annotations which is generated by the GT Loc proposed method. Objects with the
same type are marked with the same color.
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Aeroplane (Sb, Si) =
(�0.25, 0.25)

Bike (Sb, Si) =
(�0.32, 0.13)

Bird (Sb, Si) =
(�0.02, 1.16)

Boat (Sb, Si) =
(�0.03, 0.65)

Bottle (Sb, Si) =
(�0.61, 0.22)

Bus (Sb, Si) =
(�0.23, 0.47)

Car (Sb, Si) =
(�0.28, 0.26)

Cat (Sb, Si) =
(�0.13, 0.18)

Chair (Sb, Si) =
(�0.09, 0.66)

Cow (Sb, Si) =
(�0.43, 0.27)

Table (Sb, Si) =
(�0.14, 0.28)

Dog (Sb, Si) =
(�0.15, 0.18)

Horse (Sb, Si) =
(�0.47, 0.84)

MotorBike (Sb, Si) =
(�0.13, 0.13)

Person (Sb, Si) =
(�0.72, 2.03)

Plant (Sb, Si) =
(�0.36, 0.06)

Sheep (Sb, Si) =
(�0.26, 0.27)

Sofa (Sb, Si) =
(�0.16, 0.10)

Train (Sb, Si) =
(�0.57, 0.27)

TV Monitor (Sb, Si) =
(�0.05, 0.15)

Figure 6.12: Samples of ground truth object (Red) along with output images from
RCNN (Yellow) and GT Loc (Green). Comparing the detection scores of RCNN (Sb)
and GT Loc (Si) represents the a↵ect of more precise localization of the proposed
method in the object detection.



Chapter 7

Conclusion and Future Work

Object recognition is one of the main tasks in computer vision whose improvement

can be achieved by advancing any of its subtasks such as object proposal genera-

tion, object detection including image representation and classification, and object

localization. In this thesis, we have focused on image representation and object lo-

calization tasks and made some improvements. Besides, we have utilized perceptual

characteristics of the human vision perception to make these advances. Following in

this chapter, brief summary of the proposed methods (Table 7.1) along with some

areas of the future work are addressed.

7.1 Conclusion

At first, we have proposed a multilayer image representation method which utilizes

the perceptual information of the image’s shape to create a hierarchical represen-

tation. This method utilizes the PCPG package to extract perceptual features and

use the N-gram notation to create the dictionary of visual words. We have created

a hierarchy of dictionaries, where the higher level contains visual words with more

abstract representation power, and the lower level contains words with more detailed

descriptive capabilities. This hierarchy is called the Shape pyramid. To capture the

location distribution of each visual word, we applied the Spatial Pyramid technique

to our proposed shape pyramid structure and introduced a Spatio-Shape pyramid for

describing the image. The experimental results show high accuracy on the bench-

mark datasets for image classification. Despite the performance gain, this method is

limited to a certain visual words difined statically by human supervision which makes

it less scalable and limited shape encoding coverage.

To improve this representation method, we have introduced the hybrid image

representation method which creates a dictionary of visual words dynamically but

without considering the human vision perception. This method creates a scaling

107
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octave for each image and extract its edge maps by applying Canny edge detec-

tion algorithm. The Hough transform is applied on these edge maps to extract line

segment constituent of the edge. The center point of these lines are selected as de-

scriptive areas in the image and described using SIFT and SURF descriptors. Finally

Kmeans clustering algorithm is applied on the descibed keypoints to find the bag

of visual words which is then utilized for image encoding. This method has shown

great performance in comparison to other human-made representation methods on

the benchmark datasets. As mentioned earlier, despite its performance, this method

does not use the perceptual characteristics of the human vision to improve the fidelity

of its representation.

To augment the previous method with perceptual characteristics of the human

vision system, we have utilized Gestalt laws of grouping to find the descriptive areas

in the image. In this method, we have improved the PCPG edge tracking module

by imposing the Gestalt laws of grouping to find Curve Partitioning Points which

are used as visual words for describing the image. In this method, we have utilized

proximity, similarity, and continuity laws of Gestalt to ignore CPPs with less im-

portance and keep the crucial ones. This proposed method is tested on benchmark

datasets and has shown promising performance against existing human-engineered

image representation methods.

After improving the object detection task by proposing perceptual image represen-

tation methods, we targetted the object localization task for further improvement on

the object recognition pipeline. In this method, we extract a set of candidate objects

using an object recognition module similar to RCNN. Then we optimize the locations

of those candidate objects. The proposed method extracts the edge segments of the

image, using the PCPG package. These edge segments are combined with the can-

didate object, if they have overlap. The obtained merged boxes are evaluated using

CNN to extract their representation, and SVM to provide similarity score for each

of them. This search on the edge segments are done using the best first search algo-

rithm, while the goal of this algorithm is optimizing the calculated similarity score.

The experimental results show the improvement that our proposed method provides

for the baseline object recognition method.
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Table 7.1: Summary of the proposed image representation (N-gram, hybrid, BoC)
and object localization (GT-Loc) methods.

Method Advantages Disadvantages Applications

N-gram • Perceptual features • Fixed BoWs • Sketch retrieval

• Spatial pyramid matching • Not scalable • Character recognition

• Limited shapes

Hybrid • Dynamic BoWs • Lack perceptual features • Dark image representation

• Scale invariance

BoC • Dynamic BoWs • Slow representation • Human-made object recognition

• Perceptual features

• Gestalt laws

GT-Loc • Perceptual features • Slow localization • Small data localization

• No training data

7.2 Future Work

Following in our research, we are going to complete our object recognition pipeline

and apply it in an Augmented Reality application dataset. As our future work, we

are aiming to do the following researches:

• Using the perceptual features and proposed image representation methods to

describe image’s content semantically. The current representations are only

meaningful to computers and are similar to black boxes to human. Combining

perceptual features and deep representation models makes deep representations

understandable for human as well.

• Proposing a supervised method to perform non-maximum suppression (NMS)

and solve the problem of current object recognition pipelines on the occluded

objects.

• Combining the human intelligence in creating the handcrafted local and global

features, with the deep learning representation obtained from the computer

intelligence, since their combination may solve both of their deficiencies and

result in better performances.

• Completing the object recognition pipeline by merging the proposed perceptual

image representation methods, and object recognition technique.
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