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Abstract

The next-nearest-neighbour Ising model with competing nearest-neighbour (nn) and next -

nearest-neighbour (nnn) interactions, provides an example of a system in which massless modes

destroy order at any finite temperature. This occurs only at a critical ratio, Kc, of the nnn and

nn interactions. In this paper we investigate the role of long relaxation times in determining the

behaviour of the system when the ratio of the nnn and nn interactions, K, is at and close to

this critical ratio. Despite the absence of an order-disorder transition in systems with K = Kc,

in Monte Carlo simulations reported here the temperature dependent behaviour of the relaxation

times indicates the existence of a glass transition with a glass transition temperature of Tg ≈ 0.26

in a model with nearest neighbour interaction J = kB = 1.
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I. INTRODUCTION

Simple models of ultra-thin film systems that exhibit pattern formation due to competing

interactions remain of considerable interest despite the long history of these models. This

continued interest is, in part, due to the range of physical systems that exhibit pattern

formation. Such systems include garnet films[1], ultra-thin magnetic systems [2], and fluid

layers exhibiting nano-phase separation[3]. The interest in these systems is further driven by

the continued evolution of experimental methods that allow the microscopic characterization

of both equilibrium and non-equilibrium properties of such systems, and offer the possibility

of manipulation of the pattern structures[3–7].

If a system is in thermal equilibrium and ordered, regions of the other potential ordered

ground state patterns are dynamic structures that exist in a background of the ordering

ground state pattern and are generally unstable as they dissolve into the background and/or

break-up due to the formation and growth of internal voids. These dynamic processes main-

tain the equilibrium distribution of regions of these minority patterns. However, if relatively

stable regions of the potential ground state patterns occur these may move the system from

the equilibrium distribution of the phases[8]. For example, in ultra-thin magnetic films with

uniaxial out-of-plane moments and both nearest neighbour (exchange) interactions and long

range, dipolar interactions, the ground-state ideal patterns are stripes of “up”spins alter-

nating with stripes of “down”spins[2]; however if such a system is initially saturated in an

all up or all down (i.e. ferromagnetic) ideal pattern then allowed to relax it will exhibit

the formation of both regions with vertical stripes and regions with horizontal stripes [9].

The coexistence of these regions may be very long lived and is associated with locked in

topological structures where the two types of region meet. More generally, relatively stable

structures in which two (or more) of the possible ordered patterns coexist may occur when

this corresponds to the “locking-in”of topological structures associated with the symmetry

operations that connect the possible ideal ground state patterns. (In what follows, the for-

mation of these relatively stable coexisting regions and their dynamics are referred to as

“non-equilibrium processes”).

In quasi-two-dimensional physical systems that have ground states of (ideal) alternat-

ing stripe patterns, pattern formation is often due to competition between short-range

interactions and longer-range interactions that have a power law dependence on distance
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FIG. 1. Typical spin configurations observed during Monte Carlo simulations of a system with

L = 256, K = −0.5, at temperatures T = 0.36 [a] and T = 0.26[b].

[2, 10, 11]. However, striped pattern formation may be observed in even simpler models

such as the next-nearest neighbour Ising model with competing nearest-neighbour and next-

nearest-neighbour interactions[12]. In experimental realizations of pattern forming quasi-two

dimensional systems observed structures are often labyrinth like (rather than perfectly or-

dered striped phases). Monte Carlo studies of the nnn-Ising model also exhibit labyrinth-like

structures (e.g. Fig 1). In the work described here, the nnn-Ising model is used to illustrate

the role that long relaxation times and the associated locking-in of topological defects play

in such systems.

In the following section the model is defined and some key aspects of its history reviewed.

Sect. II also contains a summary of some symmetry considerations regarding this model. The

main results of this study, derived from Monte Carlo simulation of the model, are presented

in Sect III. Sect. IV concludes this study with some commentary on the possible generality

of these results.

II. MODEL DEFINITION AND BACKGROUND

The two-dimensional, nnn-Ising model is constructed by associating with each unique

point, i, on a lattice, a local variable, si = ±1. Hereafter the local lattice variables are

referred to as spins and the language of magnetic systems is used to describe the macroscopic

properties of the model. In this study, the spin variables are distributed on a square lattice
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with cyclic boundary conditions. The Hamiltonian of the system is then.

−H = J
∑
nn

sisj +K
∑
nnn

sisj (1)

The first term on the right-hand-side of this equation is a sum over lattice points such that

i and j are nearest neighbours on the lattice. Throughout we take the parameter J to be

positive and in the numerical work described below it is set to equal the Boltzmann constant,

kB, except where stated otherwise. The second sum on the right-hand-side of the equation

is the corresponding sum over next-nearest-neighbour pairs. Thus the parameters of the

model are the nnn interaction parameter K and the temperature T . (It is not necessary to

consider the J < 0 case as the well known gauge transform

σi = (−1)xi+yisi; J ′ = −J (2)

transforms a chequerboard antiferromagnetic ground state to a ferromagnetic state but does

not affect the value of K and transforms striped ground states to striped ground states.

Therefore the properties of the model with negative J are trivially related to those with the

corresponding positive value of J .)

In 1969, Fan and Wu[12] performed a detailed analysis of the ground state properties of

this model. They showed that the ground states of the system are ferromagnetic (all spins

=+1 or all spins= -1) if the next-nearest-neighbour parameter, K, exceeds a critical value;

i.e., for K > Kc = −0.5J ; however, for K < Kc the ground states consist of stripes of

spins aligned in the +1 direction alternating with stripes of spins aligned in the -1 direction.

Each stripe of aligned spins is one spin wide. Thus there is a change from two ferromagnetic

ground states to four striped ground states (two with stripes in the x (horizontal) direction

and two with stripes in the y (vertical) direction ) at K = Kc. Further Fan and Wu noted

that the degeneracy of the striped and ferromagnetic ground states at K = Kc means that

the system does not have a non-zero order-disorder critical temperature at this value of

K. The mechanism that destroys order in an infinite system at any finite temperature if

K = Kc, can easily be visualized by considering the system initially in a striped phase with

a single spin flipped in the opposite direction to the stripe it is in. Spin flips can then

propagate along the stripe without energy cost (i.e. these dynamical modes are massless).

In an infinite system the probability of a single flipped spin in each stripe is non-zero at any

non-zero temperature and hence the striped phases are unstable. Similarly the ferromagnetic
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states are destroyed by the zero-energy propagation of spin flip excitations in the infinite

system at any non-zero temperature.

Subsequent studies of the finite temperature phase diagram of this model involved some

controversy. In particular, different studies resulted in different conclusions about the nature

of the transition for values of K close to Kc. Early work[13, 14] took the order-disorder

transition to be continuous; however later work indicated that a discontinuous transition

could occur for parameter values in the range −1.2J < K < −0.5J [15–18]. More recently,

Murtazaev et al. [19] have applied histogram Monte Carlo methods with Binder cumulant

analysis, and concluded that the transition is continuous in the range−1.0J < K < 0.1. Also

recently, Jin et al.[20, 21] have considered the nature of the order-disorder transition in this

model. These authors also used Monte-Carlo combined with Binder cumulent based methods

as well as cluster-mean-field theory and transfer matrix methods. Jin et al. concluded that

there is evidence for a weak discontinuous transition in a narrow range of values K < Kc

but point out that a continuous transition can not be fully ruled out[21].

In this article, we set aside the question of the order of the transition when K 6= Kc

and focus primarily on the role of slow dynamics in the absence of an order-disorder phase

transition at K = Kc. However we also present some evidence that these slow dynamics

play a role in the behaviour of the system when K is close to but not equal to Kc.

In the simulations described in the next section, the specific heat, magnetization, and

(initial) susceptibility, were calculated directly using:

Cv =
< E2 > − < E >2

NT 2
; (3)

M =
N∑
i=1

si; χ =
< M2 > − < M >2

NT
(4)

in the above equations, the Boltzmann constant kB = 1, E is the configuration energy and

<> denotes a configurational average.

To calculate the components of the staggered magnetization and staggered susceptibil-

ity corresponding to the ordered phases with striped ground states we perform two gauge

transformations

σhi = (−1)xisi; σvi = (−1)yisi (5)

The first of these converts the horizontal stripe ground states to ferromagnetic ideal patterns

(and converts the vertical stripe ground states to chequerboard antiferromagnetic ideal pat-
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terns). The second converts the vertical stripe ground states to ferromagnetic ideal patterns

(and converts the horizontal stripe ground states to chequerboard antiferromagnetic ideal

patterns). The staggered magnetization, ~Ms = (Mh,M v), is then calculated from

Mh =
N∑
i=1

σhi ; M v =
N∑
i=1

σvi (6)

and the staggered susceptibility, ~χs = (χh, χv) is calculated using

χh =
< Mh2 > − < Mh >2

NT
; χv =

< M v2 > − < M v >2

NT
(7)

It is convenient to calculate the autocorrelation function for t > 0:-

γ(t) =<

∑N
i=1 si(0)si(t)/N −m(0)m(t)

1−m(0)m(t)
> (8)

where t is a time measured in Monte Carlo cycles, and m(t) is the magnetization per lattice

site at time t. The definition above is appropriate for systems with ferromagnetic ground

states as the subtraction of the second term in each of the numerator and denominator

ensures that the autocorrelation function is zero if t exceeds the system relaxation time in

the ferromagnetic state. The staggered form of the autocorrelation functions for the two

types of stripe phase is a straightforward generalization of the ferromagnetic form for the

autocorrelation function:-

γh(t) =<

∑N
i=1 si(0)si(t)/N −mh(0)mh(t)

1−mh(0)mh(t)
> (9)

γv(t) =<

∑N
i=1 si(0)si(t)/N −mv(0)mv(t)

1−mv(0)mv(t)
> (10)

(The usual initial condition, γ(0) = γh(0) = γv(0) = 1, is understood).

As the autocorrelation function is used, rather than the more general two point correla-

tion function that involves both a spatial displacement and a time displacement of the two

spins, Eqs. 8, 9 and 10 differ only in the order parameter that is used in the subtracted terms

in the numerator and denominator. These subtracted terms ensure that the autocorrelation

function corresponding to the ordered state of the system, will be zero if t is large compared

with the relaxation time, τ . Moreover, if the system is ordered either in one of the ferro-

magnetic states or one of the striped states the autocorrelation functions corresponding to

the other two types of possible ordered states satisfy

γd ≈ m2
o t > τ (11)
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FIG. 2. Variation of the vertical striped (closed circle), horizontal striped (open circle) ferro-

magnetic (triangle) order parameters [a] and the corresponding autocorrelation functions [b] as a

function of temperature from a typical warming simulation run with K = −0.6 and L = 128

where γd is the autocorrelation function for one of the non-ordering types of state and mo is

the order parameter of the ordering state. This relation is approximate in any finite system

since the autocorrelation function of the ordered state is not perfectly zero in a finite system.

Consequently, if the system is in equilibrium and orders in one of the possible ordered

states below the critical temperature, the temperature at which the autocorrelation functions

of the non-ordering states becomes (effectively) zero provides an estimate of Tc which must be

consistent with the values obtained from other observables in the usual way (Fig. 2). Thus,

in a coordinated examination of the low temperature phase, involving the autocorrelation

functions corresponding to all of the possible ordered ground states, deviation from this

expected behaviour for the autocorrelation functions of the ordering and non-ordering ground

states may indicate that the relaxation time of the system exceeds the simulation time.

III. MONTE CARLO SIMULATIONS

A. Equilibrium properties K 6= Kc

The phase lines separating the disordered phase from the ordered phase at given values of

the nnn interaction parameter, K, were determined using conventional Monte Carlo methods

based on a Metropolis algorithm with Glauber dynamics. Typically linear system sizes of

L = 128 and L = 256 were used; however systems with L = 512 were used for some
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consistency checks. Simulation runs included warming runs in which the system began in a

fully ordered striped phase (K < Kc) or fully ordered ferromagnetic phase (K > Kc) at a

low temperature and the temperature was slowly increased, and cooling runs in which the

system began in a disordered state (si = ±1 with equal probability) at a high temperature

and the temperature was slowly decreased. In addition, a small number of simulations in

which temperature, T , was fixed and K was slowly varied were also performed.

For all values of K 6= Kc considered the behaviour of the system observed in the simu-

lations was consistent between heating and cooling and indicated a continuous order phase

transition, providing that the number of Monte Carlo steps after each temperature change

was sufficiently large and providing that the number of Monte Carlo steps used for data

collection was sufficiently large. Moreover, providing that the number of Monte Carlo steps

used was sufficiently large, at all values of K 6= Kc common to this study and that of

Murtazaev et al., the results obtained for Tc in this study were consistent with those of Mur-

tazaev et al.[19, Fig.10]. (Values of K used in this study include values both more distant

from Kc and closer to Kc than those used by Murtazaev et al.). Likewise, if the number

of Monte Carlo steps used was sufficient, no significant size effects in Tc were observed for

systems with L ≥ 128. However, if the number of Monte Carlo steps was not sufficient (or

if the system size was L ≤ 64) consistent results were not obtained and the nature of the

transition became difficult to discern.

As is well known, systems in equilibrium approaching a continuous phase transition ex-

hibit a diverging correlation length and a diverging relaxation time. Consequently, for

systems in equilibrium, attention must be paid to the number of Monte Carlo steps and

the system size used in the simulation. However, as will be shown below, the behaviour of

the nnn Ising model at and close to Kc indicates that the system behaviour is influenced

by non-equilibrium processes. To exhibit the role played by non-equilibrium processes in

determining the properties of the system, in the remainder of this section we focus on the

ferromagnetic autocorrelation function, γ, and the components of the staggered autocorrela-

tion function for the striped phases, ~γs = (γh, γv), and relaxation times that can be defined

in terms of these autocorrelation functions.
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B. Non equilibrium properties

As noted in Sect. II, if o denotes the majority phase, ordered state (ferromagnetic, vertical

stripes or horizontal stripes) and d denotes either of the minority ordered phases, if the

system is in equilibrium then γd is related to the order parameter of the majority phase, M o

by Eq. 11.

For example, for a system with L = 128 and K = −0.6 if τ = 5000 is chosen the observed

behaviour of the autocorrelation function is consistent with Eq. 11 and the value of Tc

obtained from γd in either a cooling or warming run (and either choice of d) is consistent

with the value of Tc obtained from the initial susceptibilities of the same system (Fig. 2).

More generally, for any K 6= Kc considered it was possible to make τ sufficiently large that

the expected equilibrium behaviour was observed and consistent values of Tc obtained.

However, simulations of the system at K = Kc = −0.5 do not show results that are

consistent with either a simple order-disorder transition or a smooth reduction in disorder at

very low temperatures even at the largest values of τ considered. In particular, if the system

is warmed from either a striped ordered state or a ferromagnetic state at low temperature,

the autocorrelation function corresponding to the ordered state, quickly reaches a value

close to one; then all three autocorrelation functions decline until they reach a value of

approximately zero at Ta = 0.39± 0.01 (Fig. 3). However there is no discernible evidence of

a well defined transition in the specific heat data. The susceptibility data shows peak values

at a temperature of T = 0.31 ± 0.02 and the order parameters effectively vanish at this

value of T . (Typically two of the three initial susceptibilities (χ, χh, χv) exhibit discernable

peaks but at slightly different values of T within this range). The behaviour is similar if

the system is initiated in a disordered state and cooled from a high temperature except that

there is in this case no discernible evidence for a phase transition in the order parameter

data. This behaviour is observed even in systems of linear size up to L = 256 and there

is no significant variation in the behaviour with system size when results for systems with

L = 128 and L = 256 are compared.

The reason for this anomalous behaviour when K = −0.5 becomes apparent if we consider

the temperature behaviour of the relaxation time τ ∗ defined as the value of τ at which any

of the three autocorrelation functions (Eqs. 8, 9 and 10) reaches a value ≤ 0.01. Initializing

the system in a random state then cooling from a high temperature, for both K = −0.55
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FIG. 3. Variation of the vertical striped (closed circle), horizontal striped (open circle) ferromag-

netic (triangle) autocorrelation functions as a function of temperature from a typical warming

simulation run with K = −0.5 and L = 128. The system was initially prepared in a ferromagnetic

ground state but similar results are observed if the system is initially prepared in a striped ground

state.

and K = −0.45 we find that the value of τ ∗ has a high sharp peak at Tc but on either side

of Tc rapidly declines as a function of temperature as |T − Tc| increases. However, if the

system with K = −0.50 is cooled from a high temperature state the value of τ ∗ appears to

diverge but as the temperature continues to decrease the value of τ ∗ does not show a peak

and subsequent decline but rather remains in excess of the number of Monte Carlo cycles in

the simulation. The data can be fitted by assuming

τ ∗ = A|Tg − T |−ρ T > Tg (12)

and the resulting best fit values are Tg = 0.261± 0.001 and ρ = 3.38± 0.02 (Fig. 4).

Further, if the system with K = −0.50 is cooled from a high temperature state to a
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FIG. 4. Log-Log plot of the variation of the relaxation time τ∗ with temperature , in a typical run

for a system with K = −0.5 and L = 128

temperature between Ta and Tg, the autocorrelation function at that temperature can be

fitted by assuming a stretched exponential dependence on t[22, 23]. I.e.

γ = Be(−t/τ)
β

(13)

where τ is a function of the temperature, T , at which the autocorrelation function is cal-

culated. Assuming the same power law behaviour as in Eq. 12, an analysis of the increase

in τ as Tg is approached from above, is consistent with the values of Tg and ρ found in the

analysis of τ ∗ (Fig. 5).

Typical spin configurations for K = Kc at Tg < T < Ta and T ≈ Tg are shown in Fig. 1.

Observation of video clips formed from individual spin configurations in this temperature

range show that the dynamics are extremely slow when Tg < T < Ta and are essentially

frozen when T < Tg. The implications of this observed behaviour are discussed in Sect. IV.

The observation of the divergence of τ ∗ as the temperature approaches Tg > 0 from above
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for a system with K = −0.5 and L = 256

when K = −0.5 indicates that while no order-disorder transition exists at finite temperature,

as the system is cooled the slowing of dynamical processes give rise to a significant change

in the properties of the system as Tg is approached.

To determine if there is any evidence that this dynamical behaviour affects the properties

of the system when K 6= Kc, a similar analysis of τ ∗ was performed for systems with K =

−0.55 and K = −0.45. For K = −0.55 this results in a value of Tg = 0.7695± 0.0005 which

is indistinguishable from the the estimate of Tc obtained from the order parameter, specific

heat, and staggered susceptibility (Tc = 0.77 ± 0.01). I.e. for a system with Kc = −0.55

there is no evidence that the existence of the minority phases result in any deviation from

the normal equilibrium behaviour in the vicinity of a second order transition, including

critical slowing down. However, for systems with K = −0.45 a value of Tg = 0.611± 0.001

is obtained. This value of Tg is significantly lower than the estimate of Tc obtained from the
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order parameter, autocorrelation function and susceptibility (Tc = 0.66±0.02). We take this

to indicate that there is some effect due to the existence of minority (striped) phase regions

as T approaches Tc from above but these effects are essentially removed once Tc is reached

and the system orders ferromagnetically. The observation that the specific heat data shows

an unusual high level of noise in the range 0.62 < T < 0.70 appears to further support this

view.

Previously Westfahl et al.[10] have discussed glass formation in the context of striped

systems with competing short-range and long-range (Coulomb) interactions. In particular,

Westfahl et al. noted that the glass transition is associated with the occurrence of a large

number of possible metastable states with regions of stripes with different orientations and

pattern defects, and that entropy-driven transitions between different states result in dy-

namical processes with a relaxation time determined by the Vogel-Fulcher law[10, Eq.6].

Accordingly, the Monte Carlo data obtained with K = −0.5, for the relaxation time τ ∗ was

fitted to the form of the Vogel-Fulcher law; i.e.

τ ∗ = AeBT0/(T−T0) (14)

The values for τ ∗ are equally well fitted by this form as by the power law form of Eq. 12

and a value of

T0 = 0.091± 0.005 (15)

is obtained. This is consistent with the expected result T0 < Tg < Ta where Tg represents the

observed glass transition temperature, which may depend on factors such as cooling rate,

and T0 represents a theoretical limit at which the system freezes into a glass like state even

if the cooling rate is infinitely slow. (For a fuller discussion of these distinct characteristic

temperatures see Ref. [10]). However, it should be noted that here both the value of Tg and

the value of T0 are obtained by fitting a single data set obtained at T > Tg, to different

assumed fitting functions. From a practical point of view, this reflects the difficulty in the

fitting of data determined by underlying processes with a mixture of time scales.

IV. SUMMARY AND DISCUSSION

While the occurrence of a finite temperature, order-disorder phase transition in the nnn

Ising model with K = Kc is excluded by the existence of massless modes as outlined in
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Sect. II, the analysis of the relaxation times presented in Sect. III indicates that this system

undergoes a dynamical, glass-like transition as the system is cooled from high temperatures.

Both the analysis of the relaxation time τ ∗ and the stretched exponential analysis of the

autocorrelation function result in a “glass transition temperature”of Tg = 0.261± 0.01. For

a detailed discussion of the relation between stretched exponentials and glass-like states, the

reader is referred to the review by Phillips[22]. (The possibility of glass like phases in the nnn

Ising model with competing interactions has previously been discussed by O’Hare et al[24, 25]

whose results were based on small plaquette calculations and Monte Carlo simulations for

systems of L = 100. These authors also discussed the energetics of interfaces between regions

corresponding to different ground states and showed examples of labarynth like structures

obtained in the L = 100 Monte Carlo simulations[24, Fig.20] . Based on a 5-site plaquette

calculation, O’Hare et al concluded that in a range of approximately −0.67 < K < −0.33

(in the units of the current article), a phase exists with (possibly) complex ordering and

an order-disorder transition temperature higher than the critical temperature of the striped

(K < Kc) or ferromagnetic (K > Kc) phase[25, Fig.2].)

The results in Sect. III indicate that the nnn Ising model exhibits a glass-like transi-

tion (τ ∗ → ∞ when T ≤ Tg) only for a special choice of the model parameters, i.e. for

K = Kc. Nonetheless, the occurrence of glassy states in physical systems is common[22].

Rapid progress in the preparation and manipulation of quasi two-dimensional systems ex-

perimentally, continues to draw focus on the pattern structures observed in such systems.

The structures observed are often labyrinth-like and display two or more phases each exist-

ing in mesoscopic or macroscopic regions[1, 3, 5]. That is, they are more like the glass-like

structures generated by the dynamical transition that occurs at K = −0.5 than like the

equilibrium ordered phase patterns corresponding to the ground states. Further, simulation

studies of a two dimensional model of ultra-thin films with both short ranged and long

ranged interactions have also observed the “locking-in”in states with coexisting regions of

multiple phases that are stable over long-time periods[9]. In the course of this work, we have

also observed that for systems with K not equal to Kc but close to its value, these types of

states can be formed by sufficiently rapidly cooling the system to below its order-disorder

transition temperature. Once formed, these states are stable over relatively long periods of

time[26].

As noted at the end of Sect. III, the present study provides some evidence that if K > Kc
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but is close to Kc in value, even if the system is cooled sufficiently slowly to observe the

order-disorder transition, the slow dynamics of the minority phase regions play some role in

determining the properties of the system.

In summary, the nnn Ising model is a simple toy model that may be used to investigate

non-equilibrium glass-like behaviours typical of those that occur in a wide variety of quasi

two-dimensional systems. Particularly, this system offers the possibility of further investigat-

ing the interface between equilibrium behaviour and non-equilibrium behaviour by changing

two parameters, K and T , and by varying the rate of change of these variables. Or to state

this another way, to fully understand the properties of this system when K ≈ Kc it may

be necessary to include the dependence on the time regime (t << τ, t ≈ τ, t >> τ) through

appropriate scaling laws.

In the context of time dependence in pattern forming systems, a recent study by Horowitz

et al.[27] of short-time dynamics of the transition from the striped phase to the tetragonal

phase in a square lattice Ising model with exchange and dipolar interactions is of interest.

The study reported here is limited to the square lattice model and therefore the degeneracy

that destroys the ordered state when K = Kc arises only from the competition between the

interactions. However, in view of recent advances in methods for fabricating ultra-thin films,

studies of dynamics in systems with structural frustration will also be of interest (see, e.g.,

the work by Holden et al.[28] and Maksymenko et al.[29] and references therein).

Despite the conceptual simplicity of the next-nearest-neighbour Ising model, it exhibits

complex behaviour which demonstrates how topological defects affect the behaviour of pat-

tern forming systems. The order of the transition when K is not equal to Kc but close to

it, is not the primary focus of the work reported here, however, the existence of these slow

dynamical modes suggests that methods that explicitly take into account non-equilibrium

effects may be necessary to answer that question. Work by Shirakura et al.[30] on a sim-

ple model with competing interactions has also identified possible discrepancies between

simulation results from equilibrium studies and those from non-equilibrium studies.

A remaining question is the precise behaviour of the order-disorder phase transition lines

as the critical value of K is approached. Some previous authors provide a phase diagram

that show the order-disorder transition lines continuously approaching T = 0 with a finite

slope[19, 25]. However, at the smallest value of |K −Kc| considered in this work, the values

of Tc for both the striped phase and the ferromagnetic phase are well above T = 0 and
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simple extrapolation of the phase transition lines to K = Kc result in non-zero estimates

of the limits limK→K+
c
Tc(K) and limK→K−

c
Tc(K). For example, fitting the data points for

each of the phase lines by a simple quadratic function for each K > Kc and K < Kc:

Tc = m1|K −Kc|+m2|K −Kc|2 + b (16)

results in a R-squared value of approximately R2 = 0.9995 in each case but with a non-zero

intersection with the line K = Kc (Fig. 6). Nonetheless, given the difficulties of numerical

studies close to K = Kc outlined in this paper we can not rule out the possibility that

the phase transition lines approach the line K = Kc asymptotically thus giving the result

limK→K+
c
Tc(K) = limK→K−

c
Tc(K) = 0. In the results of the current study, there is some

(albeit weak) support for this speculation of an asymptotic behaviour of the phase lines. For

y = |K−Kc| > 0.2, Tc(y) is higher in the ferromagnetic case than in the striped phase case.

However for y < 0.2 (the last two data points for each ordered state type), this is reversed;

i.e. the rate of increase of the absolute value of the slope of the Tc vs. |K − Kc| line is

greater for the phase line separating the disordered phase from the ferromagnetic phase

than for the phase line separating the disordered phase from the striped phase (Fig. 6).

Assuming this trend continues, either the two one-sided limits are unequal (as suggested

by simple extrapolation) or the limit limK→K+
c
Tc(K) = limK→K−

c
Tc(K) = 0 is approached

asymptotically. For the purpose of illustration, the asymptotic regression function

Tc = C(e|K−Kc| − 1)D 0 < D < 1 (17)

is plotted on the phase diagram in Fig. 7. (R2 values are 0.9985 and 0.9916 for K > Kc and

K < Kc respectively).
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