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Abstract

Wireless networked control systems possess many challenges to control engineers.

These challenges include time delays, packet data dropouts, switching topology, noise,

quantization errors. Time delays are almost ubiquitous in almost all the networked

control systems and they affect the system performance in a negative way.

The objective of the thesis is to develop a novel control algorithm for achieving

leader-following consensus of multi-agent systems (MAS). The topology of the wireless

networked MAS is modeled by an algebraic graph theory and defined as a discrete

time-invariant system with second order dynamics. The communication link failure is

governed by Bernoulli’s distribution principle and the time-delays are incorporated in

to the system dynamics. Lyapunov-based methodologies and Linear Matrix Inequality

(LMI) techniques are then applied to find an appropriate value of the control gain

by sufficient conditions of error dynamics.Finally simulation result and experimental

result studies are carried out by using two Pioneer P3-DX robots as real follower

robots and a virtual leader robot. The results are verified at the end.
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Chapter 1

Introduction

In this chapter, an outline of consensus control of multi-agent systems and back-

ground of it’s research history is presented. It also includes the literature review on

the concept of consensus theory of multi-agent systems along with its applications.

Finally, a contribution of research work is presented in this chapter.

1.1 Thesis Motivation

An agent is a computational entity that can sense and act as well decide on its actions

in accordance with some assigned tasks or goals. A multi-agent system (MAS) is a

specific type of system that is composed of multiple intelligent agents that interact

with each other to achieve certain objectives. Each of them is autonomous, that

means they have an onboard microcontroller to schedule their own tasks. MAS can

be used to solve problems that are difficult or impossible for a monolithic or a single

agent system to resolve. In recent years, many researchers are working in the field of

networked multi-agent systems due to various technological advances in computation

and communication. This breakthrough has also led to the development of new MASs,

that are able to achieve improved performance, efficiency and robustness.

MAS works on the foundation of cooperative control that coordinates the motion

of a group of dynamic agents as shown in Fig.1.1. In coordinating a number of

agents, it is easy to implement centralized approach in which the control depends

on a single central agent. However for a large network of agents, the centralized

approach fails because the central agent is subjected to a huge load of communication

and computation. So, it becomes necessary to delegate this working load to other

connected agents. This type of approach is called as decentralized implementation of

cooperative control.

In a cooperative control of multi-agent system, if the information states of each

1
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There have been considerable results published in some literature based on con-

sensus of single-integrator MAS dynamics with communication delays. However when

it comes to more complex systems, it is not enough to employ the single-integrator

dynamics. So it is necessary to consider double-integrator dynamics for studying

consensus of MAS. In modern era, with the introduction of digital communication

technology and digital signal processing, discrete time systems become prevalent.

To cope with this situation, the continuous-time system dynamics is transformed to

discrete-time dynamics and then asymptotic properties of the corresponding discrete-

time dynamics is studied.

Mainly, there are three theories involved in the research on consensus. They are

control systems theory, matrix theory and graph theory. These theories are combined

together to design a controller for MAS dynamics to achieve consensus. Researchers

have used many control systems theories like Nyquist criterion, sliding mode control,

model predictive control, neural network control, passivity based control. However

the most suitable and reliable control theory for consensus of discrete-time MAS is

found to be Lyapunov based control. It is a popular way for stability analysis after

establishing the associated error dynamics.

Consensus of MAS has it’s applications in many fields. The most obvious and

popular one is rendezvous, in which the states of all agents converge to a common

value. Leader-following consensus is a type of rendezvous application. The second

most popular application is formation control, in which all agents maneuver in certain

shape formation. In addition to the control field, consensus theory can be employed for

filtering as well. This type of filtering is in a distributed way and is called consensus

filtering. Due to it’s inherently distributed feature, consensus approach has been

used for decentralized parameter estimation, thus enhancing robustness of the overall

system against node failure.

Motivated by the above discussion, the thesis work is based on achieving leader-

following consensus of MAS in the discrete-time domain. Communication constraints

like time-delays and packet data dropouts are also considered in system dynamics.

A Lyapunov control theory is implemented to design a controller to achieve consen-

sus of MAS. Linear matrix inequalities (LMIs) are derived from substituting error

dynamics in assumed Lyapunov function and are solved by using MATLAB R© LMI
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Solver Toolbox. LMI techniques have emerged as powerful design tools in control

engineering. A variety of design specifications and constraints can be expressed as

LMIs. Once formulated in terms of LMIs, a problem can be solved exactly by efficient

convex optimization algorithms.

1.2 An Overview of Consensus Problem and Communication

Constraints in Multi-Agent Systems

In this section, the history of emergence of cooperative control of MAS and research

work in it’s early days is presented. Various literature works based on consensus the-

ory along with the challenges associated with it are discussed and their contributions

in developing this technology is highlighted. This section gives an idea about most

of the problems that are faced when the consensus theory is applied in practice and

also the solutions that various researchers have established to tackle these problems.

1.2.1 History and Background

In [1], researchers initially were attempting to model the aggregate motion of differ-

ent animals such as flock of birds, a herd of land animals or a school of fish. These

motion behaviors were studied to generate computer animations. Gradually, they

realized that there are many potential engineering applications based on the con-

trol of independent systems to perform various collective behaviors. In early days,

navigation strategies [2] for multiple robots were worked upon. However with signifi-

cant technological advances in control methodologies over the past two decades along

with simultaneous development of sophisticated communication and signal process-

ing techniques, it became easier for multiple dynamical systems to interact with one

another. Such systems came to be known as multi-agent system (MAS), where each

agent in the multi-agent system represent an independent dynamical system. Using

multi-agent system helps in breaking down the large complex network system into

multiple simple systems, increases the possibility of incorporating more functionality

in the overall system, and more importantly, reduces costs and risks of failure if a

single system is used for the same operation. The control of such multi-agent system

to achieve a collective or common goal is known as a cooperative control [3].
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With the development of sensor networks, cooperative control in MASs has at-

tracted more attention in recent years, for references see [4] [5] [6] [7]. Cooperative

control is classified under two broad methods, namely, centralized control and decen-

tralized control. A centralized control obtains and utilizes all the state information,

computes the control signal and relays the relevant control signals to each agent.

For a large scale system composed of a network of subsystems, it proves to be more

costly in terms of communication of information for the system. Another disadvan-

tage of centralized control is that it is not possible to include more subsystems into

the existing system once the control has been designed. That means centralized con-

trol methods are not expandable. To avoid all these problems, decentralized control

techniques have been proposed where controllers are developed for the subsystems of

a large system. Various decentralized control techniques [8] [9] [10] [11] have been

developed over last few decades.

1.2.2 Literature Review on Consensus and Associated Communication

Constraints

The term consensus comes from Latin word consentire which means a general agree-

ment made by all or majority. In [12], the authors have explained the agreement

algorithm in terms of parallel computation, distributed optimization and signal pro-

cessing. The research on consensus increased after the authors in [4] could successfully

demonstrate the theoretical explanation of Vicsek model in [13]. Vicsek et al. pro-

posed a simple but compelling discrete-time model of n autonomous agents all moving

in same plane with the same speed but with different headings. The work in [4] opened

a new way to achieve consensus by using algebraic graphs and necessary conditions

on graph connectivity. These graphs characterize the interaction among agents. In

[5], a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of

the network and the performance of a linear consensus protocol is established. The

authors in [5] have discussed average consensus problems in a directed networks, con-

sidering switching topology and constant time delay as well. Methodology used in [4]

is different than the use of common Lyapunov function in [5]. However both [4] and

[5] have made an important contribution to the consensus problem in terms of graph

connectivity. There were some limitations still left in [4] and [5] such as undirected
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graphs in [4] and directed and strongly connected graphs in [5]. These limitations

were worked upon by studying the properties of general directed graphs in [6] in which

Ren and Beard have stated a necessary and sufficient condition between the connec-

tivity of a directed graph and the eigenvalues of its corresponding graph Laplacian

matrix. They also stated that there is necessity of existence of directed spanning

tree for reaching consensus in linear time-invariant single integrator agent system. In

[14] and [15], similar conclusions were drawn on directed graphs, which helped the

subsequent research which was largely based on the interaction topology.

Earlier research was mainly focused on the simple single-integrator dynamics, but

as the time and control technology progressed, there was a need of paying more

attention to general dynamics such as double-integrator dynamics [16] [17], state

space models [18] [19] and Euler-Lagrange dynamics [20]. many control methods have

been extensively studied in control field to solve the consensus problem in multi-agent

system like the Lyapunov control theory in [21] [22] [23] [24] [25] [26] [27], sliding mode

control in [28] [29] [30] [31], model predictive control in [32] [33] and neural network

based control in [34]. If we assume LTI systems without any constraints, then the

problem becomes very straight forward, which is not the case in real time conditions.

There are many type of communication constraints which hamper the performance of

control systems like time delays, packet data losses, quantization, switching topology,

asynchronous sampling, etc. Among them, the major concerned problems are that

of time delays and packet data losses which affect the system behavior considerably

and may result to system failure in some cases. Olfati-Saber and Murray [5] studied

the average consensus in a single integrator system with and without constant time

delays for directed and undirected networks. The authors have also considered these

cases for fixed and switching topology. The frequency domain approach was used to

derive the stability condition dependent on the upper bound of delay. This research

proved to be a breakthrough for considering constraints in consensus of MAS.

Afterwards, many researchers expanded their study in communication constraints

experienced in consensus problem like time-varying delays and switching topology

in [35] [36] for first-order dynamics. Later in [37], consensus problem in double-

integrator dynamics with non-uniform time-varying delays was studied. For tackling
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time-varying delays, it is necessary to shift the system dynamics from frequency do-

main to time domain, for which the Lyapunov technique is widely used. For the pur-

pose of analysis, time delays can be classified as constant time delays or time-varying

delays. Constant delays are considered in a case where the values of time delays at

all instants of time fluctuate near to its average value [38] [36]. For uncertain time-

varying delays, the upper and lower bound of delays are considered [39] [40]. Apart

from delays, packet data losses or dropouts have been a major concern experienced

in control systems. Packet losses can affect the system performance badly and can

slow down the entire working of the system. They occur as a result of unreliability of

communication channels between two agents. There is a relation between the packet

delay threshold and packet dropout such that when a quantity of delay exceeds the

threshold, this long delay is treated as packet data dropout or loss. Switching topol-

ogy is the commonly experienced effect as a result of packet data loss which is widely

studied in [41] [42] [43]. In practice, communication channels often exhibit a corre-

sponding probability of failure for each communication channel transmission. These

probabilities of the availability of communication links can be modeled into analyt-

ical form and convergence results can be established as shown in [41] [44] [45]. The

authors in [41] considered packet data loss and time delays simultaneously, however

they had assumed that the delay was less than a sampling period. This assump-

tion may not guarantee the consensus completely for non-predictive nature of packet

losses. However, in regular working of control systems, it’s been always observed that

the maximum values of time delays are well below the sampling period and even if

there is packet loss at some time instant, the next packet is received instantaneously

or within a time delay of lesser value than sampling period of packet. The system

based on this assumption will fail only if there is permanent discontinuity of packet

transfer in communication channel, for which there is nothing much that can be done

and hence this fear of instability will always exist. In addition to above mentioned

communication constraints, there are many other constraints such as quantization

errors, asynchronous clocking and noise measurements etc.
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1.3 Control Theories and Approaches

The most commonly used theories involved in the research on consensus of MAS can

be classified in following three categories as shown in Fig. 1.2.

• Control Systems Theory. There are many control systems theories that can

be applied in the consensus problem like in any other control systems. For

LTI systems, frequency-domain based approaches are widely used. The prob-

lem becomes more complicated when consensus protocols are extended to sys-

tems of second-order agents. In [46], a general frequency-domain framework to

study the consensus problem for systems of high-order agents with non-uniform

communication delays is presented. Using the spectral radius theorem, they

obtained a frequency-domain consensus condition which is independent of the

communication delays. Similarly in [47], the decentralized consensus conditions

of second-order multi-agent systems with diverse input delays and symmetric

coupling weights are obtained based on the frequency-domain analysis. In [5],

a necessary and sufficient condition on upper bound of delay was derived using

Nyquist criterion. Further, in [47], analysis of the discrete-time in the frequency

domain.

For time-varying systems,the Lyapunov method is a popular method adapted

for stability analysis by establishing the associated error dynamics [5]. In [48],

Lyapunov control approach is used to prove that the second-order consensus can

be reached if the general algebraic connectivity of the communication topology

is larger than a threshold value. In the category of Lyapunov type methods,

the concept of vector Lyapunov function has been widely used for stabilizing

control design. The subsystems linked through an interconnected network have

associated Lyapunov functions, which are grouped in a vector Lyapunov func-

tion through which the stability of the overall system is analyzed by taking into

account the interconnection terms. This analysis is performed by constructing

a scalar Lyapunov function on the basis of the components of the vector Lya-

punov function [49] [21]. In addition to it, the sliding mode control [28] [29]

[30] [31], the model predictive control [32] [33], neural networks control [34] and

passivity based control are some of the other control systems theories that are
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Figure 1.2: Classification of control theories and approaches
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used for analyzing the stability of the system.

• Matrix Theory. Primary research on consensus of multi-agent systems is

mostly dependent on Matrix Theory. Instead of using control algorithms, dif-

ferent properties of various matrices were used to predict the stability of the

entire system. Jadbabaie et al. [4] introduced the theory of stochastic matrices

in consensus problem. Its analysis was based on the asymptotic properties of

the product of an infinite sequence of stochastic matrices [50]. In [51], the au-

thors have used graph Laplacians and their spectral properties [52] [53] [54] [55]

to prove that graph-related matrices play a crucial role in convergence analysis

of consensus and alignment algorithms.

• Algebraic Graph Theory. Algebraic graph theory is a branch of mathe-

matics that studies graphs by using algebraic properties. There are two main

connections between graph theory and algebra. These arise from two algebraic

objects associated with a graph : its adjacency matrix and its automorphism

group. More details about algebraic graph theory is discussed in Chapter 2.

1.4 Applications of Consensus of MAS

In this section, a summary of many applications for cooperative control of multi-agent

or multi-vehicle systems is presented. Different problems that involve interconnection

of dynamic systems in various areas of science and engineering happen to be closely

related to consensus problems of multi-agent system. The research on consensus finds

its applications in many fields. The most obvious one is rendezvous, in which states

of all agents converge to a common value. This is desirable if all agents are expected

to meet at a certain location after a finite time. In [56], consensus seeking ideas are

applied to a rendezvous problem for a group of mobile autonomous agents, where

both the synchronous and asynchronous case are considered. Rendezvous in space

[57] is another common form of consensus problems. This is equivalent to reaching

a consensus in position by a number of agents with an interaction topology that

is position induced. Another reference that can be provided is [58], wherein this

type of rendezvous is described as an unconstrained consensus problem that becomes
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Figure 1.3: Two F/A 18 aircrafts flying in formation

challenging under variations in the network topology. Depending on the application,

the rendezvous time may either be fixed ahead of time or determined dynamically,

based on when all vehicles reach the same area. Military applications of rendezvous

include minimizing exposure to radar by allowing aircraft to fly individual path that

are locally optimized [59].

The other application that has gained a lot of attention in recent years is formation

control problems [60] [61] [62] [63] [64]. In [65], a detailed idea about information tech-

niques are studied to improve stability margins and vehicle formation performance.

Formation flight is one of the simplest cooperative control control problems in which

a set of aircraft fly in a formation, specified by relative locations of nearby aircraft.

Earliest work in this area is found in [66], where design of control laws that use a

combination of local and global knowledge to maintain a formation. Also NASA in

alliance with Boeing-Phantom Works started a revolutionary concept program called

AFF (AFF) which helped reducing drag on a collection of aircraft [67] as shown in

Fig. 1.3. The key idea is to locate the aircraft such that the tip vortices of one aircraft

help reduce the drag of the tailing aircraft. This task requires precise alignment of

an aircraft with the aircraft in front of it.

The development of cooperative rendezvous and cooperative target classification

agents in a hierarchical distributed control system for unmanned aerospace vehicles

have led to rise of another important application of cooperative classification and

surveillance. Chandler et al. [59] define the cooperative classification problem as “the

task of optimally and jointly using multiple vehicles’ sightings to maximize the prob-

ability of correct target classification.” The cooperative classification problem can be

defined as a performance function which involves collection of maximal amounts of

relevant information. Whereas cooperative surveillance problem is using a collection
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of vehicles to maintain a centralized or decentralized description of the state of a geo-

graphic area. The description can be related to any entity that is moving or spatially

fixed in the region of interest.

In mobile sensor networks, different parts of the control system tend to work

separately at their time-scale. However it becomes necessary to coordinate all at

same time-interval. In decentralized environment, it is often not possible to have

a global node that directly communicates with all other nodes. With the help of

consensus theory, clock synchronization can be implemented in distributed systems

and render the system more robust against node failures [68]. In addition to the

control field, consensus theory can be employed for filtering as well in distributed

system which is known to be consensus filtering [69] [70] [71]. There are a group of

filter sensor nodes and each of them gives an estimate of the target signal. The goal

is to design control protocols such that they not only reach consensus on their own

estimates, but also give a good estimate of the target signal.

1.5 Thesis Contribution

The main contribution of the thesis is to develop a novel consensus control algorithm

for the leader-following approach of co-operative control of multi-agent systems. This

is like making the long story short. However, in achieving this objective, there are

several steps that need to be developed to reach the final goal. Several rules, theo-

rems, lemmas and assumptions from different research works are studied and their

implementation the considered work is verified. While doing this, there are several

assumptions and limitations drawn because of the obstructions in the proper imple-

mentation. For this, some simple solutions and mathematical conditions have been

imposed to validate the genuinity of work and relating it’s application in real-time

working conditions.

Starting with the selection of dynamics suitable for the considered multi-agent sys-

tems follows the process of developing a relationship between the constraints observed

in the system with the dynamics of the system. For example, there is introduction

of Bernoulli’s distribution principle to compensate for the packet data loss nature in

the MAS. Similarly, the relation of constant time delay and time-varying delay on the

system dynamics is achieved by targeting the sample event k in the dynamics.
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The conversion of the complex form of the system dynamics for n number of agents

is needed to be in some simplest form for derivations is necessary. The proper general

form is achieved for studying the dynamics for n number of agents which leads to the

derivation of general system dynamics.

The derivation of error dynamics for this general system dynamics is necessary to

understand the parameters that needed to be eradicated or atleast tried to be reduced

as far as possible and to correct errors.

The control objective of any control system is to derive a feedback to the system

to reduce these errors simultaneously and make it perfect over a cycle of period. The

different ways to control this system were studied and the Lyapunov based methodol-

ogy to reduce the errors was finally decided to implement that would definitely reduce

the error to achieve consensus of position state. However, this methodology does not

guarantee the shortest possible time or quickest of the controllers. For the certain

constraints within limited values, this methodology helps achieving consensus of the

system and is targeted towards all the obstructions.

These Lyapunov based methodologies are to be further reduced to linear matrix

inequalities(LMIs) which help find the control gain to the system. The derivation

the these LMIs is a total novel algorithm achieved in this thesis work. The LMIs

achieved in this thesis case have never been in any published work. Also the system

dynamics incorporating the time-varying delays and packet loss based on Bernoulli’s

distribution principle is hard to notice in many research works.

The control gain achieved is the ultimate requirement to verify the consensus of all

the agents. The value of control gain is fed up in the system to check the simulation

results for the same. These results have been studied extensively in Chapter 4. The

conclusions or observations based on all the communication constraints considered at

same time in this type of multi-agent system at different conditions are also novel in

some sense to this MAS field. Very few research work is published considering both

the packet loss and time delays present to be both in same MAS. The relationship

between the time delay and packet loss is considered in different fields of control

systems. Same relation is applied in the considered MAS dynamics.

Another important contribution is the experiment conducted by using the hard-

ware available. The MAS system considered for theoretical purpose is double-integrator
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system. However, in experimental setup, the robots used are single integrator dynam-

ics. The conversion of dynamics to implement the same control gain on the practical

system is carried out. The control gain found out by solving LMIs are commonly

used for both the dynamics and have been successfully helped in achieving consensus

in both cases.

Finally, the simulation results discussed in Chapter 4 and the experimental result

in Chapter 5 approved the feasibility and effectiveness of the proposed controller.

1.6 Thesis Outline

The thesis outline is structured as follows. Chapter 1 is more about the introduction

to multi-agent systems, control theories related to multi-agent systems and applica-

tions of multi-agent systems. Chapter 2 introduces the leader-follower approach of

consensus of MAS, algebraic graph theory and its properties as well as introduction of

communication constraints and system dynamics. Chapter 3 and Chapter 4 are the

main work structure of the thesis. The novelty related to the thesis work is present

in both these chapters. Chapter 3 is more about the system dynamics, and its in-

corporation with communication constraints and their ultimate conversion to general

closed loop system for multi number of agents in a wireless networked system. The

control ability of this close looped system is generated by designing a controller to

tackle all these communication constraints at different conditions. All the mathemat-

ical derivations, proofs and assumptions are present in this chapter. Moving ahead

to Chapter 4 are the results of the system in a working environment. All results have

been presented and properly classified with the help of tables. Chapter 5 is about the

introduction of the hardware which is used to perform experimental results. These

experimental results are verified with simulation results. A single case of experimen-

tal setup is considered which covers all the factors under consideration to validate the

simulation results. Chapter 6 discusses about conclusions and future works.



Chapter 2

Leader-following Multi-agent System Modeling with

Algebraic Graph Theory and Communication Constraints

In this section, a detailed information about the leader-follower approach consensus

is discussed. Also the important algebraic graph theory associated with multi-agent

system is explained. Some mandatory assumptions and conditions which relate graph

theory to consensus problem are presented and verified.

2.1 Leader-follower Approach

In the leader-follower approach, the agents are differentiated and identified as lead-

ers or followers [72]. The leaders follow preassigned trajectories while each follower

tracks the trajectory of it’s leader, maintaining a relative distance. The leader and

follower agent are at a certain distance with each other. The control objective is to

reduce the distance between them by taking into consideration that they do not get

obstructed with other agents at any point of time. Distance can be reduced linearly

or non-linearly depending on external conditions. Each agent has two position states

i.e. relative linear distance l and relative angular orientation ψ in a global co-ordinate

frame. In case of n follower agents and one leader agent, the relative linear position

of these agents can be expressed as l01, l02, l03, l04, . . . , l0n and the relative angular

orientation of these agents can be expressed as ψ01, ψ02, ψ03, ψ04, . . . , ψ0n where ’0’

denotes the leader agent and 1, 2, 3, 4, . . . , n represent the follower agents. The leader-

follower strategy was first used in [73] to develop navigation strategies for multiple

autonomous robots moving in a formation. A single leader was identified to specify

the desired formation to the following robots. Other followers track the nearest neigh-

bor to move in desired formation. This work was subsequently extended to maintain

formations of multiple microspacecraft [72]. In [72], the authors considered a fleet of

microspacecraft divided into groups with each group having a leader and each group

15



16

then tracks nearest neighbor to achieve desired goal. The authors subsequently incor-

porated adaptive control techniques in the leader following consensus control scheme

to achieve formation flying of spacecraft [74]. In [75], adaptive control laws for for-

mation flying of multiple spacecraft were extended to include nonlinear dynamics. In

[76] decentralized leader-follower control was designed for two robotic manipulators

to achieve the cooperative task of moving a box. In [77], a leader-follower formation

control strategy for mobile robots maintaining desired relative distance and orienta-

tion was proposed. The authors showed that the leader-follower assignment can be

represented as a graph and can be used to mode changes in formation. Leader-follower

assignment using graphs has also been used in [78] for formation flying of spacecraft.

This approach incorporates ideas from LMIs and controller switching. In [79], the ef-

fects of leader behaviour on the errors in formation, defined as the deviation of agents

from their desired positions is studied. In this work, error propagation in a leader

follower network and methods to improve the safety, robustness and performance of

a formation is considered.

The main advantage of the leader-follower strategy is its ease of implementation

[80]. Another advantage is that stability of an individual agent implies stability of

the formation [65] and the multi-agent system can be coordinated by specifying the

trajectory of the leader. This also becomes one disadvantage since the leader becomes

the single point of failure. Any failure of the leader to trace its defined trajectory

or communication loss from the leader will result in failure of the control strategy to

achieve its desired goal. Thus it becomes necessary to dynamically decentralize the

system such that at any event of communication failure, the leader can trace back

its all followers. However, decentralizing the MAS is quite a hectic and complicated

task as it changes the system dynamics as well as communication setup. To ensure

efficient working of the leader-follower system,

2.2 Algebraic Graph Theory

Algebraic graphic theory is one of the most fundamental concepts and approaches

to completely understand the consensus control of multi-agent systems. The ma-

jor advantage of graph based control methods is that it becomes easy for analyzing

and designing associated control methods, also incorporating various communication
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topology and scalability. Graph based abstractions of a networked system contain vir-

tually no information about what exactly is shared by the agents, instead it gives an

idea about the network connectivity of topology by representing topology objects in

terms of nodes and edges. Graph theoretic methods facilitate the design of distributed

control algorithms by exploiting the properties of this graph. In this subsection, the

methods which have utilized the properties of an algebraic graph to design distributed

consensus algorithms is presented.

2.2.1 Graph Laplacian Matrix

Considering the agents as nodes and communication links as the edges, the network

of the entire system can be classified into directed graphs, undirected graphs and

mixed graphs. Directed graphs can send information data packets only from one

node to another node at all time instants, but the undirected (bidirectional) graphs

can send information data packets from one node to another node as well as vice-

versa at any time instant. There also exists a third type of graphs called as mixed

graphs which contains directional and bidirectional communication links in the same

network topology. Fig.2.1 displays the communication linkage in directional graphs,

bidirectional graphs and mixed graphs. The directed graph has its edges pointing at

the one direction, whereas the undirected graph has its edges pointing in bidirection

and mixed graph is a combination of both. Each of these graphs have their fair share

of advantages and disadvantages. Directed graphs resemble that the information flow

exchange is carried between the two nodes, which means in real time, two servers are

connected but only one server can send information to another at same time instant.

So in this case, the reliability of information exchange is based on the server which

sends the information data packets to another. If in any case, if the sending server

fails to send these data packets, then the system efficiency might reduce because

of packet data loss or in worst case situation it can fail the entire working of the

system, which is undesirable. However most of the TCP/IP connection servers that

we use to connect Pioneer robots have data transmission limitations such that at any

instant of time, it can either send or receive the information data packet from other

server. It can never receive and transmit at the same time to another connected

server. Hence it becomes necessary to consider the directed graph network topology
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Figure 2.1: (i) Directed graph (ii) Undirected graph (iii)Mixed graph

for the experiment purpose. However this does not affect considering the mixed or

undirected graph network topology to obtain simulation results based on controller

design of MAS dynamics. Both the directed and undirected graph can be strongly

connected based on few assumptions of their properties.

To understand their properties, it is necessary to understand few terminologies

that are used in algebraic graph theory. The agent network communication topology

is represented by graph G = (V , E , A) where V = {1, 2, ..., N} is the set of nodes

and E = {(i, j) : i, j ∈ V} ⊂ V × V represent edges. In a directed graph case,

there is communication only from one node to another node as it is shown in Figure

2.1 (i), the communication edges can be seen from one node to another node with

arrowhead in single direction of information flow. Every digraph has associated with

it an adjacency matrix A with non-negative binary elements. The order of adjacency

matrix is n×n, where n is the number of agents and is defined as aii = 0 and aij ≥ 0.

If there exists an edge between i and j, then the elements of matrix A is described as

aij > 0⇔ (i, j) ∈ E . The set of neighboring agents connected to any agent in topology

is denoted by N = {j ∈ V : (i, j) ∈ E}. The graph Laplacian matrix L = (lij) of the

digraph G is defined by lij = −aij for i 6= j, lii = −
n
∑

j=1,j 6=i

lij(i, j = 1, 2, ..., N). So the

adjacency matrix A and the graph Laplacian matrix L for the directed graph shown

in 2.1 is given by,

A =









0 1 0

0 0 0

1 1 0









and L =









1 −1 0

0 0 0

−1 −1 1









However just finding the adjacency matrix and graph Laplacian matrix does not

guarantee the connectivity of the topology. So it becomes necessary to draw some

rules to ensure that the graph under consideration is strongly connected. The follow-

ing properties of directed and undirected graphs are important with respect to the
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discussions and contributions of this thesis:

2.2.2 Properties of Graph Laplacian Matrix

The properties of L are as follows,

• For an undirected graph, the graph Laplacian matrix L is symmetric. However,

for a directed graph, the sum of the rows is zero. So it is said that the digraph

G has a globally reachable node if and only if the Laplacian matrix L of G has a

simple zero eigenvalue with associated eigenvector 1n , [1, ..., 1]T ∈ R, which is

the n×1 column vector of ones and l is diagonally domain and has non-negative

diagonal entries.

• If there exists a path between any two nodes i and j of a graph G with node i as

the tail and j as the head then the graph G is connected. In the case of directed

graphs, a directed graph is strongly connected if there also exists a path with j

as the tail and i as the head.

• A graph (G2) is a subgraph of (G1) if V (G2) ⊆ V (G1) and E (G2) ⊆ E (G1).

• If V (G2) = V (G1) then G2 is a spanning subgraph of G1.

• A connected graph G where each node has at least two neighboring nodes is

said to contain a cycle i.e. starting from a node i as the tail in the graph G,

it is possible to have a path with finite number of edges to arrive at the same

node i as the head.

• A spanning subgraph with no cycles is called as a spanning tree.

• The smallest eigenvalue of L is exactly zero and the corresponding eigenvector

is given by 1 = (Col) (1. . . . 1).

• The graph Laplacian matrix L is always rank deficient and positive semi-

definite.

• The rank of L is N − 1 if for G there exists a path from every node to all other

nodes, i.e. the graph is connected.
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Figure 2.2: System model representation

2.3 Multi-agent System Modelling for Different Communication

Constraints

Fig. 2.3 illustrates the working between a leader agent and a follower agent. Agent i

is the leader agent and agent j is the follower agent. The communication link among

the multi-agent system can be modeled by an algebraic graph. A system which is

free of communication constraints can successfully transfer the information along this

communication channel between these agents. The system dynamics for the MAS is

discussed thoroughly in Chapter 3. However, in this section, an overview of system

modeling is shown for communication constraints. Whenever there is a successful

data transfer from one agent to another agent or agents in a networked MAS, there

is a certain generation of topology which represents that network. It is desired that

the topology should be non switching for any successful working of control system.

However, this may not happen every time in real time conditions. There will be

always some form of communication constraints which will affect the topology of the

system. The two main communication constraints that affect the connected topology

and indirectly the system behavior are packet data loss and time delays. Both these

communication constraints are studied and modeled into sytem dynamics to study

their effect on system performance. Chapter 3 basically deals with the controller

design for a multi-agent system which comprises of these communication constraints.

The final output of Chapter 3 is an LMI which may find a suitable control gain

for the considered MAS with communication constraints. To understand the system

dynamics in Chapter 3, it is necessary to understand the inclusion of communication
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xi(k) = θji(k)xi(k) + (1− θji(k))xi(k − 1) (2.1)

where θji ∈ R is a stochastic variable satisfying interval Bernoulli distribution and

θ ∈ 0,1. The subscript ji means that the signal is transferred from agent j to agent i.

If θji = 0, then it means that the agent I has failed to receive signal from agent j and

if θji = 1, then it means that agent i has received signal from agent j successfully.

Eq.(2.1) is a recursive procedure. For example, if at k = 1, agent i can receive the

signal, whle k = 2,3 cannot receive data serially, then

xi(3) = θji(3)xi(3) + (1− θji(3))xi(2) = xi(2) (2.2)

where

xi(2) = θji(2)xi(2) + (1− θji(2))xi(1) = xi(1) (2.3)

then

xi(3) = xi(1)

Therefore agent i receives the most recently successfully transferred data.

2.3.2 Summary

Chapter 2 presents a prerequisite information about the system modeling and the

necessary theories associated with it. A perfect understanding of the algebraic graph

theory is very important to determine the strongly connected topology for the suc-

cessful working of networked system. Algebraic graph theory helps in determining

the adjacency matrix and graph Laplacian matrix. In complex network systems, the

understanding of rules of graph Laplacian matrix becomes quite important. In any of

the rule is exploited, the controller design may fail at some stage. A leader-follower

approach among different types of consensus is important in relation to the applica-

tions of the multi-agent systems. Most of the applications of the multi-agent systems

require a decision maker or a team of decision maker which makes it favorable for
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leader-following approach. The application of packet data loss in the system dynam-

ics is introduced in the Section 2.3.1. which makes use of Bernoulli’s principle to

model its working in system dynamics. In next chapter, the system dynamics with

constraints like packet loss and time delays are studied. Many derivations related to

error dynamics and system dynamics are shown. The controller designing process is

also proved for two cases of constant time delay and time-varying delays. Chapter 3

is the main body of the thesis, in which the novelty of the work is presented.



Chapter 3

Consensus Control of Multi-Agent System using Lyapunov

Based Approach

In this chapter, the controller design for the considered MAS dynamics is presented

along with the derivation of its closed loop dynamics, error dynamics and finally a

control gain value is attained by developing control algorithm.

3.1 Multi-Agent System Dynamics Considering Constant Time Delay

and Data Packet Loss

A single control system dynamics is expressed in continuous-time domain as,

ẋi(t) = Acxi(t) + Bcui(t), (3.1)

where, Ac =

[

0 1

0 0

]

∈ R
2×2 & Bc =

[

0

1

]

∈ R
2×1 are constant matrices, ẋi(t) ∈

R
2×1 is the state vector, ui(t) ∈ R is the control input at different time instant ‘t’.

For a simple double integrator system,

ẋ1,i(t) = x2,i(t)

ẋ2,i(t) = ui(t)

State feedback controller is given by,

ui(t) = −kxi(t), (3.2)

where i = 1, 2, 3, 4...n is the number of the agents, k = [k1, k2] is the control gain and

ui(t) is the control input. Most of the practical control systems are computer based

control signals which are controlled by digital controllers. These controllers accept

analog or continuous signal, then convert them to digital or discrete signal for machine

processing purpose and then convert back these discrete signals back to continuous

24
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signals or a form that the plant accepts as input. Discretization is done by using zero

order hold and sampler. The sampler is used to convert continuous signals into a train

of amplitude-modulated pulses and maintain the value of pulse for a prescribed time

duration, and then can be read by digital controller. The zero-order hold is then to

saturate the discrete signal into continuous ones. The discretization of a continuous

state space system by zero-order hold is carried out in MATLAB R©. The Ac and Bc

are constant appropriate size of matrices. The Ad and Bd are varied according to the

sampling time Ts. In our case, the sampling time Ts is set to 0.1 second. Converting

continuous system to discrete system, the Equation (3.1) becomes,

xi(k + 1) = Adxi(k) + Bdui(k), (3.3)

where,

Ad =

[

0 0.1

0 0

]

;Bd =

[

0.005

0.1

]

From Fig. 2.3, it is evident that the controller of the agent ’i’ tries to reduce the

error between xj and xi, i.e.,

ui(t) = −k

n
∑

j=1

aij(xj(k)− xi(k)) (3.4)

So the system becomes,

xi(k + 1) = Adxi(k) + Bdk

n
∑

j=1

aij(xj(k)− xi(k)), (3.5)

Considering system having constant time delay and packet data loss,

xi(k + 1) = Adxi(k) + Bdk

n
∑

j=1

aij[θ(k)xj(k − τ) + (1− θ(k))xj(k − τ − 1)

−θ(k)xi(k − τ)− (1− θ(k))xi(k − τ − 1)] (3.6)

where τ ∈ R is the constant time delay and θ ∈ [0,1] is a probabilistic variable.

The same equation can be represented as,

x(k + 1) = (In ⊗ Ad)x(k) + (L1 ⊗ Bdk)x(k − τ) + (L2 ⊗ Bdk)x(k − τ − 1) (3.7)
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where ⊗ is the kronecker product, x = [x1, x2, ..., xn]
T , L1 ∈ R

n×n and L2 ∈ R
n×n.

L1 =















−
∑n

j=1 a1jθ a12θ . . . a1nθ

a21θ −
∑n

j=1 a2jθ . . . a2nθ
...

...
. . .

...

an1θ an2θ . . . −
∑n

j=1 anjθ















, L0
1θ

where

L0
1 =















−
∑n

j=1 a1j a12 . . . a1n

a21 −
∑n

j=1 a2j . . . a2n
...

...
. . .

...

an1 an2 . . . −
∑n

j=1 anj















L2 =















−
∑n

j=1 a1j(1− θ) a12(1− θ) . . . a1n(1− θ)

a21(1− θ) −
∑n

j=1 a2j(1− θ) . . . a2n(1− θ)
...

...
. . .

...

an1(1− θ) an2(1− θ) . . . −
∑n

j=1 anj(1− θ)















, L0
2(1− θ)

where

L0
2 =















−
∑n

j=1 a1j a12 . . . a1n

a21 −
∑n

j=1 a2j . . . a2n
...

...
. . .

...

an1 an2 . . . −
∑n

j=1 anj














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The cooperative control techniques are expected to be applied to actual vehicles

such as UAVs, artificial satellites and autonomous mobile observation robots as well

as distributed sensor networks. Consensus-based cooperative control, which is a dis-

tributed approach, has advantage of having network flexibility. Most works of the

cooperative control problems using a consensus based algorithm assume that the ve-

hicles are expressed in as a first order system [82]. The results in a first-order system

can be directly extended to a second order system [83]. Works of a linear system are

not directly extended from the results of in a first order system, because it is difficult

to extend algorithms for a first-order system directly to the problems with a linear

system. Therefor most authors who consider a linear system mainly use complicated

ways such as an optimization approach [84], and a linear matrix inequality (LMI)

[85]. In [86], a study of cooperative control problems is conducted to apply on for-

mation control of multi-UAVs. They have expressed the dynamics of UAVs in the

horizontal plane as s fourth-order system, then proposed a consensus-based algorithm

for a group of UAVs to fly in a formation cooperatively.

3.2 Error Dynamics

3.2.1 Error Dynamics of the MAS with Constant Time Delay and Data

Packet Loss

The error dynamics is defined as,

ei(k + 1) = xi(k + 1)− x1(k + 1) (3.8)

ei(k + 1) = Adxi(k) + Bdk

n
∑

j=1

aij[θ(k)xj(k − τ) + (1− θ(k))xj(k − τ − 1)

−θ(k)xi(k − τ)− (1− θ(k))xi(k − τ − 1)]− Adx1(k)

−Bdk

n
∑

j=1

a1j[θ(k)xj(k − τ) + (1− θ(k))xj(k − τ − 1)

−θ(k)x1(k − τ)− (1− θ(k))x1(k − τ − 1)] (3.9)
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ei(k + 1) = Ad[xi(k)− x1(k)] + Bdk

n
∑

j=1

(aij − a1j)[θ(k)xj(k − τ)

−(1− θ(k))xj(k − τ − 1)]− Bdk

n
∑

j=1

(aij − a1j)[θ(k)(xi(k − τ)

−x1(k − τ)) + (1− θ(k))(xi(k − τ − 1)− x1(k − τ − 1))

(3.11)

ei(k + 1) = Ad[xi(k)− x1(k)] + Bdk

n
∑

j=2

(aij − a1j)[θ(k)xj(k − τ)− θ(k)x1(k − τ)]

+Bdk

n
∑

j=2

(aij − a1j)[(1− θ(k))xj(k − τ − 1)− (1− θ(k))x1(k − τ − 1)]

−Bdk

n
∑

j=1

(aij − a1j)[(1− θ(k))xi(k − τ − 1)− (1− θ(k))x1(k − τ − 1)]

−Bdk

n
∑

j=1

(aij − a1j)[θ(k)xi(k − τ)− θ(k)x1(k − τ)] (3.12)

Let us declare

xi(k)− x1(k) = ei(k), xj(k − τ − 1)− x1(k − τ − 1) = ej(k − τ − 1),

xi(k − τ)− x1(k − τ) = ei(k− τ) and xi(k − τ − 1)− x1(k − τ − 1) = ei(k− τ − 1).

So the above equation becomes,

ei(k + 1) = Adei(k) + Bdk

n
∑

j=2

(aij − a1j)θ(k)ej(k − τ)

+Bdk

n
∑

j=2

(aij − a1j)(1− θ(k))ej(k − τ − 1)

−Bdk

n
∑

j=1

(aij − a1j)θ(k)ei(k − τ)

−Bdk

n
∑

j=1

(aij − a1j)(1− θ(k))ei(k − τ − 1) (3.13)
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In Matrix Form, this equation can be represented as,

e(k + 1) = (In−1 ⊗ Ad)e(k) + (L̄1 ⊗ Bdk)e(k − τ) + (L̄2 ⊗ Bdk)e(k − τ − 1) (3.14)

where n ≥ 2, thus, O1 =
n
∑

j=1

a2j, O2 =
n
∑

j=1

a3j and On =
n
∑

j=1

anj and

L̄0
1 =















(a22 − a12)−O1 (a23 − a13) . . . (a2n − a1n)

(a32 − a12) (a33 − a13)−O2 . . . (a3n − a1n)
...

...
. . .

...

(an2 − a12) (an3 − a13) . . . (ann − a1n)−On















Also,

where n ≥ 2, thus, Q1 =
n
∑

j=1

a3j, Q2 =
n
∑

j=1

a3j, Qn =
n
∑

j=1

anj and

L̄0
2 =















(a22 − a12)−Q1 (a23 − a13 . . . (a2n − a1n

(a32 − a12 (a33 − a13)−Q2 . . . (a3n − a1n)
...

...
. . .

...

(an2 − a12) (an3 − a13) . . . (ann − a1n)−Qn















3.2.2 Error Dynamics of the MAS with Time-Varying Delay and Data

Packet Loss

The above discussion about controller design was based on the constant delay case in

which we assume that at any given time, the time delays present in the system would

either be zero or constant in all communication channels. The reason for considering

constant time delay is when the time delays in the system are fluctuating very less

and thesystem behavior overall is not affected by these fluctuations. In this case, we
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consider the maximum observed value of time delay as τ . However, this is not always

possible while designing real-time network control. Time delays may vary within a

high range, in which it becomes necessary to consider the lower and upper bounds

of time delays. So, in this section, we will be considering a new variable τk in time

varying delay case instead of τ in constant delay case. τk is an arbitrary real variable

which can take any values between the lower bound time delay τm and the upper

bound time delay τM , such that τm ≤ τk ≤ τM .

After considering the system with time varying delay and packet data loss,

xi(k + 1) = Adxi(k) + Bdk

n
∑

j=1

aij[θ(k)xj(k − τk) + (1− θ(k))xj(k − τk − 1)

−θ(k)xi(k − τk)− (1− θ(k))xi(k − τk − 1)] (3.15)

In Matrix form, the same equation can be represented as,

x(k + 1) = (In ⊗ Ad)x(k) + (L1 ⊗ Bdk)x(k − τk)

+(L2 ⊗ Bdk)x(k − τk − 1) (3.16)

where ⊗ is the kronecker product, x = [x1, x2, ..., xn]
T , L1 ∈ R

n×n and L2 ∈ R
n×n.

The values of variables of Ad, L1 and L2 won’t be affected as they are not dependent

on time delays. These matrices are dependent on adjacency matrix elements and

packet data loss variable.

The error dynamics of the system is as follows,

e(k + 1) = (In−1 ⊗ Ad)e(k) + (L̄1 ⊗ Bdk)e(k − τk)

+(L̄2 ⊗ Bdk)e(k − τk − 1) (3.17)

where e(k) = [e2(k), e3(k), ...., en(k)] ∈ R
2(n−1)×1
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3.3 Consensus Control of the MAS or Controller Design

3.3.1 Consensus Control of the MAS with Constant Time Delay and

Data Packet Loss

Let us assume the following Lyapunov functional candidate for the system comprising

of constant time delay and packet data loss as,

V (k) = V1(k) + V2(k) + V3(k) (3.18)

where,

V1(k) = eT (k)Pe(k), with P ∈ R
2(n−1)×2(n−1) and n is the number of the agents.

V2(k) =
τ
∑

i=1

eT (k − i)Qe(k − i), with Q ∈ R
2(n−1)×2(n−1)

V3(k) =
0
∑

i=−τ

k−1
∑

j=i+k−1

(eT (j+1)− eT (j))R(e(j+1)− e(j)), with R ∈ R
2(n−1)×2(n−1)

A Lyapunov function V is chosen such that V (e) ≥ 0,∀ e and V = 0 only when e

= 0 and P, Q, and R are positive definite matrices. If it can be shown that ∆ V =

V (e, k + 1)− V (e, k) < 0, then e converges asymptotically to zero.

∆V1 = eT(k + 1)Pe(k + 1)− eT(k)Pe(k)

=















eT (k + 1)

eT (k)

eT (k − τ)

eT (k − τ − 1)





























P 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





























e(k + 1)

e(k)

e(k − τ)

e(k − τ − 1)















−















eT (k + 1)

eT (k)

eT (k − τ)

eT (k − τ − 1)





























0 0 0 0

0 P 0 0

0 0 0 0

0 0 0 0





























e(k + 1)

e(k)

e(k − τ)

e(k − τ − 1)















=















eT (k + 1)

eT (k)

eT (k − τ)

eT (k − τ − 1)





























P 0 0 0

0 P 0 0

0 0 0 0

0 0 0 0





























e(k + 1)

e(k)

e(k − τ)

e(k − τ − 1)














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Let z(k) =















e(k + 1)

e(k)

e(k − τ)

e(k − τ − 1)















∈ R
8(n−1)×1 , so we can write above equation as,

∆V1 = zT (k)















P 0 0 0

0 −P 0 0

0 0 0 0

0 0 0 0















z(k)

∆V2 =
τ
∑

i=1

eT (k + 1− i)Qe(k + 1− i) −
τ
∑

i=1

eT (k − i)Qe(k − i)

= eT (k)Qe(k) − eT (k − τ)Qe(k − τ)

=















eT (k + 1)

eT (k)

eT (k − τ)

eT (k − τ − 1)





























0 0 0 0

0 Q 0 0

0 0 −Q 0

0 0 0 0





























e(k + 1)

e(k)

e(k − τ)

e(k − τ − 1)















∆V2 = zT (k)















0 0 0 0

0 Q 0 0

0 0 −Q 0

0 0 0 0















z(k)

∆V3 =
0
∑

i=−τ

k
∑

j=i+k+1

(eT (j + 1)− eT (j))R(e(j + 1)− e(j))−
0
∑

i=−τ

k−1
∑

j=i+k

(eT (j + 1)−

eT (j))R(e(j + 1)− e(j))

= (τ +1)((eT (k+1)− eT (k))R(e(k+1)− e(k))−
0
∑

i=−τ

((eT (k+ i+1)−eT (k+

i))R(e(k + i+ 1)− e(k + i))

The last summation term needs to be canceled out. So we need to add quadratic

inequality summed up from 0 to τ at this end to get the final identity.

−2zT (k)N
0
∑

i=−τ

(e(k+ i+1)−e(k+ i)) ≤ (τ +1)zT (k)NR−1NTz(k)+
0
∑

i=−τ

((eT (k+

i+ 1)− eT (k + i))R(e(k + i+ 1)− e(k + i))

This identity does help to remove the inconvenient summation term, but at the
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same time leaves behind another inconvenient summation term. This newly generated

summation term can be cancelled out by forming a zero -equation ψ0. But,

0
∑

i=−τ

(e(k + i+ 1)− e(k + i)) = (e(k + 1)− e(k − τ))

ψ0 = 2zT (k)N [(e(k + 1)− e(k − τ))−
0
∑

i=−τ

(e(k + i+ 1)− e(k + i))] = 0

where, N =















N1

N2

N3

N4















, Ni ∈ R
2(n−1)×2(n−1) is an arbitrary design parameter.

Therefore, the zero-equation simplifies ∆V3 to

∆V3 = ∆V3 + ψ0

∆V3 = zT (k)















(τ + 1)rR +N1 +NT
1 −(τ + 1)(1− r)R +NT

2 NT
3 −N1 0

−(τ + 1)(1− r)RT +N2 (τ + 1)rR −N2 0

N3 −NT
1 −NT

2 −N3 −NT
3 0

0 0 0 0















z(k)

+(τ + 1)zT(k)NR−1NTz(k)

Another zero-equation ψ1 uses the error dynamics to introduce gain in the system

where M =















M1

M2

M3

M4















,Mi ∈ R
2(n−1)×2(n−1) is another arbitrary matrix introduced,

where M1,M2,M3 and M4 are symmetric matrices.

ψ1 = 0 = 2zT (k)M [e(k + 1)− (I ⊗ Ad)e(k)− (L̄1 ⊗ Bdk)e(k − τ)

−(L̄2 ⊗ Bdk)e(k − τ − 1)]

ψ1 = zT(k)















M1 +MT
1 −M1(I⊗ Ad) +MT

2 −M1(L̄1⊗ Bdk) −M1(L̄2⊗ Bdk) +MT
4

−MT
1 (I⊗ Ad)

T +M2 −M2(I⊗ Ad)− (I⊗ Ad)
TMT

2 −M2(L̄1⊗ Bdk)− (I⊗ Ad)
TMT

3 −2(L̄2⊗ Bdk)− (I⊗ Ad)
TMT

4

−MT
1 (L̄1⊗ Bdk)

T −MT
2 (L̄1⊗ Bdk)

T − (I⊗ Ad)M3 −M3(L̄1⊗ Bdk)− (L̄1⊗ Bdk)
TMT

3 −M3(L̄2⊗ Bdk)− (L̄1⊗ Bdk)
TMT

4

−MT
1 (L̄2⊗ Bdk)

T +M4 −MT
2 (L̄2⊗ Bdk)

T − (I⊗ Ad)M4 −MT
3 (L̄2⊗ Bdk)

T − (L̄1⊗ Bdk)M4 −M4(L̄2⊗ Bdk)− (L̄2⊗ Bdk)
TMT

4















z(k)

Let (I⊗Ad) = T1, (L̄1⊗Bdk) = T2K, (L̄2⊗Bdk) = T3K,M2 = ω1M1,M3 = ω2M1

and M4 = ω3M1 and K = diag[k , ..., k ] ∈ R
(n−1)×2(n−1), hence
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ψ1 = zT(k)















M1 +MT
1 −M1T1 + ωT

1M
T
1 −M1T2K −M1T3K + ωT

3M
T
1

−MT
1 T

T
1 + ω1M1 −ω1M1T1 − T T

1 ω
T
1M

T
1 −ω1M1T2K − T T

1 ω2M
T
1 −ω1M1T3K − T T

1 ω
T
3M

T
1

−MT
1 T

T
2 K

T −ωT
1M

T
1 T

T
2 K

T − T1ω2M1 −ω2M1T2K − T T
2 K

TωT
2M

T
1 −ω2M1T3K − T T

2 K
Tω3M

T
1

−MT
1 T

T
3 K

T + ω3M1 −ωT
1M

T
1 T

T
3 K

T − T1ω3M1 −ωT
2M

T
1 T

T
3 K

T − T2Kω3M1 −ω3M1T3K − T T
3 K

TωT
3M

T
1















z(k)

Then E(∆V ) = ∆V1 + ∆V2 + ∆V3 + ψ0 + ψ1

E(∆V ) = zT(k)















Ξ11 ΞT
21 ΞT

31 ΞT
41

Ξ21 Ξ22 ΞT
32 ΞT

42

Ξ31 Ξ32 Ξ33 ΞT
43

Ξ41 Ξ42 Ξ43 Ξ44















z(k) + (τ + 1)zT(k)NR−1NTz(k)

where,

Ξ11 = P + (τ + 1)R +N1 +NT
1 +M1 +MT

1

Ξ21 = −(τ + 1)RT +N2 −MT
1 T

T
1 + ω1M1

Ξ22 = −P +Q+ (τ + 1)R− ω1M1T1 − T T
1 ω1M

T
1

Ξ31 = N3 −NT
1 −MT

1 T̄2
T
KT

Ξ32 = −NT
2 − ω1M

T
1 T̄2

T
KT − T1ω2M1

Ξ33 = −Q−N3 −NT
3 − ω2M1T̄2K − T̄2

T
KTω2M

T
1

Ξ41 = −MT
1 T̄3

T
KT + ω3M1

Ξ42 = −ω1M
T
1 T̄3

T
KT − T1ω3M1

Ξ43 = −ω2M
T
1 T̄3

T
KT − T̄2Kω3M1

Ξ44 = −ω3M1T̄3K − T̄3
T
KTω3M

T
1

T̄2 = E(T2) = (L̄0
1 ⊗ Bdk)r

T̄3 = E(T3) = (L̄0
2 ⊗ Bdk)(1− r)

The Schur complement for any matrix X of the form

X =

[

A B

C D

]

, gives the following condition, X < 0 ⇔ A− BD−1C < 0

The Schur complement gives new equation, such that if it holds true, then the

error will be bounded, i.e. ∆V < 0
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Ξ =





















Ξ11 ΞT
21 ΞT

31 ΞT
41 (τ + 1)N1

Ξ21 Ξ22 + S ΞT
32 ΞT

42 (τ + 1)N2

Ξ31 Ξ32 Ξ33 ΞT
43 (τ + 1)N3

Ξ41 Ξ42 Ξ43 Ξ44 (τ + 1)N4

(τ + 1)NT
1 (τ + 1)NT

2 (τ + 1)NT
3 (τ + 1)NT

4 −(τ + 1)R





















< 0

where r is the data loss rate and S is the arbitrary symmetric positive definite

matrix. This above equation is actually a stability test. This LMI contains arbitrary

symmetric positive definite matrices P, Q, R, S, M and N. If the values for these

matrices can be found out by calculated control gain, then we can say that the

considered system will be stable. It is necessary to linearize the above inequality for

which we need to pre and post multiply by M−1
1 . Since M1 is a symmetric matrix,

MT
1 = M1. Assume X = M−1

1 ,which is also a symmetric matrix and Y = KX, we

get,

Φc = M−1
1 ΞM−1

1 =





















Φ11 ΦT
21 ΦT

31 ΦT
41 (τ + 1)N̂1

Φ21 Φ22 ΦT
32 ΦT

42 (τ + 1)N̂2

Φ31 Φ32 Φ33 ΦT
43 (τ + 1)N̂3

Φ41 Φ42 Φ43 Φ44 (τ + 1)N̂4

(τ + 1)N̂1
T

(τ + 1)N̂2
T

(τ + 1)N̂3
T

(τ + 1)N̂4
T

−(τ + 1)R̂





















< 0

where,

Φ11 = P̂ + (τ + 1)R̂ + N̂1 + N̂1
T
+ 2X

Φ21 = −(τ + 1)T R̂T + N̂2 − T T
1 X + ω1X

Φ22 = −P̂ + rQ̂+ (τ + 1)rR̂− ω1T1X − ω1T
T
1 X + Ŝ

Φ31 = N̂3 − N̂1
T
− T̄2

T
Y

Φ32 = −N̂2
T
− ω1T̄2

T
Y − ω2T1X

Φ33 = −Q̂− N̂3 − N̂3
T
− ω2T̄2Y − ω2T̄2

T
Y

Φ41 = −T3Y + ω3X

Φ42 = −ω1T̄3
T
Y − ω3T̄3Y

Φ43 = −ω2T̄3
T
Y − ω3T̄2Y



36

Φ44 = −ω3T̄3Y − ω3T̄3
T
Y

and

P̂ =M−1
1 PM−1

1

Q̂ =M−1
1 QM−1

1

R̂ =M−1
1 RM−1

1

Ŝ =M−1
1 SM−1

1

N̂1 =M−1
1 N1M

−1
1

N̂2 =M−1
1 N1M

−1
1

N̂3 =M−1
1 N3M

−1
1

N̂4 =M−1
1 N4M

−1
1

3.3.2 Consensus Control of the MAS considering time-varying delay

and data packet loss

Let us assume the following Lyapunov functional candidate for the system comprising

of time-varying delays and packet data loss as,

V (k) = V1(k) + V2(k) + V3(k) + V4(k)

where,

V1(k) = eT(k)Pe(k)

V2(k) =
k−1
∑

i=k−τk

eT(i)Qe(i)

V3(k) =
−τm+1
∑

i=−τM+2

k−1
∑

j=k+i−1

eT(j)Qe(j)

V4(k) =
−1
∑

i=−τM

k−1
∑

j=k+i

(eT(j + 1)− eT(j))R(e(j + 1)− e(j))

In practical applications, it is impossible to know the exact value of the delay, but

a lower and upper bound of time delays can always be determined. In this case, there

is addition of one more term V4(k). The process to assume V4(k) is same as V3(k) in
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earlier section. However V3(k) in this case or section is an addition because there is

presence of two ranges of delays i.e. one is between τm and τk and another is between

τk and τM .

∆V1 = zT (k)















P 0 0 0

0 −P 0 0

0 0 0 0

0 0 0 0















z(k)

∆V2 =
k
∑

i=k−τk+1

eT(i)Qe(i)−
k−1
∑

i=k−τk

eT(i)Qe(i)

Since,

k−1
∑

i=k−τk+1+1

eT(i)Qe(i) =
k−1
∑

i=k−τm+1

eT(i)Qe(i) +
k−τm
∑

i=k−τk+1+1

eT(i)Qe(i) ≤

k−1
∑

i=k−τk+1

eT(i)Qe(i) +
k−τm
∑

i=k−τM+1

eT(i)Qe(i)

which is used to eliminate the random variable in summation term.

Thus, ∆V2 = eT(k)Qe(k)− eT(k − τk)Qe(k − τk) +
�
�

�
�
�
�
�
�
�

��X
X

X
X
X
X
X
X
X

XX

k−τm
∑

i=k−τM+1

eT(i)Qe(i)

∆V3 =
−τm+1
∑

i=−τM+2

k
∑

j=k+i

eT(i)Qe(i)−
−τm+1
∑

i=−τm+2

k−1
∑

j=k+i−1

eT(i)Qe(i)

= (τM − τm)e
T(k)Qe(k)−

�
�
�
�
�
�
�

�
�

�
�X

X
X
X

X
X

X
X
X
X
X

k−τm
∑

j=k+τM+1

eT(j)Qe(j)

∆V1 +∆V2 +∆V3 = zT(k)















P 0 0 0

0 (τM − τm + 1)Q− P 0 0

0 0 −Q 0

0 0 0 0















z(k)

∆V4 is same as that of ∆V3 of constant delay case derivation except for change of

limits.

∆V4 = zT(k)















(τM + 1)R +N1 +NT
1 −(τM + 1)R +NT

2 NT
3 −N1 0

−(τM + 1)RT +N2 (τM + 1)R −N2 0

N3 −NT
1 −NT

2 −N3 −NT
3 0

0 0 0 0















z(k)
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+(τM + 1)zT(k)NR−1NTz(k)

= ∆V1 + ∆V2 + ∆V3 + ∆V4 + ψ0 + ψ1, where ψ0, ψ1 have the same values

as that in constant time delay case. For their derivation, kindly refer constant-time

delay controller design. So adding up all matrices, we get ∆V as

E(∆V ) = zT(k)















Ξ11 ΞT
21 ΞT

31 ΞT
41

Ξ21 Ξ22 ΞT
32 ΞT

42

Ξ31 Ξ32 Ξ33 ΞT
43

Ξ41 Ξ42 Ξ43 Ξ44















z(k) + (τM + 1)zT(k)NR−1NTz(k)

where,

Ξ11 = P + (τM + 1)R +N1 +NT
1 +M1 +MT

1

Ξ21 = −(τM + 1)RT +N2 −MT
1 T

T
1 + ω1M1

Ξ22 = −P + (τM − τm + 1)Q+ (τM + 1)R− ω1M1T1 − T T
1 ω1M

T
1

Ξ31 = N3 −NT
1 −MT

1 T̄2
T
KT

Ξ32 = −NT
2 − ω1M

T
1 T̄2

T
KT − T1ω2M1

Ξ33 = −Q−N3 −NT
3 − ω2M1T̄2K − T̄2

T
KTω2M

T
1

Ξ41 = −MT
1 T̄3

T
KT + ω3M1

Ξ42 = −ω1M
T
1 T̄3

T
KT − T1ω3M1

Ξ43 = −ω2M
T
1 T̄3

T
KT − T̄2Kω3M1

Ξ44 = −ω3M1T̄3K − T̄3
T
KTω3M

T
1

T̄2 = E(T2) = (L̄0
1 ⊗ Bdk)r

T̄3 = E(T3) = (L̄0
2 ⊗ Bdk)(1− r)

Applying Schlur Complement on above equation, we get a new equation in form,

Ξ =





















Ξ11 ΞT
21 ΞT

31 ΞT
41 (τM + 1)N1

Ξ21 Ξ22 + S ΞT
32 ΞT

42 (τM + 1)N2

Ξ31 Ξ32 Ξ33 ΞT
43 (τM + 1)N3

Ξ41 Ξ42 Ξ43 Ξ44 (τM + 1)N4

(τM + 1)NT
1 (τM + 1)NT

2 (τM + 1)NT
3 (τM + 1)NT

4 −(τM + 1)R





















< 0
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The variables in this Ξ matrix are same as that derived Ξ matrix in constant-time

delay case. If the values for these matrices can be found out by calculated control

gain, then we can say that the considered system will be stable. It is necessary to

linearize the above inequality for which we need to pre and post multiply by M−1
1 .

Since M1 is a symmetric matrix, MT
1 = M1. Assume X = M−1

1 ,which is also a

symmetric matrix and Y = KX, we get,

Φd = M−1
1 ΞM−1

1 =





















Φ11 ΦT
21 ΦT

31 ΦT
41 (τM + 1)N̂1

Φ21 Φ22 ΦT
32 ΦT

42 (τM + 1)N̂2

Φ31 Φ32 Φ33 ΦT
43 (τM + 1)N̂3

Φ41 Φ42 Φ43 Φ44 (τM + 1)N̂4

(τM + 1)N̂1
T

(τM + 1)N̂2
T

(τM + 1)N̂3
T

(τM + 1)N̂4
T

−(τM + 1)R̂





















< 0

where,

Φ11 = P̂ + (τM + 1)R̂ + N̂1 + N̂1
T
+ 2X

Φ21 = −(τM + 1)R̂T + N̂2 − T T
1 X + ω1X

Φ22 = −P̂ + (τM − τm + 1)Q̂+ (τM + 1)R̂− ω1T1X − ω1T
T
1 X + Ŝ

Φ31 = N̂3 − N̂1
T
− T̄2

T
Y

Φ32 = −N̂2
T
− ω1T̄2

T
Y − ω2T1X

Φ33 = −Q̂− N̂3 − N̂3
T
− ω2T̄2Y − ω2T̄2

T
Y

Φ41 = −T̄3Y + ω3

Φ42 = −ω1T̄3
T
Y − ω3T̄3Y

Φ43 = −ω2T̄3
T
Y − ω3T̄2Y

Φ44 = −ω3T̄3Y − ω3T̄3
T
Y

and

P̂ =M−1
1 PM−1

1

Q̂ =M−1
1 QM−1

1

R̂ =M−1
1 RM−1

1
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Ŝ =M−1
1 SM−1

1

N̂1 =M−1
1 N1M

−1
1

N̂2 =M−1
1 N1M

−1
1

N̂3 =M−1
1 N3M

−1
1

N̂4 =M−1
1 N4M

−1
1

3.4 Summary

Chapter 3 is the main work structure of this thesis. The controller is the essential

part of any control system. The controller has to take into consideration the system

dynamics as well the feedback gain to control the system to automate in such a way

that it should be self sufficient to take proper decisions without human interaction.

Multi-agent system dynamics with incorporated packet losses is derived along with it’s

error dynamics.Error dynamics is an essential requirement for designing controller as

the main objective of controller is reduce that error. Solving the Lyapunov equation

results in final linear matrix inequalities which then solved further by LMI Solver

MATLAB R© toolbox, yields out the value of control gain, which is the final motive of

controller



Chapter 4

Simulation results

In this chapter, the simulation results based on different conditions are presented

along with detailed observations and conclusions. The consensus time is the common

factor around which different conditions are studied and their effect on it.

4.1 Effect of Data Loss Rates on Consensus of MAS

Data transfer rate is defined as the ratio of number of data packets transferred through

a communication channel to its maximum capacity of data packets that can be trans-

ferred over the same communication channel. Data loss rate is defined as the ratio of

the difference between data packets transmitted by the transmitter and actual data

packets received by the receiver to the total number of packets transmitted by the

transmitter. Packet loss can reduce throughput for a given sender, either uninten-

tionally due to network malfunction, or intentionally as a means to balance available

bandwidth between multiple senders when a given router or network link reaches

nears its maximum capacity. In general, throughput is the rate of production or the

rate at which something can be processed. When used in the context of communica-

tion networks, such as Ethernet or packet radio, throughput or network throughput

is the rate of successful message delivery over a communication channel.

When reliable delivery is necessary, packet loss increases the latency due to ad-

ditional time needed for retransmission. Assuming no retransmission, the packets

experiencing the worst delays might be preferentially dropped resulting in a lower

latency overall at the price of a data loss. During a typical network congestion, not

all the packets in a stream are dropped. This means that the undropped packets will

arrive with low latency compared to the retransmitted packets, which arrive with a

high latency. Not only do the retransmitted packets have to travel part of the way

twice, but the sender will not realize the packet has been dropped until it either fails

41
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1

2 3

Figure 4.1: Directed graph topology of three agents

to receive an acknowledgement of receipt in the expected order, or fails to receive ac-

knowledgement for a long enough time that it assumes the packet has been dropped

as opposed to merely delayed.

The amount of packet loss that is acceptable depends on the type of data being

sent. For example, for Voice over IP traffic, missing one or two packets every now and

then will not affect the quality of the conversation. Losses between 5% and 10% of

the total packet stream will affect the quality significantly. On the other hand, when

transmitting a text document or web page, a single dropped packet could result in

losing part of the file, which is why a reliable delivery protocol would be used for this

purpose (i.e. to retransmit dropped packets).

In this section, the maximum permissible value of data loss rate is to be determined

for the considered multi-agent system. The agents are considered to be at a distance

of 5 meters from each other and the maximum permissible consensus time is limited

to 40 seconds, considering the average distance that will be traveled based on their

average speeds. Different examples based on different data loss rates are established

by substituting the value of data loss rate r from 0 % to gradually increasing to 100

%. In between, the consensus time of all agents is observed and based on its nature,

the conclusions are made.

4.1.1 Topology Consideration for Three Agents Case

The considered topology of the networked MAS is modeled by a directed graph as

shown in Figure 4.1. Agent 1 is considered as a leader agent which is only capable

of sending signals to the rest of the agents and agent 2 and agent 3 are the follower

agents. Follower agents can receive signals from the leader agent but cannot transmit

back to the leader agent. They can transmit and receive signals to each other. This
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Figure 4.2: Consensus of position state of all three agents at 0% data loss rate

topology is strongly connected and can sustain any event failure during the operation.

The communication weight ωij = 1 is considered for all the communication channels

at all the communication events. Based on Fig. 4.1, the adjacency matrix Aa and

the Laplacian Matrix L are as follows:

Aa =









0 0 0

1 0 1

1 1 0









and L =









0 0 0

−1 2 −1

−1 −1 2









The eigenvalues of L are 0, 1 and 3 which satisfies the condition that zero is a

simple eigenvalue of Laplacian matrix L. Hence this guarantees consensus as per

algebraic graph theory.

4.1.2 Simulations Results for Different Data Loss Rates

• Example 1: Data Loss Rate, r = 0 % i.e. no data loss rate (ideal condition).

When data loss rate is kept at zero, T̄2 terms in the LMI get eliminated. This

is the ideal condition and in real time it won’t exists as there will always be some

packet loss. Since this control gain is only a sufficient condition of LMI, it might not
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Figure 4.3: Consensus of position error state of all three agents at 0% data loss rate

be the optimal gain. However this value of control gain k = [-0.3062 -0.9907] does

guarantee the consensus of the system when the packet data loss rate is no more than

0%. x1 and x2 are the position and velocity states of the agent respectively. Both the

information states of the follower agents 2 and 3 converge to the information states

of the leader agent 1.

Fig. 4.2 and 4.4 are one dimensional, meaning all agents are located in one straight

line. As it can be seen from Fig. 4.2 and 4.4, the consensus time is around 19 seconds.

The consensus time will always be less in this case as their is not a single packet loss.

All the information carrying packet data are received in time and the system works

in highly stable environment. This can be observed by its linear reduction and steep

slope in position error as shown in Fig. 4.3. From Fig. 4.4, it can be observed that

the agent 1 starts from its initial position from 0 m/s to 0.9 m/s. Agents 2 and 3

move in the opposite direction to agent 1 with 2.698 m/s and 4.047 m/s, but after

that they start to increase their velocity in the direction of the leader agent 1.

The MSE mean square error is another parameter through which the consensus
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Figure 4.4: Consensus of velocity state of all three agents at 0% data loss rate

nature of the MAS can be observed. It determines the stability nature of the trajec-

tory of agents to achieve the consensus. As seen in Fig. 4.5, the nature of the mean

square error is quite simple as as same as that of position error. The mean square

error (MSE) is defined as:

MSE =
√

(x1i − x11)2 + ((x2i − x21)Ts)2 (4.1)

where xi1 and x2i are the current position and speed of an agent i, the i being

1,2,3,...,n. There needs to be a finite value to decide the offset distance between all

the agents. In this case, the offset distance between each agents is assumed as 0.02

m. In practice, it needs to be more, but since this is theoretical setup, the least

reasonable reading is considered.

For all other examples in this subsection, the conditions are maintained same ex-

cept for the change of data loss rate. The data loss rate is further increased gradually

in different examples.

• Example 2: Data Loss Rate, r = 10 %

In second example, the data loss rate r is set to 10%, which means that for every
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100 data packets transmitted, there is a leakage or loss of 10 data packets and only

90 data packets reach the final destination. The value of control gain achieved by

substituting r = 10% or 0.1 in the LMI is k = [-0.1689 -0.7931].

Fig. 4.6 shows that the consensus time required for all agents is more as compared

to the Example 1. The obvious reason for slow consensus is primarily the data loss

rate. The loss of 10% packet rate results in slowing down the same system by 8

seconds and hence it takes 27 seconds to achieve consensus.

Fig. 4.7 clearly shows that the maximum velocity that each agent achieved in this

example is less than as in the previous example, which led to slow consensus of the

agents in this example. The nature of mean square error in this example is more or

less same than the previous example as the difference in consensus time is very less

and is not affected significantly. The mean square error will show up significant or

random change in conditions when there is instability or at high data loss rates.

The maximum consensus time which can be considered as a reasonable value of

achieving consensus is limited to 40 seconds. The value is decided based on the various

factors like space constraints and various other constraints related to actual robots.

The threshold value is fixed to 40 seconds for all the cases and examples beyond which

even if there is consensus achieved, it is still not a feasible value for consensus.

• Example 3: Data Loss Rate, r = 20 %

The data loss rate is set to 20% i.e. r = 0.2 in the LMI. It is certain that the

consensus time will increase as there is increase in data loss rate. Fig. 4.8 shows that

the consensus time has increased compared to other examples. The consensus time

for data loss rate at 20% is 36 seconds, which is near to being twice the consensus time

for ideal case. The data loss rate of 20% has increased the consensus time by twice

the amount and also reduced the consensus efficiency by half. Still the consensus

time value is less than the threshold value of 40 seconds. Hence this example can be

considered as a valid consensus case and data loss rate of 20% is acceptable for the

considered MAS. So it becomes necessary to check the maximum acceptable data loss

rate that the considered MAS can sustain as the consensus time in this example has

reached near the threshold permissible value of consensus time. In the next example,

the data loss rate is increased further to check whether it can make consensus time

within permissible limit of 40 seconds.
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• Example 4: Data Loss Rate, r = 30 %

The data loss rate is increased further to 30 %, that means now value of r = 0.3.

In communication networks, it is observed that 30% data loss rate is the maximum

permissible value beyond which most of networked control systems (NCSs) are likely

to expose to a temporary or permanent outage depending on applications. This can

affect the system stability as well fail the operation in some cases. In this case, as it can

be seen in Fig. 4.9, all agents are undergoing stable consensus at around 102 seconds.

The difference between the consensus time in this example and permissible consensus

time is very large. It is more than 2.5 times the permissible limit of consensus time.

This explains that at r = 30%, the system is stable and achieving consensus very

slowly. Such a case in our considered application is equal to being redundant and

hence it can be concluded from these observations that the maximum permissible

value of data loss rate is between the range of 20% to 30%. The objective of this

exercise is not to find this maximum permissible value of data loss rate but a certain

lower bound value of data loss rate that can satisfy all the conditions of the consensus.

Since there are more communication constraints to be added up in upcoming sections

like constant time delays and packet data loss, the maximum permissible data loss

rate that can guarantee a safe and stable working of the system is adjusted to 20%.

So it is now a need to check the system stability and working under the influence of

data loss rate as well as time delays in further sections.

As far as the effect of a data loss rate is concerned, the data loss rate is increased

further just to observe the system behavior despite knowing that it is not going to

be a stable consensus condition. So, only two cases are going to be studied for data

loss rate of 80% and 98% as in Examples 5 and 6 respectively. The reason for not

considering 100% data rate is very obvious as that means all the communication

packets for that event are dropped and the system needs to be dependent either on

another communication channel if its connected to another agent or reconsider the

previous event reading.

• Example 5: Data Loss Rate, r = 80 %

Increasing the data loss rate to a gradual value like 40% or 50% will give a con-

sensus value and give same observations like the previous example 4. So, the data

loss rate is increased to 80% where chances of instability are more and the nature of
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Figure 4.9: Consensus of position state of all three agents at 30% data loss rate

Figure 4.10: Consensus of position state of all three agents at 80% data loss rate
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Figure 4.11: Consensus of position state of all three agents at 98% data loss rate

consensus trajectory is going to be random and sinusoidal with many fluctuations.

It can viewed in Fig. 4.10, that the consensus time has exceeded the permissible

limit of 40 seconds by way higher value of 300 seconds i.e. 5 minutes which is a very

sluggish working in consensus operation. To understand more about the unstable

nature, it is necessary to have a look into Figure 4.12, which shows so many perturb-

tions in a single consensus operation. This means that the system agents are not in

accord with the states of each other and at times are behaving in random manner.

• Example 6: Data Loss Rate, r = 98 %

The data loss rate is increased further to 98%, which will be the worst case scenario

for a networked control system to operate. This is an impractical case. But still this

example is considered to verify the control design and to fulfill the observation that

as the data loss rate increases, the system efficiency decreases and reaches to a point

of failure or follow some random behavior.

As r is substituted as 0.98 in LMI, Fig. 4.11 shows that the system is converging

very slow. Comparing it to the real time conditions, the agents are not moving at all

for a long time. This is a clear case of system failure as the agents are not able to
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Figure 4.12: Mean square error between leader and follower agents at 98% data loss
rate

achieve consensus over a long time span of 1200 seconds i.e. 20 minutes. By looking

at Fig. 4.12, it is quite evident that the system is unstable and has no means of

achieving consensus.

Table 4.1 and Fig. 4.13 give a proper summary of important parameters which

are to be studied in the effect of data loss rate. It also states that as the data loss

rate increases, the consensus time increases. Data loss rate up to 20% is endurable

for the system. After that the consensus is seem to be achieved but with non-feasible

consensus timings up to 30% to 40%, finally leading to randomness or non-consensus

after 50% data loss rate.

4.2 Effect of Time Delay

Time delays are integral part of the practical network control systems and can never

be neglected while simulating any results. In this section, the simulation results

of consensus of MAS are shown considering the effect of time delays on consensus

of MAS. As per discussion in Sections 3.3.2 and 3.4, it is necessary to classify the
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Figure 4.13: Relation between data loss and consensus time

Table 4.1: Summary of consensus at all data loss rates.

Example Data Loss Rate (r) in % Consensus Time (seconds) Control Gain (k)

1 0 19 [-0.3062 -0.9907]
2 10 27 [-0.1689 -0.7931]
3 20 36 [-0.1036 -0.6603]
4 30 102 [-0.0157 -0.2924]
5 80 300+ [-0.0019 -0.0057]
6 98 1200 or ∞ [-0.00084 -0.00078]

time-delays into two cases:

• Case A: Constant or fixed delay, where τ is fixed and known.

• Case B: Time-varying delay, where τk is an arbitrary value. It switches values

between bounded minimum delay τm and maximum delay τM .

Time-delays can remain constant or vary depending upon the communication

network of control systems. However, in either case, the maximum value of time

delay is known. There needs to be the maximum permissible value of time delay that

should be allowed in the system beyond which if there is any data packet transmission,

then it should be considered as data loss. The maximum permissible time delay in

this system is 0.1 seconds or 100 milliseconds. If a packet takes more than 0.1 seconds

to transmit from one agent to another agent, then it is considered as a packet loss

in this case. Hence in Case A, the maximum value of time delay is consider as 0.1
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Figure 4.14: Consensus of position state of all agents at 10% data loss rate and τ =
0.001 seconds

seconds. Also the data loss rate of 10% is considered along with time delays to make

sure that there are packet losses as well as time delays in the system. The topology

is the same as that shown in the Fig. 4.1 for both cases of A and B.

4.2.1 Case A: Simulation Results for Constant Time Delay

In this subsection, simulation results for closed loop controlled MAS is studied for

10% data loss rate and time delay is kept fixed for a operation. Different values of

fixed time delay have been considered for consensus operation of the MAS through

these different examples.

• Example 1: Data Loss Rate, r = 10 % and Time delay τ = 0.001 seconds or 1

millisecond.

At 10% data loss rate, the time for three agents to achieve consensus is 27 seconds

without any time delays. However the presence of time delays in the system are going

to affect the same system adversely. This means that the time taken for the same

MAS will increase to achieve consensus between them. It is necessary to keep the
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consensus time within the permissible limit of 40 seconds. It took 36 seconds for all

agents to reach a consensus when there was no time delay and 20% data loss rate,

which is very near to permissible value of 40 seconds. That is the another reason for

considering data loss rate of 10% as it there is still a gap of 13 seconds to achieve

a consensus. The value of τ is substituted as 0.001 seconds in LMI, which gives the

following value of control gain k = [-0.1319 -0.7816].

Fig. 4.14 shows that the constant time delay of 0.001 seconds has affected the

overall consensus time. The consensus time is shifted by nearly six seconds. The

new consensus time after considering the time delay of 0.001 seconds is 33 seconds.

Time delay of 0.001 second is of very small order, but cannot be neglected in case

of network communication systems. However, it is necessary to check the system

stability at higher values of time delays which may affect the system stability or at

least slow down the consensus ability of the MAS.

The maximum time delay that we are considering for our system to sustain is 0.1

seconds. So it is better to divide this time range in five intervals of 1 ms or 0.001

seconds, 5 ms or 0.005 seconds, 10 ms or 0.01 seconds and 100 ms or 0.1 seconds.

These four equal intervals form the four examples out of which Example 1 is already

shown. As the time delay increases, it is necessary to check the nature of consensus

time, whether it will increase or decrease and the magnitude of that change.

• Example 2: Data Loss Rate, r = 10 % and Time delay τ = 0.005 seconds or 5

milliseconds.

Increasing the time delay by five times may affect the system stability. The value

of τ is substituted as 0.005 seconds in the LMI to get the value of control gain. Figure

4.15 shows that the consensus time has increased for the same system by 1.5 seconds,

which is not a much difference considering delay increase by five times from previous

example. This is showing that the system is recuperating well for low values of time

delays despite they being order of five times. It is necessary to check whether the

same system can cope up with higher values of delays. Let us check whether the

derived LMI for the system works for twice the time delay considered in this example

i.e. when τ = 0.01 second or 10 milliseconds in further example.

• Example 3: Data Loss Rate, r = 10 % and Time delay τ = 0.01 seconds or 10

milliseconds.
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Figure 4.15: Consensus of position state of all agents at 10% data loss rate and τ =
0.005 seconds

Increasing the value of time delay to 0.01 second will definitely lower down the

system performance by increase in consensus time. The control gain value achieved

is k = [-0.1007 -0.6102]. From Fig. 4.16, the consensus time taken by all three

agents is near to 37 seconds which is like 2.5 seconds more than previous case. Even

though the time delay was doubled in this example as compared to previous example,

the considered MAS is able to achieve consensus within the permissible value of 40

seconds. At the same time, the difference between the consensus time in Example

1 and Example 3 is very less i.e. about 4 seconds which is very much considerable.

It depends further on MAS and the LMIs that we have derived, whether they can

sustain more higher time delays. Also it is necessary to check whether they are able

to achieve consensus before the permissible limit of 40 seconds.

• Example 4: Data Loss Rate, r = 10 % and Time delay τ = 0.1 seconds or 100

milliseconds.

Increasing the time delay by 10 times has resulted into an increase of consensus

time which has shifted about 4 seconds from the previous example. Also by comparing
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Figure 4.16: Consensus of position state of all agents at 10% data loss rate and τ =
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it with Example 1, the overall consensus time has increased by 8 seconds. Overall,

the system consensus efficiency has decreased by a total of 25% from Example 1 to

Example 4. The consensus time taken by all agents when there is 10% data loss rate

and 0.1 second fixed time delay is 41 seconds which surpasses the permissible limit of

consensus time. However, as discussed earlier, this is not an optimal type of control,

so there will always be a corridor of development of control gain which will certainly

reduce the consensus time. Also the difference between the achieved consensus time

and permissible consensus time limit is very less of 1 second. So this case can still

be considered successful and the there are no uncertainties or abnormalities in the

system that suggest that system will not be stable.

After looking at all examples, it has been confirmed that the introduction of time

delays does affect the consensus capability of the MAS considering packet data loss

of 10% at the same time. Comparing the MAS of Example 4 in Section 4.2.1 with the

Example 1 in Section 4.1.2, the difference in the consensus time has been significant

and the consensus time is doubled. However, this will be the worst possible case

that the considered MAS may need to sustain for its successful operation under the

assumed conditions. The designed MAS may achieve consensus in a stable manner

even after an increase in the values of constraints like data loss rate and time delays,

however the time required for the consensus will be very high and unacceptable for

the desired operation. In the design, there is always a parameter called a ‘safety

factor’which need to be followed. In our designed MAS system along with it’s con-

troller, the example 4 of Section 4.2.1 is the safety factor. Beyond these values of

constraints, there is no guarantee of successful operation if we consider 40 seconds as

our permissible limit of consensus time. So for any run time conditions, the data loss

rate should not exceed 10% and 100 milliseconds of time delay.

Table 4.2: Summary of consensus at fixed time delay and 10% data loss rate.

Example Time Delay (milliseconds) Consensus Time (seconds) Control Gain (k)

1 1 33 [-0.1319 -0.7816]
2 5 34.5 [-0.1015 -0.6210]
3 10 37 [-0.1007 -0.6102]
4 100 41 [-0.1527 -0.9982]

Graph in Figure 4.18 shows that the slope of the consensus time increases at
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Figure 4.18: Relation between fixed time delay and consensus time at 10% data loss
rate

lower time delays whereas decreases at higher time delays, which means the system

capability to reduce the consensus time is more for higher values of time delays as

compared to lower values of time delays.

4.2.2 Case B: Simulation Results for Time-Varying Delay

In this subsection, simulation results for closed loop controlled MAS is studied for

10% data loss rate and time delay is bounded and is varying between the lower and

upper bounds for consensus operation. Different values of upper and lower bounds of

time-varying delays have been considered for consensus operation of the MAS through

these different examples. At 10% data loss rate, the consensus time was 27 seconds.

Introducing the fixed time delay into the system increased the overall consensus time

of the system to range from 33 seconds to 41 seconds for different examples. In Case B,

the upper most bound and the lower most bound that the system will be subjected to

is 0.1 second or 100 ms and 0.001 second or 1 ms respectively. However, the examples

would be based on the different range between these upper and lower bound limits.

Three examples will be considered for case B, in which the first example is between

1 millisecond to 10 milliseconds, the second example is between 10 milliseconds to

100 milliseconds, the third example is increase in range from 1 millisecond to 100
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Figure 4.19: Consensus of position state of all agents at 10% data loss rate and τm
= 0.001 second and τM = 0.01 second

millisecond. The range in first two examples is of same order of 10, but the lower and

upper bounds are different. The range in third example is very high of order 100. It

is necessary to check that the designed MAS and its controller is able to cope up with

dynamic varying time delays and the amount by which it has affected the consensus

ability of the system.

• Example 1: Data Loss Rate, r = 10 % and Time-varying delay range is 0.001

second or 1 millisecond to 0.01 second to 10 milliseconds

In this example, the lower bound of the time delay is 1 millisecond and the upper

bound of the time delay is 10 milliseconds as shown in Figure 4.20. The order of the

range is 10. This means that the value of τm is substituted as 0.001 and the value of

τM is substituted as 0.01 in LMI to get the value of control gain.

Figure 4.19 shows that the consensus time taken for all agents at 10% data loss

rate and time varying range between 1 millisecond and 10 milliseconds is around 34

seconds. The time- varying delay is same at any instant between follower agents and

leader agent. In Example 2, the range order is kept same but is operated at higher

values of time delays.

• Example 2: Data Loss Rate, r = 10 % and Time-varying delay range is 0.01

second or 10 millisecond to 0.1 second to 100 milliseconds.

In this example, the lower bound of the time delay is 10 millisecond and the upper
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Figure 4.20: Time-varying Delay between τm = 0.001 second and τM = 0.01 second

bound of the time delay is 100 milliseconds. The order of the range is kept same as

previous example. This means that the value of τm is substituted as 0.01 and the

value of τM is substituted as 0.1 in LMI to get the value of control gain.

Figure 4.21 shows that all agents reach consensus at 36 seconds which is late by

meager two seconds as in previous example. This shows that the higher bound time

delay limits with same order do not deviate the consensus time very badly. It is now

necessary to check the effect on consensus time by increasing the order of the time

delays. The maximum order that can be tried is of 100 between 1 millisecond and 100

milliseconds. So, in example 3, the range order is increased to 100, than in previous

examples.

• Example 3: Data Loss Rate, r = 10 % and Time-varying delay range is 0.001

second or 1 millisecond to 0.1 second to 100 milliseconds.

In this example, the lower bound of the time delay is 1 millisecond and the upper

bound of the time delay is 100 milliseconds. The order of the range is kept same as

previous example. This means that the value of τm is substituted as 0.001 and the

value of τM is substituted as 0.1 in LMI to get the value of control gain.

From Figure 4.22, the consensus time taken by all agents is 46 seconds, which is ten

seconds more than in the previous example. Increasing the order or range between

the time delay has affected the consensus performance significantly. However the

consensus nature is quite stable as in previous examples which means that there is
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Figure 4.21: Consensus of position state of all agents at 10% data loss rate and τm
= 0.01 second and τM = 0.1 second

Figure 4.22: Consensus of position state of all agents at 10% data loss rate and τm
= 0.001 second and τM = 0.1 second
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scope of improvement in consensus timing by tuning the controller to achieved value

of control gain. This result has made to conclude that at higher order delays, it is

must to consider a certain value or extra range above the permissible consensus limit.

So, in Case B, the permissible limit of consensus time is increased by ten seconds in

order to ensure safe operation.

Table 4.3: Summary of consensus at time-varying delay and 10% data loss rate.

Example Time Delay Range (milliseconds) Consensus Time (seconds)

1 1-10 34
2 10-100 36
3 1-100 46

Table 4.3 gives a summary of these three examples considered, which simply states

that the consensus time is not affected much at higher operating values of time delays

as compared to lower operating value of time delays as long as the order of range is

kept same or reduced. However, the system consensus performance is affected severely

if the order of time-delay range is increased. Till now, in all the examples, the range

of time-varying delays was less than sampling time i.e. τM − τm ≤ Ts. The sampling

time as discussed in Section 3.3.1 is kept fixed at 0.1 seconds. A time delay of 0.1

seconds is quite high in application of MAS. Still, to verify the consensus of MAS for

τM − τm ≥ Ts, an extra example is studied for τM − τm ≥ 0.1 seconds at same other

conditions.

• Example 4: Data Loss Rate, r = 10 % and Time-varying delay range is 0.001

second or 1 millisecond to 0.5 f to 500 milliseconds i.e. τM − τm ≥ 0.5 seconds.

In this example, the lower bound of time delay is kept again at 1 millisecond

and the upper bound of time delay is increased to 500 milliseconds or 0.5 seconds.

From Fig. 4.23, it is quite evident that the increase in upper bound of time delay

by five times has seriously affected the consensus time. The consensus time has

increased from 46 seconds in Example 3 to 103 seconds in Example 4, which means

there is increase of 57 seconds to reach consensus. This concludes that the system is

capable to achieve consensus for time delay of 500 milliseconds but affects the system

performance badly by increasing the total consensus time. The value of consensus

time achieved in this example is much more than the permissible limit of 50 seconds.
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Figure 4.23: Consensus of position state of all agents at 10% data loss rate and τm
= 0.001 seconds and τM = 0.5 seconds

It is not feasible to consider the consensus time achieved in this example. Hence,

for the designed control system, the permissible value of maximum time delay is 0.1

seconds or 100 milliseconds or equal to sampling time Ts, beyond which the value of

time delay will be considered as a packet loss.

4.3 Effect of Increasing the Number of Agents

The system dynamics and the controller proposed for the same is valid for n number

of the agents. It is necessary to check the simulation results on higher number of

agents and compare them with the results discussed with three agents case in Section

4.1 and 4.2. In this section, only two cases are considered, one without time delay

and other with constant time delay. Results with time-varying delay are not shown

because it is already evident from the Section 4.2.2 that the consensus time increases

in the case of time-varying delays. But it is still not evident about the effect on

consensus time by increasing the number of agents. There is a mystery about the

trade off between the communication time and error processing time between the

agents, which can be solved by studying the consensus results based on increasing

the number of agents. Increasing the number of agents will definitely increase the

communication time between them. However, if the new increased agents topology is

strongly connected, there is a chance that the leader agent is more informative and
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Figure 4.24: Directed graph topology of five agents

may help in decreasing the error sooner than in earlier cases discussed. In any ways,

it is necessary to consider a strongly connected topology for this case. A topology of

five agents is decided to be considered to study the effect on consensus time.

4.3.1 Topology Consideration for Five Agents Case

The considered topology of the networked MAS is modeled by a directed graph as

shown in Figure 4.24. Agent 1 is considered as a leader agent which is only capable of

sending signals to the rest of the agents and agents 2, 3, 4 and 5 are follower agents.

Follower agents can receive signals from the leader agent but cannot transmit back to

the leader agent. They can transmit and receive signals to each other. This topology

is strongly connected and can sustain any event failure during the operation. The

communication weight ωij = 1 is considered for all the communication channels at all

the communication events. It is also assumed that the system is free of time delays.

Based on Figure 4.24, the adjacency matrix Aa and the Laplacian Matrix L are as

follows:

Aa =


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The eigenvalues of L are 0, 1, 2, 3 and 4 which satisfies the condition that zero is

a simple eigenvalue of Laplacian matrix L. Hence this guarantees consensus as per

algebraic graph theory.
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Figure 4.25: Consensus of position state of all agents at 10% data loss rate and no
time delay

4.3.2 Simulations Results for Five Agents Case Without Time Delay

In this subsection, the consensus of five agent case is considered for 10% data loss

rate and without any time delay. So in this case, r is substituted as 0.1 and value

of time delay τ is substituted as zero in the LMI. The values of all variables in LMI

are substituted directly in MATLAB R© LMI Toolbox program which solves the entire

LMI to get the suitable value of control gain k = [-0.1728 -0.8103]. In Fig. 4.25,

the consensus time taken for all five agents is 30 seconds, which is three seconds

more as in case of three agents in same conditions. Increasing two agents would

had impacted a significant increase in the communication time and processing time

between the agents. But with better and strongly connected topology, the average

error processing time must have reduced that impact and lowered down the total

consensus time to a significant amount. The increase in three seconds is very less as

compared to the impact that would had felt in case the topology was not strongly

connected. In previous sections, the threshold or permissible value of consensus time

was limited to 40 seconds. But as it is pre-judged in this Section, that there will be
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Figure 4.26: Consensus of velocity state of all agents at 10% data loss rate and no
time delay

a increase in consensus time, the threshold value of consensus time is shifted to 50

seconds from 40 seconds.

Such iterations keep controllers busy and take away some time for consesus pro-

cessing of the same.

From Fig 4.26, it can be observed that the maximum velocity that an agent

achieves is increased by twice the amount as it was in example 2 of Section 4.1.2. The

fifth agent in this case reaches velocity of 7.7 m/s to catch up with all agents whereas

third agent in section 4.1.2 reaches a maximum of 2.8 m/s to achieve consensus.

In this case, the third agent reaches upto 3.85 m/s to achieve consensus. So the

maximum velocity value has increased in this case to achieve consensus to nearby

timings. This suggests that there are many iterations that are taking place while

reducing errors which consume the consensus time.
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Figure 4.27: Consensus of position state of all agents at 10% data loss rate and
constant time delay of 1 millisecond

4.3.3 Simulations Results for Five Agents Case With Constant Time

Delay

In previous subsection, the value of time delay τ was substituted as zero in LMI.

However in this subsection, there is consideration of constant time delay of 1 millisec-

ond or 0.001 second. So the comparisons of this subsection are to be drawn with the

example 1 of section 4.2.1. Rest all conditions are same like in previous subsection

4.3.2.

From Fig. 4.27, it is observed that the all agents achieve consensus at 35 seconds at

constant time delay of 1 millisecond. Conditions in this case are similar to conditions

in example 1 of section 4.2.1 except for the number of agents. Increasing the number

of agents increased the consensus time by meager 2 seconds. Considering a increase in

number of agents by two should have increased the consensus time by a considerable

amount. However, the topology in five agent case as shown in Fig. 4.24 is strongly

connected as compared to topology in three agent case as shown in Fig. 4.1. This has

reduced the consensus time increment to 2 seconds. Table 4.4 shows the comparison
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Figure 4.28: Comparison between the three agent case and five agent case for no
delay and constant delay case

between the three agent case and five agent case for no delay and constant time delay

case.

Table 4.4: Comparison of summary between three agent case and five agent case for
no delay and constant delay case

Consensus Time for Consensus Time for
Example Three Agent Case Five agent Case

(seconds) (seconds)

Without Delay 27 30
Constant Time Delay (1 millisecond) 33 35

Fig. 4.28 summarizes the comparison between the consensus time increment for

three agents and five agents topology for no time delay and constant time delay case.

The consensus time increases with the increase in number of agents as well as increase

in time delay. The nature of this increase for three and five agents is quite parallel

as it can be seen in Fig. 4.28, which concludes that there is some trade off between

the communication time and error processing time in case the topology is strongly

connected to keep the consensus within the limits.
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4.4 Summary

In this Chapter 4, the necessary observations of the controller behavior on the system

to tackle constraints like time delays and packet data losses are studied. In Section

4.1.2, only data loss rates are considered in the system assuming that there are no

delays. It was clearly observed from all the examples and Table 4.1 of Section 4.1.2,

that as the data loss rate increases, the consensus time increases. The rate of consen-

sus is fast at the start, then it goes on decreasing till a point, where there is no valid

or feasible consensus.

The next condition taken in case was further divided in two conditions, one with

constant time delay and at fixed data loss rates and another with time-varying delay

at fixed data loss rates. It was clearly observed from the four examples and Table 4.2

of Section 4.2.1, that at fixed data loss rate of 10%, the consensus time increases for

constant time delay case if we increase the time delay till it’s sampling period. Once

it passes the sampling period, the consensus is achieved, but the consensus timing is

not a feasible solution. So it is better to keep the time delay value less than or equal

to sampling time. For time-varying case, the range between the upper bound and

lower bound of the time delays is important. For a fixed range at lower bounds, the

consensus time is less as compared to the same fixed range at higher bounds. If the

range between the upper and lower bound is less, the consensus time taken is less. If

the range is high between the upper and lower limits, the consensus time increases.

This is observed from Table 4.3 and three examples considered in Section 4.2.2.

The last condition considered in this Chapter 4 is effect of number of agents to the

entire system. In Section 4.3, total two subsections were considered. First condition

was the increase in number of agents for a fixed data loss rate and no time delay and

the second condition umber of agents to five for constant time delay and fixed data

loss rates. Certainly there was increase in the consensus time for increase in number

of agents but for time delay there was not difference observed as the topology becomes

stronger by increasing the number of agents.
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Figure 5.2: Connection between Pioneer Robot and local computer

Figure 5.3: ARIA infrastructure

needs a very smooth surface to operate and basketball court is well polished for it’s

successful operation.

The translation between the mobile robots and local computer is made possible

with the help of software development kit called ARIA. Adept Mobile Robots’ ARIA

is a C++ library for all Mobile Robots platform. ARIA can dynamically control

the mobile robot’s velocity, heading, relative heading and other motion parameters

either through simple low level commands or through its high level actions infrastruc-

ture. ARIA also receives back the position estimates, sonar readings and all other

current operating data sent by robot platform. ARIA also includes a library called

ArNetworking which implements an extensible infrastructure for easy remote net-

work operations for robots, user interfaces, and other networked services. Through a

server executing on the robot’s PC, ArNetworking-enabled clients connect from an-

other computer on the network to get data and issue commands. So TCP is the best

among two for this experimental environment.
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A summary of the ARIA development structure is shown in Fig. 5.3. ARIA

packages come with an open source code environment and pre-defined C++ libraries.

These C++ libraries are accessible for Java and Python platforms along with basic

C++ platforms like Microsoft Visual Studio C++. In the performed experiment,

the C++ development is done by using Microsoft Visual Studio C++ 2010 Express

Edition. The coding is generated in open source (.cpp) file and the solution is build by

using Visual Basic Studio C++ 2010 Express Edition compiler to get an executable

(.exe) file which finally runs the mobile robot. ArSocket command has two options of

choosing internet protocol suite, one is called the User Datagram Protocol (UDP) and

other one is called as Transmission Control Protocol (TCP). TCP is the most reliable

internet transmission protocol, and can retransmit any dropped packets and buffer

out-of-order packets to be able to redeliver the original the original data stream in the

proper order to the receiver. At the other end, UDP emphasizes reduced latency over

reliability. Therefore it does not guarantee successful transmission. The reason for

choosing TCP is that the data loss rate can be preset by a function called rand()%100,

which randomly generates integer from 0 to 100 integrates. For example, if the data

loss rate is required to 20%, then it is just simply set rand()%100 ≥ 80. It means

80% data can be successfully transmitted.

5.2 Pioneer Robot Modeling

As discussed in Chapter 4, all figures are one dimensional and they only show the

system convergence. In this section, an actual Pioneer mobile robot is modeled as

an agent. Therefore each agent represents a robot and then the proposed controller

is implemented to study the performance in a real hardware model. In [3], the hand

position of the the robot as the point h, [hx, hy]
T that lies at a distance L (L 6= 0)

along the line that is normal to the wheel axis and intersects the wheel axis at the

center point x, [xx, xy]
T , as shown in the Fig.5.4. The orientation angle (θ) is zero

at 0 deg and counter-clockwise rotation is defined as positive.

ẋx = vcos(θ)

ẋy = vsin(θ) (5.1)
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Figure 5.4: Hand position for P3 mobile robot

and

θ̇ = w (5.2)

where [xx, xy] is the inertial position of the Pioneer 3 mobile robot, θ is the orientation

of the robot and [v, w] denote the linear and angular speeds of the robot. Moreover

the hand position can be represented as Eq.(5.3)

hx = xx + Lcos(θ) (5.3)

hy = xy + Lsin(θ)

Now, differentiate Eq.(5.3) with respect to the time and substitute Eq.(5.1) into

it, then

ḣx = vcos(θ)− Lsin(θ)w (5.4)

ḣy = vsin(θ) + Lcos(θ)w

Eq.(5.4) can be rewritten in matrix form as,

[

ḣx

ḣy

]

=

[

cosθ −Lsinθ

sinθ Lcosθ

][

v

w

]

, (5.5)
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Therefore, based on Eq.(5.4) and Eq.(5.5) the hand position of robot can be

controlled by manipulating linear and angular speed (v, w). Let

[

v

w

]

=

[

cosθ sinθ

−1
L
sinθ 1

L
cosθ

][

ux

uy

]

, (5.6)

then

[

ḣx

ḣy

]

=

[

ux

uy

]

, (5.7)

and

ḣ = u. (5.8)

The ith agent in the double integrator system is described as

[

ẋi1

ẋi2

]

=

[

xi2

ui

]

. (5.9)

Comparing Eq.(5.9) with the Eq.(5.7) which is a single integrator system, it is

necessary to convert double integrator system Eq.(5.9) to a single integrator system

in order to model Pioneer 3 robots. Then

ẋ = u, (5.10)

[

ẋx

ẋy

]

=

[

ux

uy

]

. (5.11)

The standard system equation is

ẋ = Ax+Bu, (5.12)
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and

[

ẋx

ẋy

]

= A

[

xx

xy

]

+B

[

ux

uy

]

, (5.13)

where A ∈ R
2×2 and B ∈ R

2×2. In order to become Eq.(5.10) from Eq.(5.12), then

let

A =

[

0 0

0 0

]

;B =

[

1 0

0 1

]

. (5.14)

With the sampling time set as 0.1 second, the A and B in discrete time domain

become

Ad =

[

1 0

0 0

]

;Bd =

[

0.1 0

0 0.1

]

. (5.15)

This procedure has enabled to convert the double integrator system dynamics to

the single integrator dynamics. Double integrator is preferred over single integrator

dynamics as it can be applied to more complex systems. The advantage of this

protocol is that different consensus dynamics including linear, periodic and positive

exponential dynamics can be realized by choosing different gains. Sufficient conditions

for solving the consensus problem with the considered general protocol are obtained,

namely, all the gains realizing the consensus can be described.

5.3 Experimental Results

The primary objective of this experiment is to make the physical consensus of two

Pioneer P3-DX robots which will individually act as a follower agent to a virtual

leader agent. These agents are basically the laptops placed on each Pioneer robot.

The leader agent is connected to these follower agents or laptops on the P3-DX

robots via a common Dalhousie WPA-2 wireless network. Each agent is represented

by its unique internet protocol address individually assigned when connected to this

network. The virtual leader as a computer should be present only to assign the

trajectory co-ordinates to the follower agents. So to ease the experimental setup,
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Figure 5.5: Network connectivity flow between the agents

only the follower agents along with the real robots should be present for consensus.

The robots used in this experiment are Pioneer P3-DX robots owned by the Advanced

Control and Mechatronics laboratory of the department of mechanical engineering of

Dalhousie university. Fig. 5.5 shows the information flow between the connected

agents to the network.

The main problem of using the multiple robots is that the co-ordinate system along

which the robot traverse should be a global co-ordinate system. Global co-ordinate

system means a system in which the position co-ordinates of each of the robots should

be in a common co-ordinate system. The position co-ordinates of all robots or agents

should be relative to each other and based on their values should be able to detect

the exact position of the robot. However, this is not the case in real time working

of the robots. All the Pioneer P3-DX robots have their individual local co-ordinate

system. The default starting position co-ordinate of any robot is (0,0) which means

the x-axis co-ordinate and y-axis co-ordinate of starting point is zero for each robot.

So, in order to study the consensus behavior of the robot, all the robots involved

in multi-robot cooperation should be present in a common virtual global co-ordinate

system. The virtual global co-ordinate system is the local co-ordinate system of the

virtual leader agent and the global co-ordinates of the follower agents are translated by

calculating the relative position of the robots with respect to the virtual leader agent.

The original dynamics is designed for a double integrator dynamics system, while the
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controller is to adjust the acceleration. Instead of controlling the acceleration, it is

theoretically feasible to control wheel speeds for Pioneer 3 robots. The values of the

linear velocity v and the angular velocity w can be obtained by the Eq.(5.5) and then

converted to be the right wheel speed vr and the left wheel speed vl in Eq.(5.15)

vr = v +
wl

2
(5.16)

vl = v −
wl

2

where, vr and vl are the right and left wheel speeds and l is the axial dis-

tance between two wheels. Therefore, the controller input is easily commanded by

robot.setVel2(vl, vr).

The TCP/IP connection is the most advanced internet transmission protocol. So

it is difficult to experience time delays of order that we are considering as well as

packet data loss, unless there is packet traffic at some end. So it is necessary to

artificially introduce the phenomena of packet loss as well as time delay. For packet

loss, a preset function called rand()%100, which randomly generates integer 0 to 100

integrates. In this experimental case, the preset function is set as rand()%100 ≥ 90.

It means that there is 10% data loss at all time but still 90% data is still successfully

transmitted. In real time, all the packets are received by the hardware, but 10% of

the information packets are dropped which means their values are neglected. The

reason for considering 10% data loss rate is because the experimental result can

be compared with the simulation result for 10% data loss case which showed low

consensus time for data loss rate condition. For communication time-delay, there is

no specific arrangement to track the time delay between the two packets received.

But there is chance of implying transmission delay at the start of the robot equal

to its sampling period which is 0.5 seconds in this experimental case. Because, after

every 0.5 seconds, a data is stored for further analysis. So this experimental case is

equivalent to a constant time-delay case with 10% packet data loss..

The local co-ordinate system of the virtual leader agent is the global co-ordinate

system of the follower agents. The position local co-ordinates of the follower agents

are translated as per the local co-ordinate system of virtual leader, thus making it

work as a global co-ordinate system. As seen in the Fig. 5.6, the initial starting
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Figure 5.6: X-Y position co-ordinate of virtual leader and two follower system hav-
ing consensus at 10% data loss rate and initial constant time delay τ = 0.5 seconds
in 31 seconds.

position of the virtual leader agent is (0,3000)mm. Pioneer P3-DX follower robot 1

is at a distance of 1500 mm from virtual leader robot along Y-axis at (0,4500)mm.

Another Pioneer P3-DX follower robot 2 is at a distance of 3000 mm from virtual

leader robot along Y-axis at (0,6000)mm. the X co-ordinate of all the robots at the

initial starting point is zero. As seen in Fig. 5.5, the robots are kept along the same

horizontal line. The trajectory of the robots is quite linear, hence this arrangement

was preferred. Most of the change in trajectory will be observed along Y co-ordinate.

The minimum safe stopping distance kept at every sampling time is 500 mm from

each robots. If at any sampling time, if the minimum distance between two robots

is going to be less than 500 mm, the robot is made to stop at that specific sampled

time. In Fig 5.6, the difference between the Y co-ordinate is 566.73 mm. At the next

sampling period, the distance between the two robots must be less than 500 mm,

because of which it stopped at that moment. The running time of experiment took

around 31 seconds.

The experimental case studied in this section can be compared with the Example
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4 of the Section 4.2.1. Obviously in this case, there is only initial presence of trans-

mission delay of 0.5 second and the distance between each agents is quite less at 1500

mm as compared to 5000 mm in Example 4. Naturally, as the distance between the

agents increases, the consensus time will increase.

Simulation results based on conditions similar to experimental are performed. The

consensus time taken for the simulation is near to the actual experimental case. As

seen in Fig. 5.8, it takes 32 seconds to achieve consensus, just one second more as

compared to experimental result. The initial starting points in the simulations are

same as that in experimental setup. The initial position of agents 1,2 and 3 are

3000mm, 4500 mm and 6000mm respectively. The maximum velocity by agent 3 is

0.73 m/s which is less than the actual maximum velocity of Pioneer robot as can be

seen in Fig. 5.8. This also proves that the controller keeps a restraint on velocity as

compared to actual conditions and does not overload the input. The initial constant

time delay of 0.5 seconds is consider for simulation case as shown in Fig. 5.7, because

the time delay in experimental case is kept as 0.5 seconds. The sampling time in this

simulation is also kept to 0.5 second as in experimental case.

However, the simulation results are basically ideal results and don’t take into con-

sideration the non predicted factors, which are experienced in the experimental setups.

The rate of convergence in simulation results is very high compared to experimental
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results. Also in hardware experiment, the speeds of the robots are limited, whereas

in simulation results, there is no such limit. However, in simulation results, there is

always a trade off between the rate of convergence and processing time, which tries

to limit the speed of agent at a sensible value. Moreover the position of the robots

in hardware are calculated on odometry, any uncertainties and error could increase

the inaccuracy of the experimental results. The robot needs time to receive, process

and send data in the experiment rather than the simulation, which is not considered.

However based on the experimental results with consideration of the limitation of

the hardware, the hardware experiment certainly verified the simulation results in

Chapter 4.



Chapter 6

Conclusions and Future Works

This chapter summarizes the the findings and the results of this thesis work and also

at the same time suggests the developments that can be pursued in the future.

6.1 Conclusions

In this thesis, a novel consensus algorithm or protocol for the MAS in the event

of communication link failure or time-delays over the network was developed and

tested. For a certain limitations and assumptions, it is possible to develop a wireless

network of agents that can work together in an objective which requires a leader to

make decisions and other follower agents to work as a team. In may reserach works,

there is either a incorporation of time-delays or packet loss in the system dynamics.

There are different reasons for this consideration. Some researchers in the field of

wireless networked control systems give importance to either of two. Because for few

applications, packet losses are not a experienced phenomena and chances of packet

losses to affect the system are quite bleak. In some applications packet losses are ma-

jor cause of system failures. Depending on the requirements of applications of their

fields, researchers chose to consider either of two communication constraints. Very

few researchers have recently started to consider both the communication constraints

together and to develop a relationship between them, so that when it is applied, the

system is more dynamic to changes and problems faced during different processing

times. The multi-agent systems that was considered for research work included the

likes of nonholonomic mobile robots, quadcopters or drones etc. These system have

chances of facing both the problems of time delays and packet loss. If there is packet

loss in such kind of the system, chances are that of fatal errors. So in this research

work, both the communication constraints were considered. The control techniques

to tackle the problems of packet losses as well as the time delays are different for

82
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different system dynamics. A Lyapunov based methodologies were assumed to con-

trol these problems. The control gain achieved by this control technique have helped

solve the LMIs which contain terms related to these communication constraints. The

control gain developed by this methodology have helped achieve the leader follow-

ing consensus of the multi-agent system with both the communication constraints

smoothly within quite a impressive limited amount of time. The simulation results

were studied in Chapter 4 based on the effect of data loss rate, constant time delay

and time-varying delay. It was observed that beyond 30% data loss rate, the con-

sensus was possible till 55% but it was not feasible value. So, the permissible value

of data loss rate was tightened at 30%. The consensus time increases with increase

in data loss rate. For constant time delays, the time delays are permissible till the

sampling period of the system. Increasing the value of time delay beyond a certain

value over sampling period achieves consensus but again the observed consensus time

is not feasible. Over increasing the value of constant time delay by a large amount

destroys the consensus nature of the system and look absurd which cannot be read or

explained. With time-varying delays, the concern is with two factors, one is the upper

bound of the time-varying delay as well as the range of the time-varying delay. Time-

varying delay range extending the sampling period of the system makes it unfeasible

and the nature of consensus is destroyed thus making the system fail randomly. In-

creasing the number of agents increases the consensus time of the system, as well the

observations regarding constant time delay and time-varying delay related to increase

in number of agents show the same effects and affect the consensus time by a little

margin. An experimental setup was also conducted based on available hardware, in

which a virtual leader was created and Pioneer P3-DX robots are used as two real

followers. The same control gain is used for their dynamics and the observed results

match with the simulation results thus validating the experimental results.

6.2 Future Works

There are some interesting work extensions that are very challenging and can be

applied to same system dynamics.

• The topology considered in this this thesis is static and is fixed at all communi-

cation events and the entire process. One can definitely try to apply the same
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theoretical concepts and design a controller for switching topology or dynamic

topology case.

• The assumption considered for the controller design was that the time delay

should not exceed the sampling time and if it exceeds the sampling period, then

it should be considered as a packet data loss. For systems having low sampling

time but higher values of experienced time delays, this assumption might not

work. For this, there needs to be special importance given to time delays and

can be classified further as per controller requirements.

• Try to apply the same concept on higher integrator dynamics.
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Appendix A

Operations Manual

A.1 MATLAB and Simulink Files

• Run the LMIRevisedConstantDelay.m file to run the constant delay LMIs. The

value of state matrices depend on the system considered.

• Run the LMIMULTIAGENTNEWBASED.m file to run time-varying delay LMIs.

• Running these m files will yield the value of control gain. This value of control

gain needs to be substituted in ConsensusModel.slx file.

• Next step is to run MASConsensus.m file which will run this simulink model

file(.slx) to get the graphs of different states.

A.2 Microsoft Visual Studio C++ 2010 files

• There are two network options to connect the Pioneer robots. One is the Dal-

housie WPA/2 wireless network which is present all over Dalhousie campus and

another is the ACM LAb network for connecting all laptops in ACM lab. Only

condition is that all the robots should be connected to same wireless network.

One needs to keep track of IP address and enter the same in programming (.cpp)

file.

• Each laptop needs to be connected to their Pioneer robot with the help of

RS-232 Serial Cable. The USB end is connected to the laptop.

• Connect the DELL Inspiron to one of the Pioneer P3-DX robot and open the

file. Open service project file stating name ’Robot1outof2’. There will be all

files like (.cpp) file, (.exe) file having same name. Just double click on (.exe)

file. This will connect the Robot 1 to wireless network.
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• Connect the Toshiba Satellite to one of the Pioneer P3-DX robot and open the

file. Open service project file stating name ’Robot2outof2’. There will be all

files like (.cpp) file, (.exe) file having same name. Just double click on (.exe)

file. This will connect the Robot 2 to wireless network and the experiment will

start.
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