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Abstract 

This	study	used	the	HBV	hydrological	model	to	assess	the	potential	impact	of	climate	

change	on	five	watersheds	on	Prince	Edward	Island,	Canada.	The	model	was	successfully	

constructed	and	calibrated	using	a	2000	run	Monte	Carlo	simulation.	One	parameter	set	

was	found	to	produce	satisfactory	simulations	for	three	of	the	six	catchments,	

suggesting	that	the	physical	characteristics	of	the	watersheds	are	similar.	

Six	climate	scenarios	comprising	three	emission	scenarios	and	four	global	coupled	

models	were	used	as	model	input	to	assess	potential	climate	change	impacts	on	the	

hydrological	system	for	the	period	1985	-	2044.	Overall,	most	components	of	the	

hydrological	system	showed	little	to	moderate	change.	Mean	annual	drainage	increases	

by	8%	in	the	most	likely	scenario,	but	increases	up	to	23%	in	wetter	scenarios.	

Seasonally,	the	increased	flow	is	shown	to	occur	in	the	winter	(+38%),	while	spring	melt	

flows	drop	by	12%	and	summer	flows	show	little	change	(+7%).	Fall	flows	increase	in	

wetter	scenarios	(up	to	+33%)	but	drop	in	drier	ones	(-12%).	Annual	flow	indicators	

(Q10,	Q50,	Q90)	remain	stable	in	the	base-case	scenario,	but	show	small,	steady	

increases	in	all	other	scenarios.	Assessment	of	summer	drought	severity	shows	that	

there	is	little	change	to	both	the	7Q10	and	60Q50	droughts.	

Analysis	of	the	annual	water	balance	components	showed	some	larger	changes.	While	

the	runoff	coefficient	is	steady	around	0.6	and	evapotranspiration	shows	a	minor	

increase	in	all	scenarios,	net	recharge	to	deep	groundwater	decreases	by	at	least	15%	

and	up	to	60%	in	the	base-case	scenario.	Winter	snowpack	volumes	also	decrease	

between	-40%	and	-71%	in	the	last	decade	of	simulation	in	all	scenarios.	

Overall,	change	values	between	historic	and	future	periods	from	the	six	simulations	

agree	in	direction	for	nearly	all	results,	and	show	only	moderate	variation	(generally	less	

than	30	percentage	points)	in	magnitude.	This	indicates	that	the	impact	of	climate	

change	on	the	hydrological	system	in	Prince	Edward	Island	is	relatively	well	constrained.	
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Chapter 1 Introduction 

1.1 Background	

Agriculture	is	very	important	to	the	economy	of	Prince	Edward	Island	(PEI),	being	both	

the	largest	employer	and	largest	industry	by	GDP	(PEI	Agriculture,	2014).	However,	the	

productivity	and	sustainability	of	agricultural	systems	are	at	serious	risk	due	to	climate	

change.	Policy	options	for	adaptation	and	mitigation	measures	need	to	be	investigated	

and	tested	to	assess	how	effective	they	may	be.	

The	Farms	to	Regions	program	at	Agriculture	and	Agri-Food	Canada	(AAFC)	was	

developed	with	the	goal	of	addressing	climate	change	at	the	level	of	strategic	planning,	

policy	design	and	implementation	across	sectors	and	jurisdictions	through	adaptation	

(Waldick,	2011).	One	of	the	specific	objectives	was	to	develop	scenarios	for	future	

conditions	and	practices	that	affect	agriculture	and	assess	the	outcomes	using	multi-

sector	modeling.	Pilot	work	under	the	Farms	to	Regions	program	integrated	preliminary	

population,	crop	allocation,	nutrient	runoff	and	wildlife	habitat	models,	however	further	

work	was	needed	to	properly	address	all	of	the	critical	processes	related	to	agriculture.	

Hydrology	is	intimately	tied	to	agriculture,	with	soil	moisture	being	a	critical	water	

source	for	crop	growth	and	surface	water	being	both	an	important	source	of	irrigation	

and	a	major	sink	for	sediment	and	nutrient	runoff.	Quantification	of	these	water	

volumes	and	fluxes	allows	for	more	accurate	crop	growth,	nutrient	runoff	and	wildlife	

habitat	models,	as	well	as	directly	quantifying	stream	flows	to	assess	environmental	

minimum	flows,	potential	irrigation	supplies	as	well	as	flood	risk.	For	these	reasons,	it	

was	important	to	add	a	hydrological	model	to	the	Farms	to	Regions	modeling	suite.	

Hydrological	modelling	uses	geospatial	and	climate	data	to	simulate	watersheds	and	

calculate	water	contents	and	fluxes	throughout	the	system.	Recent	initiatives	at	the	

provincial	and	national	level	in	Canada	have	produced	detailed	spatial	data	(e.g.	

topography,	land	use/land	cover,	crop	distribution,	soils)	that	can	be	used	to	better	

describe	watershed	conditions.	New	climate	models	from	the	5
th
	Assessment	Report	of	

the	Intergovernmental	Panel	on	Climate	Change	(IPCC)	are	now	available	and	
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downscaled	climate	datasets	appropriate	for	local/regional	models	have	been	produced	

for	the	region	(Pacific	Climate	Impact	Consortium,	2014).	These	new	datasets	can	be	

used	to	drive	spatially	explicit	hydrological	models	that	assess	the	characteristics	and	

responses	of	individual	watersheds.	

Prince	Edward	Island	was	selected	as	a	focus	region	for	further	development	and	

expansion	of	the	Farms	to	Regions	program.	Given	current	issues	related	to	water	

availability	for	agriculture	and	impacts	of	agricultural	runoff	on	aquatic	ecosystems	in	

PEI,	the	western	portion	of	PEI	encompassing	the	primary	agricultural	regions	was	

selected	as	the	study	area	for	development	of	the	Farms	to	Regions	hydrological	model.	

1.2 Study	Objectives	

The	overall	objective	of	this	study	is	to	evaluate	the	use	of	the	HBV	hydrological	model	

in	simulating	the	potential	impact	of	climate	change	on	stream	flows	in	PEI.	Specific	

objectives	included:	

• Construction,	calibration	and	validation	of	the	HBV	hydrological	model	for	PEI	

watersheds.	

• Assessment	of	the	potential	impact	of	climate	change	on	stream	flows	and	water	

budgets	in	PEI	watersheds.	 	
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Chapter 2 Literature Review 

2.1 Climate	Change	Projections	

The	IPCC	released	its	fifth	annual	report	in	2014	(IPCC,	2014).	This	report	builds	upon	

the	Coupled	Model	Intercomparison	Project	5	(CMIP5)	which	aims	to	produce	

comparable	results	from	over	50	world-leading	Global	Climate	Models	(GCMs)	(Taylor,	

Stouffer	&	Meehl,	2012).	In	addition	to	new	and	revised	GCMs,	AR5	introduces	four	new	

future	climate	scenarios	based	on	Representative	Concentration	Pathways	(RCPs):	

RCP2.6,	RCP4.5,	RCP6.0	and	RCP8.5.	RCP8.5	is	the	high	greenhouse	gas	emission	

scenario	reflective	of	what	may	occur	with	no	limiting	of	anthropogenic	emissions,	while	

RCP2.6	incorporates	stringent	reductions	in	emissions	that	would	be	required	to	likely	

avoid	2˚C	of	warming.	RCP4.5	and	RCP6	are	intermediate	scenarios	with	different	

timelines	and	levels	of	emission	reduction	(IPCC,	2014).	

Maloney	et	al.	(2014)	reviewed	seventeen	GCMs	that	were	part	of	the	CMIP5	project	

and	reported	changes	between	1961-1990	and	2070-2099	for	the	RCP8.5	emission	

scenario.	For	Atlantic	Canada,	they	found	that	on	average,	temperatures	are	expected	

to	increase	by	approximately	5˚C	in	both	summer	and	winter,	while	precipitation	will	

increase	slightly	(0	–	0.25	mm/day,	≈5%)	in	the	summer	and	moderately	(0.5	–	

1	mm/day,	≈20%)	in	the	winter.	Their	assessment	also	examined	a	evapotranspiration	

and	runoff	analysis	and	found	that	for	Eastern	North	America,	there	is	expected	be	little	

change	in	runoff,	with	most	of	the	additional	precipitation	being	lost	via	

evapotranspiration.	

However,	GCMs	are	extremely	computationally	intense	and	by	necessity	coarse	

resolution	simulations	and	are	not	suitable	for	regional	or	local	scale	hydrological	

modeling.	Statistical	downscaling	of	GCM	results	is	the	most	common	method	for	

obtaining	future	climate	projections	to	drive	hydrological	models	(Werner	&	Cannon,	

2015).	Statistical	downscaling	involves	identifying	empirical	relationships	between	GCM	

output	and	observed	data,	and	using	these	relationships	to	create	new	climate	models.	

Statistical	downscaling	can	be	used	with	observations	from	individual	climate	stations	to	
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create	local	climate,	or	can	be	used	with	gridded	observational	data	to	produce	climate	

data	at	a	regional	scale.	Hydrological	models	run	using	statistically	downscaled	gridded	

data	have	been	shown	to	produce	stream	flows	that	are	statistically	similar	to	observed	

flows	(Salathé,	2005;	Maurer	et	al,	2010;	Werner	&	Cannon,	2015). 

Maurer	et	al.	(2010)	reviewed	three	downscaling	methods	(BCSD,	CA	and	BCCAQ)	and	

found	that	the	BCCAQ	method	consistently	outperformed	the	others	in	three	hydrologic	

measures	for	a	large	watershed	in	California.	Werner	&	Cannon	(2015)	built	upon	their	

work	by	expanding	the	analysis	to	four	additional	methods	and	tested	all	seven	against	

28	metrics,	focusing	on	extreme	events	for	climate	and	hydrology	for	a	large	watershed	

in	British	Columbia.	Their	assessment	found	that	the	BCCAQ	method	passed	the	greatest	

number	of	hydrologic	tests,	while	BCSD	and	BCSDX	failed	all	tests	related	to	winter	low	

flow	events.	

2.2 Agent-Based	Modeling	

In	addition	to	physical	conditions	and	processes,	hydrological	systems	can	be	strongly	

influenced	by	the	actions	of	humans	on	the	landscape.	These	processes	can	influence	

each	other	to	create	complex	feedback	effects,	making	modeling	challenging.	

Integrating	the	hydrological	model	with	other	landscape	process	and	management	

models	in	a	multi-model	platform	allows	for	these	feedbacks	to	be	simulated.	Agent-

based	modeling	techniques,	where	numerous	actors	are	programmed	to	make	

management	decisions	based	on	internal	values	and	current	landscape	conditions,	are	

well	suited	to	assess	possible	futures	for	scenarios	with	complex	and	interdependent	

human	effects	(Bone	et	al.,	2014).	

Envision	is	“a	robust	platform	for	integrating	a	variety	of	spatially	explicit	models	of	

landscape	change	processes	and	production	for	conducting	alternative	futures	analyses”	

(Envision,	2015).	Envision	is	designed	with	an	extensible	architecture	that	easily	allows	

multiple	models	to	be	integrated	and	interact	with	each	other.	It	also	includes		

a	powerful	‘multiagent	modeling’	subsystem	that	allows	for	the	representation	of	

human	decision-makers	in	landscape	simulations.	Envision	‘actors’	make	
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management	decisions	in	parallel	with	landscape	change	models	using	a	variety	

of	decision	models	that	can	reflect	actor	values	and	incorporate	landscape	

feedbacks”	(Envision,	2015).		

Envision	has	been	used	to	assess	the	resiliency	of	the	Williamette	River	Basin	to	water	

scarcity	and	climate	change	(Santelmann	et	al.,	2012)	and	to	assess	socio-economic	

planning	options	for	eastern	Ontario	that	specifically	consider	the	future	of	agriculture	

and	climate	change	adaptation	(Waldick,	2011).	

The	Flow	framework	is	a	standard	Envision	extension	developed	by	the	core	Envision	

development	team	at	the	University	of	Oregon	that	powers	most	hydrological	modelling	

capabilities	of	Envision.	Flow	provides	a	number	of	elements	of	hydrological	process	

representation,	including	geometric	representation	of	terrestrial	and	aquatic	datasets	

used	in	the	hydrologic	model,	topology,	simulation	control,	data	management,	and	

default	implementations	of	important	hydrologic	processes	(Vache,	2015).	Flow	is	highly	

flexible	and	can	be	configured	to	use	existing	or	custom	designed	hydrological	process	

models	to	calculate	various	hydrological	fluxes,	and	also	allows	for	user-defined	fluxes	

(sources,	sinks	or	transfers)	at	various	stages	of	the	hydrological	model.	HBV	is	one	of	

the	default	models	included	with	Flow.	

2.3 Hydrological	Modeling	to	Assess	Climate	Change	Impacts		

2.3.1 Classification	of	models	

There	is	a	wide	diversity	of	models	that	have	been	developed	to	simulate	hydrological	

processes	in	watersheds.	Applications	vary	from	assessing	flow	volumes	for	ecological	

minimum	flows,	identifying	peak	flood	event	flows	for	infrastructure	design,	identifying	

minimum	drought	flows	for	water	extraction	limiting,	or	calculating	nutrient	or	

sediment	transport	through	a	watershed.	Each	of	these	applications	has	different	

requirements.	To	help	identify	an	appropriate	model	for	use,	hydrological	models	are	

generally	classified	based	on	three	primary	characteristics:	spatial	distribution,	temporal	

distribution	and	model	basis.	
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With	respect	to	spatial	distribution,	models	can	be	broadly	classified	as	either	lumped	or	

distributed.	Lumped	models	treat	the	entire	watershed	as	a	single	spatial	unit,	and	use	

parameter	values	that	represent	averages	across	the	entire	watershed	(Kling	&	Gupta,	

2009).	Distributed	models	on	the	other	hand	subdivide	the	watershed	into	smaller	

pieces	(possibly	a	grid)	and	can	have	different	parameter	values	for	each	subunit	

(Beven,	1985).	A	middle	ground	“semi-distributed”	distribution	is	also	used	in	which	

watersheds	are	divided	into	a	few	subunits,	but	still	use	lumping	at	some	scales	or	for	

some	processes	(Boyle	et	al.,	2001).	

Lumped	models	are	simpler	and	require	fewer	input	parameters,	and	are	thus	less	

computationally	intense.	They	also	can	be	useful	in	situations	where	little	to	no	input	

data	is	available,	as	the	number	of	parameter	sets	to	calibrate	is	fewer	and	thus	the	

number	of	potentially	valid	solutions	is	also	reduced	(Kling	&	Gupta,	2009).	Distributed	

models	on	the	other	hand	are	better	able	to	handle	the	varying	conditions	in	most	

watersheds,	and	are	thus	more	accurate	–	if	sufficiently	distributed,	accurate	input	data	

is	available	(Carpenter	&	Georgakakos,	2006).	However,	a	major	review	of	distributed	

models	by	Reed	et	al	(2004)	found	that	more	often	than	not,	lumped	models	

outperform	distributed	models,	with	a	study	by	Kling	&	Gupta	(2009)	identifying	

calibration	issues	related	to	parameter	complexity,	identifiability	and	equifinality	as	

major	causes.	Parameter	identifiability	is	the	concept	of	having	a	theoretical	ideal	

parameter	set,	but	not	having	sufficient	measurements	to	identify	it	(Beven,	2001a),	

while	equifinality	is	the	concept	of	having	numerous,	diverse	parameter	sets	which	

produce	equally	suitable	results	(Beven,	2001a).	

In	terms	of	temporal	distribution,	hydrological	models	are	generally	classified	as	either	

“continuous”	or	“event-based”.	Continuous	models	feature	soil	moisture	accounting	

routines	to	keep	track	of	water	in	the	ground,	and	also	account	for	losses	over	time	

from	evapotranspiration	and	percolation	(Beven,	2001b).	Continuous	models	often	have	

daily	time-steps	and	are	run	over	long	continuous	time	spans	of	at	least	several	years.	

Event-based	models	on	the	other	hand	are	typically	run	over	short	durations	of	several	

hours	or	days	and	primarily	used	to	predict	peak	flows.	Event-based	models	typically	



	 7	

simplify	soil	moisture	conditions	as	they	generally	are,	or	quickly	become,	uniform	over	

these	short	duration	events,	and	instead	concentrate	on	accurately	predicting	water	

routing	(Beven,	2001b).	

The	third	characteristic	is	model	basis,	with	models	generally	classified	as	empirical,	

conceptual	or	physically	based.	Broadly	speaking,	empirical	models	are	defined	by	

equations	and	parameters	that	are	derived	from	statistical	relationships	between	inputs	

and	outputs	with	little	to	no	reference	to	the	laws	of	physics	that	govern	hydrological	

processes	(Aghakouchak	&	Habib,	2010).	This	is	in	direct	contrast	to	physically	based	

models	which	use	parameters	that	are	physical	characteristics	of	materials	and	can	

therefore	be	measured,	and	link	these	together	with	detailed	equations	that	describe	

the	various	physical	processes	that	occur	within	the	watershed	such	as	conservation	of	

mass	and	conservation	of	energy	(Khakbaz	et	al.,	2012).	Conceptual	models	are	also	

generally	based	on	physical	processes,	but	in	this	category,	the	underlying	equations	are	

simplified	to	expedite	the	calculations	and	reduce	the	amount	of	required	input	data	

(Khakbaz	et	al.,	2012).	

Empirical	models	are	typical	based	on	a	small	number	of	input	variables,	and	thus	can	

be	operated	simply,	sometimes	even	graphically	(e.g.	SCS	curve	number).	Conceptual	

models	generally	require	calibration	against	observed	data	to	determine	the	values	of	

parameters	for	each	watershed,	a	process	that	can	be	time	and	resource	consuming	and	

can	also	introduce	uncertainty.	However,	this	procedure	means	that	conceptual	models	

can	be	generalized	in	structure	and	are	relatively	scale	independent,	and	thus	the	same	

model	can	be	used	at	various	scales	by	simply	using/calibrating	parameter	values	

appropriate	to	the	scale	(Bergstrom	&	Graham,	1998).	Physically	based	models	however	

do	not	necessarily	require	calibration	and	can	thus	eliminate	one	significant	source	of	

potential	error,	as	in	the	case	with	PROMET	(Mauser	&	Bach,	2009).	

Lumped	conceptual	models	generally	have	fewer	parameters	and	thus	with	fewer	

unknowns	are	less	prone	to	equifinality,	but	may	not	have	the	required	structure	and	

resolution	to	properly	simulate	watershed	processes	(Martina,	Todini	&	Liu,	2011).	On	

the	other	hand,	fully	distributed	conceptual	models	are	particularly	challenging	to	
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calibrate	as	the	number	of	parameter	values	are	large,	but	the	correlation	between	

parameter	values	and	physical	characteristics	is	generally	very	weak,	making	

measurement	of	parameters	unreliable	(Kling	&	Gupta,	2009).	Even	for	physically-based,	

distributed	models,	the	correlation	of	parameter	values	with	physical	characteristics	of	

the	materials	and	processes	only	holds	at	small	spatial	scales	(Martina,	Todini	&	Liu,	

2011).	This	leads	to	the	constraint	that	physically	based	models	must	also	be	highly	

spatially	distributed	to	be	useful.	Both	of	these	characteristics	require	additional	input	

data	and	computational	resources,	thus	the	combination	is	particularly	computationally	

taxing.	Another	consequence	of	this	is	that	complex,	physically	based	models	do	not	

necessarily	produce	better	results	than	conceptual	models	due	to	uncertainty	

introduced	with	the	required	large	amount	of	input	data	regarding	the	physical	

characteristics	of	the	watershed	at	small	scales	(Blöschl	&	Montanari,	2010).	

2.3.2 Review	of	models	

Many	different	hydrological	models	have	been	developed	and	used	to	assess	potential	

impacts	of	climate	change.	However,	the	selection	of	model	can	have	a	significant	

impact	on	the	results	(Velázquez	et	al.,	2013),	so	it	is	important	to	choose	a	model	that	

is	appropriate	for	the	study	objectives.	

The	Soil	Water	Assessment	Tool	(SWAT)	is	a	continuous,	physically-based	semi-

distributed	model	that	has	been	widely	used	to	simulate	watersheds	around	the	world	

(Ahmad	et	al,	2011;	Rahman	et	al,	2012;	Sellami	et	al,	2016;	Serpa	et	al.,	2015).	SWAT	is	

suitable	for	simulating	agricultural	watersheds,	and	can	be	configured	to	simulate	not	

only	discharge	but	also	other	parameters	such	as	nitrogen	or	sediment	loads.	However,	

SWAT	is	a	complex,	stand-alone	model	and	is	difficult	to	integrate	with	other	models,	

making	it	unsuitable	for	use	with	Envision.	

The	Hydrologiska	Byråns	Vattenbalansavdelning	(HBV)	model	(Bergström,	1976)	is	a	

conceptual	rainfall-runoff	model.	Later	derivatives	(e.g.	HBV-96,	HBV-light)	are	semi-

distributed	spatially	and	operate	on	the	concept	of	hydrological	response	units	(HRUs)	–	

discrete	polygons	that	have	uniform	hydrological	characteristics	described	by	model	

parameters.	HBV	is	typically	operated	on	a	daily	time	step	and	has	routines	for	snow,	
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evapotranspiration,	soil	moisture,	groundwater,	and	surface	water	routing.	HBV	has	

been	successfully	used	in	numerous	studies	in	Canada	and	around	the	world	(Kebede,	

Diekkrüger	&	Moges,	2014;	Crossman	et	al,	2013;	Samuel,	Coulibaly	&	Metcalfe,	2012;	

Seibert	&	McDonnell,	2010)	and	has	been	previously	used	in	conjunction	with	Envision	

(Inouye,	2014).	Two	important	characteristics	of	HBV	are	its	simplicity	and	its	flexible	

structure	that	allows	additional	complexity	to	be	added	if	justified	by	improved	results	

(Lindström	et al.,	1997).		

Other	models	such	as	WATFLOOD,	Hydrotel	and	PROMET	have	been	used	to	simulate	

impacts	of	climate	change	on	hydrological	systems.	Like	HBV,	WATFLOOD	is	a	

conceptual	hydrological	model,	but	a	comparison	of	WatFlood	and	HBV	by	Dibike	&	

Coulibay	(2007)	found	that	HBV	was	better	able	to	model	flows	in	the	Saguenay	

watershed	of	Quebec.	Ludwig	et	al.	(2009)	used	three	different	hydrological	models	to	

simulate	the	same	watershed	in	Germany	and	found	that	the	lumped	conceptual	model	

(HSAMI)	did	not	produce	acceptable	results,	while	the	other	two	(semi-distributed	

conceptual	Hydrotel	and	physically	based	distributed	PROMET)	produced	comparable	

results.	This	suggests	that	a	semi-distributed	conceptual	model	may	be	more	

appropriate	as	there	was	not	sufficient	improvement	in	results	to	justify	the	additional	

complexity	and	data	requirements	of	the	physically	based,	distributed	PROMET. 

For	this	work,	a	conceptual	rainfall-runoff	model	based	on	HBV-light	(Siebert	&	Vis,	

2012)	was	used	to	calculate	the	vertical	fluxes	between	hydrological	layers,	horizontal	

fluxes	from	catchments	to	stream	reaches	and	water	routing	down	the	stream	network.	

2.3.3 Calibration	and	Validation	of	Hydrological	Models	

Hydrological	models	with	empirical	parameters,	or	physically-based	parameters	for	

which	sufficient	field	data	is	unavailable,	must	be	calibrated	before	use.	Manual	

calibration	requires	significant	experience	and	time,	and	often	results	in	different	

parameter	values	being	selected	by	different	model	operators	(Zhang	&	Lindström,	

1997).	For	these	reasons,	automatic	calibration	routines	are	generally	preferred.	Many	

automatic	calibration	routines	exist,	ranging	from	basic	Monte	Carlo	scenarios	using	

uniform	parameter	distributions,	to	complex	evolutionary	algorithms.	
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Seibert	(1999)	argued	that	Monte	Carlo	simulations	are	the	most	appropriate	calibration	

method	as	their	random	nature	removes	any	chance	of	bias	related	to	the	calibration	

algorithm.	This	approach	has	been	found	to	work	successfully	in	various	studies	around	

the	world	(Steele-Dunn	et	al,	2008;	Zégre	et	al.,	2010;	Seibert	&	McDonnell,	2010).	One	

advantage	of	the	Monte	Carlo	simulation	is	that	is	generates	a	wide	diversity	of	

parameter	sets	which	allows	parameter	uncertainty	to	be	accounted	for	(Steel-Dunn	et	

al.,	2008).	

For	Monte	Carlo	simulations,	parameter	ranges	and	distributions	must	be	specified.	In	

situations	where	little	is	known	about	the	potential	values	or	distributions	of	

parameters,	sampling	from	a	uniform	distribution	has	been	found	to	be	effective	(Zégre	

et	al.,	2010;	Oni	et	al.,	2014).	

Another	important	consideration	during	model	calibration	is	how	to	select	the	

calibration	dataset.	Common	practice	in	hydrological	modeling	is	to	use	one	continuous	

sequence	of	years	as	the	calibration	period,	and	an	adjacent	continuous	sequence	for	

validation.	However,	given	climate	variability,	this	approach	can	lead	to	an	

unrepresentative	subset	of	data	being	selected	for	calibration.	Addressing	this,	Moriasi	

et	al.	(2007)	recommend	ensuring	that	the	calibration	dataset	contains	a	diversity	of	

weather	conditions	including	wet,	dry	and	average	precipitation	years.		

The	duration	of	the	calibration	is	also	important,	as	insufficient	data	may	not	contain	all	

normal	conditions	and	processes,	while	too	much	data	can	waste	computational	

resources	and	may	average	out	any	change	in	processes	or	characteristics	of	the	

watershed.	A	study	by	Yapo,	Gupta	&	Sorooshian	(1996)	addressed	this	directly	by	

assessing	the	number	of	years	of	data	required	to	successfully	calibrate	thirteen	

parameters	of	a	conceptual	rainfall-runoff	model.	From	their	344	calibrations	using	

varying	length	periods	selected	from	forty	years	of	data,	they	conclude	that	eight	years	

of	calibration	data	are	sufficient	to	produce	a	calibration	that	is	relatively	insensitive	to	

the	exact	calibration	period	used.	This	result	corresponds	well	with	the	work	of	Seibert	

&	McDonnell	(2010)	who	used	an	eight-year	period	to	calibrate	HBV	and	stated	that	
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“the	rule	of	the	thumb	[is]	that	one	needs	5–10	years	of	data	to	calibrate	models	like	the	

HBV”	(Seibert	&	McDonnell,	2010).	

The	final	major	factor	in	model	calibration	is	the	selection	of	the	evaluative	function	

used	to	determine	the	skill	of	the	simulation	with	respect	to	the	observed	data	for	each	

parameter	set	evaluated.	To	assess	the	overall	suitability	of	each	simulation,	many	

studies	combine	several	evaluative	statistics	into	a	single	objective	function	(Lindström	

et	al.,	1997;	Dakhlaoui,	Bargaoui	&	Bárdossy,	2012;	Inouye,	2014;).	This	allows	runs	to	

be	compared	and	ranked	by	a	single	indicator	in	a	qualitative	and	repeatable	manner,	

while	still	incorporating	results	from	a	variety	of	assessments.	Moriasi	et	al.	(2007)	

emphasize	the	importance	of	using	multiple	statistics	to	assess	the	fit	of	the	simulation.	

Commonly	used	evaluative	measures	include	Nash-Sutcliffe	Efficiency	(NSE),	the	

coefficient	of	determination	(R
2
)	and	Percent	Bias	(PBIAS).	

NSE	is	a	measure	that	compares	the	predictive	capability	of	a	simulation	with	the	mean	

of	the	observations.	NSE	is	widely	used	in	hydrological	modelling	to	assess	the	suitability	

of	a	model	(Moriasi	et	al.,	2007)	and	has	been	used	in	studies	in	Atlantic	Canada	(Ahmad	

et	al,	2011;	Roberts,	Pryse-Phillips	&	Snelgrove,	2012).	R
2
	describes	the	proportion	of	

the	variance	in	measured	data	explained	by	the	model,	and	has	also	been	widely	used.	

However,	Moriasi	et	al.	(2007)	recommend	against	using	R
2
	as	it	is	overly	sensitive	to	

extreme	values	and	insensitive	to	additive	and	proportional	differences.	

NSE	is	also	biased	towards	large	flow	event	as	it	evaluates	the	square	of	the	flow.	

However,	using	the	NSE	with	the	log	transform	of	flow	(NSEln)	rather	than	the	discharge	

itself	has	been	found	to	be	effective	in	reducing	the	effect	of	peak	flows	(Krause,	Boyle	

&	Bäse,	2005).	

In	addition	to	selecting	the	evaluative	function,	the	acceptability	threshold	must	also	be	

considered.	In	addition	to	reviewing	model	evaluation	statistics,	Moriasi	et	al	(2007)	

conducted	an	extensive	review	of	literature	using	hydrological	models	and	recorded	the	

reported	value	of	the	evaluative	function	used	and	the	authors	analysis	of	model	skill.	

Based	on	this	dataset,	they	recommended	that	simulations	can	be	considered	
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satisfactory	if	NSE	>	0.50	and	PBIAS	<	±0.25	for	models	evaluated	at	a	monthly	time	

step.	

2.3.4 Application	of	Hydrological	Models	in	the	Eastern	North	America	Region	

While	there	is	very	little	published	literature	about	the	potential	impact	of	climate	

change	on	the	hydrological	systems	of	Atlantic	Canada,	numerous	studies	have	looked	

at	various	sites	in	eastern	North	America	and	give	some	indication	of	possible	results.	

Boyer	et	al.	(2010)	assessed	the	effect	of	climate	change	on	stream	flows	in	tributaries	

of	the	St.	Lawrence	River	in	Quebec	using	three	GCMs	and	two	emission	scenarios	from	

the	IPCC’s	Fourth	Assessment	Report.	Their	simulations	showed	an	increase	in	winter	

discharge	and	a	decrease	in	spring	discharge,	which	they	link	to	higher	mean	

temperatures	and	reduction	of	snow	as	a	proportion	of	precipitation.	These	results	

correlate	well	with	the	work	of	Quilbé	et	al.	(2008)	from	simulations	of	the	nearby	

Chaudière	River	watershed	using	three	GCMs	and	two	emission	scenarios.	They	

reported	a	slight	(5%)	decrease	in	annual	runoff,	with	a	winter	increase	offset	by	

decreases	in	other	seasons.	Closer	to	PEI,	Rivard	et	al.	(2014)	used	five	climate	scenarios	

to	assess	change	in	ground	water	recharge	in	the	Annapolis	Valley	of	neighbouring	Nova	

Scotia,	and	found	that	by	the	2050s,	annual	runoff	decreased	by	9	–	23%,	with	small	

increases	in	winter	and	major	reductions	in	spring.	They	also	observed	that	ET	increased	

slightly	(5	–	9%).	

However,	other	studies	have	found	contradicting	results.	Dibike	and	Coulibay	(2005)	

compared	results	from	two	GCM	downscaling	methods	and	simulated	the	impact	on	

hydrology	of	Quebec’s	Chute-du-Diable	basin	using	two	hydrological	models,	HBV	and	

CEQUEAU.	They	found	that	both	methods	and	models	reported	large	increases	in	mean	

and	peak	flows	during	spring,	small	increases	in	the	fall	and	large	decreases	in	summer.	

They	also	noted	that	the	differences	observed	between	downscaling	methods	were	

larger	than	differences	between	hydrological	models.	

Roberts,	Pryse-Phillips	&	Snelgrove	(2012)	modeled	a	sub-basin	of	the	Lower	Churchill	

River	in	Labrador	and	simulations	for	the	2050s	found	that	the	mean	annual	discharge	
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increased	by	9%.	Seasonally,	their	results	showed	increased	winter	flow	but	little	change	

during	the	late	summer	and	fall.	

Tu	(2009)	assessed	the	impact	of	climate	change	and	land	use	change	on	stream	flows	

and	nitrogen	loads	in	several	watersheds	of	eastern	Massachusetts,	and	found	that	

climate	change	had	a	larger	effect	on	stream	flows	than	land	use	change.	His	results	

showed	small	increases	in	annual	discharge	for	most	watersheds,	but	major	

redistribution	of	discharge	across	seasons,	with	increased	discharge	in	the	late	fall	and	

winter	but	reduced	discharge	in	the	remaining	seasons,	particularly	the	summer	and	

early	fall.	

This	review	shows	that	there	is	no	broad	agreement	on	potential	hydrological	impacts	of	

climate	change	in	the	eastern	North	America	region.	Location,	selection	of	hydrological	

model	and	selection	of	climate	scenario	are	all	significant	factors	that	influence	results.	
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3.1.1 Land	Use/Land	Cover	(LULC)	

Farmland	is	the	dominant	LULC	for	the	study	watersheds,	with	cultivated	LULC	

accounting	for	approximately	31%	of	the	total	area	and	grasslands	(hay,	pasture	and	

meadows)	accounting	for	23%.	Forests	are	also	well	represented	at	34%,	while	urban	

areas,	wetlands,	transportation	and	other	account	for	the	remainder	of	the	study	

watersheds	catchment	area.	

3.1.2 Climate	

Environment	and	Climate	Change	Canada	has	been	recording	climate	data	at	

Charlottetown	since	1910.	For	the	period	1981	to	2010,	the	average	annual	

temperature	was	5.7	˚C,	with	an	average	winter	(DJF)	temperature	of	-6.1	˚C	and	an	

average	summer	(JJA)	temperature	of	17.2	˚C.	The	annual	precipitation	was	1158	mm,	

with	290	cm	of	snow	and	887	mm	of	rain.	The	average	monthly	climate	data	for	this	

time	period	is	shown	in	Figure	3.3.		

	

Figure 3.3 - 1981 to 2010 monthly climate normal data for Charlottetown. 

3.1.3 Hydrology	

The	Water	Survey	of	Canada	(WSC)	has	at	least	one	active	gauging	station	in	each	of	the	

five	watersheds	selected	for	analysis,	with	the	Winter	River	watershed	having	two	
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gauging	stations.	Each	station	provides	daily	flow	and	level	data.	Table	1	summarizes	the	

important	information	about	the	six	stations.	The	daily	Mean	Annual	Discharge	for	the	

six	gauges	ranges	from	0.243	m
3
/s	to	2.577	m

3
/s	while	the	peak	observed	daily	flow	

varies	from	8.04	m
3
/s	to	63.1	m

3
/s	(Table	2).	Figure	3.4	shows	the	annual	hydrograph	of	

mean	daily	flows	for	the	6	stations	over	the	period	of	1981	–	2014.	

Table 1 - Details of Water Survey of Canada (WSC) Gauging Stations located in the 

study area. 

WSC	

Station	

Number	

Station	

Name	 Station	Location	 Start	Date	

Drainage	

Area	(km
2
)	

01CA003	 Carruthers	 Carruthers	Brook	near	St.	Anthony	 24-Aug-1961	 46.8	

01CB002	 Dunk	 Dunk	River	at	Wall	Road	 24-Aug-1961	 114	

01CB004	 Wilmot	 Wilmot	River	near	Wilmot	Valley	 01-Jan-1972	 45.4	

01CC005	 West	 West	River	at	Riverdale	 21-Sep-1988	 70.1	

01CC002	 Winter-L	 Winter	River	near	Suffolk	 20-Oct-1967	 37.5	

01CC010	 Winter-U	 Winter	River	at	Union	 29-Jun-1992	 16.8	

	

Table 2 - Discharge characteristics for gauging stations for  full years in the period 

1981-2014. 

Station	Name	

Drainage	Area	

(km
2
)	

Mean	Annual	Drainage	

(m
3
/s)	

Peak	Daily	Discharge	

(m
3
/s)	

Carruthers	 46.8	 0.96	 26.35	

Dunk	 114	 2.58	 63.10	

Wilmot	 45.4	 0.94	 35.50	

West	 70.1	 1.79	 45.14	

Winter-L	 37.5	 0.66	 14.52	

Winter-U	 16.8	 0.24	 8.04	

	

Irrigation	is	very	rare	in	PEI,	reported	at	approximately	85	farms	in	the	study	area	and	

accounting	for	less	than	0.3%	of	the	total	cropland	in	2011	(Statistics	Canada,	2011).	
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3.2 Model	Construction	

3.2.1 Spatial	Geometry		

Input	data	is	provided	to	Envision	as	a	shapefile	consisting	of	Integrated	Decision	Unit	

(IDU)	polygons,	where	each	IDU	is	treated	as	having	homogeneous	properties	across	its	

extent.	The	geometry	of	the	IDUs	is	defined	in	the	shapefile,	and	the	metadata	

associated	with	each	IDU	is	provided	in	the	linked	table	with	a	column	for	each	

parameter.	IDUs	can	be	any	shape	or	size,	but	all	calculations	are	done	at	the	IDU	level	

and	thus	the	finest	spatial	resolution	for	Envision	calculations	is	set	by	IDU	geometry.	

For	this	study,	three	datasets	were	used	to	create	the	IDU	geometry:	landuse,	cadastral	

and	watershed	boundaries.	The	landuse	dataset	was	obtained	from	the	PEI	Department	

of	Agriculture	and	Forestry,	and	was	a	vector	polygon	coverage	developed	from	aerial	

photography	flown	across	all	of	PEI	in	2010.	The	cadastral	data	was	obtained	from	the	

PEI	Department	of	Finance	and	Municipal	Affairs,	and	was	also	a	vector	polygon	

coverage	of	property	boundaries,	current	as	of	2014.	

The	Envision	hydrological	modelling	framework	requires	specific	metadata	and	

relationships	between	the	catchment	areas	being	modeled	and	the	associated	stream	

network.	For	this	reason,	none	of	the	available	watershed	boundary	datasets	were	

suitable	and	thus	a	new	dataset	had	to	be	developed	for	this	study.	Catchment	polygons	

and	associated	stream	network	lines	for	each	study	watershed	were	generated	using	

the	ArcHydro	toolkit	plugin	for	ArcGIS.	The	source	digital	elevation	model	(DEM)	was	

created	in	ArcGIS	at	a	20	m	grid	resolution	from	2	m	interval	contour	lines	provided	by	

the	PEI	Department	of	Agriculture	and	Forestry.	These	contour	lines	were	generated	

from	a	LiDAR	survey	of	the	entire	island	done	in	2008.	

To	ensure	spatial	accuracy	of	the	generated	catchments	and	stream	lines,	stream	lines	

from	Natural	Resource	Canada’s	National	Hydro	Network	dataset	were	burned	into	the	

generated	DEM	before	catchment	delineation.	Given	the	size	of	the	study	watersheds,	

the	daily	time	step	of	the	hydrological	model	and	available	processing	power,	the	
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stream	initiation	threshold	(drainage	area	at	which	a	stream	is	formed)	for	catchment	

development	was	set	at	5	km
2
.	

The	three	input	datasets	were	unioned	together	in	ArcGIS	to	create	the	IDU	polygons.	

Envision	developers	recommend	limiting	the	IDU	dataset	to	approximately	100,000	

polygons,	and	therefore	the	IDU	coverage	was	processed	to	merge	the	smallest	IDUs	

into	adjacent	IDUs	until	this	was	achieved.	During	this	merging,	catchment	boundaries	

were	strictly	maintained.	The	resulting	IDU	coverage	contains	104,944	IDUs	with	a	

median	size	of	2.3	ha	and	99%	of	polygons	ranging	between	0.1	ha	and	20	ha.	

3.3 Hydrological	Model	

Following	from	HBV-light,	the	hydrological	model	defines	five	layers	for	each	HRU:	snow	

(HRUsnow),	snowmelt	(HRUmelt),	vegetation	(HRUveg),	upper	groundwater	zone	(HRUUZ)	

and	lower	groundwater	zone	(HRULZ).	The	model	operates	at	a	daily	time-step,	with	the	

state	of	each	layer	being	calculated	once	each	day.	The	operation	of	the	model	is	

specified	by	thirteen	parameters	which	are	summarized	in	Table	3	and	detailed	in	the	

following	sections	which	describe	how	the	various	hydrological	processes	are	handled	

by	the	model.	

Table 3 - Parameters for hydrological model. 

Parameter	 Description	 Units	

TT	 Threshold	temperate	that	separates	rain	from	snow	 ˚C	

CFMAX	 Degree	day	factor	controlling	the	melting	of	snow	 mm/(˚C	day)	

SFCF	 Snowfall	correction	factor	 -	

CWH	 Water	holding	capacity	of	snowpack	 -	

CFR	 Snowmelt	refreezing	factor	 -	

FC	 Maximum	soil	moisture	content	 mm	

WP	 Wilting	point	–	minimum	water	in	HRUveg	layer	for	ET	to	occur	 mm	

BETA	 Infiltration	shape	coefficient	 -	

PERC	 Percolation	coefficient	 day
-1
	

UZL	 Peak	response	threshold	 mm	

K0	 Peak	response	recession	coefficient	 day
-1
	

K1	 Fast	response	recession	coefficient	 day
-1
	

K2	 Slow	response	recession	coefficient	 day
-1
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consecutive	days	starting	in	the	fourth	year.	Based	on	this	result,	the	warm-up	period	

was	set	at	four	years.	

3.4 Model	Calibration	

To	calibrate	the	hydrological	model,	an	initial	screening	was	conducted	by	running	2000	

simulations	for	the	period	1995	through	2014	using	observed	weather	data	recorded	at	

Charlottetown.	The	screening	runs	were	conducted	in	three	parallel	batches	to	better	

utilize	processing	resources.	The	details	of	the	screening	runs	are	shown	in	Table	4.	

Table 4 - Screening run details. 

Batch	 #	of	Runs	 Run	Numbers	

1	 600	 1000-1599	

2	 700	 2000-2699	

3	 700	 3000-3699	

	

To	create	a	calibration	dataset	that	contains	a	diversity	of	weather	conditions	including	

wet,	dry	and	average	precipitation	years	as	recommended	by	Moriasi	et	al.	(2007),	the	

total	annual	precipitation	was	calculated	for	each	year	between	1995	and	2000	and	

years	were	assigned	to	each	period	(calibration	and	validation)	to	ensure	a	mix	of	

climatic	conditions.	

Each	simulation	used	a	unique	set	of	values	for	the	model	parameters.	Two	of	the	

parameters,	CFR	and	CWH,	were	held	constant	at	0.05	and	0.1	respectively	while	the	

eleven	remaining	parameters	were	assigned	a	value	randomly	selected	from	a	specified	

range	using	a	uniform	distribution.	The	ranges	used	during	model	calibration	for	each	

parameter	are	shown	in	Table	5.	Initial	ranges	were	taken	from	Seibert	(1999)	and	

Abebe,	Ogden	&	Pradhan	(2010),	and	were	expanded	whenever	best	fit	simulations	

from	several	preliminary	calibration	runs	had	parameter	values	near	a	maximum	or	

minimum	limit.	
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3.5 Future	Climate	Data	Screening	Assessment	

In	order	to	assess	the	impact	of	climate	change	on	future	stream	flows	in	the	study	area,	

future	local	climate	simulation	data	is	required	to	drive	the	hydrological	model.	Gridded	

climate	data	covering	the	study	area	statistically	downscaled	from	GCMs	using	the	

BCCAQ	method	was	obtained	from	the	Pacific	Climate	Impacts	Consortium	(Pacific	

Climate	Impacts	Consortium,	2014).	To	identify	what	GCM	to	use,	the	performance	of	

GCMs	in	simulating	past	climate	was	assessed.	

Sheffield	et	al.	(2013)	evaluated	the	historical	performance	of	seventeen	core	CMIP5	

models	in	North	America,	and	based	on	this	assessment,	four	of	the	top	performing	

GCMs	were	selected	to	examine	modelling	skill	specifically	in	the	study	area:	

• GFDL-ESM2G,	developed	by	National	Oceanic	and	Atmospheric	Administration	

Geophysical	Fluid	Dynamics	Laboratory	in	the	United	States	(Donner	et	al.,	

2011);	

• MRI-CGCM3,	developed	by	the	Meteorological	Research	Institute,	Japan	

(Yukimoto	et	al.,	2012);	

• CNRM-CM5,	developed	by	the	National	Centre	for	Meteorological	Research,	

France	(Voldoire	et	al.,	2013);	and	

• MIROC5,	developed	in	Japan	by	the	University	of	Tokyo,	National	Institute	for	

Environmental	Studies	and	the	Japan	Agency	for	Marine-Earth	Science	and	

Technology	(Watanabe	et	al.,	2010).	

Hindcast	data	from	these	four	models	were	then	compared	to	observation	data	at	

Charlottetown	for	the	historical	period	1980-2005	and	the	GCM	with	the	best	fit	to	the	

observed	record	was	selected	for	use	as	the	climate	inputs	in	future	modeling.	

3.6 Emission	Scenario	and	GCM	Sensitivity	Assessments	

To	assess	the	full	spectrum	of	possible	future	climate	scenarios	with	respect	to	

anthropogenic	climate	impacts,	downscaled	climate	data	from	three	emission	scenarios	

(RCP2.6,	RCP4.5	and	RCP8.5)	for	the	best	performing	GCM	were	selected	for	use	as	

input	to	the	hydrological	model.	
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Although	one	GCM	was	selected	for	use	in	future	modelling,	uncertainty	associated	with	

climate	change	means	it	important	to	not	rely	solely	on	one	GCM	(Chen	et	al,	2010,	

Werner	&	Cannon,	2015).	Therefore,	a	GCM	sensitivity	analysis	was	conducted	by	using	

statistically	downscaled	climate	data	for	the	three	other	GCMs	as	input	to	the	calibrated	

hydrological	model	and	assessing	the	results.	To	simplify	the	assessment,	only	the	

RCP8.5	emissions	scenario	was	used	for	the	GCM	sensitivity	analysis.	

3.7 Drought	Assessment	

Given	recent	concerns	about	inadequate	stream	flows	in	PEI	rivers	during	summer	low	

flow	periods,	assessing	future	low-flow	rates	is	particularly	relevant	for	the	study	area.	

There	are	numerous	indicators	that	are	used	to	assess	low-flow	periods,	with	7Q10	and	

60Q50	being	two	of	the	commonly	used.	These	indicators	in	X-Q-Y	format	represent	the	

mean	flow	over	a	period	of	X	days	that	would	be	expected	to	occur	once	in	Y	years,	thus	

7Q10	is	the	minimum	7-day	mean	flow	that	is	expected	once	in	10	years,	while	the	

60Q50	is	the	minimum	60-day	mean	flow	that	is	expected	once	in	50	years.	

To	calculate	these	indicators,	the	daily	flow	outputs	from	the	observed	and	simulated	

records	were	assessed	and	the	minimum	7	and	60-day	mean	flow	was	identified	for	

each	year.	To	better	target	minimum	summer	low-flow	periods,	a	hydrological	year	of	1-

Apr	to	31-Mar	was	used,	and	the	mean	flows	were	calculated	using	trailing	windows	

with	end	dates	restricted	to	between	1-May	and	1-Nov.	

Given	that	the	stream	gauge	for	West	River	was	only	installed	in	1988,	a	25-year	sample	

(1990-2014)	was	collected	to	assess	droughts	in	the	historic	period,	while	a	larger	30-

year	sample	(2015-2044)	was	used	for	the	future	simulations	to	reduce	error.	The	

sample	data	was	then	fit	to	both	the	three	parameter	Weibull	and	General	Extreme	

Value	(GEV)	distributions	using	EasyFit	version	5.6	software.	As	recommended	by	

Nathan	&	McMahon	(1990),	only	data	points	with	an	exceedance	value	of	greater	than	

80%	were	used	in	the	fitting	procedure	to	account	for	annual	minimums	that	do	not	

represent	actual	drought	conditions.	The	Kolmogorov-Smirnov	goodness-of-fit	measure	
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(K-S)	was	used	to	select	the	best	fitting	distribution	for	each	dataset,	and	the	selected	

distribution	was	used	to	calculate	the	magnitude	of	the	desired	return	period	event.	
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Chapter 4 Results and Discussion 

4.1 Model	Calibration	

To	select	an	appropriate	calibration	period	containing	a	diversity	of	climatic	conditions,	

the	annual	precipitation	was	calculated	for	each	year	in	the	initial	simulation	period	

(Table	6).	Given	that	dry	years	are	clustered	early	in	the	period	and	wet	years	are	

clustered	late,	years	were	alternatingly	assigned	to	calibration/validation.	This	results	in	

an	appropriate	mix	of	conditions	in	both	periods,	and	creates	a	better	balance	than	two	

sequential	periods.	This	alternating	classification	system	may	also	help	address	any	

systematic	changes	in	climate	or	watershed	processes	by	calibrating	to	a	wider	temporal	

span.	

Table 6 - Calibration and validation period selection. Years were classified as “Wet”, 

“Average” or “Dry” by annual precipitation being in the top, middle or bottom third of 

the sample. 

Year	 Annual	Precipitation	(mm)	 Classification	 Role	Assigned	

1995	 937	 		 Warm-up	

1996	 1209	 		 Warm-up	

1997	 848	 		 Warm-up	

1998	 1140	 		 Warm-up	

1999	 901	 Dry	 Calibration	

2000	 1098	 Average	 Validation	

2001	 787	 Dry	 Calibration	

2002	 1297	 Average	 Validation	

2003	 1024	 Dry	 Calibration	

2004	 987	 Dry	 Validation	

2005	 1116	 Average	 Calibration	

2006	 1134	 Average	 Validation	

2007	 1102	 Average	 Calibration	

2008	 1494	 Wet	 Validation	

2009	 1428	 Wet	 Calibration	

2010	 1354	 Wet	 Validation	

2011	 1370	 Wet	 Calibration	

2012	 1086	 Dry	 Validation	

2013	 1159	 Average	 Calibration	

2014	 1454	 Wet	 Validation	

	

From	the	two	thousand	runs	conducted	in	the	model	screening	phase,	the	top	twenty	

runs	sorted	by	the	value	of	the	objective	function	over	the	calibration	period	(Obj_c)	
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were	extracted	for	each	watershed.	Table	7	shows	these	results	for	all	six	watersheds	

sorted	by	SA_Rank.	

Table 7 – Top twenty simulations across the study area. Rank values for each 

watershed are based on the Obj_c evaluative function, and the combined results are 

ordered by SA_Rank. The top ten simulations for each watershed are highlighted. 

Run	#	 Dunk	 Wilmot	 West	 Carruthers	 Winter	-L	 Winter-U	 SA_Rank	 Sites	

2228	 50	 50	 50	 42	 49	 -	 241	 5	

1571	 48	 48	 46	 37	 45	 -	 224	 5	

3488	 47	 46	 45	 43	 34	 -	 215	 5	

2091	 42	 42	 43	 49	 38	 -	 214	 5	

1139	 44	 44	 44	 44	 27	 -	 203	 5	

1289	 37	 37	 40	 50	 39	 -	 203	 5	

2154	 41	 43	 39	 38	 41	 -	 202	 5	

1376	 49	 49	 47	 8	 47	 -	 200	 5	

2678	 39	 39	 38	 45	 37	 -	 198	 5	

3162	 46	 38	 49	 -	 48	 -	 181	 4	

2179	 45	 47	 42	 2	 44	 -	 180	 5	

2457	 43	 34	 48	 -	 50	 -	 175	 4	

3170	 40	 45	 32	 13	 40	 -	 170	 5	

1144	 32	 33	 31	 46	 24	 23	 166	 6	

3221	 38	 40	 37	 7	 31	 -	 153	 5	

2687	 36	 35	 41	 18	 19	 -	 149	 5	

2201	 34	 36	 35	 27	 9	 -	 141	 5	

2090	 18	 16	 21	 40	 36	 -	 131	 5	

1147	 19	 21	 20	 47	 21	 -	 128	 5	

2039	 28	 26	 36	 21	 16	 -	 127	 5	

	

This	data	shows	that	in	general,	all	of	the	high	performing	parameter	sets	give	good	

results	in	multiple	watersheds,	with	31	top-ten	results	for	individual	watersheds	

contained	in	the	top	twenty	runs.	This	suggests	that	the	gauged	watersheds	behave	

similarly	in	the	hydrological	model,	and	thus	it	may	be	appropriate	to	use	a	single	

parameter	set	to	operate	on	all	watersheds	rather	than	individual	parameter	sets	for	

each	watershed.	Not	all	watersheds	are	equally	represented	however,	as	Winter	Upper	

has	only	one	top	50	run	in	the	top	20	overall.	

While	rank	is	a	useful	way	to	identify	high-performing	parameter	sets	given	varying	

model	performance	in	different	watersheds,	the	final	selection	of	parameter	sets	was	

done	by	assessing	objective	function	values	for	the	calibration	period.	Table	8	presents	
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values	for	NSE,	NSEln,	PBIAS	and	OBJ	for	each	of	the	top	ten	parameter	sets	in	the	

calibration	period,	selected	by	SA_Rank.	These	results	show	that	the	top	ten	runs	by	

SA_Rank	contain	the	best	performing	run	for	four	of	the	six	watersheds,	while	a	fifth,	

the	Winter-L	watershed,	has	five	of	its	top	ten	runs	in	the	top	ten	regional	runs.	Based	

on	this,	these	regional	top	ten	runs	were	deemed	representative	of	best	model	

performance	and	were	carried	forward	for	validation.	

Overall,	the	simulations	perform	best	for	West	River,	Dunk	River	and	Winter	Lower,	with	

Carruthers	Brook	and	Wilmot	River	giving	lower	values.	Performance	of	the	top	ten	

simulations	in	the	Winter	Upper	watershed	is	very	poor.	In	most	cases,	NSEln	values	are	

significantly	greater	than	NSE	values,	suggesting	that	the	model	is	better	at	predicting	

low	flow	periods	which	typically	occur	during	the	summer	months.	

PBIAS	values	for	Winter-L	and	Winter-U	are	consistently	large	and	of	uniform	sign,	

averaging	-0.406	for	Winter-L	and	+0.400	for	Winter-U.	These	magnitudes	are	both	well	

above	the	±0.25	acceptable	value	recommended	by	Moriasi	et	al.	(2007)	and	suggest	

that	there	are	processes	occurring	in	this	watershed	that	are	not	being	accounted	for	by	

the	model.	

One	unique	process	related	to	the	Winter	River	watershed	is	the	extraction	of	

groundwater	for	the	City	of	Charlottetown,	which	obtains	all	its	municipal	water	from	

three	well	fields	located	in	the	Winter	River	catchment.	Two	well	fields	are	located	in	

the	Winter-U	catchment	and	the	third	in	the	Winter-L	catchment,	and	together	the	

average	daily	extraction	was	approximately	19,500	m
3
	in	2014.	However,	treated	

effluent	from	the	municipal	waste	water	treatment	plant	is	discharged	into	

Charlottetown	Harbour,	thus	piping	water	out	of	the	Winter	River	watershed	and	

potentially	explaining	why	the	hydrological	model	simulations	consistently	over-predict	

flows	in	the	Winter-U	watershed.	Attempts	to	incorporate	this	groundwater	extraction	

into	the	hydrological	model	were	unsuccessful,	as	extraction	rates	are	higher	than	local	

infiltration	and	HBV	does	not	account	for	groundwater	flow	between	catchments,	

leading	to	negative	water	volumes	in	the	groundwater	layers	for	the	Winter-U	

catchment.	
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Due	to	the	consistently	large	PBIAS	values	and	low	OBJ	values,	the	Winter-U	gauge	was	

removed	from	further	analysis.	The	Winter-L	gauge	also	showed	poor	PBIAS	results	in	

nine	of	the	regional	top	ten	parameter	sets,	however	examination	of	the	top	twenty	

parameter	sets	for	the	individual	watershed	shows	that	simulations	with	acceptable	OBJ	

and	PBIAS	values	are	present,	as	shown	in	Table	9.	This	suggests	that	the	model	is	

capable	of	producing	acceptable	simulations	for	the	Winter-L	gauge,	however	the	

characteristics	of	the	watershed	are	different	than	the	other	gauged	watersheds	and	are	

better	modelled	with	a	distinct	parameter	set.	Two	of	these	top	twenty	runs	with	

acceptable	PBIAS	values	from	Winter-L	(2457	and	3162)	were	carried	forward	to	

validation.	

Table 9 - Top ten model calibration runs for Winter-L by OBJ where |PBIAS| < 0.25. 
Runs carried forward for validation are indicated in bold. 

Max	 0.337	 0.473	 		 0.335	

Run	#	 NSE_d_c	 NSE_l_c	 PBIAS_d_c	 Obj_c	

2457	 0.223	 0.466	 -0.184	 0.335	

3162	 0.269	 0.418	 -0.211	 0.333	

1196	 0.171	 0.211	 -0.193	 0.181	

1593	 0.294	 -0.014	 -0.212	 0.130	

2652	 0.227	 0.036	 -0.127	 0.125	

3061	 0.115	 0.098	 -0.094	 0.102	

2093	 0.086	 0.015	 -0.155	 0.043	

2153	 0.132	 -0.185	 -0.223	 -0.038	

2056	 0.155	 -0.247	 -0.244	 -0.058	

1276	 0.197	 -0.318	 -0.190	 -0.070	

	

4.2 Model	Validation	

The	top	ten	parameter	sets	for	the	study	area	plus	two	high	performing	parameter	sets	

for	the	Winter-L	watershed	were	assessed	in	the	model	validation	phase.	The	results	of	

the	validation	are	shown	in	Table	10.
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Run	2228	has	the	best	average	OBJ	value	and	also	had	among	the	lowest	decrease	in	the	

validation	period,	and	so	was	selected	as	the	primary	parameter	set	for	future	

modelling.	Run	3162	performed	better	in	the	validation	than	its	alternate	for	Winter-L	

and	thus	was	selected	for	use	in	final	modelling	in	that	watershed.	

Figures	Figure	4.1	to	Figure	4.3	show	daily	simulated	flow	compared	to	observed	flows	

for	West	River	and	Carruthers	Brook	in	three	hydrological	years	(Oct	–	Sep	in	2004/05,	

2000/01	and	2010/11),	representative	of	average,	dry	and	wet	years.	Precipitation	

recorded	at	Charlottetown	(used	for	all	watersheds	during	calibration)	is	also	shown.	

These	results	show	the	range	of	model	skill	across	watersheds	and	climatic	conditions.	

In	general,	the	simulations	fit	well	with	observed	flows	during	the	summer	low	flow	

period	(June-	Oct).	Winter	flow	events	are	generally	timed	well	in	the	simulations,	but	

are	usually	smoothed	out	over	a	longer	period.	Spring	melt	peak	flows	are	generally	

below	observed	values,	except	in	situations	where	abnormal	warm	periods	cause	

significant	premature	melting	of	the	snow	pack	(as	in	2002).	
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Moriasi	et	al.	(2007)	recommended	threshold	values	to	determine	satisfactory	model	

performance	for	NSE	and	PBIAS	of	NSE	>	0.5	and	|PBIAS|	<	0.25.	However,	these	

thresholds	were	for	the	statistics	evaluated	at	a	monthly	time	step,	rather	than	the	daily	

time	step	used	in	this	model.	PBIAS	is	not	dependant	on	model	time	step,	but	NSE	is	and	

thus	the	threshold	values	should	not	be	compared	to	results	presented	above.	To	

determine	if	the	simulation	meets	the	“satisfactory”	threshold,	monthly	NSE	values	for	

all	validated	runs	were	calculated	by	passing	the	mean	monthly	flow	as	input	to	the	NSE	

statistic.	These	results	are	presented	in	Table	11.	

Table 11 - Monthly NSE values for validated simulations. Runs marked in bold were 

selected for use in future modeling. 

Max	 0.660	 0.582	 0.735	 0.757	 0.639	

Run	#	 Dunk	 Wilmot	 West	 Carruthers	 Winter-L	

2228	 0.611	 0.431	 0.653	 0.702	 -	

1571	 0.517	 0.404	 0.550	 0.688	 -	

3488	 0.503	 0.381	 0.571	 0.590	 -	

2091	 0.525	 0.341	 0.642	 0.719	 -	

1139	 0.556	 0.416	 0.601	 0.684	 -	

1289	 0.306	 -0.014	 0.493	 0.741	 -	

2154	 0.424	 0.219	 0.518	 0.734	 -	

1376	 0.519	 0.401	 0.602	 0.532	 -	

2678	 0.551	 0.399	 0.575	 0.738	 -	

3162	 0.313	 -0.064	 0.610	 0.618	 -	

2457	 -	 -	 -	 -	 0.522	

3162	 -	 -	 -	 -	 0.610	
	

Based	on	these	results,	the	Dunk,	West,	Carruthers	and	Lower	Winter	watersheds	meet	

the	monthly	NSE	threshold	for	satisfactory	simulations,	with	Carruthers	Brook	exceeding	

the	higher	“Good”	threshold	of	NSE	>	0.65	and	|PBIAS|	<	0.15.	Wilmot	River	falls	slightly	

below	the	“satisfactory”	threshold	for	NSE,	and	when	combined	with	the	significantly	

lower	OBJ	scores,	the	simulation	for	this	watershed	was	not	used	in	future	modeling.	

4.3 Future	Climate	Data	Screening	Assessment	

Four	GCMs	were	assessed	to	determine	modelling	skill	specifically	in	the	study	area:	

GFDL,	MRI-CGCM3,	CNRM	and	MIROC5.	Hindcast	data	from	these	four	models	were	

then	compared	to	observation	data	at	Charlottetown	for	the	historical	period	1980-
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2005.	Table	12	shows	the	calculated	average	daily	error	for	precipitation	and	average	

temperature	by	month.
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The	MRI-CGCM3	GCM	was	found	to	have	the	least	error	of	the	four	and	was	therefore	

selected	as	the	source	for	future	climate	data.	To	assess	the	full	range	of	potential	

future	climate,	three	scenarios	were	selected	for	analysis:	RCP8.5,	RCP4.5	and	RCP2.6.	

These	scenarios	correspond	approximately	to	minimal,	moderate	and	major	reductions	

in	anthropogenic	greenhouse	gas	emissions	respectively.	

4.4 Simulated	Streamflow	

The	model	calibration	showed	that	the	simulation	of	four	of	the	five	modeled	

watersheds	performed	best	with	the	same	parameter	set.	Given	this,	model	results	are	

expected	to	be	very	similar	for	all	watersheds.	The	West	River	watershed	performed	

best	in	calibration/validation	and	thus	has	been	used	to	present	results.	The	MRI-

CGCM3	GCM	with	the	RCP8.5	emission	scenario	has	been	used	unless	otherwise	noted	

for	these	results,	as	it	is	the	business	as	usual	approach,	and	given	current	emission	

trends	is	likely	to	be	best	representative	of	the	near-term	future.	Section	4.5	discusses	

and	compares	results	from	the	other	climate	scenarios,	while	Section	4.6	examines	

variability	associated	with	choice	of	GCM.	

Given	that	the	input	future	climate	is	only	a	simulation	that	has	been	statistically	

downscaled,	individual	years	of	model	results	should	not	be	assessed	to	examine	

climate	change.	Natural	climate	variability	is	also	significant	at	annual	timescales.	

Therefore,	flow	results	are	presented	using	thirty	year	windows,	moving	decadaly.	The	

thirty-year	window	allows	for	sufficient	sample	size	to	properly	assess	statistics	of	the	

distributions,	while	decadal	increments	allow	sufficient	overlap	to	show	long-term	

change.	Water	balance	components	are	presented	via	decadal	averages	to	provide	more	

resolution	to	change	patterns	and	to	better	show	variation	that	would	otherwise	be	

removed	by	thirty-year	averaging.	

For	assessing	seasonal	variation,	patterns	in	the	mean	monthly	hydrograph	were	used	

to	associate	months	with	similar	hydrological	characteristics	together	into	seasons.	For	

this	study,	winter	corresponds	to	the	low-flow	periods	of	December	through	March,	

when	snow	typically	accumulates.	Spring	is	defined	as	April	and	May,	and	represents	
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peak	flows	associated	with	snow	melt.	Summer	is	defined	as	June	through	August,	when	

temperatures	are	highest	and	precipitation	is	low,	while	fall	is	comprised	of	the	

remaining	months	of	September	through	November.	

Median	flows	are	useful	for	assessing	the	average	flow	conditions,	however	high	and	

low	flow	periods	are	generally	of	more	concern	for	planners	and	water	managers.	Four	

flow	indicators	have	been	selected	to	assess	these	changes:	Q10,	Q50,	Q90	and	

Normalized	Reference	Base	Flow	(NRBF).	

The	Q10,	Q50	and	Q90	indicators	are	the	flow	that	is	exceeded	10%,	50%	and	90%	of	

the	time	respectively.	Q90	is	commonly	used	as	a	low-flow	threshold,	while	Q10	is	used	

as	a	peak	(flood)	threshold.	The	Normalized	Reference	Base	Flow	is	an	indicator	that	has	

been	developed	by	the	PEI	government	to	assist	in	groundwater	extraction	permitting.	

The	NRBF	is	the	median	flow	from	the	summer	low-flow	period	of	1-Aug	to	30-Sep.		

4.4.1 Comparison	of	Observed	and	Simulated	Streamflow	

Comparison	of	the	observed	flows	with	results	from	the	historical	simulation	period	

show	that	while	the	model	is	generally	able	to	produce	satisfactory	results,	there	are	

notable	discrepancies.	In	terms	of	median	monthly	flows	(Figure	4.4),	summer	flows	are	

over-predicted	by	19%,	while	winter,	spring	and	fall	flows	are	under-predicted	

(-23%,	-12%,	-27%).	Likewise,	cumulative	seasonal/annual	drainage	(Figure	4.5)	shows	

similar	deviations,	with	a	summer	excess	(+20%)	offset	by	deficiency	in	the	other	three	

seasons	(-15%	to	-22%)	for	a	total	annual	under-prediction	of	-13%.	

Compared	to	observed	flows,	the	values	of	Q90,	Q50	and	NRBF	for	the	simulation	during	

the	historical	(1985-2014)	period	show	little	deviation,	while	the	Q10	value	is	

significantly	reduced	(-20%)	(Figure	4.6).	This	corresponds	well	with	the	graphical	

assessment	of	the	simulation,	suggesting	that	low-flow	periods	are	successfully	modeled	

but	high-flow	events	are	reduced	in	magnitude	and	extended	in	duration	to	

approximately	balance	volume.	

Groundwater	is	an	important	source	of	base	flow	to	streams.	To	quantify	this	for	the	

study	watersheds,	the	contribution	from	the	HRULZ	layer	(groundwater)	to	stream	flow	
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was	calculated	for	the	historical	1985-1994	period	(Figure	4.7).	These	results	show	that	

groundwater	provides	66%	of	the	annual	stream	flow,	while	during	the	July	through	

September	low-flow	period,	groundwater	provides	90%	of	the	streamflow.	These	results	

agree	with	the	work	of	Francis	(1989)	who	found	that	groundwater	provides	

approximately	two	thirds	of	annual	stream	flow	and	up	to	100%	during	low	flow	periods	

in	late	summer	and	early	fall.	
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4.4.2 Future	Streamflow	Change	

To	assess	the	change	to	future	streamflow,	median	monthly	flows	were	first	examined	

and	results	show	that	there	is	little	change	expected	in	the	base-case	scenario	(Figure	

4.4).	Summer	median	flows	show	little	change,	while	winter	flows	increase	by	17%	and	

spring	and	fall	flows	decrease	moderately	(-10%,	-8%).	Switching	to	cumulative	

drainage,	the	mean	annual	drainage	increases	by	8%	(Figure	4.5).	Broken	down	

seasonally,	the	simulation	shows	that	winter	drainage	increases	by	about	a	third	(37%),	

while	summer	drainage	increases	slightly	(7%)	and	spring	and	fall	drainage	decrease	

moderately	(-12%).	These	results	are	nearly	identical	to	those	of	Roberts	et	al.	(2012),	

while	the	seasonal	changes	are	similar	to	those	observed	by	Boyer	et	al.	(2010)	in	

Quebec	and	Rivard	et	al.	(2014)	in	Nova	Scotia.	

Although	there	are	notable	changes	to	seasonal	flow	patterns	as	described	above,	

annual	peak-flow	and	low-flow	values	as	represented	by	the	four	flow	indicators	change	

very	little	(<3%)	between	2000s	and	2030s	(Figure	4.6).	

To	determine	the	source	of	these	changes,	the	simulated	water	balance	was	examined	

(Figure	4.8).	These	results	clearly	show	that	precipitation	and	runoff	increase	from	1990	

to	2010	by	approximately	70	mm,	and	then	return	back	to	1990	levels.	On	the	other	

hand,	ET	increases	throughout	the	period,	with	an	extra	24	mm	(6%)	of	ET	by	2040.	This	

result	agrees	with	the	work	of	Rivard	et	al.	(2014)	in	Nova	Scotia.	As	a	consequence	of	

the	increased	ET,	net	recharge	to	deep	groundwater	(recharge	minus	groundwater	

contribution	to	stream	flow)	drops	by	60%,	from	27	mm	to	11	mm.	Given	that	PEI	is	

highly	dependent	on	groundwater	for	drinking	water	and	that	groundwater	extraction	

was	not	included	in	this	model,	this	major	reduction	to	aquifer	recharge	is	especially	

concerning.	

In	addition	to	its	impact	on	the	annual	water	balance,	evapotranspiration	is	important	

for	agriculture	as	increased	ET	can	deplete	soil	moisture	during	the	growing	season	and	

limit	crop	growth.	To	assess	this,	the	average	monthly	soil	moisture	deficiency	

(difference	between	potential	and	actual	evapotranspiration)	was	calculated	for	each	

decade	of	simulation	(Figure	4.9).	The	results	show	that	peak	soil	moisture	deficiency	in	
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August	is	not	expected	to	change	dramatically,	however	July	and	September	both	show	

large	increases	(6	mm,	4	mm).	This	suggests	that	the	water	stress	season	will	likely	

expand	both	earlier	and	later.	

Another	effect	of	the	changing	climate	is	shown	in	winter	snowpack	volumes	(Figure	

4.10).	Between	1985	and	2034,	decadal	snow	water	equivalent	(SWE)	averages	vary	

significantly	(by	32%)	but	do	not	show	any	consistent	trend,	suggesting	that	random	

annual	climate	variation	is	dominant.	However,	the	final	2035-2044	decade	shows	a	

major	(65%)	drop	in	maximum	annual	SWE,	and	is	consistent	across	all	winter	months.		

This	agrees	with	the	work	of	Rivard	et	al.	(2014)	who	reported	the	amount	of	

precipitation	falling	as	snow	dropped	by	over	half	by	the	2050s	in	their	Nova	Scotia	

study.
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4.5 Emissions	Scenario	Analysis	

To	assess	uncertainty	in	the	hydrological	system	due	to	emission	scenario,	the	annual	

precipitation	was	first	compared	seasonally	across	periods	and	scenarios	(Figure	4.11).	

At	the	annual	timescale,	this	shows	that	by	the	end	of	the	simulation,	annual	

precipitation	increases	across	all	scenarios,	with	RCP2.6	increasing	the	most	(15%)	while	

RCP4.5	and	RCP8.5	showed	smaller	increases	(10%,	5%).	Seasonally,	winter	precipitation	

shows	the	greatest	increase	over	the	baseline	period	in	all	three	scenarios	(18%	to	26%),	

while	fall	precipitation	shows	the	smallest	seasonal	increase	(+4%	in	RCP2.6	&	RCP	4.5)	

or	a	decrease	(-16%	in	RCP8.5).	Spring	and	summer	precipitation	are	generally	higher	

across	scenarios	(+10%	mean,	-4%	to	+19%).	Overall,	these	results	show	that	increased	

emissions	are	expected	to	lead	to	reduced	annual	precipitation,	although	the	

seasonality	is	not	affected	greatly	as	precipitation	increases	most	across	all	scenarios	in	

the	winter	and	least	in	the	fall.	

Beyond	the	precipitation	changes,	the	annual	water	balance	data	for	the	three	scenarios	

show	little	variation	(Figure	4.12).	Evapotranspiration	increases	approximately	5%	in	

each	scenario	matching	results	of	Rivard	et	al.	(2014),	and	the	precipitation	increases	

are	accommodated	by	increases	to	runoff	(8%	to	23%).	Net	recharge	to	deep	

groundwater	drops	significantly	in	all	three	scenarios,	though	less	in	the	wetter	RCP2.6	

and	RCP4.5	scenarios	(-29%,	-19%)	compared	to	the	RCP8.5	scenario	(-60%).	

The	major	decrease	in	winter	snowpack	found	in	the	base-case	RCP8.5	scenario	is	seen	

across	all	emission	scenarios	(Figure	4.13).	As	expected,	the	warmer	RCP8.5	scenario	

results	in	the	greatest	peak	snowpack	reduction	(-65%),	but	the	RCP2.6	and	RCP4.5	

scenarios	also	show	large	decreases	(-57%,	-40%).
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To	assess	the	impact	of	emission	scenario	on	stream	flows,	median	monthly	stream	

flows	were	calculated	for	each	scenario	in	both	the	baseline	(1985-2014)	and	future	

(2015-2044)	periods	(Figure	4.14).	Median	monthly	flows	are	largely	consistent	across	

emission	scenario,	with	all	three	scenarios	showing	nearly	no	change	in	summer	and	fall,	

while	there	is	a	consistent	increase	in	winter	flows	and	a	consistent	drop	in	spring	melt	

flows.	The	RCP2.6	scenario	shows	higher	monthly	median	flows	however	this	is	

expected	given	the	increased	precipitation	in	this	scenario.	

The	seasonal	drainage	data	(Figure	4.15)	mirror	the	median	flow	values	well,	with	

RCP8.5	showing	lower	drainage	in	all	seasons	compared	to	both	other	scenarios.	Winter	

drainage	increases	in	all	three	scenarios	(28%	to	48%)	

The	hydrological	indicators	show	similar	trends	across	the	three	emissions	scenarios	

(Figure	4.16).	NRBF	shows	very	little	change	across	time	and	scenario,	while	Q90,	Q50	

and	Q10	all	show	little	change	but	the	values	in	RCP2.6	are	consistently	higher	than	

other	scenarios,	likely	due	to	the	increased	precipitation.
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4.6 GCM	Sensitivity	Analysis	

To	assess	the	uncertainty	due	to	GCM	selection	associated	with	model	results,	BCCAQ	

statistically	downscaled	future	climate	data	from	three	other	GCMs	(CNRM,	GFDL,	

MIROC5)	was	used	as	input	to	the	hydrological	model	for	the	RCP8.5	emissions	scenario.	

Figure	4.17	shows	the	variation	between	GCMs	for	the	annual	water	balance	for	the	

2035-2044	period.	While	precipitation	estimates	vary	by	150	mm	(13%),	the	runoff	

coefficient	(runoff	as	a	proportion	of	precipitation)	shows	little	variation	across	GCMs	

(Table	13).	This	indicates	that	the	are	no	major	changes	in	hydrological	processes	or	

limits	at	the	annual	timescale	across	the	various	scenarios,	as	increased	precipitation	

results	in	a	proportional	increase	in	flow.	

Table 13 - Runoff coefficient change by period for each GCM. 

Runoff	Coefficient	 CGCM	 CNRM	 GFDL	 MIROC5	

1985-1994	 0.58	 0.57	 0.58	 0.57	

1995-2004	 0.59	 0.57	 0.57	 0.57	

2005-2014	 0.60	 0.57	 0.57	 0.60	

2015-2024	 0.59	 0.59	 0.60	 0.58	

2025-2034	 0.58	 0.58	 0.57	 0.56	

2035-2044	 0.59	 0.58	 0.59	 0.57	

	

To	confirm	the	significant	reduction	in	winter	snowpack	identified	in	the	initial	results,	

snowpack	volumes	were	analysed	for	all	four	GCMs	(Figure	4.18).	While	the	timing	and	

volume	of	maximum	snowpack	varies	between	GCMs,	all	four	show	major	reductions	in	

peak	snowpack	volumes,	ranging	between	-40%	and	-70%.	

With	respect	to	median	flows,	there	is	again	little	variation	between	GCMs	(Figure	4.19).	

The	main	differences	are	related	to	the	spring	melt;	both	the	GFDL	and	MIROC5	GCMs	

show	peak	spring	melt	flows	occurring	earlier	in	the	year	(March	versus	April),	and	the	

GFDL	model	shows	an	11%	increase	in	median	flow	at	the	peak	of	the	spring	melt	

compared	to	CGCM.	

The	four	GCMs	also	do	not	show	major	variation	in	the	streamflow	indictors	(Figure	

4.20).	The	MRI-CGCM3	and	MIROC5	models	showed	very	little	change	to	any	of	the	
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indicators	between	the	historic	and	future	periods,	while	Q90	with	the	CNRM	model	

and	Q10	with	the	GFDL	model	increased	slightly	(13%,	12%).	
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4.7 Drought	Assessment	

The	drought	assessment	was	carried	out	for	the	West	River	watershed.	Three	datasets	

were	examined	in	the	25-year	historical	period	(1990-2014):	calibration	representing	

the	calibrated	hydrological	model	using	observed	Charlottetown	climate	data,	

observation	representing	the	observed	flow	data	from	the	stream	gauge,	and	simulation	

representing	the	calibrated	hydrological	model	using	the	statistically	downscaled	

gridded	climate	data	from	the	MRI-CGCM3	GCM.	Six	datasets	were	assessed	from	the	

30-year	future	period	(2015-2044),	one	for	each	of	the	three	emission	scenarios	

(RCP8.5,	RCP4.5	&	RCP2.6)	using	the	MRI-CGCM3	GCM,	and	one	for	each	of	the	three	

GCMs	used	in	the	climate	sensitivity	analysis	(CNRM,	GFDL	&	MIROC5)	with	each	using	

the	RCP8.5	emission	scenario.	

When	fitting	the	observed	annual	minimum	series	data	from	the	observed	record,	the	

flow	from	2013	was	well	below	the	other	years	for	both	the	7Q	and	60Q	indicators.	This	

year	was	deemed	an	outlier	and	excluded	from	the	distribution	fitting.	Overall,	the	fit	of	

the	distributions	to	the	samples	was	satisfactory,	with	Kolmogorov-Smirnov	values	

ranging	between	0.08	to	0.17.	

The	results	of	the	drought	assessment	are	presented	in	Table	14.	In	general,	the	7Q10	

and	60Q50	indicators	both	follow	similar	patterns	across	all	of	the	assessed	datasets.	

The	values	for	the	historical	simulation	dataset	are	15%	and	25%	lower	than	the	

observed	dataset	for	the	7Q10	and	60Q50	respectively,	suggesting	that	the	simulations	

generate	more	extreme	low	flows,	but	the	deviation	from	observed	is	not	very	large	and	

thus	the	simulation	appears	to	be	appropriate.	
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Table 14 - Drought indicator values for West River. 

Period	 7Q10	(m
3
/s)	 K-S	Value	 60Q50	(m

3
/s)	 K-S	Value	

Calibration	 0.37	 0.130	 0.34	 0.094	

Observation	 0.50	 0.123	 0.58	 0.103	

Simulation	1990-2014	 0.43	 0.129	 0.44	 0.145	

Simulation	1985-2014	 0.42	 0.122	 0.43	 0.148	

Simulation	2015-2044	RCP2.6	 0.40	 0.091	 0.38	 0.087	

Simulation	2015-2044	RCP4.5	 0.43	 0.087	 0.42	 0.084	

Simulation	2015-2044	RCP8.5	 0.41	 0.090	 0.42	 0.080	

Simulation	2015-2044	CNRM	 0.41	 0.113	 0.42	 0.114	

Simulation	2015-2044	GFDL	 0.40	 0.105	 0.34	 0.118	

Simulation	2015-2044	MIROC5	 0.36	 0.136	 0.42	 0.146	

	

For	the	7Q10	indicator	(Figure	4.21	&	Figure	4.22),	the	choice	of	emission	scenario	does	

not	have	a	large	effect	on	the	expected	low-flow,	with	all	three	scenarios	showing	

change	of	less	than	5%.	Two	of	the	other	GCMs	also	give	similar	results	for	the	7Q10	

indicator,	however	the	MIROC5	GCM	data	gives	a	7Q10	flow	that	is	9%	below	historical.	

This	may	be	related	to	differences	in	the	annual	minimum	series	from	the	MIROC5	GCM	

which	shows	a	distinct	slope	break	at	3.3	years	return	period	rather	than	all	other	

simulations	which	were	generally	below	2	years.	

The	60Q50	indicator	shows	more	variability	between	GCMs	and	emission	scenarios	

(Figure	4.23	&	Figure	4.24).	Overall,	the	expected	low-flow	drops	in	all	scenarios	

compared	to	the	historical	simulation,	however	the	change	is	less	than	7%	for	MRI-

CGCM	in	the	two	higher	emission	scenarios	and	the	CNRM	RCP8.5	scenario.	The	MRI-

CGCM	RCP2.6	scenario	shows	a	13%	drop	in	expected	low-flow,	while	the	GFDL	and	

MIROC5	GCMs	under	the	high	emission	scenario	drop	sharply	by	22%	and	28%	

respectively.	As	with	the	7Q10	indicator,	the	annual	minimum	series	from	the	MIROC5	

GCM	was	markedly	different	than	other	scenarios.	
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Chapter 5 Conclusion 

This	study	successfully	achieved	its	two	objectives:	to	build	a	hydrological	model	for	five	

watersheds	in	PEI,	and	use	the	model	to	assess	the	potential	impact	of	climate	change	

on	the	hydrological	system.	The	hydrological	model	was	built	using	a	modified	version	of	

the	HBV	hydrological	model	running	within	the	Envision	alternative	futures	modeling	

framework.	The	hydrological	model	was	calibrated	by	running	a	Monte	Carlo	simulation	

with	2000	runs	and	each	run	selecting	a	unique	value	for	eleven	model	parameters	from	

specified	ranges	using	uniform	distributions.	The	fit	of	the	simulations	was	assessed	

using	an	objective	function	which	incorporated	the	NSE	and	NSEln	of	streamflow	and	a	

weighted	PBIAS	term.	

One	parameter	set	was	found	to	produce	best-fit	simulations	for	three	of	the	six	

catchments,	and	ranked	in	the	top	ten	in	two	other	catchments,	suggesting	that	the	

physical	characteristics	of	all	the	watersheds	are	similar	and	one	set	of	model	

parameters	can	be	used	to	reasonably	simulate	all	catchments	in	the	study	area.	Four	of	

the	modeled	catchments	were	satisfactorily	calibrated,	with	monthly	NSE	values	ranging	

from	0.61	to	0.76	and	|PBIAS|	values	ranging	from	0.01	to	0.21.	A	fifth	catchment	failed	

the	monthly	NSE	test	with	a	value	of	0.43	and	significantly	lower	OBJ	scores,	while	the	

last	was	removed	from	the	simulation	due	to	consistently	high	volume	errors	which	

suggest	that	the	model	was	unable	to	properly	simulate	the	hydrological	processes	in	

this	catchment,	likely	associated	with	municipal	groundwater	extraction	for	the	City	of	

Charlottetown.	In	general,	the	model	was	able	to	successfully	simulate	low-flow	periods,	

while	higher-flow	periods	in	the	fall	and	spring	melt	were	timed	appropriately	but	

showed	smoothed	and	elongated	peaks	with	significantly	reduced	magnitudes	

compared	to	observed	data.	

Overall,	the	model	shows	that	most	aspects	of	the	hydrology	of	PEI	are	not	expected	to	

change	dramatically	in	the	future.	Mean	annual	drainage	increases	by	8%	by	2035-44	

over	1985-94,	but	up	to	23%	in	the	RCP2.6	scenario.	However,	the	runoff	coefficient	is	

steady	at	0.6	(±0.03	over	time/scenario)	and	so	the	increased	drainage	is	due	to	
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increased	precipitation.	Evapotranspiration	increases	slowly	but	steadily	in	all	scenarios,	

reaching	5%	above	baseline	by	2035-44.	The	increased	evapotranspiration	comes	at	the	

expense	of	net	recharge	to	deep	groundwater,	which	decreases	in	all	scenarios	with	a	

60%	(16mm)	decrease	for	the	baseline	scenario	but	only	a	15%	decrease	in	wetter	

scenarios	(MIROC5,	RCP2.6).	This	may	have	significant	consequences	for	groundwater	

levels	in	a	region	that	is	already	facing	significant	challenges.	Winter	snowpack	volumes	

also	decrease	drastically	(-65%,	-40%	to	-71%)	in	the	last	decade	of	simulation	in	all	

scenarios,	likely	associated	with	increases	in	winter	temperature	and	shifting	of	winter	

precipitation	to	rain.	

Seasonally,	the	increased	flow	is	shown	to	occur	in	the	winter	(+38%,	28%	to	50%),	while	

spring	melt	flows	drop	by	12%	(+4%	to	-22%)	and	summer	flows	show	little	change	

(+7%,	-8%	to	+16%).	Fall	flows	increase	in	wetter	scenarios	(RCP2.6	+23%,	MIROC5	

+33%)	but	drop	in	drier	ones	(RCP8.5	-12%).	Annual	flow	indicators	(Q10,	Q50,	Q90)	

remain	stable	in	the	base	scenario	(-2%,	+1%	to	0%),	but	show	small	but	steady	

increases	in	all	other	scenarios	(mean	+6%,	up	to	13%,	12%	and	11%	respectively).	

Assessment	of	summer	drought	severity	shows	that	there	is	little	change	to	both	the	

7Q10	(-4%,	-4%	to	+6%)	and	60Q50	(-4%,	-19%	to	+11%)	droughts.	

While	climate	change	is	often	considered	to	be	prone	to	uncertainty,	this	study	

compared	results	from	six	scenarios	(three	emission	scenarios	with	one	GCM	and	three	

other	GCMs	with	one	emission	scenario)	with	MRI-CGCM3	RCP8.5	being	the	base-case	

scenario.	The	RCP2.6	scenario	was	consistently	wetter	than	the	base-case,	with	higher	

precipitation	and	flows	throughout	the	year,	while	two	of	the	comparison	GCMs	

generated	very	similar	results	and	the	MIROC5	GCM	produced	slightly	wetter	and	higher	

flow	simulations.	Change	values	between	historic	and	future	periods	from	the	six	

simulations	agree	in	direction	for	nearly	all	results,	and	show	only	moderate	variation	

(generally	less	than	30	percentage	points)	in	magnitude.	This	indicates	that	the	impact	

of	climate	change	on	the	hydrological	system	in	PEI	is	relatively	well	constrained.	
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Chapter 6 Recommendations for Future Research 

From	this	study,	two	major	changes	were	identified	that	should	be	further	investigated	

–	large	reductions	in	winter	maximum	snowpack	volumes	and	net	recharge	to	deep	

groundwater.	In	particular,	the	reduction	in	net	recharge	is	concerning	as	PEI	is	highly	

dependent	on	groundwater	for	drinking	water,	and	the	province	recently	resumed	

issuing	permits	for	groundwater	withdrawal	for	irrigation	which	may	put	additional	

pressure	on	aquifers.	Current	aquifer	extraction	rates	may	not	be	sustainable	with	

reduced	net	recharge,	and	should	be	further	investigated.	

Overall,	while	the	magnitude	of	potential	change	to	the	hydrological	system	on	PEI	is	

moderate	for	most	indicators	and	variation	between	scenarios	is	not	extensive,	the	

limitations	to	this	study/model	could	mask	significant	change.	In	particular,	human	

actions	can	have	major	impacts	on	climate	and	ecosystem,	which	can	compound	each	

other.	For	this	reason,	further	work	should	be	conducted	to	extend	the	model	to	fully	

utilize	the	power	of	the	Envision	alternative	futures	framework	to	assess	how	human	

actions,	landscape	management	practices	and	adaptations	may	impact	the	results.	
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