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Abstract	

	

A	Clock-Less	Analog	to	Digital	Converter	(ADC)	system	is	proposed	that	convert	analog	
input	 to	 a	 continuous-time	 (CT)	 digital	 representation	 without	 sampling	 and	 then	
processes	the	information	digitally	without	the	aid	of	a	clock.	As	the	conventional	digital	
signal	processing	(DSP)	suffers	from	aliasing	and	quantization	noise,	in	this	proposition	a	
higher	precision	clock-less	ADC	using	Wavelet	Neural	Network	(WNN).	The	input	signal	
will	 be	 encoded	 by	 a	 delta	 modulator	 without	 clock	 into	 a	 series	 of	 non-uniformed	
spaced	emblems	when	a	quantization	level	is	crossed.	These	emblems	are	processed	by	
the	 DSP	 in	 CT	 and	 converted	 to	 an	 analog	 output	 using	 a	 custom	 Digital	 to	 Analog	
Converter	(DAC)	that	guarantees	there	are	no	glitches	in	the	output	waveform.	The	ADC	
quantizer	resolution	and	the	required	number	of	emblems	based	on	the	rate	of	change	
of	the	input	signal	constitute	a	great	challenge	in	CT.	
	

The	 CT	 systems	 are	 suited	 for	 burst-like	 signals	 and	 low	 power	 applications	 such	 as	
those	 in	 hearing	 aids,	 ECG	 for	 monitoring	 and	 pacemakers,	 and	 neuron	 sensing	 for	
implantable	 prosthesis	 processing,	 as	 with	 an	 inactive	 input.	 The	 CT-ADC	 waits	 for	 a	
change	 in	 the	 signal	 while	 dissipating	 no	 dynamic	 power.	 Also,	 CT-DSP	 offers	 the	
advantages	of	 noise	 immunity	 and	programmability	 as	 in	 conventional	 digital	 systems	
but	 without	 the	 use	 of	 a	 clock.	 Furthermore,	 no	 sampling	 is	 used;	 thus,	 no	 aliasing	
occurs.	
	

In	 this	work,	 a	 new	method	 is	 proposed	 to	 realize	 a	 high	 precision	 CT-ADC	 converter	
implementing	 a	 low	 precision	 CT-ADC	 in	 the	 first	 stage,	 then	 applying	 the	 WNN	
technique	 for	 calibration	 in	 the	 second	 stage.	 In	 the	 first	 stage,	 the	 input	 signal	 is	
converted	 to	 CT	 digital	 codes.	 In	 the	 second	 stage,	 the	 quantization	 error	 or	 residual	
signal	of	the	CT-ADC	and	resample	DAC	are	calibrated	by	WNN	to	get	higher	precision	
CT-DAC.	 The	 CT-ADC	 possesses	 strong	 nonlinearity	 due	 to	 the	 quantization	 error.	
Therefore,	 WNN	 is	 employed	 to	 remove	 errors	 from	 the	 ADC	 converter.	 Also,	 WNN	
incorporates	the	efficient	learning	ability	and	generalization	of	Neural	Network	(NN)	and	
the	good	property	of	localization	of	wavelet	transform.	
	

This	dissertation	presents	a	novel	four	bits	continuous-time	ADC,	which	is	simulated	in	
MATLAB	by	(16-level)	 level	crossing	with	an	ideal	comparator	using	(1	𝑉++)	and	a	clock	
resolution	 (R=10-..01).	 The	 modulator	 has	 a	 sampling	 clock	 of	 80	Mhz.	 It	 achieves	 a	
dynamic	 range	 (DR)	 of	 230.5	dB	 with	 Effective	 number	 of	 bits	 (ENOB)	 of	 38.4	 bits,	 a	
SQNR	 of	 67.2	 dB,	 and	 a	 SNDR	 of	 232.9	 dB	 over	 1Hz	 input	 signal	 bandwidth.
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Chapter 1 
	

Introduction		

During	 the	 past	 few	 decades	 the	 rapid	 evolution	 of	 digital	 integrated	 circuit	

technologies	 has	 led	 to	 ever	 more	 sophisticated	 signal	 processing	 systems.	 These	

systems	 operate	 on	 a	 spacious	 variety	 of	 clock-less	 system	 signals	 including	 speech,	

medical	 imaging,	 sonar,	 radar,	 electronic	 warfare,	 instrumentation,	 consumer	

electronics,	 and	 telecommunications.	 The	 main	 effective	 key	 to	 the	 success	 of	 these	

systems	has	been	 the	 advance	 in	 analog-to-digital	 converters	 (ADCs).	 There	 are	many	

types	of	ADCs	but	all	can	be	classified	into	conventional	and	continuous	time	ADCs.	

	

1.1	Conventional	vs.	Continuous-	Time	ADCs	

Conventional	ADCs	(synchronous/Nyquist	ADC)	is	based	on	the	uniform	sampling	

mechanism	with	a	sampling	frequency	according	to	constant	sampling	clock	periodically	

triggers	 the	 conversion	 regardless	 of	 input	 signal	 variations.	 On	 the	 other	 hand,	

continuous-time	ADCs	start	functioning	only	when	a	change	in	the	input	signal	is	sensed.	

There	are	many	differences	and	similarities	between	both	conventional	and	continuous-

time	ADCs	as	described	in	the	following	subsections.		

	

1.1.1 Energy Efficiency 
In	 conventional	 systems,	 sampling	 occurs	 at	 a	 fixed	 worst-case	 sampling	

frequency	rate	that	is	determined	by	the	highest	expected	frequency.	Hence,	when	the	

input	 signal	 is	more	 relaxed	 (periods	of	 silence,	or	even	 lower	 frequency	content)	 the	

high	 sampling	 rate	 basically	 wastes	 power.	 Therefore,	 using	 the	 non-uniformed	

sampling	 with	 local	 sampling	 frequency	 adjusted	 to	 the	 signal	 properties	 is	 the	 best	

solution	 to	 avoid	 this	 issue.	 The	 non-uniformed	 sample	 is	 generated	 when	 the	 input	

change	is	enough	to	cross	the	precise	modulation	levels,	thus	saving	average	power	in	

the	ADC.	In	summary,	conventional	uniform	sampling	constantly	generates	the	samples	
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from	the	sensed	signal,	 resulting	 in	a	waste	of	system	energy.	Consequently,	 from	the	

system	 perspective,	 conventional	 ADCs	 are	 less	 power-efficient	 for	 sparse	 signal	

recording	if	compared	to	continuous	ADCs	[1]-[4].	

	

1.1.2	 Under-sampling	and	Oversampling	

Under-sampling	 is	 essentially	 sampling	 too	 slowly,	or	 sampling	at	 a	 rate	below	

the	Nyquist	 frequency	of	 the	signal.	Under-sampling	 leads	 to	aliasing,	and	 the	original	

signal	 cannot	 be	 properly	 reconstructed.	 However,	 under-sampling	 also	 requires	 less	

memory	so	that	it	may	be	useful	 in	certain	applications.	Oversampling	is	sampling	at	a	

rate	 exceeding	 twice	 the	 highest	 frequency	 component	 of	 the	 signal	 and	 is	 usually	

anticipated.	Since	real-world	signals	are	not	perfectly	filtered	and	frequently	consist	of	

frequency	components	greater	 than	 the	Nyquist	 frequency,	oversampling	can	be	used	

to	expand	the	folding	frequency	(one-half	the	sampling	rates)	so	that	these	undesirable	

elements	of	 the	 signal	 do	not	 alias	 into	 the	passband.	Oversampling	 is	 also	necessary	

when	trying	to	capture	fast	edges,	transients,	and	one-time	events.		

	

1.1.3 Aliasing signals 
Aliasing	happens	when	an	 input	 signal	has	 frequency	 components	 at	or	higher	

than	 half	 the	 sampling	 rate.	 If	 the	 signal	 is	 not	 properly	 filtered	 to	 eliminate	 these	

frequencies,	 they	will	 display	 as	 spurious	 lower	 frequency	 components	or	 aliases	 that	

cannot	 be	 detected	 from	 valid	 sampled	 data.	 These	 errors	 in	 data	 are	 actually	 at	 a	

higher	 frequency,	 but	 when	 sampled,	 appear	 as	 a	 lower	 frequency,	 and	 thus,	 false	

information.	The	Nyquist	Theorem	states	that	at	least	two	samples	are	needed	per	cycle	

for	 the	 signal	 to	 be	 recovered	 from	 its	 samples.	 That	 is;	 If	 the	 sampling	 frequency	 is	

below	Nyquest	rate	aliasing	occurs	and	if	the	sampling	frequency	is	higher	than	Nyquest	

rate	 	 false	 images	 appear	 as	mirror	 images	 of	 the	 original	 signal	 around	 the	 Nyquist	

frequency.	This	situation	is	called	"aliasing	back"	[5].	
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For	 this	 reason,	 the	 conventional	 system	 is	 not	 working	 well	 with	 the	 sparks	

signals.	 If	 the	 frequency	 is	 set	 very	 high,	 it	 will	 waste	 the	 system	 energy,	 and	 if	 the	

frequency	(f)	is	low,	it	will	cause	aliasing	and	glitches	on	the	output	signal.	

	

	

1.1.4 Quantization 
The	 continuous-time	 ADC	 has	 no	 quantization	 in	 time	 because	 the	 occurrences	 of	

samples	may	arrive	anytime,	so	the	time	interval	is	continuous,	and	it	always	has	a	real-

time	 value.	 However,	 the	 amplitude	 of	 samples	 is	 exact	 because	 a	 conversion	 is	

triggered	 by	 the	 crossing	 of	 a	 given	 amplitude	 value.	 The	 design	 of	 such	 CT-ADC	 is	

entirely	different	 from	traditional	Nyquist	ADCs.	 In	 the	continuous-time	ADC	the	 input	

signal	 is	 quantized	by	 the	quantization	 levels	 that	 are	 spaced	 in	 amplitude	by	1	 Least	

Significant	Bit	 (LSB)	apart.	However,	 their	spacing	 in	 time	 is	unknown	and	depends	on	

the	input	signal	behavior	(slope).	This	is	the	main	difference	if	compared	to	conventional	

ADCs,	where	 the	 amplitude	 difference	 between	 consecutive	 samples	 is	 unknown,	 but	

the	time	space	is	fixed	sampling	period.	This	is	obviously	wast	of	power	when	the	input	

signal	 is	 relaxed	 (lower	 frequency	 content,	 or	 even	 period	 of	 silence)	 and	 the	 fixed	

sampling	frequency	is	high.	

	

	

1.1.5. Performance Measures 
Despite	 the	 variety	 in	 ADC’s	 in	 general,	 their	 performances	 can	 be	 summarized	 by	 a	

relatively	 small	 number	 of	 parameters	 such	 as	 stated	 resolution	 (number	 of	 bits	 per	

sample),	signal-to-noise	and	distortion	ratio	(SNDR)	or	signal-to-quantization	noise	ratio	

(SQNR)	 and	 quantization	 error	 (Q).	 Those	 parameters	 will	 be	 discussed	 in	 detail	 in	

Chapter	5,	and	then	will	be	used	to	evaluate	the	results	of	each	of	the	presented	system	

and	compare	the	performance	results	to	previously	published	work.	
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1.2	Advantages	of	Clock-less	ADC	
	

	

	

The	 new	 clock-less	 ADC	based	 on	 level-crossing	 sampling	 has	 the	 following	 promising	

advantages:	

1) Low-amplitude	 and	 low-frequency	 input	 signals	 will	 be	 sampled	 in	 lower	 sampling	

rate	and	 less	densely	 in	time	than	high	frequency	and	high-amplitude	 input	signals.	

Hence,	the	input	signal	will	be	sampled	when	the	inputs	cross	the	delta-modulation	

levels	[6].	

2) The	output	 signal	 spectrum	has	no	aliasing	and	contains	only	 the	harmonics	of	 the	

input	 signal	without	 the	 quantization	 noise	 [7].	 Therefore,	 SNDR	 of	 Level	 crossing-

ADC	(LC-ADC)	can	exceed	the	theoretical	limit	of	conventional	systems	with	the	same	

resolution	in	amplitude.	

3) No	 external	 clock	 is	 required	 for	 clock-less	 ADC/Digital-Signal-Processing	

(DSP)/Digital-to-Analog	Converter	 (DAC)	system,	which	will	 save	the	 fabrication	size	

and	 power	 consumption,	 as	 the	 time	 quantizer	 (𝑇8)	will	 count	 only	 the	 time	 for	

sampled	signals,	when	the	input	signal	crosses	the	threshed	levels	[7].	

4) The	output	signal	of	the	continuous-time	clock-less	ADC	will	be	discrete	in	amplitude,	

and	 continuous	 in	 time,	 as	 the	 time	 resolution	 is	 infinite	 [7].	 This	 diminishes	

quantization	noise	caused	by	the	variability	in	the	amplitude	estimation.	

5) In	a	clock-less	ADC,	 the	 input	signal	 is	 seemingly	sampled	at	 the	accurately	defined	

period,	and	the	signal	amplitude	 is	estimated	to	equivalent	digital	value,	which	can	

be	more	precise	when	using	a	low	supply	voltage.	

6) The	clock-less	system	produces	lower	electromagnetic	interference	emission	[6]-[8].	

7) As	 the	clock-less	 system	 is	 running	without	any	 trigger	 (external	 clock),	 the	sudden	

input	signal	will	be	sampled	and	processed	at	the	real-time	without	waiting	for	any	

trigger	by	the	clock,	and	an	output	signal	will	be	delivered	at	the	real-time.	
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1.3	Applications	of	Clock-less	ADC	

ADCs	 are	 widely	 used	 in	 implantable	 biomedical	 data	 acquisition	 systems,	

hearing	 aids,	 pacemakers,	 Electrocardiography	 (ECG)	 monitoring	 systems,	 wireless	

sensor	 networks	 and	 lots	 of	 other	 applications	 where	 low	 power/energy	 is	 a	 major	

concern.		

	

In	 such	 systems,	 the	 power	 consumed	 during	 transmission	 usually	 dominates	 and	 is	

proportional	 to	 the	 overall	 data	 rate.	 Moreover,	 many	 bio-signals,	 for	 example,	 are	

sparse	 in	 the	 time	domain,	encompassing	both	 long	periods	of	 low-frequency	content	

and	 short	 periods	 of	 high-frequency	 information.	 These	 applications	 demand	 signal	

processing	 and	 transmission	 with	 as	 little	 power	 dissipation	 as	 possible,	 such	 as	

biomedical	devices,	wireless	sensor	networks,	and	portable	communication	devices.	For	

these	systems,	asynchronous	ADCs,	also	referred	to	as	level	crossing	or	continuous-time	

ADC,	is	most	suitable.	

	

The	 continuous-time	 system	 must	 be	 low-cost,	 low-noise,	 reduced-sized,	 and	

especially	 low	 power	 because	 they	 are	 always	 powered	 by	 batteries	 or	 remotely	

powered.	As	mentioned,	the	ADC	block	is	the	main	key	component	of	such	systems.	It	is	

very	 critical	 for	 any	 suggested	 clock-less	 design	 to	 adhere	 to	 all	 these	 constraints.	 A	

promising	alternative	ADC	for	low	power	applications	is	called	level-crossing	continuous-

time	 sampling,	 which	 is	 based	 on	 a	 non-uniformed	 data	 sampling	 technique	 called	

emblems,	as	 the	samples	are	generated	by	the	signal	crossings	of	 the	threshold	 levels	

while	a	timer	measures	the	time	between	two	consecutive	samples.	For	example,	low-

amplitude	 and	 low-frequency	 inputs	 are	 sampled	 less	 densely	 in	 time	 than	 high-

frequency	 and	 high-amplitude	 inputs;	 no	 aliasing	 occurs.	 Therefore,	 a	 much	 lower	

average	sampling	rate	is	achievable	for	several	applications.	
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For	 example,	 the	 level-crossing	 sampling	 has	 been	 used	 in	 biomedical	 devices	

like	hearing	aids	or	in	wireless	ECG	sensors,	for	continuous	heart	condition	monitoring.	

In	these	kinds	of		applications,	it	facilitates	continuous	working	for	hearing	or	recording	

of	ECG	signal	without	causing	extra	inconvenience	or	disturbance	to	the	patient.	In	such	

devices	 and	 applications	 a	 challenged	ADC	design	 is	 required	 that	 keeps	 the	usage	of	

wireless	transceiver	at	a	minimum	with	a	decent	size,	weight,	and	power	consumption	

that	 grants	 ability	 for	 extended	 battery	 life	 or	 self-powered	 sensor	 [9].	 Hence,	 it	

becomes	progressively	important	to	focus	on	power	optimization	at	all	design	levels	for	

these	kinds	of	sensors	and	devices.	

	

In	 summary,	 clock-less	 systems	 operate	 on	 a	 wide	 variety	 of	 continuous-time	 signals	

include	 speech,	 medical	 imaging,	 sensors,	 sonar,	 radar,	 electronic	 warfare,	

instrumentation,	consumer	electronics,	and	telecommunications.		

	

1.4	Thesis	Overview	

The	 new	 type	 of	 ADC	 proposed	 in	 this	 paper	 presents	 an	 asynchronous	 ADC	

design	 with	 level	 crossing	 data	 sampling	 that	 operates	 without	 any	 external	 clock.	

Nevertheless,	 an	 internal	 timer	will	 be	 created	whenever	 the	 input	 signal	 crosses	 the	

quantization	levels.		In	fact,	the	input	signal	amplitude	variations	trigger	the	conversion	

process	and	drive	the	whole	circuit.	With	this	principle,	when	the	analog	input	signal	is	

quiet,	the	circuit	is	asleep,	and	there	is	no	useless	activity.	Whereas,	in	the	conventional	

systems		the	samples	are	triggered	and	recorded	according	to	the	sampling	rate	of	time	

equispaced	at	either	there	is	input	signal	activities	or	not.	

		

Furthermore,	this	work	will	discuss	the	new	technique	of	continuous-time	ADC	using	a	

wavelet	 neural	 network.	 This	 system	 approaches	 a	 higher	 quantization	 resolution,	

without	adding	extra	level	crossing	delta	modulation.	The	massive	improvement	of	the	

signal	 quality	 will	 preface	 to	 increase	 the	 applications	 usages	 for	 continuous-time	

technology.	 The	 target	 of	 the	 new	 design	 is	 designing	 a	 four-bit	 ADC	 (16-level)	 level	
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crossing	with	maximum	input	signal	bandwidth	of	20KHz.	Such	specifications	make	the	

new	LC-ADC	suitable	for	both	voice	and	biomedical	applications.	The	SNDR	performance	

should	 be	 achievable	without	 adding	 extra	 comparators	 competent	 by	 using	WNN	 as	

adaptive	resolution.	

	

Chapter	 2	 presents	 the	 development	 of	 circuit	 level	 designs	 for	 ADC/DSP/DAC	

that	have	been	published	in	the	literature.	Chapter	3	illustrates	the	WNN	technique	that	

is	used	for	the	proposed	design	to	obtain	a	higher	precession	for	targeted	applications.	

In	 Chapter	 4,	 the	 new	 contributions	 of	 this	 work	 and	 its	 architecture	 are	 outlined.	

Chapter	5	describes	the	ADC	performance	metrics	and	the	measurement	results	of	the	

proposed	 design.	 Finally,	 the	 conclusion	 and	 design	 performance	 comparisons	 to	

previously	published	work	in	the	literature	and	suggestions	for	future	work	to	improve	

the	continuous-time	output	signal	are	outlined	in	Chapter	6.	
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Chapter 2 
	

Clock-less	System	

	

Clock-less	ADC	systems	(asynchronous)	have	been	heavily	researched	in	the	last	decade.		

Some	researchers	focused	their	studies	on	developing	the	circuit	level	of	the	CT	system	

by	reducing	the	number	of	components	or	by	replacing	them	with	other	more	efficient	

components	 aiming	 at	 reducing	 the	 circuit	 size	 and	 the	 power	 consumption.	 Others	

focused	on	enhancing	the	system	level	of	the	CT	to	reach	a	better	scheme	with	higher	

resolution	and	more	efficient	systems	that	could	be	utilized	in	multiple	applications.	In	

this	 thesis,	 we	 study	 the	 system	 level	 of	 the	 CT-ADC	 system	 to	 achieve	 a	 higher	

resolution;	we	use	MATLAB	to	build	the	structure	of	a	CT-ADC	system	using	WNN.	In	this	

chapter	 we	 present	 the	 main	 concept	 and	 topology	 for	 Clock-less	 ADCs/DSPs/DACs	

which	compose	the	core	techniques	for	a	CT	system.	
	

2.1.	Clock-Less	ADC	System	

The	CT	ADC	is	the	main	stage	of	converting	the	analog	signal	to	continuous	digital	signal.	

It	basically	depends	on	 the	delta	modulation	 (DM)	 to	detect	 the	changes	of	 the	 input	

signal	by	creating	level-crossing	sampling	[7],	[8]	and	[10].	

	

As	shown	in	Figure	2.1,	when	the	input	signal	VX(t)	crosses	the	pre-defined	quantization	

reference	 levels	 or	 DM	 levels	 (dotted	 horizontal	 voltage	 levels),	 it	 gets	 quantized	 to	

Vxq(t).	 Vxq(t)	 is	 composed	 of	 non-uniformed	 samples,	 where	 each	 sample	 is	 called	

Emblem,	 Event-Driven,	 Data	 Token	 or	 Continuous	 Time	 (CT)	 Sample.	 Each	 Emblem	 is	

described	 by	 its	 time	 and	 amplitude	 (ti	 ,	 Vx(ti)).	 An	 input	 signal	 with	 a	 faster	 slope	

generates	more	emblems	compared	to	another	input	signals	with	a	slower	slope.	
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Figure	2.1:	Level	crossing	quantization	technique	showingInput	signal,	Continuous-time	

change,	Continuous-time	UP/DOWN	(UPDN)	
	

The	 quantized	 signal	Vxq(t)	 can	 be	 digitized	 in	 several	ways	 including	 the	 continuous-

time	binary	bits	in	a	flash	ADC	or	using	data	tokens	consisting	of	change	signal	CHANGE	

and	direction	UPDN	as	in	delta	modulation.	Both	indicators,	change,	and	direction,	are	

dependent	 on	 the	 input	 signal	 behavior.	 Change	 signal	 is	 an	 active	 signal	 generated	

when	 the	 input	 signal	 Vx(t)	 crosses	 the	 quantization	 levels.	 It	 represents	 the	 time	

quantizer	(Tq)	of	each	generated	Emblem.	The	direction	indicator	depends	on	the	slope	

of	the	 input	signal;	 it	 is	 logic	HIGH	for	a	positive	slope	and	 is	 logic	LOW	for	a	negative	

slope.	Both	change	and	direction	signals	represent	the	digitized	continuous-time	signal.	

	

In	 the	 conventional	 ADC,	 all	 the	 comparators	 are	 powered	 off	 by	 default	 until	 the	

sampling	time	arrives,	then	all	comparators	will	be	enabled	to	detect	the	unknown	input	

frequency	 within	 whole	 full-scale	 voltage.	 Whereas	 in	 the	 clock-less	 ADC,	 all	 the	

comparators	are	powered	off	except	for	only	two	comparators	(which	need	to	be	on)	at	

any	given	time.	The	first	comparator	is	the	one	that	triggered	the	previous	input	signal	

from	 the	 last	 cycle,	 and	 it	 will	 compare	 the	 new	 input	 signal	 Vx(t)	 versus	 the	 next	

quantization	level	above,	and	the	second	comparator	is	comparing	Vx(t)	versus	the	next	

quantization	level	below.	At	inactive	input	signal,	the	clock-less	ADC	waits	for	a	change	

in	the	signal	while	dissipating	no	dynamic	power;	which	 is	the	main	advantage	for	the	

clock-less	ADC,	making	it	well	suited	for	burst-like	signals	for	low	power	applications.	
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Figure2.2:	The	digital	output	xq(t)	of	the	clock-less	ADC.	The	continuous-time	DAC	

reconstruction	of	the	analog	input	from	the	samples	
	

The	resolution	of	the	reconstructed	signal	CT-DAC	is	controlled	by	the	slope	of	the	input	

signal,	 which	 increases	 when	 the	 input	 signal	 crosses	 consecutive	 quantization	 levels	

rapidly	and	reduces	when	the	input	signal	takes	a	longer	time	to	cross	any	consecutive	

quantization	 levels.	As	 Illustrated	 in	Figure	2.2,	 the	 resolution	of	 the	clock-less	 system	

depends	on	the	slope	of	the	input	signal;	when	the	input	signal	crosses	any	consecutive	

quantization	 levels	slowly,	this	will	 result	 in	something	called	Dead	Zone	 in	the	output	

signal	in	CT-DAC.	Dead	Zone	is	a	blanked	area	which	hides	the	real	behavior	of	the	input	

signal	between	any	two	consecutive	quantization	levels	(Figure	2.2).	The	Dead	Zone	will	

be	discussed	further	in	Section	4.1.	

	

The	main	block	diagram	for	the	CT-ADC	system	has	been	examined	and	implemented	in	

[7],	 [10].	 It	 is	 composed	 of	 two	 comparators	 (to	 create	 each	 pair	 of	 consecutive	

quantization	 levels),	 Control	 Logic,	 Digital	 Logic	 blocks	 (to	 record	 the	 signal	 behavior)	

and	clock-less-DAC	to	feedback	the	comparators	with	the	reference	signal	(Vref)	(Figure	
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2.2).	 In	 Chapter	 4,	 a	 detailed	 description	 of	 each	 block	 in	 the	 clock-less	 ADC	 will	 be	

presented	along	with	the	enhanced	WNN	system.	

	

The	circuit	design	for	clock-less	ADC	is	very	challenging.	As	a	result	of	clock	absence,	the	

design	of	the	comparators	is	difficult.	The	comparators	compose	the	most	critical	block	

in	the	architecture,	as	its	delay	dominates	the	loop	delay.	An	important	consideration	is	

the	fact	that	comparison	time	depends	on	the	rate	of	change	of	the	input	signal	(Slope)	

and	the	comparator	delay	decreases	with	an	increasing	input	slope.	The	clock-less	ADC	

comparator	has	been	presented	in	[7],	[10].	The	clock-less	comparator	is	 implemented	

as	 an	 amplifier	 structure,	 which	 is	 chosen	 for	 its	 ability	 to	 operate	 at	 low	 supply	

voltages.	 Two	 inverters	 are	 added	 at	 the	 output	 to	 allow	 for	 rail-to-rail	 (logic	 level)	

output	 swing	 due	 to	 the	 fact	 that	 the	 comparator	 output	 will	 interface	 with	 the	

control/digital	logic	and	to	prevent	an	increase	in	the	decision	time.	The	decision	time	of	

the	comparator	will	depend	on	the	slope	of	the	 input	when	 it	crosses	the	comparator	

threshold.	Minimizing	 the	time	error	and	canceling	comparator	offset	are	discussed	 in	

[7],	[10].	

	
Figure	2.3:	Clockless	comparator	[10]	

	

Recently,	 new	 circuit	 designs	 of	 Clock-less	 ADC	 have	 been	 invented	 to	 improve	 the	

ability	of	the	comparators	to	tolerate	CT	GHz	systems	as	in	[11]-[12].	
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2.1.2 Adaptive Resolution  
The	adaptive	 resolution	 is	demonstrated	 in	 [8],	 [10],	 [13].	The	main	goal	of	adding	an	

adaptive	resolution	is	to	increase	the	number	of	samples	taken	and	obtain	better	SNDR	

to	 realize	 higher	 signal	 resolution.	 The	 adaptive	 resolution	 is	 varied	 dynamically	

depending	on	tracking	the	input	signal	behavior	and	reconstructed	output	signal	due	to	

the	minor	error	between	the	input	signal	and	sampled	output.	The	signal	improvement	

may	lead	to	data	compression,	power	and	bandwidth	saving,	which	will	be	well	suited	

for	clock-less	DSP	and	their	applications.		

	

The	adaptive	resolution	should	be	capable	of	efficiently	sampling	fast	and	slow	varying	

signals;	 as	 well,	 the	 time	 difference	 between	 consecutive	 emblems	 should	 be	 long	

enough	 to	 match	 up	 with	 loop	 delay.	 In	 Chapter	 4,	 we	 illustrate	 the	 two	 stages	 of	

adaptive	 resolution	 that	 have	 been	 developed	 to	 improve	 the	 reconstructed	 output	

signal	 (VCombined)	 	 Consequently,	 the	 reconstructed	output	 signal	 (VCombined)	 is	 the	 input	

signal	for	WNN.	

	

2.2.	Clock-less	DSP	System	

Clock-less	DSP	systems	which	perform	DSP	in	CT	are	attractive	for	some	applications	like	

remote	 sensors,	 biomedical	 implants,	 hearing	 aids,	 audio	 and	 speech	 processing	 and	

telecommunications.	Therefore,	many	researchers	presented	the	implementation	of	CT-

DSP	 considering	 the	 implementation	 costs	 and	 power	 consumption	 as	 in	 [5],	 [7]-[8],	

[12],	[14]-[16].	

Clock-less	 DSPs	 are	well	 suited	 for	 real-time	 processing;	 the	 signals	 they	 process	 and	

products	cannot	be	stored	in	a	digital	medium.	Hence,	the	CT	is	a	clock-less	system	and	

the	 time	 is	 not	 quantized,	 the	 respective	 signals	 are	 processed	 continuously	 in	 time	

without	 a	 clock,	 but	 they	 are	 discrete	 in	 amplitude.	 The	 time	 interval	 (𝑇8)	 (time	

granularity)	is	used	to	synchronize	the	digital	signal	samples	at	the	CT-DSP	signals.	Thus,	

the	signals	within	the	CT-DSP	system	cannot	be	stored	in	the	finite-resolution	hardware	

of	a	memory,	which	limits	the	applications	of	the	CT-DSP	system	mainly	to	the	real-time	
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processing.	 Nevertheless,	 CT-DSP	 systems	 have	 some	 interesting	 properties,	 making	

them	very	attractive	for	several	applications.	The	advantages	of	clock-less	DSPs	systems	

are:	

(1)	 Clock-less	 DSP	 systems	 have	 no	 clock,	 and	 their	 power	 dissipation	 intensely	

decreases	when	input	activity	decreases.		

(2)	 The	 entire	 clock-less	 system	 (ADC/DSP/DAC)	 does	 not	 suffer	 from	 aliasing.	 This	

reduces	 the	 in-band	 error	 power,	which	will	 have	 an	 improved	 in-band	 SDR	 over	 the	

conventional	 DSP	 system.	 Therefore,	 clock-less	 DSP	 systems	 have	 a	 significant	

performance	advantage	over	the	conventional	DSP	systems.		

(3)	 Clock-less	 DSP	 systems	 still	 hold	 the	 benefits	 of	 digital	 techniques	 such	 as	

programmability	and	noise	immunity.		

(4)	Clock-less	DSP	systems	help	keep	electromagnetic	emissions	low	as	the	advantage	of	

no	clock	is	used	in	signal	processing.		

(5)	Clock-less	DSPs	react	immediately	to	input	changes,	in	contrast	to	the	conventional	

DSP	systems	which	may	not	catch	such	changes	until	the	next	sampling	instant.		

All	 these	 advantages	make	 clock-less	 DSPs	 especially	 suited	 for	 real-time	 applications	

and	high-speed	digital	control	loops	[17].	

	

Many	researchers	studied	the	circuit	design	of	the	CT-DSP	to	improve	their	capabilities	

and	reduce	the	application’s	limitation,	especially	in	the	GHz-range	application	[12].	As	

such,	 the	 conventional	 digital	 systems	 suffer	 from	 aliasing	 and	 require	 a	 complicated	

anti-aliasing	filter	or	enormously	high	clock	speeds	with	high	power	dissipation.	The	CT-	

DSP	 is	 alias-free,	 offers	 activity-dependent	 power	 dissipation	 and	 has	 lower	 EMI	

emissions.	In	[18],	the	author	presented	a	new	circuit	design	of	CT-DSP	and	consider	it	

as	 a	 candidate	 for	wideband	GHz	 low	dynamic-range	 applications,	 like	 those	 found	 in	

pulse	 radio,	 spectrum	 sensing,	 and	 channel	 equalization.	 This	 scheme	 makes	

programmable	CT	digital	filtering	possible	in	the	0.8	to	the	3.2	GHz	range	with	graceful	

degradation	at	higher	frequencies	and	no	aliasing.	
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One	of	 the	main	challengings	of	CT-DSP	 is	 the	realization	of	 the	delay	elements	which	

must	 be	 implemented	 as	 quasi-continuous	 time	 delay	 lines,	 that	 requires	 large	 chip	

area.	Since	the	time	interval	between	the	samples	must	also	be	preserved,	the	storage	

elements	must	be	realized	as	continuous	time	delay	lines.	In	[16],	the	author	presented	

an	architecture	that	allows	reducing	the	implementation	costs	and	power	consumption	

of	 these	 elements.	 This	 has	 been	 achieved	 by	 granularity	 reduction	 of	 the	 delay	

elements	(reducing	the	time	interval),	without	sacrificing	performance.		The	researcher	

used	a	technique	to	lessen	the	granularity	by	summing	up	the	fixed	time-intervals	and	

replaced	with	the	resulting	summation,	which	reduced	the	total	number	of	tokens	and	

consequently	the	hardware	complexity	as	well	the	power	consumption.	

	

In	Summary,	multiple	CT-DSP	designs	have	been	studied	to	improve	the	circuit	level	by	

reducing	 the	 power	 consumption,	 time	 delay	 elements,	 and	 costs.	 In	 this	 work,	 we	

improve	the	system	level	of	CT-DSP	to	realize	higher	signal	resolution	by	using	wavelet	

neural	network	as	it	presented	in	Chapter	4.	

 

2.3	Clock-less	DAC	

Data	converters	from	analog-to-digital	(ADC)	or	from	digital-to-analog	(DAC)	play	

a	vital	role	in	mixed	signal	circuits,	allowing	the	analog	signals	to	communicate	with	the	

digital	systems	and	reassemble	the	digital	signals	to	the	analog	world.	These	operations	

are	 necessary	 for	 sensor	 interfacing,	 biomedical,	 speech	 applications,	 and	 actuators	

interfacing.	 High-speed	 and	 high-resolution	 DACs	 are	 becoming	 a	 global	 requirement	

and	 are	 widely	 used	 for	 video,	 audio	 and	 communication	 systems.	 DACs	 are	 also	

required	 to	 generate	 precise	 spur	 for	 sensors	 and	 biomedical	 equipment.	 The	 output	

signal	of	CT-DACs	connect	to	off-chip	subsystems,	which	are	generally	time	continuous.	

The	time	 intervals	where	the	signal	 is	not	valid	are	not	allowed.	The	CT-DAC	has	been	

presented	 in	 many	 research	 [7],	 [10],	 [19].	 They	 used	 the	 resistor	 string,	 hybrid	

switched-capacitor/resistor-string,	 or	 switched-capacitor	 to	 implement	 the	 CT-DAC.	
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Each	 design	 has	 its	 advantages	 and	 disadvantages	 according	 to	 application	 and	

resolution	requirements.	

	

The	CT-DAC	implemented	in	[7]	using	a	shift	registered	and	resistor-string	DAC.	

Mainly,	the	shift	register	has	only	one	of	the	256	signals	at	logic	1,	and	all	others	are	at	

logic	 0.	 these	 signals	 apply	 directly	 to	 the	 switches	 that	 select	 the	 voltages	 from	 the	

resistor	 string.	This	 technique	 is	used	because	 the	 input	 signal	 is	 continuously	 tracked	

and	the	increment	(INC)	and	decrement	(DEC)	values	of	delta	modulation	are	changing	

by	 one	 level	 only	 according	 to	 the	 estimated	 value	 of	 the	 level	 crossing	 levels.	 This	

scheme	does	not	scale	very	well	if	the	CT-ADC	needs	an	extra	bit	of	resolution.	In	fact,	

the	size	of	the	shift	register	and	resistor	string	DAC	will	double	in	size	with	an	increase	in	

wiring	 complexity,	 power	 dissipation,	 and	 area	 requirements.	 	 The	 resistor-string	

requires	2#of	bits		resistors	and	2#of	bits	of	switches	to	be	implemented.	Hence,	this	design	is	

not	efficient	for	this	work,	because	it	will	need	a	large	number	of	resistors	for	the	high	

precision	output	signal	of	the	CT-WNN	system.	

	

	
Figure	2.4	:	Schematic	of	resistor	string	DAC	[7]	

	

The	CT-DAC	is	implemented	in	[10]	with	10-bit	fully-differential	hybrid	switched-

capacitor/resistor-string.	 Using	 the	 switched-capacitor	 decreases	 the	 accuracy	 of	 the	

output	over	the	time	due	to	the	current	leakage,	which	is	referred	to	as	output	drift.		To	
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eliminate	 output	 drift	 altogether,	 the	DAC	 could	 be	 implemented	 as	 a	 resistor	 string.	

Therefore,	 the	 author	 mixed	 his	 design	 between	 the	 resistor	 string	 and	 switched-

capacitor	to	reduces	the	static	power	consumption	and	output	drift.	This	architecture	is	

qualified	for	a	maximum	sample	rate	of	approximately	50	Ks/s,	or	100	Ks/s	in	the	fully	

integrated	design.	 Consequently,	 this	 scheme	does	 not	meet	 the	 requirements	 of	 the	

higher	precision	CT-ADC/DAC	using	WNN,	as	 it	 still	 uses	 the	 resistor	 string	 consuming	

size	in	fabrication	and	has	a	low	sample	rate	at	the	output	signal.	

	

	
Figure	2.5:	10-bit	fully-differential	hybrid	switched-capacitor/resistor-string	DAC	and	

example	timing	waveform	[10]	
	

In	 fact,	 the	 switched-capacitors	 DACs	 require	 TRACK	 and	HOLD	 (T/H)	 block.	 In	

[19],	 The	CT-DAC	 is	 executed	on	a	 12-bit	 prototype	and	designed	with	0.18μm	CMOS	

technology.	 The	 authors	 presented	 an	 alternative	 architecture	 for	 capacitive	 DACs,	

which	is	capable	of	inventing	an	offset	free	output	signal	in	all	phases	of	the	conversion	

cycle.	The	authors	used	an	effective	feedback	chain	circuit	to	control	the	op-amp	based	

integrator,	which	can	be	designed	to	deliver	the	required	current	to	the	load	directly.		
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Figure	2.6:		Block	diagram	of	the	proposed	DAC	architecture	[19]	

	

This	architecture	is	capable	of	producing	a	continuous-time	output	free	from	errors	due	

to	offset	and	low-frequency	noise	contribution.	The	simulation	results	are	obtained	at	a	

clock	 frequency	of	2.5	MHz	and	results	 in	a	total	 time	resolution	of	T=2.4μs.	This	high	

resolution	will	 be	 suitable	 for	 this	work’s	 proposed	higher	 resolution	CT	 system	using	

WNN.	 As	 a	 result,	 the	 switched	 capacitor	 DAC	 is	 a	 well-suited	 technique	 to	 use	 to	

implement	the	CT-DAC	for	the	work	presented	in	this	thesis.	
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Chapter 3 
	

Wavelet	Neural	Network	

This	 chapter	 introduces	 the	 main	 concept	 of	 WNN.	 First,	 the	 importance	 of	 wavelet	

transform	 (WT)	and	 the	 theory	of	 continuous-wavelet	 transform	 (CWT)	are	described.		

The	remainder	of	the	chapter	describes	the	training	process	for	WNN	to	reach	minimum	

error	factor.	Thus,	this	chapter	covers	the	factors	behind	choosing	WNN	to	enhance	the	

CT-ADC	signal.	

	

3.1	Wavelet	Transform	

Wavelet	 transforms	 (WTs)	 are	 based	 on	 small	 waves,	 called	 wavelets,	 which	

provide	frequency	and	time	information	concurrently.	Therefore,	 it	 is	a	significant	tool	

for	 signal	 representation.	 Presently,	 it	 is	 being	 used	 in	 several	 applications	 like	 signal	

processing,	image	processing,	and	data	compression.	Wavelets	allow	complex	data	such	

as	 images,	 music,	 speech,	 and	 patterns	 to	 be	 decomposed	 into	 fundamental	 forms,	

called	 wavelet	 coefficients,	 C,	 at	 different	 positions	 and	 scales.	 These	 wavelet	

coefficients	 represent	 a	 family	 of	 wavelets	 that	 are	 generated	 from	 a	 single	 function	

called	 “mother	 wavelet”	 by	 translation	 and	 dilation	 operations.	 The	 data	 are	

subsequently	reconstructed	with	high	precision	[20].	

	

WTs	 are	 mathematical	 functions	 that	 decompose	 the	 data	 into	 different	

frequency	components,	 then	study	each	component	with	 its	 resolution	matched	to	 its	

scale.	WTs	have	many	advantages	over	traditional	Fourier	methods	 in	analyzing	burst-

like	signals	where	the	signal	contains	discontinuities	and	sharp	spikes.	Therefore,	it	is	a	

good	tool	to	determine	where	the	low-frequency	area	and	high-frequency	area	is.	Also,	

it	 can	 tell	 us	how	a	given	 signal	 changes	 from	one	period	 to	 the	next,	 as	 the	window	

size,	can	be	modified	to	determine	more	accurately	either	time	or	frequency,	as	shown	

in	Figure	3.1.		
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Figure	3.1:	Comparison	between	wavelet	transform	window	and	other	Fourier	transforms	

(FT)	
	

The	 time	 resolution	 and	 frequency	 resolution	 are	 inversely	 proportional,	 that	

means	 the	 wavelet	 transform	 at	 high	 frequencies	 will	 provide	 rapid	 changing	 details	

(good	time	resolution).	All	of	this	leads	to	a	compressed	wavelet	with	a	low	scale	(poor	

frequency	resolution).	Consequently,	the	wavelet	transforms	at	low	frequency	will	have	

slow	changing	(limited	time	resolution)	that	will	present	a	stretched	wavelet	with	high	

scale	(good	frequency	resolution).	In	short,	the	narrow	box	gives	a	better	resolution,	as	

shown	in	the	Figure	3.2.		

	
Figure	3.2:	Wavelet	signal	analysis	at	low	frequency	and	high	frequency	

	

As	 our	 scope	 is	 on	 continuous-time	 signal,	 we	 will	 study	 the	 continuous	 wavelet	

transform	(CWT)	technique	that	proved	its	suitability	for	non-stationary	signals.	
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3.2	Continuous	Wavelet	Transform	

The	CWT	 is	 defined	 as	 the	 summation	of	 overall	 time	domain	 evidence	of	 the	

signal	 multiplied	 by	 scaled	 and	 shifted	 positions	 of	 the	 mother	 wavelet	 function.	

Although	 CWT	 uses	 discretely	 sampled	 data,	 by	 dividing	 the	 overall	 input	 signal	 into	

discrete	sampled	windows,	the	continuous	shifting	process	is	operating	smoothly	across	

the	 full	 domain	 of	 the	 input	 signal	 analyzed.	 The	 scaling	 can	 be	 defined	 anywhere	

between	the	minimum	(original	signal	scale),	and	the	maximum	signal	is	chosen	by	the	

user,	thus	giving	a	much	greater	resolution	[20].	

	

Either	 real	 or	 complex	 analytic	 wavelets	 can	 be	 used.	 Complex	 analytic	 wavelets	 can	

separate	amplitude	and	phase	components,	while	real	wavelets	are	often	used	to	detect	

sharp	signal	transitions.	The	result	of	the	CWT	is	a	set	of	wavelet	coefficients,	C,	which	is	

a	function	of	scale	and	position.	Multiplying	each	coefficient	by	the	appropriately	shifted	

and	scaled	mother	wavelet	returns	the	essential	wavelets	of	the	original	signal.	As	the	

original	signal	can	be	represented	in	terms	of	a	wavelet	expansion,		by	using	the	wavelet	

coefficients	 in	 a	 linear	 combination	 of	 the	wavelet	 functions,	 data	 operations	 can	 be	

performed	using	only	the	corresponding	wavelet	coefficients	[21].		

	

The	 CWT	 is	 used	 to	 transform	 the	 quantized	 CT	 signal	 and	 studies	 their	 time	 and	

frequency	 localization	 simultaneously.	 Meanwhile,	 the	 translation	 parameter	 b	 is	

controlling	the	translation	(shifting)	of	function	by	inspecting	the	quantized	CT	signal	at	

different	 time	 steps	 of	 time	 localization.	 Also,	 the	 dilation	 (scaling)	 parameter	 a	 is	

controlling	 the	 scale	 of	 function	 by	 inspecting	 the	 quantized	 CT	 signal	 at	 various	

frequencies.	The	idea	is	to	change	the	scaling	and	shifting	parameters	such	that	we	can	

measure	how	the	wavelet	function,	𝛹?,A 𝑡 	fits	the	signal	X(t).	Thus,	b	 is	related	to	the	

location	of	the	window,	as	the	window	is	shifted	through	the	signal.	 It	corresponds	to	

time	 information	 in	 the	 wavelet	 transform.	 Whereas,	 a	 corresponds	 to	 frequency	

information.	Hence,	 low	frequencies	 (large	scales)	expand	the	signal	and	provide	non-	
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detailed	 information	about	the	signal,	whereas	high	frequencies	(low	scales)	compress	

the	signal	and	provide	detailed	information	about	the	signal	[22].	

	
	

The	CWT	is	defined	as:	

𝐂𝐖𝐓𝒙 𝒂, 𝒃 = 	 𝟏
|𝒂|
		𝚿	∗(𝒕)	𝑿 𝒕 		𝒅𝒕				Q

RQ 			 (3.1)	

𝐂𝐖𝐓𝒙 𝒂, 𝒃 = 	 𝟏
|𝒂|
		𝚿	∗ 𝒕R𝒃

𝒂
		𝑿 𝒕 		𝒅𝒕				Q

RQ 										(3.2)	

Where	X(t)	is	the	input	signal	to	be	analyzed,	𝛹?,A 𝑡 	is	the	mother	wavelet	scaled	by	a		

and	shifted	by	b.	

		𝜳𝒂,𝒃 𝒕 = 	 𝟏
𝒂
		𝜳	 𝒕R𝒃

𝒂
			 	 	 	 (3.3)	

Where	a	>0	and			=	−∞ < 𝑏 < ∞	
	

	

In	the	time	domain,	the	position	of	the	wavelet	is	given	by	its	translation	b;	while	

its	 scale	 a	 gives	 its	 position	 in	 the	 frequency	 domain.	 Therefore,	 the	 WT	 maps	 the	

original	 series	 into	a	 function	of	a	 and	b,	which	gives	us	 simultaneous	 information	on	

time	and	frequency.	The	formulas	of	the	WT	and	the	(FT)	are	very	similar.	Nevertheless,	

the	main	difference	is	that	the	FT	does	not	have	a	time	localization	parameter	and	has	

cosine	and	sine	functions	instead	of	a	wavelet	function.	

	

	
	

3.2.1 Mother Wavelet  
The	 main	 issue	 when	 using	 the	 WT	 is	 the	 choice	 of	 the	 appropriate	 mother	

wavelet,	𝜓 𝑡 .	This	 choice	depends	on	 the	goal	of	 study	and	 the	characteristics	of	 the	

analyzed	signal	[23].	 	The	correct	choice	depends	on	what	information	to	be	extracted	

from	 the	 analyzed	 signal,	 as	 each	wavelet	 function	 characterizes	 different	 features	 of	

the	signal.		This	section	discusses	the	seven	main	mother	wavelet	functions	that	build	a	

wave	function	library;	their	expressions	are	as	follows:		
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1)	Haar	wavelet	function:	 	 	 	 	

𝝍 𝒕 = 	
𝟏,				𝟎 ≤ 𝒕 ≤ 𝟏

𝟐

−𝟏,				 𝟏
𝟐
≤ 𝒕 ≤ 𝟏

𝟎,								𝒐𝒕𝒉𝒆𝒓	

																																			(3.4)	

	

2)	Gaussian	wavelet	function:			 	 	 	 	

𝝍 𝒕 = 𝟏
𝟐𝝅
𝐞𝐱𝐩(R𝒕

𝟐

𝟐
)																																													(3.5)	

	

3)	Morlet	wavelet	function:		 	 	 	 		

𝝍 𝒕 = 𝒄𝒐𝒔	 𝟏. 𝟕𝟓𝒕 𝐞𝐱𝐩(R𝒕
𝟐

𝟐
)																														(3.6)	

	

4)	Mexican	Hat	(Mexihat)	wavelet	function:				

𝝍 𝒕 = 𝒄	(𝟏−𝒕𝟐) 𝐞𝐱𝐩(R𝒕
𝟐

𝟐
)				 		c=	 𝟐

𝟑
		𝝅R𝟏 𝟒							(3.7)	

	

5)	Shannon	wavelet	function:		 	 	 			

𝝍 𝒕 =
𝐬𝐢𝐧𝝅	 𝒕R𝟏 𝟐	 	R	𝐬𝐢𝐧 𝟐𝝅	 𝒕R

𝟏
𝟐	 		

𝝅	 𝒕R𝟏 𝟐	
																						(3.8)	

	

6)	Meyer	wavelet	function	(approximate	formula):			

𝝍 𝒕 = 𝟑𝟓𝒕𝟒 − 𝟖𝟒𝒕𝟓 + 𝟕𝟎𝒕𝟔 − 𝟐𝟎𝒕𝟕																(3.9)	
	

	

7)	Wavelet	function	GGW	constructed	by	the	authors:		

𝝍 𝒕 = 𝒔𝒊𝒏 𝟑𝒕 + 𝒔𝒊𝒏 𝟎. 𝟑𝒕 + 𝒔𝒊𝒏(𝟎. 𝟎𝟑𝒕)							(3.10)	

	

Table	3.1:	Prediction	results	of	different	mother	wavelet	function	
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The	mean	squared	errors	(MSE)	for	the	mother	wavelet	functions	are	as	follows	

in	descending	order:	Meyer>	Shannon>	Gaussian	>	Haar>	GGW>	Mexican	Hat>	Morlet,	

as	shown	in	Table	3.1	[24].	The	running	time	and	MSE	of	Morlet	and	Mexihat	are	only	

slightly	different,	but	the	MSE	of	Shannon,	Meyer,	and	Gaussian	are	extremely	high.	For	

that	 reason,	 the	Mexihat	 or	Morlet	 are	 the	most	 popularly	mother	wavelet	 functions	

used	 to	 construct	 wavelet	 neural	 network.	 In	 this	 thesis	 it	 was	 decided	 to	 use	 the	

Morelet	mother	wavelet	function	for	our	design	because	it	is	faster	at	run	time,	and	has	

better	localization	properties	in	both	time	and	frequency	domains.	

	

	
Figure	3.3:	waveform	of	Morelet	wavelet	and	Mexican	Hat	wavelet	

	

The	Morelet	wavelet	is	a	plane	wave	modulated	by	a	Gaussian	function.	The	functional	

set	 obtained	 on	 the	 basis	 of	 the	 Morelet	 wavelet	 is	 well	 localized	 in	 both	 time	 and	

frequency	 domains.	 With	 raising	 the	 value	 of	 wavelet	 parameter,	 the	 resolution	 in	

frequency	domain	increases,	whereas	the	time	localization	is	reduced.	Therefore,	CWT	

uses	different	scales	to	achieve	high	resolution	in	frequency	and	time	domain	[25].	

	

3.2.1 Continuous Wavelet Transform Algorithm 
The	main	steps	to	create	continuous	wavelet	transform	are	presented	as	follows	[22]:			

Step	1.	Use	one	of	the	mother	wavelet	functions	𝜓 𝑡 ,	for	example	Morlet	wavelet,	and	

compare	it	to	a	small	segment	(window)	at	the	start	of	the	original	input	signal	

x(t).		
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Step	2.	Calculate	the	wavelet	coefficient	 (C)	 that	 illustrates	how	closely	correlated	the	

wavelet	 function	 is	with	 this	 section	of	 the	 input	 signal	x(t).	A	higher	wavelet	

coefficient	reflects	a	higher	similarity	[22].	For	example,	if	the	signal	energy	and	

the	wavelet	energy	are	equal	to	one,	that	means	the	corresponding	C	may	be	

interpreted	as	a	correlation	coefficient.	
	

	
Figure	3.4:	Step	2	of	CWT	algorithm	x(t):	Input	signal			𝝍 𝒕 :	wavelet	function	

	

For	 example,	 the	wavelet	 coefficient	 in	 Figure	 3.4	 is	 C=0.0302,	 which	 is	 very	 low.	 As	

described,	 the	CWT	coefficients	explicitly	depend	on	the	analyzing	wavelet.	Therefore,	

the	CWT	coefficients	are	different	when	the	CWT	for	the	same	signal	is	computed	using	

different	wavelets	[24].	

	

Step	3.	Shift	the	wavelet	function	to	the	right	and	repeat	steps	one	and	two	until	it	has	

covered	the	entire	signal.	

	 	 	 	 	 	 	 	 	 	

	

	

	

	

	

	

Figure	3.5:	Step	3	of	CWT	algorithm	x(t):	Input	signal			𝝍 𝒕 :	wavelet	function	 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Step	4.	Rescale	(stretch)	the	wavelet	function	and	repeat	steps	1	through	3.	

 	

	
Figure	3.6:	Step	3	of	CWT	algorithm				x(t):	Input	signal			ψ(t):	wavelet	function	

	

Following	to	the	same	example,	the	wavelet	coefficient	from	step	4	is	C=0.3267.	

	

Step	5.		Repeat	steps	one	through	four	for	all	scales	until	it	is	done,	then	we	will	have	all	

wavelet	 coefficients	 generated	 at	 different	 scales	 by	different	 sections	of	 the	

signal.	 Those	 wavelet	 coefficients	 can	 then	 constitute	 the	 regression	 of	 the	

input	 signal.	 These	 five	 process	 steps	 will	 be	 aborted	 if	 the	 correlation	

coefficient	is	between	wavelet	function	ψ t .	Moreover,	the	input	signal	x(t)	is	

equal	 to	 1	 or	 (1	 –	 resolution	 number).	 For	 example,	 if	 the	 resolution	 of	 the	

input	 signal	 is	0.05	and	 the	correlation	between	 the	 input	 signal	and	wavelet	

function	 is	 0.95	 or	 higher,	 then	 the	 process	 of	 continuous	wavelet	 transform	

will	be	terminated,	and	the	regression	signal	will	be	that	signal	that	correlated	

0.95	with	the	input	signal.	

	

3.3	Neural	Networks	

Neural	 networks	 are	 mainly	 devices	 of	 parallel	 and	 distributed	 processing	

components	 for	 any	 statistical	 assumptions.	 They	 consist	 of	 many	 interconnected	

neurons	(hidden	layers),	for	which	the	associated	weights	determine	the	strength	of	the	

signal	 passed	 through	 them.	 There	 is	 no	 parametric	 procedure,	 exact	 structure	 is	

assumed	theoretically;	rather,	the	strengths	of	the	connections	are	processed	in	a	way	
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that	captures	the	essential	features	in	the	data	[21].	There	is	a	learning	algorithm	called	

Gradient	Descent	Algorithm	that	will	be	assigned	 to	do	 iterative	algorithms.	The	main	

power	 of	 neural	 networks	 accrues	 from	 their	 capability	 for	 universal	 function	

approximation.	There	are	many	studies	that	have	shown	that	neural	networks	with	one-

hidden-layer	can	approximate	randomly	any	continuous	function	very	well,	including	the	

function’s	 derivatives.	 	 Also,	 the	 recent	 academic	 researchers	 attracted	 to	 the	 gold	

feature	of	the	neural	network	 in	nonlinear	modeling	techniques,	with	neural	networks	

assuming	a	prominent	role,	which	proven	to	be	a	powerful	tool	for	modeling	and	fitting	

nonlinear	systems	using	numerical	data.	

	

There	 are	 two	 basic	 categories	 of	 neural	 networks:	 Feed-forward	 networks	 and	 back	

propagation	networks.	A	feed-forward	network	is	a	forward	flow	of	data	from	the	input	

elements	 to	 the	output	units.	The	processing	of	 the	data	can	be	extended	to	multiple	

layers	 of	 hidden	 units,	 but	 there	 are	 no	 feedback	 connections.	 Thus,	 there	 are	 no	

connections	from	the	outputs	of	the	units	to	the	inputs	of	the	elements	of	the	same	or	

previous	 layers,	whereas,	 the	back-propagation	networks	have	a	 feedback	connection.	

[26]	 In	 this	 paper,	 the	 wavelet	 function	 replaces	 the	 role	 of	 sigmoid	 function	 in	 the	

hidden	unit	of	the	standard	feed-forward	neural	network	as	we	shall	discuss	next.	

	

3.4	Wavelet	Neural	Network	

Wavelet	networks	are	the	result	of	a	new	technique	of	networks	that	combine	

sigmoid	neural	networks	and	wavelet	analysis.	Wavelet	networks	have	been	used	with	

great	success	 in	several	applications.	On	the	one	hand,	wavelet	analysis	has	proven	to	

be	 a	 valuable	 tool	 for	analyzing	 a	 wide	 range	 of	 time	 series.	 Thus,	 it	 has	 been	

successfully	used	 in	 image	processing,	signal	de-noising,	density	estimation,	signal	and	

image	 compression,	 and	 time-scale	 decomposition.	 Hence,	 wavelet	 analysis	 is	 a	

powerful	 tool	 for	 representing	 nonlinearities	 [26].	 The	 major	 drawback	 of	 wavelet	

analysis	is	that	it	is	limited	to	applications	of	small	input	dimension.	The	reason	for	this	

is	the	structure	of	a	wavelet	basis	is	computationally	expensive	when	the	dimensionality	
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of	the	input	vector	is	relatively	high	[27].		On	the	other	hand,	neural	networks	have	the	

capability	 to	 approximate	 any	 deterministic	 nonlinear	 process,	 with	 slight	 knowledge	

and	 no	 assumptions	 regarding	 the	 nature	 of	 the	 process.	 However,	 sigmoid	 neural	

networks	have	a	series	of	drawbacks.	The	initial	values	of	the	neural	network’s	weights	

are	 chosen	 randomly.	 Random	 weight	 initialization	 is	 conveyed	 by	 extended	 training	

times.	Furthermore,	when	the	transfer	function	is	sigmoidal,	there	is	always	a	significant	

chance	that	the	training	algorithm	will	converge	to	a	local	minimum.To	conclude,	there	

is	 no	 analytical	 link	 between	 the	 specific	 parameterization	 of	 a	 sigmoidal	 activation	

function	and	the	optimal	network	architecture.	

	

Wavelet	 networks	 were	 proposed	 as	 a	 substitute	 to	 feed-forward	 neural	

networks,	which	would	improve	the	weaknesses	mentioned	above	associated	with	each	

method	 [28].	 The	 wavelet	 networks	 are	 a	 generalization	 of	 radial	 basis	 function	

networks.	Thus,	wavelet	networks	are	one	hidden	layer	networks	that	use	a	wavelet	as	

an	 activation	 function	 instead	 of	 the	 sigmoidal	 function.	 The	 nodes	 (wavelons)	 of	

wavelet	 networks	 are	 wavelet	 coefficients	 of	 the	 function	 expansion	 that	 have	 a	

significant	value.	The	main	reason	for	wavelets	being	used	instead	of	any	other	transfer	

functions	is	that	wavelets	have	strong	compression	abilities.	Also,	calculating	the	value	

at	a	single	point	or	updating	the	function	estimate	from	a	new	local	measure	 involves	

only	a	small	subset	of	coefficients	[26].	Moreover,	wavelet	networks	allow	for	effective	

procedures	 that	 efficiently	 initialize	 the	 parameters	 of	 a	 network.	 By	 using	 wavelet	

decomposition,	 a	 wavelet	 library	 can	 be	 constructed.	 In	 turn,	 each	 wavelon	 can	 be	

constructed	using	the	best	wavelet	in	the	wavelet	library.	As	a	result,	wavelet	networks	

provide	 information	 for	 the	 relative	 participation	 of	 each	 wavelon	 to	 the	 function	

approximation	 and	 the	 predictable	 dynamics	 of	 the	 generating	 process.	 The	 main	

characteristics	 of	 these	 constructive	 procedures	 are	 (1)	 convergence	 to	 the	 global	

minimum	of	the	cost	function,	and	(2)	the	initial	weight	vector	being	in	proximity	to	the	

global	minimum,	resulting	in	drastically	reduced	training	times	[28].		
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Finally,	 well-organized	 initialization	 methods	 will	 approximate	 the	 same	 vector	 of	

weights,	and	minimize	the	loss	function	each	time.	

	

In	 summary,	 WNN	 is	 a	 combination	 of	 wavelet	 analysis	 and	 neural	 network	

system,	which	has	the	benefit	of	time-frequency	 localization	of	wavelet	transform	and	

the	 powerful	 learning	 function	 of	 neural	 networks.	 Therefore,	 WNN	 has	 optimized	

coverage	 of	 functions	 based	 on	 wavelet	 frame	 theory	 and	 the	 time-frequency	

localization	of	wavelet	transform	through	suitably	choosing	the	dilation	and	translation	

parameters	and	adjusting	wavelet	coefficients.	

	

3.5	Training	a	Wavelet	Network	with	Back-propagation	

After	 the	 initialization	 stage	 the	 network	 has	 to	 be	 trained	 further	 to	 find	 the	

weights	that	minimize	the	cost	function.	Since	the	wavelet	is	a	function	whose	energy	is	

well	 localized	 in	 time	and	 frequency	 [27],	we	will	use	 the	wavelet	network	with	back-

propagation	 technique.	 Back-propagation	 wavelet	 neural	 network	 (BPWNN)	 is	 an	

artificial	neural	network	that	 is	 integrated	with	wavelet	techniques	and	has	been	used	

successfully	in	numerous	fields.	

	

As	mentioned	earlier,	 the	wavelet	coefficients	of	mother	wavelet	using	dilating	

and	translating,	have	great	characteristics	of	time	precision	in	high-frequency	precision	

in	 high-frequency	 domains,	 and	 frequency	 precision	 in	 low-frequency	 domains.	

Therefore,	the	ability	of	a	WNN	in	mapping	complicated	nonlinear	functions	is	improved	

considerably,	 instead	 of	 using	 conventional	 nonlinear	 sigmoid	 transfer	 functions	 [29].	

Nevertheless,	we	used	 the	Morelet	wavelet	 and	 the	 sigmoid	 transfer	 functions	 in	our	

WNN	design	to	achieve	highest	precision	output	signal.			
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Figure	3.7:		Schematic	diagram	of	wavelet	neural	network	[30]-[31]		

	

The	basic	structure	of	BPWNN	with	a	single	hidden	layer	 is	shown	in	Figure	3.7	

[29].	The	neural	network	operates	in	three	stages:	An	input	layer,	a	hidden	layer,	and	an	

output	layer.	The	input	layer	receives	the	input	information	of	WNN	from	the	external	

sources	 to	 the	network	 for	processing.	The	hidden	 layer	collects	 information	 from	the	

input	 layer	 and	 processes	 the	 information,	 after	 that	 the	 output	 layer	 receives	

processed	information	from	the	network	and	sends	the	results	out	to	the	output	result.	

Where	X(t)	is	the	input	signal,	𝑤t		is	the	weight	of	(nth)	neuron	between	the	input	signal	

and	the	hidden	layer,	and	𝛹 𝑡 	is	the	mother	wavelet	function.	The	Function	𝐹v 𝑡 	is	the	

output	of	sigmoid	transfer	function.		

	

The	 mother	 wavelet	 (𝛹 𝑡 )	 is	 a	 series	 of	 daughter	 wavelets	 that	 can	 be	 developed	

through	dilating	and	translating	function,	where	𝛹?,A		can	be	expressed	as	in	equation		

	
𝜳𝒂,𝒃 𝒙 = 	 𝟏

𝒂
		𝜳	 𝒙R𝒃

𝒂
			 (3.11)	 	

	
Where	(b)	is	the	translation	factor,	and	(a)	is	the	dilation	factor.	

In	the	aim	for	high	resolution	in	both	time	and	frequency	domains,	we	opt	in	this	work	

to	 implement	the	Morelet	wavelet,	discussed	 in	 the	preceding	section,	as	 the	transfer	

function	of	the	BPWNN	[32].	
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Morelet	wavelet	function	is:	

𝜳 𝒕 = 𝒄𝒐𝒔 𝟏. 𝟕𝟓𝒕 	𝒆𝒙𝒑	(− 𝒕𝟐

𝟐
	)				 	 (3.12)	

The	sigmoid	transfer	function	of	the	neural	network	is	

𝛔	 𝐳 = 		 𝟏
𝟏z𝐞𝐱𝐩(R𝐙)

			 	 	 	 (3.13)	

The	main	formula	of	the	wavelet	neural	network	function	and	the	output	layer	transfer	

function	G(x)	of	the	sigmoid	transfer	function	is:	

	

𝑮 𝒙 = 𝝈	(	 𝑾𝒊		𝜳𝑵
𝒊�𝟏

𝒙R𝒃𝒊
𝒂𝒊
	 )			 	 (3.14)	

Where	𝑤4, 𝑎4	and	𝑏4 	are	weight,	 translation	and	dilation	 coefficients	 for	 each	daughter	

wavelet,	and	(i)	is	the	number	of	network	nodes.	

	

The	Main	idea	of	back-propagation	is	to	find	the	percentage	contribution	of	each	weight	

to	the	error.	The	error	E	for	a	pattern	(𝑛)	 is	simply	the	difference	between	the	desired	

signal	(𝑑t)	and	the	network	output	(𝑔t).	By	squaring	and	multiplying	it	by	-
.
	,	we	take	the	

equivalence	error	𝐸t	,	which	is	used	in	network	training:	

The	error	equation	is:	

	

𝑬𝒏 =
𝟏
𝟐
	 𝒅𝒏 − 𝒈𝒏 𝒙

𝟐
	 	 	 (3.15)	

Where,	(𝑛 = 1, 2… . . 𝑁)					 	

	

The	network	will	be	trained	until	a	vector	of	weigh𝑡	𝑊4(n)	that	minimizes	the	proposed	

cost	 function	 is	 found.	During	 the	 training,	 the	 predicted	 output	(𝑔t(𝑥))	is	 compared	

with	the	desired	output	(𝑑t),	and	the	mean	square	error	𝐸t	will	be	calculated	at	each	

pattern	(n).	If	the	mean	square	error	is	more	than	a	prescribed	limiting	value,	it	is	back	

propagated	 from	 output	 to	 input,	 and	 weights	 are	 further	 adapted	 till	 the	 error	 or	

number	of	iterations	is	within	a	proposed	limit.	The	training	algorithm	will	be	discussed	

in	the	following	section.	
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3.5.1 Sigmoid Transfer Function  
		 As	discussed	above,	any	artificial	neuron	consists	of	a	summing	function	with	an	

internal	threshold,	and	"weighted"	inputs	(see	Figure	3.8).	For	a	neuron	receiving	some	

inputs	(n),	each	input	signal	xi	(	i	=	1	to	n)	is	weighted	by	multiplying	it	with	their	weight	

wi.	 The	 sum	 of	 the	 wixi	 products	 outcomes	 the	 net	 stimulation	 of	 the	 neuron.	 	 This	

stimulation	 value	 is	 subjected	 to	 a	 transfer	 function	 to	 produce	 the	 neuron’s	 output.	

Therefore,	one	of	the	most	important	characteristics	of	any	neural	network	is	the	type	

of	transfer	function	used	to	calculate	the	output	of	node	from	its	net	activation	[26].	

	

	
Figure	3.8:		Artificial	neuron	network	

	

The	most	popular	transfer	function	that	produces	a	continuous	value	in	the	range	0	to	1	

is	the	sigmoid	transfer	function	is	a	mathematical	function	having	an	"S"	shape	(sigmoid	

curve).	Sigmoid	function	illistrate	the	special	case	of	the	logistic	function	shown	in	Figure	

3.9	and	is	defined	by	the	formula	
	

𝑶𝒖𝒕𝒑𝒖𝒕𝒊 =
𝟏

𝟏z𝒆�	𝒈𝒂𝒊𝒏	𝒂𝒄𝒕𝒊𝒗𝒊𝒂𝒕𝒊𝒐𝒏𝒊
			 	 	(3.16)	

	

If	the	gain	activation	is	high,	this	will	lead	to	hard	activation.	Thus,	if	the	gain	activation	

is	low,	that	means	it	is	close	to	identity	function,	and	it	affects	the	slope	of	the	transfer	

function	around	zero.		
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Figure	3.9:		Family	of	sigmoid	(Log-Sigmoid)	transfer	functions		

(MATLAB	Function:	a=	logsig(n)	
	
	

	

There	are	multiple	transfer	functions	(see	Table	3.2),	which	could	be	used	for	the	neural	

network	 but	 the	 sigmoid	 transfer	 function	 is	 best	 suited	 to	 use	 in	 multiple-input	

networks	trained	with	back	propagation.	The	output	signal	will	be	in	the	range	between	

0	and	1.	

Table	3.2:	Types	of	transfer	functions	
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3.5.2 Calculus of Variation 
The	calculus	of	variations	 is	a	mathematical	analysis	 that	deals	with	minimizing	

or	maximizing	the	paramters	to	optimizing	the	values	to	the	minimal	errors	,	which,	are	

mappings	from	a	set	of	functions	to	the	real	numbers.	Calculus	of	variation	function	is	

often	expressed	as	definite	integrals	involving	functions	and	their	derivatives.	

	

As	we	have	three	variable	parameters	(𝑤4, 𝑏4, &	𝑎4)	for	the	wavelet	neural	network,	we	

need	 to	 find	 the	 best-suited	 values	 for	 each	 of	 them	 that	 lead	 to	 the	 smallest	 E.	

Therefore,	 we	 will	 use	 in	 calculus	 of	 variations,	 the	 Euler–Lagrange	 equation	 (Euler's	

equation)	 to	 find	 the	shortest	distance	between	any	 two	points.	We	will	 calculate	 the	

differential	 equation	 of	 (𝑤4, 𝑏4, &	𝑎4)	in	 regard	 to	 E	 to	 find	 the	 optimum	 values	 of	

(𝑤4, 𝑏4, &	𝑎4)	that	lead	to	the	smallest	error.		

	

	The	calculus	of	variation	to	find	the	partial	derivatives	of	the	functional	g(x)	concerning	

(𝑤4, 𝑏4, &	𝑎4)	is	composed	of	the	following	formulas:	

	

		 Morelet	wavelet	function	

	 	 𝝋 𝒕 = 𝐜𝐨𝐬 𝟏. 𝟕𝟓𝒕 	𝒆𝒙𝒑	(− 𝒕𝟐

𝟐
	)	 	 	 														(3.17)	 		

The	sigmoid	transfer	function	of	the		

neural	network	

	 										𝝈	 𝒛 = 		 𝟏
𝟏z𝐞𝐱𝐩(R𝒁)

					 	 	 	 	 												(3.18)									

The	main	formula	of	wavelet	neural	network	function	

	 	 							𝒈 𝒙 = 𝝈	(	 𝑾𝒊		𝝋	𝑵
𝒊�𝟏

𝒙R𝒃𝒊
𝒂𝒊
	 )						 	 	 (3.19)													

𝒈 𝒙 = 𝟏

𝟏z𝒆𝒙𝒑 R	 𝑾𝒊			𝑵
𝒊�𝟏 𝒄𝒐𝒔 𝟏.𝟕𝟓	𝒙�𝒃𝒊𝒂𝒊

	 	𝒆𝒙𝒑	 R
𝒙�𝒃𝒊
𝒂𝒊

	
𝟐

𝟐 	

				 	 	 (3.20)	

Error	equation	(E)	is		

𝑬 = 𝟏
𝟐
	(𝒅 − 𝒈(𝒙))𝟐			(𝒏 = 𝟏, 𝟐, … . . 𝑵)					 	 	 	 	 (3.21)	
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							𝑬 = 𝟏
𝟐
	(𝒅 − 𝟏

𝟏z𝒆𝒙𝒑(R	 𝑾𝒊			𝑵
𝒊�𝟏 𝒄𝒐𝒔 𝟏.𝟕𝟓	𝒙�𝒃𝒊𝒂𝒊

	 	𝒆𝒙𝒑	(R
(
𝒙�𝒃𝒊
𝒂𝒊

	)𝟐

𝟐 	))

)𝟐							

	where	 𝑛 = 1,2, … . . 𝑁 	

𝑬 = 𝟏
𝟐
	 𝒅 − 𝟏

𝟏z𝒆𝒙𝒑 R	 𝑾𝒊			𝑵
𝒊�𝟏 𝒄𝒐𝒔 𝟏.𝟕𝟓	𝝉 	𝒆𝒙𝒑	 R 𝝉	 𝟐

𝟐 	

𝟐

																																							(3.22)	

where				(𝑛 = 1,2, … . . 𝑁)	and,		𝝉 = 	 𝒙R𝒃𝐢
𝒂𝒊

	

	 ∆ 𝑾𝒊 = 	 𝒅𝑬
𝒅𝑾𝒊

= 	− 𝒅 − 𝒈 𝒙 	𝒈 (x)	cos	(1.75𝝉	) 𝒆𝒙𝒑(−	𝝉	
𝟐

𝟐
)				 									(3.23)	

∆ 𝒃𝒊 = 𝒅𝑬
𝒅𝒃𝒊

= − 𝒅 − 𝒈 𝒙 	𝒈 (x)	𝒘𝒊
𝒂𝒊
𝒆𝒙𝒑(− 𝝉𝟐

𝟐
)(1.75	sin(1.75𝝉) + 𝝉 𝒄𝒐𝒔(𝟏. 𝟕𝟓𝝉))	(3.24)	

∆ 𝒂𝒊 = 𝒅𝑬
𝒅𝒂𝒊

= 	− 𝒅 − 𝒈 𝒙 	𝒈 (x)	𝝉	𝒘𝒊
𝒂𝒊
𝒆𝒙𝒑 − 𝝉𝟐

𝟐
	(1.75	sin	(1.75𝝉) + 𝝉 𝒄𝒐𝒔 𝟏. 𝟕𝟓𝝉 	

	 	 	 	 												𝒅𝑬
𝒅𝒂𝒊

= 𝝉 𝒅𝑬
𝒅𝒃𝒊

			 	 	 	 				(3.25)	

	

3.5.3 Gradient Descent Algorithm  
Gradient	Descent	Algorithm	is	an	optimization	algorithm	for	finding	the	nearest	

minimum	 of	 a	 function	 which	 presumes	 that	 the	 gradient	 of	 the	 function	 can	 be	

computed.	It	starts	at	a	point	A,	then	moves	to	point	B	by	moving	minor	steps	along	the	

negative	of	the	gradient	function	to	reach	a	global	minimum.	

	

The	gradient	algorithm	for	the	wavelet	neural	network	equation	is	defined	as	a	vector	of	

partial	derivatives	for	three	dimensions	E	(𝑤4, 𝑏4, &	𝑎4)	
	 	

																														 					∆𝑬 = [	 𝒅𝑬
𝒅𝑾𝒊

, 𝒅𝑬
𝒅𝒃𝒊

,	𝒅𝑬
𝒅𝒂𝒊

]					 	 											(3.26)			

	Where	∆𝐸	is	the	Gradient.	

	

That	means	 (∆E)	and	can	be	evaluated	at	any	particular	point	𝑊4,	as	well	as	𝑎4	and	𝑏4.	

The	 calculated	 values	 of	𝑊4,	𝑎4	and	𝑏4 	could	 lead	 to	 fast	 changing	 in	 each	 direction	 to	

reach	to	the	minimum	value	of	∆E.	To	reach	to	 𝒅𝑬
𝒅𝑾𝒊

	=	𝒅𝑬
𝒅𝒃𝒊

	=		𝒅𝑬
𝒅𝒂𝒊

=	0	or	the	minimum	value.	
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Therefore,	the	value	of	𝑊4,	𝑎4	and	𝑏4 	will	be	changed	to	minimize	the	function	 𝒅𝑬
𝒅𝑾𝒊

, 𝒅𝑬
𝒅𝒃𝒊

,	

𝒅𝑬
𝒅𝒂𝒊

	as	follows:		

If	 𝒅𝑬
𝒅𝑾𝒊

>0	then	𝑑𝑊4 	increases	as	𝑊4 	increases,	so	the	gradient	∆𝐸	should	decrease	𝑊4 		

If	 𝒅𝑬
𝒅𝑾𝒊

<0	then	𝑑𝑊4 	decreases	as	𝑊4 	increases,	so	the	gradient	∆𝐸	should	increase	𝑊4 		

If	 𝒅𝑬
𝒅𝑾𝒊

=0	then	𝑑𝑊4 	is	at	the	minimum,	so	the	gradient	∆𝐸	should	not	change	𝑊4 	

The	gradient	descent	rule	

𝑾𝒏𝒆𝒘 = 	𝑾𝒐𝒍𝒅 − 	𝜼		∆ 𝑾𝒊 		 	 	 											(3.27)	
	

Where,	−	∆(w)	is	the	gradient	and	𝜂	is	the	learning	rate	(small,	positive).	

The	learning	rate	(𝜂)	determines	how	far	the	result	will	be.	
	

General	Gradient	Descent	Algorithm	

The	steps	for	optimizing	any	function	using	gradient	descent	algorithm	starts	by	defining	

the	objective	function	E(𝑊4)	that	will	be	optimized,	and	then	finding	the	vector	of	values	

(𝑊4)	 that	 will	 minimize	 E	 (𝑊4).	 First,	 an	 initial	 set	 of	 weights	 (𝑊4)	 will	 be	 picked	 up	

randomly.	Then,	∆(𝑊4)	will	be	evaluated	for	each	value	of	(𝑊4),	as	shown	in	Figure	3.10,	

and	subsequently	all	the	weights	will	be	updated	with	(𝑊t;ª)	(equation	3.27).	
	

The	weight	will	keep	moving	and	updating	their	values	at	weight	spaces	until	the	∆(𝑊4)	

is	approximately	equal	to	zero	(converged	to	a	flat	minimum).		
	

	
Figure	3.10:		Calculating	gradient	descent	algorithm	
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In	order	to	implement	the	gradient	descent	algorithm,	a	learning	rate	value	(𝜂)		and	the	

number	of	 learning	 iterations	 (i)	 need	 to	be	 chosen.	 The	 learning	 rate	 (𝜂)	 determines	

how	 fast	 the	 algorithm	 attempts	 to	 converge.	 The	 gradients	 for	 each	 parameter	 are	

multiplied	 by	 (𝜂)	 before	 being	 used	 to	 modify	 that	 parameter,	 as	 formulated	 in	

equations	(3.28)	–	(3.30).	

	

The	 learning	 iterations	 (i)	 determine	how	many	 times	 the	 training	data	 should	be	 fed	

through	the	learning	procedure.	The	higher	this	value	is,	the	closer	the	convergence	of	

the	network	to	the	minimum	should	be.	The	calculation	time	will	increase	[30]-[31].	

	

In	summary,	the	gradient	descent	algorithm	applied	will	use	the	following	formulas:	

	

Weight	update	rule	

∆𝒘𝒊 𝒕 + 𝟏 = 	−𝜼 𝒅𝑬
𝒅𝑾𝒊

+ 	𝜷𝑾𝒊(𝒕)			 	 	 	(3.28)	

∆𝒃𝒊 𝒕 + 𝟏 = 	−𝜼 𝒅𝑬
𝒅𝒃𝒊

+ 	𝜷𝒃𝒊(𝒕)		 	 	 (3.29)	

∆𝒂𝒊 𝒕 + 𝟏 = 	−𝜼 𝒅𝑬
𝒅𝒂𝒊

+ 	𝜷𝒂𝒊(𝒕)		 	 	 (3.30)	

	

Where	𝛽	is	the	momentum	factor	to	the	weights,	𝜂	is	the	learning	rate	(small,	positive)	

that	determines	the	length	of	the	weight	update.	

Gradient	descent	rule	

𝒘𝒊 𝒕 + 𝟏 = 	𝒘𝒊 𝒕 + ∆𝒘𝒊 𝒕 + 𝟏 	 	 	 (3.31)	

𝒃𝒊 𝒕 + 𝟏 = 	𝒃𝒊 𝒕 +	∆𝒃𝒊 𝒕 + 𝟏 	 	 	 (3.32)	

𝒂𝒊 𝒕 + 𝟏 = 	𝒂𝒊 𝒕 +	∆𝒂𝒊 𝒕 + 𝟏 		 	 	 (3.33)	

	

Local	Minimum		

The	 gradient	 descent	 algorithm	 has	 a	 problem	 that	 emerges	 during	 the	 network	

training.	As	shown	 in	Figure	3.8,	we	see	there	 is	more	than	one	minimum	point	 (local	

minimum,	 global	 minimum).	 The	 back-propagation	 algorithm	 can	 reach	 one	 of	 these	
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solutions,	 depending	 on	 the	 starting	 point.	 The	 way	 that	 gradient	 descent	 is	

implemented	does	not	afford	any	guarantee	that	the	output	solution	will	be	the	optimal	

global	minimum,	which	corresponds	to	the	lower	overall	error	level.	

	
Figure	3.11:	Local	minima	at	gradient	descent	algorithm	

	

By	default,	 the	gradient	descent	goes	 to	 the	closest	 local	minimum,	and	 it	 could	have	

multiple	local	minima	at	the	weight.	Therefore,	a	simple	procedure	followed	to	increase	

the	 probabilities	 of	 finding	 the	 global	minimum	 is	 called	weight	 jogging.	 This	method	

depends	on	setting	a	random	restart	points	at	multiple	places	when	an	initial	solution	is	

found.	Those	resets	are	small	changes	added	up	to	the	weight	vector,	then	the	training	

process	 continues	 until	 the	 algorithm	 converges	 to	 a	 new	 solution	 [21].	 However,	 as	

mentioned	 previously,	 there	 is	 no	 guarantee	 that	 this	 process	 will	 lead	 to	 a	 better	

solution	as	it	is	only	improving	the	search	for	the	global	minima.	

	

3.6	Summary	Steps	for	CT-WNN	

In	 this	 chapter,	 we	 studied	 WTs	 and	 their	 advantages	 in	 analyzing	 burst-like	

signals	and	low-frequency	signals,	which	significantly	fit	continuous	time	systems.		

	

Step	 1:	 Insert	 the	 digitalized	 continuous	 time	 signal,	 Vref,	 to	 the	 Morelet	 wavelet	

function	(equation	3.17),	then	apply	the	CWT	by	changing	the	weight,	translation,	and	
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dilation	 for	 each	 wavelet	 coefficients	 (equation	 3.19).	 	 After	 this,	 the	 signal	 will	 be	

reformed	 by	 the	 sigmoid	 transfer	 function	 (equation	 3.18),	 to	 be	 represented	 by	

(equation	3.20).	

𝒈 𝒙 = 𝟏

𝟏z𝒆𝒙𝒑 R	 𝑾𝒊			𝑵
𝒊�𝟏 𝒄𝒐𝒔 𝟏.𝟕𝟓	𝒙�𝒃𝒊𝒂𝒊

	 	𝒆𝒙𝒑	 R
𝒙�𝒃𝒊
𝒂𝒊

	
𝟐

𝟐 	

				 	 	 (3.20)	

	

Step	2:	The	WNN	signal, 𝑔 𝑥 ,	will	be	subtracted	from	the	input	signal	(d)	to	calculate	

the	E,	(equation	3.21)	between	the	original	input	signal	and	WNN	pattern	signal.	

	

𝑬 = 𝟏
𝟐
	(𝒅 − 𝒈(𝒙))𝟐			(𝒏 = 𝟏, 𝟐, … . . 𝑵)					 	 	 	 							(3.21)	

	

The	lowest	error,	E,	that	will	be	achieved	from	WNN	training	will	be	equal	to	the	signal	

resolution.	For	this	reason,	the	goal	of	WNN	training	in	the	next	step	is	to	achieve	the	

lowest	 error.	 Hence,	 the	 signal	 resolution	 of	 WNN	 is	 a	 variable	 resolution	 and	 is	

dependant	on	 the	signal	behavior	and	WNN	training.	Usually,	 the	circuit	designer	sets	

the	 resolution	 range	 for	 the	 circuit	 design,	 and	 calibrates	 it	 due	 to	 the	 design	

requirements	as	a	higher	resolution	output	signal	will	require	more	training	 iterations,	

which	consumes	power	and	time	delay	for	the	output	signal.	

	

Step	 3:	 Applying	 gradient	 descent	 algorithm	 to	 train	 WNN,	 by	 calculating	 the	 error	

factor	and	adjusting	the	weight,	translation,	and	dilation	to	achieve	the	lowest	error.			

	

𝒘𝒊 𝒕 + 𝟏 = 	𝒘𝒊 𝒕 − 𝜼 𝒅𝑬
𝒅𝑾𝒊

+ 	𝜷𝑾𝒊(𝒕)			 	 	 (3.28),	(3.31)	

𝒃𝒊 𝒕 + 𝟏 = 	𝒃𝒊 𝒕 	− 𝜼
𝒅𝑬
𝒅𝒃𝒊

+ 	𝜷𝒃𝒊(𝒕)		 	 	 (3.29),	(3.32)	

𝒂𝒊 𝒕 + 𝟏 = 	𝒂𝒊 𝒕 +	−𝜼 𝒅𝑬
𝒅𝒂𝒊

+ 	𝜷𝒂𝒊(𝒕)		 	 	 (3.30),	(3.33)
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Chapter 4  

	The	Architecture	of	Clock-less	ADC		

The	architecture	of	a	Clock-less	ADC	system	 is	at	 the	heart	of	our	proposed	system	 in	

addition	to	many	improvements	and	procedures	that	have	been	followed	to	apply	WNN	

to	 improve	 the	performance	of	 the	continuous-time	output	 signal.	 In	 this	 chapter,	we	

will	describe	the	three	stages	of	the	system	and	their	theory	of	operation;	stage	one	is	

the	 delta	 modulation	 to	 convert	 the	 input	 analog	 signal	 to	 a	 continuous-time	 digital	

signal.	 The	 second	 stage	 combines	 the	quantization	 error	with	 the	 continuous	 output	

signal	of	delta	modulation,	and	the	third	stage	applies	the	WNN	to	the	combined	signal.	

4.1	The	Architecture	of	Clock-less	ADC	System	Using	WNN	

The	 block	 diagram	 displayed	 in	 Figure	 4.1	 illustrates	 the	 full	 suggested	 system.	 A	

sinusoidal	input	signal	(𝑉4/+)	is	applied	on	the	left	of	the	diagram	to	the	amplitude	shift	

stage,	 then	 many	 stages	 follow.	 The	 rest	 of	 this	 chapter	 will	 describe	 the	 theory	 of	

operation	for	each	block	and	its	impact	on	the	design.	For	the	description	of	each	block,	

please	refer	back	to	the	full	system	diagram	in	Figure	4.1.	
	

	

	
Figure	4.1:	A	block	diagram	of	the	CT-ADC	using	wavelet	neural	network	
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4.2	Amplitude	Shifting	(Offset)	

	
Figure	4.2:	Amplitude	shifting	for	analog	sine	wave	input	signal	

	

A	sinusoidal	 input	signal	will	be	applied	to	three	amplitude	shifters	 to	shift	 the	

input	 signal	 into	 three	 different	 levels	 above	 the	main	 signal	 level.	 The	magnitude	 of	

shifting	depends	on	 the	delta	 level	 value	 (∆).	 The	 first	 amplitude	 shifter	will	 shift	 the	

input	signal	by	(∆/4),	the	second	amplitude	shifter	will	shift	it	by	(∆/2).	Moreover,	the	

third	amplitude	shifter	will	shift	it	by	(3∆/4).	Thus,	the	three	shifters	will	duplicate	the	

same	 input	signal	with	a	negligible	time	delay	between	the	three	 levels	by	an	amount	

equal	to	a	quarter	delta	(∆).	The	goal	of	this	block	is	to	get	multiple	copies	of	the	same	

input	 signal	 and	 apply	 these	 four	 signals,	 (the	 main	 input	 sine	 wave	 and	 the	 three	

shifted	signals),	to	the	continuous	time	ADC.	Then	compose	four	digitalized	signals	from	

the	 single	 input	 signal;	 the	 four	 signals	 will	 be	 analyzed	 individually	 according	 to	 the	

amplitude	shifter	identified	by	their	delta	shift.	This	point	will	be	discussed	further	when	

it	comes	to	the	accumulator	block.		
	

4.3	Multiplexer		

The	multiplexer	block	is	a	regular	four	input	one	output	multiplexer	with	two	selection	

signal	(S0,	S1)	as	shown	in	Figure	4.3.	The	 input	signal	(𝑉4/+	)	and	their	three	replicated	

signals	will	be	applied	 to	 the	multiplexer	and	 the	output	signal	 (𝑉4t	)	will	be	produced	

according	to	the	two	selection.	By	default,	the	input	signal	(𝑉4/+	)	will	pass	through	the	

MUX,	 then	 once	 this	 signal	 passes	 the	 comparator	 block,	 the	 comparator	 will	 send	

partial	feedback	to	the	multiplexer	to	move	forward	to	the	next	signal	to	pass	through	

the	multiplexer.	
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Figure	4.3:	Multiplexer	for	CT-ADC	

	

When	the	signals	reach	through	the	multiplexer	and	the	comparator	to	the	digital	logic,	

the	 digital	 logic	 block	 will	 also	 partially	 control	 the	 next	 signal	 to	 go	 through	 the	

multiplexer.	 If	 the	digital	 logic	 sends	an	UP	 signal,	 the	multiplexer	will	 pass	 the	 signal	

which	is	higher	than	the	last	signal	by	an	increment	of	∆/4.	Similarly,	if	the	digital	logic	

sends	 a	 DOWN	 signal,	 the	 multiplexer	 will	 pass	 the	 decremented	 version	 of	 the	 last	

signal	going	through	the	multiplexer.	This	will	be	elaborated	even	more	during	the	next	

few	subsections.	

	

4.4	Comparator		

The	 comparator	 is	 the	main	 component	 in	 clock-less	 ADC	 circuit	 architecture,	

and	 it	 is	 the	 most	 challenging	 building	 block	 because	 it	 should	 meet	 several	

requirements.	Its	gain	needs	to	be	high	enough	to	resolve	small	voltage	differences,	and	

it	should	be	low	power	because	the	minimum	power	consumption	of	the	system	is	set	

by	the	static	power	consumption	of	both	comparators.	The	comparator	will	be	used	to	

compare	 the	 input	 signal	(𝑉4t	)	and	 reference	 signal	(𝑉:;<)	(the	 voltage	 signal	 of	 the	

latest	 input	 signal),	 and	 then	 convert	 the	 analog	 signal	 to	 non-uniformed	 digital	 data	

signals	called	emblems,	by	using	quantization	levels	as	will	be	described	shortly.	
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Figure	4.4:	Continuous	time	ADC	comparator	

	

The	comparators	operate	as	 follows:	When	the	 input	signal	 is	within	the	range	of	 two	

quantization	levels	as	shown	in	Figure	4.5,	then	both	comparators	initially	have	outputs	

of	 logic	0,	 and	nothing	happens.	When	 the	 input	 signal	moves	outside	 this	 range	and	

crosses	on	of	the	quantization	levels,	one	of	the	comparators	will	detect	the	change	of	

this	signal	and	will	create	a	logic	1	on	either	INC	or	DEC,	depending	on	the	direction	of	

movement	[7].	
	

	
Figure	4.5:	Example	of	waveform	showing	how	the	CT-ADC	operates	
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When	either	INC	or	DEC	becomes	logic	1,	the	control	logic	and	digital	Logic	will	together	

generate	 an	 indication	 of	 the	 Emblem.	 This	 Emblem	 consists	 of	 two	 binary	 signals:	

CHANGE	and	UP/DOWN.		The	Emblem	is	fed	back	to	the	DAC	with	the	updated	changes	

to	generate	a	new	reference	signal	(𝑉:;<).	After	such	an	update,	the	signal	is	once	again	

within	the	range.	This	behaviour	is	demonstrated	in	Figure	4.5.		

	

	

4.4.1 Delta Modulator Architecture 
In	clock-less	systems,	the	input	signal	is	digitized	by	generating	emblems	through	

delta	 modulation	 (amplitude	 levels),	 so	 the	 time	 is	 continuous	 (infinite),	 and	 the	

amplitude	 is	 well-known	 by	 considering	 the	 threshold-level	 resolution.	 However,	 in	

conventional	 systems,	 the	 input	 signal	 is	 digitized	 by	 cut	 off	 frequency	 as	 shown	 in	

Figure	4.6.	

	

	
Figure	4.6:	(a)	Non-uniformed	sampling		(delta	modulation)		(b)	Uniform	sampling	

	

Any	initial	input	signal	will	have	initial	amplitude	around	the	zero	point	in	range	

period	[-0.5Δ,	0.5Δ].	The	total	number	of	quantization	levels	(threshold	levels)	for	an	N-

bit	quantizer	is	2¯,	but	because	of	the	alignment	of	a	mid-tread	quantizer	to	space	the	

levels	and	keep	odd	symmetry	in	the	relationship	of	the	input	and	output	it	will	be	only	

2¯-1	levels.	
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The	 following	 equations	 show	 the	 relationship	 between	 the	 threshold	 levels	 and	 the	

number	of	bits	[7].			

	

Number	of	quantization	level	(delta	modulation	levels)	=	𝟐𝑵-1		 (4.1)	

	

Delta	step	space	size	(weighting	of	LSB):		 ∆ 	(LSB)	=	𝑽𝒎𝒂𝒙
𝟐𝑵

	 													(4.2)	

	

𝑉²?v	is	the	difference	between	the	maximum	reference	voltage	(+0.5)	-	the	minimum	

reference	voltage	(-0.5)	(𝑉²?v=	𝑉²?vhigh	-		𝑉²?vlow)	[33]	

N	(bit)	=	
𝑳𝒐𝒈𝟏∆
𝐥𝐨𝐠 𝟐

		 	 	 	 	 	 	 	 (4.3)	

	

The	maximum	amplitude	of	the	input	signal	that	retains	odd	symmetry	is	represented	as		

𝑿𝐦𝐚𝐱𝑷𝒆𝒂𝒌 = 𝟏 −	 𝟏
𝟐𝑵
		 	 	 	 	 	 	 	(4.4)	

	The	 signal	 to	 noise	 ratio	 (SNR)	 for	 the	 conventional	 system	 can	 be	 denoted	 by	 this	

equation.		

	

SNR	(MAX)	=	(6.02	×	N	+	1.76)	dB					 	 	 	 	 (4.5)	

where	N	is	number	of	bits.	The	SNR	calculation	will	discussed	in	(section	5.1.3).	

	

The	below	table	exposes	 the	 relationship	between	the	number	of	bits,	 the	number	of	

level	 crossing	with	 the	weighting	 of	 LSB,	 and	 the	 SNR.	We	 displayed	 the	 above	 chart	

because	we	use	the	four-bits	circuit	with	16	level	crossings	to	enhance	the	output	signal	

of	 WNN	 system	 to	 be	 almost	 38.3	 bits	 according	 to	 the	 input	 signal	 and	 the	 time	

resolution.	The	SNR	will	be	illustrated	at	section	(5.1.3)	
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Table	4.1:	The	relation	between	the	number	of	bits,	number	of	levels,	and	SNR	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

										

Resolution	and	Signal	to	Noise	Ratio	(SNR)	for	signals	coded	as	n	bits	
Bits,	n	 Levels,	2^n	 Weighting	of	LSB,	2-n	 SNR,	dB	

2	 4	 0.25	 14	
3	 8	 0.125	 20	
4	 16	 0.0625	 26	
5	 32	 0.03125	 32	
6	 64	 0.015625	 38	
7	 128	 0.0078125	 44	
8	 256	 0.00390625	 50	
9	 512	 0.001953125	 56	
10	 1024	 0.000976563	 62	
11	 2048	 0.000488281	 68	
12	 4096	 0.000244141	 74	
13	 8,192	 0.00012207	 80	
14	 16,384	 6.10352E-05	 86	
15	 32,768	 3.05176E-05	 92	
16	 65,536	 1.52588E-05	 98	
17	 131,072	 7.62939E-06	 104	
18	 262,144	 3.8147E-06	 110	
19	 524,288	 1.90735E-06	 116	
20	 1,048,576	 9.53674E-07	 122	
21	 2,097,152	 4.76837E-07	 128	
22	 4,194,304	 2.38419E-07	 134	
23	 8,388,608	 1.1921e-07	 140	
24	 16,777,216	 5.9605e-08	 146	
25	 33,554,432	 2.9802e-08	 152	
26	 67,108,864	 1.4901e-08	 158	
27	 134,217,728	 7.4506e-09	 164	
28	 268,435,456	 3.7253e-09	 170	
29	 536,870,912	 1.8626e-09	 176	
30	 1.0737e+09	 9.3132e-10	 182	
31	 2.1475e+09	 4.6566e-10	 188	
32	 4.2950e+09	 2.3283e-10	 194	
33	 8.5899e+09	 1.1642e-10	 200	
34	 1.7180e+10	 5.8208e-11	 206	
35	 3.4360e+10	 2.9104e-11	 212	
36	 6.8719e+10	 1.4552e-11	 219	
37	 1.3744e+11	 7.2760e-12	 225	
38	 2.7488e+11	 3.6380e-12	 231	
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4.5	Control	Logic	

Control	logic	block	is	the	main	block	that	detects	the	changes	of	the	input	signal	

when	it	crosses	the	delta	modulation	quantization	levels.	When	the	𝑉4/+	stays	within	the	

range	of	one	delta	modulation	level	(𝑉º»ª	&	𝑉¼4½¾)	the	two	comparators	will	have	Logic	

0,	and	the	circuit	will	be	inactive	until	either	high	comparator	or	low	comparator	detects	

movement	 on	𝑉4/+	outside	 this	 range	 [7],	 [33].	 The	 high	 comparator	 detects	 a	 signal	

level	change	to	the	next	delta	modulation	level	and	will	send	an	INC	signal,	logic	1	to	the	

control	logic	block	in	this	case.	However,	if	the	low	comparator	detects	the	change	that	

means	 the	 input	 signal	 has	moved	 to	 the	 lower	 delta	modulation	 level,	 and	 the	 low	

comparator	will	send	a	DEC	signal.		logic	1	to	the	control	logic	block.		

	

	
Figure	4.7:	Control	logic	block	diagram	

	

Based	on	these	indicator	signals	(INC	and	DEC),	the	change	block	will	be	able	to	record	

the	changes	of	the	input	signal	over	the	delta	modulation	levels.	The	Change	signal	will	

remain	by	default	at	logic	0,	and	the	data	emblem	will	have	a	value	of	(𝑇¿, 0),	but	once	

it	detects	the	INC	or	DEC	signal	it	will	change	to	logic	1,	and	thus	the	data	emblem	will	

have	 a	 value	(𝑇¿, 1),	 as	 shown	 in	 Figure	 4.5.	 	 The	 control	 logic	 will	 ensure	 that	 the	

outputs	of	 the	 comparators	 (INC	and	DEC)	are	not	evaluated,	while	 the	 system	 is	 still	

settling,	and	will	detect	and	filter	any	glitches	on	these	signals	to	deliver	a	sharp	signal	

to	DAC.	 In	 fact,	when	 the	DAC	updates	 its	outputs	VHIGH	 and	VLOW,	 there	can	be	some	

glitches	on	these	signals	and	the	outputs	of	the	comparators	can	oscillate	between	zero	

and	 one.	 Therefore,	 an	 architecture	 has	 been	 proposed	 in	 [34],	 and	 has	 been	
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implemented	in	the	work	reported	in	[35]-[37].	In	theory,	the	digitized	data	emblem	is	a	

combination	of	the	CHANGE	&	UPDN	signals.	

	

4.6	Digital	Logic		

	
Figure	4.8:	Digital	logic	block	diagram	

	

The	 digital	 logic	 block	 is	 working	 as	 counter	 and	 detector	 of	 the	 input	 signal	

behavior	𝑉4/+	(up/down).		The	output	signal	of	the	digital	logic	block	will	be	either	0	or	1	

depending	on	the	output	the	𝑉4/+.	Once	the	𝑉4/+	moves	out	of	the	range	(𝑉º»ª	&	𝑉¼4½¾)	

and	 the	 input	 signal	𝑉4/+	compared	 by	 the	 two	 separate	 comparators,	 the	 circuit	 will	

start	being	active	and	 the	digital	 logic	will	 detect	 an	 input	 signal	 from	either	 the	high	

comparator	 or	 the	 low	 comparator.	 Both	 comparators	 have	 logic	 0	 output	 when	 the	

circuit	is	inactive.	If	the	high	comparator	detects	a	signal	change,	it	means	that	the	input	

signal	has	moved	to	the	next	delta	modulation	level	and	will	send	an	INC	signal,	logic	1,	

to	 the	 digital	 logic	 block	 at	 the	 time	 interval	(𝑇¿),	 and	 thus,	 if	 the	 low	 comparator	

detects	the	signal	change	that	means	that	the	input	signal	has	moved	to	the	lower	delta	

modulation	level,	and	will	send	a	DEC	signal,	logic	1	to	the	digital	logic	block	at	the	time	

interval	(𝑇¿).		

	

The	digital	logic	block	will	compare	the	received	signal	at	the	quantizing	time	(𝑇¿)	with	

the	previous	data	stored	at	time	interval	(𝑇¿R-	).	If	the	data	stored	at	the	time	interval	

(𝑇¿R-	)	is	 INC	 whereas	 the	 data	 received	 at	 time	 interval	(𝑇¿)	is	 INC,	 so,	 the	 output	

signal	of	 the	digital	 logic	at	 time	 interval	(𝑇¿)	will	be	 logic	1.	 	 If	 the	data	stored	at	 the	
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time	 interval	(𝑇¿R-	)	is	DEC	 and	 the	data	 received	 at	 time	 interval	(𝑇¿)	is	DEC,	 so,	 the	

output	signal	of	the	digital	logic	at	time	interval	(𝑇¿),	will	be	logic	0.	If	the	data	stored	at	

time	 interval	(𝑇¿R-	)	is	 DEC	 and	 the	 data	 received	 at	 time	 interval	(𝑇¿)	is	 INC,	 so,	 the	

output	signal	of	the	digital	logic	at	time	interval	(𝑇¿),	will	be	logic	1.	If	the	data	stored	at	

the	 time	 interval	(𝑇¿R-	)	is	 INC	and	 the	 received	data	 is	DEC	at	 time	 interval	(𝑇¿),	 the	

output	signal	of	the	digital	logic	at	time	interval	(𝑇¿),	will	be	logic	0.	The	output	signal	of	

the	 digital	 logic	 block	 will	 be	 injected	 to	 the	 DAC	 block	 at	 the	 same	 time	where	 the	

CHANGE	signal	is	delivered.	The	DAC	block	will	combine	both	signals	to	implement	the	

digitized	signal	data	emblem	with	quantized	amplitude	and	exact	 time.	Further	details	

will	be	outlined	when	discussing	the	DAC	block	section	at	the	end	of	this	chapter.	

4.7	CT-Timer	

	
	

Figure	4.9:	internal	timer	(slope	of	input	signal)	

	

In	 order	 to	 transport	 and	 store	 the	 non-uniform	 sampled	 data	 that	 was	

generated	 from	 the	 level	 crossing	 ADC,	 we	 need	 to	 add	 an	 internal	 sample	 or	 a	

complicated	 counter	 to	 record	 the	 time	 intervals	 among	 successive	 digitized	 signals	

(emblems).	 The	 above	block	diagram	 illustrates	 the	block	 responsible	 for	 creating	 the	

internal	 timer,	 as	 the	 comparators	will	 detect	 the	 input	 signal	 changes	 by	 comparing	

𝑉4/+	with	𝑉:;<,	 and	 then	 feed	 the	 timer	block	with	 INC	or	DEC	 signal	 according	 to	 the	

input	signal	behaviour.	As	a	result,	the	timer	block	will	calculate	the	time	intervals	with	

respect	to	the	fixed	quantization	level.	
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4.7.1 Time Constant of CT System (∆𝑻) 
As	 this	 system	 has	 no	 external	 clock	 to	 control	 the	 time	 sequence	 of	 the	

quantized	 signal	 at	 the	 DSP	 system,	 the	 internal	 timer	(𝑇¿)	has	 to	 be	 determined	 for	

each	 non-uniformed	 sample	 to	 synchronize	 the	 data	 at	 the	 DSP	 system	 on	 the	 time	

sequence.	 The	 internal	 timer	(𝑇¿)	will	 be	 calculated	 according	 to	 the	 input	 signal	

behavior	 for	 each	 non-uniformed	 sample	 by	 determining	 the	 slope	 of	 the	 signal.	 The	

slope	equation	is	

Slope	=	∆𝑽
∆𝑻
			=	𝑽𝟐R𝑽𝟏

𝑿𝟐R𝑿𝟏
	=	 𝐕∆

𝐌𝐚𝐱	𝐫𝐚𝐭𝐞	𝐨𝐟	𝐜𝐡𝐚𝐧𝐠𝐞𝐬
													(4.6)	

Where,	∆𝑉	is	 the	 difference	 between	 any	 two	 sequential	 delta	 levels,	 and	 is	 always	 a	

fixed	value	equal	to	∆/4.	∆𝑇	is	 the	time	 interval	 that	 input	signal	needed	to	pass	 from	

one	delta	level	to	the	next	level	for	each	non-uniformed	digitized	signal;	it	is	a	random	

variable	 uniformly	 distributed	 across	 [𝑇¿,	𝑇¿z-]	 depending	 on	 the	 slope	 of	 the	 input	

signal.		The	equation	of	the	time	difference	is	

∆𝐓 = 	𝐐𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧	𝐒𝐭𝐞𝐩
𝐈𝐧𝐩𝐮𝐭	𝐒𝐥𝐨𝐩𝐞

			 	 	 	 	 (4.7)	

The	quantization	noise	power	becomes	[38]	

P(∆𝐕)	=	P	(Slope).	P(∆𝐓)		 	 	 	 	 	(4.8)	

P(∆𝐓)	=	𝐓𝐬𝐚𝐦𝐩𝐥𝐞
𝟑

𝟐
	=	 𝐏(∆𝐕)

	𝐏(𝐒𝐥𝐨𝐩𝐞)
									 	 	 	 	(4.9)	

∵ 	 𝐒𝐍𝐑𝐝𝐛 = 𝟏𝟎 𝐥𝐨𝐠(𝐏(𝐕𝐢𝐧)
𝐏(∆𝐕)

)			=			𝟏𝟎 𝐥𝐨𝐠( 	𝟑	𝐏(𝐕𝐢𝐧)
𝐏 𝐒𝐥𝐨𝐩𝐞 		𝐓𝐬𝐚𝐦𝐩𝐥𝐞𝟐

)									(4.10)	

∴ 	 𝐒𝐍𝐑𝐝𝐛 = 𝟏𝟎 𝐥𝐨𝐠( 	𝟑	𝐏 𝐕𝐢𝐧
𝐏 𝐒𝐥𝐨𝐩𝐞 		

+ 𝟐𝟎 𝐥𝐨𝐠( 𝟏
𝐓𝐪
))			 	 		(4.11)	

		 	

The	SNR,	equation	(4.10),	consists	of	two	terms,	the	first	term	can	be	determined	by	the	

properties	of	the	input	signal	(𝑉ÓÔ),	and	the	second	term	will	be	calculated	by	the	time	

quantizer	 (𝑇8).	 Therefore,	 in	 a	 continuous-time	 system	 the	 SNR	 depends	 on	 the	 time	

quantizer	and	not	on	the	number	of	quantization	levels	as	in	conventional	system.	The	

main	 differences	 between	 conventional	 systems	 and	 continuous-time	 systems	 are	

summarized	in	Table	(4.2)	[39].	
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Table	4.2:	Comparison	between	continuous-time	system	and	conventional	system	

	
Conventional	system	(Sampling)	 Continuous-time	system	(Emblem)	

Conversion	trigger	 Clock	 No	clock	Aid	(Level	crossing)	

Amplitude	 Quantized	 Exact	value	

Time	 Exact	value	 Quantized	

SNR	dependency	 Number	of	bits	 Timer	period	(Time	quantizer)	

Conversion	output	 Amplitude	 (Amplitude,	Time	quantizer)	

	

Theoretically,	 the	 SNR	 of	 clock-less	 systems	 can	 be	 improved	 by	 reducing	 the	 time	

quantizer	(𝑇8),	which	depends	mainly	on	the	quantization	levels.	Therefore,	adding	the	

virtual	 three-quantization	 levels	 as	 discussed	 at	 the	 amplitude	 shifting	 block	 as	

previously	 discussed	will	 reduce	 the	 time	quantizer	 (𝑇8)	and	will	 thereby	 increase	 the	

accuracy	of	the	output	signal.	

4.8	Accumulator		

As	presented	above,	the	input	signal	has	been	duplicated	three	times	and	shifted	

by	 (∆/4),	 (∆/2),	 and	 (3∆/4).	 Those	 four	 signals	 have	 been	 injected	 into	 the	 CT-ADC	

system	 at	 the	 same	 time	 without	 any	 time	 delay.	 However,	 as	 they	 are	 shifted	 to	

different	 amplitudes,	 each	 input	 signal	 will	 cross	 the	 delta	 quantization	 levels	 at	 a	

different	time	according	to	the	input	signal	behaviors,	which	will	generate	four	change	

signals,	four	UP/Down	signals,	and	four	timer	signals	(∆𝑡).		

	
Figure	4.10:	Schematic	of	accumulator	blocks	

	

As	 shown	 in	 the	 Figure	 4.10,	 the	 block	 diagram	 of	 the	 CT-ADC	 has	 three	

accumulators	to	gather	the	four	signals	of	each	accumulator	block	to	one	output	signal	

that	represents	the	summation	of	the	signals	according	to	their	specific	amplitude	(∆𝑉)	
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and	 interval	time	(𝑇8).	As	the	main	goal	of	using	the	shifting	amplitude	of	 input	signal	

and	 accumulators	 is	 predicting	 the	 current	 change	 rapidly	 and	 achieving	 higher	

resolution.	 Figure	4.11	 shows	 the	difference	between	 the	Change	 signal	 generated	by	

using	the	input	signal	solely	and	the	Change	signal	by	using	the	three	amplitude	shifted	

signals	 along	with	 the	 input	 signal.	We	 can	 observe	 that	 in	 the	 former	 case	 only	 two	

Change	 signals	were	 generated	when	 applying	 the	 input	 signal	 only.	Whereas,	 in	 the	

later	case,	eight	Change	signals	resulted	from	applying	amplitude	shifted	input	signals.	

	

	
Figure	4.11:	Schematic	of	accumulator	blocks	

	

4.9	Digital	to	Analog	Converter	(DAC)	

As	discussed	in	the	last	subsection,	the	four	input	signals	(𝑉4t)	of	each	real	input	

signal	(𝑉4/+)	will	 be	 injected	 to	 the	 accumulator,	 and	 the	 accumulator	will	 gather	 the	

signals	according	to	their	internal	timer	to	represent	all	these	input	signals	as	only	one	

out	 signal.	 Then,	 the	 digital	 to	 analog	 converter	 will	 reconstruct	 the	 digitized	 output	

signal	from	the	accumulators	and	will	inject	it	into	the	wavelet	neural	network	system	to	

improve	the	signal	resolution.	
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Figure	4.12:	(a)	The	four	amplitude	signals						(b)	Digitalized	output	signal	

	

4.10	Quantization	Error	

	

			 	
Figure	4.13:	The	quantization	error	for	continuous-time	analog	to	digital	converter	

The	 quantization	 error	 signal	 is	 the	 error	 introduced	 as	 a	 result	 of	 the	

quantization	process.	Therefore,	the	amount	of	this	error	is	a	function	of	the	resolution	

of	the	quantizer.	The	quantization	error	is	uniformly	distributed	between	−1/2	LSB	and	

+1/2	 LSB,	 and	 it	 has	 been	 defined	 as	 the	 difference	 between	 the	 magnitude	 of	 the	

original	input	signal	and	the	magnitude	of	the	quantized	(reconstructed)	output	signal.		

Quantization	Error	e	(t)	=	x	(t)	-	xq	(t)	=	𝑰
𝒑𝑺𝒊𝒈𝒏𝒂𝒍

−	𝑫𝑨𝑪𝑺𝒊𝒈𝒏𝒂𝒍				(4.12)	

	

4.10.1 Bell and Sawtooth Shape 
The	quantization	error	has	a	combined	shape	between	bell-shape	and	sawtooth	

shape.	 The	 sawtooth-like	 error	 occurs	 during	 fast	 portions	 of	 the	 input	 when	

quantization	 levels	 are	 traversed	 quickly.	 The	 bell-shaped	 error	 occurs	 due	 to	 the	

shortage	of	quantization	 level	 to	cover	 the	highest	or	 lowest	point	of	 the	signal	peak.	

Also,	it	occurs	during	slowly	varying	portions	of	the	input	signal.	
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Figure	4.14:		Bell-	sawtooth	shape	[40]	

	

4.11	Adaptive	Resolution		

At	 this	 stage,	 the	 digitized	 signal	𝑉ÚÛÜ 	will	 be	 adapted	 digitally	 to	 get	 a	 better	

signal	resolution	by	using	the	quantization	error	of	the	 input	signal	 to	reconstruct	and	

modify	 the	𝑉ÚÛÜ 	for	 a	 better	 signal	 quality.	 	 The	 goal	 of	 adaptive	 resolution	 is	 to	

represent	the	𝑉ÚÛÜ 	on	twelve	bits	instead	of	eight	bits	by	adding	up	to	four	binary	bits	

using	the	quantization	error	e(t).	The	following	components	will	describe	the	method	of	

adapting	the	digitized	signal.	

	

4.12	Amplifier		

The	amplifier	block	is	put	after	the	subtractor	block	to	magnify	the	quantization	

error	signal	e(t)	to	be	on	the	same	scale	as	the	input	signal	𝑉4/+.	Amplifying	the	error	will	

help	 in	 studying	 the	 error	 of	 the	 signal	 and	 removing	 the	 glitches	 and	 improving	 the	

resolution	 of	 the	 output	 signal.	 The	 quantization	 error	 e(t)	 will	 be	 magnified	 to	 be	

equivalent	 to	 the	dynamic	 range	of	maximum	 input	 signal,	 according	 to	 the	 following	

equation.	

Amplified	Quantization	error	e	(t)	=	[quantization	error	e(t)		X		#	of	Comparators]	–	1													

(4.13)	
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The	 following	 figure	 shows	 the	 amplified	 quantization	 error	 signal	 in	 term	 to	 the	

digitalized	signal	𝑉ÚÛÜ.	

	

	
Figure	4.15:	Amplified	quantization	error	signal	

The	new	quantization	error	signal	after	amplification	has	the	same	amplitude	and	time	

duration	 of	 the	 reconstructed	 signal	𝑉ÚÛÜ,	and	 now	 it	 can	 be	 studied,	 compared,	 and	

combined	with	𝑉ÚÛÜ .	Therefore,	the	amplified	quantization	error	signal	and	the	digitized	

signal	𝑉ÚÛÜ 	will	be	converted	to	binary	code	to	combine	them	according	to	their	binary	

code	and	will	be	discussed	in	the	following	section.	

	

4.13	Decimal	to	Binary	/	Binary	to	Decimal		

For	any	digital	hardware,	values	are	stored	in	binary	numbers	with	a	fixed-length	

sequence	 of	 bits	 (1's	 and	 0's).	 Binary	 numbers	 can	 be	 stored	 in	 many	 data	 formats	

including	fixed-point	and	floating-point	data	types	depending	on	the	technique	and	the	

application	for	which	it	will	be	used.	In	this	section,	we	will	illustrate	the	methodology	of	

converting	 the	 amplified	 quantization	 noise	 error	 and	 digitized	 signal	𝑉ÚÛÜ 	to	 binary	

code.	 Hence,	 the	 scale	 range	 of	 the	 input	 signal	 is	 always	 less	 than	 one	 volt	 that	

processes	 the	 digitalized	 signal	𝑉ÚÛÜ 	and	 amplified	 quantization	 noise	 into	 a	 fraction	

values	with	negative	or	positive	sign.	So,	we	will	use	a	non-uniformed	signed	fixed-point	

to	convert	the	fraction	decimal	numbers	to	binary	code	[41].	
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Figure	4.16:	Binary	word	length	for	non-uniformed	signed	fixed-point	

	

In	this	work,	the	decimal	value	is	converted	to	an	eight	bit	binary	code.	We	use	the	first	

bit	to	characterize	the	sign	(1	for	negative,	0	for	positive),	and	the	remaining	seven	bits	

are	used	for	the	fraction,	as	the	entire	input	signals	are	always	fractions	(between	1	and	

-1).	 Therefore,	 this	 pattern	 will	 be	 the	 best	 usage	 for	 the	 number	 of	 bits	 in	 our	

continuous	 time	 system.	 The	 following	 example	will	 show	 the	 calculation	of	 this	 non-

uniformed	technique	of	signed	fixed-point	to	convert	the	fraction	value	to	binary	code.	

	

For	example,	the	decimal	value	(0.3957)	will	be	converted	to	binary	as	follows:	

Bit	1=	Positive	Number	 	 		 	 à	bit1	=	0	(MSB)	

Bit	2	=	0.3957	/0.5	=	0.7914	<	1	 	 	 à	bit2	=	0		

Bit	3=	0.7914/0.5	=	1.5828	>	1	 	 	 à	bit3	=	1	

Bit	4=	[(1.5828	-1)	=	0.5828]	/0.5	=	1.1656	>	1	 à	bit4	=	1	

Bit	5=	[(1.1656	-1)	=	0.1656]	/0.5	=	0.3312	<	1	 à	bit5	=	0	

Bit	6=	0.3312	/0.5	=	0.6624	<	1	 	 	 à	bit6	=	0	

Bit	7=	0.6624	/0.5	=	1.3248	<	1	 	 	 à	bit7	=	1	

Bit	8=	[(1.3248	-1)	=	0.	3248]	/0.5		=	0.6496	<	1	 à	bit8	=	0	(LSB)	

Thus,	the	decimal	value	(0.3957)	will	be	represented	in	binary	code	as	00110010	
	

	

	
Figure	4.17:	The	fraction	value	of	each	binary	bit	
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To	reconstruct	the	decimal	fraction	number	again,	we	will	follow	the	reverting	method	

to	convert	 the	binary	code	to	decimal	 fraction	number	by	multiplying	 the	binary	code	

(1's	and	0's)	times	the	fraction	value	of	each	bit.		As	we	use	8	bit	binary	code,	assigning	

the	first	bit	to	sign	indication	(positive	or	negative),	only	the	remaining	7	bits	will	have	

the	following	fraction	values		2R
Ý
Ý	, 2R

Ý
Þ	,	2R

Ý
ß	,	2R

Ý
à	,			2R

Ý
á	,	2R

Ý
â	,	and		2R

Ý
ã.	

	

The	reconstructed	decimal	fraction	value	of	the	previously	obtained	00110010	will	be:	

00110010 = 	0	𝑥	2R
Ý
Ý + 1	𝑥	2R

Ý
Þ 	+	1	𝑥	2R

Ý
ß 	+	0	𝑥	2R

Ý
à	 	+	0	𝑥 	 	2R

Ý
á 	+	1	𝑥 	2R

Ý
â 	+	0	x	2R

Ý
ã 		 =	

0.3906		

	

As	shown	in	the	prior	example,	the	original	number	value	was	0.3957,	but	the	restored	

value	 of	 8	 bit	 signed	 fixed-point	 is	 0.3906.	 In	 conclusion,	 the	 number	 of	 bits	 always	

affects	 the	 reassembled	value,	and	 the	extra	number	of	bits	 representing	 the	decimal	

number;	the	more	precise	resolution	will	be	the	restored	value.			

4.14	Shifting,	Combining,	Module			

Subsequently,	 the	 digitized	 signal	 and	 the	 quantization	 error	 have	 been	

converted	to	binary;	the	quantization	error	will	be	shifted	6	bits,	and	combined	with	the	

digitized	 signal	 to	 represent	 the	 combined	 digitized	 signal	 in	 12	 bits	 to	 improve	 the	

signal	quality	of	the	restored	signal.		

	
	

Figure	 4.18:	 Combining	 digitalized	 signal	 and	 quantization	 error
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Chapter 5 
	

Simulation	Results		

In	 this	 chapter,	 the	 performance	 metrics	 are	 described	 then	 the	 simulation	 of	 the	

proposed	system	in	MATLAB	is	detailed.		

5.1	ADC	Performance	Metrics	

Performance	 metrics	 are	 used	 to	 compare	 and	 characterize	 the	 CT-ADCs’	

performance.	In	order	to	achieve	a	reasonable	and	consistent	comparison,	much	effort	

is	being	devoted	to	the	standardization	of	methods	to	measure	and	characterize	the	CT-

ADC’s	performance	in	this	work.	The	performance	metrics	are	often	divided	into	static	

and	dynamic.	While	static	metrics	are	analyzed	in	the	time	domain,	dynamic	metrics,	on	

the	other	 hand,	 are	 analyzed	 in	 the	 frequency	domain.	Although	 there	 are	 numerous	

performance	metrics,	the	amount	and	type	of	metrics	used	for	a	particular	CT-ADC	often	

depend	on	the	application	and	context	the	ADC	is	employed.	Therefore,	metrics	that	are	

relevant	to	the	specific	application	and	target	of	continuous-time	ADC	are	used	here	to	

compare	the	proposed	design	against	previously	published	works.	The	metrics	used	are	

Signal	to	Noise	Ratio	(SNR),	Signal	to	Noise	and	Distortion	Noise	(SINAD),	Spurious-Free	

Dynamic	Range	(SFDR),	Signal	to	Quantization	Noise	Ratio	(SQNR),	and	Effective	Number	

of	 Bits	 (ENOB).	 All	 basic	 performance	 metrics	 along	 with	 the	 specific	 performance	

metrics	that	have	been	used	throughout	this	work	are	presented	next	[42]-[43].		

 

5.1.1 Dynamic Range (DR) 
The	input	dynamic	range,	sometimes	just	called	dynamic	range,	is	the	range	of	the	input	

signal	 that	 can	 be	 consistently	measured	 simultaneously.	 For	 an	 input	 signal	 digitized	

into	an	n-bit	output	 (resolution	of	n),	 the	 largest	output	code	 is	2t-1	and	the	smallest	

output	code	would	be	greater	than	0	[10], [42], [44].	Thus,	the	dynamic	range	is	usually	

expressed	(in	dB)	by 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐	𝑅𝑎𝑛𝑔𝑒	(𝐷𝑅)3A = 	20	𝑙𝑜𝑔 (2t − 1)				 	 (5.1)	
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DR	particularly	 expresses	 the	ability	 to	measure	 small	 signals	 in	 the	presence	of	 large	

signals	accurately.	Therefore,	it	is	an	important	parameter	of	any	measurement	system.	

It	also	can	be	defined	as	the	ratio	of	the	largest	(maximum)	input	signal	to	the	smallest	

possible	 input	 signal	 (highest	 harmonic	 or	 peak	 noise	 floor)	 that	 can	 be	 resolved.	

Moreover,	 dynamic	 range	 classifies	 the	 range	 of	 input	 signal	 amplitudes	 that	 can	 be	

consistently	converted	at	a	specified	accuracy,	expressed	as	the	maximum	ratio	of	the	

two	 signal	 levels.	 Considering	 the	 presence	 of	 noise	 floor,	 the	 peak	 amplitude	 of	 the	

noise	floor	restricts	the	minimum	amplitude	of	a	signal	present	at	the	ADC	input,	which	

allows	detecting	the	presence	of	this	signal	in	the	ADC	output	spectrum.	The	following	

table	presents	the	expected	dynamic	range	of	various	values	of	resolution	(bits).	

	

Table	5.1:	Table	of	the	expected	dynamic	range	for	WNN	system	

Resolution	(bits)	 Dynamic	Range	(dB)	

3	 16.9020	dB	

4	 23.5218	dB	
5	 29.8272	dB	
6	 35.9868	dB	
7	 42.0761	dB	
8	 48.1308	dB	
9	 54.1684	dB	
10	 60.1975	dB	
11	 66.2224	dB	
12	 72.2451	dB	

	

5.1.2 Total Harmonic Distortion (THD) 
Total	 harmonic	 distortion	 presents	 an	 indication	 of	 a	 circuit’s	 linearity	 in	 terms	 of	 its	

effect	on	the	harmonic	content	of	a	signal.	In	the	ideal	case,	the	pure	sine	wave	has	one	

frequency	 component,	 and	 a	 complex	 signal	 such	 as	 speech	 or	 music	 has	 multiple	

frequency	components.	The	nonlinearities	such	as	the	converter’s	transfer	function	will	

produce	 harmonics	 that	 were	 not	 present	 in	 the	 original	 signal.	 In	 summary,	 THD	

returns	the	real-valued	sinusoidal	signal	in	dB.	
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The	THD	 is	defined	as	 the	ratio	of	 the	total	 root	mean	square	 (RMS)	of	 the	 first	given	

number	of	harmonic	components	(the	RMS	sum	of	the	amplitudes	of	the	harmonics)	to	

the	amplitude	of	the	fundamental	

 

THD	=		îïð		ðñ²	»<	¾?:²»t4ò5
îïð	»<	<ñt3?²;tó?ô	

  = õöÞÞz	õößÞz⋯õöøÞ

õöÝÞ
 

THD3û = 	10	log	ÿ!Þ
Þz	ÿ!ß

Þz⋯ÿ!"
Þ

ÿ!Ý
Þ    (5.2)	

Where	𝑉<- is	the	fundamental	amplitude, 𝑉<. is	the	second	harmonic	amplitude.	

	

As	 a	 practical	matter,	 there	 is	 no	 completely	 linear	 input	 to	 output	 transfer	 function.	

This	nonlinearity	 leads	to	output	distortion.	As	the	 input	signal	 increases	 in	amplitude,	

the	output	grows	into	more	and	more	distorted.	As	a	result,	the	distortion	increases	as	

the	input	amplitude	increases.	Therefore,	THD	performance	reduces	with	increasing	the	

input	 frequency	because	 the	effects	of	 jitter	get	worse	as	 the	 input	circuitry	becomes	

slew	limited. 

 

5.1.3 Signal to Noise Ratio (SNR):  
Signal-to-noise	ratio	(SNR)	 is	a	non-standardized	measure	of	the	dynamic	performance	

of	an	ADC.	In	this	work,	it	is	defined	as	the	ratio	of	the	output	RMS	signal	amplitude	(the	

full	 scale	 -FS)	 to	 the	 RMS	 value	 of	 the	 noise	 spectrum	 including	 all	 non-fundamental	

spectral	 components	 without	 the	 fundamental	 signal	 itself,	 the	 harmonics,	 and	 DC	

component.	The	SNR	usually	degrades	as	frequency	 increases	because	the	accuracy	of	

the	 comparator(s)	 within	 the	 ADC	 degrades	 at	 higher	 input	 slew	 rates.	 This	 loss	 of	

precision	shows	up	as	noise	at	the	ADC	output.	

	

𝐒𝐍𝐑𝐝𝐛 = 𝟐𝟎 𝐥𝐨𝐠( 𝐑𝐌𝐒	𝐯𝐚𝐥𝐮𝐞	𝐨𝐟	𝐅𝐒	𝐢𝐧𝐩𝐮𝐭
𝐑𝐌𝐒	𝐯𝐚𝐥𝐮𝐞		𝐨𝐟		𝐪𝐮𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧	𝐧𝐨𝐢𝐬𝐞

	) = 𝟏𝟎 𝐥𝐨𝐠(%
Þ
𝐬𝐢𝐠𝐧𝐚𝐥

%Þ𝐍𝐨𝐢𝐬𝐞
	)	=	𝟏𝟎 𝐥𝐨𝐠(𝐏𝐬𝐢𝐠𝐧𝐚𝐥

𝐏𝐍𝐨𝐢𝐬𝐞
)				(5.3)	

	

Where		𝜎	is	the	variance,	and	P	is	the	power.		
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In	any	ADC,	 the	noise	has	 four	 sources:	 (1)	quantization	noise,	 (2)	noise	generated	by	

the	 converter	 itself,	 	 (3)	 jitter,	 and	 (4)	 application	 circuit	noise.	 The	application	 circuit	

noise	is	that	noise	observed	by	the	converter	because	of	the	way	the	circuit	is	designed	

and	laid	out.	The	fourth	source	of	noise;	the	jitter,	is	not	applicable	in	a	CT-ADC,	as	it	is	a	

clock-less	system	that	has	no	jittering	or	aliasing.		The	SNR	performance	increases	with	

increasing	input	amplitude	until	the	input	signal	approaches	full	scale.	Then,	increasing	

the	 input	 signal	 amplitude	 by	 1	dB	 would	 cause	 an	 equal	 1	dB	 increase	 in	 SNR.	 As	 a	

result,		the	step	size	turns	into	a	smaller	part	of	the	total	signal	amplitude	as	the	signal	

amplitude	increases.	On	the	other	hand,	if	jitter	exists,	the	SNR	performance	decreases	

at	higher	input	frequencies	because	the	effects	of	jitter	get	worse.	

	

5.1.4 Signal-to-Noise and Distortion (SINAD) 
This	performance	metric	can	be	called	signal-to-noise	and	distortion	(SINAD)	or	

signal-to-noise	and	distortion	ratio	(SNDR),	or	signal-to-noise	plus	distortion	(S/N+D).	It	

is	a	combination	of	the	SNR	and	the	THD	specifications.	It	is	defined	as	the	RMS	value	of	

the	 output	 signal	 to	 the	 RMS	 value	 of	 all	 the	 other	 spectral	 components,	 including	

harmonics	but	excluding	dc,	and	can	be	calculated	from	SNR	and	THD	according	to	the	

following	formula		

𝐒𝐈𝐍𝐀𝐃𝐝𝐛 = 	𝟏𝟎	𝐥𝐨𝐠	[ 𝟏

𝟏𝟎
�𝐒𝐍𝐑
𝟏𝟎 	z		𝟏𝟎

�𝐓𝐇𝐃
𝟏𝟎
]				 (5.4)	

Thus,	 it	 can	 be	 defined	 as	 the	 ratio	 of	 signal	 power	 to	 the	 total	 noise	 power	 plus	

spurious	harmonics	power	at	 the	output	when	 the	 input	 is	a	 sinusoid.	These	 spurious	

harmonics	are	those	caused	by	circuit	non-linearity.	

𝐒𝐈𝐍𝐀𝐃 =	 𝐏𝐒𝐢𝐠𝐧𝐚𝐥
𝐏𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧	𝐞𝐫𝐫𝐨𝐫z	𝐏𝐝𝐢𝐬𝐭𝐨𝐫𝐭𝐢𝐨𝐧	z	𝐏𝐫𝐚𝐧𝐝𝐨𝐦	𝐧𝐨𝐢𝐬𝐞

				(5.5)	

Where, P for	 the	 average	 power	 of	 the	 signal,	 quantization	 error,	 random	 noise	 and 

distortion	components	[45]	are	used	in	the	equation.	In	Summary,	SINAD	measures	the	

ADC	 dynamic	 performance	 because	 it	 compares	 all	 undesired	 frequency	 components	

with	the	input	frequency,	as	it	is	the	ratio	of	the	total	received	power.	
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5.1.5 Spurious-Free Dynamic Range (SFDR) 
Spurious-Free	Dynamic	Range	(SFDR)	is	the	difference	between	the	magnitude	of	

the	fundamental	signal	and	the	magnitude	of	the	largest	harmonic	or	strongest	spurious	

signal	(in	dB).	Thus,	 it	 is	defined	as	the	ratio	of	the	RMS	value	of	the	carrier	frequency	

(maximum	 signal	 component)	 at	 the	 input	 signal	 of	 the	ADC	 to	 the	RMS	 value	of	 the	

harmonic	distortion	component	or	the	largest	noise	(which	is	referred	to	as	“spurious”	

or	 a	 “spur”)	 at	 its	 output.	While	 the	 SFDR	 is	 expressed	 in	dB	 below	 the	 fundamental	

signal,	 it	 is	 sometimes	 expressed	 in	 negative	 dB.	 Although	 it	 is	 a	 range,	 it	 should	 be	

expressed	in	positive	dB	[46].	

𝐒𝐅𝐃𝐑𝐝𝐛 = 𝟐𝟎 𝐥𝐨𝐠𝟏𝟎(
𝐅𝐮𝐧𝐝𝐚𝐦𝐞𝐧𝐭𝐚𝐥

𝐇𝐢𝐠𝐡𝐞𝐬𝐭	𝐒𝐩𝐮𝐫𝐢𝐨𝐮𝐬
)		 (5.6)	

	

	

5.1.6 Signal-to-Quantization-Noise Ratio (SQNR)  
In	 the	 clock-less	 ADC,	 the	 non-uniformed	 samples	 (emblem),	 consist	 of	 two	

parameters;	time	quantizer	(𝑇8)	,	which	represents	the	resolution	in	time	and	the	delta	

space	 level	 (∆ ),	 which	 represents	 the	 amplitude.	 Both	 parameters	 create	 the	

reconstructed	 digitized	 signal.	 The	 reconstructed	 output	 signal	 is	 compared	 to	 the	

original	input	signal	by	calculating	the	signal-to-quantization-noise	ratio.	Therefore,	The	

SQNR	is	a	non-standardized	measure	of	the	maximum	achievable	dynamic	performance	

of	an	ADC.	It	is	given	by	the	ratio	between	the	RMS	signal	amplitude	and	the	RMS	value	

of	the	spectral	components,	generated	by	the	quantization	noise.	The	amplitude	of	the	

quantization	 noise	 decreases	 as	 resolution	 increases	 because	 the	 size	 of	 an	 LSB	 is	

smaller	 at	 higher	 resolutions,	 which	 reduces	 the	maximum	 quantization	 error,	 and	 is	

expressed	in	dB	as	in	the	following	formula.		

	

𝐒𝐐𝐍𝐑𝐝𝐛 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎(
𝐏𝐬𝐢𝐠𝐧𝐚𝐥
𝐏𝐍𝐨𝐢𝐬𝐞

) = 	𝟏𝟎 𝐥𝐨𝐠𝟏𝟎(
𝐑𝐌𝐒𝐬𝐢𝐠𝐧𝐚𝐥

𝐑𝐌𝐒𝐪𝐮𝐚𝐧𝐭𝐢𝐳𝐚𝐭𝐢𝐨𝐧	𝐧𝐨𝐢𝐬𝐞
)𝟐		 	(5.7)	
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5.1.7 Effective Number of Bits (ENOB): 
The	effective	number	of	bits,	or	ENOB,	 is	a	 specification	 that	helps	 to	quantify	

the	ADC	dynamic	performance.	ENOB	states	that	the	converter	performs	as	if	it	were	a	

theoretically	perfect	converter	with	a	resolution	of	ENOB.	Thus,	 if	the	ENOB	is	7.5	bits	

that	mean	the	converter	performs,	as	far	as	SNDR	is	concerned,	as	if	it	were	an	ideal	7.5	

bit	 ADC.	 So,	 the	 number	 of	 effective	 bits	 is	 another	 method	 of	 specifying	 SNDR.	 It	

illustrates	that	the	converter	is	equivalent	to	a	perfect	ADC	of	this	ENOB	number	of	bits.	

The	following	equation	can	calculate	the	ENOB		

	
ENOB	=	(𝐒𝐍𝐃𝐑𝐝𝐛R	𝟏.𝟕𝟔	𝐝𝐁)	

𝟔.𝟎𝟐	𝐝𝐁
			 	 		 	 	 (5.8)	

	
ENOB	 specifies	 the	 dynamic	 performance	 of	 the	 clock-less	 ADC	 at	 a	 specific	 input	

frequency	 and	 resolution	 ratio,	 it	 degrades	 as	 frequency	 increases	 and	 as	 input	 level	

decreases	for	the	same	reasons	that	THD	and	SNR	degrade	with	frequency	increase,	and	

it	 improves	 as	 input	 level	 increases.	 	 There	 are	 two	 main	 calculations	 for	 the	 ENOB	

value.	One	 is	based	on	 the	SINAD	(THD	and	SNR),	and	 the	other	one	 is	based	only	on	

SQNR.	Here,	the	more	common	method	of	basing	the	ENOB	value	on	the	SINAD	is	used.	

Compared	to	a	calculation	that	uses	only	SQNR	the	figure	will	be	worse.			 	

	

5.1.8 Resolution Ratio (R) 
In	the	conventional	ADC	system,	the	input	signal	is	sampled	at	precise	time	periods,	and	

the	signal	amplitude	is	estimated	by	the	digital	value,	which	leads	to	quantization	noise	

due	to	the	variability	in	the	amplitude	estimation.	Therefore,	the	SNR	will	be	expressed	

as	a	function	of	the	number	of	bits	(N).	SNR=6.02	N+1.76.	However,	the	continuous	time	

ADC	is	sampled	by	a	signal	crossing	the	threshold	delta	modulation	levels	(quantization	

levels),	which	signifies	that	the	time	between	two	consecutive	samples	is	indefinite	and	

that	the	quantization	noise	is	moved	from	amplitude	to	time.	As	the	time	between	two	

consecutive	crossings	is	equal	to	N	𝑇8,	where	N	is	the	integer	number	of	non-uniformed	

sampled	emblem.	The	R	is	variable	across	the	input	signal	according	to	the	quantization	

time.	The	equation	of	the	resolution	ratio	is		
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𝑹 =	 𝟏
𝑻𝒒	𝒇𝒊/𝒑

		 	 	 	 	 	 	 (5.9)	

Where	𝑓4/+	is	the	input	signal	frequency.	

	

As	proven	in	[47],	[48],	the	SNR	of	the	level-crossing	ADC	depends	only	on	the	resolution	

ratio.	

SNR	=	20	log	R-	14.2		 	 	 	 	 	 	(5.10)	 	

R=	𝟏𝟎
𝐒𝐍𝐑0𝟏𝟒.𝟐

𝟐𝟎 		 	 	 		 		 	 	 (5.11)	

Where	𝑅	is	the	Resolution	ratio.	

	

5.2	Simulation	for	CT-	ADC	Using	MATLAB	

The	new	clock-less	system	using	wavelet	neural	network	presented	in	this	work	

is	simulated	in	MATLAB	to	study	its	characteristics	after	each	stage	to	demonstrate	the	

consecutive	 signal	 improvement.	 	 In	 the	 following	 subsections,	 one	 sinusoidal	 input	

signal	 (1Hz)	 is	 applied	with	 a	 signal	 resolution	 0.1µs	 (100	 ns)	 to	 each	 stage	 of	 a	 4-bit	

clock-less	 ADC	with	 16	 quantization	 noise	 levels	 (presented	 in	 Chapter	 4,	 Figure	 4.1).	

The	input	signal	is	1	volt	(±	0.5	volt).	

		

5.2.1 Clock-less ADC (Delta Modulation) 
Converting	analog	to	a	digital	signal	using	delta	modulation	is	the	core	stage	in	creating	

a	continuous-time	converter.	At	 this	 stage,	a	 sinusoidal	 input	 signal	 (Vi/p)	 is	applied	 to	

the	 comparators	 to	be	 compared	 to	 the	 (Vref).	 The	output	of	 comparators	 is	 then	 fed	

into	the	control	 logic	and	digital	 logic	blocks,	which	build	the	delta	modulation	output	

signal	 (VDM).	 The	VDM	 is	 converted	 to	 analog	 signal	 again,	which	 is	 called	Vref,	 using	 a	

digital	to	analog	converter.	The	Vref	is	the	reference	signal	for	the	next	input	signal.		
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Figure	5.1:	Block	diagram	of	delta	modulation	ADC	

	

The	output	signal	of	the	delta	modulation	ADC	(VDM)	 is	a	digital	continuous	time	signal	

that	is	discrete	in	amplitude	and	continuous	in	time.	The	VDM	is	not	smooth	in	shape	and	

has	high	quantization	noise	error.	The	quantization	error	is	calculated	by	subtracting	the	

output	signal	 from	the	 input	signal,	 it	has	a	bell-sawtooth	shape,	and	 its	peak-to-peak	

amplitude	is	equal	to	one	delta	modulation	level	(1	LSB)	as	shown	in	Figure	5.2.	It	shows	

the	sinusoidal	input	signal	(Vi/p)	and	the	output	signal	of	delta	modulation	(VDAC)	and	the	

quantization	error	between	the	input	signal	and	VDAC.	

	

	
Figure	5.2:	Simulation	of	clock-less	ADC	using	delta	modulation	for	1	Hz	
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The	total	number	of	quantization	levels	of	4	bits	is	(24)	=	16	levels.	In	many	references	

like	[5],	[7],	the	authors	used	15	levels	(24-	1),	for	the	4	bits	ADC,	to	align	the	mid-tread	

quantizer.	In	other	words,	aligning	the	quantization	levels	around	the	zero-input	can	be	

achieved	by	keeping	odd	symmetry	quantization	levels	around	the	zero-input.	However,	

in	 this	 proposal,	 all	 16	 levels	 are	 used	 for	 two	 reasons.	 First,	 the	 offset	 amplitude	

shifting	will	 shift	 the	 input	 signal	 in	 one	 direction	 (-∆/4,	 -∆/2,	 and	 -3*	∆/4)	 as	will	 be	

discussed	 in	 (section	 5.2.2).	 Second,	 the	 aim	 of	 this	 work	 is	 to	 improve	 the	 signal	

resolution,	and	using	this	extra	level	increases	the	signal	resolution.	As	shown	in	Figure	

5.2,	16	quantization	levels	are	used,	seven	above	the	zero-input	and	eight	levels	under	

the	zero-input.	The	output	signal	is	then	normalized	to	fit	the	input	signal.	

	

The	 ENOB	 for	 delta	modulation	 ADC	 output	 signal	 (VDM)	 is	 3.2	 bits,	 and	 the	 SQNR	 is	

19.68	 dB.	 Thus,	 the	 SNDR	 is	 20.90	 dB,	 and	 SFDR	 is	 23.67	 dB.	 These	 results	 can	 be	

increased	to	approach	high	resolution	by	using	adaptive	resolution	as	will	be	discussed	

in	the	next	stage.		

	

5.2.2 Clock-less ADC Adaptive Resolution 
As	discussed	previously,	delta	modulation	can	track	the	input	signal	only	when	it	crosses	

the	quantization	levels,	and	the	signal	behavior	cannot	be	detected	or	traced	between	

any	 two	 consecutive	 quantization	 levels.	 This	 fact	 limits	 the	 resolution	 of	 the	 output	

signal.	 Therefore,	 it	 is	 decided	 to	 duplicate	 the	 input	 signal	 by	 shifting	 the	 amplitude	

three	 times,	 each	 time	 by	 -∆/4.	 Then,	 all	 the	 four	 signals	 are	 applied	 to	 the	 delta	

modulation	 to	 predict	 and	 interpolate	 the	 signal	 activities	 between	 the	 quantization	

levels.	 The	 fixed	 time	 delay	 between	 the	 input	 signal	 and	 its	 duplication	 signals	 is	

assumed	 ideal	 and	 negligible,	 as	 the	 digital	 logic	 accumulator	 and	 control	 logic	

accumulator	can	adjust	this	time	delay	for	the	output	signal	(Vref).	Figure	5.3	shows	the	

input	signal	and	its	duplication	signals.	
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Figure	5.3:	Simulation	of	input	signal	and	amplitude	shifted	signal		

	

At	 this	 stage,	 the	 adaptive	 resolution	 is	 used	 to	 enhance	 the	 signal	 quality	 of	 VDM	 by	

duplicating	 the	 input	 signal	 three	 times	and	 shifting	 the	 signal	 in	amplitude	by	 -∆/4,	 -	

∆/2,	 and	 -	 3*	∆/4	 consequently.	 The	 shifting	 is	 in	 negative	 amplitude	 from	 zero-input	

level.	 Thus,	 the	 duplicated	 signals	 are	 cutting	 at	 -0.5	 volt	 because	 of	 the	 input	 signal	

range	(±	0.5	volt).	These	amounts	of	signal	shifting	will	guarantee	that	those	four	signals	

will	 never	 cross	 any	 quantization	 level	 at	 the	 same	 time,	 which	 means	 that	 each	

comparator	will	detect	four	signals	with	different		𝑇8	when	the	level	is	crossed.		

	
	

	
Figure	5.4:	Simulation	of	the	delta	modulation	for	amplitude	shifted	signal	
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The	four	signals	pass	the	same	quantization	levels	at	different	times	according	to	their	

shifting	and	in	fact,	result	in	four	VDM	duplicated	in	shape	but	shifted	in	time.	The	four	

output	 VDM	 are	 then	 encoded	 by	 the	 CT	 change	 detector	 block,	 which	 analyzes	 each	

offset	 signal	 according	 to	 their	𝑇8	The	 input	 sinusoidal	 signal	 and	 the	 four	output	VDM	

are	shown	in	Figure	5.4.	The	goal	of	this	procedure	is	to	increase	the	quantization	levels	

by	 dividing	 each	 delta	modulation	 level	 to	 four	 virtual	 quantization	 levels,	 which	will	

increase	 the	 sixteen	 levels	 crossing	 (delta	modulation	 levels)	 to	 sixteen	physical	 levels	

crossing	 in	 addition	 to	 another	 forty-eight	 virtual	 crossing	 levels.	 The	 total	 sixty-four	

levels	(physical	and	virtual)	increase	the	resolution	of	the	output	signal	from	4	bits	to	6	

bits	according	to	Table	4.1.		

	

	
Figure	5.5:	Theory	of	operation	for	accumulator	block	

(Blue	 lines):	 Virtual	 quantization	 levels,	 (Black	 lines):	 Physical	 quantization	 levels,	 (Red	 lines):	

input/output	signals	

	

Figures	5.5,	shows	the	theory	of	operation	for	a	CT	change	detector	block,	which	acts	as	

an	intelligent	accumulator,	as	each	delta	modulation	step	is	divided	into	four	with	three	

new	levels	with	different	amplitudes	(blue	lines).	In	the	figure,	the	input/output	signals	

are	 plotted	 versus	 time	 quantizers	𝑇8-,	𝑇8.,	𝑇80,	 	𝑇81.	 It	 is	 clear	 in	 the	 figure	 that	 the	
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input	 signal	 must	 cross	 the	 virtual	 level	 at	 certain	𝑇8	intervals	 to	 be	 detected	 at	 the	

intelligent	accumulator.	

	

At	 the	 top	 left	 graph	 of	 Figure	 5.5,	 the	 input	 signal	 does	 not	 cross	 any	 of	 the	 three	

virtual	delta	modulation	 steps	during	 the	corresponding	 time	quantizer	 intervals.	As	a	

result,	the	output	signal	formed	has	no	amplitude	changes	between	𝑇8-	and	𝑇80	and	the	

amplitude	changed	only	at	𝑇81	when	the	 input	signal	crossed	the	physical	quantization	

levels.	 Similarly,	 in	 the	 top	 right	graph,	 the	 input	 signal	passes	neither	 the	 first	 virtual	

level	∆ 4		nor	the	third	virtual	level	
3∆

4		during	the	assigned	time	intervals.	As	a	result,	

the	output	 signal	 recorded	 amplitude	 changes	 only	 at	𝑇8.	and	 at	𝑇81.	 The	bottom	 left	

figures	go	through	similar	scenarios.	The	best	case	is	shown	in	the	bottom	right	graph,	

when	the	input	signal	crosses	the	physical	and	virtual	 levels	at	the	corresponding	time	

quantizer	 intervals	 resulting	 in	 the	 output	 with	 the	 best	 resolution	 among	 all	 four	

outputs.	In	summary,	these	virtual	levels,	caused	by	shifting	the	input	signal	amplitude,	

improve	the	signal	tracking	between	any	two	consequence	physical	quantization	levels.		 

	

	
Figure	5.6:	Block	diagram	of	delta	modulation	ADC	with	amplitude	shifting	

	

The	 output	 signal	 of	 delta	modulation	 ADC	with	 amplitude	 shifting	 is	 then	 converted	

back	to	an	analog	signal,	which	is	called	Vref,	using	a	digital	to	analog	converter.	The	Vref	

generated	after	inducing	the	virtual	quantization	level	has	a	lower	quantization	error		
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noise,	 which	 is	 variable	 and	 depends	 on	 the	 slope.	 In	 the	 best-case	 scenario,	 the	

quantization	 error	 noise	 peak-to-peak	 amplitude	 is	 equal	 to	∆ 4.	 Thus,	 the	 signal	

resolution	of	Vref	with	virtual	quantization	 levels	 is	better	 than	 that	of	Vref	 reproduced	

from	 the	 delta	modulation	 output	 signal	VDM.	 	 Figure	 5.7	 shows	 the	 sinusoidal	 input	

signal	 Vi/p,	 and	 the	 output	 signal	 of	 amplitude	 shifted	 delta	 modulation	 Vref	 and	 the	

quantization	error	between	the	input	signal	Vi/p,	and	Vref.	

	

	

The	 results	 of	 the	MATLAB	 simulation	 for	 the	 same	 input	 achieved	 improvements	 in	

signal	resolution	with	SQNR,	SNDR,	and	SFDR	achieving	20.76.68	dB,	32.94	dB,	and	36.99	

dB	 respectively.	 ENOB	achieved	a	 significant	progress	 and	 increased	 from	3.18	bits	 to	

5.18	 bits	 with	 shifted	 amplitude	 signal	 Vref.	 This	 variable	 resolution	 is	 not	 fixed	 and	

depends	 on	 the	 slope	 of	 the	 input	 signal	 and	 signal	 behaviors	 between	 the	 physical	

quantization	 levels.	However,	 the	 two	bit	 improvement	 is	 the	maximum	achievement	

with	the	best-case	behavior	of	input	signal.	

	

Figure	5.7:	Simulation	of	clock-less	ADC	using		delta	modulation	with	amplitude	shifting	for	1	Hz	
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5.2.3 Combining Quantization Error with CT- Signal 
In	this	stage,	the	Vref	which	resulted	from	the	amplitude	shifted	delta	modulation	ADC	is	

used	for	a	third	improvement	of	the	signal	resolution.	This	improvement	is	achieved	by	

subtracting	 the	Vref	 from	 the	VI/P	 to	 compute	 the	quantization	noise	 of	Vref.	Next,	 the	

quantization	error	is	amplified	to	magnify	the	errors,	then	digitized	using	the	same	basic	

delta	modulation	block,	and	then	encoded	to	binary	code	to	combine	the	continuous-

time	signal	(Vref)	with	quantization	noise.	The	combination	occurs	by	replacing	the	LSB	of	

Vref	with	the	most	significant	bits	(MSB)	of	the	quantization	noise	signal,	plus	shifting	the	

quantization	noise	 to	 increase	 the	number	of	 bits	 that	 represent	 the	 combined	 signal	

(VCombined)	as	detailed	in	Section	4.14.		

	

	
Figure	5.8:	Block	diagram	of	combined	signal	(VCombined	)		

	

This	stage	improves	the	signal	resolution	and	reduces	the	quantization	noise	of	the	saw-

tooth	 shape	 from	 (∆ 4)	 to	 (
∆
8).	 This	 improvement	 is	 considerable	 because	 most	

important	data,	especially	in	continuous-time	systems	and	burst-like	signal	applications,		

are	usually	 reconstructed	 into	a	saw-tooth	shape.	Figure	5.9,	shows	the	sinusoidal	Vi/p	

and	the	VCombined	and	the	quantization	error	between	Vi/p	and	VCombined.	



 71 

	
Figure	(5.9):	Simulation	of	clock-less	ADC	combined	output	signal	(VCombined	)	for	1	Hz	

	

The	MATLAB	 simulation	 did	 not	 record	 significant	 enhancement	 of	 the	 signal	 quality	

because	bell-shaped	quantization	error	is	already	included	in	all	calculations.	Therefore,	

SQNR,	SNDR,	and	SFDR	recorded	26.18	dB,	36.35	dB,	and	43.35	dB	respectively.	ENOB	

has	achieved	a	small	increase	from	5.18	bits	to	5.74	bits.	

	

5.2.4 Clock-less ADC using WNN 
In	the	last	stage	of	the	proposed	clock-less	ADC,	the	wavelet	neural	network	is	applied	

to	boost	 the	 resolution	of	VCombined	even	more.	VCombined	 is	 the	 input	signal	X(t)	 for	 the	

WNN	system	and	is	to	be	processed	to	reach	the	desired	output	signal	d(t)	with	minimal	

E(t).	 The	minimal	 E(t)	 is	 less	 than	 or	 equal	 to	 the	 value	 of	 the	 signal	 resolution.	 For	

example,	if	the	signal	resolution	is	one	µsec,	then	the	WNN	will	keep	running	until	the	

minimal	error	E(t)	<=one	µsec.		The	d(t)	is	the	Vi/p	with	a	time	shift	delay.	The	time	shift	

delay	is	a	fixed	time	equal	to	the	processing	time	for	clock-less	ADC	stages	starting	from	

applying	the	Vi/p	until	observing	the	VCombined.	

	



 72 

	
Figure	5.10:	Block	diagram	of	combined	signal		

	

The	wavelet	neural	network	procedure	starts	by	analyzing	the	X(t)	using	CWT	to	reach	

the	 wavelet	 network	 coefficients	 that	 represent	 the	 input	 signal.	 This	 process	 is	

repeated	for	a	number	of	times,	which	depends	on	the	number	of	wavelons,	to	achieve	

the	 best	 wavelet	 coefficient	 values.	 MATLAB	 simulations	 are	 run	 with	 only	 twenty	

wavelons	in	the	hidden	layer.	This	amount	of	wavelons	is	enough	to	represent	the	signal	

with	a	high	resolution	in	a	short	time.	The	wavelet	coefficients	are	represented	by	using	

the	Sigmoid	transfer	function	to	smooth	the	shape	of	the	WN	output	signal	F(t).		

	

Then,	 the	WN	 output	 signal	 is	 subtracted	 from	 the	 d(t)	Vi/p	 to	 compute	 the	 wavelet	

neural	 network	 error	 E(t).	 Then,	 the	 variation	 calculation	 is	 performed	 to	 adjust	 the	

wavelet	coefficients	(weight,	scaling	and	shifting	parameters)	to	reduce	the	quantization	

error	to	a	value	less	than	or	equal	to	the	minimal	accepted	error	E(t).	In	fact,	the	process	

of	variation	calculation	to	predict	the	right	values	for	(weight,	scaling	and	shifting)	aims	

for	an	error	equal	to	zero.	The	gradient	descent	algorithm	is	training	the	wavelet	neural	

network,	 by	 repeating	 the	 process	 of	 calculating	 the	 variation	 with	 adding	 some	
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adjustment	 parameters,	 is	 to	 speed	 and	 guarantee	 a	 high	 output	 resolution.	 These	

parameters	 are	 momentum	 factor	𝛽	and	 learning	 rate	𝜂;	 these	 are	 fixed	 and	 are	

recalculated	for	each	circuit	design	depending	on	the	input	dynamic	range	and	the	input	

frequency	 range.	 In	 the	MATLAB	 simulation	 a	momentum	 factor	𝛽	equal	 to	 12.7	 nm,	

and	a	learning	rate	𝜂	equal	to	31.3	are	used.	The	learning	rate	i	is	directly	proportional	

to	the	delay	time	of	the	WNN.	Therefore,	a	learning	rate	i	=	100	iterations	is	used	for	the	

MATLAB	simulation.		

	

	
Figure	5.11:	Simulation	of	clock-less	ADC	wavelet	neural	network	(VWNN	)	for	1	Hz	

	

The	 results	 of	 the	MATLAB	 simulation	 for	 the	 proposed	 CT-ADC	 (including	 the	WNN)	

with	an	input	signal	of	1	Hz	and	0.1µs	time	resolution,		shows	significant	improvement	in	

signal	resolution	with	almost	zero	quantization	error:	SQNR	is	67.29	dB,	SNDR	is	232.89	

dB,	 and	 SFDR	 is	 253.89	 dB.	 Also,	 ENOB	 has	 achieved	 enormous	 enhancement,	 which	

recorded	 38.39	 bits.	 	 This	 signal	 improvement	 is	 the	 result	 after	 several	 stages	 of	

improvement	clock-less	ADC.		The	quantization	error	range	is	between	–	3.5	e-7	to	–	3.5	

e-7	volt,	which	equal	to	∆/89286.	
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5.2.5 Simulation for Several Input Frequencies 
In	this	section,	the	same	MATLAB	example	with	the	same	parameters	will	be	simulated	

using	an	input	signal	dynamic	range	of	1	volt	 (0.5	volt	~	-0.5	volt),	with	a	4-bit	CT-ADC	

(16	quantization	noise	levels),	and	a	signal	resolution	of	0.1µs	 (100ns),	but	at	different	

input	frequencies:	1KHz,	4KHz,	and	20	KHz.	Also,	the	signal	distortion	will	be	studied	at	

each	input	signal	to	characterize	the	specifications	of	ADC-WNN.	

	

	
Figure	5.12:	Simulation	of	clock-less	ADC	wavelet	neural	network	(VWNN	)	for	1	KHz	

			

In	Figure	5.12,	a	regular	sinusoidal	input	signal	1KHz	is	applied	to	the	WNN	system.	Thus,	

the	delta	modulation	stores	1000	frequencies	at	CT-DSP	latch	[7],	then	buffering	them	

to	the	WNN	system	to	get	them	processed	all	together.	As	a	result,	the	signal	resolution	

is	a	little	blurry	and	lower	than	one	frequency.	Therefore,	SQNR	is	reduced	to	62.57	dB,	

SNR	 is	reduced	to	86.46	dB,	SNDR	 is	reduced	to	62.60	dB,	and	the	SFDR	 is	 reduced	as	

well	to	69.31	dB.	Furthermore,	the	effective	number	of	bits	is	reduced	to	11.11	bits.	The	

output	signal	of	 the	WNN	system	 is	 still	achieving	higher	 resolution	 than	 that	of	delta	
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modulation	or	VCombined.	As	shown	in	Figure	5.12	the	output	signal	of	WNN	has	a	small	

distortion	of	the	bell-shape.	The	quantization	error	is	in	the	range	from	-0.0004	volts	to	

0.0004	volts,	which	is	equal	to	∆/78.	

	
Figure	5.13:	Simulation	of	clock-less	ADC	wavelet	neural	network	(VWNN	)	for	4	KHz	

	

In	 Figure	 5.13,	 an	 input	 sinusoidal	 signal	 at	 4	 KHz	 is	 applied	 to	 the	 CT-WNN	 system.	

Hence,	the	delta	modulation	stores	digitized	tokens	for	4000	frequencies	and	buffering	

them	all	together	to	the	WNN	system.	Although	the	input	signal	frequency	increased	to	

4	KHz,	the	WNN	uses	the	same	number	of	hidden	layers	and	iterations.	Therefore,	the	

WNN	 output	 signal	 achieves	 high-resolution	 measures,	 but	 less	 precise	 than	 those	

obtained	for	input	signals	at	1	KHz	or	1	Hz.	At	4	KHz,	SQNR	is	52.17	dB,	SNR	is	74.42	dB,	

SNDR	 is	 56.6	 dB,	 and	 SFDR	 is	 57.27	 dB.	 As	 a	 result,	 the	 effective	 number	 of	 bits	 is	

reduced	to	9.1	bits.	

	

The	output	signal	also	has	more	distortion	at	the	bell-shape,	and	the	quantization	error	

range	increases	to	be	in	the	range	from	-0.0015	volts	to	0.	0.0015	volts,	which	is	equal	to	

∆/20.	
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Figure	5.14:	Simulation	of	clock-less	ADC	wavelet	neural	network	(VWNN	)	for	20	KHz	

	

Similarly,	Figure	5.14	is	showing	the	distortion	of	the	output	signal	when	the	input	signal	

is	at	20	KHz.	The	distortion	is	higher	at	the	bell-shape,	and	the	quantization	error	range	

is	 between	 -0.005	 and	 0.005	 volts,	which	 is	 equal	 to	∆/5.	 SQNR	 for	 the	 output	 signal	

reaches	38.34	dB,	SNR	reaches	60.47	dB,	SNDR	reaches	42.7	dB,	and	SFDR	reaches	43.32	

dB.	 As	 a	 result,	 the	 effective	 number	 of	 bits	 is	 reduced	 to	 6.8	 bits.	 However,	 the	

effective	number	of	bits	for	CT-WNN	system	is	still	greater	than	that	of	delta	modulation	

and	VCombined,	but	it	is	getting	close	to	their	records.	Therefore,	the	highest	input	signal	

frequency	for	a	signal	resolution	of	0.1µs	is	20	KHz.	

		

5.3	Simulated	CT-ADC	Performance	

The	popular	specifications	for	quantifying	ADC	dynamic	performances	are	presented	in	

Section	5.1.	There	are	several	ways	to	quantify	the	distortion	and	noise	of	ADC	based	on	

FFT	analysis.	The	FFT	output	analysis	 is	used	 to	measure	 the	amplitude	of	 the	various	

harmonics	 and	 noise	 components	 of	 digitized	 signals.	 The	 CT-ADC	 performance	 is	
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studied	in	the	next	section,	using	the	same	MATLAB	example	with	the	same	parameters	

and	simulated	with	input	frequency	1	KHz,	and	signal	resolution	0.1µs	(100	ns).	

	

5.3.1 SINAD for CT-ADC Performance  
The	SINAD	measurement	is	widely	used	for	measuring	and	specifying	the	sensitivity	of	a	

radio	receiver.	The	SINAD		can	be	summarized	as	the	ratio	of	the	total	signal	power	level	

(Signal	 +	 Distortion	 +	 Noise)	 to	 unwanted	 signal	 power	 (Distortion	 and	 Noise).	

Consequently,	the	higher	SINAD,	the	better	the	quality	of	the	audio	signal.	

	

Plotting	 the	power	 spectrum	of	 the	SINAD	 for	CT-ADC	 signals	 can	help	understand	 its	

performance.	The	SINAD	function	estimates	a	noise	level	using	the	median	power	in	the	

regions	containing	only	noise	and	distortion.	Thus,	the	DC	component	(DC	level	and	the	

fundamental	signal)	 is	excluded	from	the	SINAD	calculation.	The	noise	at	each	point	 is	

the	estimated	level	or	the	ordinate	of	the	point,	which	is	smaller	than	the	fundamental	

signal.	 The	 noise	 is	 subtracted	 from	 the	 values	 of	 the	 fundamental	 signal	 and	 the	

harmonics.	Therefore,	 if	the	fundamental	 is	not	the	highest	spectral	component	 in	the	

signal,	SINAD	fails.		

	

	
Figure	5.15:	SINAD	for	delta	modulation	output	signal	
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The	spectra	of	the	delta	modulation	ADC	output	are	obtained	by	applying	the	FFT	to	the	

DM-ADC	output	in	MATLAB.	The	spectrum	shows	the	given	sinusoidal	input	signal	with	a	

frequency	of	1	KHz;	which	includes	the	fundamental	tone	plus	the	in-band	harmonics	at	

the	output	of	a	DM-ADC.	As	shown	in	Figure	5.15,	there	is	neither	even-order	harmonics	

nor	any	noise	floor	present	 in	the	spectrum	(2nd	and	4th	harmonics	=	zero),	due	to	the	

symmetry	characteristic	of	Fourier	coefficients	[5].	The	fundamental	 input	frequency	1	

KHz	recorded	a	SINAD	=	25.59	dB.	The	SINAD	is	often	converted	to	ENOB	and	achieves	

3.18	bits	in	this	case.	

	

	
Figure	5.16:	SINAD	for	Vref		output	signal	

	

Similarly,	 the	spectra	of	the	Vref	output	signal	 is	generated	by	applying	the	FFT	to	Vref			

output	 signal	 in	MATLAB.	The	 spectrum	 in	Figure	5.16	 shows	 the	output	 signal	of	Vref	

with	 fundamental	 frequency	 1	 KHz	 along	 with	 the	 noise	 and	 distortion	 harmonics	 at	

other	frequencies.	The	even	and	odd	harmonics	are	shown	in	the	spectrum	because	Vref	

is	not	symmetric.	SINAD	equals	28.54	dB,	and	ENOB	equals	5.74	bits.		
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Figure	5.17:	SINAD	for	WNN	output	signal	

	

Figure	5.17	shows	the	spectra	of	the	WNN	output	VWNN	with	fundamental	 frequency	1	

KHz	and	noise	and	distortion	harmonics.	The	even	and	odd	harmonics	are	shown.	The	

output	signal	is	very	accurate	and	almost	symmetric.	Even	harmonics	have	very	small	dB	

values	in	the	spectrum.	The	recorded	SINAD	is	68.63	dB,	and	ENOB	is	11.11	bits.		

	

SINAD	is	used	as	a	basic	measurement	technique	for	analog	systems	and	is	an	important	

(and	 fundamental)	performance	parameter.	A	high	SINAD	 indicates	an	efficient	use	of	

spectrum	space	and	would	improve	the	signal	clarity	of	low-level	receiver	signal.	

	

5.3.2 SFDR for CT-ADC Performance  
SFDR	 computes	 the	 quantity	 of	 distortion	 in	 the	 system,	 and	 it	 is	 one	 of	 the	 most	

important	AC	 performance	 specifications.	 SFDR	 is	 the	 ratio	 between	 the	 fundamental	

signal	and	the	highest	spurious	in	the	spectrum.		It	simply	defines	the	capability	of	the	

ADC	system	to	detect	a	carrier	signal	 (fundamental	 signal)	 in	 the	presence	of	noise	or	

any	 other	 spurious	 frequency.	 At	 any	 high-resolution	 ADC,	 the	 SFDR	 should	 be	
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considered	 in	 selecting	 a	 wideband	 analog	 ADC	 for	 a	 high-performance	 system.	 The	

SFDR	typically	dominated by	the	dynamic	range	between	a	fundamental	frequency	and	

the	second	or	third	harmonic	of	the	fundamental	frequency.		

	

SFDR	 is	a	 ratio	measured	 in	dB.	Therefore,	SFDR	 is	dependent	on	bit	 resolution.	Thus,	

SFDR	is	characteristically	better	at	lower	frequencies	than	higher	frequencies.	

	

	
Figure	5.18:	SFDR	for	delta	modulation	(VDM)	output	signal	

	

Figure	5.18	plots	the	power	spectrum	for	the	delta	modulation	output	signal	that	shows	

a	 fundamental	 peak	 at	 1	 KHz.	 The	 resolution	 bit	 recorded	 is	 3.18	 bit	 as	 computed	

previously.	Therefore,	SFDR	reaches	35.02	dB.		
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Figure	5.19:	SFDR	for	Vref	output	signal	

Figure	 5.19	 depicts	 the	 power	 spectrum	 of	 the	 Vref	 output	 signal	 that	 shows	 a	

fundamental	peak	at	1	KHz,	and	achieves	an	ENOB	of	5.74	bits;	the	SFDR	is	34.94	dB.	

	

	
Figure	5.20:	SFDR	for	V-WNN	output	signal	

	Finally,	 Figure	 5.20	 shows	 the	 power	 spectrum	 of	 the	 WNN	 output	 V-WNN	 with	

fundamental	frequency	1	KHz.	The	SFDR	is	69.30	dB,	and	the	associated	ENOB	measures	

11.11	bits.	In	general,	SFDR	can	range	from	approximately	23	~45	dB	for	ADC/DAC	with	

8	bits,	or	55	~	90	dB	for	mid-range	ADC/DAC	with	under	16	bits,	to	approximately	250	

dB	at	38	bits.	
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5.4	Monte	Carlo	Simulation	Summary	and	Discussion	

As	a	design	example,	a	4-bit	(16-level)	level-crossing	ADC	with	an	ideal	comparator	using	

1	volt	peak-peak	 (1	𝑉++)	and	a	clock	 resolution	R=10
(𝐒𝐍𝐑0𝟏𝟒.𝟐𝟐𝟎 )	is	used	and	simulated	on	

MATLAB	and	chosen	to	match	the	required	performance	criteria.	The	input	signal	used	

throughout	the	simulations	is	a	single-tone	sinusoidal	run	at	several	frequencies.	

	

Table	5.2:	Simulation	results	for	the	three	systems	(delta	modulation	system,	adaptive	
resolution	system,	and	WNN	system)	at	different	resolutions	with	applying	several		

frequencies	

	

Freq.	 Input	
Resolution	

Technology	 SQNR	 SNR	 SNDR	 SFDR	 ENOB	

	

	

1	Hz	

Tq	=	1𝜇	
Fs=1Mhz	

Delta	Modulation	 25.31	dB	 20.90	dB	 20.90	dB	 23.67	dB	 3.18	bit	
Vref	 26.18	dB	 36.35	dB	 36.32	dB	 43.35	dB	 5.74	bit	

WNN	O/P	 57.29	dB	 220.64	dB	 220.64	dB	 233.91	dB	 	36.36	bit	
Tq	=	100n		
Fs=10Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.51	dB	 4.34	bit	

WNN	O/P	 67.29	dB	 231.17	dB	 231.17	dB	 253.90	dB	 38.11	bit	
Tq	=	12.5n	
Fs=80Mhz	

Delta	Modulation	 25.31	dB	 20.90	dB	 20.90	dB	 23.67	dB	 3.18	bit	
Vref	 26.18	dB	 36.35	dB	 36.32	dB			 43.35	dB	 5.74	bit	

WNN	O/P	 67.29	dB	 232.9	dB	 232.9	dB	 253.89	dB	 38.4	bit	

	
	
	

100	
Hz	

	

Tq	=	1𝜇	
Fs=1Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 56.51	dB	 86.45	dB	 68.64	dB	 69.31	dB	 11.11	bit	
Tq	=	100n		
Fs=10Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 67.21	dB	 106.46	dB	 88.63	dB	 89.31	dB	 14.43	bit	
Tq	=	12.5n	
Fs=80Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 76.31	dB	 124.52	dB	 106.7	dB	 107.37	dB	 17.43	bit	
	
	
	
1	

KHz	
	

Tq	=	1𝜇	
Fs=1Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 44.14	dB	 66.47	dB	 48.65	dB	 49.31	dB	 7.78	bit	
Tq	=	100n		
Fs=10Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 62.57	dB	 86.46	dB	 68.63	dB	 69.31	dB	 11.11	bit	
Tq	=	12.5n	
Fs=80Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 75.37	dB	 104.52	dB	 86.69	dB	 87.37	dB	 14.11	bit	
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Monte	 Carlo	 analysis	 is	 run	 to	 simulate	 the	 performance	 specifications	 for	 the	 three	

stages	(VDM,	Vref,	and	VWNN)	of	the	clock-less-ADC	system.	The	simulations	are	run	over	

three	 different	 time	 resolutions,	 (Tq	 =	 1𝜇sec,	 100	 nSec,	 and	 12.5	 nSec)	 at	 variable	

frequencies	(1	Hz,	100	Hz,	1	KHz,	4	KHz,	and	20	KHz).	All	simulation	results	are	listed	in	

Table	5.2	

	

The	following	is	concluded	from	this	analysis:	

1) The	delta	modulation	VDM	 and	Adaptive	 resolution	Vref	 systems	have	 the	 same	

and	 exact	 performance,	 and	 achieve	 the	 same	 static	 resolution,	 ENOB,	 over	

different	input	frequencies	except	at	very	low	input	frequency	(1	Hz	to	3	Hz),	as	

the	 input	 signal	 rises	and	 falls	very	 slowly	causing	a	very	 low	slope	at	 the	very	

low	input	frequencies,	which	creates	few	digitized	samples,	or	tokens.		

	

	

Freq.	 Input	
Resolution	

Technology	 SQNR	 SNR	 SNDR	 SFDR	 ENOB	

	
	
	
4	

KHz	
	

Tq	=	1𝜇	
Fs=1Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 32.35	dB	 54.47	dB	 	36.74	dB	 37.39	dB	 5.81	bit	
Tq	=	100n		
Fs=10Mhz	

Delta	Modulation	 25.31	dB	 26.39	dB	 25.58	dB	 35.13	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.88	dB	 32.48	dB	 4.34	bit	

WNN	O/P	 52.17	dB	 74.42	dB	 56.60	dB	 57.27	dB	 9.11	bit	
Tq	=	12.5n	
Fs=80Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 69.39	dB	 92.48	dB	 74.66	dB	 75.33	dB	 12.11	bit	
	
	
	
20	
KHz	
	

Tq	=	1𝜇	
Fs=1Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 18.80	dB	 39.70	dB	 24.06	dB	 24.65	dB	 3.70	bit	
Tq	=	100n		
Fs=10Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 38.33	dB	 60.47	dB	 42.66	dB	 43.32	dB	 6.79bit	
Tq	=	12.5n	
Fs=80Mhz	

Delta	Modulation	 25.31	dB	 26.40	dB	 25.60	dB	 35.03	dB	 3.96	bit	
Vref	 26.17	dB	 38.27	dB	 27.89	dB	 	32.49	dB	 4.34	bit	

WNN	O/P	 56.34	dB	 78.5	dB	 60.67	dB	 61.35	dB	 9.79	bit	
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2) The	WNN	system	has	different	performance	and	dynamic	resolution	over	varying	

input	 frequencies.	 The	 achieved	 ENOB	 is	 inversely	 correlated	 with	 input	

frequency.	Therefore,	the	lower	frequencies	achieve	higher	resolution.	However,	

the	higher	frequencies	achieve	lower	resolutions.	

	

3) The	 time	 resolution	 is	 inversely	 correlated	 with	 the	 performance	 of	 WNN	

systems	because	a	WNN	system	processes	 the	wavelet	coefficients	 (C)	and	the	

neural	 wavelons	 several	 times	 to	 achieve	 higher	 resolution.	 Therefore,	 the	

output	 signal	 of	 WNN	 system	 has	 a	 better	 resolution	 with	 reduced	 time	

resolution,	 as	 the	WNN	 system	 interpolates	 the	 gap	between	 the	quantization	

levels	

	

4) The	time	resolution	has	an	almost	constant	correlation	with	the	performance	of	

delta	modulation	VDM	 and	 adaptive	 resolution	Vref	 systems	 because	 they	 both	

depend	on	the	static	slope	for	input	frequency.	

	

5) A	WNN	system	has	a	very	high	ENOB	(38.4	bits)	at	1	Hz	input	frequency	because	

the	 WNN	 processes	 are	 running	 and	 analyzing	 only	 one	 sinusoidal	 signal.		

However,	when	 the	 input	 frequency	 is	20	KHz,	 the	ENOB	achieved	 is	9.79	bits,	

because	the	WNN	processes	analyze	and	run	throughout	the	20	KHz	frequencies.	

Thus,	the	error	factor	for	C	at	20	KHz	is	inflated,	which	impacts	and	reduces	the	

number	of	resolutions	bits.	

	

In	summary,	The	WNN	system	can	enhance	the	signal	resolution	and	improve	its	purity	

very	well.	The	simulation	 tests	prove	 that	 the	WNN	system	has	 the	ability	 to	 improve	

the	clarity	of	the	input	signal	running	at	a	frequency	range	of	1	Hz	to	20	KHz	with	a	time	

resolution	ranging	from	0.125	𝜇𝑠	𝑡𝑜	1𝜇𝑠.	
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5.5	Performance	Summary	

In	this	thesis,	we	investigated	the	design	of	a	clock-less-ADC	using	WNN	and	simulated	

their	achieved	high	performance	and	high	resolution.	The	following	table	presents	the	

specifications	and	characteristics	for	the	proposed	design.		

	

Table	(5.1):	Clock-less	ADC	performance	summary		

Parameter	 This	Proposition		
Reconstruction	 WNN	in	MATLAB	

Amplitude	Resolution	 4	bits	

Full-Scale	Input	(𝑉++)	 1	volt	

Adaptive	Resolution	 Yes	

Automatic	Calibration	 Yes	

Input	Bandwidth		 0.001	–	20	KHz	

Frequency	band	(MHz)	 1	-	80	

Timer	Resolution	 . 0125	𝜇𝑠 − 	1𝜇𝑠	

SQNR	(dB)	 56.34	dB	@20KHz	
	67.29	dB	@1Hz	

SNR	(dB)	 78.5	dB	@20KHz	
	232.89	dB	@1Hz	

SNDR	(dB)	 60.67	dB	@20KHz	
232.89	dB	@1Hz	

SFDR	(dB)	 61.35	dB	@20KHz	
	253.89	dB	@1Hz	

ENOB	 9.79	bit	@20KHz	
38.4	bit	@1Hz	

	Clock	Resolution		 101.601	@20KHz		
10-..011	@1Hz	
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Chapter 6 
	

Conclusions	and	Suggestions	for	Future	works	

6.1	Summary	and	Contributions	

In	 this	 thesis,	 we	 presented	 a	 new	 design	 for	 a	 clock-less	 CT-ADC	 with	 adaptive	

resolution	and	WNN	as	an	interpolation	technique	to	improve	the	precision	of	the	clock-

less	 ADC	 even	 further.	 	 The	 wavelet	 neural	 networks	 are	 a	 combination	 of	 wavelet	

analysis	 and	 neural	 network	 theory,	 which	 have	 the	 benefit	 of	 time-frequency	

localization	of	wavelet	transform	and	the	powerful	learning	function	of	neural	networks.	

Therefore,	WNN	has	 optimized	 coverage	 of	 functions	 based	 on	wavelet	 frame	 theory	

and	the	time-frequency	localization	of	wavelet	transform	through	suitably	choosing	the	

dilation	 and	 translation	 parameters	 and	 adjusting	 wavelet	 coefficients.	 Thus,	 wavelet	

analysis	has	proven	to	be	a	valuable	tool	for	analyzing	a	wide	range	of	time	series	and	

representing	nonlinearities.	

	

The	 new	 clock-less	 ADC	 is	 designed	 with	 4	 bit	 component	 circuits,	 a	 peak-to-peak	

voltage	of	1	volt,	16	threshed	levels,	and	a	variable	range	input	frequency	1	Hz	~	20	KHz	

bandwidth	simulated	in	MATLAB	with	different	characteristics.	The	adaptive	resolution	

is	added	as	the	first	stage	of	signal	resolution	improvement,	then	WNN	reconstructs	the	

output	signal	to	the	final	high-resolution	output	signal.	This	design	achieves	an	ENOB	of	

9.79	bits	to	38.4	bits	for	a	sinusoidal	input	frequency	ranging	from	1	Hz	to	20	KHz.	

	

Resolution	 and	 performance	 for	 the	 new	 CT	 clock-less	 ADC	 using	 wavelet	 neural	

network	 are	 investigated.	 	 A	 4	 bit,	 1	 Hz	 ~	 20	 KHz	 bandwidth	 design	 is	 simulated	 in	

MATLAB	with	various	characteristics.	In	the	following	section,	it	will	be	outlined	how	this	

design	 compares	 to	 other	 level-crossing	 /	 CT	 clock-less	 previously	 published	 ACD	

designs.	
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6.2	Performance	Comparison		

We	 investigated	 the	 clock-less	 ADC	 using	 wavelet	 neural	 network	 and	 compared	 its	

performance	 with	 other	 previously	 published	 designs.	 The	 following	 table	 shows	 the	

performance	results	on	several	aspects.		

	

Table	6.1:	Comparison	between	several	published	researchers	

Parameter	 [7]	

2008	

[47]		

2009	

[10]		

2011	

[13]	

2012	

[49]		

2013	

[50]	

This	Work	

Amplitude	Resolution	 8	bits	 4	bits	 4	-	8	bits	 4	-	8	bits	 6	bits	 4	bits	
Timer	Resolution	 No	

timer	
10ns	 1µs	 No	

timer	
0.2	to	100µs	 0.1	to	100µs	

Adaptive	Resolution	 No	 Yes	 Yes	 Yes	 No	 yes	
Automatic	
Calibration	

No	 -	 No	 Yes	 No	 yes	

Reconstruction	
and	Test	

DAC	 Interpolation	
	in	MATLAB	

6th	order	
interpolation	
in	MATLAB	

Test	
DAC	

3rd	to	6th	order	
interpolation	in	

MATLAB	

WNN	in	
MATLAB	

SNDR	(dB)	 47	-	62	 75	 43.2	-	52.2	 47	–	54	 49.4	 60.67	–	232.9	
	

Input	Bandwidth	
(KHz)	

0.02	-	4	 1000-	10,000	 0.001	-	1	 0.02	–	
20	

0.005	-	5.1	 0.001	-	20	

Full-Scale	Input	Vpp	 0.5	 -	 1.4	 0.72	 2.25	 1	
Desired	SNR	(dB)	 –	 67	 –	 54-58	 –	 78.5-	232.9	

ENOB	 7.5	-10	
bits	

12.2	bits	 6.9-8.4	bits	 7.5-8.7	
bits	

7.9	bits	 9.79	-	38.4	bits	

	

	

	As	shown	in	the	table,	the	design	for	a	CT	clock-less	ADC	published	in	2008	used	8	bit	

comparators	and	achieved	a	resolution	of	7.5-10	bits.	The	designs	which	were	proposed	

after	 that	 focused	 on	 reducing	 the	 number	 of	 amplitude	 resolution	 (comparators)	 to	

reduce	the	hardware	without	significant	efforts	to	enhance	the	signal	resolution.	Also,	

the	authors	used	adaptive	resolutions	to	track	the	input	signal	behavior	and	adjust	the	

output	resolution.	Furthermore,	they	used	interpolation	to	predicate	the	signal	behavior	

between	the	crossing	levels.	
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As	 in	 [47],	 the	authors	presented	a	new	procedure	by	using	 variable	 signal	 resolution	

and	 reducing	 the	 captured	 non-uniformed	 data	 tokens	 to	 accelerate	 the	 encoding	

process	and	reduce	the	digitized	data	tokens	stored	in	DSP.	In	this	procedure,	according	

to	the	behavior	slope	of	the	 input	signal,	some	recorded	data	tokens	are	eliminated	 if	

the	signal	slope	has	the	same	direction	as	that	during	the	previous	level	crossing.	As	a	

result,	the	input	signal	is	presented	by	fewer	tokens.	Thus,	this	technique	is	well	suited	

for	high-frequency	applications.	The	main	advantage	of	this	technique	is	that	decreasing	

the	 number	 of	 digitized	 data	 reduces	 the	 dynamic	 power	 dissipation	 by	 using	 lower	

delay	cells.	On	 the	other	hand,	 this	 system	has	several	drawbacks	as	 it	employs	some	

hardware	components	with	the	 low-quality	output	signal.	Although	the	signal	changes	

the	 amplitude	 according	 to	 the	 slope	 of	 the	 input	 signal,	 the	 comparators	 (op-amps	

circuits),	who	create	the	delta	level	crossing,	are	still	fabricated	at	the	circuit	level	using	

the	 circuit	 space.	 As	 known,	 each	 comparator	 causes	 mismatch	 error,	 and	 leakage	

power	dissipated	even	when	the	circuit	is	idle,	Thus,	reducing	the	number	of	fabricated	

comparators	 is	 the	main	 goal	 for	 any	 clock-less	 ADC	 designs.	 	Moreover,	 there	 is	 no	

control	 on	 the	 variable	 resolution	 of	 the	 output	 signal,	 which	 limits	 the	 application	

usage	of	this	system	due	to	low	signal	resolution.	

	

In	 [10],	 the	 authors	 presented	 a	 system	with	 an	 adaptive	 signal	 resolution	 to	 achieve	

better	 signal	 resolution.	 It	 increases	 the	 number	 of	 non-uniformed	 data	 space,	

according	to	the	input	signal	behavior	slope.	This	technique	increases	and	changes	the	

quantization	 resolution	 by	 using	 either	 4	 bit	 or	 8-bit	 resolution	 depending	 on	 signal	

behavior.	 This	 system	 fixes	 some	 of	 the	 drawbacks	 of	 the	 previous	 design	 [47]	 by	

achieving	 better	 signal	 resolution	 tuned	 to	 the	 signal	 slope.	 This	 is	 approached	 using	

reliable	detectors	of	the	signal	slope	to	approach	better	output	signal.	This	will	in	return	

increase	the	applications	that	can	deploy	this	design.	However,	this	procedure	was	not	

able	to	solve	some	problem	of	the	previous	technique	[47].		These	include	the	fact	that	

the	hardware	 component	 is	 physically	 fabricated	with	 all	 circuit	 components	 required	

for	8	bit	resolution,	although	the	signal	behaviors	don't	require	some	of	the	cross	levels	
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(Delta	 modulation).	 This	 causes	 unnecessary	 power	 dissipation	 and	 extra	 area	

dissipation,	and	still	without	a	perfect	output	signal	resolution.		

In	 [13],	 the	 authors	 presented	 a	 second-generation	 circuit	 design	 that	 using	 an	 8	 bit	

circuit	design	to	achieve	clock-less	ADC	with	the	aliasing-free	operation	and	higher	SNDR	

and	ENOB	at	a	wide	range	of	input	frequencies.	The	design	steps	forward	to	make	the	

input-activity-dependent	clock-less	ADC	system		more	practical	as	such	systems	are	still	

at	the	research	stage.	Although	the	proposed	circuit	achieved	high	SNDR	and	ENOB	the	

system	is	still	not	competitive	with	any	conventional	system.		

	

	In	 [49],	 the	authors	 innovated	a	new	system	and	circuit	design	using	a	6	bit	circuit	 to	

use	 the	 clock-less	 ADC	with	 low	 power	 dissipation	 and	 low	 frequency	 for	 biomedical	

applications.	 The	 design	 achieved	 decent	 improvement	 in	 ENOB	 for	 low	 input	

frequencies,	but	the	system	specifications	are	very	limited	to	low	frequency	applications	

only	with	high	input	frequency	amplitude.	

	

In	this	work,	a	CT	clock-less	ADC	using	wavelet	neural	network	to	reconstruct	the	output	

signal	 and	 interpolate	 the	 signal	 behaviors	between	 the	 level	 crossing	 is	 presented.	A	

high	signal	resolution	with	more	than	38	bits,	by	using	4	bit	physical	circuit	components	

is	 achieved.	 The	 system	 can	 operate	 at	 very	 high	 speeds	 because	 of	 using	 Wavelet	

neural	network	and	Gradient	Descent	Algorithm.	

	

6.3 	Conclusions	
This	thesis	presents	a	clock-less	ADC	based	on	WNN	to	improve	the	output	precision.	It	

is	 primarily	 targeted	 for	 low	 power	 applications.	 Using	 a	 WNN	 technique	 for	

asynchronous	ADC	has	resulted	in	higher	SNDR,	as	there	is	no	noise	floor	present	in	the	

output	spectrum.	The	high-level	simulation	results	indicate	that	an	ADC	employing	WNN	

using	a	4	bit	 system	has	achieved	an	ENOB	 for	more	 than	38	bits.	 The	 clock-less	ADC	

using	 WNN	 4-bit	 system	 can	 be	 fabricated	 by	 16	 comparators.	 However,	 any	

conventional	ADC	with	 the	same	SNDR	and	the	38-bit	 system	can	be	manufactured	 in	
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2.7488	E11	comparators,	as	computed	in	Table	4.1.	Therefore,	the	presented	system	can	

be	 a	 prospective	 research	 area	 for	 energy	 and	 silicon	 area	 savings	 for	 high-quality	

signals	in	low	power	applications.	

The	 prediction	 model	 of	 the	 proposed	 clock-less	 ADC	 based	 on	 WNN	 combines	 the	

advantages	 of	 both	 the	 wavelet	 and	 the	 traditional	 neural	 network	 and	 through	 the	

calculation	function	such	as	flexible	and	shifting	to	multi-scale	analysis	of	the	data.	The	

results	 show	 that	 the	 wavelet	 neural	 network	 prediction	 model	 has	 the	 following	

advantages:	 Much	 better	 convergence	 and	 higher	 prediction	 precision,	 and	 stronger	

capability	of	study	and	popularization.	So,	it	can	provide	the	on-line	prediction	and	has	

broad	applications.	

The	 wavelet	 neural	 networks	 in	 the	 proposed	 ADC	 succeeds	 in	 improving	 the	 signal	

quantization	 for	 clock-less	 ADC	 without	 fabricating	 any	 extra	 nonlinear	 hardware	

components,	saving	silicon	area	and	power	dissipation,	and	reducing	the	comparators’	

mismatch	errors.	Also,	 it	achieves	a	higher	signal	resolution	output	with	a	few	training	

iterations	 by	 using	 Gradient-Descent	 Algorithm;	 the	 wavelet	 neural	 network	 was	

interpolating	 the	 unknown	 signal	 behavior	 between	 the	 delta	 level	 crossing	 and	

presented	 the	 highest	 accurate	 output	 signal	 on	 a	 continuous	 time	 system.	 	 The	

characteristics	of	 the	proposed	design	 in	 this	work	make	 the	proposed	clock-less	ADC	

especially	suitable	for	biomedical	applications,	the	low-frequency	application	as	well	as	

high-frequency	 applications,	 and	 multiple	 voice	 applications.	 The	 achieved	 variable	

resolution	 depends	 on	 the	 input	 signal	 behavior,	 wavelet	 coefficients,	 and	 training	

process	for	neural	networks.	Therefore,	the	signal	resolutions	 improvement	 is	variable	

not	fixed.	

6.4	Suggestions	for	Future	Work	 	

In	this	section,	we	discuss	some	topics	related	to	this	work	and	which	are	worth	further	

detailed	studies.	The	clock-less	ADC	using	WNN	design	is	presented	in	this	work	with	its	

full	 analysis	 and	 MATLAB	 simulation.	 However,	 for	 future	 work,	 it	 is	 anticipated	 to	

fabricate	this	design,	compute	the	saved	silicon	area	and	measure	performance	metrics	

and	power	dissipation	at	various	input	frequencies.	
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Appendix	A:	MATLAB	Code	

%  |------------------------------------|   %#codegen 

%  |    Continous Time ADC using        | 

%  |    Wavelet Neural Network (WNN)    | 
%  |  Copyright by Tamer Elsalahati (R) | 

%  |------------------------------------| 
close all;clear; clc; 

 
% Creat I/P Signal "SinWave" 

%------------------------------ 
Frequency=1;                  % Input Frequency 

resolution=1e-06;             % Sample time (1 us) / Signal Resolution 
Fs=1/resolution;              % Sampling frequency 

L = Fs;                       % Length of signal 
t =(0:1:L)* resolution;       % Time vector 

amp=0.5;                      % Input Signal Amplitude 
x=amp*sin(2*pi*Frequency*t);  % Sinusoid input singal (Hz) 

km= length(x);                % Length of signal 
 

% Delta Modulation ADC (CT-ADC) 
% ------------------------------- 

comparator=16;                   % Numbers of Comparators - 4 bit design 
required (16) Comparators 

Delta=1/comparator;              % Quantization Step 
bit=8;                           % Numbers of encoding Binrary bits 

shift=4;                         % Combination Binary Shifting binary 
 

%  Create  (Amplitude Shifting (offset) Section(4.2) 
%  ---------------------------------------------------- 

x1=x-Delta/4;                   % Shifted Input signal Vi/p (Delta/4) 
x2=x-Delta/2;                   % Shifted Input signal Vi/p (Delta/2) 

x3=x-((Delta*3)/4);             % Shifted Input signal Vi/p (3/4 Delta) 
 

for k=1:1:km 
    if x1(k)<=-amp 

       x1(k)=-amp; 
    end 

    if x2(k)<=-amp 
       x2(k)=-amp; 

    end 
    if x3(k)<=-amp 

       x3(k)=-amp; 
    end 

end 
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Create Delta Moduation (Quantization Levels) --------------------------------------------- 

Quantization_Levels=double(-(amp):Delta:(amp));  % Quantization Levels 

Number_of_Levels=length(Quantization_Levels);    % Compute Number of 
Quantization Levels 

 
% Create the Continuous Time system for I/P Signal (x) 

% ----------------------------------------------------- 
 

%  UP / Down Signal / Signal Behaviour (X) 
% ----------------------------------------- 

beh=zeros(1,km,'double'); 
UPDN=zeros(1,km,'double'); 

UPDN(km-1:km)=1; 
 

for k=1:1:km-2 
     if x(k+2)>=x(k) 

         UPDN(k)=1; 
     end 

     if (x(k) >= 0) 
        beh(k)=1; 

     else 
        beh(k)=0; 

     end 
 end 

 
% Create Change Signal for input Signal (X) 

% ----------------------------------------- 
Change= zeros(1,km,'double'); 

jo=(comparator/2)+1;  j=jo; 
 

for k=2:1:km-1 
    if (x(k)>=Quantization_Levels(j) && UPDN(k)==1) 

        Change(k)=1; 
        j=j+1; 

    elseif (x(k)< Quantization_Levels(j) && UPDN(k)==0) 
        Change(k)=1; 

        j=j-1; 
    end 

end 
 

Change(1)=0; Change_DM=Change; 
 

%  Create Change Signal for input Signal (X1) 
%--------------------------------------------- 

Change1= zeros(1,km,'double'); 
j=jo; 

for k=2:1:km-1 
    if (x1(k)>=Quantization_Levels(j) && UPDN(k)==1) 

        Change1(k)=1; 
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        j=j+1; 

    elseif (x1(k)< Quantization_Levels(j) && UPDN(k)==0) 
        Change1(k)=1; 

        j=j-1; 
    end 

end 
 

 for k=1:1:km 
     if Change1(k)==1 

         Change(k)=1; 
     end 

 end 
 

%  Create Change Signal for input Signal (X2) 
%--------------------------------------------- 

Change1= zeros(1,km,'double'); 
j=jo; 

 
for k=2:1:km-1 

    if (x2(k)>=Quantization_Levels(j) && UPDN(k)==1) 
        Change1(k)=1; 

        j=j+1; 
    elseif (x2(k)< Quantization_Levels(j) && UPDN(k)==0) 

        Change1(k)=1; 
        j=j-1; 

    end 
end 

 
 for k=1:1:km 

     if Change1(k)==1 
         Change(k)=1; 

     end 
 end 

 
%  Create Change Signal for input Signal (X3) 

%--------------------------------------------- 
Change1= zeros(1,km,'double'); 

j=jo; 
 

for k=2:1:km-1 
    if (x3(k)>=Quantization_Levels(j) && UPDN(k)==1) 

        Change1(k)=1; 
        j=j+1; 

    elseif (x3(k)< Quantization_Levels(j) && UPDN(k)==0) 
        Change1(k)=1; 

        j=j-1; 
    end 

end 
 

 for k=1:1:km 
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     if Change1(k)==1 

         Change(k)=1; 
     end 

 end 
 

 for k=2:1:km-1 
     if (UPDN(k-1)==1 && UPDN(k)==0) 

         Change(k)=0; 
         Change(k+1)=0; 

     end 
     if (UPDN(k-1)==0 && UPDN(k)==1) 

         Change(k)=0; 
         Change(k+1)=0; 

     end 
  end 

Create the DAC (CT-DAC) % (Section4.9) ------------------------ 

DAC= zeros(1,km,'double'); 

for k=2:1:km-1 

    if UPDN(k)==1 
        if beh(k)==1 

            if Change(k)==1 
                DAC(k)=DAC(k-1)+Delta/4; 

            else 
                DAC(k)=DAC(k-1); 

            end 
        elseif beh(k)==0 

            if Change(k)==1 
                if Change(k-1)==1 

                    DAC(k)=DAC(k-1); 
                else 

                    DAC(k)=DAC(k-1)+Delta/4; 
                end 

            else 
                DAC(k)=DAC(k-1); 

            end 
            if ( Change(k)==1 &&  Change(k+1)==0 &&  Change(k-1)==1 ) %--------

------ 
                     DAC(k)=DAC(k-1)+Delta/4; 

            end 
        end 

    elseif UPDN(k)==0 
        if beh(k)==1 

            if Change(k)==1 
                if ( Change(k+1)==1 && Change(k-1)==1 ) 

                    DAC(k)=DAC(k-1); 
                else 

                    DAC(k)=DAC(k-1)-Delta/4; 
                end 



 101 

            else 

                DAC(k)=DAC(k-1); 
            end 

        elseif beh(k)==0 
            if (Change(k)==1 && Change(k-1)==0) 

                DAC(k)=DAC(k-1)-Delta/4; 
            else 

                DAC(k)=DAC(k-1); 
            end 

            if (Change(k-1)==0 && Change(k)==1 && Change(k+1)==1 ) 
                DAC(k)=DAC(k-1)-Delta/4; 

            end 
        end 

    end 
    if DAC(k)>=Quantization_Levels(Number_of_Levels) 

        DAC(k)=Quantization_Levels(Number_of_Levels); 
    end 

    if DAC(k)<=-amp 
        DAC(k)=-amp; 

    end 
end 

DAC(1)=0; 
 

% Bell Shape Filtering 
% --------------------- 

for k=1:1:km 
    if DAC(k)>=Quantization_Levels(Number_of_Levels) 

        DAC(k)=Quantization_Levels(Number_of_Levels); 
    end 

    if DAC(k)<=Quantization_Levels(1)+Delta/2 
        DAC(k)=-amp; 

    end 
end 

%  Compute the Quantization Error of (x)                  % Section(4.10) 
%  -------------------------------------- 

Vref_error=x-DAC;        % Quantization Error 
Vref=DAC; 

Amplified the quantizing error (e) % Section(4.12) ----------------------------------- 

% Filter the Amplified quantizied error 

% -------------------------------------- 

error_amp=Vref_error; 
 for k=1:1:km 

    if DAC(1,k)<=-amp+Delta 
        error_amp(1,k)=-Delta/4; 

    end 
 end 

error_amp=4.*error_amp.*(comparator-1)+amp; 
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Convert the Amplified quantizing error to Digital Signal Using Continuous system ------------------------------------
----------------------------------------------- 

jo=1;  Error_Digitlization=error_amp; 

beh_Error=zeros(1,km); 

 

% beh_Error Signal 
%------------------ 

for p = 1:1:km % for all the signal Value 
    if (Error_Digitlization(p) >= 0) 

        beh_Error(p)=1; 
    else 

        beh_Error(p)=0; 
    end 

 end 
 

% UP Signal 
%----------- 

UP=zeros(1,km); 
 

for k=1:1:km-1 
    if Error_Digitlization(k)>=Error_Digitlization(k+1) 

        UP(k)=1; 
   else 

        UP(k)=0; 
    end 

end 
UP(km)=UP(km-1); 

 
% Down Signal 

%------------- 
DN_Error=zeros(1,km); 

for k=2:km 
    if Error_Digitlization(k)>=Error_Digitlization(k-1) 

        DN_Error(k)=1; 
   else 

        DN_Error(k)=0; 
    end 

end 
DN_Error(1)=DN_Error(2); 

 
 %  |----------------------------------------------| 

 %  |  Create the Error_Change from  Error Signal  | 
 %  |----------------------------------------------| 

 
% Create Error_Change Signal (+ve Cycle) 
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%---------------------------------------- 

Error_Change=zeros(1,km); 
  for k=1:1:km 

          Error_Change(k)=0; 
  end 

 
for k=1:1:km 

    if (Error_Digitlization(k)>=Quantization_Levels(j) && UPDN(k)==1 && 
DN_Error(k)==1) 

        Error_Change(k)=1; 
        j=j+1; 

        if j>=Number_of_Levels 
            j=Number_of_Levels; 

        end 
    end 

    if (DN_Error(k)==0 && UPDN(k)==1) 
        j=jo; 

    end 
end 

 
% Create Error_Change Signal (-ve Cycle) 

%----------------------------------- 
ju=Number_of_Levels; 

 for ju=Number_of_Levels:-1:jo 
     for k=2:1:km-1 

         k=2; 
         if (Error_Digitlization(k)<=Quantization_Levels(ju) && UPDN(k)==0 && 

DN_Error(k)==0) 
             Error_Change(k)=1; 

             k=k+1; 
             ju=ju-1; 

             if ju<jo 
                 ju=jo; 

             end 
         end 

         if (DN_Error(k)==0 && DN_Error(k+1)==1 && ju==jo && UPDN(k)==0) 
             ju=Number_of_Levels; 

         end 
         if (DN_Error(k)==0 && DN_Error(k-1)==1 && UPDN(k)==0) 

             ju=Number_of_Levels; 
         end 

     end 
     ju=ju-1; 

 end 
 

 for k=1:1:km-1 
     if (Error_Digitlization(k)<(Quantization_Levels(jo)-Delta/bit) && 

UPDN(k)==0 && DN_Error(k)==0) 
       Error_Change(k)=0; 

     end 
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 end 

 
km= length(Error_Digitlization); 

for k=1:1:km 
    if (Error_Digitlization(k)>=(Quantization_Levels(Number_of_Levels)-

(Delta/2)) && DN_Error(k)==0 && UPDN(k)==0); 
        Error_Change(k)=0; 

    end 
end 

 
 %      |---------------------------------------------------| 

 %      |       Recover the DAC Signal of Error Signal      | 
 %      |---------------------------------------------------| 

 
DAC_Error=zeros(1,km); 

for k=2:1:km 
        % (+ve) Cycle recovery 

        %-------------------------------------------------- 
    if (Error_Change(k)==1 && DN_Error(k)==1 && UPDN(k)==1) 

        DAC_Error(k)=DAC_Error(k-1)+Delta; 
    end 

    if (DN_Error(k)==0 && UPDN(k)==1) 
        DAC_Error(k)=Quantization_Levels(jo); 

    end 
    if (Error_Change(k)==0 && DN_Error(k)==1 && UPDN(k)==1) 

        DAC_Error(k)=DAC_Error(k-1); 
    end 

%         % (-ve) Cycle recovery 
%         %-------------------------------------------------- 

    if (UPDN(k-1)==1 && UPDN(k)==0) 
        DAC_Error(k)= Quantization_Levels(Number_of_Levels); 

    end 
    if (Error_Change(k)==1 && DN_Error(k)==0 && UPDN(k)==0) 

        DAC_Error(k)=DAC_Error(k-1)-Delta; 
    end 

    if (DN_Error(k)==1 && UPDN(k)==0) 
        DAC_Error(k)=Quantization_Levels(Number_of_Levels); 

    end 
    if (Error_Change(k)==0 && DN_Error(k)==0 && UPDN(k)==0) 

        DAC_Error(k)=DAC_Error(k-1); 
    end 

    if DAC_Error(k)<=Quantization_Levels(jo) 
        DAC_Error(k)=Quantization_Levels(jo); 

    end 
end 

          // ----------------- Convert Decimal - to _ Binary-------------------

--- // 

 |-------------------------------| 
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 |   Convert Vref to Binary      |                    % Section(4.13) 

 |-------------------------------| 

% Prelocation Of Array 

% --------------------- 
b2=zeros(1,km,'double'); 

b3=zeros(1,km,'double');    b3_x=zeros(1,km,'double'); 
b4=zeros(1,km,'double');    b4_x=zeros(1,km,'double'); 

b5=zeros(1,km,'double');    b5_x=zeros(1,km,'double'); 
b6=zeros(1,km,'double');    b6_x=zeros(1,km,'double'); 

b7=zeros(1,km,'double');    b7_x=zeros(1,km,'double'); 
bit1=zeros(1,km,'double');  bit1_e=zeros(1,km,'double'); 

bit2=zeros(1,km,'double');  bit2_e=zeros(1,km,'double'); 
bit3=zeros(1,km,'double');  bit3_e=zeros(1,km,'double'); 

bit4=zeros(1,km,'double');  bit4_e=zeros(1,km,'double'); 
bit5=zeros(1,km,'double');  bit5_e=zeros(1,km,'double'); 

bit6=zeros(1,km,'double');  bit6_e=zeros(1,km,'double'); 
bit7=zeros(1,km,'double'); 

in_1=zeros(1,km,'double');  in_2=zeros(1,km,'double'); 
Sign=zeros(1,km,'double'); 

Sign_signal=zeros(1,km,'double'); 
stepp=zeros(1,km,'double'); 

 
in=Vref; 

 
for k=1:1:km 

    in_1(k)=abs_func(in(1,k)); 
end 

 
% Convert DAC to Binary 

% ---------------------- 
for k=1:1:km 

    Sign(k)=sign(in(k)); 
end 

for k=1:1:km 
      if sign(in(k))==1 

        bit1(k)=0; 
      elseif sign(in(k))==-1 

        bit1(k)=1; 
      elseif sign(in(k))==0 

        bit1(k)=0; 
      end 

end 
 

for k=1:1:km 
        b2(k)=double(in_1(k))/0.5;    % bit 2 

        if b2(k)>=1 
            bit2(k)=1; 

        else bit2(k)=0; 
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        end 

        if b2(k)>=1 
        b3_x(k)= b2(k)-1;      % bit 3 

        else b3_x(k)=b2(k); 
        end 

        b3(k)=b3_x(k)/0.5; 
         if b3(k)>=1 

            bit3(k)=1; 
         else bit3(k)=0; 

         end 
 

        if b3(k)>=1       % bit 4 
        b4_x(k)= b3(k)-1; 

        else b4_x(k)=b3(k); 
        end 

        b4(k)=b4_x(k)/0.5; 
         if b4(k)>=1 

            bit4(k)=1; 
         else bit4(k)=0; 

         end 
 

        if b4(k)>=1       % bit 5 
        b5_x(k)= b4(k)-1; 

        else b5_x(k)=b4(k); 
        end 

        b5(k)=b5_x(k)/0.5; 
         if b5(k)>=1 

            bit5(k)=1; 
         else bit5(k)=0; 

         end 
 

         if b5(k)>=1       % bit 6 
        b6_x(k)= b5(k)-1; 

        else b6_x(k)=b5(k); 
        end 

        b6(k)=b6_x(k)/0.5; 
         if b6(k)>=1 

            bit6(k)=1; 
         else bit6(k)=0; 

         end 
 

        if b6(k)>=1              % bit 7 
        b7_x(k)= b6(k)-1; 

        else b7_x(k)=b6(k); 
        end 

        b7(k)=b7_x(k)/0.5; 
         if b7(k)>=1 

            bit7(k)=1; 
         else bit7(k)=0; 

         end 
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        if b7(k)>=1              % bit 8 

        b8_x(k)= b7(k)-1; 
        else b8_x(k)=b7(k); 

        end 
        b8(k)=b8_x(k)/0.5; 

         if b8(k)>=1 
            bit8(k)=1; 

         else bit8(k)=0; 
         end 

end 
 

% Convert Quantization error to and Binary 
% ------------------------------------------ 

inn=transpose(Error_Digitlization); 
for k=1:1:km 

     in_2(k)=abs_func(inn(k)); 
end 

 
for k=1:1:km 

        b2(k)=double(in_2(k))/0.5;    % bit 2 
        if b2(k)>=1; 

            bit2_e(k)=1; 
        else bit2_e(k)=0; 

        end 
        if b2(k)>=1; 

        b3_x(k)= b2(k)-1;      % bit 3 
        else b3_x(k)=b2(k); 

        end 
        b3(k)=b3_x(k)/0.5; 

         if b3(k)>=1; 
            bit3_e(k)=1; 

         else bit3_e(k)=0; 
         end 

        if b3(k)>=1;       % bit 4 
        b4_x(k)= b3(k)-1; 

        else b4_x(k)=b3(k); 
        end 

        b4(k)=b4_x(k)/0.5; 
         if b4(k)>=1; 

            bit4_e(k)=1; 
         else bit4_e(k)=0; 

         end 
        if b4(k)>=1;       % bit 5 

        b5_x(k)= b4(k)-1; 
        else b5_x(k)=b4(k); 

        end 
        b5(k)=b5_x(k)/0.5; 

         if b5(k)>=1; 
            bit5_e(k)=1; 

         else bit5_e(k)=0; 
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         end 

 
         if b5(k)>=1;       % bit 6 

        b6_x(k)= b5(k)-1; 
        else b6_x(k)=b5(k); 

        end 
        b6(k)=b6_x(k)/0.5; 

         if b6(k)>=1; 
            bit6_e(k)=1; 

         else bit6_e(k)=0; 
         end 

 
        if b6(k)>=1              % bit 7 

        b7_x(k)= b6(k)-1; 
        else b7_x(k)=b6(k); 

        end 
        b7(k)=b7_x(k)/0.5; 

         if b7(k)>=1 
            bit7_e(k)=1; 

         else bit7_e(k)=0; 
         end 

        if b7(k)>=1              % bit 8 
        b8_x(k)= b7(k)-1; 

        else b8_x(k)=b7(k); 
        end 

        b8(k)=b8_x(k)/0.5; 
         if b8(k)>=1 

            bit8_e(k)=1; 
         else bit8_e(k)=0; 

         end 
end 

Combine DAC and Amplified Quantization Error % Section(4.14) --------------------------------------------- -----
--------------------------------------------------------- | Solution 8 ( 
first 6 bits of DAC + first 2-6 bits of Error ) | | No Sign bit of Error | -------------------------
------------------------------------- 

Decimal_Combined=zeros(1,km,'double'); 

for k=1:1:km 

    if bit1(1,k)==1 
         Sign_signal(1,k)=-1; 

    else Sign_signal(1,k)=1; 
    end 

Decimal_Combined(1,k)= bit2(1,k)*power_func(2,-1); 
Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit3(1,k)*power_func(2,-2); 

Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit4(1,k)*power_func(2,-3); 
Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit5(1,k)*power_func(2,-4); 

Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit6(1,k)*power_func(2,-5); 
Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit7(1,k)*power_func(2,-6); 

Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit8(1,k)*power_func(2,-7); 
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Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit2_e(1,k)*power_func(2,-8); 

Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit3_e(1,k)*power_func(2,-9); 
Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit4_e(1,k)*power_func(2,-10); 

Decimal_Combined(1,k)= Decimal_Combined(1,k)+bit5_e(1,k)*power_func(2,-11); 
 

Decimal_Combined(1,k)=Decimal_Combined(1,k)*Sign_signal(1,k); 
    if Decimal_Combined(1,k)>=amp 

    Decimal_Combined(1,k)=amp; 
    end 

 
    if Decimal_Combined(1,k)<=0 

    Decimal_Combined(1,k)=Decimal_Combined(1,k)- Delta/8; 
    end 

end 
 

%  Filtering the Combined signal (Vcombined) 
%  -------------------------------------------- 

 
% Get the Delta (t) from DAC 

%------------------------------ 
for k=2:1:km 

    if DAC(k)==DAC(k-1) 
        stepp(k)=0; 

    else 
        stepp(k)=1; 

    end 
end 

 
% Divide the Tq to two periods for Filtering 

%--------------------------------------------- 
tol=find(stepp);  tok=length(tol); 

toll=zeros(1,(2*tok)+1,'double');   fd=zeros(1,km,'double'); 
 

for ux=1:1:tok 
    [toll(2*ux)]=tol(ux); 

end 
 

toll(1)=toll(2)/2; 
 

for ux=3:2:2*tok-1 
    [toll(ux)]=(toll(ux+1)+toll(ux-1))/2; 

    %ux=ux+1; 
end 

 
toll2=round_func(toll); 

Decimal_Combined_tam=DAC; 
toll2(2*tok+1)=0; 

 
for nj=1:2:2*tok 
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    if (UPDN(toll2(nj))==1 && beh(toll2(nj))==1); % (1)  if the Signal Ramp up 

and Positive Cycle 
        for tp=toll2(nj):1:toll2(nj+1); 

            Decimal_Combined_tam(tp)=Decimal_Combined(tp); 
        end 

        for tp=toll2(nj+1):1:toll2(nj+2); 
            Decimal_Combined_tam(tp)=DAC(tp); 

        end 
    end 

end 
 

for nj=1:2:2*tok 
    if (UPDN(toll2(nj))==0 && beh(toll2(nj))==1); % (2)  if the Signal Ramp 

down and Positive Cycle 
        for tp=toll2(nj):1:toll2(nj+1); 

            Decimal_Combined_tam(tp)=DAC(tp); 
        end 

        for tp=toll2(nj+1):1:toll2(nj+2); 
        Decimal_Combined_tam(tp)=Decimal_Combined(tp); 

        end 
    end 

 end 
 

 for nj=1:2:2*tok 
     if (UPDN(toll2(nj))==0 && beh(toll2(nj))==0); % (3)  if the Signal Ramp 

Down and Negative Cycle 
         for tp=toll2(nj):1:toll2(nj+1); 

             Decimal_Combined_tam(tp)=Decimal_Combined(tp); 
         end 

         current_Decimal_Combined=DAC(toll2(nj-1))-Delta/4; 
         for tp=toll2(nj+1):1:toll2(nj+2) 

             Decimal_Combined_tam(tp)=current_Decimal_Combined;  % ana 3awaz el 
DAC ya7'od el cycle ely 2ablaaha 

             fd(tp)=Decimal_Combined_tam(tp); 
         end 

     end 
 end 

 
for nj=1:2:2*tok 

    if (UPDN(toll2(nj))==1 && beh(toll2(nj))==0)            % (4)  if the 
Signal Ramp up and Negative Cycle 

        Current_Decimal_Combined_tam=DAC(toll2(nj-1)); 
        for tp=toll2(nj):1:toll2(nj+1); 

            Decimal_Combined_tam(tp)=Current_Decimal_Combined_tam; 
            fd(tp)=Decimal_Combined_tam(tp); 

        end 
        for tp=toll2(nj+1):1:toll2(nj+2); 

            Decimal_Combined_tam(tp)=Decimal_Combined(tp); 
        end 

    end 
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end 

 
% Filter Bell shap at Negative Cycle 

% ------------------------------------ 
for k=2:1:km; 

    if (Decimal_Combined_tam(k)<=(-amp+Delta)) 
        Decimal_Combined_tam(k)=DAC(k); 

    end 
end 

 
% Filter Bell shap at Positive Cycle 

% --------------------------------------- 
for nj=2:2*tok 

    if (Decimal_Combined_tam(toll2(nj))>=(amp-Delta) && UPDN(toll2(nj))==0 && 
UPDN(toll2(nj-1))==1 && beh(toll2(nj))==1); % (1)  if the Signal Ramp up and 

Positive Cycle 
        for tp=round_func((toll2(nj)+toll2(nj-

1))/2):1:round_func((toll2(nj)+toll2(nj+1))/2); 
            Decimal_Combined_tam(tp)=Decimal_Combined(tp); 

        end 
    end 

end 
 

for nj=2:2*tok         % This is only for the Negative Cycle 
    if (Decimal_Combined_tam(toll2(nj))<=(-amp+3*Delta/4) && UPDN(toll2(nj))==1 

&& UPDN(toll2(nj-1))==0 ) % (1)  if the Signal Ramp down and Negtive Cycle 
        for tp=round_func((toll2(nj)+toll2(nj-

1))/2):1:round_func((toll2(nj)+toll2(nj+1))/2); 
            Decimal_Combined_tam(tp)=Decimal_Combined(tp); 

        end 
    end 

end 
 

%  Filter Positive-to-Negative or Negative-to-Positive Cycle 
%  ---------------------------------------------------------- 

for nj=2:2*tok    % for Zero negative cycle 
    if (UPDN(toll2(nj))==0 && beh(toll2(nj-1))==1 && beh(toll2(nj))==0);  % fow 

Zero 
        for tp=toll2(nj+1):1:toll2(nj+2); 

            Decimal_Combined_tam(tp)=DAC(tp); 
            ttt=DAC(tp); 

        end 
    end 

end 
 

for nj=2:2*tok    % for Zero Positive cycle 
    if (UPDN(toll2(nj))==1 && beh(toll2(nj-1))==0 && beh(toll2(nj))==1);  % fow 

Zero 
        for tp=toll2(nj-2):1:toll2(nj-1); 

            Decimal_Combined_tam(tp)=DAC(tp); 
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        end 

        for tp=toll2(nj-1):1:toll2(nj); 
            Decimal_Combined_tam(tp)=Decimal_Combined(tp); 

        end 
        for tp=toll2(nj):1:toll2(nj+1); 

            Decimal_Combined_tam(tp)=DAC(tp); 
        end 

    end 
end 

 
V_combined=Decimal_Combined_tam-Delta/16; 

EEE=x-V_combined; 

Wavelet Neural Network % Chapter(3) ------------------------ 

d=0.8*x; 

d=d+amp; 

Gx0=0.8*V_combined; 

Gx0=Gx0+amp; 

 

% WNN Initial Values 

% ------------------- 
N=20;                               % Number of hidden layers 

i=10;                               % learning iterations 
Ny=31.3;                            % learning rate. 

B= 1.2700e-08;                      % Momentum Factor to the weights. 
ai=zeros(N,km+1,i);                 % dilation 

bi=zeros(N,km+1,i);                 % translation 
wi=zeros(N,km+1,i);                 % Weights 

 
% Prelocation Of Array 

% --------------------- 
taw=zeros(1,km);    Gx1=zeros(1,km);            Gx2=zeros(1,km); 

Gx=zeros(1,km);     error_WNN=zeros(1,km);      Gx_dash=zeros(1,km); 
De_Dw=zeros(1,km);  De_Db=zeros(1,km);          De_Da=zeros(1,km); 

Delta_wi=zeros(1,km+1,i); Delta_bi=zeros(1,km+1,i); Delta_ai=zeros(1,km+1,i); 
SNDR_Gx= zeros(1,i) ;  ENOB_X_Gx_new= zeros(1,i);  Signal_corr= zeros(1,i); 

Delta_wi=zeros(1,km+1,i); Delta_bi=zeros(1,km+1,i); Delta_ai=zeros(1,km+1,i); 
 

%       ------------------| Calculate the WNN again|------------- 
for kf=1:1:i 

    for kr=1:1:N 
        for k=1:1:km 

            ai(kr,k,kf)=40458*kr*0.1;                   % dilation 
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            bi(kr,k,kf)=53.4600*kr*0.1;                 % translation 

            wi(kr,k,kf)=1.9440*kr*0.1;                  % Weights 
        end 

    end 
end 

 
% Prelocation Of Array 

% --------------------- 
 

% Wavelet Morlet Equation 
%--------------------------- 

for kf=1:1:i 
    for kr=1:1:N 

        for k=1:1:km 
            taw(kr,k)= (Gx0(k)-bi(kr,k,kf))/ai(kr,k,kf);                    % 

Equation (3.22) 
            Gx1_N(kr,k)=cos(1.75*taw(kr,k)).* exp(-(t(k).*t(k))/2);         % 

Equation (3.17) 
            Gx2_N(kr,k)=wi(kr,k,kf)*Gx1_N(kr,k); 

            Gx_N(kr,k,kf)=1/(1+exp(-Gx2_N(kr,k)));                          % 
Equation (3.18) 

            error_WNN_N(kr,k)= 0.5.*((d(k)-Gx_N(kr,k))^2);                  % 
Equation (3.21) 

 
%Gradient-Descent Algorithm 

%---------------------------- 
            Gx_dash(kr,k)= Gx_N(kr,k).*(1-Gx_N(kr,k)); 

            De_Dw(kr,k)=-(d(k)-Gx_N(kr,k)).* 
Gx_dash(kr,k).*cos(1.75.*taw(kr,k)).*exp(-0.5.*(taw(kr,k).*taw(kr,k)));   % 

Equation (3.23) 
            De_Db(kr,k)=-(d(k)-Gx_N(kr,k)).* 

Gx_dash(kr,k).*(wi(kr,k,kf)/ai(kr,k,kf)).*exp(-
0.5.*(taw(kr,k).*taw(kr,k))).*(1.75.*(sin(1.75.*taw(kr,k)))+ 

taw(kr,k).*(cos(1.75.*taw(kr,k))));   % Equation (3.24) 
            De_Da(kr,k)=(taw(kr,k).*De_Db(k));                              % 

Equation (3.25) 
            Delta_wi(kr,k+1,kf)=-kf.*Ny.*De_Dw(kr,k)+ B.*wi(kr,k,kf);       % 

Equation (3.30) 
            Delta_bi(kr,k+1,kf)=-kf.*Ny.*De_Db(kr,k)+ B.*bi(kr,k,kf);       % 

Equation (3.31) 
            Delta_ai(kr,k+1,kf)=-kf.*Ny.*De_Da(kr,k)+ B.*ai(kr,k,kf);       % 

Equation (3.32) 
            wi(kr,k+1,kf)=wi(kr,k,kf)+Delta_wi(kr,k+1,kf);                  % 

Equation (3.33) 
            bi(kr,k+1,kf)=bi(kr,k,kf)+Delta_bi(kr,k+1,kf);                  % 

Equation (3.34) 
            ai(kr,k+1,kf)=ai(kr,k,kf)+Delta_ai(kr,k+1,kf);                  % 

Equation (3.35) 
        end 

    end 
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end 

 
% The Highest ENOB 

% ----------------- 
for kf=1:1:i 

for kr=1:1:N 
     ENOB_WNN_best(kr,kf)=(sinad(1.25*(Gx_N(kr,1:km,kf)-amp))-1.76)/6.02; 

end 
end 

 
Max_ENOB=max(ENOB_WNN_best(kr,kf)); 

[Best_N,Best_iteration]=find(ENOB_WNN_best(1:kr,kf)==Max_ENOB); 
Gx=Gx_N(Best_N,1:km,Best_iteration); 

 
EE=d-Gx; % to plot the Error_WNN 

Gx=Gx-amp; 
Gx=1.25*Gx; 

 %-------------------------------------------------------------% 
 %                     Performance Metrics                     % 

 %-------------------------------------------------------------% 
 

% Calculate the Delta Modulation (ADC/DAC) 
% ----------------------------------------- 

 
% Change Signal for Delta Modulation 

% ----------------------------------- 
  for k=2:1:km-1 

        if (UPDN(k-1)==1 && UPDN(k)==0) 
            Change_DM(k)=0; 

            Change_DM(k+1)=0; 
        end 

        if (UPDN(k-1)==0 && UPDN(k)==1) 
            Change_DM(k)=0; 

            Change_DM(k+1)=0; 
        end 

  end 
 

% Create the DAC (CT-DAC) 
% ------------------------ 

DAC_DM= zeros(1,km,'double'); 
for k=3:1:km-1 

    if UPDN(k)==1; 
        if beh(k)==1; 

            if Change_DM(k)==1; 
                DAC_DM(k)=DAC_DM(k-1)+Delta; 

            else 
                DAC_DM(k)=DAC_DM(k-1); 

            end 
        elseif beh(k)==0; 

            if Change_DM(k)==1; 
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                if Change_DM(k-1)==1 

                    DAC_DM(k)=DAC_DM(k-1); 
                else 

                    DAC_DM(k)=DAC_DM(k-1)+Delta; 
                end 

            else 
                DAC_DM(k)=DAC_DM(k-1); 

            end 
            if ( Change_DM(k)==1 &&  Change_DM(k+1)==0 &&  Change_DM(k-1)==1 ); 

%-------------- 
                     DAC_DM(k)=DAC_DM(k-1)+Delta; 

            end 
        end 

    elseif UPDN(k)==0; 
        if beh(k)==1; 

            if Change_DM(k)==1; 
                if ( Change_DM(k+1)==1 && Change_DM(k-1)==1 ) 

                    DAC_DM(k)=DAC_DM(k-1); 
                else 

                    DAC_DM(k)=DAC_DM(k-1)-Delta; 
                end 

            else 
                DAC_DM(k)=DAC_DM(k-1); 

            end 
        elseif beh(k)==0; 

            if Change_DM(k)==1; 
                DAC_DM(k)=DAC_DM(k-1)-Delta; 

            else 
                DAC_DM(k)=DAC_DM(k-1); 

            end 
            if ( Change_DM(k+1)==1 && Change_DM(k-1)==0 && Change_DM(k)==1); %-

----------- 
                DAC_DM(k)=DAC_DM(k-1)-Delta; 

            end 
        end 

    end 
    if DAC_DM(k)>=Quantization_Levels(Number_of_Levels) 

        DAC_DM(k)=Quantization_Levels(Number_of_Levels-1); 
    end 

    if DAC_DM(k)<=-amp 
        DAC_DM(k)=-amp; 

    end 
end 

DAC_DM(1)=0; 
 

%  Calculate the Quantization Error Of (x) 
%  ---------------------------------------- 

error_DM=x-DAC_DM;        % Quantization Error 
 

% Normalizing Signals 
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% ----------------------- 

DAC_normalized=DAC+Delta/2; 
Error_normalized=Vref_error-Delta/2; 

 
DAC_DM_normalized=DAC_DM+Delta/2; 

error_DM_normalized=error_DM-Delta/2; 

Simulation_Results 

------------------- 

% Root Mean Square (RMS) 

%------------------------- 
x_RMS=rms(x); 

DAC_RMS=rms(DAC); 
Gx_RMS=rms(Gx); 

error_RMS=rms(Vref_error); 
EE_RMS=rms(EE); 

Error_DM_rms=rms(x-DAC_DM-Delta/2); 
Error_Vshift_rms=rms(x-DAC-Delta/4); 

Error_Vref_rms=rms(EEE); 
 

% SQNR 
% ------ 

SQNR_DM=10*log10((x_RMS/Error_DM_rms)^2); 
SQNR_Vref=10*log10((x_RMS/Error_Vref_rms)^2); 

SQNR_WNN=10*log10((x_RMS/EE_RMS)^2); 
 

% SNR 
% --- 

SNR_DM= snr(DAC_DM+Delta/2); 
SNR_Vref= snr(V_combined); 

SNR_WNN= snr(Gx); 
 

% SNDR 
% ----- 

SNDR_DM= sinad(DAC_DM+Delta/2); 
SNDR_Vref= sinad(V_combined); 

SNDR_WNN= sinad(Gx); 
 

%  SFDR 
% ------ 

SFDR_DM= sfdr(DAC_DM+Delta/2); 
SFDR_Vref= sfdr(V_combined); 

SFDR_Gx= sfdr(Gx); 
 

% ENOB 
% ----- 

ENOB_DM=((SNDR_DM)-1.76)/6.02; 
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ENOB_Vref=((SNDR_Vref)-1.76)/6.02; 

ENOB_WNN=((SNDR_WNN)-1.76)/6.02; 
 

% Summary Table of ADC Performance 
% --------------------------------- 

Table = {'V_DM';'V_Ref';'V_WNN'}; 
SQNR = [SQNR_DM;SQNR_Vref;SQNR_WNN]; 

SNR = [SNR_DM;SNR_Vref;SNR_WNN]; 
SNDR = [SNDR_DM;SNDR_Vref;SNDR_WNN]; 

SFDR = [SFDR_DM; SFDR_Vref; SFDR_Gx]; 
ENOB = [ENOB_DM; ENOB_Vref; ENOB_WNN]; 

Freq=[Frequency;Fs;resolution]; 
 

clc 
Simulation_Results=table(SQNR,SNR,SNDR,SFDR,ENOB,Freq,... 

    'RowNames',Table) 
 

Best_iteration_resukts=ENOB_WNN_best; 

Simulation_Results =  

              SQNR      SNR       SNDR      SFDR      ENOB     Freq  

             ______    ______    ______    ______    ______    _____ 

    V_DM     25.314    20.903    20.902    23.672    3.1798        1 

    V_Ref    26.175    36.353    36.318    43.346    5.7406    1e+06 

    V_WNN    50.715    226.42    226.42    233.91    37.319    1e-06 

|-----------------------------------------------| 

|                     Ploting                   | 

|-----------------------------------------------| 

% Plot Delta Modulation (V_DM) 

% ----------------------------- 
figure(1); title ('Simulation of CT-ADC Delta Modulation (V_D_M)'); 

xlabel('Time (Microseconds)'); ylabel('Amplitude (V)'); grid on; 
hold all; plot(x,'r'); 

hold all; plot(DAC_DM+Delta/2,'b'); 
hold all; plot(x-DAC_DM-Delta/2,'k'); 

 
% Plot Digitalized Output Signal (Vref) 

% --------------------------------------- 
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figure(2); title ('Simulation of CT-ADC Delta Modulation (V_R_E_F)'); 

xlabel('Time (Microseconds)'); ylabel('Amplitude (V)'); grid on; 
hold all; plot(x,'r'); 

hold all; plot(Vref-Delta/8,'b');                   % Plot Normalized (Vref) 
hold all; plot(Vref_error-Delta/8,'black');         % Plot Normalized (Vref 

error) 
 

% Plot V_combined Output 
% ----------------------- 

figure(3); title ('SQNR for the Simulated CT- ADC ( V_C_o_m_b_i_n_e_d)'); 
xlabel('Time (Microseconds)'); ylabel('Amplitude (V)'); grid on; 

hold on; plot (x ,'r'); 
hold on; plot (V_combined,'k'); 

hold on; plot (EEE,'b'); 
 

% Plot V_WNN Output Singal 
% -------------------- 

figure (4); title ('SQNR for the Simulated CT- ADC ( V_W_N_N)'); xlabel('Time 
(Microseconds)'); ylabel('Amplitude (V)'); grid on; 

hold on; plot (x ,'r'); 
hold on; plot (Gx,'k'); 

hold on; plot (x-Gx,'b'); 
 

% Plot SINAD 
% ------------- 

figure (5); sinad((DAC_DM+Delta/2),Fs); 
figure (6); sinad(V_combined,Fs); 

figure (7); sinad(Gx,Fs); 
 

% Plot SFDR 
% ------------- 

figure (8); sfdr((DAC_DM+Delta/2),Fs); 
figure (9); sfdr(V_combined,Fs); 

figure (10); sfdr(Gx,Fs); 
 

% Plot SFDR 
% ------------- 

figure (11); snr((DAC_DM+Delta/2),Fs); 
figure (12); snr(V_combined,Fs); 

figure (13); snr(Gx,Fs); 

             
	

 
	


