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ABSTRACT 

Solar energy is increasingly in demand as a clean, sustainable source of energy without a 

carbon footprint. This thesis examines the effect of weather conditions on the performance 

of photovoltaic (PV), photovoltaic thermal (PVT), and thermal solar energy applications. 

The aim is to maximize the utilized energy, to reduce the costs of energy and emissions. 

The analysis is conducted by using a dataset of weather conditions in a North American 

city over a period of one year.  

First, the effect of weather conditions on the generation of harmonics in PV systems is 

investigated. A PV model, including the inverting stage, is considered. Three converter 

techniques, which form the basis for the majority of converters, are used to validate the 

proposed approach: A square-wave inverter with 60Hz switching, a square-wave inverter 

with blanking angle and 60Hz switching, and pulse width modulation (PWM). Probability 

density functions and probability distribution models are determined as aids for improving 

the quality of the power generated. The long-term effects of weather conditions on 

harmonics produced by PV inverters are considered. The results show the variability in the 

amplitude of each harmonic component, the boundaries of each harmonic component, and 

which harmonic magnitudes occur more frequently.  

Secondly, the effect of weather conditions on the PV cell ratio of a PVT system is analyzed. 

The maximum overall thermal energy (OTE) and the CO2 emission reduction of the PVT 

system is obtained for an entire year. Constant and variable flow rate values are applied in 

the simulated study for different time spans over a year. To validate the proposed work, 

three-time span levels are evaluated: A macro level (annual), meso level (seasonal) and 

micro level (monthly). Simulated models are developed to obtain the appropriate PV 

coverage area to maximize the OTE.  

Thirdly, global solar radiation (GSR) prediction models are proposed which achieve 

improved performance in terms of error values and structural simplicity. The proposed 

models are based on the weather conditions of the specific location. Finally, a practical 

application is developed on the basis of the proposed GSR predictions, which help to 

maximize the utilized energy.  
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CHAPTER 1  INTRODUCTION 

As a clean source of energy, solar and other types of renewable energy are important for 

meeting future energy needs, especially in rural areas. Costs associated with the use of solar 

energy still present a challenge. While photovoltaic (PV) systems comprise one of the most 

important renewable energy resources in terms of global installed capacity, hybrid 

photovoltaic thermal (PVT) systems increase system efficiency by using a combination of 

PV and solar thermal collectors. This work focuses on PV, hybrid PVT and thermal 

systems as a renewable source of energy. Problems involved with the use of this type of 

energy include efficiency, power fluctuations, and harmonics. Much research has been 

directed toward harmonic estimation and power fluctuations, to reduce the impact of these 

factors. In addition, many studies have been done on maximizing the efficiency of these 

systems. The present work focuses on weather conditions and their effects on solar energy 

applications and systems. Because weather conditions are among the most significant 

factors affecting these issues, this study is important in terms of the overall cost of 

renewable energy integration, and the quality and security of renewable power systems. 

1.1  THESIS OBJECTIVES  

The primary objectives of this research are to investigate the effect of weather conditions, 

mainly temperature and solar radiation, on the generation of harmonics in PV systems, and 

to examine the PV cell ratio in photovoltaic thermal (PVT) systems to propose models that 

maximize the utilized energy. Another goal is to introduce solar radiation prediction 

models which achieve improved performance in terms of error values and structural 

simplicity compared to the similar works that have been done on this field. The final 
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objective is to develop a program based on the proposed solar radiation predictions, to 

assist in maximizing the utilized solar energy. 

1.2  THESIS CONTRIBUTION 

In this work, the relationship between weather conditions over the long term and the 

generation of harmonics in PV systems is investigated. Most earlier work has focused on 

varying either the radiation or the temperature and determining the effect on the maximum 

power point. This thesis utilizes real data that has different radiation and temperature values 

in a given time span. It is found that the amplitudes of the fundamental and harmonic 

components decrease when the radiation decreases, and the temperature increases and 

verse versa. However, the variation in weather conditions does not affect the ratio of each 

harmonic to the fundamental components of the output. In addition, probability distribution 

models are determined for each fundamental and harmonic component of the signal, for 

the different converting techniques. This study will help to construct a filtering system to 

mitigate harmonics. 

 The relationship between weather conditions over a one-year period and the PV cell ratio 

in PVT systems is studied to help maximize thermal energy, in order to increase savings 

and reduce emissions. Most previous work has focused on a constant fluid flow rate of the 

PVT system, different PV coverage areas with discrete, limited percentages (e.g. 25%, 

50%, 75% and 100%) and a short time span during the year. The present thesis utilizes real 

data which contain different values of solar radiation, wind speed, flow rate, temperature 

of the input water, and temperature of the air, for one year. Furthermore, variable water 

flow rates and different percentages of PV coverage are used to calculate the monthly and 

seasonal OTE.  
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Three Global Solar Radiation (GSR) models are proposed to improve performance and 

accuracy of the solar prediction. For this study, the data inputs for the GSR prediction 

model are the ambient temperature, relative humidity, cloud cover, wind speed, time of day 

in hours (1 to 24), and day of the year (1 to 365). The data were recorded in Halifax, Nova 

Scotia, Canada, between 2000 and 2005. For this study, hourly and daily GSR (GSR H and 

GSRD) are predicted from the models. cc (cloud cover), hu (relative humidity), and T (air 

temperature) are found to be the best individual weather variables to use as inputs for both 

𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction. Using maximum 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 gives each hour and day at 

a specific location a distinctive identity, by eliminating the effect of weather variables on 

GSR. This helps to process the effect of each individual weather variable on GSR. In 

addition, using maximum GSR helps to decrease the number of weather variables needed 

for prediction. 

Wavelet Neural Network (WNN) is used for GSR error (𝐺𝑆𝑅𝑒 )prediction. A number of 

mother wavelet functions (Morlet, Mexican Hat (Mexihat), Haar and Gaussian) are used 

as transfer functions for the hidden layer in the network, for 𝐺𝑆𝑅𝑒 prediction. 

Moreover, a load management application called SmartSaver, is developed to maximize 

utilization of the solar boiler system through the scheduling of household activities. This 

application uses the second proposed model for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, and is fed the 

weather variables directly from a weather website. In the first step in developing the 

application, live weather data are provided from a weather website. In the second step, the 

𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 are predicted for ten days. The cumulative hourly energy is then calculated 

for ten days. In addition, the cumulative daily energy, and optimal days in the ten-day 

period are obtained. The next step is to add household activities which consume hot water, 
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such as dish washers, using the washing machine, and taking a shower or bath. The next 

step is to find the optimal savings obtainable by scheduling the activity. These results have 

been published and submitted [1]-[10].  

1.3  THESIS OUTLINE 

This thesis is organized as follows. 

Chapter 2 presents a brief overview of renewable and solar energy and its development 

history. Chapter 3 provides an overview of PV and PVT systems, including the structure, 

models and mathematical analyses of the systems. In addition, the modeling, simulation, 

analysis and discussion of the effect of weather conditions on the PV cell ratio in PVT 

systems are presented. Chapter 4 briefly reviews solar radiation forecasting via artificial 

neural networks (ANN) and wavelet neural networks (WNN), and presents applications 

and structures of ANN and WNN. A literature review of solar radiation prediction and the 

evaluation of prediction models is also provided. Moreover, new models for global solar 

radiation (GSR) prediction are introduced and compared with existing ones in the field. 

Chapter 5 reviews harmonics and their causes and effects, as well as metrics used in the 

measurement of harmonic levels.  A literature review concerning the generation of 

harmonics in PV systems is also presented.  Furthermore, the modeling, simulation, 

analysis and discussion of the effect of weather conditions on the generation of harmonics 

is presented. Chapter 6 briefly reviews and defines the concept of load management, and 

provides a literature review in this field. In addition, a new load management application 

is presented which could be valuable for maximizing cost savings and reducing emissions 

through the use of thermal systems. Finally, Chapter 7 presents the conclusions of the 

research and proposes suggestions for future endeavours in this field. 
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CHAPTER 2  RENEWABLE AND SOLAR ENERGY 

In this chapter, a brief overview of renewable and solar energy is presented [10]. 

2.1   INTRODUCTION 

Since its advent, electricity has become a critically important element of human life, 

forming the basis for the lifestyle of the modern era. In light of rapid technological 

advancement, the rise of new technologies, and exponential population growth worldwide, 

there is an urgent need for enhanced methods of power generation. 

Particularly in recent years, global electricity requirements have been the focus of a 

multitude of studies and high-profile research spanning many fields. Several factors have 

contributed to the increasing focus on worldwide energy consumption needs. One of the 

most striking is the environmental damage which has occurred and continues to occur from 

the burning of hydrocarbon fossil fuels. Although debated, the concept of global warming 

as a threat to humanity has served to spur interest in examining our current energy 

consumption patterns and energy sources, with the aim of finding more efficient and 

sustainable alternatives. Significant instability in regions of the world that are largely 

responsible for the production and export of crude oil, a basic staple of fossil fuel energy, 

has caused concern, especially in conjunction with the deepening worldwide energy crisis 

[11]. 

2.2  RENEWABLE ENERGY 

A combination of environmental awareness, evolving economic and foreign policies, and 

public opinion on such issues has led world’s governing bodies to engage actively in 
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fostering and subsidizing research, and in promoting renewable energy on a much larger 

scale in the past decade than ever before [12]. 

The increase in demand for renewable energy resources, as opposed to burning of 

hydrocarbon fossil fuels, is understandable because it is inexhaustible, cleaner and 

produces virtually no pollution [13], [14]. 

Research in renewable energy is focused particularly on geothermal, wind, marine, and 

solar energy, with the aim of developing improved methods of generating electricity and 

its integration into the existing grid infrastructure for distribution to users. The basic 

principle is to extract energy from sustainable sources via mechanical or reaction methods. 

2.3  SOLAR ENERGY 

In wind, wave and tidal current energy extraction mechanical force is used to rotate a 

turbine which drives an electric generator that generates electricity. Geothermal energy is 

harnesses heat from the Earth, to produce steam which then powers a turbine-generator set 

to generate electricity. Solar energy, which is the focus of this thesis, can be used in many 

different ways for power extraction. 

In the first method, mirrors are used to concentrate heat as a means of heating water. This 

produces steam, which is then used to drive a turbine generator to produce electric power 

[15].  This method is used in solar thermal power plants. One such plant in the Mojave 

Desert has a total capacity of 392 megawatts (MW)  [15], [16]. 

The second method uses photovoltaic (PV) cells, which are placed in an array on large 

panels that are positioned so that they are exposed to a maximum amount of sunlight. The 

materials from which the cells are constructed, such as silicon or other semiconductor 
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materials, undergo electron excitation. This process results in the direct conversion of 

sunlight to electricity, which can then be stored or otherwise integrated into an existing 

distribution grid infrastructure [15]. The third method, is a hybrid of PV and thermal 

systems, which has the capability of generating electricity, hot air and hot water by using 

air and water combined as cooling media [17], [18]. Chapter 3, will discuss this method 

further.  

The promise offered by solar energy technology has been significant since it was first 

developed in 1860 as a heating method. In the 1950s, solar panels were used to power 

satellites in orbit, and continue to be used for that purpose today. Solar energy applications 

are diverse, ranging from simple solar heaters and cookers to complex PV power 

generation stations. Solar energy research has greatly intensified recently as a result of 

global interest and increased government funding, particularly within the European Union 

[19], [20]. 

Within the last decade, power generated by means of solar technology has vastly increased. 

For example, as of December 2016, the solar PV capacity amounted to more than 303 GW 

worldwide, the capacity for concentrating solar thermal power totaled 4.8 GW, and the 

solar hot water capacity was 456 GW. This represents a meaningful increase in the amount 

of thermal energy and electricity being generated by solar energy collection [21]. Global 

electricity produced by renewable energy at the end 2016 is shown in Figure 2-1. The top 

five countries by the end of 2016, in terms of investment, capacity and production, are 

shown in Table 2.1 [21]. 
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Figure 2-1 Global electricity produced via non-renewable and renewable energy at the 

end 2016 [10]. 

Table 2.1:Top five countries in terms of investment, capacity and production [10] 

 1 2 3 4 5 

Solar PV China USA Japan India UK 

Concentrating solar thermal power South Africa China - - - 

Solar hot water China Turkey Barazil India USA 

 

Solar energy is also much more accessible than traditional consumable fuels and other 

modern renewable energy sources, because energy from the sun is readily available during 

daylight hours at every location on the planet. This means that light and heat energy from 

the sun can be collected anywhere, even in landlocked or isolated locations. In the case of 

tidal and wind energy, although power can be supplied to remote areas via a distribution 

grid, far fewer sites suitable for power generation are available than is the case with solar 

energy. 

Analysis regarding the technical potential of concentrating solar power (CSP) was carried 

out in Europe in the REACCESS project. The study used annual direct normal irradiation 

(DNI) data provided by NASA to assess the feasibility of placement of solar energy 

gathering arrays as shown in Figure 2-2. 
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Figure 2-2 Direct normal irradiation [22] 

One of the challenges involved with the widespread implementation of solar power 

generation is the cost of the components. Fortunately, costs have fallen dramatically in 

recent years, mainly because of the increase in both public and government interest in 

renewable energy sources. Economies of scale have played a significant role in lowering 

the costs associated with the production of solar cell panels and inverters. Increased 

demand and expanded production have also led to greater expertise and efficiency in the 

manufacture of the various components required to harness solar energy. Ultimately this 

has also served to reduce costs [13], [23].  
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CHAPTER 3 PHOTOVOLTAIC AND PHOTOVOLTAIC 

THERMAL SYSTEM 

In this chapter, a brief overview of PV and PVT Systems are introduced. As well as the 

effect of weather conditions on the PV cell ratio of the PVT system is analyzed [4]-[6], [8], 

[9]. 

3.1  PHOTOVOLTAIC 

3.1.1  Introduction 

Depending on the application, PV systems include several interconnecting components, 

designed to perform specific tasks, ranging from the powering of small, portable devices, 

to providing power on a much larger scale, for example by feeding electricity into a main 

distribution grid. PV systems can be designed to provide power in the form of either 

alternating current (AC) or direct current (DC). They are also designed to be integrated into 

a wide variety of configurations. For instance, they can be integrated with other power 

sources, storage systems, or grid interactive production/utilization monitoring equipment. 

Because the applications to which PV systems can be applied effectively are varied and 

wide-ranging, numerous configurations exist, and classifications depend upon the 

application for which the system is required [11]. 

3.1.2  Classification 

Two primary types of PV system are commonly available on the market, as shown in  

Figure 3-1. These systems are classified as those which connect to the grid, and those which 

are isolated, off-grid systems. Off-grid systems in turn can be divided into three categories: 

Stand-alone systems with or without storage capacity, and hybrid systems [24], [25]. 
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Figure 3-1 PV system classification 

PV systems have recently seen expansive growth in grid-connected developments, 

particularly installations which produce over 200 kW and operate as centralized power 

plants. Europe has become a major centre for the development of such applications. A 

significant increase in the implementation such installations has also taken place in the 

United States [26]. Although off-grid systems were initially popular, beginning with the 

commercialization of solar energy solutions in the 1970s, as technology advanced and 

viewpoints have evolved to be more in favour of mass sustainability, the focus has shifted 

to systems which are integrated with the grid [27]. 

3.1.2.1  Stand-Alone Systems 

Stand-alone, or off-grid PV systems, are generally preferred when the location of the 

application makes connection to the grid difficult or impossible. In addition, stand-alone 

systems are frequently employed to power small devices such as watches, calculators, and 

flashlights. These small-scale applications have stand-alone PV systems with no energy 

storage capacity, because the appliances are typically run directly from the power being 

produced by the solar cell [28]. 
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Other off-grid PV systems store solar energy in batteries, for later use. Such systems are 

generally employed for applications with a large, prolonged demand for power. PV systems 

that store energy are also useful when energy is required at times when direct solar power 

is unavailable, such as at night, or when irradiation from the sun is obscured. Off-grid 

systems with storage are often employed in rural areas where various appliances have 

power requirements, but there is no access to the grid [29]. This is often the case with 

cottages, or houses that are built in areas which are not yet developed and are lacking in 

municipal infrastructure. Off-grid PV systems that store energy are also important for other 

applications. In recent years, it has become the practice of governments when planning 

infrastructure, to consider stand-alone PV systems along highways to power nighttime 

lighting, signage and traffic control lighting, or in rural areas for applications such as small- 

to medium-scale water pumping stations and purification systems, as shown in Figure 3-2 

. This technology has also enabled telecommunications companies to overcome significant 

challenges, especially since the advent of mobile communications, in providing power to 

tower and transmitter installations in rural areas where there is no access to the grid [30]-

[32].  The use of PV systems to provide power for transmission base stations and repeater 

arrays has permitted rapid growth of wireless communications infrastructure. 

 

Figure 3-2 Stand- alone System 
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Hybrid stand-alone PV systems combine PV technology with either another renewable 

energy generating technology, or a source which uses more traditional power generation 

methods, such as a diesel or gas-powered generator [33], [34]. In this way, two 

technologies, working together, produce the energy required for a given application. Such 

hybrid systems are often used in order to conserve resources or reduce costs [35], [36]. For 

example, powering a rural summer cottage with a diesel generator alone can involve 

significant costs, in continually sourcing diesel fuel to operate the generator. This is 

particularly the case in recent years, since fossil fuels have become more expensive. By 

investing in a PV system, after the initial investment, which is becoming more economical 

as the technology advances, the owner of such a cottage would be able to reduce energy 

costs by having decreased dependence on diesel fuel, and harnessing solar energy to meet 

part of the total energy requirements. A hybrid system can provide power around the clock 

more economically and efficiently than would be possible if only traditional, non-

renewable energy sources were used. In addition, diesel or gas-powered generators and 

other mechanical means of power generation with moving parts require lubrication and 

maintenance, which also have associated costs. PV energy solutions are more economical 

in this respect, following the initial investment to acquire the components and install them. 

Thus, a hybrid system can also reduce costs by decreasing the maintenance requirements 

of mechanical systems [37]. 

Although large stand-alone systems can and have been employed for such purposes, hybrid 

PV systems are often designed as a means of providing power to small rural communities, 

as shown in Figure 3-3 . When such communities are located far from a conventional grid 

infrastructure, hybrid power systems can offer convenience, cost effectiveness, and 
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efficiency. Such solutions have been used for communities in industrialized as well as 

developing nations. PV power systems can also play an important role in providing power 

for the agricultural needs of rural farming communities, such as electric fencing and water 

pumping for irrigation. 

 

Figure 3-3 Hybrid PV system 

3.1.2.2  Grid Connected Systems 

Grid-connected, centralized PV systems, as shown in Figure 3-4, have been a particular 

focus of attention in recent years. In this type of application, a PV system with or without 

battery storage is connected to a distribution grid by means of a power inverter. Grid-

connected systems must be synchronized with the grid to which they are connected in terms 

of both voltage and frequency. Such systems vary in size, ranging from small-scale, roof-

mounted systems in residential neighbourhoods, to large-scale PV power generation 

stations that generate enough power to service an entire area [38], [39]. 

The primary advantage of a grid-connected system is that when power is not available from 

the PV system, it can be drawn from the connected central distribution grid. In turn, PV 

systems connected to the grid can help to improve the grid voltage and overall reliability. 
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The emphasis on overall sustainability and reliability, and the desire to achieve a cost-

effective integration with current infrastructure in order to facilitate a smoother transition 

to renewable energy, accounts for the increasing use of grid-connected PV systems. In 

Germany, an early adopter of large-scale PV power solutions, more than 1 GW of power 

was generated via grid-connected PV systems in 2004 [40]. 

An important component of grid-connected PV systems is the inverter, or power 

conditioning unit (PCU). The PCU converts the DC power produced by the PV panels into 

AC power that is compatible with the local grid in terms of voltage, frequency, and power 

quality, as specified by the utility provider [41]. In addition, the PCU has switching 

functions that prevent power from being shunted to the grid when the grid is not energized. 

The PCU is incorporated into the system via a bi-directional interface between the PV 

system with its AC output circuits and the utility grid network. This is usually achieved by 

a distribution patch panel or a service entrance demarcation. This integration permits the 

PV system to supply power to either the grid or the locality. When on-site demand is lower 

than the output from the PV system, the excess power produced can be fed to the grid. 

Conversely, when on-site power consumption exceeds what the local PV system is capable 

of providing, power can be drawn from the grid. This most often occurs at night, when the 

sun is below the horizon. This bi-directional capability, which is a required feature for grid-

connected systems, ensures that the PV system does not continue to feed power to the 

distribution grid if the grid is not in service [41]. 

Overall, grid-connected PV systems are regarded as being beneficial to the grid to which 

they are connected, because they can reduce power losses and improve the voltage profile 

of the utility grid. However, it should be noted that there can also be negative effects 
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associated with grid-connected PV systems. This is particularly the case if there is a high 

penetration of grid-connected PV systems. These negative impacts include power and 

voltage fluctuations, and harmonic distortion. The failure of protective devices can also 

result in overloading or under-loading of the grid feeders [42]. 

 

Figure 3-4 Grid- Connected System 

3.1.3  PV System Component Structure and Modeling 

PV systems, depending on their intended application and the specifics of their expected 

functionality for any given installation, are comprised of several components which 

interconnect to create a fully functional off-grid or grid-connected PV system, as shown in 

Figure 3-5. Regardless of the type of system, the primary component of any PV system is 

the solar panel. Secondary to the solar panel is the inverter/converter unit, which is also 

referred to as a power conditioning unit (PCU). This device serves to convert DC power to 

AC power, and then condition the power to the proper frequency and voltage to service the 

load. Depending on the configuration, there may also be battery or capacitance banks in 

use, for storage of the energy produced. Finally, various types of mounting hardware are 

required to mount the panels in an optimal location for the collection of light quanta at the 

particular installation location. Rooftop and pole mounting are common. It is also possible 

to set up a panel array on the ground [43]. 
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Figure 3-5 PV system components 

It is important to note that the power output of a PV module depends upon the intensity of 

the light from the sun to which the module is exposed, and upon the temperature of the 

semiconductor-based cells which make up the larger panels. For this reason, the power 

must be conditioned via a power conditioning unit (PCU), to stabilize the output in order 

to deliver it in a form suitable for the grid, batteries, or end load. It is also important to 

point out that not all systems require conversion of the DC power originally produced by 

the system into AC power. Small applications such as watches, calculators, flashlights, and 

small panel kits sold for powering camping or hiking gear are only required to produce DC 

power similar to the dry cell alternative. Larger installations, including those which 

supplying loads of a residential, commercial or industrial nature, usually require inverters 

to facilitate the conversion to AC power. In grid-connected solutions, additional 

components that are part of the PCU serve to obtain the proper frequency cycle, and to 

ensure that the flow of power is bi-directional as required, depending upon peak/off-peak 

hours, the rate of consumption versus the power produced by the local system, and 

compensation for power fluctuations due to meteorological conditions [44]. 
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3.1.3.1  PV Cell 

The smallest functional unit of a PV system is the solar cell. Types of solar cell include 

mono-crystalline silicon, poly-crystalline silicon, amorphous silicon, and thin film silicon 

cells. Experiments and research are also being done on other semiconductor materials. 

Copper-indium selenide, cadmium telluride, gallium arsenide, and many other organic and 

inorganic polymers are among the alternative semiconductor materials being used to 

produce PV cells. At present, approximately 90% of the PV cell technology prevailing in 

the market is divided between mono- and poly-crystalline types [45]. 

 PV cells use a photovoltaic effect to produce electricity. This effect is a quantum-

mechanical process. The basic structure of a PV cell is that of a p-n junction in the silicon 

semiconductor material, similar to a diode, as shown in Figure 3-6. An electric field is 

formed at the junction by means of impurity doping, which uses p-doping on one side and 

n-doping on the other. Essentially, when the cell is irradiated with light quanta, the photons 

create charge carriers, which are separated across the electrical field. This creates a 

depletion region, which exists between the p and n sides of the junction. As a result, a 

voltage is generated across the external contacts, which in turn creates current flow through 

to the load, if the circuit is completed [46], [47]. The photocurrent flowing from the solar 

cell is proportional to the irradiation intensity of the sunlight. 
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Figure 3-6 PV cell structure 

As shown in Figure 3-7, a PV cell equivalent circuit is comprised of a current source paired 

with a parallel diode. The presence of parasitic resistance should be noted: The series 

resistance, 𝑅𝑠 , normally has a small value; and the shunt resistance, 𝑅𝑆𝐻, is relatively large. 

𝑅𝑠 is primarily influenced by material factors such as the bulk resistance offered by the 

semiconductor material, metallic contacts and interconnections. 𝑅𝑆𝐻  is attributable to non-

idealities and impurities present at the p-n junction. 

 

Figure 3-7 PV cell equivalent circuit 

 A generalized equation for the diode current of the PV cell is given by [48]-[52]: 

 𝐼 = 𝐼𝐿 − 𝐼𝑜 (exp [
𝑞(𝑉 + 𝐼𝑅𝑠))

𝑛𝑘𝑇
] − 1) −

𝑉 + 𝐼𝑅𝑠

𝑅𝑆𝐻
 (3.1) 

 𝐼𝐿 = 𝐼𝐿,𝑟𝑒𝑓  
𝐺

1000
(1 + 𝛼(𝑇 − 𝑇𝑟𝑒𝑓) (3.2) 
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 𝑅𝑠 = 𝑅𝑠0 −
𝑛𝑘𝑇

𝑞𝐼𝑜
 exp (

−𝑞𝑉𝑜𝑐

𝑛𝑘𝑇
) (3.3) 

 𝑅𝑆𝐻 = 𝑅𝑆𝐻0 (3.4) 

where I is the overall diode current produced by the cell, 𝐼𝐿, is the current generated by the 

incident light quanta arriving at the cell (which is directly proportional to the level of solar 

irradiation), 𝐼𝑜 is the reverse saturation current of the diode, 𝑞 is the electron charge 

(1.60217646 x10−19 C), n is the ideality factor, k is the Boltzmann constant (1.3806503 x 

10−23J/K), T is the temperature of the PV cell (more specifically the temperature at the p-

n junction) measured in Kelvin, 𝑇𝑟𝑒𝑓  is the reference temperature, G is the solar irradiance, 

V is the voltage across the cell,  𝑅𝑆𝐻0 is the slope of the I-V curve at the (0, short-circuit 

current) point, and 𝑅𝑠0 is the slope of the I-V curve at the (open-circuit voltage, 0). The 

values of, 𝑅𝑠 and 𝑅𝑆𝐻 are determined under varying environmental conditions. 

PV cells are characterized by several important parameters, which are briefly discussed 

below. In general, the short-circuit current (𝐼𝑠𝑐), open-circuit voltage (𝑉𝑜𝑐), fill factor (FF) 

and cell efficiency (η) are specific parameters that are determined via the I-V curve of a 

PV cell, as shown in Figure 3-8. 

The variable 𝐼𝑠𝑐 represents the current passing through the PV cell when the voltage across 

the cell is zero, i.e., when the cell is short-circuited. 
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Figure 3-8  The I-V curve of a PV cell 

The short-circuit current is caused by the generation and accumulation of light-generated 

carriers. An ideal PV, operating with the most modest resistive loss mechanisms, has a 

short-circuit current equal to the light-generated current. Thus, the short-circuit current is 

the maximum possible current that can be drawn from a PV cell. 

The variable 𝑉𝑜𝑐 represents the greatest possible voltage available from a PV cell. This 

voltage is achieved when the cell has zero current flow. The open-circuit voltage is 

proportional to the amount of forward bias on the PV cell, as a result of the bias of the p-n 

junction with light-generated current. 𝑉𝑜𝑐is depicted in the I-V curve, and is given by [48]: 

 𝑉𝑜𝑐 =
𝑛𝑘𝑇

𝑞
𝐼𝑛(

𝐼𝐿
𝐼𝑜

+ 1) (3.5) 

The short-circuit current and the open-circuit voltage are the maximum possible current 

and voltage, respectively, for a PV cell. However, it should be kept in mind that when either 

of these states is achieved, the power from the cell is zero. In conjunction with the short-

circuit current and the open-circuit voltage, the fill factor (FF) specifies the greatest 

possible power draw from a PV cell. The FF is the ratio of the maximum power from the 
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PV cell to the product of the short-circuit current and the open-circuit voltage, and is given 

by [48]: 

 𝐹𝐹 =
𝑉𝑀𝑃𝐼𝑀𝑃

𝑉𝑂𝐶𝐼𝑆𝐶
 (3.6) 

where V𝑀𝑃 is the maximum-power voltage and I𝑀𝑃 is the maximum-power current. 

PV efficiency is the parameter most commonly used to compare one model of PV cell with 

another. Efficiency is defined as the ratio of the energy output by the PV cell to the energy 

input by the sun. It is important to note that the efficiency rating of a PV cell does not 

merely represent the performance of a PV cell in itself, but also depends on the spectrum 

and intensity of the irradiation by incident sunlight, as well as the temperature of the PV 

cell at the p-n junction. Thus, the conditions under which efficiency is measured must be 

handled with care in order to achieve a meaningful comparison between PV cells. PV cells 

intended for terrestrial use, at the surface of the Earth, are measured according to air mass 

1.5 (AM1.5) conditions, at a temperature of 25𝑜 C. PV cells designed to be used in space 

are measured at AM0 conditions. The efficiency of a PV cell is calculated as the fraction 

of incident power which is converted into electrical power, and is given by [48]: 

 𝑃𝑚𝑎𝑥 = 𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹 (3.7) 

 𝜂 =
𝑉𝑜𝑐𝐼𝑠𝑐𝐹𝐹

𝑃𝑖𝑛
 (3.8) 

Where 𝑃𝑖𝑛 is the incident power of solar radiation  per unit area of PV cell. 

Resistive effects in PV cells reduce the cell efficiency by lowering power output, because 

power dissipates in the resistances presented. The types of parasitic resistance most 
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commonly encountered in PV cells are series resistance and shunt resistance. In most cases, 

the combined values of these parasitic resistances reduce the fill factor. The magnitude and 

effect of the series and shunt resistance depend upon the geometry of the PV cell at its 

operating point. 

Series resistance in a PV cell has three primary causes: The movement of the current 

through the emitter and base of the PV cell, the contact resistance offered by the junction 

of the metal contact and the silicon semiconductor material, and the resistance inherent in 

the top and bottom metal contacts of the PV cell. Series resistance reduces the fill factor, 

and exceedingly high levels may also reduce the short-circuit current. 

Noticeable power losses due to the presence of shunt resistance usually result from defects 

caused by poor manufacture, rather than from poor cell design. A low shunt resistance can 

cause power loss in PV cells by providing an alternative path for the flow of light-generated 

current. This diversion of the current reduces the amount of current flowing through the 

PV cell p-n junction, and reduces the voltage output of the solar cell. 

Individual PV cells based on silicon semiconductors typically produce about half a volt. 

Because this output is so small, many cells are connected in series in a PV module. Many 

modules are then grouped together to form a PV panel, and PV panels are mounted and 

arranged to form PV arrays. All the cells in the array produce the power output that is 

utilized for end power conditioning by subsequent PV system components. The 

accompanying Figure 3-9 depicts the organization of PV collector components, from the 

simplest unit (the individual PV cell) to the most complex (the PV array) [53]. 
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Figure 3-9 PV cell arrangement 

3.1.4  PV Challenges 

3.1.4.1  Fluctuation 

Fluctuation is an important challenge, because it is a common issue that results from natural 

phenomena. Natural fluctuation in the irradiance of light from the sun is caused by the 

formation and movement of clouds. Such fluctuations give rise to operational problems 

and make it difficult to forecast the output power. Differing cloud patterns and cloud 

densities hinder the accurate calculation of potential outcomes. In addition, wind speed can 

affect the duration of fluctuations caused by cloud formations. Because wind speed is 

variable, present conditions can persist from a few minutes to several hours, and it is 

difficult to predict the length of time that fluctuations may last [54]. In view of these 

variables: Cloud type and size, wind speed, and topology and configuration of the PV array, 

it is clear that there is no universal solution that can be employed to deal with this problem. 

Clouds differ in size and type. Cloud types can be identified by comparing the apparent 

size of puffs of cloud to that of an outstretched hand. A cirrocumulus cloud has puffs of 

cloud that are small, comparable to a fingernail; an altocumulus cloud has puffs of cloud 

that are medium-sized, comparable to a thumb; and a cumulus cloud has puffs or cloud that 
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are large, comparable to a fist. The time of day most subject to wide power fluctuations is 

usually around noon, when the sun is at its zenith. At this time, the output of the PV system 

is potentially the highest, because irradiation from the sun falls most directly on the array, 

resulting in the highest level of electron excitation in the solar cells. If there are clouds at 

this time of day, there can be wide fluctuations in the power provided to the grid. Relatively 

high equipment costs also limit the solutions available to electrical utility companies, to 

reduce the negative impacts of such fluctuations [54]. 

3.1.4.2  Harmonics 

While fluctuation is a problem which results from natural phenomena, there are also 

technology-based challenges that must be addressed to avoid problems in the grid and 

prevent damage to system loads. In particular, waveform harmonics are a significant 

concern. This issue arises from PCU conversion of the DC current produced by the solar 

panels to AC current. This is performed via a semi-conductor switching circuit; however, 

the AC wave resulting from this method of conversion is not a perfectly sinusoidal wave, 

because there is not a smooth transition between the switching phases. Modern PCUs 

employ methods which compensate for this imperfect waveform, but older devices with 

poor-quality, inefficient inverter circuits and components may generate serious harmonics 

during the conversion process [55]. It should be noted that the effects of waveform 

harmonics are cumulative and can result in significant undesirable impacts on the grid, 

such as excessive voltages and currents due to series and parallel resonance. Harmonics 

can also impair the functionality of attached appliances and cause component damage  [55]. 

Research in the area of inversion waveform harmonics has found that the odd numbered 
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harmonics are the most problematic with regard to the severity of the distortion produced. 

Thus, the 3rd, 5th, 7th, etc., harmonics are the ones which are of primary concern [56] 

The complete elimination of waveform harmonics is not achievable via current technology, 

however, modern PCUs are designed to limit harmonics and perform waveform smoothing, 

similarly to any modern inverting power supply. One solution for managing harmonics is 

pulse width modulation (PWM) [57]. PWM serves to control the voltage by manipulating 

the interval and the width of the pulse, so that the average voltage output equals that of the 

required fundamental waveform. After PWM is employed, in an additional step, the low 

line current distortion produced by the modulation process is filtered out. 

LCL filters are commonly used in many topologies. These filters achieve excellent 

attenuation with relatively inexpensive components, and are suitable for high power 

applications. In other words, good power quality can be obtained with a low component 

cost [58]-[60]. 

3.1.4.3  Cost of PV Systems 

The overall cost of PV system implementation continues to be relatively high in 

comparison to the cost of other renewable energy production systems. However, increased 

demand has caused prices to decline. For continued improvements to be made, public 

research funding is needed to facilitate new research and enhance existing study efforts. In 

addition, increased public awareness of renewable energy and PV systems is required. In 

1992, the cost per watt of energy produced by a PV crystalline cell was approximately 

$4.23. Ten years later, that amount had fallen to $1.72 [61]. The price continues to fall as 

the volume of production increases with demand. The accompanying figure illustrates the 
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general trend of solar energy production costs. It should be noted that the Chinese company 

SUN-TECH, the largest producer of PV cells and panels worldwide, forecast that 

manufacturing costs would decrease by the end of 2017 to approximately $0.32 per watt 

[62]. 

3.2  PHOTOVOLTAIC THERMAL SYSTEM   

3.2.1  Introduction 

Hybrid systems consisting of PV and thermal modules may be the best choice to minimize 

costs and equipment, and increase overall efficiency. The photovoltaic thermal (PVT) 

model produces both thermal and electrical energy at the same time. PVT systems uses the 

same frames for the PV and thermal modules [63]. 

Kern and Russell introduced the concept of the first PVT collector [64], [65]. Hendrie and 

Florschuetz introduced the theoretical (Hottel-Whillier) PVT model, by using conventional 

thermal plane concepts [65], [66]. 

3.2.2  Classification 

A PVT system can generate electricity, hot air and hot water, by using air and water 

combined as a cooling substance. The system performance can be evaluated under indoor 

weather conditions [17]. A solar air heater with a compound parabolic concentrator has 

been investigated with a varying mass air flow rate [18]. 

In general, glazed PVT water collectors are more suitable for thermal energy applications, 

and unglazed PVT water systems are better for electrical energy applications [67]. 
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3.2.3  PVT System Model 

The water flowing underneath the absorber is heated by solar radiation that is transferred 

through the PV cells to the absorber. The water flows from the bottom of the collector 

toward the top. The water output from the part of the collector that is covered by PV cells 

is input to the part that is not covered, as shown in Figure 3-10  [65]. 

 

Figure 3-10 Cross-section of PVT collector 

3.2.3.1  Mathematical Thermal Analysis   

PV cells can be placed on the upper or lower portion of a PVT collector. In this research, 

the lower portion of the collector was covered by PV cells, because more thermal and 

electrical energy can be gained there than in the upper portion [68]. 

Energy balance equations have been derived for a quasi-steady state. The ohmic losses and 

heat capacity of PVT collectors are neglected. The energy balance equations providing the 

thermal parameters of PVT water collectors are [65], [68]: 

 𝑇𝑐 =
(𝛼𝜏 )1,𝑒𝑓𝑓𝐼(𝑡) + 𝑈𝑡 𝑐,𝑎𝑇𝑎  + ℎ𝑐,𝑝𝑇𝑝

𝑈𝑡 𝑐,𝑎 + ℎ𝑐,𝑝
 (3.9) 

 𝑇𝑝 =
(𝛼𝜏 )2,𝑒𝑓𝑓𝐼(𝑡) + 𝑃𝐹1(𝛼𝜏 )1,𝑒𝑓𝑓𝐼(𝑡) + 𝑈𝐿𝑇𝑎  + ℎ𝑝,𝑓𝑇𝑓

𝑈𝑡 𝑐,𝑎 + ℎ𝑐,𝑝
 (3.10) 



29 

 

 (𝛼𝜏 )1,𝑒𝑓𝑓 = (𝛼𝑐 − 𝜂𝑐)𝛽𝑐𝜏𝑐 (3.11) 

 (𝛼𝜏 )2,𝑒𝑓𝑓 = 𝛼𝑝(1 − 𝐵𝑐)𝜏𝑔
2 (3.12) 

 𝑈𝑡 𝑐,𝑎 = 5.7 + 3.8𝑉 (3.13) 

 𝑈𝐿1 =
𝑈𝑡 𝑐,𝑎ℎ𝑐,𝑝

𝑈𝑡 𝑐,𝑎 + ℎ𝑐,𝑝
 (3.14) 

 𝑃𝐹1 =
ℎ𝑐,𝑝

𝑈𝑡 𝑐,𝑎 + ℎ𝑐,𝑝
 (3.15) 

where(𝛼𝜏 )𝑒𝑓𝑓 is the product of effective absorptivity and transmissivity, 𝐼(𝑡) is incident 

solar intensity (𝑤/𝑚2), 𝑈𝑡 𝑐,𝑎 is the coefficient for overall heat transfer from the solar cell 

to the ambient  surrounding through the glass cover (𝑤/𝑚2 K), 𝑇𝑎  is the  ambient 

temperature (K), ℎ𝑐,𝑝 is the solar cell-plate the solar cell-plate heat transfer coefficient 

(𝑤/𝑚2), 𝑇𝑝  is the plate temperature (K), 𝑃𝐹1  is the penalty factor due to the glass cover 

of  the PV cells, 𝑈𝐿1 is the coefficient for  overall heat transfer t from the blackened surface 

to the ambient (𝑤/𝑚2 K), ℎ𝑝,𝑓 is the plate-fluid heat transfer coefficient (𝑤/𝑚2), and V is 

the wind speed (m/s).   Values for ℎ𝑝,𝑓, 𝛼𝑐 , 𝜂𝑐 , 𝜏𝑐, 𝛼𝑝 and 𝜏𝑔 are given in [65], [68]. 𝑇𝑓 is 

the average temperature of flowing water, given as: 

 𝑇𝑓 = 
𝑇𝑓𝑖𝑛 + 𝑇𝑓𝑜2

2
 (3.16) 

where  𝑇𝑓𝑖𝑛  is the inlet water temperature (k), 𝑇𝑓𝑜2 is the outlet water temperature of PVT 

system (k), given as [68]: 
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𝑇𝑓𝑜2 = [
(𝛼𝜏)𝑐,𝑒𝑓𝑓𝐼(𝑡)

𝑈𝐿,𝑐
 + 𝑇𝑎] [1 − 𝑒𝑥𝑝 (− 

𝐹́𝐴𝑐𝑈𝐿,𝑐

𝑚̇𝑓𝐶𝑓
)]

+   𝑇𝑓𝑖2exp (−
𝐹́𝐴𝑐𝑈𝐿,𝑐

𝑚̇𝑓𝐶𝑓
) 

(3.17) 

where  𝐹́ is the flat-plate collector efficiency factor, 𝐴𝑐 is the collector area (𝑚2), 𝑚 ̇ is the 

rate of flow of water mass (kg/s), 𝐶𝑓 is the specific heat of water (J/kg K), 𝑈𝐿is the 

coefficient for overall heat transfer from blackened surface to ambient (𝑤/𝑚2 K), and 𝑇𝑓𝑖2 

is the  inlet temperature of water for remaining part of collector which is equal to  𝑇𝑓𝑜1(k), 

given as as [68]: 

 

𝑇𝑓𝑜1 = [
𝑃𝐹2(𝛼𝜏)𝑚,𝑒𝑓𝑓𝐼(𝑡)

𝑈𝐿,𝑚
 + 𝑇𝑎] [1 − 𝑒𝑥𝑝 (− 

𝐹́𝐴𝑚𝑈𝐿,𝑚

𝑚̇𝑓𝐶𝑓
)]

+ 𝑇𝑓𝑖𝑛exp (−
𝐹́𝐴𝑚𝑈𝐿,𝑚

𝑚̇𝑓𝐶𝑓
) 

(3.18) 

 𝑃𝐹2 =
ℎ𝑝,𝑓

𝑈𝐿 + ℎ𝑝,𝑓
 (3.19) 

 𝑈𝐿,𝑚 =
𝑈𝐿ℎ𝑝,𝑓

𝑈𝐿 + ℎ𝑝,𝑓
 (3.20) 

 (𝛼𝜏)𝑚,𝑒𝑓𝑓 = 𝑃𝐹1 (𝛼𝜏 )1,𝑒𝑓𝑓 + (𝛼𝜏 )2,𝑒𝑓𝑓 (3.21) 

where 𝑃𝐹2  is the penalty factor due to the absorber below PV module, glass to glass PV 

cells area and  𝐴𝑚 is the area of PV cells ( 𝑚2). 

The rate of useful thermal energy of PVT water collector is given in [65], [68], [69]: 
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      𝑄̇𝑢 = 𝑚̇𝑓𝐶𝑓(𝑇𝑓𝑜2 − 𝑇𝑓𝑖) 

= [𝐴𝑚𝐹𝑅𝑚𝑃𝐹2(𝛼𝜏)𝑚,𝑒𝑓𝑓(1 − 𝑘1) + 𝐴𝑐𝐹𝑅𝑐(𝛼𝜏)𝑐,𝑒𝑓𝑓  ]𝐼(𝑡)

− [𝐴𝑚𝐹𝑅𝑚𝑈𝐿,𝑚(1 − 𝑘1) + 𝐴𝑐1𝐹𝑅𝑐𝑈𝐿,𝑐](𝑇𝑓𝑖1 − 𝑇𝑎)

 (3.22) 

where 𝐾1 = [
𝐴𝑐 𝐹𝑅𝑐 𝑈𝐿,𝑐

𝑚̇𝑓 𝐶𝑓
]. 

The instantaneous thermal efficiency of PVT collector is a function of the solar radiation, 

the input fluid temperature , and the ambient temperature and  is given as [65], [68]: 

 𝜂𝑖 = 𝐹𝑅𝑚(𝑃𝐹2(𝛼𝜏)𝑚,𝑒𝑓𝑓 −
𝑈𝐿,𝑚( 𝑇𝑓𝑖𝑛 − 𝑇𝑎)

𝐼(𝑡)
 (3.23) 

where  𝐹𝑅𝑚(𝑃𝐹2(𝛼𝜏)𝑚,𝑒𝑓𝑓 is the gain factor and 𝐹𝑅𝑚𝑃𝐹2𝑈𝐿,𝑚 is the loss factor.  

3.2.3.2  Mathematical Electrical Analysis   

The electrical energy and electrical system parameters are calculated via PV module 

simulations. A general equation for the current flowing out of the PV cell is [48], [70]: 

 𝐼 = 𝐼𝐿 − 𝐼𝑠 exp [
𝑞(𝑉 + 𝐼𝑅𝑠))

𝑛𝑘𝑇
− 1] −

𝑉 + 𝐼𝑅𝑠

𝑅𝑆𝐻
 (3.24) 

 𝐼𝐿 =
𝐼(𝑡)

𝐼(𝑡)𝑟𝑒𝑓
(𝐼𝐿𝑟𝑒𝑓 + 𝛼(𝑇𝑐 − 𝑇𝑐𝑟𝑒𝑓)) (3.25) 

 𝐼𝑆 = 𝐼𝑆𝑟𝑒𝑓((
𝑇𝑐

𝑇𝑐𝑟𝑒𝑓

)3𝑒𝑥𝑝 (

𝑞𝐸𝑔((
1

𝑇𝑐𝑟𝑒𝑓
−

1
𝑇𝑐

))

𝑘𝑛
) (3.26) 

where I is the net output current produced by the cell (A), 𝐼𝑠 is the reverse saturation current 

of the diode (A), 𝐼𝑠𝑟𝑒𝑓 is the reverse saturation current of the diode at reference condition 
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(A), q is the value of the electron charge ( 1.6 × 10−19C). n is the ideality factor, k is the 

Boltzmann constant (1.38 × 10−23J/K). T is the temperature at the p-n junction of the cell 

(k), V is the output voltage of the cell. 𝐼𝐿 is the current generated by the incident light 

arriving at the PV cell.  𝐼𝐿𝑟𝑒𝑓 is the current generated by the incident light arriving at the 

PV cell at reference condition, and RS is series resistance which primarily influenced by 

material factors such as bulk resistance offered by the semiconductor material, metallic 

contacts, and interconnections, and RSH is shunt resistance, is due to non-idealities and 

impurities present in the p-n junction [48], [71]. 

3.3  PV COVERAGE RATIO FOR MAXIMUM OVERALL THERMAL 

ENERGY OF PVT SYSTEM 

In this section, the effect of weather conditions on the PV cell ratio in PVT systems is 

presented, to increase system efficiency and reduce costs and emissions.  

The annual energy performance and CO2 emissions for different climate conditions have 

been studied in cold (London), warm (Shanghai) and hot (Hong Kong) areas [72]. Fully 

covered PVT collectors are suitable for applications with low temperatures, from 25𝑐  to 

40𝑐 [73]. The temperature profile of the PV module was studied for cloudy and clear 

daytime conditions [74]. Thermal and electrical outputs are enhanced when the 

photovoltaic thermal flat-plate collector (PVT-FPC) is partially covered with PV modules 

[65], [75]. 

An analytical expression of useful energy was derived for N PVT flat-plate water collectors 

connected in series and partially covered with PV modules in the lower and upper portions 

[76], [77]. 
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In various Indian cities, analyses of thermal and electrical energy have been conducted for 

different weather conditions, for series and parallel combinations of collectors with a 

constant mass flow rate. Annual thermal, electrical energy and total carbon credits earned 

by the PVT water heater system were calculated for New Delhi conditions [66]. For PVT 

systems with a constant mass flow of air, annual overall energy and exergy gains for three 

different configurations and weather conditions were evaluated [78]. 

Three different types of PVT air collector (unglazed, glazed, and conventional hybrid PVT 

air collectors) were studied. The annual overall thermal energy (OTE) and exergy gains for 

different types of PVT were investigated [79]. 

The overall thermal and electrical energy and overall exergy for N partially covered 

photovoltaic thermal compound parabolic concentrator (PVT-CPC) water collectors 

connected in series was investigated and calculated for two weather conditions in India, in 

January and June 2015 [65]. 

The OTE and exergy gains were evaluated for four different cases at a constant flow rate, 

for N PVT-CPC water collectors connected in series. The annual reduction of CO2 

emissions and amount of money saved were examined [80]. 

The reduction of CO2 emissions was evaluated for four different cases, for a 20%, 40%, 

60% and 80% PV coverage area, at a constant flow rate, for each month throughout the 

year. Two models were proposed to determine monthly reductions of CO2 emissions and 

the PV coverage area ratio [6]. 

Most previous work has focused on a constant fluid flow rate, different PV coverage areas 

with discrete, limited percentages (e.g. 25%, 50%, 75% and 100%) and a short time span 
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during the year. The present work utilizes real data which contain different values of solar 

radiation, wind speed, flow rate, temperature of the input water, and temperature of the air, 

for one year. Furthermore, variable water flow rates (heat exchanger fluid flow rates) and 

different percentages of PV coverage are used to calculate the monthly and seasonal OTE 

[5]. This will assist in determining the appropriate ratio of the PV coverage area required 

to maximize the OTE, in order to maximize the overall system efficiency and minimize 

CO2 emissions [4], [6]. 

3.3.1  PVT System and Data Description 

For this study, a PVT system consisting of a single glazed flat-plate collector with an 

effective area of 2.156 𝑚2 is used for the simulation. The collector is covered with 

crystalline silicon solar cells. The area of each solar cell unit is 0.018 𝑚2. The number of 

cells is incremented by one, beginning in the lower portion of the collector, until full 

coverage with the cells is achieved, as shown in Figure 3-11. The system configuration of 

the PVT water collector, which includes thermal and electrical parameters, is given in [65], 

[68]. 

 

a) one cell b) partial coverage c) full coverage 

Figure 3-11  PV coverage ratio for different cases  

This work is based on a dataset for various environmental conditions in a North American 

city. The solar radiation, ambient temperature, wind speed, water flow rate and temperature 
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of the input water were measured every hour over a one-year time span, as shown in Figure 

3-12. The dataset was obtained from a solar thermal system used for water heating, with 

measurements taken by a pyranometer, a wind speed meter and thermometers [81].  It has 

been assumed that an hourly dataset is sufficient to represent environmental fluctuations. 

Moreover, it is important to study the weather patterns over an entire year, since the 

weather patterns vary seasonally.  

The data set could be represented in different scale levels using fuzzy c-mean clustering 

technique. This technique breaks a large dataset to smaller groups where each observation 

within every group is more similar to each other than it is to an observation in another 

group as shown in Figure 3-13 for radiation case. Two different groups of clustering for 

solar radiation are selected at 365 and 12. However, in this work, all real data are used to 

represent the actual system. 

 

Figure 3-12  Solar radiation, ambient temperature and wind speed for one year 
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a) Number of clustering group=365 b) Number of clustering group=12 

Figure 3-13 Solar radiation values at different clustering group numbers which are 

presented by the center of the cluster for one year 

By selecting a specific day from Figure 3-12, hourly solar radiation, ambient temperature, 

and wind speed are obtained for a day in May, as shown in Figure 3-14. Hourly solar 

radiation, and ambient temperature increase until 2 pm and then they start declining. 

However, wind speed changes randomly during the day.  

 

Figure 3-14  Hourly solar radiation, ambient temperature and wind speed for a day in 

May 

The simulated PVT system used in this work is modeled using MATLA B TM. The weather 

dataset and water specifications are used as input parameters for the PVT system. The 



37 

 

output of the system is defined as the OTE, which includes the thermal and electrical output 

of the system as shown in Figure 3-15. 

 

Figure 3-15  Simulated model of the PVT System 

3.3.2  Simulation of the PVT System  

Two cases are analyzed in this thesis, the first with a constant flow rate value (0.03 kg/s), 

and the second with flow rate values varying with time. For the second case, the different 

flow rate values applied are measured at a thermal system used for water heating. These 

flow rate values are controlled by a water pump driven by a PV system. Furthermore, these 

values reflect the effect of environmental parameters. The OTE rate of the PVT system is 

based on the first law of thermodynamics, and is given in [80]: 

 𝑄̇𝑢,𝑡𝑜𝑡𝑎𝑙 = ∑𝑄̇𝑢,𝑡ℎ𝑒𝑟𝑚𝑎𝑙   +  ∑
𝑄̇𝑢,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙

𝐶
 (3.27) 

 𝑄̇𝑢,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑃𝐸 (3.28) 

where C is the conversion factor for the thermal power plant. Its value depends upon the 

type of power plant. This coefficient varies from 38% to 44% for a steam turbine fuel oil 

power plant, and from 39% to 47% for a steam turbine coal fired power plant [80], [82]. 

As shown in Figure 3-16, for both cases, maximum thermal energy is obtained for the 

variable and constant flow rate cases. The output thermal energy exhibits the same trend 

of change, with a slight difference in the amount. 
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a) constant flow rate b) variable flow rate 

Figure 3-16 Relation between hourly thermal energy, PV area coverage and solar 

radiation 

From Figure 3-17 and Figure 3-18, it can be observed that in both cases, the maximum 

thermal energy changes with changes in the temperature and wind speed. From Figure 3-16 

to Figure 3-18,  it can be seen that the thermal energy of the PVT system is determined 

more by the solar radiation than by the temperature and wind speed. 

From Figure 3-19, it can be observed that the electrical energy increases when the PV 

coverage area increases for both cases, with constant and variable flow rates. Figure 3-19 

and Figure 3-20 show that the maximum electrical energy is obtained with low temperature 

and high solar radiation values. For the variable and constant flow rate cases, the electrical 

energy exhibits the same trend of change, with a slight difference in the amount. However, 

the effect of wind speed on the generation of electrical energy is less significant than the 

effect of solar radiation and temperature, as shown in Figure 3-21. 
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a) constant flow rate b) variable flow rate 

Figure 3-17 Relation between hourly thermal energy, PV area coverage and area 

coverage and temperature 

 

a) constant flow rate b) variable flow rate 

Figure 3-18 Relation between hourly thermal energy, PV area coverage and wind speed      

 
a) constant flow rate b) variable flow rate 

Figure 3-19  Relation between hourly electrical energy, PV area coverage and solar 

radiation 
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a) constant flow rate b) variable flow rate 

Figure 3-20  Relation between hourly electrical energy, PV area coverage and 

temperature 

 

a) constant flow rate b) variable flow rate 

Figure 3-21  Relation between hourly electrical energy, PV coverage area and wind 

speed 

The maximum daily OTE of the PVT system is calculated for both flow rate cases, as 

shown in Figure 3-22. The maximum OTE between days 1 and 100, and days 270 and 365, 

occurred when the PVT system was substantially covered with PV cells, as shown in Figure 

3-22a and Figure 3-22c. However, for the same period, the OTE is almost constant for the 

variable flow rate, shown in Figure 3-22c, as compared to the constant flow rate, shown in 

Figure 3-22a. The percentage of PV coverage area is between 20% and 30%, as indicated 

in Figure 3-22b. In contrast, the maximum OTE for the rest of the year, between days 100 

and 270, occurred when the PVT system was not covered. However, it can be seen from 
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Figure 3-22a that the OTE is constant for a constant flow rate, as compared to the variable 

flow rate shown in Figure 3-22c for the same period. As shown in Figure 3-22b, the 

maximum OTE is higher in the first case than in the second case, illustrated in Figure 

3-22d, due to the greater thermal energy obtained from the constant flow rate in the first 

case. 

 
(a) (b) 

  

 

(c) (d) 

Figure 3-22  Relation between PV coverage area and maximum OTE for: a and b) 

constant and c and d) variable flow rate values 

A larger sample is considered on a monthly basis (meso level). Figure 3-23a shows that the 

maximum OTE obtained during January, November, and December occurred when the 

collector was substantially covered with PV modules. In contrast, the maximum OTE 
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obtained during the rest of the year occurred when the portion covered by PV modules was 

small for the constant flow rate case. For the variable flow rate case shown in Figure 3-23c, 

the maximum OTE was obtained when the collector was substantially covered with PV 

modules during all months of the year except the period between April and September. 

Figure 3-23b, shows that the range of percentage values yielding the maximum OTE for a 

constant flow rate is up to 40%. Figure 3-23d shows that for a variable flow rate, the PV 

coverage area range is up to 20%. The amount of the energy gained is higher in the case of 

a constant flow rate. 

 
(a) (b) 

  

 
(c) (d) 

Figure 3-23  Relation between PV coverage area and maximum OTE for monthly change 

for one year, for constant and variable flow rat values 

The relationship between PV coverage area and maximum OTE for each individual month 

is shown in Figure 3-24 and Figure 3-25, for case one and two consecutively. If a PV 
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coverage area of 20% is selected, as found in most previous work, the energy levels 

obtained during January, November and December are not the maximum. When the PV 

coverage area is around 80%, the maximum OTE is obtained for January, November and 

December in the case of a constant flow rate, and January, February, March, October, 

November and December in the case of a variable flow rate. Table 3.1 and Table 3.2 shows 

the percentage of energy lost with a 20% PV coverage area, as compared to 80%, for 

constant and variable flow rates. 

 

Figure 3-24  Relation between PV coverage area and maximum OTE for a constant flow 

rate month by month 
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Figure 3-25  Relation between PV coverage area and maximum OTE for a variable flow 

rate month by month 

Table 3.1 The percentage of energy lost with a 20% and 80% PV coverage area, for 

constant flow rate  

 Constant flow rate case 

Month 

Energy gained in (kwh) 
% of 

Energy loss 20% PV 

coverage 

80% PV 

coverage 

Jan 91.75 98 6.4 

Nov 91 97 6.2 

Dec 66 75 12 
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Table 3.2 The percentage of energy lost with a 20% and 80% PV coverage area, for 

variable flow rate 

 Variable flow rate case 

Month 

Energy gained in (kwh) 
% of 

Energy loss 20% PV 

coverage 

80% PV 

coverage 

Jan 25 40 37.5 

Feb 33 50 34 

Mar 92 105.5 12.8 

Oct 92 100 8 

Nov 32 45 28.9 

Dec 27 39.5 31.6 
 

It is clear from the previous discussion and from Figure 3-26 that the energy values 

calculated for a constant flow rate are not the same as those for variable flow rates. Variable 

flow rates yield more realistic results, because environmental conditions are taken into 

consideration. It can be seen that the energy gained for a variable flow rate differs from 

that for a constant flow rate, with same the PV coverage ratio, however the two cases follow 

a similar pattern. 

The annual electrical, thermal, and overall thermal energy for different PV coverage areas, 

with constant and variable flow rates, are shown in Figure 3-27 and Figure 3-28. With a 

constant flow rate, the annual thermal energy and annual OTE decrease when the PV 

coverage area increases, as shown in in Figure 3-27. In contrast, the annual electrical 

energy increases when the PV coverage area increases. This means that the contribution of 

thermal energy to the OTE is high in comparison to that of electrical energy. 
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Figure 3-26  Monthly overall thermal energy with 20% and 80% coverage, for constant 

and variable flow rates 

 

Figure 3-27  Annual electrical, thermal and overall thermal energy with differing PV 

coverage, for a constant flow rate 

 

Figure 3-28  Annual electrical, thermal and overall thermal energy with differing PV 

coverage, for a variable flow rate 
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The trend of the annual OTE with a variable flow rate, shown in Figure 3-28, differs from 

that with a constant flow rate. In Figure 3-27, it can be seen that for a variable flow rate, 

the annual OTE is almost the same for PV coverage areas of 20% and 80%. 

The monthly and daily studies are important, because the annual study does not give a 

complete picture in terms of the OTE. As shown in Table 3.1, the PV coverage area should 

be adapted monthly to maximize the annual OTE gain. Greater annual energy yields are 

obtained when different PV coverage ratio values are applied, as opposed to maintaining a 

fixed ratio throughout the year. 

The OTE in different seasons was studied, for constant and variable flow rates. Table 3.3 

summarizes different PV coverage area ratios, different time periods. At the micro level, a 

80% PV coverage ratio is recommended for January, February, March, October, 

November, and December for case 1. For the rest of the year, a 20% PV coverage ratio is 

recommended. For variable flow rates, at the meso level, an 80% PV coverage ratio for fall 

and winter and a 20% coverage ratio for summer and spring are recommended. 
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Table 3.3 Percentage of PV coverage ratio for maximum energy at micro and mseo 

levels, for constant and variable flow rates 

 

3.3.3  Performance Model for PV Ratio of PVT 

In this study, the PV coverage area ratio for the PVT system is varied from 20% to 80%. 

The first proposed model is based on the relationship between the PV coverage area ratio 

and the maximum monthly OTE, for constant and variable flow rates, as given by  Figure 

3-24 and Figure 3-25. This model is applied for each month of the year. The model inputs 

are the month and the PV coverage area ratio, and the output is the OTE gained. The 

proposed model has a second order polynomial equation with three coefficients for all 

Month Seasons 

PV ratio coverage for max thermal energy 

(%) 

Case 1 Case 2 

Jan 
Winter 

 

80 80 

Feb 40 80 

Mar 20 80 

Spring 

 

Apr 20 20 

May 20 20 

Jun 20 20 

Summer 

 

Jul 20 20 

Aug 20 20 

Sep 20 20 

Fall 
Oct 40 80 

Nov 80 80 

Dec 80 80 
Winter 
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months, fitting the trend between the PV coverage area and the maximum monthly OTE as 

follows: 

 𝑀𝑎𝑥𝑖𝑚𝑢𝑚  𝑂𝑇𝐸 = 𝑎 ∗ (𝑃𝑉 𝑟𝑎𝑡𝑖𝑜)2 + 𝑏 ∗ 𝑃𝑉 𝑟𝑎𝑡𝑖𝑜 + 𝑐 (3.29) 

where a, b, and c are the coefficients of the model. They are adapted for each month to 

reflect the change in weather conditions so as to obtain the maximum OTE. Table 3.4 

summarizes different coefficients of the model for each month, for both constant and 

variable flow rates. 

Table 3.4 Coefficient values of the first proposed model, for constant and variable flow 

rates 

 Coefficients values 

Month 
Constant flow rate case Variable flow rate case 

a b c a b c 

Jan 0.0004 0.0619 90.456 0.0022 0.0198 24.842 

Feb 0.0007 -0.0845 150.67 0.0030 0.0380 34.696 

Mar 0.0012 -0.3492 266.88 0.0035 -0.1362 93.445 

Apr 0.0015 -0.4256 325.98 0.0052 -0.5230 202.73 

May 0.0017 -0.7019 387.75 0.0073 -0.9075 254.33 

Jun 0.0018 -0.8216 405.38 0.0066 -0.9780 293.03 

Jul 0.0018 -0.8308 410.00 0.0072 -1.1052 315.62 

Aug 0.0016 -0.6240 354.32 0.0060 -0.8814 286.88 

Sep 0.0011 -0.4421 256.43 0.0044 -0.5336 172.41 

Oct 0.0008 -0.0915 165.78 0.0052 0.39610 98.338 

Nov 0.0004 0.0535 90.471 0.0017 0.04470 30.516 

Dec 0.0003 0.1097 64.16 0.0014 0.05680 25.669 
 

In Table 3.4, the sign of the b coefficient indicates the behaviour of the model. For example, 

when the value of the b coefficient is negative, the maximum OTE occurs with a PV 
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coverage area of 20%. Conversely, when the value of the b coefficient is positive, the 

corresponding PV coverage area is 80%. 

The second model describes the relationship between the PV coverage ratio which 

generates the maximum OTE, and each month throughout the year. The model input is the 

month, and the output is the PV coverage ratio. The proposed model is derived by using a 

Fourier series. It has eleven coefficients, as follows: 

 

𝑃𝑉 𝑟𝑎𝑡𝑖𝑜 =   𝑎0  +  𝑎1 ∗ 𝑐𝑜𝑠(𝑥𝑤) + 𝑏1 ∗ 𝑠𝑖𝑛(𝑥𝑤) + 𝑎2

∗ 𝑐𝑜𝑠(2𝑥𝑤) + 𝑏2 ∗ 𝑠𝑖𝑛(2𝑥𝑤) + 𝑎3 ∗ 𝑐𝑜𝑠(3𝑥𝑤) 

+ 𝑏3 ∗ 𝑠𝑖𝑛(3𝑥𝑤)  + 𝑎4 ∗ 𝑐𝑜𝑠(4𝑥𝑤) + 𝑏4

∗ 𝑠𝑖𝑛(4𝑥𝑤) + 𝑎5 ∗ 𝑐𝑜𝑠(5𝑥𝑤) + 𝑏5 ∗ 𝑠𝑖𝑛(5𝑥𝑤) 

(3.30) 

where x is the month and w is the frequency. The values are adapted for each month to 

reflect the change in weather conditions and obtain the best choice of PV ratio to maximize 

the OTE. Table 3.5 summarizes different coefficients of the model for each month, for both 

constant and variable flow rates. 

Figure 3-29 and Figure 3-30 are based on the coefficient values of the second proposed 

model, for constant and variable flow rates. These figures show the relationship between 

the PV ratio that generates the maximum OTE and each month of the year, with fitted 

values. From Figure 3-29 and Figure 3-30, it can be seen that the PV coverage area ratio is 

weather sensitive, and is like a weather-dependent load model. Moreover, this phenomenon 

can be generalized to any location where the weather exhibits clear seasonal differences. 

However, different locations will have different PV ratio values and threshold months 

where the PV ratio changes from one state to another. 
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Table 3.5  Coefficient values of the second proposed model, for constant and variable 

flow rates 

Coefficients Constant flow rate case Variable flow rate case 

𝒂𝟎 31.28 53.16 

𝒂𝟏 20.14 -36.88 

𝒃𝟏 5.915 -10.83 

𝒂𝟐 15.48 -4.796 

𝒃𝟐 9.951 -3.082 

𝒂𝟑 9.383 8.623 

𝒃𝟑 10.83 9.951 

𝒂𝟒 3.776 2.701 

𝒃𝟒 8.268 5.915 

𝒂𝟓 0.4431 -1.189 

𝒃𝟓 3.082 -8.268 

𝒘 0.5712 2.059 

 

 

Figure 3-29  Output of the second proposed model compared to actual values, for 

constant flow rate case 
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Figure 3-30  Output of the second proposed model compared to actual values, for 

variable flow rate case 

3.3.4  CO2 Emissions of Photovoltaic Thermal Model 

The maximum annual reduction of CO2 emissions is calculated for case two, for variable 

flow rates. To obtain the maximum annual reduction in CO2 emissions, the maximum 

reduction for each month is taken for different PV coverage areas throughout the year, as 

shown in Figure 3-31. Hence, variable PV coverage area values are used. These variable 

PV coverage area values depend on the choice of the optimal PV coverage area size for 

minimizing CO2 emissions, based on the available coverage areas. Four different cases are 

considered for each month. The best 12 cases out of 48 are chosen to minimize CO2 

emissions. The generation of 1 kWh of electricity by a local power plant results in 1.2 kg 

of CO2 emissions [83]. 

Figure 3-31 shows the maximum monthly reduction of CO2 emissions for different PV 

coverage area cases. Four cases are used in this study. A maximum reduction in CO2 

emission occurs with a PV coverage area of 80% in January, February and March. A 

maximum reduction in CO2 emissions then occurs when the PV coverage area changes 
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from 80% to 20% during April, and from 20% to 80% during September. This change is 

carried out due to the environmental conditions discussed above. This indicates the PV 

coverage area ratio for each month that minimizes CO2 emissions, as shown in green in 

Figure 3-31. 

 

Figure 3-31   Maximum monthly CO2 emission reductions for different PV coverage 

areas 

The annual reduction in CO2 emissions for different PV coverage area ratios (20%, 40%, 

60%, and 80%) is shown in Figure 3-32. The maximum annual reduction in CO2 emissions 

for a fixed PV coverage area occurs when the PV coverage area value is 80% of the PVT 

(the best scenario) for each month throughout the year. The amount of the reduction is 798 

kg. However, by using variable PV coverage areas, the annual reduction of CO2 emissions 

can be increased to 850 kg, which is calculated by accumulating the values shown in green 

in Figure 3-31. For the reduction of CO2 emissions, the percentage difference between 

variable PV coverage areas and the best scenario for a fixed PV coverage area is: 

𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
(850−798)

798
∗ 100 = 6.54%  
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This investigation is conducted for a residential load, which is considered a small load. The 

percentage difference in the reduction of CO2 emissions (6.54%) will amount to substantial 

reductions when large-scale systems such as commercial and industrial loads are 

considered. The increment percentage difference between annual CO2 emission reductions 

for a fixed PV coverage area as compared to variable PV coverage areas for one year is 

shown in in Table 3.6. 

Table 3.6 Increment percentage difference for annual CO2 emission reductions  

 

 

Figure 3-32  Relationship between PV coverage area ratio and annual CO2 emission 

reductions in kg 

3.3.5  Conclusions 

The OTE of PV systems is obtained for cases with constant and variable flow rates. The 

variable flow rate values used in this study are associated with a thermal system used for 

water heating. These flow rate values are controlled by a water pump driven by a PV 

system. 

Case 1 (20%) Case 2 (40%) Case 3 (60%) Case 4 (80%) 

6.97 % 9.42% 9.25 % 6.54% 
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The dataset used in this research was obtained for a North American city. Various 

environmental conditions such as solar radiation, ambient temperature, wind speed, water 

flow rate and temperature of input water were measured every minute over a period of a 

year. 

In this work, the PV coverage ratio was varied from 1% to 100% to determine the 

maximum OTE of a PVT system. While previous work has been done at a macro level with 

a constant flow rate, here three different time span levels are analyzed: Macro, meso, and 

micro. 

The maximum OTE is obtained at a different PV coverage ratio for each month. This 

contributes to maximizing the annual energy, as compared to previous work using a 

constant ratio for the whole year. Flow rates that vary with time are also used in this study, 

in comparison to constant flow rates studied in previous work. The results show that the 

PV coverage ratio which produces the maximum OTE for constant and variable flow rate 

cases differs, especially for the fall and winter seasons. For this reason, a variable flow rate 

is used, which is more suited to practical applications. Two different models based on two 

different cases of flow rate values are proposed in this work. The first model analyzes the 

OTE for each month based on the PV coverage area ratio. The second model obtains the 

best PV coverage ratio, to generate the optimal monthly OTE for each month. 

One aspect of maximizing the OTE is reducing 𝐶𝑂2 emissions. Different PV coverage area 

values are analyzed to find the optimal case. Then, variable PV coverage area values are 

obtained for each month. The results show that constant PV coverage area values for a PVT 
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system during the year are not recommended for minimizing 𝐶𝑂2 emissions. Specific PV 

coverage area values are proposed for each month to minimize annual 𝐶𝑂2 emissions. 

The results show that the optimal PV coverage area is 80% for January, February, October, 

November, and December and 20% for the rest of the year, to obtain the greatest reduction 

of 𝐶𝑂2 emissions. The percentage difference in the reduction of 𝐶𝑂2 emissions between 

the case studied and conventional PV coverage area values are calculated for different 

scenarios. 

The simulated results show that 𝐶𝑂2 emissions can be reduced by an additional 6.54% if 

variable PV coverage area values for each month are used, in comparison to the best 

scenario for conventional PV coverage area values. This can result in very substantial 

emission reductions when large-scale systems are used. 
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CHAPTER 4 SOLAR RADIATION FORECASTING 

In this chapter, a brief overview of different solar radiation forecasting methods is 

provided, and a review of the literature on solar radiation forecasting is presented [1]. 

4.1  INTRODUCTION 

Today many renewable energy sources, especially solar and wind energy, are integrated 

with grid systems. As a result, electricity production and consumption can be affected by 

the intermittency of these sources, causing problems such as fluctuations, and issues related 

to power quality and stability [84]-[87]. 

Since the output of solar energy systems depends on solar radiation, forecasting solar 

radiation is essential for power grid operation and load management. In addition, several 

meteorological variables, including air temperature, humidity, atmospheric pressure, wind 

speed and cloud cover, can be measured easily with inexpensive devices, in comparison to 

solar radiation. On the other hand, missing solar radiation data in weather station databases 

could be recovered by solar radiation forecasting. 

Solar radiation forecasting can be performed in various ways, such as cloud imagery 

combined with physical models, and artificial intelligence (AI) methods. Artificial 

intelligence methods used for solar radiation forecasting include artificial neural networks 

(ANNs), regression, machine learning, fuzzy logic (FL), and various hybrid systems [86], 

[87]. The performance of these methods depends on the dataset, time steps, and 

performance indicators [88], [89]. 
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AI is used to find relationships between inputs and outputs, especially for complex 

problems. AI is used in many applications such as pattern recognition, classification 

problems, data mining and forecasting problems [90]. 

The ANN approach is an attractive tool for data analysis and prediction due to nonlinearity 

functions that have the ability to find relationships between inputs and outputs [91]. In 

addition, in recent decades, ANN has been used more frequently than other methods, as 

shown in Figure 4-1 [92]. 

 

Figure 4-1  Frequency of use of ANN, machine learning and support vector machine 

(SVM) terms in original research articles [92] 

4.2  ARTIFICIAL NEURAL NETWORKS  

Artificial neural networks are networks which attempt to simulate the computations 

performed by neurons in the human brain. The human brain consists of approximately 1011 

computing elements referred to as neurons. These neurons are interconnected, forming a 

very dense, interconnected electrical switching network. Each neuron has numerous inputs 

from adjacent neurons. A neuron is activated when the summation of these weighted inputs 

exceeds the neuron activation threshold. The objective of attempting to simulate the 
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operation of neurons is to achieve a level of computation similar to that performed by the 

human brain, in achieving tasks such as recognizing objects, understanding speech, and 

experiential learning. These tasks are not easily performed by modern computers or 

electrical networks [93].    

4.2.1  ANN Applications  

Artificial neural networks have a very broad range of applications, including pattern 

recognition, prediction, optimization, associative memory, control, classification, and 

function approximation. These ANN applications are discussed below.  

• Pattern classification assigns an input pattern such as an audio waveform or image, 

which can be represented by a feature vector, to a specific, predefined class. The 

classes and feature vectors are predefined by the neural network designer. 

Applications of this technique include electroencephalogram (EEG) waveform 

classification, blood cell classification, and printed circuit board inspection [94]. 

• Clustering/categorization is used for unsupervised pattern classification. Clustering 

algorithms detect similarities between patterns, and place similar patterns in a 

cluster. Applications include data mining, data compression, and exploratory data 

analysis [94]. 

• In function approximation, data pairs (input/output) are used as inputs to the neural 

network, and a function is approximated which represents these data. This has very 

broad applications, because many engineering and scientific modeling problems 

require that functions be approximated based on known input/output data pairs  

[94]. 
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• Predicting/forecasting uses input data pairs (input, output) where the input is time 

and output a function of time.  It is the objective of this to make predictions of what 

the output will be in the next increment of time.  Applications of this include stock 

market prediction or weather forecasting [94]. 

• Optimization algorithms attempt to maximize or minimize an objective function so 

that a number of constraints are met. Optimization problems can be formulated for 

numerous disciplines. Applications can include economic dispatch, and optimal 

power flow formulations.  

• Content addressable memory permits the recall of content in memory, even if a 

partial or distorted input is used to access the memory. This is desirable for 

constructing multimedia information databases [94]. 

Classification is a significant application of neural networks. First raw data are measured, 

then these data are converted into a pattern, features are extracted from this pattern, and 

finally, based on these features, a classification is made. A general classifier is illustrated 

in Figure 4-2. 

 

Figure 4-2 Block diagram of a classifier 

To distinguish one pattern from another, a decision surface must be created which separates 

the two distinctly different patterns. This can be done by using discrimination functions. 

There are as many discrimination functions as there are classes which must be 
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distinguished. Each discrimination function is chosen so that for each class, a unique 

discrimination function yields a maximum value in the pattern space where that class 

exists. Thus, determining which discrimination function yields the largest value at a certain 

point in the pattern space will determine the class at that point. Classifiers can be designed 

in two ways, by designing discrimination functions, or by teaching the network. Designing 

discrimination functions can be quite cumbersome if the network is large. This makes the 

ability to train a network very valuable. With pre-knowledge of certain patterns and their 

corresponding classes, the network can be trained to recognize these patterns. This permits 

an iterative network training process, where the discrimination functions are evaluated. In 

the training process, all the patterns must be recycled iteratively, until they are all classified 

correctly. This form of classification thus requires supervised learning. Linearly separable 

classes require only a single layer of neurons, whereas nonlinearly separable classes require 

multiple layers of neurons.  

4.2.2  Artificial Neural Network Structure 

A model for an artificial neuron could be created by understanding neuron operation. 

Figure 4-3 provides a general network diagram for a single artificial neuron. 

 

Figure 4-3 McCulloch-Pitts neuron model 

This is the McCulloch-Pitts model for a neuron.  The weights correspond to the adjacent 

neuron interconnections, the inputs represent the excitation coming from the adjacent 
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neurons, and the node corresponds to the neuron processing.  The node processes the 

weighted summation of f(wx). This activation function determines if the neuron will 

activate or not based on the adjacent neurons weighted inputs.  This activation function, 

f(wx), can be either discrete or continuous with x. Bipolar and Unipolar discrete and 

continuous activation functions are four types of functions commonly used in neural 

network design.  These four activation functions are shown below in Figure 4-4.  

 

Figure 4-4 (a) Discrete Unipolar (b) Discrete Bipolar (c) Continuous Unipolar (d) 

Continuous Bipolar 

There are two main categories of ANN: single-layer and multi-layer neural network. 

4.2.2.1  Single layer Neural Network 

A single-layer neural network (SLNN) consists of one layer of neurons, as shown in Figure 

4-5 which is similar to the main ANN structure. 
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Figure 4-5 Single layer neural network 

4.2.2.2  Multilayer Neural Networks  

Multilayer feed-forward networks are neural networks that have an input, output, and 

hidden layers. The hidden layers permit more complex operations. For example, in the case 

of classification, they permit the classification of linearly non-separable objects. The 

network diagram for a multilayer neural network is shown in Figure 4-6. 

 

Figure 4-6 Multilayer neural network 

The output from each layer is effectively mapping the previous input into a new domain.  

For example, the multiple layers can bring linearly non-separable objects and transfer it 

into a domain in which they become linearly separable.  These neural networks again could 

be trained.  For multilayer neural networks, the weighting coefficients in each layer can be 

varied in such a way that the global cascaded error is minimized.   
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4.2.3  ANN Learning Algorithm  

Finding an error in the output and back propagating it through the neuron layers permits 

computation of the error in the corresponding layer. This allows adjustment of the weights 

so that the error is minimized. This training can be achieved by using the delta learning 

rule. It can also be performed with both continuous and discrete neuron activation 

functions. There are several issues involved in designing a feed-forward network. These 

include the required number of layers, the number of neurons per layer, how the network 

will perform with data that is not training data, and how large a training set should be. In 

practice, these parameters are found via a trial-and-error method. There are only loose 

guidelines for the selection of the parameters. There are several variants of a feed-forward 

neural network: Radial basis function networks, Kohonen self-organizing maps, adaptive 

resonance theory models, and Hopfield networks. These variants are discussed below. 

Radial basis function networks are two-layer neural networks. The hidden layer of these 

networks employs radial basis functions as neuron activation functions. The Gaussian 

kernel is an example of a basis function that is commonly used. The positions and widths 

of the kernels are learned from the training patterns. In general, there are fewer kernels than 

training patterns. This approach can be used for function approximation. This is similar to 

the way the Fourier series approximates functions through a combination of basis 

functions. Typically, the learning algorithm for these networks requires fewer iterations to 

achieve the result. However, these networks often contain many hidden neurons, leading 

to longer run times [94]. 

Because they can be trained, neural networks are extremely flexible in their use. The 

training allows for adjustment of the weights, so that a desired output is achieved. There 
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are two main types of learning, supervised and unsupervised. Supervised learning is used 

when the desired output is known and provided to the system by the teacher. A comparison 

is made between the desired output and the network output. The error between the actual 

and desired outputs is used to adjust the network weights, so that the desired output is 

achieved by the network. Unsupervised learning is used when the desired output is 

unknown, and the network must learn to adjust the weights based on its responses to inputs. 

From these two learning philosophies, various algorithms can be created to train a neural 

network. Table 4.1 summarizes common learning algorithms used in neural network design 

[93]. 

Table 4.1 Summary of ANN learning algorithms [93] 

Learning Rule Weight Adjustment Learning 
Initial 

Weight 

Activation 

Function 

Perceptron 
𝑐[𝑑𝑖 − 𝑠𝑔𝑛(𝑤𝑖

𝑡𝑥)]𝑥𝑗 

𝑗 = 1,2, … , 𝑛 
Supervised Any Discrete 

Delta 
𝑐(𝑑𝑖 − 𝑜𝑖)𝑓

′(𝑤𝑖
𝑡𝑥)𝑥𝑗 

𝑗 = 1,2, … , 𝑛 
Supervised Any Continuous 

Widrow-Hoff 
𝑐(𝑑𝑖 − 𝑤𝑖

𝑡𝑥)𝑥𝑗 

𝑗 = 1,2, … , 𝑛 
Supervised Any 

Discrete or 

Continuous 

Outstar 

𝛽(𝑑𝑖 − 𝑤𝑖𝑗) 

𝑖 = 1,2,… , 𝑝 

For a layer of p neurons 

Supervised 0 Continuous 

Correlation 
𝑐𝑑𝑖𝑥𝑗 

𝑗 = 1,2, … , 𝑛 
Supervised 0 

Discrete or 

Continuous 

Hebbian 
𝑐𝑜𝑖𝑥𝑗 

𝑗 = 1,2, … , 𝑛 
Unsupervised 0 

Discrete or 

Continuous 

Winner-take-all 

𝛼(𝑥𝑗 − 𝑤𝑚𝑗) 

𝑗 = 1,2, … , 𝑛 

m is the winning neuron 

Unsupervised Random Continuous 
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The values of c, α, and β are the learning constants. These constants are chosen by the 

designer during the design of a neural network. 

4.3  WAVELET NEURAL NETWORKS  

4.3.1  Wavelet Neural Network Structure 

Wavelet neural networks (WNNs) have capabilities like those of ANNs, but use different 

activation functions in the hidden layer. Due to localized wavelet activation functions, 

WNNs have a more compact topology and faster learning speed than is the case with ANNs 

[95], [96]. WNNs are like feed-forward neural networks with one hidden layer, as shown 

in Figure 4-7. As proposed by Q. Zhang in 1992 [97], WNNs replace the sigmoid activation 

function with a wavelet function as the activation function. 

 

Figure 4-7 Multilayer WNN 

The input layer consists of M nodes and the output layer consists of one neuron. The output 

is represented by the sum of weighted wavelets. 𝑤𝑗𝑘 represents the weight between the 

hidden unit j and input unit k, and 𝑤𝑖𝑗 represents the weight between the output and hidden 

unit j. The net of each hidden neuron j at time n is given by [97] 
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 𝑓𝑗(𝑛) = ∑𝑘=0
𝑘=𝑚𝑤𝑗𝑘(𝑛) ∗ 𝑥𝑘(𝑛) (4.1) 

where 𝑓𝑗(𝑛) is the sum of weighted inputs to the 𝑗𝑡ℎ  hidden neuron, 𝑥𝑘(𝑛) is the  𝑘𝑡ℎ input. 

The output of each hidden neuron is given by [97] 

 𝜓𝑎,𝑏(𝑓𝑗(𝑛)) = 𝜓[(𝑓𝑗(𝑛) − 𝑏𝑗(𝑛))/𝑎𝑗(𝑛)] (4.2) 

where 𝜓  is the wavelet function, 𝑎𝑗(𝑛) represents the scaling, and 𝑏𝑗(𝑛) is the translation 

coefficients of the wavelet function for the hidden neuron. The input  𝑓(𝑛) and output 𝑦(𝑛)  

of the output neuron are given by [97] 

 𝑓(𝑛) = ∑𝑘=0
𝑘=𝑚𝑤𝑖𝑗(𝑛) ∗ 𝜓𝑎,𝑏(𝑓𝑗(𝑛)) (4.3) 

 𝑦(𝑛) = 𝜎[𝑓(𝑛)] (4.4) 

4.3.2  WNN Learning Algorithm  

The connection weights between the input, hidden and output layers of WNN, and the 

parameters of the wavelet function for the hidden neuron are adjusted with a gradient 

method, by finding the minimum sum square error. The sum square error at time n is given 

by [98] 

 𝐸(𝑛) =
1

2
𝑒2(𝑛) =

1

2
[𝑦̂(𝑛) − y(𝑛)]2 (4.5) 

where 𝑦̂(𝑛) is the predicted output, y(𝑛) is the observed data. 

The weights 𝑤𝑗𝑘, 𝑤𝑖𝑗 and the wavelet function parameter are updated by [98] 
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 𝑤𝑗𝑘(𝑛 + 1) = 𝑤𝑗𝑘(𝑛) + Δ𝑤𝑗𝑘(𝑛 + 1) (4.6) 

 𝑤𝑖𝑗(𝑛 + 1) = 𝑤𝑖𝑗(𝑛) + Δ𝑤𝑖𝑗(𝑛 + 1) (4.7) 

 𝑎𝑗(𝑛 + 1) = 𝑎𝑗(𝑛) + Δ𝑎𝑗(𝑛 + 1) (4.8) 

 𝑏𝑗(𝑛 + 1) = 𝑏𝑗(𝑛) + Δ𝑏𝑗(𝑛 + 1) (4.9) 

where Δ𝑤𝑗𝑘(𝑛 + 1), Δ𝑤𝑖𝑗(𝑛 + 1), Δ𝑎𝑗(𝑛 + 1)  and Δ𝑏𝑗(𝑛 + 1) are obtained by [98] 

 Δ𝑤𝑗𝑘(𝑛 + 1) = −𝜂 ∗
𝜕𝐸(𝑛)

𝜕𝑤𝑗𝑘(𝑛)
 (4.10) 

 Δ𝑤𝑖𝑗(𝑛 + 1) = −𝜂 ∗
𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
 (4.11) 

 Δ𝑎𝑗(𝑛 + 1) = −𝜂 ∗
𝜕𝐸(𝑛)

𝜕𝑎𝑗(𝑛)
 (4.12) 

 Δ𝑏𝑗(𝑛 + 1) = −𝜂 ∗
𝜕𝐸(𝑛)

𝜕𝑏𝑗(𝑛)
 (4.13) 

where 𝜂 is the learning rate which is determined using various values that minimize the 

error. 

4.3.3  WNN Wavelet Functions   

Different wavelet functions are used as activation functions in the hidden layer, as shown 

in Table 4.2 [98]. 
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Table 4.2 Summary of neural network learning algorithms [98] 

Wavelet functions   Formula  

Haar wavelet function 𝜓 (𝑓𝑗(𝑛)) = {

1, 0 ≤ 𝑓𝑗(𝑛) < 0.5

−1, 0.5 ≤ 𝑓𝑗(𝑛) ≤ 1  

0,   𝑜𝑡ℎ𝑒𝑟

 

Gaussian wavelet function 𝜓 (𝑓𝑗(𝑛)) =
𝑓𝑗(𝑛)

√2𝜋
exp (

−𝑡2

2
) 

Mexican Hat wavelet function 𝜓 (𝑓𝑗(𝑛)) =
2

√3
𝜋−0.25(1 − (𝑓𝑗(𝑛))2)exp (

−𝑡2

2
) 

Morlet wavelet function 𝜓 (𝑓𝑗(𝑛)) = cos (1.75𝑓𝑗(𝑛))exp (
−𝑡2

2
) 

 

4.4  EVALUATION OF MODEL PERFORMANCE 

It is difficult to compare different ANN models for many reasons, including different 

forecast time horizons, the time scale of the predicted data, and differing meteorological 

conditions at each site [92]. 

Comparisons between ANN models are based on the error between the predicted and 

observed data. Many statistical error concepts, such as the mean absolute percentage error 

(MAPE ), mean percentage error (MPE ), mean bias error (MBE ), mean square error ( MSE 

), root mean square error (RMSE ), normalized root mean square error (nRMSE ), Pearson 

coefficient (R ), and coefficient of determination (𝑅2) are widely used to evaluate the 

accuracy of ANN models, and are given by [92] 

 𝑀𝐵𝐸 =
1

𝑁
∑(𝑦̂(𝑖) − 𝑦(𝑖))

𝑁

𝑖=1

 (4.14) 
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 𝑀𝐴𝐸 =
1

𝑁
∑|𝑦̂(𝑖) − 𝑦(𝑖)|

𝑁

𝑖=1

  (4.15) 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑦̂(𝑖) − 𝑦(𝑖)

𝑦(𝑖)
|

𝑁

𝑖=1

 (4.16) 

 𝑀𝑆𝐸 =
1

𝑁
∑(𝑦̂(𝑖) − 𝑦(𝑖))2

𝑁

𝑖=1

 (4.17) 

 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦̂(𝑖) − 𝑦(𝑖))2

𝑁

𝑖=1

 (4.18) 

 
𝑛𝑅𝑀𝑆𝐸 =

√1
𝑁

∑ (𝑦̂(𝑖) − 𝑦(𝑖))2𝑁
𝑖=1

𝑦̅
 

(4.19) 

where N is number of observations, 𝑦 is actual value, 𝑦̂  is predicted value and  𝑦̅ is mean 

of observed data. 

 nRMSE and 𝑅2are used to evaluate each solar radiation forecasting model. nRMSE is used 

to show the difference between the actual and predicted data, and to determine the goodness 

of fit of the model. 𝑅2 shows the relationship between the measured and predicted values. 

4.5  LITERATURE REVIEW   

Several meteorological and geographical variables have been used as ANN model inputs 

for solar radiation prediction. These include maximum temperature (𝑇𝑚𝑎𝑥), average 

temperature (𝑇𝑎𝑣𝑔), relative humidity (hu), wind speed (𝑊𝑠), sunshine duration (𝑑𝑠), cloud 

cover (cc), latitude (𝐿𝑎𝑙), longitude (𝐿𝑙𝑜), and altitude (𝐿𝑎𝑙) [99]. Hourly and daily global 

solar radiation ( 𝐺𝑆𝑅𝐻 , 𝐺𝑆𝑅𝐷) predictions are carried out in this research. 
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As mentioned previously, numerous researchers have used ANN techniques for solar 

energy forecasting. The ANN model proposed by Moustris et al. (2008) [100] uses latitude, 

longitude, altitude, sunshine hours, cloud cover, hourly air temperature data, and relative 

humidity data as inputs. This model was used to predict hourly global and diffuse solar 

radiation for different locations in Greece. The model was trained in warm and cold seasons 

by using a back-propagation learning algorithm. Average R was used to evaluate the 

performance of the model, and was found to be 0.99, 0.98 and 0.7 for the maximum, 

average, and minimum 𝐺𝑆𝑅𝐻 , radiation, respectively. 

Another ANN model, proposed by Alam et al. (2009) [101], used latitude, longitude, 

altitude, time, months of the year, air temperature, relative humidity, rainfall, wind speed, 

and net long wavelength data as inputs. Different combinations of inputs were evaluated. 

The models estimated the hourly and daily diffuse solar radiation for 10 different locations 

in India, and used three feed-forward layers, with a back-propagation algorithm. The 

coefficient of determination R2 and nRMSE were used to evaluate the performance of the 

model, and were 0.85 and 8.8% respectively, for hourly diffuse solar radiation. 

An ANN model proposed by Mellit et al. (2010) [102] used hourly solar irradiance, air 

temperature, and hours as inputs. The model predicted solar radiation 24 hours in advance 

for the city of Trieste, Italy. The model consists of four layers, and uses multilayer 

perceptron (MLP) feed-forward, with a back-propagation training algorithm and different 

numbers of neurons. nRMSE and R were used to evaluate the performance of the model. 

nRMSE values were from 13% to 67% for sunny days, and from 54% to 85% for cloudy 

days. R values were from 98% and 99% for sunny days, and from 94% to 96% for cloudy 

days. 
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Another ANN model was proposed by Deng et al. (2010) [103]. This model used latitude, 

longitude, altitude, sunshine duration, air temperature, rainfall, relative humidity, 

atmospheric pressure, and day of the year as inputs, with twelve different combinations of 

inputs. The model was used to estimate the daily solar radiation for different locations in 

China. This model consists of three layers of feed-forward neural network, with a back-

propagation training algorithm and different numbers of neurons for each layer. It was 

found that sunshine duration was the most significant variable, and that using all input 

variables yielded the best results. RMSE and R2 were used to evaluate the performance of 

the model, and were 1.915 MJ/m2 and 93% respectively. 

Another ANN model was proposed by Wang et al. (2011) [104]. It used diffused radiation, 

temperature, relative humidity, and time as inputs. This model was used for short-term 

solar radiation prediction in Golden, CO, USA. Different combinations of ANN layers and 

neurons were evaluated. The best model was found to be ANN with four layers, with 24, 

18, 13 and 24 neurons, respectively. nRMSE and R2were used to evaluate the performance 

of the model, and were 4.5% and 96.4% respectively. 

Another ANN model was proposed by Angela et al. (2011) [105]. It used sunshine duration 

as an input. This model was used to estimate the monthly average daily global solar 

radiation in Kampala, Uganda, and used feed-forward back propagation neural networks. 

Different numbers of neurons were tested. It was found that the best model had one hidden 

layer with 65 neurons. nRMSE and R2 were used to evaluate the performance of the model, 

and were 52.1% and 96.3% respectively. 
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Another ANN model was proposed by Rani et al. (2012) [106]. This model used 

temperature, humidity, and the day and month of the year as inputs. The model was used 

to estimate the daily global solar radiation under clear skies in India, and used a back-

propagation feed-forward neural network. Different combinations of ANN inputs and 

layers were evaluated. The best model was found to consist of three layers, with 10 neurons 

in the hidden layer. In addition, the model which used all the variables performed a better 

estimation of solar radiation. MAPE was used to evaluate the performance of the model, 

and was 9.175%. 

A back propagation neural network was proposed by Hasni et al. (2012) [107]. This model 

used the month, day, hour, temperature and relative humidity values as inputs. The model 

was used to predict hourly solar radiation in Algeria. The model exhibited good results in 

terms of nRMSE, MAE and R2 which were 17.20%, 2.9971 and 99% respectively. 

Another ANN model was proposed by Alharbi, et al. (2013) [108]. It used temperature, 

humidity, and a daily date code as inputs. The model was used to estimate daily global 

solar radiation in Riyadh, Saudi Arabia, and used a back-propagation feed-forward neural 

network. Different combinations of ANN inputs were tested. The best model was found to 

consist of three layers, with 80 neurons in the hidden layer. In addition, the model which 

used all the variables performed a better estimation of solar radiation. nRMSE and R were 

used to evaluate the performance of the model, and were 7.5% and 98.6% respectively. 

Another ANN model was proposed by Bader, et al. (2014) [109]. It used cloud cover, 

relative humidity, air temperature, wind speed, wind direction, pressure and vapor as 

inputs. This model was used to estimate average daily global solar radiation in Riyadh, 
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Saudi Arabia, and used a back-propagation feed-forward neural network. Different 

combinations of ANN inputs and numbers of neurons for the hidden layer were tested. The 

best model was found to consist of three layers, with 75 neurons in the hidden layer. In 

addition, the model that used the combination of variables air temperature, humidity, and 

the day performed a better estimation of daily solar radiation. nRMSE, R2 and MAPE were 

used to evaluate the performance of the model, and were 4.75%, 98.02%, and 3.66% 

respectively. 

Shaddel, et al. (2016) [110] used ANN with a back-propagation feed-forward perceptron 

net, with Levenberg-Marquardt (LM) as the learning algorithm. Four variables, the 

declination angle, extraterrestrial solar radiation, solar altitude angle, and solar horizontal 

radiation, were used as inputs. This model was used to estimate hourly global solar 

radiation on tilted absorbers in Mashhad, Iran. The metrics R2, MAE, and nRMSE were 

used to evaluate the performance of the model for 45 tilted planes, and were 93.02%, 

0.0269, and 5.49% respectively. 

A three-layer feed-forward back propagation artificial neural network (BP-ANN) model 

with a LM training algorithm was used by Maamar, et al. (2017) [111] to predict solar 

radiation on tilted surfaces. The variables used as inputs for the model were the latitude of 

the site, mean temperature, relative humidity, Angstrom coefficient, extraterrestrial solar 

radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith 

angle. The best model was found to have 5 inputs, 35 neurons for the hidden layer, and 1 

neuron for the output layer. RMSE and 𝑅2were used to evaluate the performance of the 

model, and were 5.75 wh/m2 and 99.12% respectively. 
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Two different ANN structures were designed by Masoud, et al. (2017) [112]. Both 

structures used MLP-ANN to predict total daily solar radiation in Tehran, Iran. Different 

numbers of input parameters, numbers of neurons, layers and functions were tested to 

obtain optimal structures. The air temperature, wind speed, and particulate matter in the air 

were used as inputs for the models. nRMSE, and 𝑅2 were used to evaluate the model 

performance, and were 5% and 99% respectively. 

4.6  SOLAR RADIATION FORECASTING VIA NEURAL NETWORKS 

A global solar radiation (GSR) model was simulated with the aid of artificial neural 

network (ANN) and wavelet neural network (WNN) modeling in MATLA BTM. For this 

study, the data inputs for the GSR prediction model were the ambient temperature, relative 

humidity, cloud cover, wind speed, time of day in hours (1 to 24), and day of the year (1 to 

365). The data were recorded in Halifax, Nova Scotia, Canada, between 2000 and 2005. 

This type of dataset was selected due to the widespread availability on weather websites of 

such measurements, which are commonly used as inputs for GSR predictions for different 

locations. For this study, hourly and daily GSR (GSR H and GSRD) were predicted from the 

models [1]. 

In the first step, different GSR prediction models were evaluated by using different 

combinations of weather variables as inputs. In the second step, weather variables were 

selected that led to the best GSR predictions. In the third step, three proposed GSR models 

were constructed by using the weather variables that led to the best GSR predictions. 

Finally, the proposed models were compared with other work related to this field, as shown 

in Figure 4-8. 
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Figure 4-8 Flowchart for constructing the proposed GSR prediction models 

4.6.1  Effect of Weather Variables on GSR Prediction 

Different GSR prediction models were evaluated by using different combinations of 

weather variables as inputs. At the beginning, individual weather variables were selected 

with the day (D) (1-365) as inputs to predict 𝐺𝑆𝑅𝐷, and with hours (h) (1-24) and the day 

(D) to predict 𝐺𝑆𝑅𝐻, as shown in Figure 4-9.Hourly weather data were used for 𝐺𝑆𝑅𝐻 

predictions, and average daily weather data were used for 𝐺𝑆𝑅𝐷 predictions. These models 

consist of three layers: The input, hidden, and output layers. 

 

Figure 4-9  ANN-1 model structure 
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Twelve different combinations of transfer functions for each hidden layer and output layer, 

twelve different combinations of training functions, and different numbers of neurons were 

used for each model. This yielded 13824 results in total for each case, for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷.  

The best 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷  results for each case with an individual weather variable were 

selected based on nRMSE and adjusted 𝑅2(adj- 𝑅2), as shown in Table 4.3. The value of 

adj- 𝑅2is very close to 𝑅2, due to the large number of samples. The predicted 𝐺𝑆𝑅𝐻 and 

𝐺𝑆𝑅𝐷  were compared with measured 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 values for 2005, as shown Figure 

4-10 and Figure 4-11  respectively, to find the best predicted 𝐺𝑆𝑅𝐻 (ANN-H-1.1) and 𝐺𝑆𝑅𝐷 

(ANN-D-1.1). In addition, Figure 4-12 and Figure 4-13 illustrate the fit between the 

predicted 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷and the actual measured 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷values. Different 

curve- fitting models are determined as shown in Figure 4-12 and Figure 4-13. All curve 

fitting models are approximately identical and have same 𝑅2 value for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 

cases. The curve fitting models and their equation are given in Table 4.4 and Table 4.5. For 

simplicity, Polynomial of first degree equation is chosen for all  𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 cases. 
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Table 4.3 Performance of 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, with one weather variable 

 𝑮𝑺𝑹𝑯 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  adj-𝑹𝟐 

ANN-H-1.1 D, h, cc 125 31.124 0.84157 0.84154 

ANN-H-1.2 D, h, hu 100 38.058 0.77729 0.77725 

ANN-H-1.3 D, h, T 150 42.293 0.72659 0.72654 

ANN-H-1.4 D, h, 𝑤𝑠 150 44.134 0.71708 0.71702 

 𝑮𝑺𝑹𝑫 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  adj-𝑹𝟐 

ANN-D-1.1 D, cc 125 16.114 0.91258 0.91254 

ANN-D-1.2 D, hu 25 19.143 0.88702 0.88697 

ANN-D-1.3 D, T  150 30.564 0.76612 0.76601 

ANN-D-1.4 D,𝑤𝑠  150 31.578 0.74841 0.74829 
 

As shown in  Table 4.3, cc (cloud cover), hu (relative humidity), and T (air temperature) 

were found to be the best individual weather variables to use as inputs for both 𝐺𝑆𝑅𝐻 and 

𝐺𝑆𝑅𝐷 prediction. These variables were selected based on lower nRMSE and higher adj- 𝑅2 

values. These inputs are the dominating weather variables that affect the GSR prediction 

process for this location. The evaluation showed that the ANN models performed better for 

𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction. 

 

Figure 4-10  Actual and predicted 𝐺𝑆𝑅𝐻 values for 2005, for ANN-H-1.1 
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Figure 4-11 Actual and predicted  𝐺𝑆𝑅𝐷 values for 2005, for ANN-D-1.1 

 

Figure 4-12 The fit between actual and predicted 𝐺𝑆𝑅𝐻 values for 2005, for ANN-H-1.1 

 

Figure 4-13 The Fit between actual and predicted 𝐺𝑆𝑅𝐷 values for 2005, for ANN-D-1.1 
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Table 4.4  Equation of fitted curves for different models for ANN-H-1.1 

Curve-Fitting 

model 
Equation of fitted curve Coefficient values 

Custom Equation a ∗ exp(−bx) + c a= -159.5 b= 0.00486 c= 159.4 

Fourier a0  +  a1cos(xw) + b0sin(wx) 
a0=0.112 

a1=0.02463 
b0=1.337 w=0.6056 

Linear Fitting 𝑎(𝑠𝑖𝑛(𝑥 − 𝑝𝑖)) + 𝑏((𝑥 − 10)2) + 𝑐 a= -0.4294 b= -0.0194 c= 1.86 

Polynomial ax +  b a= 0.7778 b= -0.08916 

Rational 
(a1x + a2) 

 (𝑥2  +  b1x + b2)
 

a1=12.65 

a2=-1.369 
b1= 0.1833 

b2=15.630 

Sum of Sine  a ∗ sin(bx + c) a= 1.704 b= 0.4712 c= -0.0537 

 

Table 4.5  Equation of fitted curves for different models for ANN-D-1.1 

Curve-Fitting 

model 
Equation of fitted curve Coefficient values 

Custom Equation a ∗ exp(−bx) + c a= -8.782 b=0.1017 c= 8.758 

Fourier a0  +  a1cos(xw) + b0sin(wx) 
a0= -0.344 

a1=0.3242 
b0=1.543 w=0.6056 

Linear Fitting 𝑎(𝑠𝑖𝑛(𝑥 − 𝑝𝑖)) + 𝑏((𝑥 − 10)2) + 𝑐 a= -0.1808 b= -0.0366 c= 3.636 

Polynomial ax +  b a= 0.9033 b= -0.03762 

Rational 
(a1𝑥

2 + a2x +  a3)  

(𝑥2  +  b1x + b2)
 

a1=4.116 

a2=9.891 

a3=-0.186 

b1= 5.479 

b2=10.84 

Sum of Sine  a ∗ sin(bx + c) a= 5.425 b= 0.167 c= -0.0069 
 

In the next step, as shown in  Figure 4-14, different combinations of two of the weather 

variables hu, cc and T were used with h and D as inputs for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction. 

For each case, as shown in Table 4.6, the best results for two weather variables with h and 

D were selected, based on nRMSE and adj- 𝑅2. The predicted 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 were 

compared with the measured values for 2005, as shown in Figure 4-15 and Figure 4-16 
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respectively, to find the best predicted 𝐺𝑆𝑅𝐻 (ANN-H-2.1) and 𝐺𝑆𝑅𝐷 (ANN-D-2.1). 

Figure 4-17 and Figure 4-18 show the fit between the predicted and actual measured GSR. 

 

Figure 4-14 ANN-2 model structure 

Table 4.6 Performance of 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, with two weather variables 

 𝑮𝑺𝑹𝑯 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  adj-𝑹𝟐 

ANN-H-2.1 D, h, cc, hu  100 26.185 0.87885 0.87883 

ANN-H-2.2 D, h, T, hu  150 27.549 0.8685 0.86848 

ANN-H-2.3 D, h, T, cc  50 28.089 0.86303 0.86301 

 𝑮𝑺𝑹𝑫 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  adj-𝑹𝟐 

ANN-D-2.1 D, cc, hu  100 10.61 0.94468 0.94467 

ANN-D-1.1 D, T, cc  150 12.679 0.9347 0.93468 

ANN-D-1.1 D, T, hu  25 14.91 0.92218 0.92215 
 

 

Figure 4-15 Actual and predicted 𝐺𝑆𝑅𝐻 values for 2005, for ANN-H-2.1 
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Figure 4-16 Actual and predicted 𝐺𝑆𝑅𝐷 values for 2005, for ANN-D-2.1 

 

Figure 4-17 The fit between actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-2.1 

  

Figure 4-18 The fit between actual and predicted 𝐺𝑆𝑅𝐷 values for ANN-D-2.1 
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It was found that using combinations of two weather variables: hu and cc, T and cc, and hu 

and T as inputs provided improved performance in comparison to using only one weather 

variable. The best results for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 are obtained when cc and hu are used as 

inputs. The evaluation showed that the ANN model performed better for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷. 

Next, different combinations of more than two weather variables were used as inputs for 

𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, as shown in Figure 4-19. In this step, the best results for each 

case were selected based on nRMSE and adj- 𝑅2, as shown in Table 4.7. The predicted 

𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 were compared with measured 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷values for 2005, as shown 

in Figure 4-20 and Figure 4-21 respectively, to find the best predicted 𝐺𝑆𝑅𝐻 (ANN-H-3.1) 

and 𝐺𝑆𝑅𝐷 (ANN-H-3.1). Figure 4-22 and Figure 4-23show the fit between the predicted 

and actual measured GSR. 

 

Figure 4-19 ANN-3 model structure 
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Table 4.7 Performance of 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, with more than two weather 

variables  

 𝑮𝑺𝑹𝑯 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  𝑎𝑑𝑗 − 𝑹𝟐 

ANN-H-3.1 D, h, T, hu, cc, 𝑤𝑠 170 22.915 0.9105 0.91048 

ANN-H-3.2 D, h, T, hu, cc  175 25.542 0.89136 0.89134 

 𝑮𝑺𝑹𝑫 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%) 𝑹𝟐  𝑎𝑑𝑗 − 𝑹𝟐  

ANN-D-3.1 D, T, hu, cc, 𝑤𝑠  150 8.0986 0.96533 0.96532 

ANN-D-3.2 D,T, hu, cc 75 9.0514 0.96148 0.96147 
 

As shown in Table 4.7, using the variables T, hu, cc and 𝑤𝑠 (wind speed) provided the best 

results for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, in comparison to previous models. Adding more 

weather variables as inputs slightly increases the prediction accuracy. 

 

Figure 4-20 Actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-3.1 
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Figure 4-21 Actual and Predicted 𝐺𝑆𝑅𝐷 values for ANN-D-3.1 

  

Figure 4-22 The fit between actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-3.1 

 

Figure 4-23 The fit between actual and predicted 𝐺𝑆𝑅𝐷 values, for ANN-D-3.1 
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4.6.2  Construction of the Proposed Models 

To develop a simple model with a better performance, three models were proposed. The 

maximum 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 for five years (2000:2004) were obtained and used as inputs, 

as shown in Figure 4-24 and Figure 4-25. Using maximum 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 gives each 

hour and day at a specific location a distinctive identity, by eliminating the effect of weather 

variables on GSR. This helps to process the effect of each individual weather variable on 

GSR. In addition, using maximum GSR helps to decrease the number of weather variables 

needed for prediction. 

 

Figure 4-24 Maximum 𝐺𝑆𝑅𝐻 

 

Figure 4-25 Maximum 𝐺𝑆𝑅𝐷 
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4.6.2.1  First Proposed Model 

The first proposed model added maximum 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 as inputs to previous models, 

as shown in Figure 4-26, Figure 4-27 and Figure 4-28. The best results for each case, with 

different numbers of input weather variables, were selected based on nRMSE and adj- 𝑅2. 

The proposed model, with enhanced results as compared to previous models, is shown in 

Table 4.8. The predicted 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 were compared with measured values for 2005, 

as shown in Figure 4-29 and Figure 4-30 respectively, to find the best predicted 𝐺𝑆𝑅𝐻, 

(ANN-H-5.1) and 𝐺𝑆𝑅𝐷 (ANN-D-6.1). Figure 4-31 and Figure 4-32 show the fit between 

the predicted and measured values. 

 

Figure 4-26 ANN-4 model structure 

 

Figure 4-27 ANN-5 model structure 
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Figure 4-28 ANN-6 model structure 

Table 4.8 Performance of 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, with maximum 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 

as input 

 𝑮𝑺𝑹𝑯 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%) 𝑹𝟐  adj-𝑹𝟐 

ANN-H-5.1 D, h, hu, cc, max 𝐺𝑆𝑅𝐻 125 18.068 0.94724 0.94723 

ANN-H-6.1 D, h,T, hu, cc, max 𝐺𝑆𝑅𝐻 75 19.894 0.93842 0.93841 

ANN-H-6.2 D, h, T, hu, cc, ws, max 𝐺𝑆𝑅𝐻 150 20.353 0.93474 0.93473 

ANN-H-4.1 D, h, hu, max 𝐺𝑆𝑅𝐻 175 21.04 0.93112 0.93111 

ANN-H-5.1 D, h, hu, T, max 𝐺𝑆𝑅𝐻 75 21.548 0.93071 0.93069 

 𝑮𝑺𝑹𝑫 

Model Input Neuron 𝒏𝑹𝑴𝑺𝑬(%) 𝑹𝟐  adj-𝑹𝟐 

ANN-D-6.1 D, T, hu, cc, max 𝐺𝑆𝑅𝐷 150 6.9962 0.97886 0.97885 

ANN-D-6.2 D,T, hu, cc, 𝑤𝑠, max 𝐺𝑆𝑅𝐷 50 7.9101 0.97592 0.97591 

  

 

Figure 4-29 Actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-5.1 
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Figure 4-30 Actual and predicted 𝐺𝑆𝑅𝐷 values, for ANN-D-6.1 

 

Figure 4-31 The Fit between actual and predicted 𝐺𝑆𝑅𝐻 values for ANN-H-5.1 

 

Figure 4-32 The Fit between actual and predicted 𝐺𝑆𝑅𝐷 values, for ANN-D-6.1 
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As shown in Table 4.8, five different sub-models of the first proposed model exhibited 

improved results, in comparison to previous conventional models for 𝐺𝑆𝑅𝐻 prediction. For 

𝐺𝑆𝑅𝐷 prediction, only two sub-models exhibited better results. The variables hu and 

maximum 𝐺𝑆𝑅𝐻 exhibited a common influence on 𝐺𝑆𝑅𝐻 prediction for each sub-model. 

However, hu, T and maximum 𝐺𝑆𝑅𝐷 exhibited a common influence on 𝐺𝑆𝑅𝐷 prediction. 

For 𝐺𝑆𝑅𝐻, sub-model ANN-H-4.1 performed well, with a simple structure, in comparison 

to other models. Although sub-models ANN-D-6.1 and ANN-D-6.2 performed well, more 

than two weather variables were required in addition to the maximum 𝐺𝑆𝑅𝐷 . Moreover, 

this proposed model enhanced the 𝐺𝑆𝑅𝐻 values more than the 𝐺𝑆𝑅𝐷values. 

4.6.2.2  Second Proposed Model 

As shown Figure 4-33 and Figure 4-34, the second proposed model added another stage, 

that was fed by the output of the first proposed model (𝐺𝑆𝑅1𝐻  or 𝐺𝑆𝑅1𝐷) and two other 

weather variables. The best results for each case, with different combinations of the input 

weather variables hu, cc and T, were selected based on nRMSE and adj- 𝑅2. The proposed 

model, with enhanced results as compared to previous conventional models and the first 

proposed model, is shown in Table 4.9. The predicted 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 were compared 

with measured values for 2005, as shown in Figure 4-35 and Figure 4-36 respectively, to 

find the best predicted 𝐺𝑆𝑅𝐻 (ANN-H-7.1) and 𝐺𝑆𝑅𝐷 (ANN-D-7.1). Figure 4-37 and 

Figure 4-38 show the fit between the predicted and measured values. 
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Figure 4-33 ANN-H-7 model structure 

 

Figure 4-34 ANN-D-7 model structure 

Table 4.9 Performance of 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷  prediction for the second proposed model 

 Hourly GSR 

Model 
Input of 

1st stage 

Input of 

2nd stage 
𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  adj-𝑹𝟐 

ANN-H-

7.1 

D, h, cc, max 

𝐺𝑆𝑅𝐻 

D, h, hu, T, 1st stage 

output (𝐺𝑆𝑅1𝐻) 
14.467 0.96197 0.96197 

ANN-H-

7.2 

D, h, hu, max 

𝐺𝑆𝑅𝐻 

D, h, cc, T, 1st stage 

output (𝐺𝑆𝑅1𝐻) 
14.908 0.96102 0.96102 

ANN-H-

7.3 

D, h, T, max 

𝐺𝑆𝑅𝐻 

D, h, hu, cc, 1st stage 

output (𝐺𝑆𝑅1𝐻) 
16.1 0.95508 0.95507 

 Daily GSR 

Model 
Input of 

1st stage 

Input of 

2nd stage 
𝒏𝑹𝑴𝑺𝑬(%) 𝑹𝟐  adj-𝑹𝟐 

ANN-D-

7.1 
D, cc, max 𝐺𝑆𝑅𝐷 

D, hu, T, 1st stage 

output (𝐺𝑆𝑅𝐷  ) 
5.9958 0.98187 0.98187 

ANN-D-

7.2 
D, hu, max 𝐺𝑆𝑅𝐷 

D, cc, T,1st stage 

output (𝐺𝑆𝑅𝐷  ) 
6.1082 0.98162 0.98161 
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Figure 4-35 Actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-7.1 

 

Figure 4-36 Actual and predicted 𝐺𝑆𝑅𝐷 values, for ANN-D-7.1 

 

Figure 4-37 The fit between actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-7.1 
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Figure 4-38 The fit between actual and predicted 𝐺𝑆𝑅𝐷 values for ANN-D-7.1 

As shown in Table 4.9, three different sub-models of the second proposed model exhibited 

improved results, in comparison to previous 𝐺𝑆𝑅𝐻 prediction models. For 𝐺𝑆𝑅𝐷 

prediction, two sub-models exhibited better results. The ANN-H-7.1 and ANN-D-7.1 

models exhibited the best performance for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, respectively. 

Moreover, the second proposed model enhanced the 𝐺𝑆𝑅𝐻 values more than the 𝐺𝑆𝑅𝐷 

values. 

4.6.2.3  Third Proposed Model 

The third proposed model consists of two parts. The first part predicts GSR error ( 𝐺𝑆𝑅𝑒), 

which is the difference between the measured GSR and the GSR predicted by the second 

proposed model. The second part uses the output of the second proposed model (𝐺𝑆𝑅𝐻 or 

𝐺𝑆𝑅𝐷). The results of both parts are then added together to generate the final predicted 

GSR, as shown in Figure 4-39 and Figure 4-40. In addition, the two parts are fed by the 

same input variables. 

The use of ANN did not enhance the 𝐺𝑆𝑅𝑒 prediction results. For this reason, WNN was 

used for 𝐺𝑆𝑅𝑒 prediction. Various mother wavelet functions (Morlet, Mexican Hat 
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(Mexihat), Haar and Gaussian) were used as transfer functions for the hidden layer, for 

𝐺𝑆𝑅𝑒 prediction. 

The third proposed model was applied only to ANN-H-7.1 and ANN-D-7.1, to enhance the 

performance of these models. The best results for each case, with different input weather 

variables and different mother wavelet functions, were selected based on nRMSE and adj- 

𝑅2. The proposed model, with enhanced results as compared to previous models, is shown 

in Table 4.10. The predicted 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 were compared with measured values for 

2005, as shown in Figure 4-41 and Figure 4-42 respectively, to find the best predicted 

𝐺𝑆𝑅𝐻 (ANN-H-8.1) and 𝐺𝑆𝑅𝐷 (ANN-D-8.1). Figure 4-43 and Figure 4-44 show the fit 

between the predicted and measured values. The hourly and daily 𝐺𝑆𝑅𝑒  predicted by the 

second proposed model for the best cases of 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷, ANN-H-8.1 and ANN-D-

8.1, are shown in Figure 4-45 and Figure 4-46, respectively. The errors produced by the 

final predicted 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 are shown in Figure 4-47 and Figure 4-48, respectively. 

 

 Figure 4-39 ANN-H-8 model structure 

 

Figure 4-40 ANN-D-8 model structure 
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Table 4.10 Performance of 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, for third proposed model 

 Final 𝑮𝑺𝑹𝑯 

Model 
Input of 

1st stage 

Input of 

2nd stage 

Function of 

Hidden layer 
𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  adj-𝑹𝟐 

ANN-H-8.1 
D, h, cc, max 

𝐺𝑆𝑅𝐻 

D, h, hu, T, 

1st stage 

Output(𝐺𝑆𝑅1𝐻) 

Morlet 12.505 0.96939 0.96939 

Mexihat 14.204 0. 96231 0. 96231 

ANN-H-8.2 
D, h, hu, max 

𝐺𝑆𝑅𝐻 

D, h, cc, T, 

1st stage 

output(𝐺𝑆𝑅1𝐻) 

Morlet 13.566 0.966 0.966 

Mexihat 14.775 0.96125 0.96125 

ANN-H-8.3 
D, h, T, max 

𝐺𝑆𝑅𝐻 

D, h, hu, cc, 

1st stage 

Output(𝐺𝑆𝑅1𝐻) 

Morlet 15.687 0.95718 0.95718 

Mexihat 15.795 0.95668 0.95668 

 Final 𝑮𝑺𝑹𝑫 

Model 
Input of 

1st stage 

Input of 

2nd stage 

Function of 

Hidden layer 
𝒏𝑹𝑴𝑺𝑬(%)  𝑹𝟐  adj-𝑹𝟐 

ANN-D-8.1 
D, cc, max 

𝐺𝑆𝑅𝐷 

D, hu, T, 

1st stage 

output(𝐺𝑆𝑅1𝐷  ) 

Morlet 5.103 0.9829 0.9829 

ANN-D-8.2 
D, hu, max 

𝐺𝑆𝑅𝐷 

D, cc, T 

1st stage 

output(𝐺𝑆𝑅1𝐷  ) 

Mexihat 5.719 0.982 0.982 

 

 

Figure 4-41 Actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-8.1 
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Figure 4-42 Actual and predicted 𝐺𝑆𝑅𝐷 values, for ANN-D-8.1 

 

Figure 4-43 The fit between actual and predicted 𝐺𝑆𝑅𝐻 values, for ANN-H-8.1 

 

Figure 4-44 The fit between actual and predicted 𝐺𝑆𝑅𝐷 values, for ANN-D-8.1 



97 

 

 

Figure 4-45 Predicted hourly 𝐺𝑆𝑅𝑒 by the second proposed model, ANN-H-8.1 

 

Figure 4-46 Predicted daily 𝐺𝑆𝑅𝑒 by the second proposed model, ANN-H-8.1 

  

Figure 4-47 Final hourly error, for ANN-H-8.1 
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Figure 4-48 Final daily error, for ANN-D-8.1 

As shown in Table 4.10, the third proposed model exhibited better results than previous 

conventional models and the other proposed models, for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction. The 

use of a Morlet wavelet function as a hidden layer transfer function for GSR error prediction 

achieved the desired goal. The ANN-H-7.1 and ANN-D-7.1 models exhibited the best 

performance for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷  prediction, respectively. This proposed model enhanced 

the 𝐺𝑆𝑅𝐻 values more than the 𝐺𝑆𝑅𝐷  values. 

The absolute error values for 𝐺𝑆𝑅𝐻 prediction is determined for monthly and seasonally 

trend evaluation as shown in Figure 4-49. It can be seen that 𝐺𝑆𝑅𝐻 prediction error is 

weather sensitive. The error increases in winter and spring because of the highest 

variability of the cloudiness in both seasons. This applies for 𝐺𝑆𝑅𝐷  prediction case. 
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a) Monthly absolute error b) Seasonally absolute error 

Figure 4-49 Monthly and seasonally absolute error for 𝐺𝑆𝑅𝐻 prediction 

4.6.3  Comparison with Other Studies  

Various studies have been done with different geographic locations and weather 

conditions, 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷prediction. Table 4.11  and Table 4.12 present an overview of 

other studies and proposed models that carry out 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction. This 

comparison includes input weather variables and the performance of different models. 
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Table 4.11 Comparison of the developed model and other 𝐺𝑆𝑅𝐻 ANN models 

 𝑮𝑺𝑹𝑯 

Author Inputs Location 
Performance 

Evaluation 

Moustris et al. 

(2008) [100] 

latitude, longitude, altitude, sunshine 

hours, cloud cover, hourly data of air 

temperature, and relative humidity 

Greece 𝑅=0.99 

Alam et al. (2009) 

[101] 

latitude, longitude, altitude, time, 

months of the year, air temperature, 

relative humidity, rainfall, wind 

speed, and net long wavelength 

India 
𝑅2=0.85 

nRMSE=8.8% 

Pavan et al. (2010) 

[102] 

Solar irradiance, the number of days 

in a month and mean air temperature 

per day 

Italy 

𝑅2=0.95-0.98 

(Sunny day) 

𝑅2=0.92-0.95 

(Cloudy Day) 

Mellit et al. (2010) 

[102] 

Hourly solar irradiance, air 

temperature, and hours 
Italy 

𝑅=98.95 

nRMSE=13.14% 

Hasni et al. (2012) 

[107] 

month, day, hour, temperature and 

relative humidity 
Algeria 

𝑅2=0.85 

nRMSE=17.2% 

Loutfi, et al. (2017) 

[113] 

Temperature, pressure, relative 

humidity, wind speed  
Moroco 

𝑅2=0.932 

nRMSE=15% 

1st proposed model 
Day, hour, relative humidity, 

Temperature, cloud cover, Max 𝐺𝑆𝑅𝐻 
Canada 

𝑅2=0.94724 

nRMSE=18.068% 

2nd proposed model 
Day, hour, relative humidity, 

Temperature, cloud cover, Max 𝐺𝑆𝑅𝐻 
Canada 

𝑅2=0.96197 

nRMSE=14.467% 

3rd proposed model 
Day, hour, relative humidity, 

Temperature, cloud cover, Max 𝐺𝑆𝑅𝐻 
Canada 

𝑅2=0.96939 

nRMSE=12.505% 

 



101 

 

Table 4.12 Comparison of the developed model and other 𝐺𝑆𝑅𝐷 ANN models 

 𝑮𝑺𝑹𝑫 

Author Inputs Location 
Performance 

Evaluation 

Deng et al. (2010) [103] 

latitude, longitude, altitude, 

sunshine duration, air 

temperature, rainfall, 

relative humidity, 

atmospheric pressure, and 

day of year 

China 𝑅2=0.93 

Angela et al. (2011) 

[105] 
Sunshine duration India 

𝑅2=0.963 

nRMSE=52% 

Alharbi, et al. 

(2013) [108] 

Temperature, relative 

humidity, and daily date 

Saudi 

Arabia 

𝑅2=0.986 

nRMSE=7.5% 

Bader, et al. (2014) 

[109] 

Day, relative humidity, and  

air temperature 

Saudi 

Arabia 
𝑅2=.98 

nRMSE=4.75% 

Masoud, et al. (2017) 

[112] 

Particulate Matter, Relative 

Humidity, Wind Speed and 

Daily Temperature 

Iran 
𝑅2=.99 

nRMSE=5% 

Yıldırım, er al.(2017) 

[114] 

Sunshine duration, 

Temperatur and Relative 

Humidity 

Turkey 
𝑅2=.9611 

nRMSE=14% 

1st proposed model 
Day, hour, relative humidity, 

Temperature, cloud cover, 

max 𝐺𝑆𝑅𝐷 
Canada 

𝑅2=0.97886 

nRMSE=6.9962% 

2nd proposed model 
Day, hour, relative humidity, 

Temperature, cloud cover, 

max 𝐺𝑆𝑅𝐷 
Canada 

𝑅2=.98187 

nRMSE=5.9958% 

3rd proposed model 
Day, hour, relative humidity, 

Temperature, cloud cover, 

max  𝐺𝑆𝑅𝐷 
Canada 

𝑅2=0.9829 

nRMSE=5.103% 

 

The three proposed models use the same input weather variables in addition to maximum 

GSR, with different structural configurations. These weather variables are widely available 

and easily measured. The weather conditions in Halifax are relatively volatile in 

comparison to those of other areas. In addition, earlier work took place close to the equator 

compared to this work.  This makes the prediction process more difficult and the solar 
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radiation more sensitive to other weather variables for this study. For 𝐺𝑆𝑅𝐻 prediction, the 

three proposed models perform better than other models. nRMSE of the proposed models 

within the band of errors of earlier works, 9% to 19%. Although the model proposed by 

Alam (2009) has a lower nRMSE value, more input weather variables are required for the 

prediction process. For 𝐺𝑆𝑅𝐷 prediction, the three proposed models perform better than 

other models. nRMSE of the proposed models within the band of errors of earlier works, 

5% to 15%. However, the models proposed by Bader (2014) and Masoud (2017) have 

slightly lower nRMSE values. 

The second model proposed for GSR prediction is used as part of a load management 

application. More details will be provided in the following section. 

4.6.4  Conclusions 

Three new models are proposed for predicting 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 by using ANN and WNN 

with the most effective combination of weather variables. Performance is enhanced by 

using maximum GSR as an input for prediction models. For this study, a weather dataset 

for a specific location in Canada was used. These data, collected between 2000 and 2005, 

include cc, hu, T, 𝑤𝑠, and GSR. 

In the first step, different combinations of weather variables and model structures were 

tested, and MATLAB TM simulations were used to find the most effective weather variables. 

It was found that cc, hu, and T are the best combination of variables for predicting 𝐺𝑆𝑅𝐻 

and 𝐺𝑆𝑅𝐷. These variables were used as inputs for the proposed models. 

The first proposed model was selected from combination models that use max GSR in 

addition to other weather variables. hu, cc, and max GSR gave improved accuracy for 𝐺𝑆𝑅𝐻 
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prediction (ANN-H-5.1). However, cc, hu, T, and max GSR provided better accuracy for 

𝐺𝑆𝑅𝐷 predictions (ANN-D-6.1). 

For the second proposed model, cc and max GSR were used as inputs for the first stage, 

and hu and T were used for the second stage of the model. This combination gave the best 

results in terms of accuracy for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction (ANN-H-7.1 and ANN-D-7.1). 

For the third proposed model, cc and max GSR were used as inputs for the first stage, and 

hu and T were used in the second stage for 𝐺𝑆𝑅1𝐻 and 𝐺𝑆𝑅1𝐷 and 𝐺𝑆𝑅𝑒 prediction (ANN-

H-8.1 and ANN-D-8.1). The Morlet wavelet function was used as a transfer function for 

the hidden layer of the 𝐺𝑆𝑅𝑒 prediction. The three proposed models favor 𝐺𝑆𝑅𝐻 prediction 

in comparison to 𝐺𝑆𝑅𝐷 prediction. These models gave good results compared to others, 

although weather conditions in Halifax are relatively volatile in comparison to those of 

other areas. 
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CHAPTER 5 HARMONICS 

Solar energy sources require the use of power converters, however these introduce 

harmonics into the output waveforms. This chapter describes the concept of harmonics, 

and discusses their causes and effects. 

5.1  INTRODUCTION 

Harmonic distortion can be divided into two classes, voltage distortion and current 

distortion, as illustrated in Figure 5-1 . Because the voltage is common to all loads in a 

system, any voltage distortion that occurs will result in a corresponding current distortion, 

assuming that the source impedance is low. Conversely, current distortion results in voltage 

distortion only insofar as the source impedance provides a common coupling impedance 

[115]. 

 

Figure 5-1 Harmonic distortion of different waveform 

Two concepts must be addressed to gain a full understanding of harmonic phenomena. The 

first concept concerns the nature of loads which cause the production of harmonic voltages 
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and currents, namely non-linear loads. The second concept involves the way that harmonic 

currents flow, and how subsequent harmonic voltages arise. 

It should be pointed out that symmetrical waves contain only odd harmonics, whereas 

asymmetrical waves contain both even and odd harmonics. A wave which exhibits 

symmetry is one in which the positive and negative parts are identical, but opposite in 

magnitude. A wave which is asymmetrical contains a DC offset; in other words, the 

positive section of the wave differs from the negative section [116]. 

5.2  CAUSES OF HARMONICS 

Non-linear loads exhibit a waveform that does not look like the applied voltage waveform. 

This can occur for various reasons. One example involves the use of switches which 

conduct the load current only during a portion of the full period of the applied power 

waveform. In this case, it is possible to conceive of a non-linear load where Ohm’s law 

does not accurately describe the relationship between the voltage and the current. 

Rectifying devices in power systems account for the most common non-linear loads. Such 

loads are present in power converters, power supplies, UPS systems, arc devices such as 

electric furnaces for melting metals, electroplating systems, and fluorescent lamps [116]. 

When harmonics are added together with the characteristic components, waveforms are 

produced which have components that are not whole integer multiples of the fundamental 

frequency of the particular system. These are referred to as inter-harmonics. Inter-

harmonics commonly occur with the use of AC to AC converters. These devices operate 

with a set amplitude and frequency at the input, however, at the output these factors can be 

variable in nature [116]. 
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Non-linear loads generally do not cause reactive power to flow at the fundamental system 

frequency. However, it is possible that they may draw high root mean square (RMS) 

currents and thus add to distribution losses for a given load. The non-linear nature of the 

load then draws non-pure sinusoidal waveform currents, which cause harmonics of the 

fundamental current to be present. Because the connection of non-linear elements to the 

power system causes harmonic distortion, any device with non-linear characteristics can 

act as the cause of such distortion. For example, power system harmonics (some more 

problematic than others) can occur in the following [115]: 

- Transformer saturation  

- Transformer neutral connections  

- Arc Furnaces 

- Fluorescent lighting 

- Battery charging devices 

- Imperfect AC sources 

- Variable frequency motor drives 

- Inverters 

Non-linear loads such as these reduce the power factor not because of a phase shift of the 

fundamental current with respect to the voltage, but rather due to higher RMS currents 

which arise because of the pulsed nature of the input current. This means that power is 

taken from the source only for a short time near the peak of the voltage wave. The higher 

line current causes a reduction in the power factor, because the total power factor is defined 

as the real power in Watts divided by the product of the RMS voltage and current [115]. 
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Applications that utilize electricity with loads that require some form of power 

conditioning, such as rectification and inversion, are steadily increasing. Most industrial 

non-linear loads are associated with solid state switches, which are used in power 

converting devices that convert electrical power from one form to another. This includes 

AC to DC converter units for motor speed control, and units that convert from AC to DC 

and back again to AC at variable frequencies, for processes involving the speed control of 

induction motors. Many bulk energy conversion processes occur in the oil, mining, steel 

milling, pulp and paper, and automobile industries, as well as in the area of manufacturing 

and factories employing electrolytic coating processes [116]. 

Non-sinusoidal scenarios can also occur when harmonics are contained within network 

voltages and currents. Although some harmonics are caused by non-linear system 

components, most harmonics are the result of power electronic loads such as adjustable-

speed drives and diode bridge rectifiers. The harmonics above the fundamental frequency 

which are considered to be significant are usually the 3rd, 5th, and 7th multiples in 50 Hz or 

60 Hz systems. Thus, the frequencies of interest lie in the low audible range [117]. 

With regard to PV systems in particular, when a large number of PV systems is installed 

in the same area, harmonic currents generated by these systems may be detrimental to the 

quality of the electrical grid supply, and may negatively alter the performance of other 

equipment connected to the grid. In addition, the inverters themselves are quite sensitive 

to harmonic voltages, and may possibly operate incorrectly as a result of harmonic voltage 

distortion. For this reason, engineers must be able to predict these undesirable effects and 

mitigate them or prevent them entirely before they occur [118]. 
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5.3  EFFECTS 

The effects produced by harmonic currents from non-linear loads are not completely 

understood. The vast majority of power systems operate with a low impedance, which 

enables them to absorb significant amounts of harmonic current without converting the 

harmonics into undesirable voltage distortion levels [116]. 

The effects of harmonic distortion range from equipment losses, where the service life of 

equipment, such as transformers and cables, is shortened, to interference in audio and data 

communications systems. As well, harmonics can also cause the tripping of protective 

devices such as surge protectors, resulting in unnecessary equipment downtime. The 

monetary cost of cleaning or filtering out such harmonic noise often reduces the benefit of 

improving the equipment to enable it to function better in a disturbed environment. A 

general rule of thumb in electronics is that the more components there are, or the more 

sophisticated and sensitive the electronic equipment is, the more it will cost to maintain, 

because it can be expected to be more sensitive to harmonic distortion disturbances [116]. 

Sensitive industrial processes such as automated assembly lines are susceptible to power-

related damage from harmonic distortion. Conversely, the more rigid the AC source is, the 

lower the harmonic voltage distortion will be across the terminals. 

The harmonic voltages in a system sum together, and when added to the nominal voltage 

produce a voltage distortion which misrepresents the actual system voltage. The magnitude 

of the voltage distortion is dependent on the source impedance and the harmonic voltages 

being produced. In a situation where the source impedance is low, the voltage distortion 

will also be low. If a significant portion of the load becomes non-linear, with increased 
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harmonic currents, and a resonant condition with greater impedance becomes prevalent in 

the circuit, the voltage can increase dramatically. Harmonic currents are responsible for a 

number of problems, such as: [119] 

- Overheating of equipment 

- Malfunction 

- Failure 

- Interference 

- Tripping of breakers/fuses 

- Process issues 

- Conductor heating 

- Risk of fire  

In turn, all of these risks result in increased maintenance costs for the system. Of course, it 

can be inferred that the effects on a system caused by exposure to harmonics are not always 

immediately visible, but can have serious consequences in the medium to long term. In 

general, this is because such distortions subject systems to voltages and currents outside 

the range of values for which they were designed. Utility companies in particular face a 

number of challenges with regard to harmonics insofar as they have to deal with increased 

RMS currents, heating and line losses. Power transformers are also prone to overheating. 

Distribution equipment may become de-rated, and overloading can occur in phase and 

neutral conductors. Resonances also can amplify harmonic currents. In addition, a wide 

range of component failures may also occur [119]. 
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The effects of poor power quality on electrical equipment can differ depending on the 

component affected. Different electronic devices have set tolerances, and can withstand 

specific ranges of inputs up to a certain threshold before they are subject to failure. Device 

design plays a pivotal role in the length of life of a given piece of equipment and the 

efficiency of its operation in the event of different degrees of disruption. A number of 

critical factors are vital in determining the tolerance of a device. Some of these are: [120] 

- The age of the device  

- The duration and magnitude of a particular disturbance  

- The frequency of occurrence of the disturbance  

- The sensitivity of the device (determined by the specifications and design)  

- The location of the device within a given installation  

- The pathway existing between the device and the event  

- Network impedance 

5.4  METRIC USED IN THE MEASUREMENT OF HARMONIC LEVELS 

One metric frequently used in the measurement of harmonic levels is total harmonic 

distortion (THD), which is also known as the distortion factor. This measurement is 

comprised of the ratio of the RMS value of the harmonics present above the fundamental 

frequency to the RMS value of the fundamental multiplied by 100%. This ratio is given by 

[116], [117] 

 𝑇𝐻𝐷𝑉 =
√∑ 𝑉ℎ 𝑟𝑚𝑠

2∞
ℎ=2

𝑉1 𝑟𝑚𝑠
∗ 100 (5.1) 

 𝑇𝐻𝐷𝐼 =
√∑ 𝐼ℎ 𝑟𝑚𝑠

2∞
ℎ=2

𝐼1 𝑟𝑚𝑠
∗ 100 (5.2) 
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If there are no harmonics, then the THD will be zero. The true power factor is given by 

[53], [121]: 

 
𝑃𝐹𝑡𝑟𝑢𝑒 =

𝑃𝑎𝑣𝑔

𝑉1 𝑟𝑚𝑠𝐼1 𝑟𝑚𝑠√1 + (
𝑇𝐻𝐷𝑉

100
)2√1 + (

𝑇𝐻𝐷𝐼
100

)2

 
(5.3) 

where the RMS values for voltage and current are given by [53], [121]: 

 𝑉 𝑟𝑚𝑠 = 𝑉1 𝑟𝑚𝑠√1 + (
𝑇𝐻𝐷𝑉

100
)2 (5.4) 

 𝐼 𝑟𝑚𝑠 = 𝐼1 𝑟𝑚𝑠√1 + (
𝑇𝐻𝐷𝐼

100
)2 (5.5) 

The average power is calculated via the expression  [116], [117]: 

 
𝑃𝑎𝑣𝑔 = ∑ 𝑉ℎ 𝑟𝑚𝑠𝐼ℎ 𝑟𝑚𝑠cos (𝛿ℎ

∞

ℎ=1

− 𝜃ℎ) 

= 𝑃1𝑎𝑣𝑔 + 𝑃2𝑎𝑣𝑔 + 𝑃3𝑎𝑣𝑔 + ⋯ 

 

 

(5.6) 

Here it can be seen that every harmonic present makes a contribution, either positive or 

negative, to the average power of the system. 

Finally, the power factor expression can be further simplified by expressing the equation 

as the product of two components. This is given by  [116], [117]: 

 
𝑃𝐹𝑡𝑟𝑢𝑒 =

𝑃𝑎𝑣𝑔

𝑉1 𝑟𝑚𝑠𝐼1 𝑟𝑚𝑠
∗

1

√1 + (
𝑇𝐻𝐷𝑉

100
)2√1 + (

𝑇𝐻𝐷𝐼
100

)2

 
(5.7) 

If two assumptions are incorporated into the above expression, one being that in most cases 

the contributions made by harmonics above the fundamental frequency to the average 
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power are modest such that 𝑃𝑎𝑣𝑔 = 𝑃1𝑎𝑣𝑔, and the second being that the total harmonic 

distortion of the voltage is typically 10% or less such that 𝑉 𝑟𝑚𝑠 = 𝑉1 𝑟𝑚𝑠, then the 

approximation of the true power factor can be simmplified to [116], [117]: 

 
𝑃𝐹𝑡𝑟𝑢𝑒 ≈

𝑃1𝑎𝑣𝑔

𝑉1 𝑟𝑚𝑠𝐼1 𝑟𝑚𝑠
∗

1

√1 + (
𝑇𝐻𝐷𝐼
100

)
2

= 𝑃𝐹𝑑𝑖𝑠𝑃𝐹𝑑𝑖𝑠𝑡 
(5.8) 

It is important to note that generally it is not possible to compensate for a poor distortion 

power factor (𝑃𝐹𝑑𝑖𝑠𝑡) simply by adding shunt capacitors. Only a displacement power factor 

(𝑃𝐹𝑑𝑖𝑠) can be improved by the addition of capacitors. This is especially significant in load 

areas with mainly single-phase power electronic loads, because these tend to have high 

displacement power factors but low distortion power factors. In fact, adding shunt 

capacitors in such instances is likely to have a detrimental effect on the power factor, by 

causing resonances and increased harmonic levels. A more effective solution would be to 

add passive or active filters with the aim of removing the harmonics produced by non-

linear loads, or perhaps to use low distortion power electronic loads [116]. 

5.5  LITERATURE REVIEW 

Different types of converters are available. They are chosen based on the method of 

isolation, the number of conversion stages, and the DC link. Three types of commonly used 

converter are an inverter with a DC link, an inverter with a pseudo-DC link, and an inverter 

without a DC link [122]. The prevalent topologies have one or two stages. The number of 

stages is significant in determining the complexity of the PV system and its cost. A single-

stage structure has the most advantageous topology; however, problems can appear during 

implementation and some benefits may be lost. Although multiple stage inverters can 



113 

 

accept a wide range of voltage inputs, they are typically more expensive and more complex. 

New trends in inverter development favor inverters without a DC link, to reduce the total 

number of conversion stages and the overall cost per unit volume [122].   

Most advanced work is focused on increasing the overall efficiency, minimizing the 

leakage current, reducing the harmonic distortion, and regulating the output voltage. 

Utilizing a suitable pulse width modulation (PWM) technique and adding more switches 

to the fundamental converter help to regulate the voltage across the flying capacitor, as 

shown in Figure 5-2. 

 

Figure 5-2 Inverter with a flying capacitor [123] 

Another topology consists of a capacitor selection circuit and a full-bridge converter, as 

shown in Figure 5-3 [124]. This configuration helps to reduce the number of switches. 

Switching losses are decreased by reducing the number of switches operating at a high 
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frequency to a single switch. In this configuration, techniques of the DC-AC converter are 

similar to fundamental converter techniques. 

 

Figure 5-3 Configuration of seven-level inverter 

Figure 5-4 shows the topology of an active buck-boost inverter [125]. It is a quasi single-

stage inverter that aims to eliminate the drawbacks of using single- or multistage inverters. 

It consists of a full bridge and AC/AC units that share the inductor and capacitor. 

 

Figure 5-4 Active buck–boost full-bridge inverter [126] 

Another topology involves a switched-capacitor circuit (SC) followed by an H-bridge, as 

shown in Figure 5-5. The number of SCs and H-bridges connected in series or in parallel 

determines the number of voltage steps. The SC circuits consist of switches S1, S2, S’1, and 
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S’2, and capacitors C1 and C2. The H-bridge consists of switches S1a, S11, S12, S13, S21, S22, 

S23, and S24 which provide negative voltage steps. All the switches are controlled by pulse 

width modulation (PWM). Diodes D1 and D block the current going back to the DC input 

source. C1 and C2 are equal to VDC1 and VDC2 respectively, when they are fully charged 

[127]. 

 

Figure 5-5 Topology with switched-capacitor circuit (SC) followed by H-bridge 

Most converter topologies are derived from the fundamental topology shown in Figure 5-6. 

For this reason, this study will focus on this topology, with different techniques. 

 

Figure 5-6 Classic model of PV DC-AC conversion system 
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5.6  EFFECT OF WEATHER CONDITIONS ON HARMONIC 

PERFORMANCE OF PV INVERTERS 

Most converter topologies are derived from the fundamental topology illustrated in Figure 

5-6. The present work therefore focuses on this topology, with different techniques. Three 

years’ worth of data involving various environmental conditions are used for three different 

case studies [3], [7]. The data is fed to the PV model, and the voltage and current at the 

maximum power point are determined. Most earlier work has focused on varying either the 

radiation or the temperature and determining the effect on the maximum power point [128]-

[130]. This work utilizes real data that has different radiation and temperature values in a 

given time span, without using a DC link in the conversion stage. The dataset was applied 

to a PV model, and maximum power point tracking (MPPT) was implemented by using 

the model and algorithm found in [7]. Then, three different inverting techniques are applied 

to generate AC signal. Finally, harmonics are extracted from the AC signal as shown in 

Figure 5-7. 

 

Figure 5-7 Steps of Harmonic extraction 

5.6.1  Modeling of PV DC-AC Conversion System using resistive output 

load 

This work studies the effects of variations of environmental conditions on the output 

voltage harmonics of a PV system. This study uses a dataset of the average solar radiation 

(hourly and daily) and the hourly average temperature over a three-year time span (2001 

to 2003), as shown in Figure 5-8. This dataset was provided by Environment Canada, and 
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measurements were obtained by using a pyranometer [81]. In cases when observations 

were unavailable, a MAC3 model, WON statistical model, or linear interpolations were 

used to estimate the climate information [131].  It has been assumed that an hourly dataset 

was sufficient to represent environmental fluctuations. In reality, a study should be 

conducted for each environment, to determine the sampling period which accurately 

represents weather patterns. Moreover, due to seasonal variations, it is important to study 

the weather patterns over an entire year. In addition, it is assumed that the hourly available 

data is obtained based on measurements that meet the Nyquist sampling criteria. The 

highest frequency is about 49th harmonic order. 

 

Figure 5-8 Time variation of average solar radiation and temperature 

A Solarex MSX60 60w module was used for this simulation. The PV module parameters 

are given, including the number of series and parallel cells in the PV array  [71]. The PV 

system consists of two modules connected in parallel to generate an output power of 

approximately 75 W. 
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Due to the nonlinearity of the current-voltage equation for the PV cell, an iterative method 

such as the Newton-Raphson method is required to solve for the current [131]: 

 𝑋𝑛+1 = 𝑋𝑛 −
𝑓(𝑋𝑛)

𝑓′(𝑋𝑛)
 (5.9) 

where 𝑋𝑛+1 is a new value, 𝑋𝑛 is the present value, and 𝑓′(𝑋𝑛) is the derivative of the 

function evaluated at the present value. The current-voltage (I-V) relationship for the PV 

array becomes: 

 𝑓(𝐼) = 𝑁𝑝𝐼𝐿 − 𝑁𝑝𝐼𝑜 exp

[
 
 
 𝑞 (

𝑉
𝑁𝑆

+
𝐼𝑅𝑠)

𝑁𝑝
)

𝑛𝑘𝑇
− 1

]
 
 
 

−

𝑉𝑁𝑝

𝑁𝑆
+ 𝐼𝑅𝑠

𝑅𝑆𝐻
− 𝐼 (5.10) 

First, the hourly current versus voltage and power versus voltage characteristics of a PV 

array are obtained for whole day’s worth of data, as shown in Figure 5-9 and Figure 5-10. 

Figure 5-11 and Figure 5-12 illustrate a three-year time span. In the plots, each curve is 

produced by using hourly temperature and radiation measurements. In addition, the curves 

show the effect of both temperature and radiation on the hourly output current (I), voltage 

(V), and power (P). These results are similar to those found in [132], [133]. 

 

 

 

Figure 5-9  I-V characteristic of PV array 

module 
 

Figure 5-10  P-V characteristic of PV array 

module 
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Figure 5-11   I-V characteristic for three 

years 
 

Figure 5-12   P-V characteristic for three 

years 

Secondly, for each curve, the maximum power point of the PV array can be determined 

from Figure 5-9 and Figure 5-10 for a whole day’s worth of data. This permits the 

determination of the hourly output current (I) and voltage (V) at the maximum points of 

these curves for one day, as shown in Figure 5-13. 

 

Figure 5-13 Maximum output current (𝐼) and voltage (𝑉) 

Recently, different converter topologies have been used in this area. However, all converter 

designs are derived from fundamental converter techniques. The techniques used are a 
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square-wave inverter with 60 Hz switching, a square-wave inverter with blanking angle 

(firing angle or dead-zone angle) and 60 Hz switching, and pulse width modulation 

(PWM). For a PV system, a classic model used to convert a DC signal into an AC signal 

is shown in Figure 5-6.  This model consists of four switching devices and one transformer, 

which connects the output of a converter to a Thevenin equivalent model of the power grid. 

The transformer is represented by its exact equivalent circuit. Here 𝐼𝑚 is the magnetization 

current of the transformer, 𝐼1 is the primary current of the transformer, 𝐼2 is the secondary 

current of the transformer, 𝑅1 is resistance of the primary winding of the transformer, 𝐿1 is 

inductance of the primary winding of the transformer, 𝑅2 is the resistance of the secondary 

winding, 𝐿2 is the inductance of the secondary winding, 𝑅𝑚 is a model of the transformer 

core losses, 𝐿𝑚 is the magnetization inductance, and 𝑛 is the turns ratio of the transformer. 

The harmonic analysis of the inverter topology alone is performed subsequently. The state 

space representation of the whole model consists of three states (𝐼, 𝐼1, and 𝐼𝑚) [132]:   

 [
 
 
 
 
 
𝑑𝐼

𝑑𝑡
𝑑𝐼1
𝑑𝑡
𝑑𝐼𝑚
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[
𝐼
𝐼1
𝐼𝑚

]

+ [

𝑉

𝐿1

0
0

] 𝑢(𝑡) 

(5.11) 

 𝐼2 =
𝐼1
𝑛

 (5.12) 

 𝑉𝑜 = 𝐼2𝑍𝑜 (5.13) 
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In this study, the model represents an isolated community. Here 𝑍𝑜, the representative 

Thevenin equivalent impedance, is assumed to be a 10Ω resistive load, which is large 

enough to be studied. The effect of the reactive part of the impedance on the conversion 

stage is examined in  [7]. Since the system is isolated, the effect of the grid voltage is 

neglected. The current provided by the PV modules is the current fed to the converter, and 

then to the load  𝑍𝑜. The current performance is the same as the voltage performance, as a 

resistive load is used in this work. A variety of switching devices can be used for inverting 

the signal. For example, a MOSFET is suitable for high-frequency applications, and an 

IGBT is a switch that is appropriate for high-voltage applications [126]. 

5.6.2  Simulation of the PV DC-AC Conversion System 

5.6.2.1  Square-wave inverter using 60Hz switching 

To produce a 60 Hz output frequency, the output DC voltage of the PV cells is fed to the 

inverter. The inverter output is then fed to the transformer, which provides power to the 

load. The output voltage of the square-wave inverter alternates between V and –V at a 

frequency of 60 Hz, as shown in Figure 5-14. The transformer inductance is very small, 

has no effect on the output waveform, and has a DC offset and harmonic components. 
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Figure 5-14 Output of the square -wave inverter at 60 Hz switching  

The order and magnitude of harmonics for the AC output of the inverters are shown in 

Figure 5-15. The output voltage waveform contains only odd order harmonics. The most 

significant harmonics are the 3rd, to 11th; the other harmonics are insignificant in 

comparison. This is in agreement with results reported in the literature [134]-[136]. Table 

5.1 shows the ratio of harmonic components to the fundamental component, as calculated 

from Figure 5-14. 

 

Figure 5-15 Harmonic order spectrum of the square -wave inverter at 60 Hz switching  
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Table 5.1 Ratios of the harmonic components to the fundamental component 

Order 3rd 5th 7th 9th 11th 13th 15th 17th 

Ratio (%) 33 20 14 11 9 7.6 6.6 5.6 

 

In this work, a probability density function (PDF) is used to show the probability of 

occurrence of harmonic amplitudes. The harmonics produced during the conversion 

process can be modeled by using hourly solar radiation and temperature data, and a power 

inverter model. A simulation using hourly data over a three-year period shows the 

variability in amplitude of each harmonic component. This study of the harmonic 

distribution can aid in the effective design of an adaptive filtering system. The study also 

provides the probability density function for the fundamental component for each hour. 

This helps to determine the storage system capacity, including sizing. Accurate values can 

improve the performance and service life. 

In addition, distribution fitting is used to find a probability distribution model that describes 

the frequency of occurrence of the magnitude of the fundamental frequency and harmonic 

components of the inverted waves. Many probability distributions were used, including 

beta, Birnbaum-Saunders, exponential, extreme value, gamma, generalized extreme value, 

generalized Pareto, inverse Gaussian, logistic, log-logistic, lognormal, Nakagami, normal, 

t location-scale and Weibull distributions [137]. The best four probability distributions 

were selected and sorted with regard to the Bayesian information criterion, based on the 

values of the negative of the log likelihood (NLogL). 

Figure 5-16 shows the probability density function for the fundamental and harmonic 

components. It is concluded that the fluctuations of the even order harmonics over time are 
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too small to be considered, in comparison to the odd order harmonics. In addition, the odd 

harmonic components dominate and vary significantly. From Figure 5-16 it is concluded 

that:  

1. The fundamental component has the greatest amplitude and a wide range of spectral 

density. The 3rd and 5th harmonics have a wider range of spectral density than is the 

case with other harmonics.  

2. The fundamental, 3rd and 5th components exhibit the greatest probability density 

around (11.85, 3.85, and 2.3)× 104 v/Hz respectively, ranging from 1.4 × 10−4 and 

7× 10−4. However, the PDF for the 2nd, 4th and 6th components is equal to 0.038. 

These values can assist in the design of filter parameters to eliminate or minimize 

undesired harmonic components. 

3. The ratios of the spectral density range of the 3rd and 5th harmonics to the fundamental 

are approximately equal to 4.3/13.12= 32.8% and 2.65/13.12= 20.2% respectively. 

These values agree with those indicated in Table 5.1. 

4. The PDF patterns for the fundamental and odd harmonic components are very 

similar, with a different range of harmonic spectral density. Moreover, the even 

harmonic components have the same PDF pattern.  
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Figure 5-16  Probability density function and fitted distribution for the fundamental and 

harmonics of a square-wave inverter with 60 Hz switching 

The probability distributions with the best fit for the fundamental component and odd 

harmonics are the extreme value, generalized extreme value, Weibull and t- location-scale 

distributions. However, the probability distributions with the best fit for the even harmonics 

are the generalized extreme value, extreme value, Weibull and normal distributions. The 

distributions with the best fit and their parameters are listed in sorted order in Table 5.2. 
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Table 5.2 Fitted distributions for fundamental and harmonic components, and their 

parameters for square –wave inverter at 60 Hz switching 

Distribution 

Name 

Parameters values for 

Fundamental 

Frequency 

Parameters values for 

3rd harmonic 

Parameters values for 

5th harmonic 

'Extreme 

value' 

location (mu) =109353.79 

Scale (sigma) =13417.05 

location (mu) =36434.72 

Scale (sigma) =4470.344 

location (mu) =21841.02 

Scale (sigma) =2679.801 

'Generalized 

extreme 

value' 

Shape (k)=-0.508 

Scale (sigma)=18391.99 

Location (mu)= 97282.35 

Shape (k)= -0.5081 

Scale (sigma)=6127.902 

Location (mu)= 

32412.619 

Shape (k)= -0.508 

Scale (sigma)=3673.434 

Location (mu)= 

19429.810 

'Weibull' 
Scale(A)=108316.19 

Shape(B)=7.45 

Scale(A)= 36089.010 

Shape(B)= 7.484 

Scale(A)= 21633.776 

Shape(B)= 7.484 

't-location-

scale' 

Location(mu)= 

101875.14, 

Scale(sigma)=16484.72, 

Degree of 

Freedom(Nu)=27.72 

Location(mu)= 33942.930 

Scale(sigma)= 5492.496 

Degree of Freedom(Nu)= 

27.72 

Location(mu)= 20347.250 

Scale(sigma)= 292.610 

Degree of Freedom(Nu)= 

27.73 

Distribution 

Name 

Parameters values for 

2nd harmonic 

Parameters values for 

4th harmonic 

Parameters values for 

6th harmonic 

'Generalized 

extreme 

value' 

Shape (k) = -0.4376 

Scale (sigma)=21.924 

Location (mu)= 85.77 

Shape (k) = -0.437 

Scale (sigma)=21.907 

Location (mu)= 85.728 

Shape (k) = -0.437 

Scale (sigma)=21.881 

Location (mu)= 85.636 

'Extreme 

value' 

location (mu) =101.432 

Scale (sigma) =17.427 

location (mu) =101.369 

Scale (sigma) =17.416 

location (mu) =101.258 

Scale (sigma) =17.397 

'Weibull' 
Scale(A)= 99.583 

Shape(B)= 5.292 

Scale(A)= 99.521 

Shape(B)= 5.292 

Scale(A)= 99.412 

Shape(B)= 5.293 

'Normal' 
Location(mu)= 91.562 

Scale(sigma)= 20.6839 

Location(mu)= 91.506 

Scale(sigma)= 20.669 

Location(mu)= 91.406 

Scale(sigma)= 20.643 

 

In this case, the total harmonic distortion is approximately 47%. This is a high level, which 

can be expected to have negative impacts, as previously discussed. 

Many techniques are available to reduce the harmonics, including the use of filtering 

systems, multilevel inverters, and changing the blanking angle of the switches or PWM  

[57], [126], [136], [138], [139].  
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5.6.2.2  Square-wave inverter using 60Hz switching and blanking angle 

By changing the blanking angle (firing angle or dead-zone angle) of the switches of the 

square-wave inverter, the harmonic magnitude can be controlled. This results in changing 

the total harmonic distortion (THD). Figure 5-17 shows the THD obtained for different 

blanking angles, indicating that the optimum blanking angle to produce the minimum THD 

is approximately 24𝑜. 

 

Figure 5-17 THD for different blanking angles 

The AC output of the inverter for a specific radiation and temperature value is given in 

Figure 5-18. Figure 5-19 illustrates the harmonic magnitudes, and Table 5.3 shows the 

ratios of harmonic components to the fundamental component. 

 

 

 

Figure 5-18 Output of inverter with 

blanking angle of  24𝑜 
 Figure 5-19   Harmonic order spectrum 
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From  Table 5.3, it can be seen that the odd harmonic components are reduced in 

comparison to the previous case, and that the most dominant harmonics are the 3rd, 7th, 9th, 

11th, and 17th. 

Table 5.3 Ratios of the harmonic components to the fundamental component 

Order 3rd 5th 7th 9th 11th 13th 15th 17th 

Ratio (%) 17.7 4 11.6 11.8 7.3 1.3 3.5 5.7 

 

Figure 5-20 shows the probability density function for the fundamental frequency and the 

odd/even order harmonics, for various radiation and temperature values over a three-year 

time span. The analysis is carried out for a certain blanking angle. It can be concluded that 

fluctuations of the even order harmonics are still negligible in comparison to those of the 

odd order harmonics. From Figure 5-20, it is concluded that:  

1. The fundamental frequency has a wider range. 

2. For the fundamental and the 3rd,5th, 7th, 9th, and 17th harmonics, the greatest 

probability density occurs at (13.79, 2.439, 0.5152,1.606, 1.623 and 0.8001)× 104 

v/Hz respectively, and is equal to 5.4, 29.4, 120.4, 43.7, 47.3, 16.3, 72.4)× 10−5.   

3. The ratios of the spectral density range of the 3rd, 5th, 7th, 9th, and 17th harmonics to 

the fundamental are approximately equal to 2.79/15.38= 17.7%, 0.59/15.38= 3.7%, 

1.84/15.38= 11.6%, 1.84/15.38= 11.6% and .91/15.38= 5.7% respectively. These 

values agree with those shown in Table 5.3. 

4. The PDF patterns for the fundamental and odd harmonic components are very 

similar, with a different range of harmonic spectral density. In addition, the even 

harmonic components have the same PDF pattern.  
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In this case, the total harmonic distortion is approximately 28.2%. 

 

Figure 5-20  Probability density function and fitted distribution for the fundamental and 

harmonics of a square-wave inverter with 60 Hz switching, with blanking 

angle 

The probability distributions with the best fit for the fundamental component and odd and 

even harmonics are the extreme value, generalized extreme value, Weibull and t location-

scale distributions. The distributions with the best fit and their parameters are listed in 

sorted order in Table 5.4. 
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Table 5.4  Fitted distributions for fundamental and harmonic components, and their parameters 

for square –wave inverter at 60 Hz switching with blanking angle 

Distribution Name 
    Parameters values for  

Fundamental Frequency 

    Parameters values for 

2nd harmonic  

    Parameters values for 

3rd harmonic 

'Extreme value' 
location (mu) =140064.6 

Scale (sigma) =13589.43 

location (mu) =54.64 

Scale (sigma) =4.73 

location (mu) =24777.88 

Scale (sigma) =2404.697 

'Generalized  

extreme value' 

Shape (k)= -0.550 

Scale (sigma)=20406.09 

Location (mu)= 127308.98  

Shape (k)= -0.5471 

Scale (sigma)=7.341 

Location (mu)= 50.096 

Shape (k)= -0.550 

Scale (sigma)=3610.521 

Location (mu)= 

22520.878 

'Weibull' 
Scale(A)= 139167.45 

Shape(B)= 9.33 

Scale(A)= 54.356 

Shape(B)= 10.49 

Scale(A)= 24619.09 

Shape(B)= 9.336 

't-location-scale' 

Location(mu)= 133773.90 

Scale(sigma)= 16479.90 

Degree of Freedom(Nu)= 7.61 

Location(mu)= 53.185 

Scale(sigma)= 4.934 

Degree of Freedom(Nu)= 

3.596 

Location(mu)= 23664.15 

Scale(sigma)= 2916.674 

Degree of Freedom(Nu)= 

7.631 

Distribution Name 
    Parameters values for 4th 

 harmonic 

    Parameters values for 

5th  harmonic  

    Parameters values for 

6th  harmonic 

'Extreme value' 
location (mu) =83.379 

Scale (sigma) =7.267 

location (mu) =5234.872 

Scale (sigma) =507.094 

location (mu) =73.108 

Scale (sigma) =6.382 

'Generalized  

extreme value' 

Shape (k)= -0.548 

Scale (sigma)=11.216 

Location (mu)= 76.435 

Shape (k)= -0.550 

Scale (sigma)=761.399 

Location (mu)= 4759.013 

Shape (k)= -0.536 

Scale (sigma)=9.830 

Location (mu)= 66.976 

'Weibull' 
Scale(A)= 82.942 

Shape(B)= 10.452 

Scale(A)= 5201.44 

Shape(B)= 9.354 

Scale(A)= 72.72 

Shape(B)= 10.458 

't-location-scale' 

Location(mu)= 81.072 

Scale(sigma)= 7.611 

Degree of Freedom(Nu)= 3.695 

Location(mu)= 5000.83 

Scale(sigma)= 614.33 

Degree of Freedom(Nu)= 

7.55 

Location(mu)= 71.11 

Scale(sigma)= ,6.583 

Degree of Freedom(Nu)= 

3.587 

Distribution Name 
    Parameters values for 7th 

 harmonic 

    Parameters values for 

9th harmonic  

    Parameters values for 

17th harmonic 

'Extreme value' 
location (mu) =16311.302 

Scale (sigma) =1582.068 

location (mu) =16488.03 

Scale (sigma) =1599.784 

location (mu) =8128.489 

Scale (sigma) =788.539 

'Generalized  

extreme value' 

Shape (k)= -0.550 

Scale (sigma)=2375.832 

Location (mu)= 14826.29 

Shape (k)= -0.550 

Scale (sigma)=2402.194 

Location (mu)= 14986.51 

Shape (k)= -0.550 

Scale (sigma)=1184.059 

Location (mu)= 7388.468 

'Weibull' 
Scale(A)= 16206.8 

Shape(B)= 9.3426 

Scale(A)= 16382.421 

Shape(B)= 9.339 

Scale(A)= 8076.44 

Shape(B)= 9.341 

't-location-scale' 

Location(mu)= 15579.400 

Scale(sigma)= 1918.157 

Degree of Freedom(Nu)= 7.606 

Location(mu)= 15747.44 

Scale(sigma)= 1940.042 

Degree of Freedom(Nu)= 

7.620 

Location(mu)= 7763.615 

Scale(sigma)= 956.050 

Degree of Freedom(Nu)= 

7.610 
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5.6.2.3  Inverter with pulse width modulation (PWM) 

In this case, PWM is used. The AC output of the inverter for a specific solar radiation and 

temperature value, with a switching frequency of 12 kHz, is given in Figure 5-21. The 

output more closely resembles a sine wave than is found with the waveforms produced in 

the previous cases, shown in Figure 5-14and Figure 5-18.  

 

Figure 5-21 Output of the inverter with PWM 

From Figure 5-22, it can be concluded that the magnitude of the even and odd order 

harmonics is negligible after the 198th order harmonic. Furthermore, Figure 5-23 and 

Figure 5-24 show that the dominant harmonics are around 12 kHz and 24 kHz. 

 

 

 

  

Figure 5-22 Harmonic order spectrum of 

inverter with PWM 

Figure 5-23 Harmonic order spectrum 

around 12kHz 
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Figure 5-24 Harmonic order spectrum around 24kHz 

From Table 5.5, it can be seen that the odd harmonic components are significantly reduced 

in comparison to the previous cases. However, some of the higher order harmonics, 

especially around the 12 kHz carrier frequency of the PWM and multiples of 12 kHz, have 

large magnitudes. Thus, PWM shifts the harmonics to higher frequencies. This makes the 

harmonics easier to handle. 

Table 5.5 Ratios of the harmonic components to the fundamental component 

Order 3rd 5th 7th 9th 11th 13th 15th 17th  

Ratio (%)  1 0.6 0.3 1.1 1.4 0.4 0.2 0.1 

 

Table 5.6 shows the ratios of higher harmonic components to the fundamental component 

when PWM is used. This leads to reduced filtering requirements, which is similar to results 

found in [57], [126], [138], [139]and  [57], [126], [138], [139]. The harmonics shown in 

Table 5.6 are the most dominant harmonics, contributing approximately 60% of the THD. 

The rest of the harmonics, following the 403rd, contribute only 3% of the THD.  

Table 5.6  Ratios of the harmonic components to the fundamental component 

Order 198th 200th 202nd 397th 399th 401st 403rd 

Ratio (%) 14 25 13.6 5.8 3.8 3.9 5.7 
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Figure 5-25 shows the probability density function of the fundamental frequency and the 

odd/even order harmonics for various radiation and temperature values over a three-year 

time span. From Figure 5-25, it is concluded that:  

1. For the fundamental and the 198th,200th, 202nd, 397th, 399th, 401st and 403rd 

harmonics, the greatest probability density occurs around (15.58, 2.2, 3.8, 2.2, 0.74, 

0.56, 0.58 and 0.74)× 105 v/Hz respectively, and is equal to (.37, 2.65, 1.67, 2.65, 

8.5, 13.3, 13 and 9.1)× 10−5.  

2. The ratios of the spectral density range of the 198th, 200th, 202nd, 397th, 399th, 401st 

and 403rd harmonics to the fundamental are approximately equal to 2.4/17.1= 

14.03%, 4.1/17.1=24%, 2.24/17.1=13.01%, 0.85/17.1=5.0 %, 0.62/17.1=3.6%, 

0.64/17.1=3.7% and 0.82/17.1= 4.8% respectively. These values agree with those 

shown in Table 5.6. 

3. The PDF patterns for the fundamental and dominant harmonic components are very 

similar, with a different range of harmonic spectral density. However, the 

fundamental component has a wide range compared to the harmonics, and the 200th 

harmonic has the widest harmonic range.  

In this case, the total harmonic distortion is approximately 32.8%. 
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Figure 5-25  Probability density function for the fundamental and harmonics of an 

inverter with PWM 

The probability distributions with the best fit for the fundamental component and the 198th, 

202nd, 397th and 403rd harmonics are the extreme value, generalized extreme value, Weibull 

and t location-scale distributions. However, the probability distributions with the best fit 

for the 200, 399th and 401st   harmonics are the generalized extreme value, extreme value, 

Weibull and t location-scale distributions. The distributions with the best fit and their 

parameters are listed in sorted order in Table 5.7. 
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Table 5.7 Fitted distributions for fundamental and harmonic components, and their 

parameters, for PWM 

Distribution Name 
Parameters 

description 

Parameters 

values 

Fundamental Frequency 

Parameters 

values 

For 198th 

harmonic 

Parameters 

values 

For 202nd 

Harmonic 

Parameters 

values 

For 397th 

Harmonic 

Parameters 

values 

For 403rd   

harmonic 

'Extreme value' 
location (mu) 

Scale (sigma) 

1502197.44 

130825.17 

209141.56 

18187.04 

203039.85 

17667.20 

74394.37 

6481.83 

73397.54 

6403.84 

'Generalized 

extreme value' 

Shape (k) 

Scale (sigma) 

Location (mu) 

-0.591 

199896.73 

1382379.82 

-0.584 

27838.14 

192354.48 

-0.582 

27032.44 

186714.58 

-0.598 

9894.39 

68494.27 

-0.592 

9768.85 

67538.89 

'Weibull' 
Scale(A) 

Shape(B) 

1494344.97 

10.48 

208050.81 

10.49 

201979.97 

10.48 

74005.22 

10.47 

73012.72 

10.46 

't-location-scale' 

Location(mu) 

Scale(sigma) 

Degree of 

Freedom(Nu) 

1457058.32 

140587.33 

4.10 

203000.88 

19422.65 

3.99 

197070 

18861.21 

3.99 

72124.65 

7021.40 

4.21 

71155.95 

6926.529 

4.20 

Distribution Name Parameters values 
Parameters values for 

200 Harmonic 

Parameters values for 399th 

harmonic 

Parameters values for 

401st harmonic 

'Generalized 

extreme value' 

Shape (k) 

Scale (sigma) 

Location (mu) 

-0.614 

49110.69 

339022.033 

-0.669 

7648.68 

51505.05 

-0.656 

7849.48 

53118.62 

'Extreme value' 
location (mu) 

Scale (sigma) 

367947.65 

10.37 

55771.93 

5131.50 

57564.73 

5261.22 

'Weibull' 
Scale(A) 

Shape(B) 

365989.035 

0.48 

55454.13 

9.98 

57240.20 

10.048 

't-location-scale' 

Location(mu) 

Scale(sigma) 

Degree of Freedom(Nu) 

355806.43 

35719.31 

4.62 

53586.76 

5789.37 

5.78 

14555353.76 

5927.36 

5.63 

 

5.6.3  Modeling of PV DC-AC Conversion System Using Different 

Loading Conditions 

The introduction of inductance to the load when a switching model with zero blanking 

angle is used causes the output voltage waveform of the inverter to become smoother. 

Figure 5-26 shows the output voltage waveforms and harmonic spectral densities for 

different inductor values. When the inductor value is equal to .005 H, the output voltage 

becomes smoother. The harmonic spectral densities for the 3rd, 5th and 7th harmonics are 

approximately 30%, 15% and 9%, as shown in Figure 5-27. Therefore, there is no DC 

component. When the inductor value is increased to 0.01 H, the output voltage again 

becomes smoother. The harmonic spectral densities for the 3rd, 5th and 7th harmonics 

become approximately 24.2%, 10.6% and 5.9% of the fundamental component, 
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respectively. These values are lower than is the case when L=0.005. In addition, the 

spectral density for the fundamental component decreases. However, the DC component 

and lower even harmonics appear in the harmonic spectral density. When the inductor 

value is increased to 0.02 H, the spectral densities for the 3rd, 5th and 7th harmonics become 

approximately 17.8%, 7.3% and 4% of the fundamental component, respectively. These 

values are lower than those in the previous cases when L=0.005 H and L=0.01 H. However, 

the influence of the DC component and lower even harmonics becomes larger. The total 

harmonic distortion is measured for different inductor values, as shown in Figure 5-28. 

 

 

 

Figure 5-26  Output voltage waveforms 

for different inductor values 

 Figure 5-27  Harmonic spectral density for 

different inductor values 

 

 

Figure 5-28  Total harmonic distortion for different inductor values 
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5.6.4  Effects of Weather Condition on PV Harmonics 

The ratio of each harmonic to the fundamental components of the output over three years 

is similar for the first conversion technique, as listed in Table 5.8. This indicates that the 

variation in weather conditions does not affect this ratio. This applies for other two 

conversion techniques. 

Table 5.8 Ratios of the harmonic components to the fundamental component over three 

years 

Order 3rd 5th 7th 9th 11th 13th 15th 17th 

Ratio (%) 33 20 14 11 9 7.6 6.6 5.6 
 

However, the amplitude of the fundamental and harmonic components (spectral density) 

changes when the weather conditions change, as shown in Figure 5-29. This applies to 

these two conversion techniques. Figure 5-29 shows that when the first conversion 

technique is used, the amplitude of the output is large when the solar radiation level, and 

the temperature are low. On the other hand, the amplitude of the fundamental and harmonic 

components decreases when the temperature increases. Knowing the amplitude of the 

fundamental and harmonic components, especially in extreme weather conditions, is 

helpful for determining parameters to design an adaptive filter and size a storage system. 
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Figure 5-29   Spectral density of the fundamental and harmonics components of the 

output over three years at different temperature and solar radiation values 

5.6.5  Conclusions 

The probability density functions for the fundamental frequency and several of the 

odd/even order harmonics for the three methods of inversion are evaluated. For the three 

conversion techniques, the probability density of the even order harmonics is too small to 

be considered in comparison to the odd order harmonics. The odd order harmonics 

dominate and have a wide variance. The use of PDF shows that in comparison with other 

techniques, the magnitude of the fundamental frequency is significantly larger, and the 

ratio of the harmonic components to the fundamental is small when the PWM inversion 

method is used. These results agree with previous studies that have been carried with a 

different method. Suitable probability distribution models are determined for each 

fundamental and harmonic component of the signal, for the three different techniques. 

The results show that the variability in the amplitude of each harmonic component is 

beneficial for placing an adaptive filtering system and sizing the storage system capacity. 
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The size of a PV storage system could be bounded by lower and upper limits. The use of 

PDF can assist in finding the boundaries of the fundamental and the magnitudes that occur 

more frequently. This can aid in improving the storage system efficiency. Adaptive filters 

are needed for PV systems when some parameters of the desired operation are changed. 

Thus, adaptive filters need to modify the transfer function, depending upon the new 

operating conditions. The goal of the adaptation is to adjust the characteristics of the 

adaptive filter. Because PDF studies help to determine the boundaries of each harmonic 

and which harmonic magnitude occurs more frequently, this can contribute to the design 

of the adaptive filter. Furthermore, it is shown that the variation in weather conditions does 

not influence the ratio between each harmonic and the fundamental component of the 

output. However, it influences the amplitude of the fundamental and harmonics. 
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CHAPTER 6 LOAD MANAGEMENT 

6.1  INTRODUCTION 

On the electricity side, demand has been continuously increasing, which causes capacity 

problems in the power grid. It is impossible to continue adding new conventional power 

generation supplies to meet these demands. This leads to the inclusion of power production 

from renewable energy sources. The renewable energy sources most commonly used in 

power generation are large wind turbines and PV systems [140]-[143]. 

The use of renewable energy from sources near the point of consumption results in reduced 

transmission and demands on the capacity of the distribution network. However, such 

energy sources depend on weather conditions, which can lead to imbalances between 

power generation and consumption. Rapid responses from power plants and energy storage 

systems are required to overcome these issues. However, such solutions are inefficient, 

especially at times of peak consumption. 

A more efficient solution is load management, or demand side load management (DSM). 

This process aims to adjust the load rather than increasing the output of power stations. 

This can be done by peak shaving and by shifting the load to more favourable periods 

[140], [143]. DSM can help to reduce emissions and costs through the use of fewer 

generators and power sources. This also reduces network instability and helps to increase 

power efficiency [144]. The use of appropriate load management by power utilities 

familiarizes consumers with load shedding, to avoid rolling blackouts. 
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DSM can be achieved by models and devices that take into consideration the physical 

properties of the distribution network, such as the topology, capacity, and lines, in addition 

to the load behaviour. DSM can also take into account changes in the weather. 

Most DSM applications are based on radio frequency and powerline communications, such 

as smart meters. 

6.2  LITERATURE REVIEW   

The development of load management technologies has increased rapidly in recent years in 

different sectors, including households and industry. In 1972, Boeing developed a monitoring 

system for security, fire and medical systems which used digital transmissions [145].  

The Alabama Power Company developed a load management system which has the ability 

to monitor power consumption by monitoring the watt power meter disc. This development 

gave the power plant the ability to prevent usage peaks for water heaters and air 

conditioners [146]. 

In 2005, Florida Power and Light had the largest residential load control system, 

controlling 1000 MW of electrical power for 800,000 loads. This initiative minimized the 

construction of new power plants [147]. 

A predictive scheduling model with a DSM program was developed by Jawad, et al [148] 

for a residential house. The purpose of this model was to optimize coordination between 

the grid, PV panels, battery storage, and the load demand, in addition to ensuring the power 

supply for all residential applications by predicting loads 24 hours in advance and 

categorizing the type of load. The model helps to find a balance between the comfort level 

of consumers and energy prices. A fuzzy logic decision maker (FDM) was implemented to 
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offer consumers the flexibility of using a device according to their needs throughout the 

day. The DSM program reduces peak loads and sizing of the PV battery. 

A mathematical model was developed by Sebastian, et al [149] for a residential house. This 

model helps to optimize the electricity generation production site of a local energy system, 

with a small combined heat and power (CHP) plant, a battery system, and a PV system. 

The purpose of this model is to reduce the peak load and to adjust the power generation 

load curve. 

A dynamic simulation model was developed by Alessia, et al  [150] for an industrial 

building in Italy which has a thermal energy storage (TES) system coupled with heat 

pumps. The model implements DSM, which shifts the electricity demand for cooling and 

heating purposes from peak hours to off-peak hours. The purpose of this model is to take 

advantage of PV overproduction during weekends by charging the storage system outside 

of working hours, and then using the stored thermal energy during weekdays. In addition, 

this reduces heat pump usage during peak hours, when electricity prices are higher. This 

strategy helps to take advantage of PV energy production and lower electricity grid prices 

during the weekend. 

A community energy storage (CES) system was optimized by David, et al [151] to achieve 

PV energy time shifting and demand load shifting simultaneously. The purpose of the 

model is to optimize battery performance when the battery is charging and discharging. 

This study suggested when the PV energy should be integrated with the CES, and CES 

discharging times at peak times. In addition, a type of battery was chosen to optimize the 

demand load and the performance and profitability of PV generation.   
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6.3  USING NEURAL NETWORKS FOR LOAD MANAGEMENT 

APPLICATION  

Many approaches can be taken to maximize the benefits of PV, PVT and thermal systems. 

One method is to change the ratio of PV cells in a PVT system, as described earlier. 

Another approach is to accommodate the amount of energy generated by adjusting the 

behavior of the load. This is referred to as load management. A solar boiler system, a 

thermal system for heating water, was used to analyze and develop a load management 

application [2]. 

6.3.1  Overview of Solar Boiler System 

A solar boiler system is used to heat water in combination with a conventional domestic 

water heating system. Cold water is initially heated by the solar boiler, and is then 

transferred to a conventional heating system for final heating. Oil, electricity, propane, or 

natural gas can be used to power the conventional system. A solar boiler system consists 

of solar collectors, solar water storage, and a PV module, as shown in Figure 6-1 [152]. 

 

Figure 6-1 Solar Boiler System layout [152] 
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The black metal absorber is heated by solar energy, which is collected by solar collectors. 

Antifreeze solution, propylene glycol and water, is heated and circulated between the 

collectors and the solar boiler. It is pumped through the collector and returns to the solar 

boiler via the pump. Heat is then transferred from the antifreeze solution to the storage 

tank, to heat the water [152]. 

6.3.2  Simulation and Analysis  

Use of the solar boiler at appropriate times can reduce the requirement for conventional 

energy sources. On average, only 30% of the solar energy produced is utilized by the solar 

boiler system. The annual solar energy for the collector, and the solar storage and hot water 

for different sizes of collectors are shown in Table 6.1 [153].   

Table 6.1 Annual solar energy on collector and to solar storage [153] 

System 
Solar Energy (kwh) 

On collector To solar storage % 

SB64(6 𝑚2) 5752 1964 34.1 

SB32(3 𝑚2) 3099 1467 29.1% 

 

SmartSaver, a load management application, was developed to maximize utilization of the 

solar boiler system through the scheduling of household activities. This application uses 

the second proposed model for 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 prediction, and is fed the weather variables 

directly from a weather website.  

The most common household activities that use hot water are washing dishes, using the 

washing machine, and taking a shower or bath. The average behaviour of consumers in 

performing household activities is shown in Table 6.2 for a family of four. 
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Table 6.2  Average consumer behaviour in performing household activities 

System Weekly Usage / Time (Hour) 

Dishwasher 7/2.5  

Washing machine 5/0.5  

Shower 12/0.25  

Bath 4/0.5 
 

The steps involved in developing the application are shown in Figure 6-2. In the first step, 

live weather data are provided from a weather website via an Application Program 

Interface (API) [154]. In the second step, the 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 are predicted for ten days. 

The cumulative hourly energy is then calculated for ten days. Results for Nov 2nd to Nov 

11th   are shown in Figure 6-3 to Figure 6-12. In addition, the cumulative daily energy, and 

optimal days in the ten-day period are shown in Figure 6-13, and are given by  [155]: 

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑤ℎ) = 𝑃𝑜𝑤𝑒𝑟 (kW) x time (hours) (6.1) 

 Power  (kW)  =   𝐺𝑆𝑅(
KW

𝑚2
) ∗ (COLLECTOR AREA)(𝑚2) (6.2) 
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Figure 6-2 Steps of developing the application 

 

 

 

Figure 6-3 Cumulative hourly energy for 

Nov 2nd  
 

Figure 6-4 Cumulative hourly energy for 

Nov 3rd 



147 

 

 

 

 

 

Figure 6-5 Cumulative hourly energy for 

Nov 4th 
 

Figure 6-6 Cumulative hourly energy for 

Nov 5th 

 

 

 

Figure 6-7 Cumulative hourly energy for 

Nov 6th 
 

Figure 6-8 Cumulative hourly energy for 

Nov 7th 

 

 

 

Figure 6-9 Cumulative hourly energy for 

Nov 8th 
 

Figure 6-10 Cumulative hourly energy for 

Nov 9th 
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Figure 6-11 Cumulative hourly energy for 

Nov 10th 
 

Figure 6-12 Cumulative hourly energy for 

Nov 11th 

 

Figure 6-13 Daily energy and optimal days, for ten days 

The next step is to add household activities which consume hot water, such as washing 

dishes, using the washing machine, and taking a shower or bath. Three selections are 

provided by the application, as shown in Figure 6-14. 

 

Figure 6-14  Selection of activities: first activity choice is a laundry 



149 

 

The first activity choice is a laundry. There are nine laundry modes, which are given in 

Table 6.3 [156], [157]. The energy required for heating a volume of water is calculated by 

[158]: 

 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑤ℎ) = 𝑉𝑤𝑎𝑡𝑒𝑟 ∗ (𝑇𝑢𝑝𝑝𝑒𝑟 − 𝑇𝑙𝑜𝑤𝑒𝑟) ∗ (
69.8

60000
) (6.3) 

where 𝑉𝑤𝑎𝑡𝑒𝑟 is the volume of water, 𝑇𝑢𝑝𝑝𝑒𝑟 is the temperature of the hot water, which 

depends on the type and mode of activity, and 𝑇𝑙𝑜𝑤𝑒𝑟 is the temperature of cold water. The 

results are shown in Figure 6-16 and Figure 6-17, for average hourly and daily values. A 

heater with 100% efficiency is assumed. In addition, tank losses are ignored. The 

temperature of the hot water that is provided by the solar boiler system is around 55𝑐. 

𝑉𝑤𝑎𝑡𝑒𝑟 and 𝑇𝑢𝑝𝑝𝑒𝑟 for each laundry mode are given in Table 6.3. Three laundry operation 

modes are shown in Figure 6-15. 

Table 6.3 Nine laundry operation modes 

Size 

Color 

Hot (white) Warm (Color) Cold (bright) 

𝑉𝑤𝑎𝑡𝑒𝑟 (liter) 
𝑇𝑢𝑝𝑝𝑒𝑟 

(Celsius) 
𝑉𝑤𝑎𝑡𝑒𝑟 (liter) 

𝑇𝑢𝑝𝑝𝑒𝑟 

(Celsius) 

𝑉𝑤𝑎𝑡𝑒𝑟 

(liter) 

𝑇𝑢𝑝𝑝𝑒𝑟 

(Celsius) 

Large 101.1 55𝑐 101.1 32𝑐 101.1 𝑇𝑙𝑜𝑤𝑒𝑟 

Medium 79.16 55𝑐 79.16 32𝑐 79.16 𝑇𝑙𝑜𝑤𝑒𝑟 

Small 58.08 55𝑐 58.08 32𝑐 58.08 𝑇𝑙𝑜𝑤𝑒𝑟 
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Figure 6-15 Three laundry operation modes 

 

 

 

Figure 6-16 Average hourly temperature of 

cold water 
 Figure 6-17 Average daily temperature of 

cold water 

 

The next step is to find the optimal savings obtainable by scheduling the activity. This is 

done by changing the time bar and looking for maximum savings achieved when the load 

is completely supplied from solar energy, rather than from the auxiliary part. For example, 

when a hot, large mode is selected for a laundry operation, different savings amounts are 

shown for different hours, as illustrated in Figure 6-18. The cost of energy and CO2 

emission reductions are calculated, as given by [155]: 
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 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦  =  𝐸𝑛𝑒𝑟𝑔𝑦  𝑥 𝐹𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 (6.4) 

 𝐶𝑂2 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠 =  𝐸𝑛𝑒𝑟𝑔𝑦 𝑥 𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (6.5) 

The fuel cost for electricity is equal to $0.17 per kWh of electricity, and CO2 emissions 

amount to 1.2 kg per kWh of electricity [83].  

Figure 6-18a show a savings amount equal to zero when the time selected for the activity 

is 7:15 AM, because at that time no solar energy has been harvested. If the time selected 

for the activity is 8:45 AM, the savings amount is $0.14, because at that time the water has 

been heated by a small amount of solar energy, and the rest of the energy is supplied by 

electricity, as shown in Figure 6-18b and Figure 6-19. However, if the time selected for the 

activity is 11:08 AM, the savings amount is $0.61, because at that time the water has been 

completely heated by solar energy, with no electricity required, as shown in Figure 6-18c 

and Figure 6-20. 

 

         (a)                                            (b)                               (c) 

Figure 6-18  Different savings amounts at different times of day, for a hot, large laundry 

mode 
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Figure 6-19 Energy when the time 

selected for the activity is 8:45 AM 
 

Figure 6-20 Energy when the time 

selected for the activity is 11:08 AM 

 

The second activity choice is washing dishes. There are four dishwasher modes, as shown 

in Table 6.4 and Figure 6-21 [159], [160]. Equation (6.3) is used to calculate the energy 

required for heating a volume of water. 

For each dishwasher mode, 𝑉𝑤𝑎𝑡𝑒𝑟 and 𝑇𝑢𝑝𝑝𝑒𝑟 are given in Table 6.4. The four dishwasher 

operation modes are shown in Figure 6-21. 

Table 6.4 Four dishwasher operation modes 

Mode 𝑽𝒘𝒂𝒕𝒆𝒓 (liter) 𝑻𝒖𝒑𝒑𝒆𝒓 (Celsius) 

Heavy 29.2 55𝑐 

Auto 18.95 55𝑐 

Normal 15.81 55𝑐 

Rinse  𝑇𝑙𝑜𝑤𝑒𝑟 
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Figure 6-21 Two dishwasher operation modes 

The third activity choice is taking a shower. The energy required for heating the water for 

this activity is calculated as follows: 

 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑘𝑤ℎ) = 𝑉𝑎𝑣𝑔_𝑤𝑎𝑡𝑒𝑟 ∗ (𝑇𝑢𝑝𝑝𝑒𝑟 − 𝑇𝑙𝑜𝑤𝑒𝑟) ∗ (
69.8

60000
) ∗ 𝑡𝑖𝑚𝑒 (6.6) 

where 𝑉𝑎𝑣𝑔_𝑤𝑎𝑡𝑒𝑟 is equal to 480 litres of water per hour [161], time is the length of the 

shower in hours, and𝑇𝑢𝑝𝑝𝑒𝑟 is approximately 38𝑐. Two options for this activity are shown 

in Figure 6-22, which specifies the length and time of the shower. 

  

Figure 6-22 Two options for a shower  
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The application provides monthly and annual savings and CO2 emission reductions, as 

shown in Figure 6-23. The use of hourly and daily energy data, as given in Figure 6-3 to 

Figure 6-13, helps to schedule activities based on the amount of savings and on which 

activities need to be performed on a daily basis. For example, laundry could be scheduled 

by looking at the daily energy chart in Figure 6-13, because laundry may be done on a 

weekly basis, with a frequency lower than that of the other activities. On the other hand, 

taking a shower or using the dishwasher could be scheduled based on the hourly energy 

charts given in Figure 6-3 to Figure 6-12. 

 

Figure 6-23 Monthly and annual savings and CO2 emission reductions 

Many machines, such as dishwashers and washing machines, are automated and could be 

controlled via mobile or smart home devices such as Google Nest. In addition, such 

machines have timers which could start them based on the results of the application. Thus, 

the application is compatible with other applications and tools. 

6.3.3  Conclusions 

The second proposed model for GSR prediction is used as part of a load management 

application. This application helps to maximize the utilized energy of thermal systems by 
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30%, to reduce the costs and emissions. This could be done by rescheduling household 

activities, such as washing dishes, using the washing machine, and taking a shower or bath, 

which consume hot water to days and times of day that have maximum solar energy. 

Household activities could be scheduled based on the hourly and daily harvested energy 

charts. Laundry could be scheduled by looking at the daily energy chart, because laundry 

may be done on a weekly basis as an example. On the other hand, taking a shower or using 

the dishwasher could be scheduled based on the hourly energy charts.  
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CHAPTER 7 CONCLUSIONS  

This chapter summarizes the results of this thesis and the contributions made. Suggestions 

for future work are also discussed. 

7.1  CONCLUSIONS 

In this thesis, weather conditions and their effects on solar energy applications and systems 

are investigated in order to maximize the utilized energy. The effect of weather conditions 

on harmonics generated in PV systems, and on the PV cell ratio in PVT systems is studied 

and analyzed. 

Chapter 1 presents a brief overview, together with the contributions and objectives. In 

Chapter 2, an overview of renewable and solar energy is provided. Chapter 3 discusses the 

background of PV and PVT systems and the classification of these systems. In addition, 

the modeling, simulation, analysis and discussion of the effect of weather conditions on 

the PV cell ratio in PVT systems are presented. Chapter 4 discusses the concept of solar 

radiation forecasting using ANN and WNN. Moreover, new models for global solar 

radiation (GSR) prediction are introduced and compared with previous work in the field. 

While in Chapter 5, the causes and effects of harmonics and the measurement of harmonic 

levels are reviewed. Furthermore, the modeling, simulation, analysis and discussion of the 

effect of weather conditions on the generation of harmonics is presented. In Chapter 6, the 

concept of load management is defined. In addition, a new load management application 

is presented which could be valuable for maximizing cost savings and reducing emissions 

through the use of thermal systems.  
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This thesis is divided into four main parts. Various models are proposed in each part of the 

thesis. The first part comprises a PVT investigation based on PV coverage area and flow 

rate which can be summarized as follows: 

• The OTE of PV systems is obtained for cases with constant (average) and variable 

(real) flow rates. 

• The PV coverage ratio was varied from 1% to 100% to determine the maximum 

OTE of a PVT system. 

• Three different time span levels are analyzed: macro, meso, and micro. 

• The maximum OTE is obtained at different PV coverage ratios for each month. 

This contributes to maximizing the annual generated energy. 

• The results show that the PV coverage ratio which produces the maximum OTE 

for constant and variable flow rate cases differs. 

• Two different models based on two different cases of flow rate values are 

proposed. 

• Specific PV coverage area values are proposed for each month to minimize annual 

𝐶𝑂2 emissions. 

The second part is concerned with weather forecasting, which can be summarized as 

follows: 

• Three new models are proposed for predicting 𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷 by using ANN and 

WNN with the most effective combination of weather variables. 

• It was found that cc, hu, and T are the best combination of variables for predicting 

𝐺𝑆𝑅𝐻 and 𝐺𝑆𝑅𝐷. 
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• The first proposed model was selected from combination models that used max 

GSR in addition to other weather variables. 

• For the second proposed model, cc and max GSR were used as inputs for the first 

stage, and hu and T were used for the second stage of the model. 

• For the third proposed model, cc and max GSR were used as inputs for the first 

stage, and hu and T were used in the second stage for 𝐺𝑆𝑅1𝐻 and 𝐺𝑆𝑅1𝐷 and 𝐺𝑆𝑅𝑒 

prediction. 

• The Morlet wavelet function was used as a transfer function for the hidden layer of 

the 𝐺𝑆𝑅𝑒 prediction. 

• These models gave good results compared to others, although weather conditions 

in Halifax are relatively volatile in comparison to those of other research areas. 

The third part focuses on harmonic analysis, which can be summarized as follows: 

• The PDF for the fundamental frequency and the odd/even order harmonics for the 

three methods of inversion are evaluated. 

• The PDF of the even order harmonics is too small to be considered for the three 

conversion techniques. 

• The odd order harmonics dominate and have a wide variance. 

• The magnitude of the fundamental frequency is significantly larger. 

• Probability distribution models are determined for each fundamental and harmonic 

components of the signal, for the three different techniques. 

• PDF can assist in finding the boundaries of the fundamental and the magnitudes 

that occur more frequently. 
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• The ratio between each harmonic and the fundamental components of the output is 

not influenced by the variation in weather conditions. 

• The variation in weather conditions influences the amplitude of the fundamental 

and harmonics components. 

The last part focuses on load management analysis and application which can be 

summarized as follows: 

• A load management application was developed using the second proposed model 

for GSR prediction. 

• This application helps to maximize the utilized energy of thermal systems by 30%, 

to reduce the costs and emissions. 

• This could be done by rescheduling household activities which consume hot water 

to days and times of day that have maximum solar energy. 

• Household activities could be scheduled based on the hourly and daily harvested 

energy charts.  

7.2  FUTURE WORK 

 

Due to the potential value of the findings and results of this study, further investigations 

are recommended which can be summarized as follows: 

• Further investigations in relation to other weather variables and harmonics. Such 

future work could include practical adaptive filter system design. 
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• Hybrid model for solar radiation forecasting could also be studied and investigated. 

The approach used here could later be transferred to an experimental stage and 

could potentially be used in numerous practical applications. 

• Tank losses could be included, and the results for the application could be saved 

and compared to real measurements to achieve greater accuracy, for load 

management applications. 

• Maximum utilized energy could be found by optimization techniques, rather than 

manually changing the time of the activity.  

• Using fuzzy clustering, such as Fuzzy K-Means and Fuzzy-C Means, to establish 

patterns of radiation, temperatures, and wind speed and produce a brief illustration 

of a system's behavior. 
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