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Abstract 

Energy modeling is used by researchers to estimate aggregate energy consumption and 

time-step load (power) of buildings. However, researchers often rely on a limited number 

of occupant load profiles that are repeated for multiple houses to represent communities, 

resulting in unrealistic load peaks and valleys that do not permit comprehensive demand 

evaluation. In this thesis, new methods have been developed to generate annual 

domestic hot water (DHW) and electricity load profiles from measured datasets to 

address these aggregation issues. 

Two measured electricity and two measured DHW datasets were obtained through 

electrical utility metering programs, academic and industrial research endeavors, and 

municipal energy savings programs. From these datasets, 82 new annual 1-minute DHW 

profiles and 62 new annual 15-minute ALP profiles have been generated. 

To demonstrate the effect of using a variation of profiles, individual household and 

community scale building simulations were conducted and both technical and economic 

applications were demonstrated.  
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Chapter 1 Introduction 

In Canada, energy consumed by households’ accounts for 17% of secondary energy use 

and 14% of greenhouse gas (GHG) emissions (NRCan 2014a). Energy use and GHG 

emissions reduction have become an international focus. The overall demand of the 

Canadian residential sector is projected to increase into the future as new homes are 

constructed; however, the energy-use per square metre of floor space is expected to 

decline due to improvements in building construction practices (NEB 2013). For both new 

construction and retrofits, most builders will focus on implementing high performance 

building technologies.  

Time-step load of these technologies can concern a range of stakeholders: (1) 

homeowners and builders will seek to understand the performance and cost savings of 

their new technologies while operating within time-of-day pricing schemes; (2) 

conventional energy providers (e.g. electricity, natural gas) seek to accurately forecast 

short-term loads so that they can procure sufficient capacity, as well as understand 

localized distributed generation so that they can install adequate distribution equipment 

(e.g. polemounted transformers) for net-zero energy communities. Examples of such 

communities and community scale projects already exist in Canada (e.g. www.dlsc.ca and 

www.halifax.ca/solarcity/) and the Canadian federal government is currently funding a 

project to demonstrate the feasibility of building Net-Zero Energy Housing (NZEH) 

Communities in Ontario, Quebec, Nova Scotia, and Alberta with an aim to create a 

platform for the broader adoption of NZEH across Canada (NRCan 2015). 

Building simulation tools such as EnergyPlus and ESP-r can be used to provide accurate 

time-step load estimates of electricity and thermal energy for buildings and can be used 

to predict the behavior of high performance technologies. An important input to building 

simulation software are occupant driven load profiles, which represent loads that are 

greatly influenced by occupant behaviour rather than the natural and built environmental 

conditions. These loads can be divided into two primary categories: domestic hot water 

http://www.dlsc.ca/
http://www.halifax.ca/solarcity/
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(DHW) consumption and appliance, lighting and plug loads (ALP). Inter-household 

variation of these loads is significant and is demonstrated by Figure 1.1 which shows the 

average hourly ALP load for 5 households that will be introduced in Section 3.3.1 of this 

thesis. 

 
 

Figure 1.1  Examples of daily variations in household electricity load 

Each house in Figure 1.1 demonstrates unique characteristics. Notably, they do not all 

‘peak’ in load simultaneously. On average, one household may be characterized as a 

‘night-time’ user of electricity or DHW (e.g. House 4), or ‘diurnal’ user (e.g. House 1 and 

House 2). In evaluating the performance of various building technologies using building 

simulation, it is important to consider households with a variety of load characteristics, 

to insure that new technologies will perform as expected.  
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The use of a variety of profiles is also necessary when using simulation to evaluate such 

technologies in community scale applications. Previous research focused on community-

scale energy analysis has relied on a limited number of profiles, repeated for each house 

of a community (Swan et al. 2011). While this may provide accurate aggregate energy 

results at a daily, monthly or annual scale, unrealistic load peaks (local maximums) and 

valleys (local minimums) occur. This is demonstrated by Figure 1.2 with occupant load 

profiles that will be introduced in Section 3.3.1 of this thesis. 

 

Figure 1.2  Effect of scaling a single profile vs. using several unique profiles 

In Figure 1.2 there are three profiles spanning two days at 15-minute time-steps: (1) the 

lower-most profile (dotted light blue line) is for a single house, (2) the very erratic profile 

(solid orange line) is simply the single-house profile multiplied by a factor of 29, (3) the 

third profile (dotted blue line) is the sum of 29 unique house profiles. It is obvious that 

the ‘repeated’ profile results in extreme peaks and valleys and very fast changes in load 
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magnitude, dropping by up to 2000% (~60 kW) in one time-step). In contrast, the sum of 

29 different profiles results in a less variable curve, which is representative of the true 

time-step load curve of a community.  

1.1 Background 

With respect to DHW, studies which examine residential consumption characteristics in 

Canada and abroad date back several decades. Perlman and Mills (1985) collected DHW 

consumption data in the 1980’s and developed a 24-hour profile at 1-hour time-steps. 

These values are still the basis for the Service Water Heating: Hot Water Requirements 

and Storage Equipment Sizing section of the 2011 ASHRAE Handbook: HVAC Applications 

(ASHRAE 2011). More recent Canadian studies have emerged as well but have either 

relied on DHW heating energy consumption to estimate DHW consumption (Swan et al. 

2011; Evarts and Swan 2013) or on measured DHW consumption data with measurement 

periods of less than 1-year (Thomas et al. 2011; Edwards and Beausoleil-Morrison 2015). 

In Chapter 2 of this thesis, these studies will provide a basis to compare with new DHW 

consumption data.  

Several studies have also analyzed residential electricity consumption measurements 

over the past decade. There are two studies in the Canadian context that are of major 

significance to this research as they have generated annual ALP load profiles at high 

temporal resolution (1-minute time-steps). To accomplish this, Saldanha and Beausoleil-

Morrison (2012) and Johnson and Beausoleil-Morrison (2016) deployed research grade 

data acquisition systems in 23 houses in Ottawa, Ontario. These datasets have been 

obtained and utilized in Chapter 3, Chapter 4, and Chapter 5 of this thesis. 

As an alternative to the collection of measured data, researchers have generated 

synthetic electricity load profiles. A recent example in the Canadian context are the 

profiles generated for the IEA Energy Conservation in Buildings and Community Systems 

Programme’s Annex 42 (Knight et al. 2007). One of the objectives included the 

characterisation of ALP and DHW usage patterns and so nine 5-minute time-step ALP 
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profiles were generated by Armstrong et al. (2009) and the 1-minute time-step DHW 

consumption profiles which had been previously generated by Jordan and Vajen (2001a) 

were calibrated to Canadian data. These profiles are used in Chapter 4 of this research to 

compare and validate the need for new measured occupant load data. 

1.2 Objective and Outline 

The primary objective of this research is to obtain recently measured occupant load data 

from which to generate new occupant load profiles for building simulation tools. These 

profiles will help address aggregation issues in residential community simulation 

scenarios and provide a range of high temporal resolution occupant behavior 

characteristics for technology simulations. While it is recognized that occupant behavior 

will change over time, there will be an onset of new measured data through electrical 

utility ‘smart metering’ programs, academic and industrial research endeavors, and 

municipal energy savings programs. This research establishes methodology for analyzing 

new datasets as they become available and making the appropriate data corrections to 

produce continuous annual profiles.  

Four separate datasets have been obtained for our research project:  

 two multi-year datasets including 1-minute time-step DHW consumption 

measurements from 41 and 119 houses 

 one three-year dataset including 15-minute time-step whole-house electricity load 

measurements from 161 homes 

 one annual dataset including 1-minute time-step sub-metered electricity load 

measurements from 23 homes 

This research project analyzes these datasets, forms new annual occupant driven load 

profiles and demonstrates their impact in building simulations. The thesis is divided into 

four main sections: 
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Chapter 2 analyzes the DHW consumption datasets and constructs 82 annual 1-

minute time-step DHW profiles. This section also presents a new method to calibrate 

and interpret water flow rate measurements made on 1-minute time-steps.   

Chapter 3 contrasts two electricity load datasets to develop a new method of 

identifying ALP profiles. A total of 62 new 15-minute time-step annual ALP profiles 

are identified from 29 houses. 

Chapter 4 implements the new profiles using the building simulation tool EnergyPlus 

and compares results with those generated using existing occupant load profiles.  

Two applications are demonstrated: a technical evaluation of tankless water heaters 

and an economic evaluation of an alternative electricity tariff. 

Chapter 5 demonstrates the application of the new occupant load profiles at a 

community scale. A technical application is demonstrated: the sizing of pole mounted 

electricity transformers for various community configurations. 
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Chapter 2 Measured Domestic Hot Water 
Consumption Profiles of Canadian Homes 

 

This Chapter was previously published as:  

George, D., Pearre, N. S., & Swan, L. G. (2015). High resolution measured domestic hot 
water consumption of Canadian homes. Energy and Buildings, 109, 304-315. doi: 
http://dx.doi.org/10.1016/j.enbuild.2015.09.067 

It has been included in this thesis under the terms of the license agreement with Elsevier. 
The copyright license agreement is provided in Appendix F.  

Dane George is the principal researcher and author of the article. He conducted the 
research as part of his MASc. Thus, while he received supervision and guidance from his 
supervisor Dr. Swan and advisor Dr. Pearre, he carried out the work, wrote the published 
article, communicated with the editor of the journal, and carried out the necessary 
revisions before publication. The article has been edited and expanded upon to include 
the analysis of an additional dataset and to be integrated within this thesis. 

2.1 Introduction 

Energy consumed for DHW heating is significant. In 2011 the heating of DHW accounted 

for 20% of residential end-use energy consumption in Canada (NRCan 2014a). Numerous 

technologies have, and are, being developed to reduce DHW consumption and make the 

conversion of energy more efficient. The creation of energy policy to support 

implementation of such technologies relies on accurate modeling and simulation of the 

performance of such systems. It is critical that such simulation captures the high temporal 

resolution effects of water draws to insure high fidelity representation of such systems. 

At present, technologies such as residential solar DHW systems, solar combi-systems, 

combined heat and power systems, ‘net-zero’ energy building design and ‘smart-grid’ 

applications can be modeled using two classes of simulator packages. Simplified software 

such as RETScreen and HOT2000 accepts an average daily DHW consumption estimate 

(CETC 2016b; CETC 2016a), while more advanced simulation software such as EnergyPlus, 

TRNSYS and ESP-r require occupant load profiles at more frequent time-steps to generate 

http://dx.doi.org/10.1016/j.enbuild.2015.09.067
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high resolution energy end-use estimates. Temporal consumption patterns and the 

magnitude of consumption can impact not only the accuracy of these models but also the 

performance of DHW systems (Jordan and Vajen 2001b; Edwards and Beausoleil-

Morrison 2015). Therefore, it is important to use realistic profiles, preferably from 

measured data, for simulations. 

Measuring DHW consumption at high temporal resolution requires a flow meter and a 

data acquisition system which are relatively expensive to purchase and install. 

Historically, measured data at time-steps under 5 minutes have been unavailable and 

researchers have instead relied upon repeated daily profiles (e.g. Fung and Gill 2011), 

synthetic profiles (e.g. Swan et al. 2013), or have utilized profiles based on limited or 

historic datasets (e.g. Edwards and Beausoleil-Morrison 2015).  

Two new measured DHW consumption datasets are presented in this section: 

 “Solar City” in Halifax, Nova Scotia is a municipal government pilot program which 

provides financing, sourcing and installation of solar DHW systems to homeowners 

in Halifax Regional Municipality (NRCan 2014b). At homeowners’ discretion, the 

installation includes a data monitoring system which measures flow rate and fluid 

temperatures at 1-minute time-steps. By the end of July 2015, over one-hundred 

systems that include data monitoring had been installed throughout the 

Municipality. In addition, each monitoring system is linked to occupancy information 

and other relevant meta-data gathered through a survey of participants.  

 The Natural Gas Technologies Centre (NGTC) is a non-profit organization promoting 

technological development and advancing the efficient use of natural gas and 

renewable energy. For research purposes, the NGTC monitored the energy use of 

natural gas water heaters in homes across Canada from 2012 to 2014. Standardized 

energy monitoring systems were deployed which measured flow rates and fluid 
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temperatures at 1-minute time-steps. Furthermore, relevant home information was 

collected, such as location and occupancy. 

The Solar City program and NGTC’s research initiative have made available measured data 

of DHW flow measurements for complete-year and multi-year periods at high temporal 

resolution (1-minute time-steps). 

This Chapter achieves the following: (1) it introduces two new datasets, (2) it describes 

the data acquisition systems and participant characteristics, (3) it examines DHW 

consumption characteristics such as mean daily DHW consumption, occupancy influence, 

day/time-of-use influences, and (4) it generates and describes new DHW profiles for 

incorporation with building performance simulator packages.  

 

2.2 Background and Literature Review 

Several studies of DHW consumption have been in conducted in Canada and the USA. 

Beginning in 1981, Perlman and Mills (1985) collected DHW flow measurements at 15-

minute time-steps in 59 homes throughout Ontario and examined household DHW 

consumption based on a variety of occupancy variables. Daily, monthly, and seasonal 

(winter/summer) average usage patterns were analyzed and representative daily profiles 

were generated for the entire population, and for what was deemed to be a ‘typical’ 

family. In order to aid with DHW system sizing, ‘probabilistic’ profiles were developed to 

represent DHW requirements of 95% of the sample population.    

Becker and Stogshill (1990) compiled a database from nine studies totalling more than 30 

million DHW consumption measurements at 15-minute time-steps for both apartment 

buildings and homes throughout Canada and the USA. The Perlman and Mills (1985) study 

is included in this database and although many of the same factors of influence were 

investigated, it was possible to expand on these factors due to the breadth of data. It was 
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found that location also had an influence on DHW consumption, which is likely due to 

differences in outdoor temperatures. 

Over the past three decades, several confounding influences including technology, 

behavior, and demographics may also have changed DHW consumption. For example, 

faucet and showerhead flow rate standards have decreased consumption. Secondly, ‘low-

flow’ faucets are being installed through many energy and water conservation programs 

(e.g. Efficiency Nova Scotia 2015). Thirdly, the frequency of ownership of household 

appliances such as dishwashers and clothes washing machines has increased. 

Additionally, attitudes may have changed; a large proportion of Perlman and Mills (1985) 

survey participants ‘considered automatic dishwashing as only an occasional alternative 

to manual dishwashing’. Finally, Canadian demographics have also changed; the average 

number of persons per private household in Canada has decreased from 2.8 in 1986 to 

2.5 in 2011 (Statistics Canada 2013a).  

Thomas et al. (2011) conducted a study of 74 households in Ontario aimed to evaluate 

the daily consumption profiles used in current water heater performance test standards. 

Measurements were taken for two to three weeks at each house at very high-resolution 

time-steps of 2 to 4 seconds. They found that average daily DHW consumption was lower 

than current standards developed from earlier studies. 

A recent study by Edwards and Beausoleil-Morrison (2015) included measured DHW 

consumption data from 73 households in Quebec at a 5-minute time-step. They selected 

twelve annual profiles to represent four aggregate consumption levels at three temporal 

demand patterns for those who consumed primarily: (i) in the mornings, (ii) in the 

evenings or (iii) evenly throughout the day. These profiles were then incorporated into 

the TRNSYS simulation program to analyze the performance of a typical solar DHW 

heating system and use of auxiliary heat. For morning users, the auxiliary heater would 

operate primarily during the day, while for evening users, the auxiliary heater would 
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function primarily overnight, a result more appealing to those with time-of-use electricity 

rates.  

Researchers have also estimated average daily hot water consumption based on energy 

consumption. Evarts and Swan (2013) estimated average daily DHW consumption based 

on a sample of homes in the Solar City program. A survey of each home gathered 

occupancy, water source, water heater type, energy use and energy costs. Average 

consumption was estimated from fuel oil consumption for occupancies of 1 to 6 people. 

Since the sample set of homes in this study were initial applicants to the Solar City 

program, it provides an excellent opportunity to compare the results of this method with 

the findings of the current study of measured data. 

Other research efforts have generated synthetic profiles, where probabilities are assigned 

to individual end uses such as dishwashing and clothes washing. Jordan and Vajen (2001a) 

used this approach to create consumption profiles at various time steps and load 

magnitude based on data gathered in Germany and Switzerland (Knight et al. 2007). 

Hendron and Burch (2007) used a similar method to generate profiles based on data 

collected by the American Water Works Association. A drawback of synthetic profiles is 

the inability to capture the true temporal variability in consumption patterns, as they rely 

on engineering judgement and expectation. 

2.3 Data Source: Halifax Regional Municipality ‘Solar City’ dataset 

 

All of the Solar City data are the result of acquisition systems being installed with solar 

DHW heating systems on homes in the Halifax Regional Municipality. To July 2015, 250 

data collection systems had been installed; however, data from 77 systems using an 

earlier version of the control software were not considered. Of the remaining systems, 

many were installed during the spring and summer of 2015. Only data from systems 

installed prior to November 2014 were considered to ensure sufficient data for each site. 

This study includes data from May 2014 to July 2015 for a total of 119 houses. The data 
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collection systems progressively came online with new system installations, with Figure 

2.1 illustrating system availability. Note that for several systems, connection failures 

occurred throughout the timeline, explaining the variable system availability beginning in 

November 2015.  

 

Figure 2.1 Number of active data acquisition systems through time 

Occupancy data was collected by a household survey during initial consultations. Of 

those, 77 homes had detailed occupancy categorized by class with results presented in 

Table 2.1. The defining ages of each class were not given. Only a total occupancy with no 

detailed categorization was recorded for 26 additional homes, thus occupancy records 

were deemed valid for a total of 103 houses. Of these houses, 45 had at least one full year 

of data collected. 
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Table 2.1 Household occupancy by age class 

Total number of homes 119 
Number of homes with no 
occupancy data 

16 

Occupants 
Number 

of Homes 

Number of 
homes with 
occupancy 
breakdown 

Average number of occupancy type per home 

Adults Seniors Teenagers Children 

1 1 1 1 0 0 0 

2 14 11 1.91 0.09 - - 

3 26 20 2.30 0.05 0.10 0.55 

4 44 34 2.56 0.03 0.50 0.91 

5 10 7 3.00 - 0.29 1.71 

6 4 3 2.67 - 0.67 2.67 

7 0 0 - - - - 

8 0 0 - - - - 

9 2 0 - - - - 

10 2 1 10.00 - - - 

Total 103 77  

Average 
occupancy 
across all 

homes 

3.83 3.65 2.51 0.04 0.30 0.81 

 

2.3.1 Data Representativeness 

There are three concerns about using the Solar City data to represent the DHW use 

patterns of a wider region.  

First, all measurements were conducted for houses with solar DHW heating systems. 

There is a risk that occupant behavior adjusts to better utilize the system (e.g. showering 

in the morning versus the evening). Alternatively, since marginal cost of DHW is lower 

than for an equivalent system without the solar component, an occupant of a solar-

equipped house might consume more DHW. Additionally, since a larger store of heated 

water is available to some occupants with the additional solar ‘pre-heated’ tank, 

occupants may tend towards prolonged draws. Perlman and Mills (1985) encountered the 
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same problem and concluded that consumers have well-established DHW use habits 

which will likely remain unchanged regardless of the water heater system type.  

Second, during the on-site survey, low-flow faucets and showerheads were installed in 

20% to 50% of the homes, depending on fixture type. These devices could significantly 

reduce DHW consumption, and the analysis of the retrofits suggested that they reduced 

flow rates by between 20% and 50% per home (Adye et al. 2014). After the installations, 

the frequency of low-flow devices within the Solar City sample may not represent the 

larger population. However, the use of low-flow devices has become more widespread 

nationwide due to government and utility sponsored energy efficiency programs, 

evidenced by the large proportion of houses in the Solar City sample that were already 

equipped with such devices (Adye et al. 2014). 

Finally, participants in the Solar City program are a self-selecting sample, and so may not 

be representative of the population as a whole. For instance, the average household 

occupancy in the study is 3.8 versus the national average of 2.5 and the Nova Scotia 

average of 2.3 (Statistics Canada 2013a). It is likely that the Solar City program attracted 

larger than average households since small households with lower DHW consumption 

may not have been interested in investing in a solar heating system. For this reason, this 

study puts emphasis on consumption levels specific to occupancy. The uncertainly 

associated with a self-selecting sample not necessarily being representative of the 

broader population remains. 

2.3.2 Data Acquisition Systems 

Data acquisition systems were supplied and installed by the original equipment 

manufacturer as part of the Solar City program. A typical system schematic is shown in 

Figure 2.2. Note that the auxiliary tank (far right) is a pre-existing component in the homes 

and that some homes may have an tankless DHW heater instead (powered by either 

electricity, natural gas, or heating oil).  
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The data acquisition system is a Web Energy Logger (WEL), which primarily measures 

digital signals via a communication protocol or pulse counts (Malone and Malone 2013). 

The WEL records data on a 1-minute interval and posts this information in real-time to a 

server. All data are recorded into monthly log files. 

  

Figure 2.2 Schematic of a typical Solar City hot water heating system with data acquisition 

The flow meters used in this study are impeller type USC-HS43TB Big Hall Flow Sensor 

(Ultisolar Group 2010). These are a consumer grade product, valid for a range of 1 to 30 

litres per minute (LPM), but are supplied without accuracy information. These sensors 

produce digital pulses when subject to flow. The WEL uses a counter to accumulate these 

pulses over a 1-minute period and then timestamps this value. 

2.3.3 Data Calibration and Processing 

The water flow measurement presented difficulties due to changing impeller response as 

a function of flow rate, measurements outside the nominal range of the flow meter, and 

the presence of sub-minute draws in 1-minute time-step data.  
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First, the conversion of the flow meter pulses per minute (PPM) to volumetric DHW 

consumption rate in litres per minute (LPM) was found to be non-constant, decreasing 

from infinite values at low PPM, to values as low as 0.0021 LPM at high flowrates. 

Laboratory tests were conducted on two flow meters sourced from the Solar City project 

to establish the relationship of litres per pulse (LPP) to PPM. Sensors were placed in series 

and water was run at a constant flow rate (1.9 to 15.0 LPM) for a period of time (90 to 

210 seconds). Then, the mass of water accumulated was measured to 1 in 100 parts with 

a laboratory scale. A best-fit calibration curve relating LPP to PPM is given as Equation 1. 

The two sensors gave consistent and repeatable results with differences within ±2% from 

the calibration curve. A conservative assumption of ±5% accuracy for values of LPP is 

suggested. To convert measured PPM from the flow meter into LPM, the calibration LPP 

is determined from PPM using Equation 1, and then is used as a conversion coefficient in 

Equation 2. 

𝐿𝑃𝑃 (
L

pulse
) =  0.002 (

L

pulse
) +

0.75 (
L

minute)

𝑃𝑃𝑀 (
pulses
minute)

 ( 1 ) 

𝐿𝑃𝑀 =  𝐿𝑃𝑃𝑃𝑃𝑀×𝑃𝑃𝑀 ( 2 ) 

 

Second, because the DHW was not necessarily flowing consistently throughout an entire 

sampled minute, the averaging effect of the sampling rate could result in the LPP 

conversion coefficient of Equation 1 over-representing the draw. As an example, briefly 

rinsing a cup at 5 LPM for 6 seconds would appear as 0.5 LPM at the timestamp, and the 

non-linearity of Equation 1 would overstate the calibration LPP. To address this, 

measurements were categorized into four types for determining the applicable LPP 

calibration coefficient. An example is shown in Figure 2.3 and the treatment of each type 

of value is explained below. The logic is outlined in the flowchart of Figure 2.4.  



 

 

 

 

 

17 

 A single value is where zero DHW flow occurred in the preceding and following 

minute. In this case, the flow is assumed to be a sub-minute draw.  Unless a 

higher flow was recorded, the LPP calibration coefficient is evaluated at the 

dataset mode1 PPM of 1532 (3.79 LPM). 

 Double values are where zero DHW flow occurs immediately before and after 

a pair of non-zero measurements. This is likely a less-than 2-minute 

continuous draw spread across two datapoints. As such, the LPP calibration 

coefficient in Equation 1 is evaluated for the largest of (i) the first value in the 

pair, (ii) the second value in the pair, or (iii) the modal value of 1532 PPM. 

 A non-edge value is where non-zero DHW flow occurred in both the preceding 

and following minutes. This likely represents legitimate continuous flow 

throughout the minute. However, at low PPM of 375 (1.5 LPM) or less, is 

assumed to be an intermittent draw, and in this case, the LPP calibration 

coefficient is evaluated at the dataset mode PPM. 

 An edge value is found at either the beginning or end of a draw of three or 

more minutes’ duration. This is likely a sub-minute draw at the same flow rate 

as the adjacent non-edge value. As such, the LPP is evaluated for the larger of 

either the edge or adjacent non-edge PPM, with a two stage evaluation to be 

consistent with non-edge value logic. Otherwise, intermittent flow is assumed 

and the LPP calibration coefficient is evaluated at the mode PPM. 

                                                           
1 An analysis was conducted to determine a mode PPM across the dataset. The 
distributions of PPM values for each house generally had two predominant peaks: a low 
value peak presumably caused by the time-step averaging effect of sub-minute draws, 
and a higher peak at 1532 (house-weighted) which is assumed to represent the most 
common faucet flow rate. 
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0 = Zero FlowNE = Non-Edge Value
E = Edge Value

D = Double Value
S = Single Value
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Figure 2.3 Example of DHW Consumption Measurement Categorization 

 

PPM(i) > 375

True

False LPP(1532)

LPP[PPM(i)]

LPP{max[PPM(i-1, i, i+1)]}

max[PPM(i-1, i, i+1)] > 1532

LPP(1532)

LPP{max[PPM(i-1,i,i+1)]}

max[PPM(i-1,i,i+1)] > 1532 

True

False LPP(1532)

LPP{max[PPM(i-1,i,i+1)]}

PPM(i) > 1532

True

False LPP(1532)

LPP[PPM(i)]

PPM(i)

Single Value True

Double Value True

Non-Edge Value True

Edge Value True

False

True

False

max[PPM(i-1,i+1)] > 375

False

True

False

False

 

Figure 2.4 Flowchart to determine the flow meter LPP calibration coefficient 
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To calibrate and verify this method, water consumption measurements were taken at 1-

second intervals in a 4-occupant household and the results were compared to 

measurements taken at 1-minute intervals. To accomplish this, a Campbell Scientific 

CR1000 datalogger was installed in conjunction with a WEL datalogger and the pulse 

counts from two flowmeters measuring DHW and cold water supply were recorded by 

the CR1000 datalogger every second and by the WEL every minute. Data was collected 

over sixteen days and over this time interval, the pulse count measurement error 

between the two sensors was within 0.03%.  

At a 1-second time-step, flow was assumed to be consistent during the entire 1-second 

duration of the measurement interval and therefore Equations 1 and 2 could be applied 

directly to obtain a flow rate for a given interval. These results were used to calibrate the 

flowchart of Figure 2.4. The flowchart logic was applied to the 1-minute time-step data 

from the WEL measurements and a range of values for the low PPM were evaluated. A 

value of 375 found to produce very close aggregate DHW consumption between the 1-

second and 1-minute time-step measurements, with a difference of 1.00% for the cold 

water supply (10106 L of water consumed over 16 nine days) and -1.24% for the DHW 

(4223 L of water consumed over 16 days). The close agreement between the results 

validates the method presented in the flowchart of Figure 2.4. It should be noted however 

that while the method produces excellent results over an aggregate period, for a 

particular minute, the difference between the 1-second and 1-minute time-step 

measurements varies more significantly. To demonstrate this, a comparison of the two 

types of measurements over a half hour time-period is shown in Figure 2.5. However, 

while the individual DHW consumption measurements may not represent reality, the 

resulting profiles well represent aggregate consumption and temporal variability. 
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Figure 2.5 Example of 1 second time-step flow measurements and 1-minute time-step 

measurements 

A third source of measurement error relates to readings outside a normal and practical 

range for household DHW water consumption. Readings greater than 30 LPM are 

uncommon (0.001% of readings) and have been excluded. Low-value readings may occur 

for a variety of reasons. Short draws lasting only seconds may be valid, such as rinsing a 

cup in a sink. However, investigation of the data showed continuous low-value draws (e.g. 

<0.05 LPM) occurring throughout the night in several houses, and sporadically in other 

houses. While in some cases this may be a leaky faucet or other fixture, it is likely signal 

noise, or may be attributed to changing water pressure. Thomas et al. (2011) noted an 

excess of single pulse DHW draws in 1-second data, and attributed them to water 

pressure changes and/or convection currents in the water pipes, triggering a pulse. This 

effect is exacerbated by the flow sensor design, which does not differentiate between 
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‘forward’ and ‘backward’ flows, but simply sends a pulse when the impeller turns. Values 

less than 0.05 LPM were excluded, which decreased average household DHW 

consumption by 4.6%, some of which may-in-fact have actually been consumed.  

2.4 Data Source: Natural Gas Technologies Center 

This DHW consumption data was collected by the Natural Gas Technologies Center 

(NGTC) between January 11, 2012 and February 18, 2014 in 41 homes across Canada. For 

37 homes, data was collected for one year or more. Meta data such as house location 

(city/province), year of construction, house floor area and occupancy were also collected.  

Of the 37 homes with one year of data, 26 are located throughout British Columbia, 5 are 

located in Regina, Saskatchewan, 3 are located in southern Ontario and 3 are located 

throughout Quebec. The homes were constructed between 1875 to 2006 with an average 

of 1971. The house floor area ranges from 92.3 m2 (1036 ft2) to 390.2 m2 (4200 ft2) with 

an average of 217.1 m2 (2337 ft2). Neither age or size of the homes show a strong 

correlation to the magnitude of DHW consumption (R2 values of 0.216 and 0.200 

respectively). 

Occupancy ranged from 1 to 7 total occupants with an average of 2.5 adults and 1.1 

children per home. Adults are classified as any person 18 years of age or older while 

children are classified as anyone under 18 years of age. 

2.4.1 Data Quality Challenges 

Prior to receiving the data from NGTC, it had been adjusted incorrectly for daylight savings 

time (DST). For the provinces where DST is not observed, the data had been adjusted to 

show a gap of one hour at the spring time change. However, this occurred only at the 

2012 time change and did not occur for the 2013 time change. For provinces where 

daylight savings is observed, there had been no adjustment.  
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The contact at NGTC explained that the data was retrieved onto laptops from an online 

portal called Hobolink (Onset Computer Corporation n.d.).  An inquiry to NGTC and to the 

HoboLink customer support center revealed no solution to the problem but it was 

suggested that when data was downloaded from the Hobolink portal, a DST adjustment 

may or may not be implemented depending on the specific time and date settings of the 

receiving computer. Since NGTC is based in Quebec, it was assumed that all computers 

were also based in Quebec. 

Another issue was also identified: because some of the data has been downloaded in a 

different province from the data acquisition system (and therefore a different time zone), 

the some of the data timestamps appeared to be offset by multiple hours. For example, 

the average morning peak of the British Columbia profiles occurred late in the morning 

(10h, on average) as compared with the Solar City dataset, which peaked between 7h and 

8h.  For the Saskatchewan, Ontario and Quebec profiles the average morning peak 

occurred at 8 am. An example of this is shown in Figure 2.6.  
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Figure 2.6 Example average hourly profile of a home in Quebec and a home in British 
Columbia 

A solution to these problems was established numerically using the following steps: 

1) Each profile was adjusted to account for DST. The pre and post adjustment profiles 

will be referred to as ‘DST unadjusted’ and ‘DST adjusted’. 

2) For each house, an average weekday hourly profile was generated for the six 

weeks preceding a time change (‘pre-time change’) and the six weeks following a 

time change (post-time change). This was done for both the DST adjusted and DST 

unadjusted profiles.  

3) The correlation coefficient between the ‘pre-time change’ and ‘post-time change’ 

average weekday hourly profiles was calculated for both the DST adjusted and DST 

unadjusted profiles and the two correlation coefficients were compared. The DST 
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adjustment was deemed necessary if the correlation coefficient increased due to 

the DST adjustment. 

4) A ‘time-zone’ adjustment was applied to each profile based on the time difference 

between the house location and Quebec. British Columbian profiles are shifted 

three hours back in time and Saskatchewan profiles are shifted one hour back in 

time. Ontario and Quebec profiles were not adjusted for time-zone error. 

The method is confirmed visually by plotting the hourly average DHW consumption 

between the 4h and 15h for six weeks preceding and following the time-change for both 

the ‘DST adjusted’ and ‘unadjusted’ datasets. An example is shown for one house in Figure 

2.7 for the time change occurring on November 4, 2012 (week 44). 
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Figure 2.7 DST Unadjusted, DST adjusted and DST/Time Zone Adjusted time-step hourly 
average DHW consumption profiles for 13 separate weeks for 1 house in British 
Columbia (time change occurs on week 44) 

There is an obvious improvement in uniformity from the ‘unadjusted’ upper plot of Figure 

2.7 to the ‘DST adjusted’ middle plot. Also, shown in Figure 2.7 is the adjustment made 

for the time zone error. The entire profile is shifted 3 hours ahead for this home which is 

located in British Columbia. A similar plot was generated for each house in the dataset to 

visually confirm the adjustments.  

 

2.5 DHW Consumption Characteristics 

The data emerging from the Solar City program and NGTC provide a rare opportunity to 

observe and quantify patterns and trends in DHW consumption. In this section, average 

DHW consumption, the effects of occupancy, time of day, day of week, and seasonal 
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effects are examined, along with a discussion of inter-household variability and distinct 

characteristic consumption patterns. The effects of these factors will be explored based 

on the Solar City data consisting of over 56 million measurements; the equivalent of about 

5,600 household-weeks of data and the NGTC data consisting of over 27 million 

measurements; the equivalent of about 2,700 household-weeks of data. 

2.5.1 Average Daily Hot Water Use  

Average daily hot water use is perhaps the most fundamental metric of DHW, and with 

or without intra-day variations is used by building simulation software, including 

RETScreen and HOT2000 (CETC 2016b; CETC 2016a). This value is also simple and thus 

accessible for comparison with other studies and can be an indicator of changes over 

time. The average daily hot water use for the Solar City and NGTC homes is shown in Table 

2.2 along with the results from other studies in reverse chronological order. The 

recommended/default values used in both RETScreen and HOT2000 software are also 

listed.  
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Table 2.2  Average daily DHW consumption and household occupancy 

Source 
Average Daily DHW 

Use (L/day) 
Average 

Occupancy 

Solar City (n = 119) 172 3.83 

NGTC (n = 41) 211 3.59 

RETScreen (CETC 2016b) 1802 3 

Hot2000 v11 (CETC 2016a)3 188 3 (Default) 

Edwards and Beausoleil-Morrison 
(2015) 

189 - 

Evarts and Swan (2013) 209 3.2 

Swan et al. (2011) 208 - 

Thomas et al. (2011) 186 3.35 

Becker and Stogsdill (1990) 238 - 

Perlman and Mills (1985)4 236 3.8 

From Table 2.2, consumption seems to have generally decreased over the past three 

decades. It is also interesting to note that most of the more recent values based on 

measured studies (Thomas et al. 2011, Edwards and Beausoleil-Morrison 2015, and Solar 

City) are lower than the more recent values determined from DHW heating energy 

consumption (Evarts and Swan 2013 and Swan et al. 2011). However, the NGTC data do 

not follow this trend and indicate higher DHW consumption than any other measured 

study. Meanwhile, the Solar City data indicate lower DHW consumption than any other 

study. The installation of low-flow faucets and showerheads during the Solar City on-site 

survey, along with other factors mentioned in Section 2.3.1, may have contributed to this 

difference. 

                                                           
2 RETScreen suggests a value of 60 L/day/person at 60 °C or 1/3 of the total water use 
shown on the water bill (CETC 2016b) The value shown in Table 2.2 reflects the estimated 
consumption for 3 occupants. 
3 HOT2000 has three faucet flow rates and the daily hot water consumption 
recommendation decreases to 177 L/day and 170 L/day for low flow and ultra low flow 
faucets respectively (CETC 2016a). 
4 This value corresponds to the average for ‘all families’ in the study, as opposed to the 
proto-typical family of 2 adults and 2 children. 
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The default DHW consumption values of both RETScreen and Hot2000 were updated in 

2016 from 225 L/day and a default occupancy level of 4 (CETC 2008, CETC 2013, CETC 

2016a, CETC 2016b). The updated software defaults align well with the DHW consumption 

estimates of these latest studies. 

Distribution of average daily consumption across the 41 NGTC homes and the 119 Solar 

City homes is shown in Figure 2.8, with the associated statistics given in Table 2.3. It 

should be noted that although the average consumption is 172 L/day across all homes of 

the Solar City dataset, the majority of houses consume less than the average, with a 

median consumption of just 159 L/day. This is also true for the NGTC dataset, but the 

mean and median are more closely aligned at 211 and 204 L/day. 
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Figure 2.8 Distribution of average daily DHW consumption for the NGTC and Solar City 

datasets 
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Table 2.3 Statistical summary of the average daily DHW consumption per household 

Statistic NGTC (L/day) Solar City (L/day) 

Edwards and 
Beausoleil-

Morrison (2015) 
(L/day) 

Mean 211 172 189 

Median 204 159 173 

Maximum 401 615 438 

Minimum 67 21 70 

5th Percentile 81 59 - 

20th Percentile 133 93 119 

80th Percentile 272 220 245 

95th Percentile 384 354 - 

 From Figure 2.8, there are some houses within the Solar City dataset which exhibit 

unexpectedly low and high DHW consumption. The Solar City house with the minimum 

daily average consumption of 21 L/day was a house of 2 occupants with data collected for 

350 days. Of these, DHW consumption was non-zero for 337 days. The thirteen zero 

consumption days were neither continuous (as on a vacation), nor preferentially on 

weekends. The Solar City house with the maximum daily average consumption of 615 

L/day has 9 occupants, with data collected for 328 days and DHW was consumed during 

every day of the measurement period. It is less likely that there will be days with zero 

DHW consumption for houses with higher occupancy levels since it is less likely that no 

occupant will be present on a particular day. For this reason, it is important to generate 

annual DHW consumption profiles separately for each occupancy level.  

2.5.2 Effects of Occupancy 

Occupancy has been shown to be a significant factor of influence on DHW use (Perlman 

and Mills 1985; Becker and Stogsdill 1990). This is shown in Figure 3 which plots the 

average daily consumption and occupancy for each house of the Solar City sample (red 

circles) and the NGTC sample (blue asterisks) as well as the average behavior across each 

dataset represented by the best fit lines. 
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Figure 2.9 Occupancy distribution and average daily DHW consumption 

From Figure 3, the two datasets both demonstrate a positive linear relationship between 

occupancy and magnitude of DHW consumption. Note that the population correlation for 

the Solar City dataset (looking at each individual house) had an R2 value of 0.311, 

reflective of the distributions within each occupancy level. For the smaller NGTC dataset 

the population correlation had a stronger correlation with an R2 value of 0.655. Though 

they do lie along the same line, the number of homes with 1 and 7 occupants (N = 1) is 

too small to add much confidence to these trends.  

For higher occupancies in the Solar City dataset, the results varied greatly. It is suspected 

that at these high occupancies, the size of the hot water tank and the demographics of 

the household would affect DHW patterns, possibly limiting hot water consumption via 
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supply constraints, though that would not fully explain the anomalously high 

consumption of the 9-occupant households. Both of these occupancy categories had very 

small sample sizes and therefore should not be considered representative.  

It is suggested that when these profiles are applied in building simulation, a DHW profile 

is selected for a building model with a corresponding occupancy. Some building 

simulators such as Hot2000 use an occupancy based trend line to estimate average daily 

DHW consumption of a home, it is recommended that the Solar City trend line be used 

on account of the larger sample size and the application of modern flow reduction devices 

in the households. 

2.5.3 Time-of-Use Variations 

Previous studies have identified that time-of-use has an impact on energy required for 

DHW heating (Edwards and Beausoleil-Morrison 2015; Spur et al. 2006). Time-of-use 

patterns can be analysed on several scales. Thus, hourly, weekly, monthly and seasonal 

variations are explored in this section.  

2.5.3.1 Hourly Variations 

An average hourly consumption profile across all homes is shown in Figure 2.10 for the 

NGTC and Solar City datasets and is presented alongside the average hourly consumption 

found by Perlman and Mills (1985).  
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Figure 2.10 Average hourly household DHW consumption 

As expected, consumption peaks in the morning, likely due to the use of showers, and 

again in the evening when occupants may generally prepare dinner and wash dishes. 

Consumption lessens during the mid-afternoon hours and reaches a minimum overnight. 

Consistent with the lower average daily consumptions, the Solar City and NGTC hourly 

values are generally lower than those published by Perlman and Mills (1985). However, 

the NGTC morning hot water consumption peaks at a value 23% higher than Solar City. It 

is also interesting to note that Solar City and NGTC morning hot water consumption peaks 

occur earlier in the day, with a morning peak between 6h and 7h as opposed to between 

7h and 9h for Perlman and Mills (1985). This likely reflects demographic shifts, such as 

more 2-worker families. Many homes do not follow the average pattern, however, and 

some examples of consumption profiles from the Solar City dataset are shown in Figure 

2.11. 
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Figure 2.11 Examples of daily variations in DHW consumption from the Solar City dataset 

Homes may be characterized by evenly weighted morning and evening consumption (top 

left), heavily weighted morning or evening consumption (top right and middle left, 

respectively), peak consumption at noon (middle right), evenly distributed daytime 

consumption (bottom left) and high overnight consumption (bottom right). These profiles 

reflect a true variability in consumption patterns throughout this sample of homes. A 

comparison analysis of consumption patterns was conducted by comparing the 

correlation coefficients of each house’s average 24-hour consumption profile with the 

average 24-hour profile. This analysis did not reveal any clusters of typical patterns such 

as have been categorized in previous studies (Perlman and Mills 1985; Edwards and 

Beausoleil-Morrison 2015), but instead suggested that there is a continuous distribution 

of average hourly DHW consumption patterns that vary from the average. To further 

investigate whether or not there are clusters of predominantly morning or evening users, 
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an analysis was conducted on all data (NGTC and Solar City) to evaluate the integrated 

morning consumption against the integrated evening consumption for each house. This 

is shown in Figure 2.12.  

 

Figure 2.12 Evening consumption minus morning consumption for three time intervals for all 

Solar City and NGTC data 

Morning and evening were each defined as intervals roughly centered around the 

morning and evening average hourly peaks (refer to Figure 2.10). Three interval lengths 

were chosen: 3, 5 and 9 hours in the morning and evening. For each house, the total 

average consumption during the morning time interval was subtracted from that of the 

corresponding evening time interval (e.g. total from 6h to 9h subtracted from 18h to 21h).  

It is clear from Figure 2.12 that for each time interval there is a distribution of 

consumption patterns ranging from predominantly morning consumers to predominantly 
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evening consumers. However, all three distributions are relatively normal and centered 

at zero; that is to say that the majority of homes consume comparable amounts of water 

in the morning and evening. As the interval is increased from 3 to 9 hours, the distribution 

becomes smoother and narrower. This suggests that over entire mornings (3h to 12h) and 

evenings (15h to 24h), DHW consumption is often equally weighted (when averaged over 

the length of the datasets). Furthermore, for any ‘characteristic’ difference between 

morning and evening consumption, this analysis shows that smaller differences are more 

common and that there is not a strong preference to morning or evening consumption 

amongst homes.  

2.5.3.2 Weekly Variations 

Due to the impact of weekdays (common workdays) and weekends (common day off 

work), there are variations in DHW consumption throughout the week. Daily average 

DHW consumption for each day of the week is presented in Figure 2.13.  
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Figure 2.13 Weekly variation in DHW consumption for the Solar City and NGTC datasets 

The Solar City and NGTC datasets follow a similar weekly pattern as shown in Figure 2.13. 

Two days stand out: Fridays exhibit the least consumption, though the temporal pattern 

of consumption on Friday is not notably different from other weekdays. Even more 

noticeable are Sundays, which is by far the most demanding hot water use day. Sunday 

consumption also differs from other days of the week temporally, likely due to the 

presence of occupants at home throughout the day.  This effect is shown in Figure 2.14, 

which shows that Sunday morning consumption for the Solar City data peaks between 9h 

and 10h, about 3 hours later than on other days of the week. The NGTC data show the 

same effect (not shown). 
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Figure 2.14 Average hourly DHW consumption on Sundays compared to Monday through 

Saturday for the Solar City data (n = 119) 

2.5.3.3  Seasonal Variations 

DHW consumption also varies seasonally.  Perlman and Mills (1985) found that winter 

consumption can be up to 45% higher than summer consumption. Becker and Stogsdill 

(1990) found that the winter average consumption was 13% higher than summer average 

consumption. Our analysis investigated consumption in all four seasons defined in Table 

2.4. Figure 2.15 shows the average daily consumption of both datasets for each season. 
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Table 2.4  Seasonal variations in DHW consumption 

Season Period 
Number of days in the 

season 

Winter Dec 22 to Mar 20 89 

Spring Mar 21 to Jun 21 93 

Summer Jun 22 to Sep 22 93 

Autumn Sep 23 to Dec 21 90 

Annual Jan 1 to Dec 31 365 

 

Figure 2.15 Seasonal variations in DHW consumption 

The seasonal trends in Figure 2.15 generally match earlier findings: higher consumption 

during the winter season than the summer season. However, the NGTC consumption 

fluctuates more drastically than Solar City consumption. For Solar City, winter 

consumption is 9.6% higher than summer consumption and 2.9% above the average of 

172 L/day, while summer is the season of lowest consumption at 5.8% below the average. 

For NGTC, winter consumption is 25.6% higher than summer consumption and 7.4% 



 

 

 

 

 

40 

above the average of 211 L/day, while summer is the season of lowest consumption at 

14.5% below the average.  

An increase in consumption during the colder seasons in the year may be a direct 

consequence of a lower ambient outdoor air temperature and thus a lower water 

temperature from the main water supply. Between December 22nd, 2014 and March 8th, 

2015 the mean ambient outdoor air temperature was -5 °C for the region, while the mean 

summer temperature was 18 °C (Government of Canada 2015). With lower water 

temperatures from the main supply, occupants may be likely to use the hot water, or 

more hot water, for some tasks which would generally only need cold water (e.g. hand 

washing, dish rinsing).   

2.5.4 Data Acquisition Systems 

Data acquisition systems were installed by the NGTC as per a standard protocol. A typical 

system schematic is shown in Figure 2.16. 
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Figure 2.16 Schematic of a typical NGTC hot water heating system with data acquisition 
(adapted from a figure provided courtesy of NGTC) 

The flow meters used were Omega FTB8007B-PT, valid for a range of 0.83 to 83.28 LPM 

(0.22 to 22 USGPM) with an accuracy of 1.5%. The meters operate on a multi-jet principle 

and utilizes a reed switch sensor (OMEGA Engineering Inc. 2015).  Flow meters were 

installed on the cold water side (inlet) of the water heater. The data loggers employed 

were Hobo U30 data loggers which use a counter to accumulate pulses over a 1-minute 

period and apply a timestamp to this value (Onset Computer Corporation 2014). 

There was concern about ‘out-of-range’ DHW flow, since the flow meter range has a 

minimum of 0.83 LPM. However, investigation into the 1-second time-step data described 

in Section 2.3.3 suggests that this is likely not an issue because over a 10-day period in 

one household, there were no 1-second DHW consumption measurements below 0.87 

LPM.   
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2.6 Construction of Annual DHW Consumption Profiles 

Hourly, weekly and seasonal variations in consumption, the features described in the 

previous subsections, are all embodied within annual profiles. It is important to construct 

a selection of annual profiles which represent a variety of temporal patterns of 

consumption. A statistical analysis found that there were no clusters of typical average 

hourly draw patterns (e.g. primarily morning or primarily evening consumers) but that 

instead there was an even distribution of varying consumption patterns throughout the 

day. Hence, it was determined that inter-household variability is most easily represented 

by supplying annual profiles for a selection of households. A method was developed to 

construct profiles at various occupancy levels (2 to 7 occupants): 

 Homes which had both one year of measured data and associated occupancy 

information were selected (45 of 119 homes for the Solar City dataset and 37 

of 41 homes for the NGTC dataset). 

 For each of the selected houses, a complete year of 1-minute time-step data 

was constructed by cropping and data filling. Missing sections were populated 

with data from exactly one year later. If missing points still existed, then they 

were filled with data from one year earlier, one week later, one week earlier, 

two weeks later or two weeks earlier. For the Solar City and NGTC datasets, 

approximately 3% and 2% of datapoints were populated using this method, 

respectively.  

 Each profile is matched with relevant meta-data such as the occupancy level 

and daily average DHW consumption. As well, if available, the DHW heating 

system type (e.g. conventional electric tank), the age of the home and the size 

of the home are given.  

A total of 82 annual profiles were constructed using this method. Their characteristics are 

compared to those of the entire Solar City and NGTC datasets in the following subsection. 
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2.6.1 Annual DHW Profile Characteristics 

To ensure the appropriate application of the new annual DHW consumption profiles, 

building simulators will want to understand their characteristics and origin. This section 

details the household ‘meta-data’ such as house location, occupancy, size of home and 

age of construction and compares their temporal characteristics with those of the entire 

Solar City and NGTC datasets.  

2.6.1.1 House Locations 

The annual DHW profiles come from five Canadian provinces spanning west to east. From 

Figure 2.17, 33% of houses are located in British Columbia, 6% are in Saskatchewan, 6% 

are in Ontario, 3% are in Quebec and 52% are in Nova Scotia.  

 

Figure 2.17 Annual DHW profile house locations by province 
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2.6.1.2  Household Meta-data 

Figure 2.18 and Table 2.5 show the distributions and averages of occupancy, size of home 

and year of construction associated with the annual DHW profiles. 

 

Figure 2.18 Distributions of occupancy, year of construction and size of homes for the Solar 
City and NGTC annual DHW profile datasets 

Table 2.5 Meta-data summary of the Solar City and NGTC annual DHW profile datasets 

Characteristic Solar City NGTC Combined 

Average Occupancy 3.9 (n = 45) 3.6 (n = 37) 3.8 (n = 82) 

Average Year of Construction 1978 (n = 41) 1974 (n = 37) 1976 (n = 78) 

Average Size of Home (m2) 213.6(n = 28) 214.2(n = 36) 214.0 (n = 64) 

As was shown in Section 2.5.2, DHW consumption is largely influenced by occupancy and 

from Figure 2.18 and Table 2.5, it should be noted that the average occupancy of 3.8 of is 

higher than the national average of 2.5 for private dwellings or 3.3 for single-detached 
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houses (Statistics Canada 2013c). Age and size of home were not seen to be a major 

influence of DHW consumption, but it should be noted that both annual DHW profile 

datasets are from a wide range of house sizes and ages and are distributed around similar 

averages. The average house size of 214 m2 (2303 ft2) is much larger than the Canadian 

average of 133 m2 (1431 ft2) across all house types5 or 158 m2 (1701 ft2) for single 

detached homes (NRCan 2014a). 

2.6.1.3 Temporal Characteristics of Annual DHW Profiles 

The temporal characteristics of the annual DHW profiles compared to the greater Solar 

City and NGTC datasets are also important. These are shown for the Solar City and NGTC 

datasets in Figure 2.19. Daily consumption statistics are shown in Table 2.6. 

                                                           
5 House types are single detached, single attached, apartments, and mobile homes. 
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Figure 2.19 Average hourly household DHW consumption of annual DHW profiles 

Table 2.6 Statistical summary of the average daily DHW consumption per household for 
annual DHW profiles 

Statistic 
Solar City (L/day)  

(n = 45) 
NGTC (L/day)  

(n = 37) 
Combined (L/day) 

(n = 82) 

Mean 166 211 186 

Median 157 197 186 

Maximum 340 397 397 

Minimum 23 68 23 

5th Percentile 59 82 66 

20th Percentile 100 132 105 

80th Percentile 222 262 241 

95th Percentile 327 389 360 

From Figure 2.19 and Table 2.6, the NGTC annual dataset does not vary greatly from the 

complete NGTC dataset; the hourly profiles align closely and the daily average 

consumption is unchanged. The Solar City annual DHW profiles have an average 
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consumption that is 3.5% less than the complete Solar City dataset and Figure 2.19 shows 

that this difference largely occurs in during mid-day and evening.  

2.7 Conclusions 

The measured data from NGTC and the Solar City project present a unique opportunity to 

investigate trends in DHW consumption because of their 1-minute time-step, multi-year 

duration, and 164 houses complete with occupancy information. The raw data revealed 

difficulties in interpreting flow rate measurements due to intermittent water draws. A 

new method for addressing these is described with the intention of applying it to other 

future measured datasets as they become available. 

The analysis of this data revealed consumption characteristics such as varied average daily 

DHW consumption per household (Solar City = 172 L/day, NGTC = 211 L/day) and strong 

positive correlation with occupancy. Diurnal consumption patterns indicate an early 

morning start (6 to 7h) and continuously distributed morning and evening water usage, 

with a variety of consumption patterns illustrated. Sunday DHW consumption was 

significantly higher than that on other days of the week, and draws lagged weekday use 

by several hours.  

From the Solar City and NTGC datasets, 82 new annual DHW consumption profiles at a 1-

minute time-step have been generated, representing various time-of-use patterns and 

occupancy levels. The average daily DHW consumption across the annual DHW profiles is 

186 L/day, which aligns well with other current studies of DHW use. They can be applied 

by building simulators to evaluate the performance of specific technologies across a 

variety of DHW user characteristics. Their use is demonstrated later in this thesis: Chapter 

4 applies the profiles to evaluate tankless water heaters and Chapter 5 applies the profiles 

in a community scale simulation to evaluate community electricity demand.  
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Chapter 3 Appliance, Lighting and Plug Load Profiles 
of Canadian Homes 

This Chapter was previously published as:  

George, D. and Swan, L. G. (2016). A method for distinguishing appliance, lighting and plug 
load profiles from electricity ‘smart meter’ datasets. Energy and Buildings. In press. 
doi:10.1016/j.enbuild.2016.10.048 

It has been included in this thesis under the terms of the license agreement with Elsevier. 
The copyright license agreement is provided in Appendix F.  

Dane George is the principal researcher and author of the article. He conducted the 
research as part of his MASc. Thus, while he received supervision and guidance from his 
supervisor Dr. Swan, he carried out the work, wrote the published article, communicated 
with the editor of the journal, and carried out the necessary revisions before publication. 
The article has been edited and expanded upon to be integrated within this thesis. 

3.1 Introduction 

There is currently a strong focus on designing net-zero energy buildings and communities 

which use on-site electricity generation such as combined heat and power, and solar 

photovoltaics (PV) to supply energy end-uses. These buildings presently rely on the 

electricity grid as an infinite source and sink, and their proliferation necessitates a better 

understanding of impact upon time-step electricity demand. In net-zero energy 

communities, distributed generation from solar PV may cause severe peaks and valleys in 

the community electricity load as supplied by the grid. Utilities seek to understand these 

short-term demands so that they can procure sufficient generating capacity and install 

adequately sized and placed distribution equipment (e.g. polemounted transformers).  

Existing models which employ building simulation software are capable of time-step 

energy demand estimation of buildings and communities. These typically rely on 

engineering principles to model space-heating and space-cooling, but ALP loads are 

largely driven by occupant behavior (stochastic), and modeling relies on measured or 

synthetic time-step load profiles. Examples of ALP loads are shown in Figure 3.1. Since 

http://dx.doi.org/10.1016/j.enbuild.2016.10.048
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ALP electricity use varies widely across households, community scale modeling requires a 

sufficient number of unique ALP load profiles for individual houses to represent a greater 

community. 

 

Figure 3.1 Examples of ALP loads 

Currently, ALP profiles at high temporal resolution are rare. However, new datasets are 

increasingly available through utility “smart metering” programs. These usually consist of 

only the whole-house electricity load for homes, including ALP and ventilation, and 

potentially DHW heating and space heating/cooling, as shown by Figure 3.2.  

 

Figure 3.2 Examples of whole-house loads 

Many homes rely on non-electric energy sources for DHW and space heating and do not 

cool or ventilate their spaces. These whole-house load profiles may be candidates to 

represent ALP loads only. This Chapter addresses this possibility by providing a new 

method of distinguishing houses which do not rely on electric space and DHW heating, or 
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electric space cooling, from a database of whole-house electricity load profiles. The 

method is applied to a new dataset of 15-minute time-step whole-house electricity load 

measurements from 160 houses in Nova Scotia, Canada.  The method relies on 

comparisons made with an existing research-grade dataset consisting of sub-metered 1-

minute time-step electricity load measurements for 23 houses in Ottawa, Canada. The 

benefits and limitations of this method are explored based on additional comparisons 

between the newly distinguished profiles and the existing research-grade profiles. This 

method presents an opportunity to distinguish profiles from the whole-house database 

that can adequately represent ALP loads for building simulation purposes.  

3.2 Background and Literature Review 

In an effort to design buildings with minimal environmental impact, the implementation 

of net-zero energy buildings at a community scale may have economic advantages and 

utilitarian benefits. For example, smart grid technologies may allow for power sharing 

technologies which can help control utility demand. To date, performance evaluations of 

net-zero energy communities are still uncommon, but it is expected the electrical grid 

interaction with these communities will present new challenges. For example, on-site 

solar PV electricity generation and community electricity demand of net-zero energy 

communities may not align, causing dramatic changes in the community load profile 

(Hachem-Vermette et al. 2015). 

Previous community scale modeling endeavours have relied on a limited number of 

electricity profiles, scaled up to represent a larger number of homes (Swan et al. 2011). 

This may allow for accurate estimation of annual, monthly, weekly or even daily energy 

consumption, but does not allow for time-step demand modeling at hourly, 15-minute or 

1-minute time-steps. This is because the scaling up of a limited number of profiles will 

result in unrealistic peaks and valleys in demand which follow the temporal patterns of 

the limited profiles. This is demonstrated in Figure 3.3 with some of the ALP profiles which 

will be introduced in Section 3.3.1 of this Chapter. In this figure, the ALP profile for 1 house 
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is scaled by a factor of 22 and compared to the sum of 23 unique house profiles. It is 

evident that the realistic summing of unique profiles produces far less dramatic changes 

in total demand than the unrealistic scaling of a single or few profiles.  

 

Figure 3.3 Electricity demand comparison of scaling one house by 22 versus summing 22 

unique houses 

As an alternative to expensive field studies that collect sub-metered electricity load 

measurements, researchers have generated synthetic electricity load profiles for building 

simulation. For example, Armstrong et al. (2009) created a set of nine, 5-minute time-step 

ALP electricity demand profiles designed to represent ‘typical’ detached Canadian 

households.  The purpose of the profiles, however, was not to examine grid effects or 

demand side management with building simulation tools, but instead to look at system 

performance in terms of ability to meet heating and electrical requirements of the house. 
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In constructing these profiles, engineering assumptions were made; for example, to 

better represent detached homes as opposed to row housing, the quantity of appliances 

per household and its associated electricity use were adjusted upwards from the values 

drawn from appliance stock surveys. When compared to measured profiles, the synthetic 

profiles show a higher concentration of small loads (<200 W) and should have a higher 

constant baseload to match the measured profiles (Armstrong et al. 2009). These profiles 

have since been applied in many building energy models (Leadbetter and Swan 2012, 

Obrien et al. 2011). While they are good for aggregate electricity consumption analysis, 

their limited number is insufficient for community time-step demand analysis because of 

the scaling issue previously demonstrated. 

Wills et al. (2016) developed a set of synthetic separate appliance and lighting load 

profiles at a 1-minute time-step resolution using the open source Microsoft Excel based 

model developed by Richardson et al. (2009) and Richardson et al. (2010). The original 

models were constructed based on individual appliance and lighting data and U.K. based 

ownership and time-of-use statistics. However, the models were made to be easily 

adaptable to future changes, such as technological advancements of appliances. 

Furthermore, various elements in the models could be adjusted, such as lighting and 

appliance units and total and active occupancy. This allows the models to generate any 

number of profiles to represent multiple categories of homes. Output comparison with 

measured data from 22 U.K. homes suggested a good representation of diversity of 

demand between profiles and fluctuation of demand from minute to minute was well 

represented in the mid-range (100 W to 1000 W) while small and large transitions are 

underrepresented (10 W to 100 W and over 1000 W) (Richardson et al. 2010). 

Using the above models, Wills et al. (2016) generated a set of 50 appliance and 50 lighting 

profiles for four Canadian regions (Atlantic, Ontario, Prairies, and British Columbia). The 

original model inputs were replaced with new values based on Canadian appliance 

characteristic and appliance stock data as well as baseload observations of measured ALP 
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datasets of Saldanha and Beausoleil-Morrison (2012) and Johnson and Beausoleil-

Morrison (2016). However, no time-of-use surveys were available for the Canadian 

context, so observations from the U.K. time-of-use surveys were maintained in the model. 

All the profiles in each region were assigned the same annual appliance and annual 

lighting energy use based on a Canadian average for the region. This obviously does not 

allow for variation of annual demand between homes. 

In recent years, many studies have emerged in Canada and abroad examining measured 

residential electricity loads. ALP loads have been shown to be primarily behavior driven 

with a weak relationship to outdoor temperatures and can vary significantly across 

households (Aydinalp-Koksal et al. 2015, Chen et al. 2015, Lee et al. 2014). These 

observations reinforce the need for a variety of unique and representative profiles, 

especially for community-scale simulation. Furthermore, plug-loads are constantly 

changing as new electricity consuming devices become available or more affordable to 

various demographics (Firth et al. 2008). Such trends strongly support the continued 

collection and publication of up-to-date electricity consumption profiles for building 

simulation. Sub-metered, strictly ALP load measurements are still uncommon and existing 

profile disaggregation techniques require intrusive appliance specific knowledge (Basu et 

al. 2015, Zeifman and Roth 2011). However, the increasing availability of whole-house 

load profiles presents an opportunity to satisfy the demands of building simulation with 

a selection of these profiles. The remaining sections of this Chapter explore this 

possibility. 

3.3 Data Sources 

3.3.1 Sub-metered Electricity Data for Ottawa, Ontario, Canada 

The Ottawa dataset was provided by the Sustainable Building Energy Systems research 

group at Carleton University. A complete description of the dataset measurement 

techniques, quality and processing can be found in Saldanha and Beausoleil-Morrison 

(2012) and Johnson and Beausoleil-Morrison (2016).  
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Beginning in 2009, measurements of whole house and individual device consumption 

(DHW, furnace, space cooling) were taken for more than a full year at 1-minute time-steps 

for 12 single-detached Canadian homes in Ottawa, Ontario. The instruments were then 

recommissioned in 2011, and an additional 11 row houses were added for another full 

year. All gaps and data quality issues were addressed to create 22 continuous annual ALP 

profiles6. For all houses, furnace auxiliary, air conditioner (for space cooling) and DHW 

consumption were subtracted from whole house consumption to produce a ‘non-HVAC’ 

or ALP equivalent electrical consumption profile for each house. Additionally, in some 

homes sub-metering was conducted on the dryer, stove, dishwasher and an auxiliary 

electric heater. However, there is no mention of whole-house ventilation systems such as 

heat recovery ventilators. With 7 of the homes being constructed in 2000 or later, a 

ventilation system load is likely included in the ALP load profiles on account of building 

code requirements.    

For these datasets, two quality issues arose requiring data processing. Firstly, there were 

periods of missing data. If available, these sections were filled with data for the same days 

and times from the previous or following year. When this was not possible, the sections 

were filled with data corresponding to the same time-period in a day in “as close proximity 

to the missing record as possible”. Secondly, there was a minimum resolution power7 that 

could be detected by the measurement equipment so that periods of very low power 

draw would result in some measurements of zero power draw. A data smoothing process 

was used to correct this issue. For the data collected in 2011 and 2012, the data contained 

negative ALP values (0.17% of values). These were assumed to be associated with 

                                                           
6 ALP profiles creation was not possible for one house where an electric DHW heater was 
not sub-metered. 

7 Three different current transducers rated at 30 A, 50 A and 100 A were used to measure 
electric draw of various circuits, resulting in minimum power measurement resolutions of 
45 W, 75 W, and 150 W respectively. See Saldanha and Beausoleil-Morrison (2012) for 
greater details. 
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equipment measurement error during the periods of low draw which then became 

negative values during the ALP load derivation. These values were treated as zero power 

draws for the purposes of this study. 

As part of their study, Saldanha and Beausoleil-Morrison (2012) conducted a comparison 

analysis of the derived ALP profiles with the synthetic profiles generated by Armstrong et 

al. (2009). The probability distribution of the measured data was contrasted to that of the 

synthetic profiles and it was found that the synthetic profiles did not adequately capture 

the temporal variability within each of the measured profiles or the variation between 

households. It is suggested that that further development of synthetic profiles draws from 

characteristics of more measured profiles. 

Johnson and Beausoleil-Morrison (2016) examined the factors influencing ALP 

consumption levels across all of the 23 houses and found that house size (floor area) had 

weak influence while occupancy strongly influenced annual ALP electricity consumption. 

They also compared the 23 house dataset with the Ontario housing stock data published 

by Natural Resources Canada (NRCan 2012, NRCan 2013) and found that the ALP 

electricity consumption of homes between the 25th percentile and 75th percentile (i.e. 

half of the measured houses) are in close agreement with the Ontario housing stock data. 

3.3.2 Whole-house “Smart Meter” Data for Nova Scotia, Canada 

The Nova Scotia dataset is whole-house electricity demand measurements at 15-minute 

time-steps obtained from smart meter data provided by electricity utility Nova Scotia 

Power Incorporated (NSPI). Data were labeled and divided into three categories of 

homes: 

 All-electrically heated (AEH) homes which rely on electricity as the primary heating 

energy source, either via resistance strip heaters or heat-pump systems. 
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 Non-electrically heated (NEH) homes which rely on natural gas, oil, propane, or wood 

as the primary heating fuel. Electricity may still be used as a secondary heating 

source. 

 Time-of-use electrically heated (TOU) homes which rely on electricity as the primary 

heating energy source via an electric thermal storage (ETS) unit. The unit charges 

overnight during off-peak pricing hours, and discharges during the day on-peak 

pricing. 

Houses were assigned to a category based on the status of the heating system at the time 

of the smart meter installation and the information may no longer be valid if a new system 

has been subsequently installed. Such evolution of the housing stock is typical, and must 

be expected to influence the results of whole-house electricity consumption datasets. 

Furthermore, an air conditioning system may be present in any home category for space 

cooling.  

While the TOU homes had a ‘smart meter’ installed in order for them to participate in an 

alternative pricing scheme, it is unknown how the remaining houses were selected to 

have ‘smart meters’ installed. Any biases associated with the selection process are 

unknown for this study. 

Meta-data was provided for 34 out of the 160 homes based on a telephone survey 

conducted by NSPI in the fall of 2014. Primary and secondary heating system type and 

energy source, cooling system (e.g. ceiling fan, portable fan, air conditioner), occupancy, 

main living area size, and location (town) were recorded. Of these homes, 24 relied on 

electricity as the primary heating source, 7 relied on oil and 3 relied on wood or wood 

pellets. Three of the 7 homes which relied on oil for heating also had plug-in electric 

heaters as a secondary source. Thirteen of the homes (38%) had an air conditioner for 

space cooling, 16 of the homes (47%) had only portable or ceiling fans for cooling, and 5 

of the homes (15%) had no cooling system. Total occupancy averaged 2.7 people per 
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house. Only 25 homes provided a main living area estimate and the average house size is 

184 m2 (1983 ft2). The 34 homes were located in various cities, towns, and villages spread 

throughout Nova Scotia. 

Data was provided for the years 2012, 2013, and 2014 for a total of 160 house profiles 

although not every house participated for all three years. Table 3.1 summarizes data 

availability.  

Table 3.1 Availability of Nova Scotia data by home category 

House Category 

Year 

2012 2013 2014 

Number of Homes 

AEH 74 62 53 

NEH 53 42 32 

TOU 29 28 24 

Total 156 132 109 

Full years of data 1 yr. 2 yrs. 3 yrs. 

Number of houses 28 29 104 

 

The electricity measurement instruments were electronic ALPHA PLUS® Meters. The 

meter’s process voltages and currents into energy pulses in units of watthours. These are 

processed by a microcontroller to produce a demand (load) measurement over a time 

interval (set to 15-minutes for this dataset). Each measurement datapoint is the total 

accumulated energy over the interval (in kWh), over the time interval. These meters are 

revenue-grade and operate with a measurement accuracy of 0.2%. 

3.4 Methodology 

First, the datasets are compared with the intention of identifying homes from the Nova 

Scotia dataset that do not use electricity for space heating and cooling, so that these 

whole-house profiles may be treated as ALP loads and used in building performance 

simulation. The obvious starting point is to use the NEH homes from the Nova Scotia 
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dataset. Because space conditioning strongly depends upon ambient air temperature, the 

seasonal variations are compared in Figure 3.4. Nova Scotia AEH and TOU homes have 

also been added for comparison. 

 

Figure 3.4 Average monthly electricity demand and ambient temperatures for Ottawa and 
Nova Scotia datasets 

In Figure 3.4, the monthly average ambient temperatures in Halifax and Ottawa have 

been plotted to demonstrate the relationships with measured electricity usage. There is 

only a minor correlation between external temperatures and the Ottawa ALP electricity 

loads (R = -0.19). The whole-house loads show a clear relationship to outdoor 

temperature (R = 0.46). This is expected, since the whole-house load includes power 

supplied to air conditioning units. However, an increase in electricity demand occurs 

during the colder months as well, because the whole-house loads include the power 

draws from the heating system auxiliaries such as furnace fans and boiler pumps. There 
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is a strong negative correlation between the external temperature in Halifax and the Nova 

Scotia whole-house NEH electricity loads (R = -0.96) suggesting that as the temperature 

drops, the electricity demand increases. On average, electricity use for the NEH homes 

increases by about 80% from the warmest months to the coldest months. These results 

suggest that some of the NEH houses from the Nova Scotia dataset still rely on some form 

of auxiliary electric heating. This heating effect is much more dramatic with the Nova 

Scotia whole-house AEH and TOU electricity loads, which increase by about 250% (AEH) 

and 350% (TOU) from the warmest months to coldest months. 

After generating a monthly average load profile for each individual house in the Nova 

Scotia dataset, it is revealed that many of the houses had a relatively constant load across 

the seasons, following the ALP trend of the Ottawa data. An individual house analysis 

showed some of the monthly profiles of homes in the NEH category were strongly 

affected by ambient temperatures. As well, some homes in the AEH category were not 

affected by outdoor temperatures, likely caused by heating system retrofits. 

Consequently, these homes profiles may actually represent only ALP loads and so all 

categories of homes are included in the following analysis. 

3.4.1 Identification of Homes with Electric Space Heating 

This section describes the method used to distinguish homes from the Nova Scotia 

dataset that do not rely on electric space heating, based on trend observations from 22 

Ottawa dataset ALP profiles. 

To distinguish these houses, the average load for the mild season months (Jun, Sep) was 

subtracted from the average winter load (Nov – Feb) for each house in both datasets. Due 

to the mild temperatures, it is assumed that there is the least likelihood of space heating 

or cooling during the selected summer months and so they are chosen as the ‘baseline 

months’. The results are plotted in histograms, shown Figure 3.5. 
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Figure 3.5 Histograms of average winter load minus average Jun and Sep loads for Ottawa 
and Nova Scotia datasets 

 The upper histogram in Figure 3.5 shows that the Ottawa ALP winter load does not vary 

greatly from the shoulder season load, with a difference between the averages ranging 

from -0.8 kW to +0.6 kW. In the lower histogram, the Nova Scotia dataset differences 

range from -0.4 kW to +11.5 kW. There are two major peaks, one occurring at about a 

+0.5 kW difference and the other occurring at about +2.5 kW. The distribution in 

proximity to the 2.5 kW peak is a relatively normal distribution, likely representing 

electrically heated homes of various sizes and with various heating system efficiencies. 

The homes distributed around the +0.5 kW peak are likely the homes which do not rely 

on electric heating.  

All Nova Scotia homes which showed an average load difference of less than +0.6 kW 

were assumed to be homes which do not rely on electric heating. The 45 qualifying homes 
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were selected to represent non-electrically heated home profiles. Due to the overlapping 

nature of the non-electrically heated and electrically heated home distributions, it is 

expected that a small number of homes may be mislabeled. For example, a home which 

engages in minor amounts of electric space heating with a small unit heater may be 

recognized as a non-electrically heated home. Conversely, a non-electrically heated home 

where the homeowners vacation primarily during the shoulder seasons might be 

recognized as an electrically heated home.  

3.4.2 Identification of Homes with Electric Space Cooling 

This section describes the method used to distinguish homes from the Nova Scotia 

dataset that do not rely on electric space cooling. The method is similar to the method 

described in Section 3.4.1, but has been further refined based on trend observations from 

22 space cooling load profiles from the Ottawa dataset.  

All space cooling load profiles are associated with central air conditioners and do not 

include the fan load required to circulate air through the households. Across households 

there was a wide range of use of space cooling. Statistics of annual space conditioning 

electricity consumption and average air conditioner loads8 are shown in Table 3.2. 

  

                                                           
8 The air conditioner load is considered to be the load when the air conditioner is engaged. So, only 

significant loads are considered. Space cooling profiles consisted of many very small load measurements 

which are not representative of an active air conditioner. All loads above 0.015 kW were considered for the 

purposes of Table 3.2. 
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Table 3.2 Statistical summary of the average daily electricity consumption per household 
for two datasets 

Statistic 
Statistics of Annual Space Cooling 

Electrical Consumption, n = 22  
(kWh /year) 

Statistics of Average Air 
Conditioner Loads, n = 22 

(kW) 

Mean  537.3     1.66 

Median     534.9     1.57 

Maximum     1337.0     2.63 

Minimum     21.8     0.99 

5th Percentile     55.2     1.00 

20th Percentile     150.5     1.16 
80th Percentile     890.0     2.12 

95th Percentile     1123.6     2.53 

 From Table 3.2, some houses used very little electricity for space cooling annually while 

others use much more (21.8 kWh/year to 1337.0 kWh/year). In contrast, the range of 

average air conditioner loads was much smaller (1.00 kW to 2.63 kW), suggesting that low 

consuming households did not engage their air conditioners very often. Such households 

would be very difficult to identify from a larger whole-house load dataset such as the 

Nova Scotia dataset because the space cooling load would not be significant enough in 

magnitude or overall energy consumption to noticeably influence the whole-house load. 

However, the space cooling load of the higher consuming households would likely have a 

greater impact on a whole-house load during the certain times of the cooling season. To 

explore this further, Figure 3.6 investigates the time-of-use characteristics of the Ottawa 

space cooling load profiles. 
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Figure 3.6  Average monthly space cooling load and average hourly summer space cooling 
load for the Ottawa dataset 

From the plot on the left of Figure 3.6 of the monthly average across all datasets, space 

cooling loads ramp up during May and June, peak in July and August and drop significantly 

in September. The plot on the right of Figure 3.6 shows the average hourly space cooling 

load over the peak cooling months of July and August. The load is highest during the 

afternoon and evening (13h to 21h) which lags behind the sun’s trajectory through the 

sky by approximately 4 hours, presumably due the thermal mass of the buildings. A more 

specific peak occurs at 17h and is likely associated with occupants returning home at the 

end of a workday. These observations are now applied in a method to distinguish homes 

from the Nova Scotia dataset that do not rely on electric space cooling 

The average evening load for the mildest shoulder month (Sep) is subtracted from the 

average summer load (Jul - Aug) for all profiles of four datasets: Ottawa space cooling, 
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Ottawa ALP and Ottawa combined ALP and space cooling and Nova Scotia whole-house. 

Evening is considered to be the peak hours from Figure 3.6 (16h – 18h). The results are 

plotted in histograms, shown Figure 3.7. 

 

Figure 3.7 Histograms of average July and August evening loads (16h – 18h) minus average 
September evening loads for Ottawa and Nova Scotia datasets 

The upper histogram in Figure 3.7 shows that the summer evening space cooling loads 

range in difference from the September evening space cooling loads from nearly 0 kW to 

+1 kW. Meanwhile, in the second histogram from the top, the majority of the ALP load 

differences are shown range from -0.4 kW to +0.2 kW. When the loads are combined in 

the third histogram from the top, the effect of the space cooling load is clear because 

many of the load differences are above +0.2 kW. In the lower histogram, the Nova Scotia 

dataset differences range from -1.2 kW to +1.4 kW. 



 

 

 

 

 

65 

All Nova Scotia homes which showed an average load difference less than +0.25 kW were 

assumed to be homes which do not rely on space cooling. It is suspected that homes 

which engage only a minimal amount of space cooling may not have been identified by 

this method, as shown by the upper histogram in Figure 3.7. Furthermore, some homes 

which do not rely on space cooling may have also been eliminated (note the outlier at 

+0.5 kW in the second histogram from the top in Figure 3.7).  

Of the 160 homes in the Nova Scotia dataset, 24 (15%) were found to rely on space 

cooling. This is much less than the average in Nova Scotia where the penetration of air 

conditioners in homes is approximately 28% (NRCan 2014a), but this is expected because 

this method fails to eliminate homes which engage in small amounts of space cooling. 

Only 4 of 45 (9%) of the non electrically heated houses selected in Section 3.4.1 were 

found to rely on space cooling. This is an even lower fraction, but it should be noted that 

during the previous step of eliminating houses that are electrically heated, a large number 

that are electrically cooled may have been eliminated as well (consider that heat pumps 

can provide both heating and cooling). 

3.4.3 Identification of Homes with Electric DHW Heating 

This section describes the method used to distinguish homes from the Nova Scotia 

dataset that do not rely on electric DHW heating. The Ottawa dataset included load 

measurements from one electric DHW heater and this method is based on trend 

observations this profile. 

To provide context to the problem, the significance of time-step interval length is first 

explored. The electric DHW heater load profile of the Ottawa dataset is plotted for a 5-

hour period at both a 1-minute and 15-minute time-steps shown in Figure 3.8, along with 

the whole-house and ALP load profiles for the same home. Note that only two homes of 

the Ottawa dataset relied on electricity for DHW heating and the load was measured for 

only one of these homes.  
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Figure 3.8 DHW, ALP and whole-house load profile 1-minute and 15-minute time-step 
comparison for one house of the Ottawa dataset 

From the upper plot in Figure 3.8, it is shown that when the DHW heater electric element 

is engaged, there is approximately a 300% increase in the ALP load. The DHW electric 

element is usually engaged at some point during a time-step interval and due to the 

averaging effect during this interval, the first load measurement is usually less than the 

full electric element magnitude. The element will then usually run for multiple minutes 

and so the subsequent measurements will be at the full electric element draw magnitude 

until the last measurement, which will also be effected by averaging. At a 15-minute time-

step, these loads are usually unevenly spread over one or two 15-minute time-step 

intervals and the magnitudes of most measurements are reduced significantly. The 

heating element runtime statistics for the entire year are shown in Table 3.3. A heating 

event is considered to be any continuous series of non-zero DHW power measurements. 
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This is demonstrated in the upper plot of Figure 3.8. The plot shows two heating events, 

where the measured power on the DHW circuit was greater than zero: the first occurs 

between 6h and 7h and the second between 7h and 8h. Runtime is the length of each 

heating event in minutes. 

Table 3.3 DHW electric element runtime statistics for one house of the Ottawa dataset 

Statistic 
DHW electric element 

runtime per heating event 
(minutes) 

Mean 12 

Median 10 

Maximum 139 

Minimum 1 

5th Percentile 8 

20th Percentile 9 

80th Percentile 13 

95th Percentile 23 

From Table 3.3, the mean element runtime is less than one 15-minute time-step. To be 

able to identify the DHW load magnitude from a whole-house profile, the element 

runtime must span 3 or more time-step intervals so that the increase in load could 

consistently reach the full electric element load magnitude.  It might be possible to 

identify the majority of DHW water heating loads with 1-minute time-step data, but this 

is not possible with 15-minute time-step data.   

To further investigate the ‘dampening’ effect of the 1-minute to 15-minute time-step 

increase, a histogram of load measurements for the DHW profile at both 1-minute and 

15-minute time-steps is shown in Figure 3.9. 
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Figure 3.9 Histograms of DHW load measurements at 1-minute and 15-minute time-steps for 

one house of the Ottawa dataset 

The upper histogram in Figure 3.9 indicates that at a 1-minute time-step, the 

overwhelming majority of the measurements are at the full electric element load 

magnitude of between 3.5 kW and 4 kW. At a 15-minute time-step, the measurements 

appear to be spread out from much more evenly spread between zero the full load 

magnitude. However, the highest occurrences of resulting measurements occur at 

between 1.75 kW and 2.25 kW which is approximately 50% of the full load. An hourly 

analysis of the DHW load profile reveals that overnight loads over 1.75 kW do occur, since 

a DHW heater will operate even during periods of little or no DHW consumption due to 

heat loss through the tank envelope.  
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The next step in the analysis assumes that other large appliance loads over 1.75 kW will 

not often occur overnight in households where the occupants follow a typical schedule of 

awake during daytime and asleep during nighttime. So the time-step load changes 

(increases or decreases from one time-step to the next) are examined. Histograms of 

time-step changes for the Ottawa ALP and ALP + DHW profiles for one house are shown 

in Figure 3.10.  

  

Figure 3.10 Histograms of time-step load changes between 2h and 4h for the ALP and ALP + 

DHW profiles for one house of the Ottawa dataset 

From Figure 3.10, it is shown that overnight time-step load changes below -1 kW or above 

1 kW do not occur in the ALP profile, but do occur in the ALP + DHW profile. The ALP + 

DHW profile showed 145 occurrences of load changes (both in positive and negative 

directions) over 1.75 kW. The same examination of the 22 Ottawa ALP profiles showed 
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similar results and only one had more than 6 time-step changes over 1.75 kW between 

2h and 4h. 

Based on these observations, all homes from the Nova Scotia dataset which showed 13 

or fewer annual time-step changes over 1.75 kW between the hours of 2h and 4h were 

assumed to be homes which do not rely on electric DHW heating. A total of 29 homes 

were selected from set of 41 non-electrically space heating/cooled homes. For one of 

these homes, only the first two of three years were used, since a jump from 5 to 31 

overnight high time-step changes occurred in the third year of measurement, suggesting 

that an electric DHW heater may have been installed during this year.  

This method may not always provide accurate results because ‘outlier’ homes which 

utilize large appliances overnight may be excluded by this selection process. Furthermore, 

homes which engage ‘smart’ appliances that are capable of turning on or off overnight 

may also be excluded using this method.  

ALP loads that behave similarly to the DHW load might be also removed by this method. 

Examples might be other water heating loads such as pools and hot tubs. In their survey 

of ALP loads in Canadian homes, Parekh et al. (2012) found a 17% penetration of ‘atypical 

loads’ which include pool and hot tubs loads as well as other recreational loads such as 

saunas, treadmills, spa pumps, and heated driveways. It should be noted that two houses 

of the Carleton dataset have hot tubs yet their ALP loads did not demonstrate high 

nighttime time-step load changes. The exclusion of water heating loads such as these 

from the ALP dataset may be favourable to building simulators, who might prefer to 

model those components separately. 

3.4.4 Annual ALP Profiles for Building Simulation 

Using the above methods, a total of 45 profiles from the Nova Scotia dataset were 

selected to be non electrically space heated and from these, 41 homes were selected to 

be non space cooled. Then, the DHW selection method found that 29 of these homes do 
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not rely on electric DHW heating. Some of these ALP profiles include up to three years’ 

worth of data so that in total, there are 62 unique annual ALP profiles. The homes came 

from two categories of the Nova Scotia dataset, AEH and NEH, demonstrating the 

importance of re-evaluating meta-data each few years. Although each profile is unique, 

users should be aware that multiple profiles come from a single house and that this may 

limit the diversity of the dataset. 

It was important to ensure that all profiles aligned temporally so that they all represented 

one non-leap year (365 days) and began on the same day of the week. For the 2012 year 

which was a leap year, the last day of measurement in the year was removed as opposed 

to the data from February 29th. To maintain continuity across all annual ALP profiles, they 

were shifted to match a year where the first day of measurement fell on a Monday (e.g. 

2007). While some ‘fixed’ holidays such as July 1st (Canada Day) and December 24th 

(Christmas Eve) were misplaced and wouldn’t align across the entire dataset, the 

weekdays and weekend days remained aligned and other holidays which are regularly 

shifted to fall on a Friday or Monday would likely still be aligned. Also, since the profiles 

were circularly shifted and the number of days in a week (7) is not a factor of the total 

number of days in one year (365), up to two days at the end of the year may not represent 

the correct day of the week of the measurement.   

For further comparison between the two datasets, the Carleton dataset was also adjusted 

to become a January through December profile. A similar problem occurred where the 

Carleton measurements began in one year and ended in the next. In order to keep the 

correct day of the week associated with each measurement, the data was circularly 

shifted as necessary so that the first day of the annual ALP profile lands on a Monday.  
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3.5 Profile Comparisons 

To affirm the above methods, this section compares the profile characteristics of the two 

datasets. Temporal variations, load magnitude probability, load fluctuation, peak loads 

and profile diversity of the Nova Scotia and Ottawa datasets are examined and compared.  

3.5.1 Temporal Variations and Statistical Comparison 

As identified in the methodology section of this Chapter, ALP loads have been shown to 

vary temporally on several scales. Thus, annual, weekly, daily and hourly variations are 

explored in this section. 

3.5.1.1 Annual 

The identification of homes with electric space conditioning is largely dependent upon 

annual trends in household and ALP loads (see Sections 3.4.1 and 3.4.2) and therefore it 

is useful to examine the annual trends of the selected Nova Scotia profiles to affirm the 

methods used. The average monthly loads of the selected ALP Nova Scotia profiles and of 

the Ottawa the ALP profiles are shown in Figure 3.11.  
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Figure 3.11 Monthly average load profile comparison of Ottawa profiles and selected Nova 

Scotian profiles 

From Figure 3.11, the average seasonal variation of the selected Nova Scotian homes is 

approximately 0.2 kW. External temperature has an influence on the load (R = -0.69) and 

this could be partially due to the use of fans/pumps in homes during the heating season, 

or simply the longer runtime of lighting during winter. The Nova Scotia load is very close 

to the Ottawa load during the summer months but there is a greater difference of up to 

25% which occurs during the winter months. This difference is assumed to be partially 

due to heating system fan or pump loads but may also be on account of longer lighting 

runtime in Nova Scotia during the fall and winter months, which is known for overcast 

and foggy weather.  
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3.5.1.2 Weekly 

ALP loads may also be subject to weekly patterns due to occupant behavior associated 

with weekdays (common workdays) and weekends (common day off work). The average 

daily ALP loads throughout a week are shown in Figure 3.12 (note the expanded y-axis 

scale to accentuate the daily differences).  

 

Figure 3.12 Weekly variations in ALP load for the Nova Scotia and Ottawa ALP datasets 

From Figure 3.12, both datasets follow a very similar weekly pattern. ALP loads do not 

vary greatly throughout the week, but a slight peak occurs on the weekend (Saturday and 

Sunday), likely due to an increased presence of occupants at home during days off work. 

The differences between average Nova Scotia and Ottawa ALP loads are slightly 

concentrated during mid-week and the difference diminishes over the weekend. For the 

Nova Scotia dataset, the average load is approximately 9% higher on weekends than mid-
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week. For the Ottawa dataset, the average load is approximately 18% higher on weekends 

than mid-week. 

3.5.1.3 Daily 

Daily load characteristics from the Nova Scotia and Ottawa datasets are also comparable 

in magnitude and usage characteristics. Statistics of average daily load per household are 

shown in Table 3.4.  

Table 3.4 Statistical summary of the average daily electricity consumption per household 

for two datasets 

Statistic 
Nova Scotia ALP 
Selected, n = 29 

(kWh /day) 

Ottawa 
ALP, n = 22 
(kWh /day) 

Mean 16.3 14.3 

Median 16.8 12.6 

Maximum 33.6 30.1 

Minimum 3.9 5.9 

5th Percentile 4.4 6.3 

20th Percentile 10.3 8.5 

80th Percentile 20.3 20.5 

95th Percentile 28.6 28.3 

From Table 3.4, the selected Nova Scotia ALP homes consume 14% more electricity on 

average than the Ottawa ALP households. These results reflect NRCan (2014a) estimates 

which suggest that appliance and lighting loads in Nova Scotia are 20% greater than in 

Ontario. The values in Table 3.4 also compare well with the result of a national survey of 

ALP loads conducted in 2011 and 2012 by Natural Resources Canada (Parekh et al. 2012) 

that estimates an average ALP load of 19 kWh per day per household which is 17% higher 

than the mean Nova Scotia ALP value and 33% percent higher than the mean Ottawa ALP 

value. However, in the survey, ‘supplementary’ space conditioning loads such as portable 

heater loads were included in the ALP load.  
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Daily average ALP loads such as those presented in Table 3.4 can be applied in building 

simulation tools which produce low resolution energy estimates. Hot2000 is a widely used 

whole-house building simulation tool developed by Natural Resources Canada (CETC 

2016a). The default ALP load assumption applied by this software is 19.5 kWh per day, 

which is 20% higher than the mean daily Nova Scotia ALP value in Table 3.4 and 36% 

higher than the mean daily Ottawa ALP value.  

3.5.1.4 Hourly 

The average hourly ALP load for both datasets is shown in Figure 3.13.  

 

Figure 3.13 Average hourly ALP load for selected Nova Scotia ALP profiles and Ottawa ALP 

profiles 
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From Figure 3.13, the average hourly ALP loads of the two datasets are remarkably similar 

throughout the evening and nighttime periods. However, for the Ottawa dataset, the 

average hourly ALP load remains relatively constant between approximately 7h and 13 h 

while for the Nova Scotia dataset, the average ALP load increases throughout the morning 

until peaking at approximately noon and decreasing again before an evening increase. 

While the Ottawa load is only marginally less than the Nova Scotia load for most of the 

day (within 0.1 kW), a larger difference occurs during the morning and midday period. 

This difference is not easily explained, but may suggest that daytime occupancy of 

households in Nova Scotia is greater than in Ottawa, although, the proportion of dual-

earning families with a least one child under 16 years of age is approximately the same 

between the two regions (Atlantic Canada: 69.3%, Ontario: 68.2%; Statistics Canada 

2015). The limited size and therefore unrepresentativeness of the datasets leaves this 

question unanswered.  

3.5.2 Load Probability Comparison 

The magnitude of individual draws occurring in a household may be of interest to building 

simulators. Two households that consume a similar amount of electricity have very 

different load patterns and these may cause a new technology to perform very differently 

between households. For example, for an off-grid solar photovoltaic system with battery 

storage, the sizing of system components will depend on the magnitude of loads. To 

ensure that the load magnitudes of the selected Nova Scotia ALP profiles are comparable 

to the Ottawa ALP profiles, load probability curves are generated for houses with 

comparable consumption levels. First, the 1-minute time-step Ottawa ALP data was 

down-sampled to 15-minute time-steps to align with the Nova Scotia dataset time-step. 

Houses with similar annual consumption levels from each dataset were paired together 

and a load probability curve at 100 W bin sizes was generated for each pair. Houses were 

selected to span a range of consumption levels. These are shown in Figure 3.14.  
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Figure 3.14 Load probability curve comparison for similar houses across the Nova Scotia and 

Ottawa ALP datasets 

The plots in Figure 3.14 show that the probability of load occurrences between similar 

houses from each dataset are similar in nature. Although no two curves are expected to 

be identical, the load curves shown are similar in shape magnitude of draws.  

3.5.3 Load Fluctuation Comparisons 

While the load probability may vary greatly from household to household depending on 

appliance and lighting counts, the time-step load changes may be more similar across 

households because appliances and lights will be similar in load magnitude and a load 

change will represent specific ALP loads turning ‘on’ or ‘off’. While over a 15-minute time-

step the actual magnitude of load change will not be well represented (as was shown with 

regard to DHW heating loads in Section 3.4.3), it is still worth comparing the time-step 
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load changes between the two datasets. For this comparison, the Ottawa dataset is down-

sampled to 15-minute time-steps by averaging the load during each 15-minute interval, 

and the probability of time-step load changes over several ranges is shown in Figure 3.15. 

The ranges were selected to represent several categories of small through large 

appliances. For example, plug-loads and lighting loads may generally be between 10-

100W while appliances such as refrigerators may be in the 100-1000W category. Large 

appliance loads such as hair dryers, toasters or ovens would fall in the over 1000W, 

though some of these may be reduced to a lower category due to sub-time-step run 

periods. 

 
 

Figure 3.15 Time-step load change probability for the Ottawa and Nova Scotia datasets 

From Figure 3.15, the load changes between the two datasets generally fluctuate 

similarly, with only slight discrepancies in the two high probability categories (10-100W 

and 100-1000W). 
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3.5.4 Peak Load Comparisons 

To adequately evaluate the power demand reduction potential of building technologies 

it is important to capture the time-step changes in ALP load in building simulation. 

Appropriate time-step resolution of profiles may vary from case to case. For example, 

Naspolini and Rüther (2016) found that 15-minute time-step resolution is inadequate 

when evaluating the demand reduction potential of solar DHW systems in Brazilian 

communities where instantaneous electric showerhead water heaters contribute 

significantly to utility peak demand. The problem arises because the average length of a 

shower is less than 15 minutes. This was also demonstrated in a Canadian context by 

Figure 3.9 in Section 3.4.3 of this Chapter, which shows a decrease in peak load magnitude 

of an electric DHW heater when using 15-minute vs. 1-minute time-step resolution data, 

also because DHW heater electric element runtimes are on average less than 15 minutes.  

To further demonstrate this effect and to compare the selected Nova Scotia ALP profiles 

to the Ottawa ALP profiles, the annual peak loads are plotted against the mean loads for 

each profile of the Ottawa dataset at 1-minute and the Nova Scotia dataset at 15-minute 

time-steps in Figure 3.16. Furthermore, the Ottawa dataset has been down-sample to a 

15-minute time-step and this has been included in Figure 3.3 as well. Note that for the 

Nova Scotia dataset, each of the selected 62 annual ALP profiles are considered separately 

and therefore up to three datapoints may belong to one house. The statistics of the ‘peak-

to-mean’ ratios associated with Figure 3.16 are then shown in Table 3.5. 
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Figure 3.16 Annual peak load vs. annual mean load for annual ALP profiles from the Nova 

Scotia and Ottawa datasets 

Table 3.5 Range of peak-to- mean ratios for both annual ALP datasets 

Dataset 
Time-step 
(minutes) 

Peak-to-Mean Ratios 

Mean Min Max 

Nova 
Scotia  

15 13.5 5.4 28.5 

Ottawa  15 16.2 7.5 27.3 

Ottawa  1 23.0 8.4 38.5 

From Figure 3.16 and Table 3.5, both datasets at 15-minute time-steps have a similar 

range and average peak-to-mean ratio, suggesting similar load characteristics between 

the Ottawa ALP load profiles and the selected Nova Scotia ALP profiles. The Ottawa 1-

minute time-step profiles, however, demonstrate a much higher ‘peak-to-mean’ ratio, 
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which is on average 40% higher than the peak to mean ratio of the same profiles at 15-

minute time-steps. 

The higher ‘peak-to-mean’ ratios associated with shorter time-steps highlight the need 

for using a variety of profiles for community modeling because the peak loads will be 

magnified if a profile is used to represent multiple houses in a community. The same 

demonstration is conducted on hypothetical community ALP loads by summing all of the 

loads of each dataset. The corresponding ‘peak-to-mean’ ratios are shown in Table 3.6. 

Table 3.6 Peak-to-mean ALP load ratios for community scenarios 

Dataset 
Time-step 
(minutes) 

Peak-to-Mean 
Ratios 

Ottawa (n = 22) 1 4.0 

Ottawa (n = 22) 15 3.3 

Nova Scotia (n = 62) 15 2.7 

Nova Scotia + Ottawa (n = 84) 15 2.7 

From Table 3.6, the ‘peak-to-mean’ ratio of a community decreases as the time-step is 

increased and as the community grows in size. Hypothetically, this ratio will decrease to 

a limit so that over an entire region, the ‘peak-to-mean’ ratio is predictable at any time-

step above 1-minute. It is expected that beyond some community size, the ‘peak-to-

mean’ ratios of the community ALP load will not decrease below a limit and that the load 

will follow a fairly consistent pattern every day. An example of these community profiles 

are shown for one week in the winter and summer in Figure 3.17. 
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Figure 3.17 Example of Nova Scotia and Ottawa community ALP loads during winter (top) and 

summer seasons (bottom) 

In Figure 3.17, the community ALP loads follow a fairly consistent daily pattern. However, 

this daily pattern differs between the winter and summer months, showing that the 

subtle seasonal variations shown in Figure 3.11 manifest themselves in the shape of the 

hourly profile. In the winter plot, there is a noticeable increase in ALP load during the 

evening hours while in the summer plot, the ALP load remains relatively constant 

throughout daytime hours. This difference may be largely due to lighting loads during 

darker winter months. As a result, the daily peak loads are approximately 25-40% lower 

on any given day in the winter season than in the summer season. For this reason, it is 

important to be wary of time-shifting of ALP load profiles to generate additional non-

coincident profiles for community simulation. 
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The findings are quantified by contrasting the peak-to-mean ratios of the various 

community loads during the winter season (Dec 20 – Mar 20) and the summer season 

(Jun 20 – Sep 23). The winter and summer ‘peak-to-mean’ ratios are given in Table 3.7, 

showing that the peak-to-mean ratios are between 7% and 22% lower during the summer 

months. 

Table 3.7 Seasonal differences in peak-to-mean ALP load ratios for larger community 

scenarios 

Dataset 
Time-step 
(minutes) 

Peak-to-Mean Ratios 

Winter Summer 
% 

Difference 

Ottawa (n = 22) 1 3.6 3.4 7% 

Ottawa (n = 22) 15 3.0 2.7 10% 

Nova Scotia (n = 62) 15 2.4 1.9 20% 

Nova Scotia + Ottawa (n = 84) 15 2.3 1.9 21% 

 

3.5.5 Diversity Factor 

Another approach to evaluating diversity of temporal behavior within a dataset is to 

calculate the diversity factor of the dataset, as outlined by Kersting (2002). This method 

first calculates the ‘maximum non-coincident’ load of the community (sum of individual 

household peak loads) which is the load that would occur if the maximum load for each 

household occurred simultaneously.  Next, the ‘maximum diversified’ load of the 

community (community peak load) is calculated. The diversity factor is ratio of these two 

values.  

The diversity factor will generally increase with the size of a community, but eventually 

will level off when the community reaches a certain size. This is reflected in Figure 3.18 

where the diversity factors are shown for the Nova Scotia and Ottawa ALP datasets with 

an increasing community size. 



 

 

 

 

 

85 

 

Figure 3.18 ALP load diversity factors with increasing community size at various time-steps 

From Figure 3.18, the diversity factors for each community initially increase rapidly and 

for the Ottawa ALP load profiles at both time-steps the diversity factor does not plateau. 

For the Nova Scotia and combined (Nova Scotia + Ottawa) datasets, the diversity factor 

begins to level off at about 21 houses.  

There is a sharp decrease in the diversity factor for the Nova Scotia ALP community that 

occurs between 21 and 25 houses suggesting that maximum non-coincident and 

diversified loads of the community are increasing at the same rate as each new house ALP 

profile is added to the community. An investigation showed that the profiles added at this 

point do not belong to the same household, so it is mere coincidence that the maximum 

non-coincident and diversified loads of these households are equivalent.  
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The diversity factor of a community is useful to distribution system modelers because the 

maximum diversified load of a community can be predicted by computing the maximum 

non-coincident demand from several community profiles and dividing by the diversity 

factor.  

Furthermore, the diversity factor can provide a means to compare the diversity of various 

occupant load profile datasets. Table 3.8 shows the diversity factors for the Nova Scotia 

and Ottawa ALP datasets alongside diversity factors for various other measured and 

synthetic datasets. 

Table 3.8 Diversity factors of various datasets 

Dataset 
Maximum non-
coincident load 

(kW) 

Maximum 
diversified 
load (kW) 

Diversity 
factor 

Ottawa (1-minute time-step,  
n = 22) 

253.7 52.9 4.80 

Ottawa (15-minute time-step,  
n = 22) 

180.8 43.8 4.13 

Nova Scotia (15-minute time-
step, n = 62) 

511.3 117.8 4.34 

Nova Scotia + Ottawa (15-
minute time-step, n = 84) 

692.1 148.6 4.66 

Synthetic data (Armstrong et al. 
2009) (5-minute time-step,  
n = 9) 

79.8 34.4 2.32 

Synthetic data (Richardson et al. 
2010) (1-minute time-step,  
n = 22) 

260.0 49.6 5.24 

Measured data (Richardson et 
al. 2010) (1-minute time-step,  
n = 22) 

240.8 46.5 5.18 

Diversity ratio is affected by time-step and from Table 3.8, the Ottawa 1-minute time-step 

appear to be more diverse than the same dataset down sampled to 15-minute time-steps. 

This is because local peaks that occur due to short duration loads and don’t line up across 

two 1-minute time-step profiles might align when they are averaged out over 15-minute 
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time-steps. So, it is more likely that the for larger time-steps, the maximum diversified 

load (denominator) higher than it would be at a shorter time-steps relative to the 

maximum non-coincident load (numerator), resulting in a lower diversity factor. 

Also, diversity increases with community size and so the combined Nova Scotia and 

Ottawa datasets result in a higher diversity factor than for the individual datasets. 

Meanwhile, the diversity factor of the synthetic dataset generated by Armstrong et al. 

(2009) is quite low due to the limited number of profiles (n = 9). 

As more ALP data becomes available throughout Canada, it would be interesting to 

compare the diversity factors of various regions, especially if powershifting of large 

appliances is rolled out on a community scale. 

3.6 Data Representativeness 

These profiles are intended for community scale simulation and provide a new dataset 

which encompasses realistic temporal variability between houses and within individual 

houses. However, the profiles might be used to represent a wider region of homes or a 

group of homes in different region altogether. This section intends to provide some 

insight into the representativeness and transferability of this data in the Canadian and 

North American context.   

The datasets provide a total of 62 unique annual ALP profiles (from 29 homes) for the 

Nova Scotia region and 22 for the Ottawa region. These numbers are not statistically 

significant to represent either of these regions. Furthermore, the selection process of the 

Ottawa houses is unknown and may result in a skewed dataset. Additionally, the Nova 

Scotia ALP loads were selected using a process which may result in the exclusion of non-

typical load profiles. In Nova Scotia, there are approximately 260,435 single-detached 

houses (Statistics Canada 2013b) and in Ottawa there are approximately 226,185 single-

detached houses (Statistics Canada 2013c), so a larger number of homes should be 

sampled for these datasets to be considered representative.  
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Across Canada there are over 7 million single-detached households (Statistics Canada 

2013b), so a statistically representative dataset would need to be larger9, homes should 

be sampled evenly throughout Canada. However, while average ALP loads may vary 

slightly from region to region due to climatic differences (e.g. daylight hours) and 

demographics (e.g. appliance ownership), it is likely that in each region in North America 

a variety of ALP user characteristics can be found. It should also be noted that ALP loads 

will vary throughout time as appliances and lighting are updated and efficiency programs 

are rolled out in various regions.    

Notwithstanding, these datasets are of significance, as there are over 30,000 days worth 

of data. This provides a variety of load combinations at high temporal resolution spanning 

all seasons. This is uncommon for building simulators and this dataset could be very useful 

for simulating technologies in community scenarios.  

3.7 Conclusions 

This comparison between two datasets of residential load measurements demonstrates 

the use of seasonal and daily observations to distinguish profiles which rely on electricity 

for space heating and cooling as well as DHW heating.  This method relies on a 

combination of seasonal and hourly differences (i.e. evening shoulder season vs. evening 

heating and cooling season) in whole-house electricity consumption to identify homes 

that rely on space heating and space cooling and overnight occurrences of large electricity 

loads to identify homes with electric DHW heating. The remaining profiles are presumably 

largely driven by appliances, lighting, and plug-loads, and may be of particular use to 

researchers conducting building simulation on community and regional scales, and 

especially those considering coincident demand of net-zero energy communities.  

                                                           
9 A dataset representative of 7 million Canadian homes would require 384 houses for a 
95% confidence interval with a 5% margin of error. 
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A major benefit of this method is that it can be applied to much larger datasets to 

generate additional ALP profiles. With smart metering programs rapidly increasing the 

installation rate across Canada and internationally, a large number of homes are 

becoming equipped to measure the whole-house electricity load. Moving forward, this 

method can be applied to much larger datasets as they become available across Canada, 

thus inexpensively generating geographically representative datasets of ALP load profiles 

for building simulation.  

The 62 new ALP profiles generated by this research capture a variety of temporal 

consumption patterns and peak-to-mean ratios and they can be applied in building 

simulations to analyze electricity demand of entire communities. The following Chapters 

will focus on their application in both individual household and community scale 

simulations. 
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Chapter 4 Building Simulation Application Using 
Occupant Load Profiles 

The annual occupant load profiles described in Chapter 2 (DHW) and Chapter 3 (ALP) are 

intended to be applied to models within building simulation engines for carrying out time-

step evaluations of energy demand (power) and technology performance. This Chapter 

demonstrates their use with the EnergyPlus simulation tool using existing building energy 

models. For comparison, simulations are also conducted using two previously developed 

sets of profiles: 9 ALP and 3 DHW high resolution profiles synthetically developed using 

probability techniques and a set of appliance specific, low resolution profiles developed 

by the Pacific Northwest National Laboratory (Taylor et al. 2015). Simulation results 

between the new annual occupant load profiles and the synthetic occupant load profiles 

are analyzed and compared. Furthermore, two applications are demonstrated: a technical 

evaluation of tankless water heaters and an economic evaluation of an alternative 

electricity tariff. 

4.1 Simulation Details 

The simulation software applied in this research is EnergyPlus which is widely used by 

researchers and industry.  EnergyPlus is a sub-hourly, whole-building energy simulation 

software based on fundamental heat balance principles which is used to model energy 

consumption for heating, cooling, ventilation, lighting, and plus and process loads. It is an 

integrated simulation software where the building (i.e. zone loads), systems (i.e. air loops) 

and plants (i.e. hydronic loops) are solved simultaneously with constant time-step 

feedback to one another. A detailed account of integration methodology and governing 

equations can be found in the v.8.4.0 EnergyPlus documentation: Engineering Reference, 

The Reference to EnergyPlus Calculations (EnergyPlus 2015). 

For this work, the EnergyPlus input files (IDF) files were edited without the use of 3rd party 

Graphical User Interfaces. 
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4.1.1 Building Simulation Inputs 

Building simulation tools such as EnergyPlus require input data to create a building energy 

model. Inputs can be categorized into three types of inputs (shown in Figure 4.1): (1) 

building characteristics which make of the physical description of a building, (2) 

representative climate datasets10, (3) occupant loads such as DHW and ALP loads. By using 

these ‘Archetype’ models, the building characteristics and climate data input 

requirements are satisfied and the occupant load profiles can be easily demonstrated. 

 

 
 

Figure 4.1 Building Simulation Inputs 

4.1.2 Archetype Models 

To facilitate a quick application of the occupant load profiles, previously existing building 

energy models were used: the single-family Residential Prototype Building Models were 

developed by the Pacific Northwest National Laboratory (Taylor et al. 2015), henceforth 

be referred to as the Archetype Models11.  

                                                           
10 Climate datasets are compiled from various sources and are freely available online at 
the following link: https://energyplus.net/weather 

11 The Archetype Models are available for download at the Department of Energy website 
at the following link: 
https://www.energycodes.gov/development/residential/iecc_models 

https://energyplus.net/weather
https://www.energycodes.gov/development/residential/iecc_models
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The Archetype Models were created to estimate energy savings associated with building 

and energy code changes throughout the United States. First, for several regions 

throughout the United States a model was created for a representative single-family 

prototypical house of new construction and operating assumptions. Then, these models 

were expanded into several variants with four different foundation types (slab, 

crawlspace, heated basement, unheated basement) and four different heating system 

types (electric resistance, gas furnace, oil furnace or air-to-air heat pump). As energy code 

changes are implemented, new models were generated for each location and building 

type to represent the new energy code construction requirements, so that currently, 

models exist to align with the 2006, 2009, and 2012 International Energy Conservation 

Codes (ICC 2012). Figure 1.1 shows a sketch of an Archetype Model12 and Table 4.1 lists 

their characteristics. 

 

Figure 4.2 Sketch of Archetype Model house (Taylor et al. 2015) 

                                                           
12 This sketch was obtained using the SketchUp IDF import function. The sketch depicts 
the single-family Archetype Model for Portland, Maine.   
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Table 4.1 Archetype model characteristics (adapted from Taylor et al. (2015)) 

Parameter Assumption 

Conditioned floor area 
221 m2 (plus 110 m2 of unconditioned 
basement) 

Zone division 
Three zones, basement, living area and 
attic  

Footprint and height 
5.0 m by 2.0 m, two-story, 0.8 m high 
ceilings 

Area above unconditioned space 110 m2 

Area below roof/ceilings 110 m2 

Perimeter length 14.1 m 

Gross exterior wall area 240 m2 

Window area (relative to conditioned floor 
area) 

Fifteen percent equally distributed to the 
four cardinal directions 

Door area 3.9 m2 

Internal gains 25.43 kWh/day 

Heating system 
22.22 °C setpoint, natural gas furnace, 
heat pump, or electric resistance furnace 

Cooling system 
23.88 °C setpoint, central electric air 
conditioning 

Water heating 
Mixed 200 L tank, same as fuel used for 
space heating 

In Nova Scotia, the average floor space of single detached homes is 149 m2; however, the 

average floor space of homes that were constructed after 1996 is 218 m2, which is 

comparable to the heated floor area of the Archetype Models (NRCan 2014a).  Several 

recent studies on solar optimal neighbourhood design have modeled an average heated 

single detached floor area of 180 m2 (Hachem et al. 2012, Hachem et al. 2013, Hachem 

2015, Hachem 2016), values 20% smaller than the Archetype Models. However, these 

studies intend to simulate low-energy house designs. 

4.1.3 Model and Climate Data Selection 

Three of the Archetype Models were selected to represent two variations of electrically 

heated homes with electric resistance furnaces (ER) and air-sourced central heat pumps 

(HP) and non-electrically heated homes with natural gas (NG) furnaces. Each house model 

is of identical construction with an unheated basement and satisfies the 2012 
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International Energy Conservation Code requirements (ICC 2012). The models were 

design based on additional energy codes of Portland, Maine, and were chosen because of 

Portland’s proximity to the eastern Canadian border. Climate data for this location is 

available at 1-hour time-steps. 

4.1.4 Occupant Load Profiles 

Three sets of occupant load profiles are applied in the simulations in this Chapter. 

 

4.1.4.1 Default Occupant Load Profiles 

The existing ALP and DHW profiles within the Archetype Models consist of repeated 24-

hour profiles at 1-hour time-steps for individual ALP and DHW end-uses (e.g. interior 

lighting, clothes washer, misc. plug-loads etc.). These loads profiles have been 

constructed by the Pacific Northwest National Laboratory (Taylor et al. 2015), drawing 

from several resources such as Hendron and Engebrecht (2010) and ICC (2012). For 

individual end-uses such as refrigerators, sinks, and clothes washers, a separate 24-hour 

profile has been generated for weekdays, weekends, and vacations. For comparison with 

other ALP profiles, the individual end-use profiles are combined into one ALP profile. 

 

4.1.4.2 Synthetic Occupant Load Profiles 

The nine ALP profiles generated by Armstrong et al. (2009) and three DHW consumption 

profiles generated by Jordan and Vajen (2001a) are high temporal resolution, annual 

profiles that were compiled for the IEA Energy Conservation in Buildings and Community 

Systems Programme’s Annex 42 which sought to improve the modeling of fuel cell and 

other cogeneration technologies13. This subsection will describe their origin. 

                                                           
13 They are freely available from the Programme’s website at the following link: 
http://www.ecbcs.org/annexes/annex42.htm. 

http://www.ecbcs.org/annexes/annex42.htm
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4.1.4.2.1 Synthetic DHW Profiles 

To model DHW demand, Jordan and Vajen (2001a) used a probability approach based on 

data gathered in Germany and Switzerland (Knight et al. 2007). The model produced a 

different profile for each day of the year at 1, 6, and 60-minute time-steps and for mean 

daily consumption levels of 100, 200, 400, and 800 L/day. A method was also developed 

to superimpose profiles in order to generate new profiles at different increments (i.e. a 

profile for a mean daily consumption of 300 L could be generated by superimposing 100 

L and 200 L profiles). The model assumes four categories of loads: short loads (i.e. washing 

hands, etc.), medium loads (i.e. dishwasher, baths, and showers). Within each category, 

assumptions are made for the mean flow rate, load duration, incidences, and the 

statistical distribution of different flow rates. Days of the week, seasons, and holidays are 

also considered.  

For Annex 42, measured DHW profiles at 5 and 60-minute time-steps from the U.S., 

Canada and various countries in Europe were compiled and used to calibrate the model 

created by Jordan and Vajen (2001a). The DHW consumption data used in Annex 42 did 

not include information on occupancy levels, data collection methods or date of data 

collection. The DHW consumption levels and patterns from in different regions varied 

greatly: average daily DHW consumption in North American was over 200 L/day while 

European consumption was closer to 100 L/day.  Using these daily estimates as the basis, 

the probabilistic model developed by Jordan and Vajen’s (2001a) was then employed to 

generate annual DHW profiles with 100, 200, and 30014 L/day average consumption at 1-

minute time-steps. Then, 5 and 15-minute time-step profiles were created by aggregating 

the 1-minute time-step profiles over the longer time intervals.  

                                                           
14 Generated by superimposing the 100 and 200 L/day profiles. 
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4.1.4.2.2 Synthetic ALP Profiles 

Similarly, Armstrong et al. (2009) used a probability approach to generate the nine, 5-

minute time-step ALP electricity demand profiles. They were meant to represent ‘typical’ 

detached Canadian households at three consumption levels: (1) low demand to represent 

energy conscious family, (2) medium demand to represent a regular family in an average 

detached house, and (3) high demand to represent a large family with no interest in 

energy conservation, living in a large detached house. 

Bodies of information were collected from various Canadian sources to create the 

profiles:  

 appliance stock data was required to estimate appliance numbers per household,  

 appliance characteristics such electrical draw, cycle duration and cycles per year were 

required to construct specific appliance run-time events, 

 time-of-use probability curves were required to predict occupant actions to control 

the probability of an event occurring, 

 annual consumption estimates were required to develop annual target energy 

consumption of each appliance.  

With this information, eight sub-load profiles were generated: refrigerator, freezer, 

dishwasher, clothes washer, clothes dryer, range, other appliances and lighting. These 

were then combined to create whole-house ALP profiles.  

A total of nine 5-minute time-step profiles were generated to represent three years at 

each of the three consumption levels. The characteristics of these profiles are shown in 

Table 4.2 
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Table 4.2 Synthetic DHW Profile Characteristics (adapted from Armstrong et al. 2009) 

  
Average Daily 
Consumption 

(kWh/day) 

Average Daily Draw 
(kW) 

Maximum Yearly 5-
minute Draw (kW) 

Low 
Demand 

Year 1 13.1 0.54 8.10 

Year 2 12.8 0.53 7.43 

Year 3 13.3 0.55 6.97 

Avg. 
Demand 

Year 1 22.4 0.93 8.81 

Year 2 22.5 0.94 8.31 

Year 3 22.2 0.93 8.76 

High 
Demand 

Year 1 35.5 1.48 10.48 

Year 2 36.0 1.50 10.93 

Year 3 35.7 1.49 10.05 

For the simulations, each ALP profile was matched with the synthetic DHW profile of the 

same consumption level (e.g. low demand ALP with 100 L/day DHW) so that there were 

a total of nine sets of synthetic profiles for building simulation but with each DHW profiles 

repeated three times. 

4.1.4.3 New Measured DHW and ALP Profile Pairing 

The annual DHW profiles generated from the Solar City and NGTC measured datasets in 

Chapter 2 and the annual ALP profiles generated from the Nova Scotia and Ottawa 

datasets in Chapter 3 were sorted based on lowest to highest average consumption (DHW 

and ALP separately). Then the DHW and ALP profiles were paired based on their order of 

consumption so that there were a total of 82 sets of DHW and ALP profiles.  

4.1.4.4 Profile Comparison 

The default, synthetic and measured profiles are contrasted in Figure 4.3, where one of 

each ALP and DHW profile is plotted for a period of one day.  
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Figure 4.3 Time-step comparisons of three ALP and DHW profile types 

From Figure 4.3, the default ALP and DHW profiles are obviously lacking in resolution on 

account of their 1-hour time-steps. This has the effect of ‘smoothing’ the profile so that 

peaks and valleys are no longer visible. Higher resolution synthetic and measured ALP and 

DHW profiles behave similarly.  

4.1.5 Simulation Time-steps 

Simulations are conducted at various time-steps in order to best capture the potential of 

the various occupant load profiles: 

 82 models with measured occupant load profiles were conducted at 15-minute time-

steps (Ottawa and Nova Scotia ALP profiles), 



 

 

 

 

 

99 

 20 models with measured occupant load profiles were conducted at 1-minute time-

steps (Ottawa ALP profiles only). These models are a subset of the 82 models 

previously generated, 

 9 models with synthetic occupant load profiles were conducted at 5-minute time-

steps to match the synthetic ALP profiles, 

 1 model with default occupant load profiles were conducted at 15-minute time-steps 

which was the default for the Archetype Models despite hourly occupant load 

profiles. 

4.1.6 Simulation of Heating and Cooling System 

 

EnergyPlus models heating and cooling loads with ideal control rather than hysteresis 

control associated with thermostat setpoints which would usually be found in 

households. The difference between the two control strategies is demonstrated in Figure 

4.4 with a hypothetical example of a single zone system with a single heating coil. 
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Figure 4.4 Hypothetical example of hysteresis and ideal control 

Hysteresis control is shown in the upper plot of Figure 4.4 where the heating coil cycles 

on when zone temperature falls to a lower limit and remains on until the zone air 

temperature has reached an upper limit. This cycle repeats itself and the zone air 

temperature will hover around the zone ‘setpoint’ without ever settling on it.  

Ideal control is shown in the lower plot where the heating coil power is always at ‘part 

load’, following the zone heating load so that the zone air temperature will constantly 

meet the setpoint. This method may produce accurate results for simulations at longer 

time-steps where the coils may cycle on and off within a time-step and a part load can 

closely match the real average load from the coil over the time-step. However, where a 

cycle may span several shorter time-steps (1 to 15-minutes), the heating coil may be on 

or off during the entire time-step and a part load would not match a realistic load.  
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For this research, the heating and cooling of the Archetype Models is modeled using ideal 

control for a single zone which may provide a good approximation of a building with 

several zones heated by separate coils or a single heating system with variable speed or 

multi-stage capabilities because the whole-building heating or cooling load will step up 

and down as coils are switched on or off.  

4.2 Simulation Results Analysis 

In this section, two output variables generated from the EnergyPlus building simulation 

tool are analyzed: 

 Whole-house electricity load - this is the total electric demand power the whole 

building ALP and HVAC electric demands averaged over the time-step 

 Water heater electric power – this is the electricity demand for the DHW heater 

element averaged over the time-step 

4.2.1 Average Daily Electricity and Water Consumption 

Average daily consumption simulated is shown in Table 4.3 for various categories of 

consumption using the measured, synthetic and default occupant loads. Note that the 

‘whole-house’ categories refer to electricity consumption only. 
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Table 4.3 Average daily consumption per household applying various occupant load profiles 

to three heating system types15 

 Applied Occupant Load Profiles 
 Measured (n = 82) Synthetic (n = 9) Default (n = 1) 

DHW (L/day) 186 200 315 

DHW heating energy (kWh/day) 7.9 8.7 12.3 

ALP (kWh/day) 16.1 23.7 24.3 

Whole-house (NG) (kWh/day) 21.3 29.7 27.5 

Whole-house (ER) (kWh/day) 71.0 77.2 82.7 

Whole-house (HP) (kWh/day) 53.3 60.4 67.6 
 

From Table 4.3, the default load profiles result in 70% more DHW consumption, 67% more 

DHW heating energy, 51% more electricity for ALP loads, and between 17% and 27% more 

whole-house electricity (HP and ER houses) than the measured profiles. The synthetic 

profiles result in 8% more DHW consumption, 15% more water heating energy, 47% more 

electricity for ALP loads, and between 8.7% and 13% more electricity overall for 

electrically heated homes (HP and ER houses). The whole-house load for NG houses is 

similar to the ALP load. Based on these findings, the default and synthetic profiles may 

overestimate consumption levels. 

It should be noted that DHW heating energy is not a component of the whole-house NG 

loads because the DHW heating load is satisfied by natural gas. 

4.2.2 Hourly Consumption 

 

Average hourly electrical whole-house consumption for NG and HP houses is shown in 

Figure 4.5 for both in winter and summer seasons for simulations using the measured, 

synthetic and default profiles.  

                                                           
15 Note that the DHW heating category is also included in the whole-house electricity load 
for ER and HP houses but is not included in the whole house loads for the NG houses 
which rely on NG for water heating. 



 

 

 

 

 

103 

 
Figure 4.5 Average hourly whole-house electrical consumption for NG and HP houses in 

winter and summer using measured, synthetic and default occupant load profiles 

From Figure 4.5, the hourly whole-house loads generated using the various occupant load 

datasets follow similar trends but those generated using measured occupant loads are 

generally lower in magnitude than the others. Furthermore, those generated with 

synthetic and default occupant load profiles have a small peak between 16h and 21h. If 

single occupant load profiles were repeated for houses in a larger community, these 

differences would be magnified. Note, however, that these results are produced by 

averaging the whole-house loads of many houses (n = 82 for measured, n = 9 for synthetic, 

n = 1 for default) and individual average hourly whole-house loads vary from house to 

house, as shown in Figure 4.6.  
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Figure 4.6 Variations in HP whole-house average hourly loads when using measured and 
synthetic occupant load profiles 

The upper and lower plots of Figure 4.6 show the average hourly whole-house electricity 

load of nine HP houses using measured and synthetic occupant load profiles. In each plot, 

the thicker, solid black line represents the average hourly whole-house electricity load 

averaged across the entire datasets. Visual observation suggests that there is more 

variation in individual profiles when using measured occupant load profiles than when 

using synthetic. This phenomenon is explored numerically in Figure 4.7 where the 

correlation coefficients (R2) of average hourly whole-house loads for individual HP houses 

to the average across all HP houses is shown when using measured and synthetic 

occupant load profiles. 
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Figure 4.7 Histogram of correlation coefficients (R2) of average hourly whole-house loads for 
individual HP houses to the average across all HP houses using measured and 
synthetic occupant load profiles 

From the upper plot in Figure 4.7, there is a range of correlations between individual 

house average hourly load profiles and the average for the entire dataset. In the lower 

plot, the variation is much more limited, but centered around approximately the same 

point. In reality, smaller subsets of communities (~4-8 houses) might all feed into the 

same polemounted transformer and the larger dataset from the upper plot would provide 

much more opportunity to explore various combinations of household loads associated 

with equipment. Such an analysis is carried out in Section 5.4 of this thesis.  

4.2.3 Time-step Comparisons 

While aggregate consumption analysis on an hourly or daily basis provides an excellent 

method to analyse overall performance of technologies; electricity demand at high 
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temporal resolution is of interest to energy service providers who face the challenge of 

sizing distribution equipment and satisfying electricity demand on an on-going basis. The 

Solar City and NGTC annual DHW profiles and the Ottawa ALP profiles are all at a 1-minute 

time-step resolution and provide an excellent opportunity to simulate whole-house 

demand at the same frequency. An example is shown for an ER house in Figure 4.8 where 

the results are compared at 1, 5, and 15-minute time-steps for January 21st, which is the 

winter design day for this climate dataset. 

 

Figure 4.8 Whole-house, ALP and water heater time-step load profiles at 1-minute, 5-
minute, and 15-minute time-steps 

The upper plot in Figure 4.8 demonstrates that the ALP and water heater loads can have 

a significant impact on the whole-house load profile. At ~14h a water heater load of ~5 

kW is visible in the whole-house load which increases by approximately 52% to 10.5 kW. 

The ALP load exhibits a similar effect at ~8h, despite it being during the heating season 
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where the average loads in the household are on average 5-9 times higher than the ALP 

load. In the middle plot at a 5-minute time-step, this effect is still largely apparent and 

the magnitude of shift in the whole-house load profile is equivalent to that at 1-minute 

time-step. In the lower plot, at a 15-minute time-step, this effect is reduced for the 

shorter DHW draws.  

Based on these findings, the hourly default occupant load profiles would not be 

satisfactory for demand modeling while the synthetic profiles at temporal resolutions of 

1 to 5-minutes are adequate.  

4.3 Technology Application: Electric Tankless Water Heater 

Electric tankless water heaters are an option for homeowners that may be attractive to 

those who lack the necessary space for a larger tank water heater and prefer enhanced 

operating efficiency compared to a tank water heater. A tankless and tank water heater 

are shown in Figure 4.9 for comparison. 

 

Figure 4.9 Tankless water heater (left) and tank water heater (right) (adapted from Water 
Heater Hub (2016)) 
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These water heaters heat water from the inlet temperature (~9-18°C) (George et al. 2015) 

to the desired delivery temperature (~52°) nearly instantly which requires a larger power 

supply than a traditional water heater with a tank. Whole-home electric tankless water 

heaters that deliver up to 27 kW of power have recently been made available at local 

building supply stores for reasonable prices (Home Depot of Canada Inc. 2016). Such loads 

can have a significant impact on a whole-house load profile. This sub-section uses the 

measured DHW consumption profiles to analyze the potential impact of implementing 

tankless water heaters on the peak demand of houses. 

4.3.1.1 Methodology 

For this analysis, energy calculations are conducted manually on the DHW profiles rather 

than by using a building simulation software. Water heating power requirements are 

calculated using Equation ( 3 ). 

  

𝑊𝑎𝑡𝑒𝑟 𝐻𝑒𝑎𝑡𝑒𝑟 𝑃𝑜𝑤𝑒𝑟 =  𝑉̇𝜌𝑐𝑝∆𝑇 ( 3 ) 

To satisfy Equation ( 3 ), the density (𝜌) and the specific heat capacity (cp) of water are 

assumed to remain constant at values of 1 kg/m3 and 4.182 joule/gram °C. The change in 

temperature (ΔT) across the water heater is calculated using the inlet temperatures 

provided by the building simulations and a desired DHW temperature of 51.8 °C based on 

the findings of George et al. (2015). Since the inlet temperatures were consistent across 

households (within 0.9 °C for any given time-step), the same inlet temperature profile is 

used for all households. Lastly, the DHW profiles provide the volumetric flow rate (𝑉̇). 

First, the DHW profiles were adjusted to ensure they best represented ‘flow rate’ in 

L/min. For example, if a DHW draw lasts for less than the 1-minute time-step length, the 

measured DHW consumption may not actually equate to rate of flow. To correct this, the 

same logic of Section 2.3.3 was applied to adjust the DHW profiles to be more realistic for 

water heater power calculations: 
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 Single values are unadjusted.  

 Double values are adjusted so that the flow rate for both values is equivalent 

to the larger of the two.  

 Non-edge values are unadjusted.  

 Edge values are adjusted to that they are equivalent to the preceding or 

following measurement, but only if that value is larger than the edge value. 

See Section 2.3.3 for a thorough description of each category of measurement.    

 

4.3.1.2 Time-step Analysis 

The time-step water heater power draw and DHW consumption between 15h to 18h are 

shown in Figure 4.10 for both a conventional water and a tankless water heater. 
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Figure 4.10 Time-step water consumption and water heater electrical power of conventional 
and tankless water heaters 

From Figure 4.10, an instantaneous water heater will draw much more power than a 

conventional water heater and it occurs at the time of use whereas a conventional water 

heater can see a delay in power draw due to hysteresis control around the DHW 

temperature setpoint.  

The influence of water heater power on the whole-house load profile is now 

demonstrated in Figure 4.11 for the two water heater types during a winter and summer 

day. 
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Figure 4.11  Example of water heater and whole-house loads during the summer and winter 
for conventional and tankless water heaters 

From Figure 4.11, both types of water heaters can cause whole-house loads to fluctuate, 

however, from the upper left plot, the water heater only increases the magnitude of the 

house load by a factor of two and is engaged three times during the time-period. In the 

lower left plot, the tankless water heater is engaged many times during the time-period 

and increases the house load by up to 400%. In the right hand plots, the whole-house load 

during the summer season is much lower, magnifying the overall impact that using a 

tankless water heater has on the whole-house load. 

4.3.1.3 Limitations of Tankless Water Heaters 

At times, a DHW draw may be too large for an tankless water heater to satisfy the load.  

This is explored for each of the 82 DHW consumption profiles by calculating the 
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percentage of DHW draws that would require more than 27 kW to reach the desired 

outlet temperature. These are shown in Figure 4.12.  

 

Figure 4.12  Distribution of percentages of DHW draws requiring more than 27 kW power for 
all households (n = 82) 

From Figure 4.12, it is clear that the majority of houses will rarely lack a water supply at 

the desired temperature. However, for 5% of households, a 27 kW tankless water heater 

would be insufficient over 13% of the time. 

4.3.1.4 Potential Impact of Tankless Water Heaters on Whole-House Loads 

The high magnitude power draws of tankless water heaters could also cause issues at the 

electrical panel in a household. For example, a 200 A breaker on a 240 V circuit could 

support a maximum power draw of 48 kW. This section evaluates the chance of exceeding 

this limit if high water heating loads happen concurrently with high space heating and ALP 
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loads. To accomplish this, the tankless water heater power profiles are matched with the 

simulated ER house HVAC and ALP load profiles and the annual peak load is evaluated. A 

total of 1640 profile combinations are tested (82 DHW profiles and 20 HVAC/ALP profiles). 

The distribution of maximum and 98th percentile loads are shown in Figure 4.13. 

 

Figure 4.13  Distribution of maximum and 98th percentile whole-house loads for various 
tankless water heater, HVAC and ALP load combinations (n = 1640) 

From Figure 4.13, none of the water heater and HVAC/ALP profile combinations produce 

a whole-house maximum load beyond 41 kW and 98% percent of loads are within 20 kW, 

suggesting that for these households, a limit of 48 kW would not be exceeded. 

4.3.1.5 Community Aggregation of Tankless Water Heater Loads 

Electricity providers may be concerned with the volatility of tankless water heater loads 

and their aggregate impact on the electricity grid. This sub-section explores the 



 

 

 

 

 

114 

aggregation effects of community scale uptake of tankless water heaters. First, a 1-minute 

time-step, three hour tankless water heating load profile of a range of community sizes 

(1, 20, 40 and 82 houses), is shown in Figure 4.14. 

 

Figure 4.14 Time-step DHW heating load of various community sizes with tankless water 
heaters 

From Figure 4.14, the aggregate tankless water heating loads appear to be volatile even 

as the number of houses increases from 1 to up to 82 houses. Despite the temporal 

variation in DHW consumption across households shown in Chapter 2, the community 

load does not become much smoother as the number of homes increases. This is due to 

the ‘instantaneous’ nature of tankless water heaters and the sporadic nature of DHW 

consumption. The heating element is only engaged when DHW is being consumed and 

since most of the time the DHW load of a household is zero, the water heating load of a 

house can shift from zero to up to 100% (up to ~27 kW) very quickly. Since tankless water 
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heaters can draw a larger load, it could require relatively few households to significantly 

increase the community load in one time-step. Next, the load changes associated with 

the full community water heating load (n = 82) are shown in Figure 4.15. The average load 

changes that appear during each hour of the day are represented by the red asterisks 

while the 2nd and 98th percentile loads are contained within the red error bars and the 

minimum and maximum load changes are contained within the blue error bars. 

 

Figure 4.15 Average, 2nd, 98th, minimum and maximum hourly load changes of community 
tankless DHW heater loads (n = 82) 

From Figure 4.15, the majority of load changes (98%) of the community are within 45 kW 

but much higher load changes of up to 130 kW do occur. However, this value is still 

relatively small compared to the potential maximum load of the community (i.e. if all 

homes fully engaged their tankless water heaters concurrently, the maximum load would 

be 27 kW X 82 houses = 2214 kW). To explore how the maximum load changes are 



 

 

 

 

 

116 

influenced by community size, the maximum load change is shown in Figure 4.16 for 

graduated sizes of communities with both tankless and tank water heaters. Only 20 

whole-house simulations were conducted due to the limited number of 1-minute ALP 

profiles, and so the conventional tank water heater community size is capped at 20 

houses. 

 

Figure 4.16 Graduated tankless water heater load changes with increasing size of community 

From Figure 4.16, the peak community water heating load changes increases by a specific 

amount each time a new profile has DHW consumption at the same moment as the 

current maximum load change. As more tank are added to the community, the maximum 

load change could continuously rise, rather than peaking at a specific value. While this is 

the same for tankless water heaters and conventional tank water heaters, the peak 

tankless community load change increases at a much faster rate. For this reason, an 
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electrical utility might be concerned about the mass uptake of whole-house tankless 

water heaters.  

4.4 Economic Application: Time-of-Day Pricing 

Time-of-day (TOD) electricity pricing is a way for electric utilities to influence the uptake 

of powershifting technologies. An example of such a technology is electric thermal 

storage (ETS) space heating systems which heat up a thermal mass during periods of low 

electricity rates and release the heat to the house during periods of higher electricity rates 

so that less electricity is required from the utility during the ‘higher’ rate period. The 

electricity provider in Nova Scotia, NSPI, offers two domestic electricity pricing schemes: 

the domestic service tariff which is available to all customers and the domestic service 

TOD tariff which is only available to homeowners who have an ETS heating system 

installed. The non-TOD rate is 0.148 $/kWh and the TOD tariff schedule is shown in Figure 

4.17.  
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Figure 4.17 NSPI domestic service time-of-day tariff schedule (NSPI 2016) 

If the TOD tariff was made accessible to all customers, then homeowners may opt for this 

tariff for reasons other than their heating system type. One example that might not 

influence space heating or cooling or existing ALP loads would be the purchase of an 

electric vehicle (EV) that could be charged on the off-peak rate times. To understand if 

this option is financially reasonable for a homeowner, the effect of TOD pricing on all 

other electricity consumption should be understood. The annual electricity expenditures 

under both NSPI tariffs have been calculated for the each of the 82 houses with three 

heating system types and the distributions of these rates are shown in Figure 4.18 and 

the statistics of the difference between the two tariff distributions are shown in Table 4.4. 
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Figure 4.18 Distribution of annual household electricity costs across for various heating 

system types for standard and time-of-day pricing schemes 

Table 4.4 Statistics of decrease in annual electricity expenditures from standard to TOD 
electricity tariffs for three heating system types  

 Decrease in annual electricity expenditures ($ CAD) 

Statistic NG houses (n = 82) ER houses (n = 82) HP houses (n = 82) 

Mean  $ 200.95   $ 1,212.11   $ 578.47  

Median  $ 189.19   $ 1,195.00   $ 572.07  

Maximum  $ 406.46   $ 1,460.99   $ 793.65  

Minimum  $   84.59   $ 1,074.55   $ 456.43  

From Figure 4.18 and Table 4.4, all three categories of homes show a general decrease in 

annual electricity expenditures under the TOD tariff compared to the standard rate. For 

NG houses, the decrease is marginal, with an average decrease of $200.95 annually. The 

average decrease for electrically heated homes is much more with a $1,212.11 decrease 

for ER homes and a $578.47 decrease for HP houses. It should be noted that all houses in 

each heating system category were identical in construction and therefore are subject to 
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very similar heating loads. The NG houses show much more variation on account of 

variations in occupant load time-of-use characteristics across homes.  

Based on these findings, the utility would generally lose income if homeowners had 

access to the TOD tariff, even if homeowners did not change their behavior.  

4.4.1 Evaluation of Tank and Tankless Water Heaters Under the non-TOD and TOD 
tariffs 

This subsection elaborates on the analysis of Section 4.3 by evaluating tankless and tank 

water heaters under non-TOD and TOD electricity rates. Tankless water heaters consume 

electricity at the time-of-use, whereas tank water heaters will delay electricity 

consumption, so presumably, a TOD rate structure could impact DHW heating 

expenditures. This analysis is conducted for ER houses only, since DHW consumption 

profiles are the same between house types and so the results would be very similar HP 

houses which also rely on electricity for water heating. Table 4.5 shows the annual DHW 

heating electricity consumption and the associated expenditures under the non-TOD and 

TOD tariffs. 

Table 4.5 Annual electricity expenditures under standard and TOD electricity tariffs for tank 
and tankless water heaters  

Tariff 

Annual 
Electricity 

Consumption 
(kWh) 

Annual electricity expenditures for DHW heating ($ 
CAD) 

Domestic 
Service Tariff 

Domestic Service 
TOD Tariff 

% difference 

Tankless Water 
Heater (n = 20) 

2548 $ 377.12 $ 343.33 -9.0% 

Tank Water 
Heater (n = 20) 

2750 $ 407.03 $ 376.65 -7.5% 

From Table 4.5,  7.3% less electricity is consumed by a tankless water heater than a tank 

water heat, presumably due to stand-by heat losses through the tank envelope. This 

equates to 7.3% lower electricity expenditures under the non-TOD. Under the TOD tariff 

tank water heaters experienced greater annual cost savings on average (9.0%), compared 
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to tankless water heaters (7.5%). However, this effect is not consistent across households; 

some households will actually spend more money for DHW heating under a TOD tariff 

suggesting that some households don’t necessarily consume DHW during typical peak-

rate hours. This is explored further in Figure 4.19, which shows the change in annual 

expenditures from switching from the non-TOD to TOD tariff for both water heater types. 

 

Figure 4.19 Distribution of changes in annual electricity expenditures under non-TOD and 
TOD tariffs for tank and tankless water heaters (n = 20) 

From Figure 4.19, while most users show an decrease in expenditures due to the TOD 

tariff, not all do. Users may experience a decrease of as low as $143.00 or an increase as 

high as $40. Surprisingly, changes are quite well distributed for both water heater types 

which can likely be accounted for by variation in consumption patterns of specific 

households as well as between households.  
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4.5 Conclusions 

The comparison of building simulation results using existing, synthetic occupant load 

profiles and the new measured occupant load profiles highlights the benefits and 

limitations of both. Two primary benefits of the measured dataset are apparent: (1) their 

high temporal resolution, and (2) the variety of profiles.  

The default profiles are particularly limited in both time-step resolution and variability. 

Furthermore, they show 70% more DHW consumption and 51% more ALP electricity 

consumption than the measured profiles on average. 

The major limitation of the synthetic profiles is that there are only 3 annual DHW profiles 

and 9 ALP profiles so they will not permit demand (power) modeling of communities or 

the evaluation of profiles across a variety consumer types. 

The 1-minute time-step measured data provides opportunity for demand modeling of 

technologies. This has been demonstrated with the modeling of tankless water heaters 

where it was shown that for a small percentage of households, a 27 kW tankless water 

heater may not be capable of providing water at a desired temperature up to 20% of the 

time for a small number of households. An analysis of the impact of tankless water 

heaters on whole-house profiles was also conducted and it was shown that there is little 

likelihood that a tankless water heater could cause a whole-house load that is beyond the 

limits of a typical electrical panel.  

Lastly, an economic application was demonstrated by evaluating the whole-house 

building simulation results against a standard electricity tariff in Nova Scotia and a TOD 

tariff. It was shown that without any change in behavior, average homeowners would 

spend less on electricity. 

The new occupant load profiles enable such analyses to cover a wide range of user types 

and an entire year of temporal variations. It is hoped that these profiles will be applied by 

in the future by researchers to conduct similar evaluations. For example, comparisons 
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could be made between competing technologies such as drain water heat recovery, solar 

DHW heating systems and solar PV under various electricity import and export rate 

structures. Futhermore, this short demonstration could be elaborated further with the 

following suggestions: 

 different heating system types that are designed to temporally shift energy 

consumption for space heating and cooling could be modeled (e.g. ETS systems), 

 heating and cooling control strategies could be varied to demonstrate how a 

homeowners could influence their electricity expenditures using programmable 

thermostats 

 occupant load data from homes with a TOU rate could be measured and developed. 
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Chapter 5 Application of Occupant Load Profiles to 
Community Scale Simulation 

The primary benefit of the new measured occupant load profiles is a significant 

advancement in the ability to perform time-step demand modeling of communities 

because they capture the variations in occupant behavior within a community. This allows 

for the use of unique profiles for each house in a community, avoiding unrealistic peak 

loads that occur by repeating a limited number of occupant load profiles for multiple 

houses. In this Chapter, the new measured occupant load profiles are incorporated into 

the residential Archetype building models described in Chapter 4. and other minor 

adjustments are made to the models to simulate a more realistic community. The building 

models then underwent a batch simulation to evaluate the whole-house electricity load 

of a hypothetical tract home community of 82 identical homes.   

5.1 Background and Literature Review 

Previous research has focused on energy and greenhouse gas emissions modeling on a 

community scale. For example, Han et al. (2015) simulated solar PV in combination with 

proton exchange membrane fuel cells (PEMFC) for a neighborhood of 12 south facing 

Ontario houses. This study was intended to demonstrate the potential to reduce the 

required backup electricity provided by the electrical grid for a PV-PEMFC coupled system 

compared to a stand-alone solar PV. The technologies were modeled using the ESP-r 

building simulation software and the 12 load profiles developed by Saldanha and 

Beausoleil-Morrison (2012) were summed to represent the ALP load of the community. 

The results demonstrated an 82.5% reduction in grid imports and a 24% reduction in 

required grid backup capacity for the PV+PEMFC coupled system as compared to a stand-

alone PV system.  

Another example of community scale modeling is the Canadian Hybrid Residential Energy 

Model (CHREM). The CHREM draws from the Canadian Single-Detached and Double/Row 

Housing Database (CSDDRD), a database of 17,000 single detached, double, and row 
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houses representative of the Canadian housing stock. A complete description of the 

CSDDRD can be found in Swan et al. (2009). This database is coupled with the ESP-r 

building simulation tool to estimate aggregate energy consumption for Canadian homes 

and communities. 

To model ALP and DHW loads, the CHREM uses previously developed neural networks 

model to estimate annual ALP and DHW energy consumption for each house in the 

CSDDRD. Secondly, the limited set of nine ALP profiles generated by Armstrong et al. 

(2009) and the three DHW consumption profiles generated by Jordan and Vajen (2001a) 

were used as a base to generate a profile for each home in the CSDDRD. For each home, 

a profile was selected and adjusted by a ‘multiplier’ so that the annual consumption of 

the profile matched the annual estimate for the house. This methodology is described in 

detail by Swan et al. (2011). As a result of using only a small number of profiles, they are 

limited in diversity and result in unrealistic peaks and valleys when conducting time-step 

demand analysis at a community scale.  

Since its development, the CHREM has been used for several community scale studies 

investigating solar DHW heating system retrofits, window shading retrofits, internal 

combustion engine based cogeneration systems, solar combi-system retrofits, and air-to-

water heat pump retrofits (Nikoofard et al. 2014a, Nikoofard et al. 2014b, Asaee et al. 

2015, Asaee et al. 2016, Asaee et al. 2017). These studies were focused on aggregate 

energy consumption of homes, rather than time-step demand. However, Wills et al. 

(2016) employed the CHREM to conduct a time-step evaluation of source net-zero 

performance for residential community scale solar PV retrofits using a new set of 

synthetic ALP profiles generated for the study (see Section 3.2 for an overview of these 

profiles). 

Several Canadian based studies have been conducted in recent years examining optimal 

neighbourhood design for solar communities, including strictly residential communities 

(Hachem et al. 2012 and Hachem et al. 2013) and mixed-use communities (Hachem 2015, 
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Hachem 2016). Factors such as plan shape of housing units (e.g. L-shape or rectangular), 

roof design, site layouts and community density where considered. For each residential 

building, the same profiles for DHW heating, lighting, and major and minor appliance 

electricity use were applied. These studies also focused on aggregate energy consumption 

of homes, or energy demand at low time-step resolution (hourly). 

5.2 Community Layout 

The Archetype Models of Portland, Maine that were simulated in Chapter 4 were again 

selected for the community simulations. Since a new, tract home community could be 

reasonably constructed with common heating system types throughout, three 

communities are modeled to represent communities of electrically heated homes with 

electric resistance furnace (ER) heating systems, heat pump (HP) heating systems, and 

non-electrically heated homes with natural gas (NG) furnaces. See Table 4.1 in Section 

4.1.2 for a detailed description of individual house models. 

The communities consist of 82 houses with various orientations to represent a realistic 

configuration. A sketch of the community is shown in Figure 5.1 where each black square 

represents a house and the smaller, white grid on each house represents a solar PV array. 
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In Figure 5.1, single detached houses are located on evenly divided parcels of land. A 

major road intersects the community, creating two mirrored U-shaped residential streets. 

The community is oriented so that all homes have a sloped gable roof facing within 45° of 

South. Shading between houses is not being taken into account in this study. 

As in the previous Chapter (see Section 4.1.4.3), the DHW and ALP datasets were sorted 

based on lowest to highest average consumption and paired on this basis and these 82 

profile pairs were randomly distributed to house models throughout the community.  

Lastly, a rooftop 5 kW PV system was applied to each house (shown by the grey and black 

grid on the roof of each house in Figure 5.1). The PV systems are located on the most 

south facing roof of each house with an 18.5° tilt to match the slope of the roof.   

Rooftop 
Solar PV 

Array 

Figure 5.1  Sketch of community layout 
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Each house in the community was then simulated for an entire year at 15-minute time-

steps and the community loads were calculated by summing results from community. 

Additionally, the subset of 20 houses with a 1-minute time-step ALP profile from the 

Ottawa dataset were simulated at a 1-minute time-step and community loads for this 

subset were calculated in the same fashion. 

5.3 Simulation Results Analysis 

In this section, three output variables generated from the EnergyPlus building simulations 

are analyzed: 

 Whole-house electricity load - this is the total electric demand power the whole 

building ALP and HVAC electric demands averaged over the time-step 

 PV power - this is the total photovoltaic electricity produced on-site in power units 

 Water heater electric power – this is the electricity demand for the DHW heater 

element averaged over the time-step 

From PV power and the whole-house electricity load, the ‘net house load’ can be 

calculated, where a negative value would signify an electricity export to the electrical grid 

and a positive value would signify import from the electrical grid. 

5.3.1 Aggregate Energy Consumption and Generation 

First, aggregate ALP and whole-house energy consumption and PV power generation for 

the three communities of different heating system types (NG, ER and HP) are presented 

in Figure 5.2.  
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Figure 5.2 Annual energy consumption and generation of modeled communities 

From Figure 5.2, PV energy generation and ALP energy consumption are identical for each 

community, but whole-house energy consumption changes on account of electric space 

heating and space cooling (note that all communities are equipped with electric space 

cooling, regardless of heating system type). For NG houses, the whole-house 

consumption is approximately 65% of PV generation, but for the electrically heated 

communities, PV generation is less than whole-house consumption.  

Annual estimates such as these can be used to evaluate whether a community is ‘net-

zero’ or to satisfy the requirements of a net-metering program where distributed 

generation must be less than community energy consumption. 
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5.3.2 Demand Analysis 

Figure 5.3 shows the average hourly consumption and PV generation of the community 

during winter and summer for the three heating system types. 

 

 
Figure 5.3 Average hourly community loads and PV power generation (n = 82) during winter 

and summer seasons for three heating system types at a 15-minute time-step 

From Figure 5.3, the average relationship between PV generation and community loads 

is shown for the winter and summer seasons. Even though ER and HP houses consume 

more energy than is generated on an annual basis, much more electricity is generated 

during daytime hours (6h-16h) than is consumed by the community during summer 

months. Even during the winter season for HP houses there is a period where generation 

exceeds consumption (between 9h and 14h). 
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The resolution of this analysis is increased further in Figure 5.4 where the 1-minute time-

step loads and generation of a single ER house and a 20-house subset of the community 

are shown.  

 
Figure 5.4 Example of ALP load, whole-house load and PV generation at a 1-minute time-

step for a single house of ER type 

From Figure 5.4, the direction of flow of electricity to or from a house can change 

frequently throughout a day, especially during the summer months due to water heater 

and large ALP loads or abrupt changes in solar radiation due to cloud cover. It is also 

notable that for this house on this day, activity in the household begins just as PV 

generation ceases, which is apparent by the rise in ALP load at 18h and the large ALP loads 

occurring shortly thereafter. The significant effect of the DHW load on the whole-house 

loads also flags the potential of controlling DHW heaters during periods of high demand 

on the electrical grid.  
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The load for 20 houses (including the house shown in Figure 5.4) is now shown in Figure 

5.5 for the same day. 

 

Figure 5.5 Example of ALP load, whole-house load and PV generation at a 1-minute time-
step for a community of 20 houses of ER type 

From Figure 5.5 the ALP load profile and therefore the whole-house load profiles are 

much smoother than for a single house. This demonstrates the variability of occupant 

consumption patterns. 

5.3.3 Electrical Grid Imports and Exports 

While the figures in Section 5.3.2 show the breakdown of various load types in the 

community, utilities are only concerned with the net-load from the community so that 

they can procure sufficient capacity to balance the load. For one shoulder season day 

(March 2nd), Figure 5.6 shows the net community load for 82 houses (thick black line) 
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scaled down by a factor of 82 and the net-load for 5 houses in the community (shown by 

thin, colored lines). Only 5 individual house profiles are used so that fluctuations can be 

clearly seen. The PV power generation of the community is also shown (thick red line) and 

scaled down by 82 for comparison. 

 

Figure 5.6 Time-step profile of net-load of 5 ER houses (thin colored lines), scaled 
community net-load (thick black line, n = 82) and scaled community PV power 
generation (thick red line, n = 82).  

From Figure 5.6, electricity is both exported to and imported from the grid on this day. 

The community load is sharply affected by the reduction in PV power generation at 

approximately 10h because climate factors such as cloud cover are coincident over the 

entire community. However, the net community load is generally unaffected by the sharp 

fluctuations seen in the individual household loads, which are not coincident across the 

dataset. Since each household is of the same construction the individual household load 
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fluctuations are primarily due to variations the occupant load profiles. This variation 

across households is explored further in Figure 5.7, which shows the seasonal average net 

house loads for each household in the community for the three heating system types.  

 

Figure 5.7 Distribution of net seasonal electricity exports across all homes for three heating 
system types 

Figure 5.7 shows that the distributions of average net-loads from each house in the 

communities’ range by roughly 1 kW to 2 kW for each season and in many cases, the 

range can cross the threshold between net electricity imports and exports to the electrical 

grid from the community. This analysis could be applied for a real community to 

determine the PV capacity necessary for a community to be ‘net-zero’.  
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5.3.4 Peak-to-Mean Ratios 

5.3.4.1 Individual Houses 

One way to evaluate the fluctuation of a load is to calculate it’s ‘peak-to-mean ratio’. In 

Section 3.5.4, the peak-to-mean ratios of ALP loads were examined for individual 

households and community scenarios and it was determined that time-step and size of 

community influenced the peak-to-mean ratio of an ALP load profile. However, what is 

more relevant to the designers and energy providers of communities are the whole-house 

loads. This section examines the peak-to-mean ratios of the simulated whole-house loads 

for the communities with three heating system types. Note that PV power production is 

not taken into account. 

 In Figure 5.8 the relationship between the annual peak and mean whole-house loads are 

explored. As well, ALP values are included for comparison.  

  

Figure 5.8 Annual peak whole-house electricity loads vs. annual mean whole-house 
electricity loads for individual houses 
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For all load types shown in Figure 5.8, peak loads are independent of mean loads.  ER 

houses have the highest mean loads, but the peak loads are comparable to the HP houses. 

This suggests that the heat pumps can draw a similar magnitude of power as electric 

resistance heaters, but are more efficient.  As expected, for the NG houses, the peak vs. 

mean loads are very close to those of the ALP loads.  For this reason, it is recommended 

that a single ALP load profile should not be adjusted with a multiplier to represent a home 

with a different consumption level. For example, if a ‘low-mean’ ALP profile with a ‘high-

peak’ is multiplied, the peak load of the ‘multiplied’ profile might become unrealistically 

large.  

The peak-to-mean ratios are calculated for the 15-minute time-step houses using the 

values shown in Figure 5.8 and the results are shown in Table 5.1. The results are shown 

for the 1-minute time-step profiles as well.   

Table 5.1  Range of peak and mean ratios for individual houses and two heating system 
types 

  Peak-to-mean ratios 

  Min Max Average 

n = 82,  
15-minute time-step 

ALP  5.4 28.5 14.1 

Whole-house (NG)  5.0 17.9 10.7 

Whole-house (ER)  3.7 5.6 4.8 

Whole-house (HP)  4.7 8.5 6.4 

n = 20,  
1-minute time-step 

ALP  8.4 37.7 22.6 

Whole-house (NG)  7.8 24.5 16.3 

Whole-house (ER) 4.4 6.6 5.4 

Whole-house (HP)  5.4 9.3 7.5 

As expected, the fluctuation is reduced dramatically when space heating becomes part of 

the load. For the ER and HP houses, the peak and mean loads increase by at least a factor 

of two (Figure 5.8), but the profile tends to fluctuate less frequently because the space 

heating loads are more consistent than the ALP loads. 
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Peak-to-mean ratios also tend to increase as the time-step is decreased and the ratios of 

profiles without heating (ALP and NG) increase by between 50% and 60% on average 

when the time-step is decreased from 15-minutes to 1-minute. For profiles with electric 

heating (ER and HP) the increase is only between 12% and 17%.  

5.3.4.2 Communities 

Lastly, this same evaluation is conducted for community loads (sum of the eighty-two 15-

minute time-step whole-house loads and sum of twenty 1-minute time-step whole-house 

loads). The peak, mean, and peak-to-mean ratios are shown in Table 5.2.  

Table 5.2 Peak and mean community ALP and whole-house loads for three heating system 
types 

 
 

Mean Load 
(kW) 

Peak Load 
(kW) 

Peak-to-mean 
Ratio 

n = 82, 
15-

minute 
time-step 

ALP  55.1 141.9 2.6 

Whole-house (NG)  73.8 225.7 3.6 

Whole-house (ER)  243.9 874.8 3.1 

Whole-house (HP)  182.1 891.3 4.9 

n = 20,  
1-minute 
time-step 

ALP  11.7 51.0 4.4 

Whole-house (NG)  16.1 64.4 3.8 

Whole-house (ER)  58.0 219.6 4.0 

Whole-house (HP)  42.7 223.6 5.2 

 

Comparing the values in Table 5.2 to those in Table 5.1, the peak-to-mean ratios of 

communities are generally less than those of individual loads. The reduction occurs for 

communities with all three heating system types, but is much more dramatic for the NG 

community. The rate of this reduction is of interest for community modeling so that the 

‘peak-to-mean’ ratio can be used as an indicator that a sufficient number of unique 

occupant load profiles are being applied in a simulation. The gradual decrease of ‘peak-

to-mean’ ratios with an increasing community size is shown for the ALP load and the 

whole-house load with the three heating system types in Figure 5.9. 
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Figure 5.9 Peak-to-mean ratios with increasing size of community 

From Figure 5.9, the peak-to-mean ratios for all load types initially decline rapidly but 

gradually stabilize. For the ALP load and the NG house loads which do not include space 

heating, 90-95% of the decline occurs within the addition of the first 15 houses. The same 

is true for ER and HP houses, but a less drastic decrease occurs overall. These results 

suggest that for the modeling of large communities, a smaller set of load profiles could 

be applied and repeated without drastically increasing the peak loads. Based on this 

metric, the use of a minimum of 15 ALP profiles is recommended before repeating profiles 

for demand modeling of larger communities. 

5.4 Technical Application: Transformer Analysis 

The load of smaller sub-groups of houses may be of interest to electric utility providers 

for the sizing of appropriate distribution equipment. For example, single phase 

polemounted transformers are commonly used in low density residential applications and 
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can have a power range of between 25 to 100 kVA (ABB Power Technologies Division 

2004). Rather than sizing a transformer, the community which the transformer services 

will instead need to be ‘sized’ to match the transformer capacity (i.e. the number of 

houses allocated to the transformer must be determined). A photo of a polemounted 

transformer in Halifax, Nova Scotia is shown in Figure 5.10.  

 

Figure 5.10  Single phase polemounted transformer 

For this analysis, the simulated whole-house electricity load data at 15-minute time-steps 

is used and again, PV power generation is not taken into account. To determine the 

appropriate number of houses allocated to a polemounted transformer, the peak load is 

determined for combinations of houses within the 82 house dataset. An example of the 

aggregation of whole-house loads is shown in Figure 5.11, where 7 individual whole-

house loads are plotted for a single winter day alongside their aggregated community 

load that has been scaled down by 7 to for comparison purposes. The aggregated whole-

house loads that have been scaled down are much smoother than the individual whole-

house loads. 

Pole Transformer 
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Figure 5.11 Individual whole-house loads for 7 ER and NG houses (thin colored lines) and their 
aggregated community load scaled by a factor of 7 (thick black line)  

Combinations of 4 through 10 houses where created for each of the three heating system 

types to determine the effect of adding a houses to be serviced by a single transformer. 

However, not all possible combinations are tested, since there are too many to compute 

using computer software (there are over 35 billion combinations of 8 houses in a set of 

82). Instead, 100,000 random combinations were generated for each community size (4-

10) and each heating system type (NG, ER and HP). Figure 5.12 shows the distribution of 

peak loads the three heating system types for combinations of 7 houses. 
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Figure 5.12 Distribution of peak loads for 100,000 random combinations of 7-house 
communities 

For electrically heated homes in Figure 5.12, (ER and HP houses), the peak loads of these 

communities generally fall between 70 kW and 80 kW, however, some combinations 

produce peak loads which are approaching 100 kW. Assuming zero reactive power, this is 

the specified limit of some polemounted transformers. For NG houses, peak loads are 

much lower, ranging from approximately 15 kW to 40 kW. The results of all combinations 

are highlighted by Figure 5.13 which shows the mean, minimum and maximum peak loads 

out of 100,000 community load combinations for communities of 4 to 10 homes with 

three heating system types. 
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Figure 5.13 Mean, minimum and maximum peak loads for 100,000 community load 
combinations for communities of 4 to 10 homes with three heating system types 

Figure 5.13 shows the peak community loads increasing linearly as houses are added to a 

community. The maximum peak loads for each distribution are represented by the blue 

asterisks. Based on these findings for this community, no more than 7 electrically heated 

houses should be allocated to a single 100 kVA transformer. However, for same 

community of non-electrically heated houses, up to 27 houses could be allocated to one 

transformer with a maximum peak load of 99 kW (not shown). 

Using the measured occupant load data, a transformer sizing analysis could be completed 

for a proposed community that is under development. Building models and community 

configuration could be designed to better represent a real community.  
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5.5 Conclusions 

This section demonstrates community simulation using the unique, measured occupant 

load profiles. A hypothetical, tract house community in a realistic configuration was 

modeled. 

It was shown that community load profiles are much smoother than single house load 

profiles due to the variability of occupant consumption patterns. For community 

modeling, the ‘peak-to-mean load’ ratio is reduced when calculated at a community scale 

as compared to that of an individual house and this reduction is much more pronounced 

for communities that do not rely on electricity for space heating. For all heating system 

types, most of the reduction in ‘peak-to-mean’ load ratio occurs as a community reaches 

15 houses in size. 

This same effect was demonstrated when analysing the electrical grid imports and exports 

for individual houses and for communities with distributed solar PV generation. Non-

coincident peaks in occupant loads resulted in a relatively stable community net-load 

compared to that of individual houses. Instead, climate factors such as cloud cover, have 

a much strong effect on community load fluctuations because all houses are subject to 

the same simultaneous changes in climate. This analysis could be elaborated further to 

evaluate the range storage and generation requirements to reduce community reliance 

on the electrical grid.  

A variety of load profiles enable electrical utility equipment sizing because many 

permutations of house combinations can be tested to evaluate the chance of coincident 

peaks. An application was demonstrated by evaluating the number of houses that could 

be allocated to a 100 kVA polemounted transformer. It was determined, that for non-

electrically heated homes, up to 27 homes could be serviced by one transformer with 

little chance that the peak community load would breach the upper limit. For electrically 

heated communities, peak loads could reach 100 kW with only 7 houses. These profiles 

and this analyses type could be completed for actual communities under development. 
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This section provides an analysis of a simple community scenario. This evaluation could 

be improved by incorporating other considerations to make the scenario more realistic. 

Some suggestions are: 

 include external shading from trees and between buildings which significantly effect 

building energy consumption (Nikoofard et al. 2014b) 

 account for a variety of building shapes and house orientations which would affect 

solar gains and PV system orientation 

 

 



 

 

 

 

 

145 

Chapter 6 Conclusion 

6.1 Summary of Research 

 

This research presents new datasets of residential household electricity load and DHW 

consumption measurements gathered from Canadian single detached homes and row 

houses. These include: (1) two cross Canada DHW consumption datasets from a municipal 

government pilot program and an industry research group, and (2) one new residential 

electricity load dataset from a Nova Scotia electrical utility. Also incorporated into this 

research is a previously published dataset of annual, sub-metered residential electricity 

load profiles from Ottawa, Ontario generated by an academic research group.  

First, these datasets were analysed, compared, and rigorously examined for data quality 

issues. During this process, two novel methods have been developed to interpret 

measurements: 

 a new method of interpreting erroneous DHW consumption measurements 

associated with consumer grade flow meters. The results of this finding can inform 

industry projects which rely on these flow meters for project validation (e.g. Halifax 

Regional Municipality’s Solar City Program) 

 a new method which makes use of seasonal and daily observations to identify homes 

from ‘smart meter’ datasets which do not rely on electricity for space heating, space 

cooling or DHW heating. This method can be applied to much larger datasets (such 

as ‘smart meter’ datasets) to generate additional ALP profiles.  

Observations of occupant behavior were made. For DHW consumption, a strong positive 

correlation between consumption and occupancy was identified, as well as significant 

time-of-use variation between households. ALP energy use remains relatively consistent 

through the year, while DHW consumption tends to increase during the colder seasons. 

Both types of profiles demonstrate a diurnal consumption pattern, but DHW consumption 

tends to have a higher peak in the morning, while ALP energy consumption has a higher 

peak during the evening, particularly for the Ottawa dataset. 
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From the measured datasets, a new set of ALP and DHW profiles for use in building 

performance simulation has been generated, representing various time-of-use patterns 

and occupancy levels. These include 82 new annual DHW consumption profiles at a 1-

minute time-steps and 62 new annual ALP profiles at 15-minute time-steps. It should be 

noted that while these profiles are based on measured data, the measurements have 

been interpreted and adjusted and some error in individual flow measurements has been 

introduced. However, the most important characteristic of the measured data remains: 

variability in occupant loads across households and within individual households. This 

measured variability makes these profiles valuable for building simulation applications. 

The ALP and DHW profiles generated by this research have been demonstrated in both 

single household simulations and a community-scale simulation of up to 82 households. 

Two primary benefits of the new profiles were identified: (1) their high temporal 

resolution (1-minute) allows for the identification and analysis of electricity loads which 

typically run for less than this time-period (e.g. water heaters) and (2) the size of the 

dataset ensures variety in time-of-use patterns between the profiles enabling community 

modeling.  

Several applications of the profiles have been identified and demonstrated: 

 An evaluation of electric tankless water heaters was conducted and it was shown that 

for 5% of 82 households, this water heater type would provide a DHW water 

temperature lower than desired more than 10% of the time. 

 An economic evaluation of TOD electricity pricing was evaluated against the 

electricity consumption of three heating system types for all homes and it was shown 

that under NSPI’s existing TOD tariff, regular homeowners would spend less on 

electricity without changing their behaviour.  

 The economic evaluation of TOD electricity pricing was extended to compare 

operating costs of tankless and tank water heaters. It was found that tank water 
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heaters consume more electricity on average and that DHW heating costs would 

decrease with both water heater types under the TOD tariff.  

 A transformer sizing analysis was conducted for over 700,000 permutations of whole 

house profiles of 4 through 10 homes for sub communities of all three heating system 

types and it was shown that at approximately 7 houses, some community peak loads 

might exceed the specified limits of a 100 kVA polemounted transformer. For 

communities that do not rely on electric heating, many more houses can be 

supported by the same transformer. 

6.1.1 Profile Limitations 

Researchers should be aware of the origin and limitations of these profiles for building 

simulation application. 

 The electricity profiles drepresent grid-connected single detached and row houses 

and would be limited in their applicability to off-grid housing where occupant 

behaviour and appliance ownership are limited by the finite availability of energy and 

they would not be applicable to multi-unit residential simulations which include 

different space types such as shared hallways and storage areas and difference 

outdoor lighting requirements. However, the DHW consumption profiles may still be 

valid for some multi-unit scenarios with in-unit clothes washing appliances. 

 The profiles are limited by their statistical significance. Simulators should not 

overstate their representativeness of larger regions such as all of Nova Scotia or 

Ontario. 

6.2 Recommendations 

6.2.1 Future Occupant Load Measurements and Application of Methodology 

 

The following are some suggestions for future work in this area: 

1. As new occupant load data becomes available, the methods developed by this 

research should be further validated and developed using larger sources of measured 

data. The method developed in Chapter 3 to distinguish ALP profiles from larger 
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smart meter datasets could particularly benefit from further comparison with other 

high-resolution research grade datasets.  

2. As smart meter datasets become available, the method developed in Chapter three 

can be applied to generate new sets of profiles that represent different regions. The 

characteristics of these regional datasets such as maximum peak-to-mean ratio 

should be evaluated and used to describe the ALP and whole-house loads of each 

region and distinctions can be made based on demographic classifications such as 

rural versus urban neighbourhoods or based on the varying electricity costs across 

provinces.  

3. Smart meter recording intervals should be at time-steps of 5 minutes or less. ALP 

profiles at this time-step would enable the simulaton of various technologies while 

avoiding computational limitations of processing data at higher time-step 

resolutions. 

4. Research grade data collection should be sub-metered a 1-minute time-steps or less 

to capture the behavior of DHW or electricity consuming devices such as solar or 

tankless water heaters.  

5. Researchers seeking to measure occupant load data should seek to expand the 

database to include regional variety. This includes climate (see section 2.5.3.3 

regarding seasonal variations in DHW consumption), demographics such as 

rural/urban communities, occupancy, and housetype (single detached vs. row 

housing), and factors such as energy pricing schemes (ie. TOD electricity pricing or 

even off-grid housing).  

6. Community simulations could account for different physical scenarios. Some 

examples are to vary the heating system types and control strategies within a single 

community or to vary the community layout and add shading effects of trees and 

neighbouring buildings. 
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6.2.2 Application of Profiles 

The new methodology and occupant load profiles should be applied in to real world 

contexts that can help with decision making. The following are suggestions: 

 

1. Researchers and product designers can test their technologies over the range of 

occupant behavior contained within these datasets. For example, the 

performance of technologies such as solar DHW heaters and drain water heat 

recovery systems can be affected by variations in occupant loads. 

2. Developers can run community scale simulations for design of low-energy 

communities. By applying these profiles, technical features of the community can 

be examined and optimized for entire communities, rather than for single houses. 

3. Utilities can apply the profiles to evaluate technologies and tariffs across a range 

of user types to better understand the overall impact of new technologies on the 

utility grid. The example demonstrated in this research was that of tankless water 

heaters evaluated for energy consumption and demand volatility at a community 

scale and under standard and TOD electricity tariffs. Similar technologies that are 

relevant today are net-metered solar PV and distributed residential energy 

storage. Utilities may also be interested in studying grid interactive technologies, 

such as grid-controlled water heaters that can be controlled by grid operators for 

load-shifting, arbitrage, frequency regulation and grid stabilization. 

4. Government agencies can incorporate these profiles into building simulation 

software. For example, NRCan has developed several software suites such as 

RETScreen and Hot2000 and the occupant load defaults can be informed based on 

the findings of Chapter 2 and Chapter 3. Furthermore, as NRCan develops 

archetype building energy models for the Canadian residential sector using time-

step analysis tools such as EnergyPlus and OpenStudio, a selection of these 

profiles can be supplied with the models to represent a variety of user types.   
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5. Studies can be conducted to influence government agencies in developing energy 

efficiency and technology incentive programming. An example of this is the 

government mandated Efficiency Nova Scotia Corporation which has been 

delivering energy efficiency programming in Nova Scotia for over a decade. Their 

programming has primarily focused on reducing aggregate energy consumption 

rather than time-step electricity demand. For this type of programming to 

continue, there will be increasing pressure to align electricity demand savings with 

particular generation or occupant load patterns so that generation capacity can 

also be reduced.  
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