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Figure 3.18. Apigenin Does Not Inhibit Early IFN-��-induced STAT1 Phosphorylation at Ser727 in 
Breast Cancer Cells . MDA-MB-468 cells were incubated for 30 min in the presence of DMSO vehicle (V) 
or 30 µM apigenin (A) followed by treatment with 10 ng/ml IFN-�� (I) for (A&D) 1 min, (B&E) 10 min or 
(C&F) 30 min. Cells were then harvested, protein was isolated and protein was separated by western 
blotting. Membranes were probed with the indicated antibodies and the appropriate secondary antibody. Data 
shown are (A-C) one representative western blot from each time point (n=3) and (D-F) the average density 
of phosphorylated STAT1 (Ser727) normalized to total STAT1 from 3 independent experiments ± SEM as 
determined by densitometric analysis; * p < 0.05 as determined by ANOVA with Tukey-Kramer post-test.  ��
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Figure 3.19. Jurkat T cells Constitutively Express PD-1, the PD-L1 Receptor. Jurkat cells were stained 

with PE-anti-human PD-1 or isotype control Abs. PD-1 expression was measured by flow cytometry. Data 

shown are (A) a flow cytometry histogram from one representative experiment, (B) average MFI from 3 

independent experiments ± SEM, and (C) the average percentage of cells expressing PD-1 from 3 

independent experiments ± SEM; * p < 0.05 compared to isotype control as determined by a paired t-test.  
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Figure 3.20. Co-treatment with Apigenin Reduces the Inhibition of Jurkat T cell Proliferation by IFN-

-treated Breast Cancer Cells. Jurkat cells were stained with the fluorescent dye, Oregon Green. Jurkat 

cells were then co-cultured with MDA-MB-468 breast cancer cells that had been treated as indicated and 

washed prior to co-culture. After 48 h (A,C,E) and 72 h (B,D,F), Jurkat cells were collected, fixed with 1% 

PFA and the level of fluorescence was determined by flow cytometry. (A&B) Data shown are from one 

representative experiment, (C&D) the average number of cell divisions normalized to the number of cell 

divisions seen in the medium control ± SEM from 3 independent experiments, and (E&F) The average MFI 

of of each sample normalized to the average MFI of the medium control;  * p < 0.05 as determined by 

ANOVA with Tukey-Kramer post-test.  
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CHAPTER 4 

DISCUSSION 

 Phytochemicals such as apigenin have been extensively studied for their 

chemopreventative properties. This investigation furthers our understanding of apigenin 

by analyzing a possible role for apigenin in regulating an anti-tumor immune response. 

The T cell inhibitory PD-L1/PD-1 pathway is currently under investigation as a target for 

novel immunotherapies (267). This is the first study to look at the effects of a 

phytochemical on the PD-L1/PD-1 pathway and demonstrate the immunomodulating 

potential of apigenin treatment on breast cancer cells. 

4.1 Cytostatic and Cytotoxic Properties of Apigenin 

 Apigenin has both anti-proliferative and pro-apoptotic effects on a variety of 

breast cancer cell lines (106). This study therefore used a subcytotoxic concentration of 

apigenin in order to study its effects on cell surface proteins.  

 MTT assays showed that treatment with 30 μM apigenin for 24 h did not reduce 

the cell number in cultures of any tested cell lines, including breast cancer cell lines and 

human mammary epithelial cells. The ER-positive breast cancer cell line MCF-7 and 

mammary epithelial cells showed an increase in cell number after treatment with 50 μM 

and 30 μM apigenin, respectively (Figure 3.1C & Figure 3.16A). This is consistent with 

the ability of apigenin to act as an ER agonist (139). Previous literature has indicated that 

both MCF-7 cells and mammary epithelial tissue express the ER (139,302). Le Bail and 

colleagues demonstrated that apigenin at low concentrations (< 50 μM) stimulated 

proliferation of MCF-7 cells (139). At higher concentrations, apigenin overcame this 

stimulatory effect and began to exert its anti-proliferative properties independent of ER 

status (139). These data imply that treatment with lower doses (< 50 μM) of apigenin 

could have adverse effects on patients with ER-positive tumors. MTT data suggests that 

30 μM apigenin did not reduce HMEC number (Figure 3.16). This result is consistent 

with previous studies that show apigenin (10-40 μM) to be less toxic to normal prostate 

cells than carcinoma cells (107). Also, in vivo studies show that rats fed an apigenin rich 

diet (50 mg/kg daily for 10 days) display no signs of toxicity, which suggests that 
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apigenin is non-toxic to a variety of normal cells (108). At a concentration of 50 μM, 

apigenin began to reduce the cell number of the triple negative breast cancer cell line 

MDA-MB-468 (Figure 3.3), which was consistent with a study performed on cultured 

murine microglia cells in which apigenin began to demonstrate cytotoxic effects at a 

concentration of 50 μM after 24 h (124). In general, MDA-MB-468 cells are the most 

sensitive, of the cells tested, to phytochemical-mediated cytotoxicity (303,304). 

 While in a rat in vivo model the half-life of apigenin is relatively long (91.8 h) in 

comparison to other phytochemicals, the effects of its metabolites are still critically 

important (110). This investigation looked at the effects of the phase I metabolite of 

apigenin, luteolin, and found that luteolin caused a significant reduction in the cell 

number in cultures of MDA-MB-468 cells after treatment with 30 μM luteolin for 24 h 

(Figure 3.15A). This same decrease in cell number was not seen after treatment with 

apigenin, indicating that luteolin is more potent in terms of cytotoxicity than apigenin. 

The cytotoxic effects of luteolin and apigenin vary between cell types and cell lines (305–

307). This is possibly reliant upon the dependence of a certain cell type or line on the 

molecular targets of apigenin and luteolin. At 48 h, luteolin and apigenin had similar 

cytotoxic effects on human colorectal cancer cells, hepatocytes, and hepatoma cells 

(305,306). Apigenin is less cytotoxic toward rat hepatocytes than luteolin, but luteolin 

has less of a cytotoxic effect than apigenin on hepatoma cells (307). The active nature of 

luteolin suggests that apigenin-mediated effects can outlast the presence of apigenin 

itself. 

 Staining of MDA-MB-468 cells with Annexin-V/PI showed that treatment with 

30 μM apigenin for 24 h caused minimal (~10%) induction of apoptosis compared to 

cells treated with the DMSO vehicle (Figure 3.2.). Although these data may seem 

contradictory to previous reports that apigenin is strongly apoptotic to cancer cells, many 

of these results are based on the use of higher concentrations of apigenin and evaluations 

that were performed at later time points. At 24 h, apigenin-mediated apoptosis was seen 

in the breast cancer cell line SK-BR-3, leukemia cells, and lung cancer cells, but the 

concentrations of apigenin used were 100, 50, and 80-160 μM, respectively 

(125,133,308).  This study showed that 30 μM apigenin caused a decrease in MDA-MB-

468 cell number after a 48 h treatment, as determined by MTT assay (Figure 3.3). 
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Although Annexin-V/PI staining was not performed at 48 h, the effects of apigenin on 

other cancer cell types suggest that this decrease in cell number may be partly due to 

cytotoxicity. Apoptosis was seen in SK-BR-3 breast cancer cells after treatment with 50 

μM apigenin for 48 h and MDA-MB-453 breast cancer cells underwent apoptosis after 

treatment with 40 μM apigenin for 36 h (21,125). 

 [3H]TdR incorporation and Oregon Green cell proliferation assays both showed a 

reduction in breast cancer cell proliferation after 24 and 72 h of apigenin treatment 

(Figure 3.4 & Figure 3.5). This reduction in cell proliferation corresponds to previous 

reports of apigenin-mediated reduction in proliferation of breast, cervical, pancreatic, 

leukemia, and colon cancer cells (125,127–130). At 24 h, the data obtained from the 

Oregon Green cell proliferation assay suggest that the breast cancer cells underwent less 

than one round of division after treatment with 30 μM apigenin (Figure 3.5C). MDA-

MB-468 cells were serum starved prior to Oregon Green staining, which synchronizes 

their cell cycle, so this result is likely not due to proliferation of a portion of the cells. 

However, the Oregon Green cell proliferation assay is based on fluorescence intensity. A 

cell arrested during the mitotic stage of cell cycle may be larger than cells in other stages, 

which may reduce fluorescence intensity within the cell leading to the appearance of half 

of a cell division (309). The lack of decrease in cell number seen by MTT assay after 

treatment of breast cancer cells with 30 μM apigenin for 24 h does not correspond with 

the findings of these other proliferation assays. One potential explanation is that apigenin 

is actually stimulating succinate dehydrogenase activity within the breast cancer cells, 

which is masking the decrease in proliferation and cell number in the MTT assay. 

Another possible explanation is that apigenin itself is causing reduction of the MTT; 

however, the effects of apigenin (10-50 μM) on MTT solution after a 2 h incubation in 

the absence of cells was analyzed and no changes were seen, so this is an unlikely cause 

of this discrepancy (Table 3.1). 

 Cell cycle analysis performed at 24 h suggests that treatment with 30 μM apigenin 

causes MDA-MB-468 cells to arrest at G2/M stage (Figure 3.6). This corresponds to 

previous literature that demonstrated G2/M cell cycle arrest of breast, colon, liver, 

pancreatic, and leukemia cancer cells after treatment with apigenin. Based on these 

previous studies, the potential mechanism by which apigenin may cause G2/M arrest 



 75

includes p21 activation, stabilization of p53, suppression of CDK regulators, and 

inhibition of MAPK pathway activation (125,126). In general the anti-proliferative and 

pro-apoptotic properties of apigenin in this study of breast cancer cells correspond to 

findings previously published in other cell lines. 

4.2 Effects of Apigenin on PD-L1 Expression 

  Breast cancer cells can express PD-L1 constitutively or be induced by cytokines to 

express PD-L1. The most common and effective upregulator of PD-L1 is IFN-  (234). 

This study confirmed previous findings that MDA-MB-468 and MCF-7 cells have no 

constitutive PD-L1 expression, but can be induced by IFN-  to express cell surface PD-

L1 protein, while MDA-MB-231 and SK-BR-3 cells constitutively express PD-L1 

(Figure 3.7 & Figure 3.10) (236,237). IFN-  induces marginal PD-L1 expression on ER-

positive MCF-7 cells than on triple negative MDA-MB-468 cells, which agrees with 

clinical studies that analyzed PD-L1 expression by human breast tumors. Ghebeh and 

colleagues demonstrated a correlation between increased PD-L1 expression and lack of 

ER expression (297). Flow cytometric data showed that constitutive PD-L1 expression by 

SK-BR-3 can be increased after treatment with IFN-  (Figure 3.10G-I). While IFN-  is 

often associated with anti-tumor effects such as reduction in proliferation, suppression of 

angiogenesis, and increase in apoptosis of cancer cells, IFN-  is still found within the 

tumor microenvironment (310–312). The IFN-  within the tumor microenvironment 

comes from activated T cells (313). Despite anti-tumor properties of IFN- , cancer cells 

use IFN-  to reduce the anti-tumor immune response through upregulation of PD-L1 

expression (172). The PD-1/PD-L1 pathway is a better immunotherapy target than IFN-  

itself because of the anti-tumor properties of this pro-inflammatory cytokine (310–312). 

  Treatment for 24 h with 30 μM apigenin completely inhibited IFN- -induced PD-

L1 expression by MDA-MB-468, MCF-7, and SK-BR-3 cells, but this treatment had no 

effect on constitutive PD-L1 expression on MDA-MB-231 and SK-BR-3 cells (Figure 

3.8, Figure 3.10). Apigenin may affect IFN- -induced PD-L1 expression but not 

constitutive PD-L1 expression because these two states of PD-L1 expression are 

regulated differently. In multiple myeloma cells, IFN- -induced upregulation of PD-L1 is 

dependent on STAT1 activation, which is consistent with many IFN- -mediated signaling 
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pathways (240). However, constitutive expression of PD-L1 by macrophages is STAT1-

independent since PD-L1 expression in STAT1-deficient macrophages is normal (314). 

Since apigenin has previously been shown to inhibit IFN- -induced STAT1 activation 

(124), this could be the reason for apigenin affecting IFN- -induced PD-L1 expression 

and not constitutive expression. Downregulation of breast cancer cell PD-L1 expression 

by apigenin is predicted to prevent the induction of anergy in tumor-specific T cells and 

make the cancer cells more susceptible to elimination by the anti-tumor immune response 

(Figure 4.1).  

 Flow cytometric data indicated that HMECs may have very low levels of 

constitutive PD-L1 expression, which is significantly increased after treatment with IFN-

  (Figure 3.16B-D).  Dong and colleagues found that breast tissue does not constitutively 

express PD-L1 (172). The level of constitutive PD-L1 expression seen in our 

investigation was very low and varied between experiments; therefore, the discrepancy 

between our study that of Dong et al. could be due to differences in PD-L1 expression 

between individuals. PD-L1 is expressed on a variety of non-hematopoietic cells. A study 

on normal expression of PD-L1 on mouse tissues found constitutive PD-L1 expression by 

heart, pancreatic, small intestinal, and placental tissues (232). In non-malignant human 

cells, PD-L1 was moderately expressed by tracheal, bronchial, and alveolar epithelial 

cells, and PD-L1 was upregulated on gastric epithelial cells by persistent infection 

(315,316). Similar to breast cancer cells, treatment of HMECs with 30 μM apigenin 

inhibited IFN- -induced PD-L1 expression (Figure 3.16B-D). The upregulation of IFN- -

induced PD-L1 on HMECs suggests that mammary epithelial cells may use this 

immunoinhibitory pathway to control inflammation within normal mammary tissue. The 

implications of these findings are that apigenin may exacerbate an inflammatory response 

by decreasing immunoinhibitory effects of the PD-L1/PD-1 pathway. 

 Flow cytometric analysis of the effects of the apigenin metabolite luteolin on IFN-

-induced PD-L1 expression showed that 30 μM luteolin also inhibited IFN- -induced 

PD-L1 expression (Figure 3.15B-D). The ability of luteolin to inhibit IFN- -induced PD-

L1 expression by breast cancer cells increases the potential for apigenin to have clinical 

benefits because even after apigenin undergoes phase I metabolism, its major metabolite 
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may continue to exert the immunostimulatory effect caused by inhibition of PD-L1 

expression. 

 Overall, apigenin shows potential to regulate the anti-tumor immune response 

through inhibition of IFN- -induced PD-L1 expression by breast cancer cells. Several 

other cancer cell types such as multiple myeloma, oral squamous carcinoma, and uveal 

melanoma upregulate PD-L1 as a method of immune evasion (240,317,318). Apigenin 

should be tested to determine whether it is capable of inhibiting IFN- -induced PD-L1 

expression in other cancer cell types. 

4.3 Effect of Pro-inflammatory Cytokines on PD-L1 Expression 

 A panel of pro-inflammatory cytokines were tested for their ability to induce PD-

L1 expression by MDA-MB-468 cells (Figure 3.11-Figure 3.14).  Aside from IFN- , the 

only other cytokine tested that induced significant PD-L1 expression was IFN-  (Figure 

3.11). This was not surprising as published reports show that IFN-  induces PD-L1 

expression, although to a lesser extent than IFN- , on monocytes, dendritic cells, and 

endothelial cells (230,234). Interestingly, IFN-  is often used during the treatment of the 

autoimmune disease multiple sclerosis, and recently it was shown that patients who 

received IFN-  treatment showed an increase in PD-L1 mRNA transcripts and a 

reduction in disease progression (219). These results suggest that IFN- -induced PD-L1 

expression is contributing to the beneficial effects of IFN-  on the progression of 

multiple sclerosis by potentially inducing T cell anergy and apoptosis. Apigenin was also 

able to inhibit IFN- -induced PD-L1 expression (Figure 3.11). This suggests that 

apigenin may have negative effects on patients with multiple sclerosis due to its 

inhibitory effect on IFN- -induced PD-L1 expression. Other cytokines that have been 

shown to be able to upregulate PD-L1 expression include the anti-inflammatory 

cytokines IL-10 and IL-27 (235,319). IL-10 induces PD-L1 expression by human 

monocytes, although the mechanism has yet to be determined (235). IL-27 upregulates 

PD-L1 expression by naïve CD4+ T cells in a STAT1-dependent manner and inhibited 

differentiation of naïve CD4+ T cells into TH17 cells (319). Inhibition of IL-10- and/or 

IL-27- mediated PD-L1 expression by apigenin may enhance the immune response in 

diseases associated with these cytokines. IL-10 and IL-27 were not used in this 
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investigation, but the ability of these cytokines to induce PD-L1 expression on breast 

cancer cells and other malignant cells should be examined in the future, as both cytokines 

are present in the tumor microenvironment (320,321). 

4.4 Mechanism of Apigenin-Mediated Inhibition of Inducible PD-L1 Expression 

 IFN-  signals through the IFN- R (242). Treatment of MDA-MB-468 cells with 

IFN-  and apigenin did not cause a significant decrease in IFN- R1 surface expression 

when compared to MDA-MB-468 cells treated with only IFN-  (Figure 3.10). Treatment 

of MDA-MB-468 cells with IFN-  alone did appear to reduce IFN- R1 surface 

expression, but this decrease was not significant (Figure 3.10). This result is consistent 

with literature that shows that IFN-  promotes endocytosis of the IFN- R1 subunit and 

transports the receptor subunit to the nucleus, but the IFN- R2 subunit remains primarily 

at the cell surface (322). These results demonstrated that apigenin-mediated  reduction in 

IFN- -induced PD-L1 expression by MDA-MB-468 cells was not due to a reduction in 

IFN- R1 surface expression by these cells. While IFN-  signaling is commonly 

associated with the JAK/STAT1 pathway, alternative pathways have been implicated in 

IFN- -induced upregulation of PD-L1 (242). Western blotting showed a significant 

decrease in p-STAT1 (Tyr701) after pre-treatment with apigenin and treatment with IFN-

 for 1 min (Figure 3.17A&D). At 30 min apigenin appeared to reduce p-STAT1 

(Ser727), but this decrease was not significant (Figure 3.18C&F). These results are 

consistent with findings in fibroblast cells that showed that after IFN-  stimulation, 

STAT1 phosphorylation at the Tyr701 residue occurred at an earlier time point than 

Ser727 phosphorylation (299). Zhu and colleagues also found that Tyr701 and Ser727 

phosphorylation events occurred independently of each other, but that both were 

dependent on JAK2 activity (299). STAT1 activation is therefore likely involved in IFN-

-induced upregulation of PD-L1 in breast cancer cells, which corresponds to findings 

that IFN- -mediated upregulation of PD-L1 in multiple myeloma cells is also dependent 

on STAT1 phosphorylation (240).  

These results also match data showing that apigenin inhibits IFN- -induced 

STAT1 phosphorylation at both Tyr701 and Ser727 locations (124). Other 

phytochemicals that inhibit STAT1 activation include EGCG, myricetin, and delphinidin 
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(323,324). This result makes these phytochemicals other possible candidates for 

inhibiting IFN- -induced PD-L1 expression. The other molecules shown to be involved 

in the IFN- R pathway in multiple myeloma cells were MyD88, TRAF6, MEK, and ERK 

(240). The involvement of these molecules has not yet been studied in breast cancer cell 

lines. Apigenin also inhibited IFN- -induced PD-L1 expression, suggesting that it is 

either inhibiting a molecule that is common to both the IFN-  and IFN-  signaling 

pathways or two different signaling molecules. Since JAK1 is involved in 

phosphorylation of STAT1 during signaling through both the IFN- R, and the IFN- /  

receptor (IFNAR), JAK1 is very likely the target for apigenin-mediated inhibition of both 

IFN- - and IFN- -induced PD-L1 expression (242,325). IFN-  also signals through the 

IFNAR receptor and has been shown to induce PD-L1 expression in endothelial cells 

(230). The results of my investigation suggest that apigenin inhibits PD-L1 expression 

induced by IFN- , IFN- , and IFN-  through the inhibition of STAT1 activation. 

4.5 Functional Consequence of Apigenin-Mediated Inhibition of IFN- -induced PD-

L1 Expression 

 Inhibition of IFN- -induced PD-L1 expression by MDA-MB-468 breast cancer 

cells was associated with reduced breast cancer cell-mediated suppression of Jurkat T cell 

proliferation (Figure 3.20). PD-L1 expression has been shown on a variety of tumors and 

high PD-L1 expression by tumor tissue indicates poor prognosis in a variety of cancer 

types, including renal, esophageal, and ovarian cancer (177,261,262). A similar 

experiment to the functional assay performed in this investigation was done with IFN- -

stimulated uveal melanoma cells that were co-cultured with activated Jurkat cells for 48 h 

(318), but in this case the readout was IL-2 production instead of Jurkat cell proliferation. 

Yang and colleagues showed that IL-2 production is significantly decreased, by half, after 

co-culture of Jurkat cells with IFN- -treated melanoma cells (318). The results of our 

investigation were not as dramatic as seen by Yang and colleagues, possibly because 

assessing IL-2 production is a more sensitive indicator of PD-L1 modulation. Measuring 

of IL-2 levels would not have worked in our system because the Jurkat cells were not 

activated during this assay.  Apigenin treatment also caused an increase in Jurkat cell 

proliferation above that seen in Jurkat cells co-cultured with untreated breast cancer cells 
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(Figure 3.20), which suggests that PD-L1/PD-1 interactions are not the only method by 

which these breast cancer cells are reducing T cell proliferation, and that apigenin also 

has other effects. Other possible means of cancer immune evasion in this system include 

Fas ligand-mediated killing of Jurkat cells and generation of inhibitory cytokines such as 

IL-10 and TGF-  by the breast cancer cells (326–328). A study on AML shows the 

importance of both the PD-1/PD-L1 and TIM3/galectin-9 pathways in the induction of T 

cell exhaustion (266). In our system, the TIM3/galectin-9 pathway probably does not play 

a major role in reduction of Jurkat cell proliferation as TIM3 levels on Jurkat cells are 

relatively low in the absence of PMA stimulation (329). These results of investigation 

support future study in an in vivo rodent model of breast cancer and suggest that the 

ability of apigenin to inhibit IFN- -induced PD-L1 may be a significant mechanism 

involved in the role of apigenin as a chemopreventative and immunotherapeutic agent. 

4.6 Limitations 

 All scientific investigations have limitations, and the following are limitations of 

this study that need to be considered. The MTT data for the effects of luteolin may be 

underestimated because of the ability of luteolin to reduce MTT to formazan dye in the 

absence of cells (295). Another major limitation of this study is the use of cell lines 

instead of primary cells. This limitation is particularly apparent when using breast cancer 

cell lines and the Jurkat T leukemia cell line instead of clinical isolates and peripheral 

blood T cells. The use of Jurkat cells in the functional assay is not ideal. Although these 

cells are often used to study T cell signaling, Jurkat cells have many different 

characteristics from primary T cells. One key difference that could affect our functional 

assay is that Jurkat cell proliferation is IL-2-independent and does not require antigen 

stimulation, and the inhibitory effects of PD-1 signaling involve a reduction in IL-2 

production, which in primary T cells should contribute to a decrease in cell proliferation 

(330) This could be weakening the effect that IFN- -induced PD-L1 expression has on 

Jurkat T cell proliferation in the functional assay compared to primary T cells. The 

functional data also has to be interpreted with caution because until PD-L1 or PD-1 is 

blocked in this model, the increase in Jurkat cell proliferation cannot be attributed to PD-

L1 downregulation alone. This may be done through the introduction of a blocking 
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antibody or siRNA to PD-1 or PD-L1. Also, using breast cancer cells that constitutively 

express PD-L1, such as MDA-MB-231 cells, would confirm that apigenin-mediated 

downregulation of PD-L1 was causing the increase in T cell proliferation, and that this 

increase was not do to other apigenin-mediated effects. Flow cytometric analysis of 

MDA-MB-468 cells after they were incubated with Oregon Green Jurkat cells showed 

that they were slightly fluorescent, which suggested that some Jurkat cells remained 

attached to the breast cancer cells (data not shown). In the future efforts should be made 

to remove the Jurkats cells, so that they are included in the analysis. However, notably 

these Jurkat cells underwent the same amount of proliferation as Jurkat cells that were 

incubated with medium treated MDA-MB-468 cells and were able to be removed. In 

spite of the limitations of this report, significant progress has been made in this field and 

will inform future research in this area. 

4.7 Future Directions 

 The next objective of this study will be to develop a better understanding of the 

mechanism by which apigenin inhibits IFN- - and IFN- -induced PD-L1 expression in 

breast cancer cells. Based on studies of IFN- -induced PD-L1 expression in multiple 

myeloma cells and dermal fibroblasts, molecules that are of interest for further 

investigation include ERK, PI3K/Akt, MyD88 and TRAF6 (240,241). Previous studies 

show that IFN-  can activate STAT1, but western blotting will be needed to confirm that 

this is happening in breast cancer cells during IFN- -induced upregulation of PD-L1. 

IFN-  signaling regulates a variety of anti-tumor pathways including suppression of 

angiogenesis and reduction in cancer cell proliferation and survival (310–312). Our 

results suggest that apigenin may inhibit these pathways as well through inhibition of 

STAT1 activation, which may have detrimental effects to the IFN- -mediated anti-tumor 

response. Therefore, the effects of apigenin on the anti-tumor properties of IFN-  should 

be examined. Further development of the in vitro functional assay is also needed in order 

to eliminate some of the limitations of this experiment. The use of primary T cells in this 

system may better demonstrate the effect of decreased PD-L1 expression on T cell 

proliferation. Primary murine T cells would be isolated from mice with mammary tumors 

that inducibly express PD-L1 such as the murine mammary carcinoma cell line 4T1 



 82

(Coombs et al, unpublished data). These T cells would then be stained with Oregon 

Green, incubated with 4T1 cells that were previously treated (DMSO [0.15%], IFN-  

[10ng/ml], apigenin [30 μM] and IFN-  [10 ng/ml], and apigenin [30 μM]), and T cell 

proliferation would be analyzed by flow cytometry. Also, blocking PD-L1/PD-1 

interactions in this system will confirm the importance of these interactions. Since several 

other cancer cell lines also express IFN- -induced PD-L1 (172), the effects of apigenin 

on the expression of PD-L1 in these cell lines will be examined. Also of interest is the 

effect of EGCG, myricetin, and delphinidin on IFN- -induced PD-L1 expression as these 

phytochemicals also inhibit STAT1 activation (323,324). Ghebeh and colleagues 

demonstrated that doxorubicin downregulates constitutive PD-L1 expression by breast 

cancer cells (236). Future research on the effects of apigenin treatment in combination 

with doxorubicin on PD-L1 expression and breast cancer progression should therefore be 

performed. Lastly, results similar to those seen in this study have been obtained in vitro 

using mouse mammary carcinoma cell lines (Coombs et al, unpublished data). These 

mouse mammary carcinoma cell lines will be useful to study the effects of apigenin on 

immune regulation and cancer progression in vivo.  

4.8 Conclusions 

 The results obtained from this investigation suggest that the dietary 

phytochemical apigenin reduces IFN-induced PD-L1 expression by breast cancer cells, 

potentially making these cells more susceptible to anti-tumor immune responses. 

Apigenin at 30 μM did not reduce the cell number of tested breast cancer cell lines, but 

did slow the proliferation of these cells. As has been previously reported for other non-

malignant cell lines, apigenin was non-toxic to normal epithelial cells. Pre-treatment of 

malignant and non-malignant breast cells with apigenin or luteolin completely inhibited 

IFN- - and IFN- -induced PD-L1 expression. Apigenin-mediated inhibition of IFN- -

induced PD-L1 expression by breast cancer cells decreased the ability of breast cancer 

cells to suppress Jurkat T cell proliferation, which may cause the breast cancer cells to be 

more susceptible to an anti-tumor immune response.  

 This investigation found that in addition to chemopreventative properties, 

apigenin may act as an immunomodulatory agent. The ability of apigenin to reduce 
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inducible PD-L1 expression by breast cancer cells makes these cells more susceptible to 

eradication by tumor-specific T cells. Clinical trials are currently underway to study the 

effects of PD-L1/PD-1 inhibitors on cancer progression (267). These data in combination 

with the non-toxic effects of apigenin on normal epithelial cells suggests that apigenin 

may have synergistic effects if it were to be used in conjunction with current 

chemotherapies and be able to reduce the negative side effects of chemotherapeutic 

agents by lowering the doses needed to achieve a beneficial effect.  
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