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Abstract

Lifetimes models have been developed in the last five centuries. These developments

are purposed to fit lifetimes data. Models that accommodate different shapes of

the hazard rate function are useful for analyzing the lifetimes data. Among these

lifetimes models is the TN distribution with two parameters. The TN model has

variety of shapes for hazard rate function. It accommodates increasing, decreasing,

bathtub, unimodal, increasing-decreasing-increasing hazard shapes which allows it

to fit variety of real lifetime data sets. The main aim of this thesis is to estimate

the two parameters of the TN distribution using the classical and Bayesian methods.

In the classical approach, we use the maximum likelihood estimation. While in the

Bayesian approach, the rejection sampling algorithm and the Markov Chain Monte

Carlo methods are applied to obtain the Bayes estimates of the TN parameters and

the tow-sided Bayesian probability intervals of the parameters. Simulation study

is performed to investigate the properties of the methods applied and compare the

maximum likelihood and the Bayesian methods. In order to demonstrate the use of

the methods used in this thesis, three data sets are analyzed using the maximum

likelihood and Bayes methods.
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Chapter 1

Introduction

The lifetime of humans, components, etc, are unanticipated and non-negative random

variables, and amendable to statistical rules. In the mid half of the 20 century, there

are many developments of models that deal with such kind of random variables [5].

These models are known as lifetime models since the main interest of these models is

the lifetime. For instances, it can be the number of hours for a light bulb before it

breaks down, it could be the period of time of the patients after they recovered from

an operation, and it could be the number of cycles which are recorded for new prod-

uct before the failure time. In lifetime data analysis, models with different shapes of

hazard rate function are useful. As an example of common models that often being

used to analyze lifetime data, are the exponential and Weibull distributions. However,

the Weibull distribution has monotone hazard rate function whereas the hazard rate

function of the exponential distribution is a constant. These two distributions are

unable to accommodate the lifetime data sets that have non-monotone hazard rate

shapes. For this reason, many lifetime models were introduced to address this lack.

The generalized linear failure rate distribution was introduced by Sarhan and Kundu

[10]. Gupta and Kundu suggested the generalized exponential distribution [7]. Pham

and Lai [9] presented some of the lifetime distributions. The exponentiated modified

Weibull extension was presented by Sarhan and Apaloo [11]. Sarhan et al. [12], pro-

posed a new distribution and they referred it as the TN distribution, and it has two

parameters which makes it as one of a few distributions that have only two param-

eters and shows different shapes of the hazard rate function. They discussed some

statistical properties of the TN model such as skewness and kurtosis and proposed

some algorithms that generate random samples from the TN distribution. Also, they

used the maximum likelihood method to estimate its two unknown parameters. In

this thesis, the Bayesian techniques will be applied to estimate the TN distribution

parameters and compare it to the their maximum likelihood estimation.

1



2

1.1 The TN Distribution

Sarhan et al. [12] proposed a one parameter distribution and named it the new

distribution and referred as N(β) with the probability density function (pdf) given

by

f(t) =
β

1 + β
[β + (1 + 2βt)e−βt]e−βt, t ≥ 0, β > 0. (1.1)

The hazard rate function of the N(β) is

h(t) =
β[β + (1 + 2βx)e−βt]

β + (1 + βt)e−βt
, t ≥ 0, β > 0. (1.2)

The hazard rate function of the N(β) is unimodal which makes the N(β), in some

cases, unable to fit some real data sets. Therefore, Sarhan et. al [12] used the power

transformation X = T
1
α , where T ∼ N(β) and α > 0, to propose a new model, named

transformed new distribution and they referred it as the TN (α, β) distribution. The

probability density function of the TN(α, β) is

f(x) =
αβxα−1

1 + β
[β + (1 + 2βxα)e−βx

α

]e−βx
α

, x ≥ 0, α, β > 0. (1.3)

Figure 1.1 demonstrates the probability density function for different choices of α

when β = 1. The probability density function can be skewed or symmetric. The

hazard rate function of the TN(α, β) is

h(x) =
αβxα−1[β + (1 + 2βxα)e−βx

α
]

β + (1 + βxα)e−βxα
, x ≥ 0, α, β > 0. (1.4)

Sarhan et al. [12] showed that the hazard rate function of the TN model may

take different shapes, such as increasing, decreasing, unimodal, decreasing-increasing-

decreasing or increasing-decreasing-increasing depending on the values of its param-

eters α and β. Figure 1.2 displays the hazard rate function of the TN(α, β) for

different parameters values. The variety of the shapes of the hazard rate function of

the TN(α, β) makes it a suitable model to fit many different real data sets.

1.2 Aim of Study

The main goal of the thesis is to discuss the Bayes inference of the TN distribution’s

parameters by using two different approaches. The first approach is the rejection
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Figure 1.1: The density probability function of the TN (α, β) distribution with some
values of α when β = 1.

sampling algorithm (RS) and the second method is the Markov Chain-Monte Carlo

(MCMC). The maximum likelihood method is considered for comparison reason. We

will use the model to analyze three different real data sets. Simulation study is

performed to compare the Bayesian results with the maximum likelihood results.

1.3 The Structure of the Thesis

The rest of this thesis consists of four chapters. The next Chapter describes two

estimation methods for the unknown parameters which are the classical and Bayesian

methods. In the classical approach, maximum likelihood estimation is considered

while in the Bayesian method, we study the rejection sampling algorithm and the

Markov Chain Monte Carlo method. Simulation study is carried out using the three

estimation methods and the results are presented in Chapter 3. In Chapter 4, three

real data sets are analyzed using the TN(α, β) distribution. Chapter 5 concludes the

thesis and proposes a possible future work.
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Figure 1.2: The hazard function of TN (α, β) with some different parameters values,
α = 2.5, β = 0.1 (top left), α = 0.5, β = 0.1 (top right), α = 1.2, β = 0.5 (bottom
left), α = 1, β = 0.1 (bottom right).



Chapter 2

Methods of Estimation

Let us assume that x1, . . . , xn be an independent and identically distributed (iid)

random sample from the TN(α, β) distribution with a probability density function

(1.3). Our main goal is to do statistical inference on the two unknown parameters

included in the TN model. We will apply two approaches, classical and Bayesian

methods, to obtain the point and interval estimates of the two parameters. First we

briefly discuss the maximum likelihood approach, then the two Bayesian approaches

”the Rejection Sampling (RS)” and ”the Markov Chain Monte Carlo (MCMC)” will

be discussed.

2.1 Maximum Likelihood Method

Maximum likelihood method is a popular and long-standing approach for parameter

estimation. Suppose that n independent and identical items are put on the life test.

The test will be terminated when all items have failed. The life of these items, say

x1, . . . , xn, are observed and they follow the TN (α, β).

The likelihood function, L, for α and β, give the data x = (x1, x2, · · · , xn), can

be obtained as follows

L(α, β|x) =
n∏
i=1

f(xi|α, β)

Substituting (1.3) into the above equation, we get

L(α, β|x) =
αnβn

(1 + β)n
[P (x)]α−1e−βτ(α,x) ×

n∏
i=1

[β + (1 + 2βxαi )e−βx
α
i ], (2.1)

where

P (x) =
n∏
i=1

xi and τ(α, x) =
n∑
i=1

xαi .

5
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Definition 2.1

Give a set of random sample x1, x2, · · · , xn from a distribution indexed by a vector

of unknown parameters θ = (θ1, θ2, · · · , θk), where k ≥ 1, the maximum likelihood

estimator for θ, say θ̂(x), is the value of θ that maximizes the likelihood function of

θ (Casella, 1990).

Under a regular set of conditions, among them the likelihood function must be

differentiable in θ, the common approach of maximizing the likelihood function can

be done by solving
∂

∂θi
L(θ|x) = 0, i = 1, · · · , k.

To simplify differentiation, the log of the likelihood function is used. Therefore, we

will need to solve the following system of equations in θi, i = 1, 2, · · · , k

∂L
∂θi

= 0, i = 1, · · · , k,

where L = lnL(θ|x). The above k equations are called the likelihood equations that

should be solved to obtain the maximum likelihood estimators of the parameters.

The log-likelihood function, L, for the model discussed here is

L = n lnα + n ln β − n ln(1 + β) + (α− 1)
n∑
i=1

lnxi

−β
n∑
i=1

xαi +
n∑
i=1

ln
[
β + (1 + 2βxαi )e−βx

α
i
]
. (2.2)

The first partial derivatives of L, with respect to α and β, are

∂L
∂α

=
n

α
+ ln[P (x)]− βτ(α, x) lnxi +

n∑
i=1

Ci,α(α, β)

Ci(α, β)
,

∂L
∂β

=
n

β(1 + β)
− τ(α, x) +

Ci,β(α, β)

Ci(α, β)
, (2.3)

where

Ci,α(α, β) =
∂Ci(α, β)

∂α
= βxαi (1− 2βxαi ) lnxie

−βxαi ,
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Ci,β(α, β) =
∂Ci(α, β)

∂β
= 1 + (1− 2βxαi )xαi e

−βxαi .

The second partial derivatives of L are

∂2L
∂α2

= − n

α2
− β

n∑
i=1

xαi (lnxi)
2 +

n∑
i=1

Ci(α, β)Ci,α2(α, β)− [Ci,α(α, β)]2

[Ci(α, β)]2
,

∂2L
∂αβ

= −
n∑
i=1

xαi lnxi +
n∑
i=1

Ci(α, β)Ci,αβ(α, β)− Ci,α(α, β)Ci,β(α, β)

[Ci(α, β)]2
,

∂2L
∂β2

= − n

β2
+

n

(1 + β)2
+

n∑
i

Ci(α, β)Ci,β2(α, β)− [Ci,β(α, β)]2

[Ci(α, β)]2
, (2.4)

where

Ci,α2(α, β) = βxαi (lnxi)
2e−βx

α
i (1− 5βxαi + 2β2x2αi ),

Ci,αβ(α, β) = xαi (lnxi)e
−βxαi (1− 5βxαi + 2β2x2αi ),

Ci,β2(α, β) = −x2αi e−βx
α
i (3− 2βxαi ).

The Observed Information Matrix

The second partial derivatives of the log-likelihood function provide the elements of

the observed information matrix. That is,

I(α̂MLE, β̂MLE) = −

 ∂2L
∂α2

∂2L
∂αβ

∂2L
∂αβ

∂2L
∂β2


(α,β)=(α̂MLE ,β̂MLE)

(2.5)

where α̂MLE and β̂MLE are the MLE of the parameters α and β which are the solution

of the likelihood equations (2.4) such that I(α̂MLE, β̂MLE) is positive definite.

There is no analytic solution for the system of the likelihood equations, hence

numerical approaches, such as the Newton-Raphson, have to be used.

Asymptotic Confidence Intervals

Given that the MLEs of the parameters α and β do not exist here in closed form,

some difficulty arises in obtaining the exact distribution for α̂MLE and β̂MLE. To

obtain the asymptotic confidence interval, we use the result that states that (α̂mle
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, β̂mle) are asymptotically normally distributed with mean equal to the true values

of the two parameters α and β and variance-covariance equals to the inverse of the

observed information matrix. That is,(
α̂MLE

β̂MLE

)
∼ N

((
α

β

)
, [I(α̂MLE, β̂MLE)]−1

)
, (2.6)

where [I(α̂MLE, β̂MLE)]−1 is the inverse of I(α̂MLE, β̂MLE).

The result (2.6) can be used to approximate the (1−ϑ)100 % confidence intervals for

the parameters α and β as

α̂MLE ± Zϑ
2

√
V ar(α̂), β̂MLE ± Zϑ

2

√
V ar(β̂) , (2.7)

where Zϑ
2

is the (1− ϑ
2
)100th percentile of the standard normal distribution.

2.2 Bayesian Estimation

In this section, we use Bayesian estimation methods. Bayesian estimation is a well-

known and respected approach. The significant elements of the Bayesian analysis

are the likelihood function, that represents the information about the parameters

included in the data, and the prior density, which reflects the knowledge about the

parameters before the data are observed. Combining the prior density and the likeli-

hood function produces the posterior distribution. The posterior distribution reflects

knowledge about the parameters from the data and the prior information. The poste-

rior distribution can be summarized by the mean, the mode and the credible intervals.

2.2.1 Bayes’ Theorem

Suppose that the data x = (x1, . . . , xn) are independent. In order to get the posterior

distribution g(θ|x), we apply the basic property of the Bayes’ rule:

g(θ|x) =
L(x|θ)q(θ)

p(x)
∝ L(x|θ)q(θ),

where

θ : is a vector parameters of interest.

L(x|θ): is a the likelihood function.
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q(θ) : is a prior distribution.

p(x) : is a marginal distribution of x.

It is easy to obtain the posterior distribution which is the likelihood function multi-

plied by the prior density and determine the constant part that does not depend on

θ which impose the constant term to integrate to 1. A good technique for calculating

the posterior density is to exclude any constant from likelihood function and the prior

density that does not depend on θ, and then compute the normalizing constant.

Prior Distribution

After the data model is selected, a Bayesian estimation needs the assertion of a prior

density for unknown distribution parameters. The prior density represents the current

state of uncertainty or knowledge about the parameters prior to data being observed.

There are essentially two main methods for choosing the prior density. The first

method is an informative prior density [6]. In this approach, the researcher applies

his or her knowledge about the essential issue based on a previous data, associated

with expert suggestion if possible, to construct the prior density which reflects his

thinking about the unknown parameters. The second approach is a noninformative

prior density that does not require prior experience on the parameters. Also, this kind

of density is called diffuse or vague prior density. Selecting a noninformative prior

density is trying to work as if there is no knowledge about the parameters before

recognizing the data. This can be performed by specifying the same probability for

every value of the parameter, or at least it is close to the same probability on extent

of the parameters. However, the noninformative prior densities have problems. First,

some common approaches that construct the noninformative prior density supposing

a uniform distribution, produce inconsistency. Second, there are many cases where

formulating the noninformative prior density produce a probability function which

integrates to infinity . Generally, the prior density has an impact in small sample;

however, this is not disadvantage since the posterior distribution represents the low

available information about the parameters when the sample size is a small. A tech-

nique that can be used for a distribution with multiple parameters is to assume for

each parameter individually and construct the joint prior density. In this thesis, we

assume the prior density for α and β are independent and following the gamma prior
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density,

q1(α) ∝ αa1−1e−b1α, α > 0.

q2(β) ∝ βa2−1e−b2β, β > 0.

By combining the two prior densities for α and β, we can write the joint prior distri-

bution as follows :

q(α, β) ∝ αa1−1βa2−1e−b1α−b2β, α, β > 0. (2.8)

The hyperparameters a1, a2, b1, b2 are supposed to be known and non-negative.

Posterior Distribution of the TN Model

In order to learn about parameters of a distribution, we need the posterior density.

In this study, the posterior density of (α, β) can be formulated as a product of the

likelihood function and the joint gamma prior density (2.1), (2.8) respectively, up to

normalized constant,

g(α, β|x) ∝ αnβn

(1 + β)n
[P (x)]α−1e−βτ(α,x) ×

n∏
i=1

[β + (1 + 2βxαi )e−βx
α
i ]

×αa1−1βa2−1e−b1α−b2β, α, β > 0.

The posterior density of (α, β) can be written as

g(α, β|x) ∝ αa1+n−1βa2+n−1

(1 + β)n
[P (x)]α−1e−βτ(α,x)−b1α−b2β

×
n∏
i=1

[β + (1 + 2βxαi )e−βx
α
i ], α, β > 0. (2.9)

The normalizing constant is

p(x) =

∫ ∞
0

∫ ∞
0

αa1+n−1βa2+n−1

(1 + β)n
[P (x)]α−1e−βτ(α,x)−b1α−b2β

×
n∏
i=1

[β + (1 + 2βxαi )e−βx
α
i ] dα dβ. (2.10)

There is no analytic solution for (2.10). Therefore, we should use numerical techniques

to calculate the posterior distribution of θ = (α, β). Among those methods, we will use

sampling methods to draw samples from the posterior distribution without knowing

the normalizing constant. We will use



11

1. Rejection sampling algorithm.

2. Markov Chain Monte Carlo.

2.3 Simulations Methods

Since we can not generate samples from the posterior distribution due to it is hard

to compute the normalizing constant of the posterior distribution of θ = (α, β).

Therefore, we need to use simulation approaches to get draws form the posterior

distribution. There are many simulation methods that can be applied to obtain

draws from the posterior distribution, and we consider two methods which are the

rejection sampling algorithm and the Markov Chain Monte Carlo.

2.3.1 Rejection Sampling

The rejection sampling (RS) is a straight-forward and practical approach to gain

simulated samples from a distribution when the normalizing constant can not be

obtained [2]. Suppose that we need to find simulated draws from the posterior density

of θ = (α, β) which the normalizing constant can not be known. In such an instance,

implementing rejection sampling would be ideal. To apply the rejection sampling

algorithm, the first step is to locate a proposal density q(θ) that is simple to derive

samples from; and should also resemble the posterior density of g(θ|x) and constant

K that satisfies g(θ|x) ≤ Kq(θ), for all θ ,where K > 1.

In stage two of the algorithm, nominee samples are derived from the proposal density

q(θ). Hence, the probability of an acceptance is

r = g(θ|x)/Kq(θ).

We continue with this process of drawing samples from the proposal density q(θ)

until we achieve the acceptance rate. It is worth noting here that the higher the

acceptance rate is, the more accurate and efficient is the rejection sampling algorithm

[2]. Keep in mind that the posterior density of θ = (α, β) in (2.9) is our target density.

To that end, we choose the proposal density as the multivariate t-distribution with

mean and number of degrees of freedom. Our assumption here is that the proposal

density will cover the posterior density of the TN distribution after we multiply it by
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a suitable constant. The following algorithm describes how the draws are obtained

using rejection sampling algorithm.

Algorithm 2.1 ( Rejection Sampling)

1. Simulate θ from the proposal density q(θ).

2. Generate a random variable U uniformally distributed on the interval [0, 1].

3. Compute the acceptance probability r = g(θ|x)/Kq(θ).

4. If U ≤ r accept θ, otherwise reject θ.

5. Repeat steps 1 to 4 of the algorithm until the efficient number of acceptance

rate is obtained.

2.3.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is an alternative method that can be mainly

used to generate random samples from a multivariate probability distribution function

with a higher dimension. However, it can be used for a low dimension situation as

in this thesis. Markov Chain Monte Carlo methods have been applied in many fields

since 1990s. These methods are general and flexible along with the huge development

of computing facilities. One approach to construct MCMC is the Metropolis-Hastings

algorithm which was introduced by Metropolis et al. (1953). Hastings (1970) has

made a generalization of Metropolis-Hastings algorithm. There are two different

approaches of the Metropolis-Hastings algorithm: (1) the random walk chain and (2)

the independent chain. In the following we will discuss the general algorithm for the

Metropolis-Hastings. Then present the algorithm for the random walk chain approach

that will be used throughout the thesis.

2.3.3 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a common technique to simulate random se-

quence from the posterior probability density, g(θ|x). The Metropolis-Hastings algo-

rithm starts with an initial point of the sequence, θ0, and identifies a rule for sampling

the mth element in the sequence, θm, given the (m − 1)th element in the sequence,
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θm−1. This rule requires a proposal density, from which we simulate a candidate

random point, θ∗, and calculates an acceptance probability p, that depend on the

posterior distribution and the proposal density, which gives the probability that the

random candidate will be accepted as the following sampled point in the sequence.

Below, is the general set-up of the Metropolis-Hastings algorithm:

Algorithm 2.2 (Metropolis-Hastings algorithm)

1. Specify the number of iterations M

2. Set a starting value θ0 = (α0, β0) .

3. For m = 1, 2, · · · ,M , do the following

(a) Simulate a candidate θ∗ from a proposal density q(θ, θm−1)

(b) Calculate the ratio

r =
g(θ∗|x)q(θm−1|θ∗)
g(θm−1|x)q(θ∗|θm−1)

(c) Calculate the acceptance probability

p = min(r, 1)

(d) Generate a random value U from a uniform distribution on (0, 1) interval

(e) Set

θm =

{
θ∗ if U ≤ p ,

θm−1 otherwise .

Under few conditions on the proposal density q(θ∗|θm−1), the sequence of random

simulated draws θ1, θ2, · · · , θM should converge to a random sample from the actual

posterior distribution g(θ|x) Albert (2009). In the MCMC, the proposal density

q(θ∗|θ) plays a significant rule in the convergence process. A poor selection of the

proposal density might lead to a delay in the convergence process.

Random Walk Chain

In the random walk chain, the proposal density is symmetric and should satisfies the

following condition:

q(θ∗|θ) = q(θ|θ∗), for all θ∗ and θ
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Therefore, the ratio r, in the Metropolis-Hasings algorithm, for the random walk

chain becomes

r =
g(θ∗|x)

g(θm−1|x)
.

One of the possible choices of the proposal can be the multivariate normal distribution

with a mean of θm−1 and variance-covariance matrix scale I, where I is the identity

matrix and scale is a scale parameter that controls the spread of the candidates from

the current mean, θm−1. This can be expressed as

θ∗ = θm−1 + scale Z,

where Z is multivariate normal with a mean vector of zeros, and the variance-

covariance matrix and a scale should be a positive scale parameter. As a special

case from Algorithm 2.2, the random walk chain algorithm can be described as fol-

lows:

Algorithm 2.3 (Random Walk Chain -Metropolis-Hastings algorithm)

1. Specify the number of iterations M and the value of the scale

2. Set a starting value θ0

3. For m = 1, 2, · · · ,M , do the following

(a) Simulate Z ∼ N(0, I)

(b) Simulate a candidate θ∗ = θm−1 + scale Z

(c) Calculate the ratio

r =
g(θ∗|x)

g(θm−1|x)

(d) Calculate the acceptance probability

p = min(r, 1)

(e) Generate a random value U from a uniform distribution on (0, 1) interval

(f) Set

θm =

{
θ∗ if U ≤ p ,

θm−1 otherwise .



Chapter 3

Simulation Study

In this chapter, we use the simulation method to test the performance of the methods

applied in the thesis to estimate the parameters (α, β) of the TN distribution and

compare them. As criteria of comparisons between the three methods used (the

maximum likelihood, the rejections sampling and the Markov Chain Mote Carlo), we

use

1. the mean square errors (MSE) that measures the spread of the point estimates

from the actual value of the parameter.

2. the mean of the bias that estimates the deviation of the point estimate from

the actual value of the parameter, and

3. the coverage probability of the interval estimation that measures the reliability

of the interval estimation of the parameter. The coverage probability is the

average of an indicator that the estimated interval captures the true value of

the parameter.

This simulation study is conducted based on the following scheme:

1. Set the parameters’ values of θ = (α, β).

2. Set the sample size n.

3. Simulate a random sample with size n from the TN(α, β) model.

4. Calculate the point estimates of α and β using the MLE method.

5. Calculate the Bayes estimates of α and β using the rejection sampling and

Markov Chain Monte Carlo algorithms.

6. Calculate deviations of the point estimate of α and β from their actual values,

specified in step 2, using the three estimation methods.

15
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7. Calculate a 95% confidence interval for α and β using the maximum likelihood

method.

8. Calculate a 95% Bayesian probability interval for α and β using both rejection

sampling and Markov Chain Monte Carlo methods.

9. Calculate an indicator C as

C =

{
1 if interval estimate capture the true parameter value

0 otherwise

for the three types of the interval estimates.

10. Repeat steps 3 to 9 N times.

11. Compute the MSE, the mean absolute bias of the point estimates and the

coverage probability of the interval estimates using the three techniques:

(a) The MSE of the θ̂ is

MSE(θ̂) =
N∑
i=1

(θ̂(i) − θ)2

N
,

where θ̂(i) = (α̂(i), β̂(i)) is the point estimate of θ using the generated sample

in the ith iteration.

(b) The mean of the bias is

∑N
i=1 θ − θ̂(i)

N

(c) The coverage probability (CP) is

CP =

∑N
i=1Ci
N

where Ci = 1 if the confidence interval in the ith iteration captures the

true parameter and zero otherwise.

12. Repeat steps 2-11, using different sample sizes.
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This simulation study was performed when the number of iterations N = 10, 000,

the sample size n = 25, 50, 75, and 100, and the true values of the parameters’ values

of (α, β) are (1,0.5), (1,1), (2,1), (1.3,0.5), (1,1.2), (2,1.2), (1.3,1.5), (0.9,1.2). The

main reason behind setting these true values of (α, β) is that they give different

shapes of the hazard function of the model such as decreasing, increasing, upside-

down bathtub, and increasing-decreasing-increasing, that have a wide applications in

reliability analysis and survival analysis.

All results obtained from the simulation study described above are presented in Tables

3.1 and 3.2. Table 3.1 shows all results for α while those for β are shown in Table

3.2. Based on these results, we can conclude the following:

1. As it was expected, the MSE of the point estimates of both two parameters

using all the three methods applied here decreases.

2. The RS approach for estimating α gives slightly better estimate in term of

having a smaller MSE, then the maximum likelihood then the MCMC.

3. The mean bias of the point estimate of α using either the maximum likelihood or

the rejection sampling decreases as the sample size increases, while it fluctuates

with the sample size for the point estimate obtained using the MCMC.

4. The MSE and the mean bias corresponding to the point estimate of β was a bit

surprising. Although it decreases as sample size increases for all methods applied

here. However, the MCMC approach has the least MSE and mean bias then

the maximum likelihood then the Rejection sampling. Since the difference is

very small, we can conclude that the MCMC provides a slightly better estimate

for β. I cannot find a scientific justification of this result.

5. The coverage probability remains close to the nominal level of 95% for both two

parameters α and β. This indicates that the estimation process using all the

three approaches are consistent.

6. As a final conclusion, although considering non-informative prior distributions

of the two parameters of interest, Bayes method provides a slightly better es-

timate. This also indicates that with a better prior information about the
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parameters, the Bayes technique will provide a much better estimations of the

parameters than the maximum likelihood method.

Table 3.1: The MSE, the mean bias, and the coverage probability for estimate parameter

α̂

MSE The mean Bias CP

(α, β) n MLE RS MCMC MLE RS MCMC MLE RS MCMC

25 0.0090247 0.0088399 0.0142309 -0.0307509 -0.0286229 -0.0781322 0.9530 0.9464 0.9505

(1,0.5) 50 0.0037691 0.0037249 0.0106144 -0.0143683 -0.0132126 -0.0828773 0.9537 0.9501 0.9566

75 0.0024041 0.0023845 0.0113127 -0.0092368 -0.0084402 -0.0935309 0.9485 0.9462 0.9572

100 0.0017887 0.0017768 0.0129918 -0.0073182 -0.0067159 -0.1045713 0.9495 0.9482 0.9600

25 0.0364983 0.0357081 0.0430253 -0.0603781 -0.0559050 -0.1030578 0.9485 0.9428 0.9486

(1,1) 50 0.0149281 0.0147403 0.0223756 -0.0266472 -0.0242554 -0.0900569 0.9507 0.9496 0.9561

75 0.0093926 0.0093062 0.0186259 -0.0185228 -0.0168493 -0.0972937 0.9543 0.9503 0.9581

100 0.0068175 0.0067692 0.0178692 -0.0141456 -0.0129145 -0.1051270 0.9530 0.9520 0.9604

25 0.1437911 0.1403823 0.1506751 -0.1193386 -0.1098520 -0.1522918 0.9526 0.9481 0.9501

(2,1) 50 0.0596186 0.0588360 0.0677441 -0.0535587 -0.0485227 -0.1077328 0.9517 0.9475 0.9527

75 0.0380900 0.0377227 0.0477539 -0.0387416 -0.0353217 -0.1070604 0.9493 0.9480 0.9557

100 0.0277322 0.0275222 0.0385884 -0.0285225 -0.0258701 -0.1087069 0.9508 0.9490 0.9559

25 0.0571776 0.0559792 0.0639131 -0.0709390 -0.0656531 -0.1117291 0.9540 0.9500 0.9536

(1.3,0.5) 50 0.0244056 0.0241197 0.0324985 -0.0357619 -0.0329869 -0.0972728 0.9532 0.9506 0.9575

75 0.0156964 0.0155596 0.0254889 -0.0249510 -0.0230708 -0.1018349 0.9488 0.9480 0.9569

100 0.0114690 0.0113937 0.0227521 -0.0184662 -0.0170623 -0.1073845 0.9488 0.9468 0.9562

25 0.0360937 0.0352500 0.0425862 -0.0595764 -0.0548064 -0.1019694 0.9498 0.9454 0.9486

(1,1.2) 50 0.0152623 0.0150576 0.0229047 -0.0287824 -0.0262472 -0.0920905 0.9495 0.9468 0.9541

75 0.0098031 0.0097062 0.0189930 -0.0188302 -0.0170657 -0.0971266 0.9466 0.9443 0.9552

100 0.0070438 0.0069857 0.0180967 -0.0141047 -0.0127394 -0.1053928 0.9499 0.9489 0.9573

25 0.1448127 0.1413013 0.1510043 -0.1150852 -0.1049276 -0.1475068 0.9485 0.9421 0.9455

(2,1.2) 50 0.0605183 0.0596049 0.0687346 -0.0549594 -0.0494948 -0.1091730 0.9499 0.9468 0.9524

75 0.0387183 0.0382950 0.0484883 -0.0397629 -0.0360067 -0.1087349 0.9496 0.9467 0.9537

100 0.0282708 0.0280094 0.0394723 -0.0310087 -0.0281339 -0.1114966 0.9494 0.9474 0.9563

25 0.0613497 0.0596079 0.0679775 -0.0790759 -0.0718990 -0.1178699 0.9525 0.9477 0.9510

(1.3,1.5) 50 0.0265185 0.0260557 0.0347633 -0.0394914 -0.0356047 -0.0995645 0.9473 0.9450 0.9506

75 0.0162821 0.0160820 0.0258374 -0.0247889 -0.0221273 -0.1008386 0.9478 0.9456 0.9538

100 0.0120187 0.0119109 0.0230399 -0.0180960 -0.0160913 -0.1060103 0.9495 0.9483 0.9588

25 0.0300213 0.0293266 0.0362706 -0.0546920 -0.0504085 -0.0978933 0.9544 0.9480 0.9503

(0.9,1.2) 50 0.0125876 0.0123960 0.0203034 -0.0277164 -0.0253759 -0.0919415 0.9510 0.9481 0.9544

75 0.0077636 0.0076857 0.0170981 -0.0176204 -0.0160360 -0.0974069 0.9510 0.9494 0.9567

100 0.0056352 0.0055910 0.0166370 -0.0121738 -0.0109647 -0.1046352 0.9492 0.9477 0.9591
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Table 3.2: The MSE, the mean bias, and the coverage probability for estimated parameter

β̂

MSE The mean Bias CP

(α, β) n MLE RS MCMC MLE RS MCMC MLE RS MCMC

25 0.0625544 0.0610927 0.0588462 -0.0433460 -0.0442486 -0.0412347 0.9397 0.9414 0.9532

(1,0.5) 50 0.0270002 0.0266452 0.0254013 -0.0204737 -0.0209810 -0.0162332 0.9438 0.9435 0.9586

75 0.0163671 0.0162215 0.0153258 -0.0117637 -0.0121362 -0.0063836 0.9463 0.9489 0.9630

100 0.0121887 0.0121135 0.0113671 -0.0107005 -0.0109817 -0.0040027 0.9483 0.9487 0.9659

25 0.062013 0.0605317 0.0589516 -0.0380127 -0.0389408 -0.0356700 0.9422 0.9420 0.9509

(1,1) 50 0.0265728 0.0262218 0.0252829 -0.0215563 -0.0220700 -0.0175026 0.9458 0.9472 0.9567

75 0.0164310 0.0162914 0.0155912 -0.0140454 -0.0143467 -0.0087601 0.9517 0.9509 0.9622

100 0.0122497 0.0121709 0.0116231 -0.0091143 -0.0093780 -0.0028427 0.9459 0.9474 0.9591

25 0.0611058 0.0596419 0.0586096 -0.0397009 -0.0406865 -0.0376934 0.9427 0.9439 0.9485

(2,1) 50 0.0262292 0.0258650 0.0251815 -0.0210613 -0.0215361 -0.0174173 0.9476 0.9456 0.9564

75 0.0162195 0.0160765 0.0155805 -0.0127395 -0.0131036 -0.0082402 0.9472 0.9470 0.9569

100 0.0120350 0.0119538 0.0115329 -0.0089177 -0.0092008 -0.0035711 0.9472 0.9464 0.9576

25 0.0170082 0.0167513 0.0152405 -0.0032900 -0.0110950 -0.0225355 0.9329 0.9456 0.9592

(1.3,0.5) 50 0.0079490 0.0079029 0.0071729 -0.0025239 -0.0064917 -0.0180112 0.9426 0.9482 0.9650

75 0.0052298 0.0052023 0.0047433 -0.0005788 -0.0032541 -0.0157270 0.9437 0.9484 0.9639

100 0.0038011 0.0037807 0.0034592 0.0007868 -0.0012286 -0.0149074 0.9455 0.9526 0.9699

25 0.0961395 0.0937532 0.0912453 -0.0600467 -0.0581960 -0.0524105 0.9430 0.9414 0.9507

(1,1.2) 50 0.0382755 0.0377222 0.0362583 -0.0319142 -0.0309557 -0.0232781 0.9474 0.9462 0.9569

75 0.0235743 0.0233356 0.0223286 -0.0181629 -0.0175234 -0.0083835 0.9481 0.9488 0.9610

100 0.0172101 0.0170841 0.0162885 -0.0126416 -0.0121964 -0.0016009 0.9488 0.9475 0.9624

25 0.0941778 0.0917435 0.0897167 -0.0659011 -0.0639281 -0.0590030 0.9477 0.9443 0.9504

(2,1.2) 50 0.0390081 0.0384346 0.0373698 -0.0277905 -0.0268394 -0.0205051 0.9467 0.9461 0.9537

75 0.0240347 0.0237904 0.0229680 -0.0185836 -0.0179766 -0.0104427 0.9463 0.9477 0.9570

100 0.0171345 0.0169861 0.0163889 -0.0127128 -0.0122524 -0.0035855 0.9517 0.9507 0.9640

25 0.1626922 0.1588441 0.1542376 -0.1010802 -0.0953382 -0.0864913 0.9536 0.9435 0.9531

(1.3,1.5) 50 0.0646044 0.0635965 0.0611348 -0.0459814 -0.0428938 -0.0314679 0.9479 0.9443 0.9556

75 0.0400133 0.0395511 0.0376515 -0.0324990 -0.0303834 -0.0166876 0.9498 0.9480 0.9620

100 0.0282662 0.0280135 0.0266310 -0.0211885 -0.0196463 -0.0040377 0.9506 0.9490 0.9630

25 0.0939258 0.0916782 0.0890387 -0.0663984 -0.0644528 -0.0585222 0.9498 0.9463 0.9550

(0.9,1.2) 50 0.0392678 0.0386862 0.0371772 -0.0328858 -0.0319351 -0.0239525 0.9479 0.9458 0.9575

75 0.0244968 0.0242495 0.0231568 0.0194617 -0.0188337 -0.0092447 0.9463 0.9473 0.9598

100 0.0172366 0.0171081 0.0162729 -0.0134273 -0.0129684 -0.0020590 0.9488 0.9496 0.9643



Chapter 4

Applications

In this chapter, we present and analyze three data sets in order to demonstrate the use of

methods applied in this thesis for three real data sets. The data sets are referred as Aarset

Data, Recidivism Failure Times Data and Active Repair Data.

We used the rejection sampling and MCMC approaches to estimate the TN distribution

parameters. The maximum likelihood method will be used to compare with the Bayesian

methods. The point and the interval estimates for the two parameters are obtained. Note

that, R-programming language was adapted here for the numerical calculations.

4.1 Aarset Data

In this data, 50 devices were put on the life test and their lifetime ”time to failure” (in

days) were observed. This data were originally studied by Aarset [1]. The data (presented

in days) are :

0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55,

60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

Aarset [1] showed that the data have a bathtub shaped hazard rate. Sarhan et al. [12] used

the TN distribution to re-analyze this data using the maximum likelihood method. Here,

we assume that the Aarset data follow the TN distribution. We use the Bayesian methods

to estimate the TN distribution parameters. In this study, it is assumed that α and β are

independent with gamma prior distribution when all the hyperparameters are equal and

equal to 0.001. To see the range of the plausible values of the two parameters α and β,

we depict the contour of the likelihood function for α and β in Figure 4.1. We simulated

10,000 draws from the joint posterior distribution, using the RS and MCMC techniques.

In the MCMC method, the first half of the simulated draws were ignored. Figures 4.2 and

4.3 show the posterior contours of α and β along with simulated draws using the RS and

MCMC, respectively.

The simulated draws are used to :

1. Plot the marginal posterior densities of α and β as shown in figures 4.4 and 4.5.

20
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2. Calculate the Bayesian point and credible interval estimates of α and β as provided

in Table 4.1.

Table 4.1 provides the Bayesian point estimate, the 95 % credible interval, and the cor-

responding width for α and β using the RS, the MCMC, and the MLE. The results in

Table 4.1 show that the two techniques provide quite similar results for the two parame-

ters. However, the MCMC gives a slightly better estimation in the sense of the narrower

credible intervals. The acceptance rate for the RS is 50.07 % and for the MCMC is 53.31

%. The MCMC has a high acceptance rate because the scale value is small which leads to

a small spread of the proposed θ∗ from the current θ(m−1). To investigate the performance

of the MCMC, we provide the trace plots and the autocorrelation plots for the simulated

draws as shown in Figure 4.6 and 4.7, respectively. The trace plot of the simulated draws

of (logα, log β) shows that the chain covers the same region of the log of the parameter

space and finds the stationary distribution. The autocorrelation drops from lag 0 to lag

13, which indicates that the simulated draws in the chain are slightly correlated with the

previous ones that indicates no sign for concern. The two plots tell us that the draws

are approximately independent, random samples from the posterior distribution. From the

marginal posterior density graphs, we can see that the marginal posterior density obtained

form the two approaches are similar. Also, the posterior distribution of α is approximately

symmetric while that for β is right skewed.

Method Parameter Point estimate Interval Width
RS α 0.9783 (0.7928,1.1792) 0.3864

β 0.0233 (0.0088,0.0451) 0.0363
MCMC α 0.9748 (0.7978,1.1690) 0.3712

β 0.0012 (0.0095,0.0441) 0.0346
MLE α 0.9439 (0.7140,1.1738) 0.4598

β 0.0207 (0.0001, 0.0413) 0.0412

Table 4.1: The point and interval estimates of the parameters along with the intervals’
width for the Aarset data using the rejection sampling, the Markov Chain Monte
Carlo, and the maximum likelihood estimation methods.
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Figure 4.1: The contour plot for the likelihood function of (α, β) using Aarset data.

Figure 4.2: The contour plot of (α, β) along with the simulated draws using the
rejection sampling algorithm.
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Figure 4.3: The contour plot of (α, β) along with the simulated draws using the
Markov Chain Monte Carlo method after discarding the first half of the draws.

Figure 4.4: The marginal posterior density functions of α and β using simulated
draws obtained from the rejection sampling algorithm.
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Figure 4.5: The marginal posterior density functions of α and β using the random
samples obtained from the Markov Chain Monte Carlo approach after discarding the
first 5000 draws.

Figure 4.6: The trace plots of the simulated draws of logα and log β using the MCMC
algorithm after discarding the first half of draws.
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Figure 4.7: The autocorrelation plots of the simulated draws of logα and log β using
the MCMC method with good choices of the initial value and the scale factor.

4.2 Recidivism Failure Times

The next data set contains 61 observed recidivism failure times (in days) revealed by cor-

rectional institutions in Columbia USA [13]. The failure times data were

1, 6, 9, 29, 30, 34, 39, 41, 44, 45, 49, 56, 84, 89, 91, 100, 103, 104, 115, 119, 124, 138, 141,

146, 156, 162, 168, 183, 185, 198, 209, 217, 217, 228, 233, 238, 241, 252, 258, 271, 275, 276,

279, 282, 305, 313, 329, 331, 334, 336,336, 362, 384, 404, 408, 422, 438, 441, 465, 486, 556.

Sarhan et. al [12] used the TN model to analyze this data set by using the maximum likeli-

hood approach. In this study, we suppose that the recidivism failure times data follow the

TN distribution. We compute the point estimates and the two sided credible intervals by

using the Bayesian approach. The two parameters α and β are considered to be independent

random variables with gamma prior distribution when all the hyperparameters are equal

to 0.001. To demonstrate the spread of the possible values of the parameters, we present

the contour plot of the likelihood for (α, β) in Figure 4.8. We use the RS, the MCMC, and

the MLE methods to simulate 10,000 draws from the joint posterior distribution. However,

the first half draws was discarded in the MCMC method. By applying the RS and MCMC
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techniques, Figure 4.9 and 4.10 display the posterior contours of (α, β) along with the sim-

ulated draws. We use these draws to plot the marginal posterior densities for parameters

as provided in Figures 4.11 and 4.12. Also, we compute the Bayesian point estimates, the

credible intervals and the corresponding widths for α and β as shown in Table 4.2. For

comparison, we provided the maximum likelihood estimates in Table 4.2.

From the results in Table 4.2, we can say that the two Bayesian approaches show almost

similar results for α and β. However, based on the widths, we find that the MCMC provides

slightly better estimation than the RS procedure. For the RS, the acceptance rate is 51.45

%, whereas for the MCMC, the acceptance rate is 52.33 %. The MCMC has a high accep-

tance rate because the scale value is small which leads to a small spread of the proposed θ∗

from the current θ(m−1). To evaluate the performance of the MCMC method, we illustrate

the trace plots and autocorrelation plots for the simulated draws in figures 4.13 and 4.14

respectively. The trace plot of the simulated draws of (logα, log β) shows that the chain

covers the same region of the the parameter space and has reached the stationary distribu-

tion. The autocorrelation drops from lag 0 to lag 13, which indicates that the simulated

draws in the chain are slightly correlated with the previous ones that indicates no sign for

concern. The two plots suggest that the draws are approximately independent, random

samples from the posterior distribution. From the two marginal posterior densities plots, it

is clear that the two Bayesian approaches are nearly the same. Furthermore, the posterior

distribution of α is almost symmetric while the posterior distribution of β is right skewed.

Method Parameter Point estimate Interval Width
RS α 1.2753 (1.0488,1.5117) 0.4629

β 0.0012 (0.0002,0.0033) 0.0031
MCMC α 1.2798 (1.0582,1.5166) 0.4584

β 0.0012 (0.0002,0.0032) 0.0030
MLE α 1.0623 (0.9975,1.1271) 0.1296

β 0.0026 (0.0018,0.0033) 0.0015

Table 4.2: The point and interval estimates along with the width of the two param-
eters α and β using the Bayes and maximum likelihood techniques for recidivism
failure times data.
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Figure 4.8: The contour plot of the likelihood function for parameters (α, β) in the
TN distribution using recidivism failure times.

Figure 4.9: The contour plot of the posterior distribution along with the simulated
draws of (α, β) in the TN model using the rejection sampling algorithm.
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Figure 4.10: The contour plot of the posterior distribution along with the simulated
draws of (α, β) using the Markov Chain Monte Carlo method. The second 5000 draws
have been used.

Figure 4.11: The contour plot of the posterior distribution along with the simulated
draws of (α, β) using the Markov Chain Monte Carlo method.
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Figure 4.12: The marginal posterior density of parameters α and β using the rejection
sampling algorithm.

Figure 4.13: The marginal posterior density of parameters α and β using the Markov
Chain Monte Carlo approach.
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Figure 4.14: The trace plots of the simulated draws for log α and log β from the
Markov Chain Monte Carlo method in the TN model problem with discarded the
first 5000 draws.

Figure 4.15: The autocorrelations plots of the simulated draws for log α and log β
from Markov Chain Monte Carlo approach.
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4.3 Active Repair Times Data

These data show the active repair times of 46 (in hours) airborne communication transceivers

originally taken from Brillinger [3].

The data for the active repair times are presented below :

0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1, 1, 1, 1, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5,

2, 2, 2.2, 2.5, 2.7, 3, 3, 3.3, 3.3, 4, 4, 4.5 , 4.7, 5, 5.4, 5.4, 7, 7.5, 8.8, 9, 10.3, 22, 24.5.

It is assumed that the active repair data are independent and identically distributed, and

we suppose that the active repairs data follow the TN distribution. Here, let us consider

that the two parameters α and β are independent with gamma prior, and the values of all

the hyperparameters are equal to 0.001. We plot the contour of the likelihood function for

α and β in order to identify the range of the plausible values of the TN model parameters

in Figure 4.15.

We use 10,000 iterations to simulate form the joint posterior distribution, by applying the

two Bayesian approaches along with the maximum likelihood estimation. In the MCMC

method, we use the second half of the simulated draws. Figure 4.16 shows the contour plot

of the posterior density along with simulated draws of (α, β) using the RS method, and

Figure 4.17 displays the posterior density along with the simulated draws of (α, β) from the

MCMC method. The simulated draws are used to draw the marginal posterior densities of

α and β parameters for the RS and the MCMC procedures as presented in Figures 4.18 and

4.19, respectively. Moreover, we calculate the point estimates, the Bayesian intervals and

the associated widths as given in Table 4.3. Also, we calculate the point and interval esti-

mates of the maximum likelihood method to compare it with the Bayesian methods. Table

4.3 reveals the results of the two Bayesian methods and maximum likelihood approach for

α and β parameters, which shows close results for the both Bayesian approaches. However,

the RS does not give better estimation results in the sense of the narrower intervals as the

MCMC method. The acceptance rate of the RS is 50.07% and for the MCMC 50, 22%.

The MCMC has a high acceptance rate because the scale value is small which leads to a

small spread of the proposed θ∗ from the current θ(m−1). To see how the MCMC method

is performed, we provide the trace plots and the autocorrelation plots for the simulated

draws in figures 4.20 and 4.21, respectively. The trace plots of the simulated draws of

(logα, log β) shows that the chain covers the same region of the parameter space and finds

the stationary distribution. The autocorrelation drops from lag 0 to lag 13, which indicates

that the simulated draws in the chain are slightly correlated with the previous ones that



32

Figure 4.16: Graph of the contour plot for the likelihood function of parameters (α, β)
in the TN model using active repair times data.

indicates no sign for concern. The two plots indicate that the draws are approximately in-

dependent, random samples from the posterior distribution which means that the MCMC is

mixing appropriately. The two marginal posterior densities for the two methods depict that

the two Bayesian techniques are close. Also, as can be easily seen, the marginal posterior

distribution of α and β are symmetric using the RS and the MCMC methods.

Method Parameter Point estimate Interval Width
RS α 0.9522 (0.7975,1.1079) 0.3104

β 0.2558 (0.1816,0.3434) 0.1618
MCMC α 0.9512 (0.8007,1.1023) 0.3016

β 0.2557 (0.1856,0.3388) 0.1532
MLE α 0.8389 (0.6598,1.0180) 0.3582

β 0.3103 (0.1822,0.4384) 0.2562

Table 4.3: The point and interval estimates with width of the parameter α and β of
the TN model using the RS, the MCMC, and the MLE methods for the active repair
times data.
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Figure 4.17: The contour plot of the posterior distribution along with the simulated
draws of parameters (α, β) form the rejection sampling algorithm using the active
repair times data.

Figure 4.18: The contour plot of the posterior distribution along with the simulated
draws of parameters (α, β) from Markov Chain Monte Carlo method after the first
5000 have been ignored.
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Figure 4.19: The marginal posterior density of parameters α and β in the TN distri-
bution problem using the rejection sampling algorithm with 10, 000 iterations.

Figure 4.20: The marginal posterior density of parameters α and β using the Markov
Chain Monte Carlo algorithm.
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Figure 4.21: The trace plot of the simulated draws for log α and log β from the
Markov Chain Monte Carlo method.

Figure 4.22: The autocorrelations plot of the simulated draws for log α and log β
from the Markov Chain Monte Carlo algorithm.



Chapter 5

Conclusion

For recent years, many authors have been developed different approaches for generating

lifetime models. These developments such as extension or modified forms of the lifetime

models which can add more flexibility in data modelling. Generally, on the parameter

estimation, the number of parameters can be crucial, and how to estimate the parameter

easily can be another factor. Usually, a distribution with more than three parameters is

unfavourable because it is mathematically hard to obtain the hazard rate function. This

thesis is considered some Bayesian estimation methods that estimate the TN distribution

which has defined by Sarhan et. al [12]. The significant of the TN distribution is the ability

to fit monotone and non monotone data sets which are popular in the lifetime distributions.

We used two different estimation methods to make inference on unknown parameters of the

TN distribution which is described in chapter 2. On the classical approach, the maximum

likelihood estimation is provided as well as the first, the second derivatives, and the fisher

information matrix are presented which were addressed by Sarhan et. al [12]. On Bayesian

estimation, we used two Bayesian approaches namely the rejection sampling algorithm (RS)

and Markov Chain-Monte Carlo (MCMC). Also, we assumed the gamma prior distribution

of unknown parameters. Algorithms of two approaches are presented. Chapter 3 describes

the simulation study which is addressed to evaluate the performance of the estimation

methods. We examined the mean square error (MSE), the mean bias, and the coverage

probability. In testing the mean bias and the MSE of estimates, the bias tends to zero when

the sample size is increased for the three methods, and the MSE decrease when the sample

size is increased. Chapter 4 studies three real data sets which are applied to analyze the

TN model. The TN model was estimated by maximum likelihood, the RS, the MCMC, and

the results are presented. The thesis is concluded in Chapter 5.

5.1 Future Research

In the Bayesian analysis, we assumed that all hyperparameters are equal to 0.001. From

posterior analysis, one can select the values of the hyperparametres in order to reflect the

nature of the parameters α and β. Also, we may apply different types of data sets, such

36
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as censored data, progressively censored data, and regression. This might help for further

study on the Bayesian analysis of the two parameters.
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