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Abstract

In this thesis we first give a brief introduction to the application of dynamical systems

to cosmology. This enables us to study spherically-symmetric cosmological models in

Einstein-aether theory with a scalar field. The models depend on the time-like aether

vector field through the expansion and shear scalars, and we focus on some special cases

of the models. This leads to a compact phase space. From the evolution equations we

obtain a three-dimensional dynamical system in terms of expansion-normalized vari-

ables. The aim of studying this system is to find the local stability of the equilibrium

points of the dynamical system corresponding to physically realistic solutions. As an

application we study spherically symmetric Einstein-aether Kantowski-Sachs cosmolog-

ical models with a scalar field using the dynamical systems theory. In general, we found

that there always exists an future attractor for the points +P1,
± P2,

± P4 for different

values of the parameters k > 0 and c > 0 and −∞ < α <∞.

vii



List of Abbreviations Used

IR limit Infrared Limit of Horava Gravity

CMB Cosmic Microwave Background

ua The Aether Velocity Vector Field

gab The Metric Tensor

V Potential

ρ Energy Density

p Pressure

DE Differential Equation

φ Scalar Field

θ Expansion of the Aether

σ+ Shear of the Aether

u̇a Acceleration of the Aether

t Time

k Curvature Parameter

a(t) Expansion Scale Factor

ds2 The line element

A Matrix

R1(x, a) The error term

Df(a) Derivative Matrix

etA The Linear Flow

γ(a) The Orbit

viii



γ+(a) The Positive Orbit

J Jordan Canonical Form

λ Eigenvalue

<e(λi) Real Part

FLRW Friedmann-Lemaitre -Robertson-Walker

N Non-negative Function

µφ, pφ, qφ1 , π
φ
+ The Aether Energy Momentum Components

Lu The Einstein-Aether Lagrangian

ix



Acknowledgements

First and foremost, I would like to thank Dr. Alan Coley, professor of Mathematics in

the Department of Mathematics and Statistics, Dalhousie University, for his patience,

guidance, and support in helping me improve my knowledge in different areas of math-

ematics. Also, I would like to thank Dr.David Iron, professor of Mathematics and

the graduate coordinator in the Department of Mathematics and Statistics, Dalhousie

University, for his guidance and support. I would like to thank Dr. Robert van den

Hoogen, professor of Mathematics in the Department of Mathematics and Statistics,

St. Francis Xavier University, for his patience, guidance, and valuable advices through-

out the duration of this study. Special thanks go out to my parents (Masoud Al haddad

and Saadah Saleh), my husband (Turki Alhadad), and all my sisters, brothers, and my

friends for their support, love, and for providing me a good academic environment dur-

ing the length of my study. Special thanks are extended to Ms.Bassemah Alhulaimi,

PhD student in Applied Mathematics, Department of Mathematics and Statistics, for

her guidance and support. Last but not least, I would like to thank our king of Saudi

Arabia and the Saudi Cultural Bureau in Canada for their support and for giving me

the chance to continue my studies abroad.

x



Chapter 1

Introduction

1.1 Application of Dynamical Systems in Cosmology

Dynamical systems are helpful in the study of the Universe on the largest scales, where

galaxies are taken to be the constituents. Studies show that galaxies are distributed

fairly uniformly, so we can assume that the cosmological models are spatially homoge-

neous and the Einstein field equations of General Relativity are ordinary differential

equations. As a result, using dynamical systems theory we can study the qualitative

features of such models.

Several models of early universe cosmology, including the Einstein-aether theory [1, 2]

and the IR limit of Horava gravity [3, 4], break Lorentz invariance. There are some

theories where the physical laws are measured to be the same for all observers that are

moving uniformly with respect to each other. These are called the Lorentz invariant

theories. When Einstein-aether theories are studied, it is assumed that the rest frame

(which is usually chosen) matches with the Hubble law expansion of the universe and

the CMB. On the other hand, it has been shown [5] that a cosmological rest frame does

not exist, and as a result there is no point in assuming that the aether should match

such a cosmological rest frame.

Einstein-aether theory joins General Relativity with the aether, a dynamic unit time-

like vector field. An Einstein-aether solution is a Horava solution if the aether vector

field is hyper-surface orthogonal. In Einstein-aether theory, the local time structure

consists of the aether vector field ua and the metric tensor gab. We can illustrate much

of the physics of the early universe in conventional cosmology by knowing the impact

of inflation on the Lorentz violation [6, 7]. In this thesis, we analyze the late time

behaviour of the dynamics of Einstein-aether cosmological models. Researchers pre-

dict that in aether theory the Lorentz violation vector may be the reason for inflation

without the scalar field potential, changing the dynamics of the chaotic inflationary

1
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model [8–10].

1.2 Einstein-Aether Cosmology

Recently, the use of aether theories of gravity in cosmological models has become more

popular in research. In [1, 11–15], an Einstein-aether gravity theory is improved with

a Lorentz-violating dynamic field that conserves both locality and covariance with an

additional aether vector field. The aether vector field will coincide with the cosmic

frame and the expansion rate of the universe in an isotropic, homogeneous Friedmann

universe, with the expansion scale factor a(t) and the proper time t. The Einstein

equations can be generalized by adding a stress tensor for the aether field which has

the form:

T aeab = 2c1(∇au
c∇buc −∇cua∇cub)− 2[∇c(u(aJ

c
b)) +∇c(u

cJ(ab))−∇c(u(aJ
c
b))]

−2c4u̇au̇b + 2λuaub + gabLu

where

Kab
cd ≡ c1g

abgcd + c2δ
a
c δ

b
d + c3δ

a
dδ

b
c + c4u

aubgcd,

Jam = −Kab
mn∇bu

n

Lu ≡ −Kab
cd∇au

c∇bu
d.

We define new expressions cθ = c2 + (c1 + c3)/3 and cσ = c1 + c3 [36].

1.3 Self Interacting Scalar Field

If the universe contains a self-interaction potential V , which is dependent on a self-

interacting scalar field φ, together with the expansion rate θ = 3ȧ
a

= 3H, the modified

stress tensor for the scalar field [1, 2] is given by

Tab = ∇aφ∇bφ− (
1

2
∇cφ∇cφ− V + θVθ)gab + V̇θ(uaub − gab) (1.1)

where Vθ is the derivative of V with respect to θ. This corresponds to an effective fluid

with energy density ρφ and pressure pφ that can be expressed as follows:

ρφ =
1

2
φ̇2 + V − θVθ and pφ =

1

2
φ̇2 − V + θVθ + V̇θ.
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The energy-momentum conservation law, or Klein-Gordon equation, is

φ̈+ θφ̇+ Vφ = 0, (1.2)

the augmented Friedmann equation is

1

3
θ2 = ρφ +

1

2
φ̇2 + V − θVθ −

k

a2
(1.3)

(where k is the curvature parameter and ρφ is the density of ordinary matter), and the

Friedmann metric is defined by the line element

ds2 = dt2 − a2(t)(
dr2

1− kr2
+ r2dϑ2 + r2 sin2 ϑdϕ2). (1.4)

We then get the Raychaudhuri equation from differentiating the Friedmann equation.

1.4 Exponential potentials

Exponential potentials of the form V = V0e
−λφ occur in higher dimensional frameworks,

Kaluza-Klein theories, and super gravity [16–20]. Although in general relativity the

exponential potential of the scalar field does not lead to exponential inflation [6, 7], if

the potential is not too steep it can lead to a power law inflation. Ultimately, we restrict

the steep potentials by using multiple fields in order to have assisted inflation [21–25].

A late time attractor is a scaling solution for exponential potentials with sufficiently

flat potentials [26–30]. The dynamical system with negative exponential leads to rich

physics, such as that which is found in Ekpyrotic behaviour [31, 32]. The main reason

of using this kind of exponential potentials is that the dynamical system that results

allows us to use dimensionless variables.



Chapter 2

Theory of Dynamical Systems

If we have a function f : Rn → Rn of class C1, we can consider differential equations

(DE’s) of the form

x′ = f(x), (2.1)

where x = (x1(t), · · · , xn(t)) is called the state space, a function of time, and x′ = dx
dt

.

If f does not explicitly depend on t, the DE is called autonomous. Therefore, if f

is linear then the DE is called linear, and is given by f(x) = Ax, where A is an

n × n matrix of real numbers. In general, f is a non-linear function. The function

f can be interpreted as a vector field, for each point x ∈ Rn, we identify a vector

f(x) = (f1(x), . . . , fn(x)) ∈ Rn.

We now give some important definitions and notations:

A solution of the DE defined above is a function ψ : R → Rn which satisfies the

condition

ψ′(t) = f
(
ψ(t)

)
(2.2)

for all t ∈ R in the domain of ψ. The orbits of the DE are the images of the solutions ψ.

The tangent vector to the orbit of some solution ψ at ψ(t) is given by ψ′(t), satisfying

(2.2), and so the vector f is tangent to such an orbit. A zero of the vector field is a

point a ∈ Rn satisfying

f(a) = 0, (2.3)

which is called an equilibrium point or equilibrium point of the DE. ψ(t) = a, for all

t ∈ R, is a solution of the DE if and only if a is a equilibrium point, since ψ′(t) = 0 =

f(a). Such a constant solution describes a equilibrium state of the physical system. It

is necessary to examine the behaviour of the orbits of the DE in order to study the

stability of equilibrium states near the equilibrium points. Since we are assuming f is

4
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of class C1, we have

f(x) = f(a) +Df(a)(x− a) +R1(x, a), (2.4)

with

lim
x→a

||R1(x, a)||
||x− a||

= 0

Here, R1(x, a) is called the error term, and Df(a) is the n× n derivative matrix of f

defined by

Df(x) =

(
∂fi
∂xj

)
, i, j = 1, · · · , n. (2.5)

If a ∈ Rn is such that f(a) = 0, then using (2.4) we can rewrite (2.1) as

x′ = f(x) = Df(a)(x− a) +R1(x, a). (2.6)

The linearization of the DE (2.1) is given by the linear DE

u′ = Df(a)u

for the equilibrium point a ∈ Rn. Since f(x) ≈ Df(a)(x− a) for x near a equilibrium

point a, solutions of such a linearization will in general approximate the solutions of

the original non-linear DE near the equilibrium points.

2.1 Linear Autonomous Differential Equations

There is a unique solution curve for the linear DE

x′ = Ax, x(0) = a ∈ Rn, (2.7)

where

x(t) = etAa for all t ∈ R, (2.8)

where etA maps a→ etaa for all t ∈ R and a ∈ Rn, and A is an n× n real matrix. The

linear flow of the DE is a one-parameter family of linear maps, and is denoted by

gt = etA. (2.9)
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The properties

g0 = I and gt+s = gt ◦ gs, ∀ t, s ∈ R, (2.10)

hold for both the linear and non-linear flow. Thus the linear flow {etA}
t∈R has a group

structure under the composition of maps. The evolution of the dynamical system in

terms of time can be described by the flow in terms of the physical system. The orbits

are subsets of Rn divided by the flow of the DE, and are denoted by:

γ(a) =
{

gta|t ∈ R
}
. (2.11)

This is called the orbit of the DE through a and is the image of the solution curve

x(t) = etAa. As a result of the uniqueness of the solution, either of the properties:

γ(a) = γ(b) or γ(a) ∩ γ(b) = ∅

hold, for all a, b ∈ Rn. A set S is called an invariant set if for any point a ∈ S the orbit

through a remains in S that is γ(a) ∈ S.

The orbits of the DE can be classified as follows :

1. If gta = a for all t ∈ R, then γ(a) is a point orbit.

2. If there exists a T > 0 such that gTa = a, then γ(a) is a periodic orbit.

3. If gta 6= a for all t 6= 0, then γ(a) is a non-periodic orbit.

Definitions

1. Given a linear DE x′ = Ax in Rn, we can define a new function y = Px, P is a

non-singular matrix. Let τ = kt be a new variable, with k > 0. It follows that

y′ = By, where B = 1
k
P AP−1. Moreover, the two linear dynamical systems

x′ = Ax and x′ = Bx, where A = kP−1 B P , are linearly equivalent.

(The condition A = kP−1 B P means that the linear map P maps each orbit of

the flow etA to an orbit of the flow etB.)

2. We can say that the two linear flows etA and etB on Rn are linearly equivalent

if there exists a non-singular matrix P and a parameter k > 0 such that ∀t ∈
R, P etA = ektB P .
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From these definitions we can classify the Jordan Canonical forms for any 2×2 real

matrix (A) as follows:

1. There exists a matrix P such that J = P AP−1 if A has two real independent

eigenvalues, and so the flow is then denoted by etJ , where

J =

[
λ1 0

0 λ2

]
, etA =

[
eλ1t 0

0 eλ2t

]
.

The eigenvectors are e1 = (1, 0)T and e2 = (0, 1)T . The resulting solution is

y(t) = etJb, b ∈ R2 (i.e., y1 = eλ1tb1 and y2 = eλ2tb2). Note that the orbits of the

DE for the non-zero eigenvalues are given by[
y1

b1

] 1
λ1

=

[
y2

b2

] 1
λ2

.

2. If there is one real eigenvalue of A, then there exists a matrix P such that J =

P AP−1, and the flow is given by etJ , where

J =

[
λ 0

0 λ

]
, etA = eλt

[
1 t

0 1

]

The eigenvector is given by e1 = (1, 0)T . Note that the orbits of the DE for the

non-zero eigenvalues are of the form

y1 = y2

[
b1

b2

+
1

λ
log

y2

y1

]
.

3. If the eigenvalues of A are complex of the form α+ iβ, then there exists a matrix

P such that J = P AP−1, where

J =

[
α β

−α β

]
.

We adopt the polar coordinates (r, θ), with y1 = r cos θ and y2 = r sin θ, in order

to simplify the calculation of orbits. Then the DE becomes r′ = αr and θ′ = −β,

implying that dr
dθ

= −α
β
r. Without loss of generality, we can assume β > 0, since the

DE is invariant under the changes (β, y1)→ (−β,−y1). Thus, limt→∞ θ = −∞.
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2.2 Topological Equivalence of Linear Flows

Linear equivalence acts as a filter; the flow is limited by the number of distinct eigen-

vectors of the DE. Hence, near the equilibrium points the linear equivalence of the DE

can distinguish the behaviour of the orbits. For example, the orbits in the three Jordan

Canonical forms approach the origin as t→∞. On the other hand, we can study the

long time behaviour of the DE by eliminating more features.

Definitions

1. A homeomorphism on Rn is a non-linear map h : Rn → Rn, where h is one to one

and onto, and h−1 is continuous. The orbits of one of the flows can be mapped

onto the orbits of the simplest flow using a homeomorphism.

2. Two linear flows etA and etB on Rn are topologically equivalent if there exists

a homeomorphism h on Rn and a positive constant k such that h
(
etAx

)
=

ektBh(x) for all x ∈ Rn and for all t ∈ R.

If the real part of the eigenvalues are all non zero (i.e., <e(λi) 6= 0, i = 1, 2), then

the flow is called hyperbolic. In fact, any hyperbolic linear flow in R2 is topologically

equivalent to the linear flow etA, where A is one of the following matrices:

A =

(
−1 0

0 −1

)
(sink), A =

(
1 0

0 1

)
(source), A =

(
−1 0

0 1

)
(saddle).

2.3 Linear Stability

It is important to determine whether a physical system which is disturbed from an

equilibrium state remains close to, or approaches, the equilibrium points as t→∞ .

Further definitions

1. A equilibrium point of the DE is called stable if for all neighbourhoods U of 0,

there exists a neighbourhood V of 0 such that gtV ⊆ U for all t ≥ 0, where

gt = (etA) is the flow of the DE.

2. A equilibrium point is called asymptotically stable if the equilibrium point is

stable, and if for all x ∈ V , limt→∞ ‖gtx‖ = 0.
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Note if A ∈Mn(R) we will see that

lim
t→∞

etAa = 0 for all a ∈ Rn (2.12)

if and only if <e(λ) < 0 for all eigenvalues of A. This implies that (0, 0) is a sink in

Rn, if the solutions x(t) of the DE approach the equilibrium points (0, 0) in the long

term behaviour of the dynamical system. On the other hand, if we replace A by −A
and t by −t, we obtain that <e(λ) > 0 for all eigenvalues which are called a source in

Rn.

2.4 Non-Linear Differential Equations

For non linear DE it is difficult to write down the flow explicitly, so the main aim of

the dynamical system analysis is to show the qualitative properties of a non-linear flow

without knowing the exact form of the flow.

We shall consider the DE x′ = f(x), where f is of class C1. It has a unique

maximal solution satisfying ψa(0) = a. The flow of the DE is defined by the one-

parameter family of maps {gt}
t∈R such that gt : Rn → Rn and gta = ψa(t), for all

a ∈ Rn. The flow {gt} is defined by

gta = ψa(t), (2.13)

in terms of the solution function ψa(t) of the DE .

Here, γ(a), is the notation for the orbit through a and is defined as

γ(a) =
{
x ∈ Rn

∣∣x = gta, for all t ∈ R
}
. (2.14)

Furthermore, orbits for non-linear flows can be classified into three types (as for linear

flows): point orbits, periodic orbits, and non-periodic orbits.

A positive orbit through a, denoted by γ+(a), which we sometimes work with, is

defined as

γ+(a) =
{
x ∈ Rn

∣∣x = gta, for all t ≥ 0
}
. (2.15)
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2.5 Linearization and the Hartman-Grobman Theorem

The Hartman-Grobman theorem plays a significant role in dynamical systems theory

because it is useful to study the behavior of the stability of any dynamical system near

the equilibrium points. Let us state the theorem in general:

Theorem 1. Hartman-Grobman Theorem: Let x̄ be a equilibrium point of the DE

x′ = f(x) in Rn, where f : Rn → Rn is a continuously differentiable map. If all

of the eigenvalues of the derivative matrix Df(x̄) satisfy <e(λ) 6= 0, then there is a

homeomorphism h : U → Ū of a neighbourhood U of 0 ∈ R onto a neighbourhood Ū of

x̄ which maps orbits of the linear flow etDf(x̄) onto orbits of the non-linear flow gt of

the DE, preserving the parameter t.

In particular, if x̄ is a hyperbolic equilibrium point then the flow of the DE x′ = f(x)

and the flow of its linearization u′ = Df(x̄)u are locally topologically equivalent.

Furthermore, if x̄ is a equilibrium point of the DE, and the real parts of the eigenvalues

of the matrix Df(x̄) are all non-zero, then we can study its stability: if the real parts of

the eigenvalues are all negative, the equilibrium point is called a sink; if all Re(λ) > 0,

it is called a source. Otherwise, if one eigenvalue is positive and the other negative, it

is a saddle point.

2.6 Higher Dimensions

Let give some important definitions:

Hyperbolic equilibrium point: if the real parts of the eigenvalues of the matrix Df(x̄)

are non-zero, the equilibrium point of a non-linear DE is said to be hyperbolic.

Non-hyperbolic equilibrium point: For a one- parameter family of equilibrium points

there is at least one eigenvalue which has a zero real part for any equilibrium point

in DE, but if all other eigenvalues have a non-zero real part, all points in the set are

called non-hyperbolic.

In higher dimensions (n > 2) many new features are possible, and the Hartman Grob-

man Theorem can be applied if the equilibrium point is hyperbolic. Otherwise, we use

the normally hyperbolic method if the equilibrium point is non- hyperbolic by identify

the signs of the other eigenvalues for a curve, in the remaining n− 1 directions.

Note: all the information in this section is taken from [33].



Chapter 3

Spherically Symmetric Einstein-Aether Kantowski-Sachs

Cosmological Models with a Scalar Field

The spherically-symmetric cosmological models in Einstein-aether theory are constructed

containing a scalar field, in which the exponential self-interaction potential depends on

the time-like aether vector field through the expansion and shear scalars. The deriva-

tion of the evolution equations in terms of expansion-normalized variables are presented

below, which reduce to a dynamical system. The local stability of some of the equilib-

rium points of the dynamical system will be investigated in the next chapter.

3.1 Kantowski-Sachs Models

The Kantowski-Sachs models are spatially homogeneous, spherically symmetric cosmo-

logical models that have four Killing vectors, the fourth being ∂x [35]. In coordinates

adapted to the symmetries of the models, the metric can be written in the following

form:

ds2 = −N(t)2dt2 + (e1
1(t))−2dx2 + (e2

2(t))−2(dϑ2 + sin2 ϑdϕ2). (3.1)

N is a non -negative function of t, which under a time rescaling can be set to one.

It is assumed here that the aether field is invariant under the same symmetries as

the metric, and therefore is aligned with the symmetry adapted time coordinate. The

velocity vector of aether is assumed to satisfy uaua = −1 [36]. The expansion scalar is

determined via θ = ∇au
a, and the shear scalar is determined via 6σ2

+ = ∇au
b∇bu

a− 1
3
θ2.

The vorticity and acceleration of the aether are zero [34].

3.2 Scalar Field Potential

The scalar field potential V (φ, θ, σ+) is assumed to be an exponential function of the

scalar field and depends linearly on both the expansion and the shear of the Aether.

11
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Consider the scalar field potential of the form

V (φ, θ, σ+) = a1e
−2kφ + a2θe

−kφ + a3σ+e
−kφ, (3.2)

in which case

µφ = 1
2
e0(φ)2 + a1e

−2kφ, (3.3)

pφ = 1
2
e0(φ)2 − a1e

−2kφ − ka2e0(φ)e−kφ − a3σ+e
−kφ, (3.4)

qφ1 = 0, (3.5)

πφ+ =
a3

6

(
θ − ke0(φ)

)
e−kφ. (3.6)

The aether energy components are derived in [34] where we replace e1(φ) = 0 and

u̇ = 0. The constants a1, a2 and a3 are defined such that the potential V (θ, φ, σ) can

be assumed to be a positive definite. We shall assume that a1 > 0 but allow a2 and a3

to be either positive or negative.

3.3 Evolution Equations

The evolution equations for the aether-Kantowski-Sachs models with a scalar field are:

e0(e1
1) = −1

3
(θ − 6σ+)e1

1, (3.7a)

e0(K) = −2
3
(θ + 3σ+)K, (3.7b)

e0(θ) = −1
3
θ2 − 6

(
1− 2cσ
1 + 3cθ

)
σ2

+ +
1

1 + 3cθ

(
− e0(φ)2 + a1e

−2kφ

+3
2
a2ke

−kφe0(φ) + 3
2
a3σ+e

−kφ), (3.7c)

e0(σ+) = −θσ+ +
1

6(1− 2cσ)

(
a3θe

−kφ − a3ke0(φ)e−kφ − 2K
)
, (3.7d)

e0(e0(φ)) = −θe0(φ) + 2ka1e
−2kφ + (a2θ + a3σ+)ke−kφ, (3.7e)

with the following constraint:

K + 1
3
(1 + 3cθ)θ

2 = 3(1− 2cσ)σ2
+ + 1

2
e2

0(φ) + a1e
−2kφ. (3.8)

where cσ and cθ are parameters (see chapter one). All evolution and constraint equa-

tions are derived in [34].
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3.4 Dimensionless Variables

In order to simplify the analysis the following normalized variables (which are bounded

for 1− 2cσ ≥ 0), are chosen:

x =
e0(φ)√

2D
, y =

√
3σ+

D
, z =

√
K

D
, Q =

θ√
3D

, W =
e−kφ

D
, (3.9)

where

D =

√
K +

θ2

3
, (3.10)

and the new time variable

f ′ =
1

D
e0(f) (3.11)

is defined. To further simplify the model the following parameter is defined

c2 = (1− 2cσ).

Thus, the evolution equations for the aether-Kantowski-Sachs model with a scalar field

can be written with the new variables defined in (3.9):

e0(K) = −2
3

√
3(Q+ y)z2D4, (3.12a)

e0(θ) = D3

[
−Q2 +

1

1 + 3cθ

(
− 2c2y2 − 2x2 + a1W

2

+
3
√

2

2
a2kxW +

3

2
√

3
a3Wy

)]
, (3.12b)

e0(σ+) = D3

[
−Qy +

1

6c2

(√
3a3QW −

√
2a3kWx− 2z2

)]
, (3.12c)

e0(e0(φ)) = D3

[
−
√

6Qx+ 2ka1W
2 +
√

3
(
a2Q+

a3

3
y
)
kW

]
, (3.12d)

with the following constraints:

z2 + (1 + 3cθ)Q
2 = c2y2 + x2 + a1W

2,

z2 +Q2 = 1.

The differential equation for each of the normalized variables in (3.9) and with respect

to the new time vairable in (3.11) is calculated Thus, the following five dimensional
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dynamical system results [34]:

x′ = −2
√

3

3
Qx+

√
2ka1W

2 +

√
3√
2
kW

(
a2Q+

a3

3
y
)
−
√

3xQ

3(1 + 3cθ)[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW

+
3
√

2

2
a2kWx

]
+

√
3

3
xz2y, (3.13a)

y′ = −
√

3Qy +

√
3

3
yz2(Q+ y) +

√
3

3
yQ3

+

√
3

6c2

[
−2z2 +

√
3a3QW −

√
2a3kWx

]
−
√

3yQ

3(1 + 3cθ)[
−2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW +

3
√

2

2
a2kWx

]
(3.13b)

z′ =
−
√

3zQ√
3

[
Qy +

1

1 + 3cθ

(
− 2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW

+
3
√

2

2
a2kWx

)]
, (3.13c)

Q′ =
z2

√
3

[
Qy +

1

1 + 3cθ

(
− 2c2y2 − 2x2 + a1W

2 +

√
3

2
a3yW

+
3
√

2

2
a2kWx

)]
, (3.13d)

W ′ = W

[
−
√

2kx+

√
3

3
(Q+ y)−

√
3

3
Q2y −

√
3Q

3(1 + 3cθ)(
− 2c2y2 − 2x2 + a1W

2 +
3
√

2

2
a2kWx+

√
3

2
a3yW

)]
. (3.13e)

The variables (3.9) are constrained by the following relations:

−3cθQ
2 + x2 + c2y2 + a1W

2 = 1, (3.14a)

Q2 + z2 = 1. (3.14b)

The restrictions (3.14a), (3.14b) and the dynamical system (3.13) allow the elimination

of z globally, but do not allow the elimination of x globally. This leads to a four-

dimensional dynamical system with one constraint. However, the substitution for x
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locally can be done, via

x = ε
√

1− c2y2 + 3cθQ2 − a1W 2, (3.15)

where ε = ±1, obtaining two copies (one for each value of ε) of the dynamical system

[34].

y′ = Qy

[
− 2√

3
−
√

3

3
yQ−

√
3

3(1 + 3cθ)

(
− 2− 6cθQ

2 + 3a1W
2

+
3ε
√

2

2
a2kW

√
1 + 3cθQ2 − c2y2 − a1W 2 +

√
3

2
a3yW

)]

+

√
3

3

[
y2 +

1

2c2

(
− 2(1−Q2) +

√
3a3QW (3.16a)

−
√

2εa3kW
√

1 + 3cθQ2 − c2y2 − a1W 2

)]
,

Q′ =
(1−Q2)√

3

[
Qy +

1

1 + 3cθ

(
− 2− 6cθQ

2 + 3a1W
2

+
3ε
√

2

2
a2kW

√
1− c2y2 − a1W 2 + 3cθQ2 +

√
3

2
a3yW

)]
, (3.16b)

W ′ = W

[
−ε
√

2k
√

1 + 3cθQ2 − c2y2 − a1W 2 −
√

3

3
Q2y

+

√
3

3
(Q+ y)−

√
3Q

3(1 + 3cθ)

(
− 2 + 3a1W

2 − 6cθQ
2

+

√
3

2
a3yW +

3ε
√

2

2
a2kW

√
1− c2y2 − a1W 2 + 3cθQ2

)]
. (3.16c)

3.5 Special Case

Let us assume (from [34]) that 3cθ ≡ c1 + 3c2 + c3 = 0 and a3 = 0. This leads

to a compact phase space. Note that the variables y, Q and W are bounded by the

conditions y ∈ [−1
c
, 1
c
], Q ∈ [−1, 1], and W ∈ [0, 1√

a1
] which were obtained from equation

(3.14). Also a1, c, k are assumed to be positive numbers, while a2 can be a negative or

positive number. The evolution equations from (3.16) for the Kantowski-Sachs Aether
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models contaning an interacting scalar field simplify, and lead to the three-dimensional

dynamical system:

y′ =

√
3

3
y

[
y −Q

(
yQ+ 3a1W

2 + ε
3
√

2

2
a2kW

√
1− c2y2 − a1W 2

)]

−
√

3(1−Q2)

3c2
, (3.17a)

Q′ =
(1−Q2)√

3

[
Qy − 2 + 3a1W

2 + ε
3
√

2

2
a2kW

√
1− c2y2 − a1W 2

]
, (3.17b)

W ′ = W

[√
3

3
y(1−Q2) +

√
3Q(1− a1W

2)

+εk
√

1− c2y2 − a1W 2

(
−
√

2− a2

√
6

2
QW

)]
, (3.17c)

with the following local definition for the following variable x

x = ε
√

1− c2y2 − a1W 2

where ε = ±1. This is the system which we will study in next chapter.



Chapter 4

The Dynamical System

Define a new parameter α = a2√
a1

and a new variable

V =
√
a1W. (4.1)

Rewriting system (3.17) we obtain the new dynamical system which only depends on

three parameters α , c and k , where ε = ±1. :

Q′ =
(1−Q2)√

3

[
Qy − 2 + 3V 2 + ε

3
√

2

2
αkV

√
1− c2y2 − V 2

]
, (4.2a)

y′ =

√
3

3
y

[
y −Q

(
yQ+ 3V 2 + ε

3
√

2

2
αkV

√
1− c2y2 − V 2

)]

−
√

3(1−Q2)

3c2
, (4.2b)

V ′ = V

[√
3

3
y(1−Q2) +

√
3Q(1− V 2)

+εk
√

1− c2y2 − V 2

(
−
√

2− α
√

6

2
QV

)]
, (4.2c)

4.1 The Equilibrium Points

4.1.1 Equilibrium Points (V = 0):

The following table is a summary of the equilibrium points of the system (4.2) in the

V = 0 set, which is a two dimensional invariant set of the dynamical system.

Note: We indicate the equilibrium points in the case of ε = 1 by a + superscript

on the left corner of the point, as in +P1, and −P1 for the case where ε = −1, y∗ is a

parameter and hence the curves P ∗1,2 represent lines of equilibrium points.

17
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Eq Pt y Q V Existence Condition
P ∗1 y∗ +1 0 − 1

c ≤ y
∗ ≤ 1

c where c > 0

P ∗2 y∗ −1 0 − 1
c ≤ y

∗ ≤ 1
c where c > 0

P3
1
c 2c 0 0 < c < 1

2

P4 − 1
c −2c 0 0 < c < 1

2

Table 4.1: Equilibrium points for the system (4.2) for both cases ε = ±1, and their
conditions of existence in the V=0 invariant set.

4.1.2 Equilibrium Points (y = 0, Q2 = 1 )

The flat FLRW models are contained in the one dimensional invariant sets y = 0,

Q = ±1. The substitution of y = 0, Q = ±1, results in a zero for the first two equations

of the dynamical system (4.2). Therefore, only the third equation in (4.2) is needed

for determining the equilibrium points in the invariant set. When y = 0, Q = ±1, a

non-linear equation is obtained in V as follows:

√
3Q(1− V 2) = ε

√
2

2
k
√

1− V 2
(

2 + α
√

3QV
)
. (4.3)

We can see easily that V = 1 is an equilibrium point for the above equation, then, other

equilibrium points can be found by assuming V 6= 1 and dividing (4.3) by
√

1− V 2,

we obtain
√

3Q
√

1− V 2 = ε

√
2

2
k
(

2 + α
√

3QV
)
, (4.4)

where as usual Q2 = 1 and ε2 = 1. Then, by squaring (4.4), we get

3(1− V 2) = k2

(
√

2 +
α
√

6

2
QV

)2

. (4.5)

The resulting quadratic equation results after doing some algebraic manipulations:

3V 2(α2k2 + 2) + 4
√

3αk2QV + 2(2k2 − 3) = 0, (4.6)

which has two solutions for V as functions of (α, k,Q), given by

V1,2 =
−2
√

3αQk2 ±
√
b

3α2k2 + 2
,

where b is defined by

b = 18k2α2 + 36− 24k2.



19

Therefore, there is a maximum of four solutions for equation (4.5), two for Q = 1,

which are P7 and P8, and two for Q = −1, which are P9 and P10.

Note: for additional analysis for these points (P7 to P10) see [34].

Eq Pt y Q V

P5 0 1 1

P6 0 −1 1

P7 0 1 V7 =
−2
√
3αk2+

√
18(α2k2+2)−24k2

3(α2k2+2)

P8 0 −1 V8 =
2
√
3αk2+

√
18(α2k2+2)−24k2

3(α2k2+2)

P9 0 1 V9 =
−2
√
3αk2−

√
18(α2k2+2)−24k2

3(α2k2+2)

P10 0 −1 V10 =
2
√
3αk2−

√
18(α2k2+2)−24k2

3(α2k2+2)

Table 4.2: FLRW equilibrium points of the system (4.2) for both cases ε = ±1.

The following section will discuss the behavior of the dynamical system (4.2) at

some of the equilibrium points. In this thesis the goal is to analyze the local stability

of some of the equilibrium points in the invariant set V = 0 and the FLRW invariant

set.

4.2 Local Stability

4.2.1 For P ∗1 and P ∗2

P ∗1 and P ∗2 are lines of equilibrium points. Using the normally hyperbolic method

discussed earlier (see chapter 2), we can find the stability of these equilibrium points.

Moreover, after determining the Jacobian at y = y∗, Q = ±1, V = 0, we get a

zero eigenvalue, and therefore the stability can be found by considering the signs of

the other eigenvalues in the remaining directions. For example, when looking at P ∗1

when ε = 1, the non-zero eigenvalues are given by λ2 = −2
3
y
√

3 + 4
3

√
3 and λ3 =

√
3− k

√
2
√

1− c2y2, and by applying the normally hyperbolic method we found that

if c < 1
2

, 4c2 + 3
2k2

< 1 and k >
√

3
2

then a part of the line P ∗1 is sink if the following

condition hold: 2 < y∗ < 1
c

√
1− 3

2k2
; otherwise, it is not stable. By implementing the

same calculation we can obtain the behavior for P ∗1 and P ∗2 as shown in the following
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table.

Table (4.3) provides the eigenvalues of the equilibrium points P ∗1 and P ∗2 and their

stability.



21

E
q
P
t

E
ig
en
va
lu
es

S
in
k
C
on

d
it
io
n
s

+
P
∗ 1

λ
1
=

0
T
h
e
on

ly
p
ar
t
of

+
P
1
is

a
si
n
k
if

λ
2
=
−

2 3
y
∗√

3
+

4 3

√
3

c
<

1 2
,
k
>
√ 3 2

λ
3
=
√
3
−
√
2√ 1

−
c2
y
∗2
k

4c
2
+

3
2
k
2
<

1
,
2
<
y
∗
<

1 c

√ 1
−

3
2
k
2

−
P
∗ 1

λ
1
=

0
N
o
si
n
k
fr
om

λ
3

λ
2
=
−

2 3
y
∗√

3
+

4 3

√
3

λ
3
=
√
3
+
√
2√ 1

−
c2
y
∗2
k

+
P
∗ 2

λ
1
=

0
If
c
<

1 2
th
en
−
2
<
y
∗
<

1 c
is

th
e
on

ly
p
ar
t
is

a
si
n
k
.

λ
2
=
−

2 3
y
∗√

3
−

4 3

√
3

2)
If
c
>

1 2
th
en

th
e
en
ti
re

li
n
e
of

+
P
2
is

a
si
n
k
,
−

1 c
<
y
∗
<

1 c

λ
3
=
−
√
3
−
√
2√ 1

−
c2
y
∗2
k

−
P
∗ 2

λ
1
=

0
1)

If
c
<

1 2
,
k
>
√ 3 2

,
4c

2
+

3
2
k
2
>

1
th
en

λ
2
=
−

2 3
y
∗√

3
−

4 3

√
3

−
2
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2
is

th
e
on

ly
p
ar
t
is

a
si
n
k
.

λ
3
=
−
√
3
+
√
2√ 1

−
c2
y
∗2
k

2)
If
c
<

1 2
,
k
>
√ 3 2

th
en

1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c
is

th
e
on

ly
p
ar
t
is

a
si
n
k
.

3)
If
c
>

1 2
,
k
>
√ 3 2

th
en
−

1 c
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2
or

1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c
ar
e
th
e
on

ly
p
ar
ts

th
at

ar
e
si
n
k
s.

4)
If
c
<

1 2
,
k
<
√ 3 2

th
en
−
2
<
y
∗
<

1 c

is
th
e
on

ly
p
ar
t
is

a
si
n
k
.

5)
If
c
>

1 2
,
k
<
√ 3 2

th
en

th
e
en
ti
re

li
n
e
is

si
n
k

−
1 c
<
y
∗
<

1 c

T
ab

le
4.

3:
T

h
e

b
eh

av
io

u
r

fo
r

th
e

li
n
e

fi
x
ed

p
oi

n
ts
P
∗ 1

an
d
P
∗ 2



22

4.2.2 For P3 and P4

When looking at the equilibrium point, P3 (where y = 1
c
, Q = 2c, V = 0) for the case

ε = 1, we will never be able to calculate the Jacobian at this point because the point is

non-hyperbolic. Therefore, other methods are needed to determine the stability of the

3-D system shown in (4.2). Let us instead of substituting for x restore x and substitute

for y in 4- dimensional dynamical system and then rewrite the system in terms of

(x,Q,V) instead of (y,Q,V), to obtain the following:

x′ = −2

√
3

3
xQ+

√
2kV 2 +

√
3√
2
αkQV −

√
3

3
xQ

[
−2(1− x2 − V 2)−

2x2 + V 2 + 3

√
2

2
αkxV

]
+

√
3

3c
x(1−Q2)

√
1− x2 − V 2,

Q′ =
(1−Q2)√

3

[
Q

c

√
1− x2 − V 2 − 2 + 3V 2 +

3
√

2

2
αkxV

]
,

V ′ = V

[√
3

3c
(1−Q2)

√
1− x2 − V 2 +

√
3Q(1− V 2) + kx(−

√
2−
√

6

2
αQV )

]
.

after determining the Jacobian at the new equilibrium point x = 0, Q = 2c, V = 0,

we get simple eigenvalues which are , λ1 = 1√
3

[
1
c
− 4c

]
, λ2 =

√
3

3

[
1
c
− 4c

]
and λ3 =[

√
3

3c
+ 2c

√
3

3

]
. From this, it can seen that λ3 is always positive, which implies there is

no sink at this point. Performing a similar calculation for −P3 the same eigenvalues

and behavior are obtained as +P3. Similarly, for P4 the same eigenvalues and behavior

are obtained for ε = ±1 and ±P4 is stable (sink) if 0 < c < 1
2
; otherwise it is unstable.

Table (4.4), illustrates the eigenvalues of the equilibrium points P3 and P4, and their

stability.
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Eq Pt λ1,λ2,λ3 Sink Conditions

±P3

λ1 = 1√
3
(1
c
− 4c)

λ2 =
√

3
3

(1
c
− 4c)

λ3 = (
√

3
3c

+ 2c
√

3
3

)

No sink (from λ3)

±P4

λ1 = 1√
3
(−1
c

+ 4c)

λ2 =
√

3
3

(−1
c

+ 4c)

λ3 = (−
√

3
3c
− 2c

√
3

3
)

0 < c < 1
2

Table 4.4: The stability of P3 and P4

4.2.3 For P5 and P6

When looking at the equilibrium point, P5 (where y = 0, Q = 1, V = 1), we will never

be able to calculate the Jacobian at this point because the point is non-hyperbolic.

Therefore, other methods are needed to determine the stability of the 3-D system

shown in (4.2). Looking at the 1 - dimensional dynamical system in the invariant set

(Q = 1 and y = 0) and then looking at the 2 - dimensional invariant set Q = ±1 we

able to know then the stability of the full 3 - dimensional system with knowledge of

what happens in the lower dimensional systems.

First: Looking at the V ′ equation in full (not linearized) when y = 0 and Q = 1

will determine if V is increasing or decreasing by looking at whether V ′ is positive or

negative (first derivative test in calculus) near to V = 1 but less than 1. By applying

the first derivative test to the 1 - dimensional autonomous differential equation:

V ′ = V

[
√

3(1− V 2) + εk
√

1− V 2

(
−
√

2− α
√

6

2
V

)]
,

Observe that the point V = 1 is stable for some values of the parameter values α and

k but there does exist some parameter values in which it is unstable. So using the

derivative of the derivative (i.e., concavity arguments) we are able to find the stability

conditions for this point in the y=0, Q=1 invariant set. The derivative of the right

hand side in the previous equation is:

√
3(1− V 2) + k

√
1− V 2(−

√
2−
√

6

2
αV )+

V

[
−2
√

3V − kV

(
−
√

2− α
√

6
2
V
)

√
1− V 2

− 1

2
k
√

1− V 2
√

6α

]
.



24

So near V = 1, the term 1√
1−V 2 dominates. The coefficient of it is [ −k(−

√
2 −

√
6α
2

)]

which determines the sign of V ′′ near V = 1. If V ′′ > 0 for values of V near V = 1 but

less than 1, then V ′ is increasing to a value of 0 at V = 1. This means that V ′ < 0 for

values of V near V = 1 but less than 1, and the point V = 1 is unstable. Alternatively

if V ′′ < 0, then the point is stable.

Second: Since we now know what happens along the V direction near V=1, we expand

our analysis to the in 2 - dimensional system in the 2 - dimensional invariant sets

(Q = ±1). We note that the 1 - dimensional boundary 1 − c2y2 − V 2 = 0 is an

invariant set within the 2 - dimensional invariant set. So when Q = ±1 we will have

2-d dynamical system as follow:

y′ =

√
3

3
y

[
−3V 2Q− ε3

√
2

2
αkQV

√
1− c2y2 − V 2

]
, (4.8a)

V ′ = V

[
√

3Q(1− V 2)

+εk
√

1− c2y2 − V 2

(
−
√

2− α
√

6

2
QV

)]
. (4.8b)

Using polar coordinates for y and V as follows

y =
r

c
cos(θ)

V = r sin(θ) (4.9)

we can determine if the 2 - dimensional dynamical system is stable or not near the

point V = 1, y = 0. After using polar coordinates the dynamical system will be for θ′

and r′. By using the definition of the circle for equations (4.9) which is given by

c2y2 + V 2 = r2, (4.10)

and then differentiating the (4.10) and using (4.8) we will end up with r′ equation

as follows:

r′ =
√

3r sin2(θ)Q(1− r2) + rk sin(θ)
√

1− r2

(
−
√

2 sin(θ)
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−α
√

6

2
r sin2(θ)Q−

√
6

2
αrQ cos2(θ)

)
.

The equilibrium point V=1, y=0 corresponds to r = 1 and θ = π
2
. We can see easily

that r′ = 0 when r = 1 and that r′ > 0 for α < − 2√
3

and θ near π
2

by using the same

analysis that we used in the 1 - dimensional invariant set. Finding θ′ equation was

found by using the definition tan θ = V
cy

and then do some calculations we will arrive

to θ′ when r = 1 as follow:

θ′ =
√

3 sin(θ) cos(θ)Q.

looking at θ′ will determine if θ is increasing or decreasing by looking at whether θ′ is

positive or negative (first derivative test in calculus) near θ = π
2
. So when Q = 1 in

+P5 case we can see that it is a sink point in the 2 -dimensional system if α < − 2√
3
.

Now we can move onto the full 3 - dimensional dynamical system after we know what

happens in the lower dimensional system by doing some numerical analysis for the 3-

dimensional dynamical system. We see that the numerical analysis breaks down which

indicates that it is unstable or something else see the following figure.

Figure 4.1: The numerical graph of the solution curves for +P5 when α = −2, k = 1
and c = 1, and with this initial condition y(0) = 0.2, Q(0) = 0.9 and V = 0.9

We now we need to look at the full 4 -dimensional dynamical system to study the

stability to this point.

x′ = −2
√

3

3
Qx+

√
2kV 2 +

√
3√
2
kV αQ−

√
3xQ

3

[
−2c2y2 − 2x2 + V 2



26

+
3
√

2

2
αkV x

]
+

√
3

3
xy(1−Q2),

Q′ =
(1−Q2)√

3

[
Qy − 2 + 3V 2 + ε

3
√

2

2
αkV

√
1− c2y2 − V 2

]
,

y′ =

√
3

3
y

[
y −Q

(
yQ+ 3V 2 + ε

3
√

2

2
αkV

√
1− c2y2 − V 2

)]
−
√

3(1−Q2)

3c2
,

V ′ = V

[√
3

3
y(1−Q2) +

√
3Q(1− V 2)

+εk
√

1− c2y2 − V 2

(
−
√

2− α
√

6

2
QV

)]
.

From the x definition we know that it could be positive or negative, x = ε
√

1− c2y2 − V 2,

but we have assume that the value under the square root should be positive or zero,

otherwise the root sign becomes complex. Let us study the 3 - dimensional equilibrium

point (y = 0, Q = 1, V = 1) which implies that x = 0 within this 4 - dimensional

dynamical system and see what will happen to the system. Looking at the x′ equation

when x = 0, y = 0, V = 1 and Q = 1 will determine if x is increasing or decreasing by

looking at whether x′ is positive or negative we will get the following:

x′ =

√
3√
2
k(

2√
3

+ α).

From the 2 - dimensional dynamical system in the invariant set (Q = 1) we know that

+P5 is stable only if α < −2√
3

which implies that x′ < 0 when x = 0 at this +P5. That

means +P5 is unstable in the 3 - dimensional dynamical system. It is the point in which

trajectories pass from the positive branch (epsilon = +1) to the other (epsilon=-1).

This strange behavior occurs that because we applied a global substitution for x when

it clearly should not have been applied. Similarly, by doing the same method for point

−P5 and ±P6 we will find that they are unstable points.
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4.2.4 For P7 to P10

The following table is included in this thesis for completeness of presentation; however,

the results have not been checked [34].

Eq Pt Existence Condition Eigenvalues Sink Conditions

+P7

1) α > 0⇒ k <

√
3

2

2) α < 0, α <
−2√
3

and k <

√
3

2

λ1,3 = −
√
2V7k

2
√

1−V 2
7

[√
3α+ 2V7

]
λ2 = 2

[
αk2V7 +

√
3
3 (2k2 − 1)

]

1) If α > 0,

1√
6
< k <

√
3

2

2) If α < 0,

α <
−2√
3

1√
6
< k <

√
3

+P9

α > 0, α >
−2√
3

k <

√
3

2

λ1,3 = −
√
2V9k

2
√

1−V 2
9

[√
3α+ 2V9

]
λ2 = 2

[
αk2V9 +

√
3
3 (2k2 − 1)

] No Sink

−P7

α < 0

α <
−2√
3

k <

√
3

2

λ1,3 =
√
2V7k

2
√

1−V 2
7

[√
3α+ 2V7

]
λ2 = 2

[
αk2V7 +

√
3
3 (2k2 − 1)

] No sink

−P9

α > 0

k <

√
3

2

α <
−2√
3

λ1,3 =
√
2V9k

2
√

1−V 2
9

[
−
√
3α+ 2V9

]
λ2 = 2

[
αk2V9 −

√
3
3 (2k2 − 1)

]
α > 0

1√
6
< k <

√
3
2

3
4 <

1
α2 <

k2(6k2−1)
2(1−2k2)2

α2 < 4
3 −

2
k2

Table 4.5: The stability of P7 and P9
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4.3 Table of Sinks

Table (4.6) illustrates, for different parameter values, all of the sinks with either V = 0,

or in which y = 0 and Q = ±1. For lines of equilibrium points, the interval that is a sink

is given. The following table shows the sinks when c < 1
2

for different values of k and α.
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,

c,
k
>

0
k

:
0
−→

1 √
6

k
:

1 √
6
−→

√ 3 2
k
>
√ 3 2

si
n
k

co
n
d
it

io
n
s

α
>

0
+
P

1
2
<
y
∗
<

1 c

√ 1
−

3
2
k
2
,

4c
2

+
3

2
k
2
<

1

+
P

2
+
P

2
+
P

2
−

2
<
y
∗
<

1 c

−
P

2
−
P

2
−

2
<
y
∗
<

1 c

−
P

2
1)

4c
2

+
3

2
k
2
>

1
,−

2
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2

2)
1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c

±
P

4
±
P

4
±
P

4

−
2
√

3
<
α
<

0
+
P

1
2
<
y
∗
<

1 c

√ 1
−

3
2
k
2
,

4c
2

+
3

2
k
2
<

1

+
P

2
+
P

2
+
P

2
−

2
<
y
∗
<

1 c

−
P

2
−
P

2
−

2
<
y
∗
<

1 c

−
P

2
1)

4c
2

+
3

2
k
2
>

1
,−

2
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2

2)
1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c

±
P

4
±
P

4
±
P

4

α
<
−

2
√

3
+
P

1
2
<
y
∗
<

1 c

√ 1
−

3
2
k
2
,

4c
2

+
3

2
k
2
<

1

+
P

2
+
P

2
+
P

2
−

2
<
y
∗
<

1 c

−
P

2
−
P

2
−

2
<
y
∗
<

1 c
,

−
P

2
1)

4c
2

+
3

2
k
2
>

1
,−

2
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2

2)
1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c

±
P

4
±
P

4
±
P

4

T
ab

le
4.

6:
T

h
e

ta
b
le

of
si

n
k
s

co
n
d
it

io
n
s

w
h
en

c
<

1 2
fo

r
d
iff

er
en

t
va

lu
es

of
k

an
d
α
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Table (4.7) illustrates for different parameter values all of the sinks with either

V = 0, or in which y = 0 and Q = ±1. For lines of equilibrium, the interval that is a

sink is given. The following table shows the sinks when c > 1
2

for different values of k

and α.



31

,

c,
k
>

0
k

:
0
−→

1 √
6

k
:

1 √
6
−→

√ 3 2
k
>
√ 3 2

si
n
k

co
n
d
it

io
n
s

α
>

0
+
P

2
+
P

2
+
P

2
−

1 c
<
y
∗
<

1 c

−
P

2
−
P

2
−

1 c
<
y
∗
<

1 c

−
P

2
1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c

or
−

1 c
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2

−
2
√

3
<
α
<

0
+
P

2
+
P

2
+
P

2
−

1 c
<
y
∗
<

1 c

−
P

2
−
P

2
−

1 c
<
y
∗
<

1 c

−
P

2
1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c

or
−

1 c
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2

α
<
−

2
√

3
+
P

2
+
P

2
+
P

2
−

1 c
<
y
∗
<

1 c

−
P

2
−
P

2
−

1 c
<
y
∗
<

1 c
,

−
P

2
1 c

√ 1
−

3
2
k
2
<
y
∗
<

1 c

or
−

1 c
<
y
∗
<
−

1 c

√ 1
−

3
2
k
2

T
ab

le
4.

7:
T

h
e

ta
b
le

of
si

n
k
s

co
n
d
it

io
n
s

w
h
en

c
>

1 2
fo

r
d
iff

er
en

t
va

lu
es

of
k

an
d
α
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4.4 Alternative Table of Sink

Table (4.8) and (4.9) show that the stability of the equilibrium points do not depend

on the value of α at all depend in c, k only.

Table (4.9) shows the sink and their dependencies on the parameter k with c < 1
2

showing the different intervals for the sink.

−∞ < α <∞ k <
√

3
2

k >
√

3
2

sink conditions

c < 1
2

+P1 4c2 + 3
2k2

< 1, 2 < y∗ < 1
c

√
1− 3

2k2
,

+P2
+P2 −2 < y∗ < 1

c

−P2 1) 4c2 + 3
2k2

> 1 , −2 < y∗ < −1
c

√
1− 3

2k2

2) 1
c

√
1− 3

2k2
< y∗ < 1

c
−P2 −2 < y∗ < 1

c
±P4

±P4

Table 4.8: The table of sinks when c < 1
2

for different values of k

Table (4.9) shows the sink and their dependencies on the parameter k with c > 1
2

showing the different intervals for the sink.

−∞ < α <∞ k <
√

3
2

k >
√

3
2

sink conditions

c > 1
2

+P2
+P2 -1

c
< y∗ < 1

c
−P2 −1

c
< y∗ < 1

c

−P2 −1
c
< y∗ < −1

c

√
1− 3

2k2

or 1
c

√
1− 3

2k2
< y∗ < 1

c

Table 4.9: The table of sinks when c > 1
2

for different values of k
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4.5 Numerical Analysis

This section confirms the existence of all of the sinks numerically by using Maple

software.

Figures for +P1:

Figure (4.2) illustrates model (4.2) near +P1 when c < 1
2

,α < − 2√
3
, and k >

√
3
2
.

Figure 4.2: The numerical graph of the solution curves for +P1 when α = −2, k = 2
and c = 1

4
, but with different initial conditions.

It can be seen from figure (4.2), for the values α < − 2√
3
, c < 1

2
and k >

√
3
2

that,

+P1 is a sink because the expected outcome is that V goes to zero, Q goes to one and y

goes to a point between 2 and 1
c

√
1− 3

2k2
. Parameter values for this numerical analysis

are chosen to be: α = −2, c = 1
4
, k = 2. Initial Values are y(0) = 2.5, Q(0) = 0.99,

V (0) = 0.001, y(0) = 2.8, Q(0) = 0.98, V (0) = 0.003, y(0) = 3, Q(0) = 0.97,

V (0) = 0.002.
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Figure 4.3: The numerical graph of the solution curves for +P1 when α = −1, k = 2
and c = 1

3
, but with different initial conditions.

It can be seen from figure (4.3), for the values α > −2√
3
, c < 1

2
and k >

√
3
2

that,

+P1 is a sink because the expected outcome is that V goes to zero, Q goes to one and y

goes to point between 2 and 1
c

√
1− 3

2k2
. Parameter values for this numerical analysis

are chosen to be: α = −1, c = 1
3
, k = 2 . Initial Values are y(0) = 2.3, Q(0) = 0.99,

V (0) = 0.001, y(0) = 2.2, Q(0) = 0.979, V (0) = 0.03, y(0) = 2.21, Q(0) = 0.99,

V (0) = 0.01.
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Figure 4.4: The numerical graph of the solution curves for +P1 when α = 1, k = 2 and
c = 1

4
, but with different initial conditions.

As can be seen from figure (4.4), for the values α > 0, c < 1
2

and k >
√

3
2

we have

that, +P1 is a sink because the expected outcome is that V goes to zero, Q goes to one

and y goes to point between 2 and 1
c

√
1− 3

2k2
. Parameter values for this numerical

analysis are chosen to be: α = 1, c = 1
4
, k = 2. Initial Values are y(0) = 2.7, Q(0) =

0.99, V (0) = 0.01, y(0) = 3.1, Q(0) = 0.95, V (0) = 0.02, y(0) = 3.5, Q(0) = 0.98,

V (0) = 0.1.
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Figures for +P2:

Figure (4.5) plots the model (4.2) for +P2 on the interval c < 1
2

with varying k values.

Figure 4.5: The numerical graph of the solution curves for +P2 when α = −1, c = 1
4

and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions

Figure (4.5), illustrates the models with the condition of c < 1
2

and varying values

of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
, and k >

√
3
2
,

respectively. The following parameters for this numerical analysis are chosen to be:

c = 1
4
, and α = −1 and the initial conditions of y(0) = −0.89, Q(0) = −0.99, and

V (0) = 0.001, y(0) = −0.99, Q(0) = −0.98, and V (0) = 0.02 y(0) = −0.98, Q(0) =

−0.99, and V (0) = 0.03 were selected. The k values chosen for graphs A, B and C

were 0.1, 0.5 and 2, respectively. It can be seen from the graphs that, +P2 is a sink

because the expected outcome is that V goes to zero, Q goes to negative one and y
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goes to point greater than −2 and less than 1
c

Figure (4.6) plots the model (4.2) for +P2 on the interval c > 1
c

with varying k

values.

Figure 4.6: The numerical graph of the solution curves for +P2 when α = 1, c = 1 and
k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.

Figure (4.6), illustrates the models with the condition of c > 1
2

and varying values of

k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
, and k >

√
3
2
, re-

spectively. The following parameters for this numerical analysis are chosen to be: c = 1,

and α = 1 and the initial conditions of y(0) = −0.89, Q(0) = −0.99, and V (0) = 0.001,

y(0) = −0.99, Q(0) = −0.98, and V (0) = 0.02 y(0) = −0.98, Q(0) = −0.99, and

V (0) = 0.03 were selected. The k values chosen for graphs A, B and C were 0.1, 0.5
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and 2, respectively. It can be seen from the graphs that −P2 is a sink because the

expected outcome is that V goes to zero, Q goes to negative one and y goes to point

grater than −2 between −1
c
< y∗ < 1

c
.
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Figures for −P2:

Figure (4.7) indicates the model (4.2) for −P2 on the interval c < 1
2

and with varying

k values.

Figure 4.7: The numerical graph of the solution curves for −P2 when α = 1, c = 1
4

and
k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.

Figure (4.7), illustrates the models with the condition of c < 1
2

and varying values

of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
, and

k >
√

3
2
, respectively. The following parameters for this numerical analysis are chosen

to be: c = 1
4
, and α = 1 and the initial conditions of y(0) = 3.4, Q(0) = −0.99, and

V (0) = 0.001, y(0) = 3.5, Q(0) = −0.98, and V (0) = 0.02 y(0) = 3.6, Q(0) = −0.98,

and V (0) = 0.1 were selected. The k values chosen for graphs A, B and C were 0.1,

0.5 and 2, respectively. It can be seen from the graphs that −P2 is a sink because the
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expected outcome is that V goes to zero, Q goes to negative one and y goes to point

between 1
c

√
1− 3

2k2
< y∗ < 1

c
.

Figure (4.8) indicates the model (4.2) for −P2 on the interval c > 1
c

and with varying

k values.

Figure 4.8: The numerical graph of the solution curves for −P2 when α = −1, c = 1
and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.

Figure (4.8), illustrates the models with the condition of c > 1
2

and varying values

of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
, and k >

√
3
2
,

respectively. The following parameters for this numerical analysis are chosen to be:

c = 1, and α = −1 and the initial conditions of y(0) = −0.89, Q(0) = −0.99, and

V (0) = 0.001, y(0) = −0.99, Q(0) = −0.98, and V (0) = 0.02 y(0) = −0.98, Q(0) =
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−0.99, and V (0) = 0.03 were selected. The k values chosen for graphs A, B and C

were 0.1, 0.5 and 2, respectively. It can be seen from the graphs that −P2 is a sink

because the expected outcome is that V goes to zero, Q goes to negative one and y

goes to point between 1
c

√
1− 3

2k2
< y∗ < 1

c
.
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Figures for +P4:

Figure (4.9) plots the model (4.2) for +P4 on the interval c < 1
2
, α < − 2√

3
with varying

k values.

Figure 4.9: The numerical graph of the solution curves for +P4 when α = −2, c = 1
4

and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.

Figures (4.9) illustrates the models with the condition of c < 1
2
, α < − 2√

3
and vary-

ing values of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
,

and k >
√

3
2
, respectively. The following parameters for this numerical analysis are

chosen to be: c = 1
4
, α = −2 and the initial conditions of y(0) = −3.8, Q(0) = −0.4,

V (0) = 0.1, y(0) = −3.6, Q(0) = −0.3, V (0) = 0.2, and y(0) = −3, Q(0) = −0.2,

V (0) = 0.5, were selected. The k values chosen for graphs A, B and C were 0.1, 0.5

and 2, respectively. It can be seen from the graphs that +P4 is a sink because the
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expected outcome is that V goes to zero, Q goes to −1
2

and y goes to −4.

Figure (4.10) plots the model (4.2) for +P4 on the interval c < 1
2,
α > − 2√

3
with

varying k values.

Figure 4.10: The numerical graph of the solution curves for +P4 when α = −1, c = 1
4

and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.

Figures (4.10) illustrates the models with the condition of c < 1
2,
α > − 2√

3
and vary-

ing values of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
,

and k >
√

3
2
, respectively. In the figures, the same parameters and initial conditions

were selected as in figures (4.9), except here α = −1, so we have that +P4 is a sink

because the expected outcome is that V goes to zero, Q goes to −1
2

and y goes to −4.
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Figure (4.11) plots the model (4.2) for +P4 on the interval c < 1
2
, α > 0 with varying

k values.

Figure 4.11: The numerical graph of the solution curves for +P4 when α = 1, c = 1
4

and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.

Figures (4.11) illustrates the models with the condition of c < 1
2
, α > 0 and varying

values of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
, and

k >
√

3
2
, respectively. In the figures, the same parameters and initial conditions were

selected as in figures (4.9), except here α = 1, so we have that +P4 is sink because the

expected outcome is that V goes to zero, Q goes to −1
2

and y goes to −4.
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Figures for −P4:

Figure (4.12) plots the model (4.2) for −P4 on the interval c < 1
2
, α < − 2√

3
with varying

k values.

Figure 4.12: The numerical graph of the solution curves for −P4 when α = −2, c = 1
4

and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.

Figures (4.12) illustrates the models with the condition of c < 1
2
, α < − 2√

3
and vary-

ing values of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
,

and k >
√

3
2
, respectively. The following parameters for this numerical analysis are

chosen to be: c = 1
4
, α = −2 and the initial conditions of y(0) = −3.8, Q(0) = −0.4,

V (0) = 0.01, y(0) = −3.6, Q(0) = −0.3, V (0) = 0.02, and y(0) = −2.5, Q(0) = −0.3,

V (0) = 0.04, were selected. The k values chosen for graphs A, B and C were 0.1, 0.5

and 2, respectively. It can be seen from the graphs that −P4 is a sink because the



46

expected outcome is that V goes to zero, Q goes to −1
2

and y goes to −4.

Figure (4.13) plots the model (4.2) for −P4 on the interval c < 1
2
α > − 2√

3
with

varying k values.

Figure 4.13: The numerical graph of the solution curves for −P4 when α = −1, c = 1
4

and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.
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Figures (4.13), illustrates the models with the condition of c < 1
2
, α > − 2√

3
and

varying values of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
,

and k >
√

3
2
, respectively. The models take into consideration the sink conditions out-

lined in table (4.6). In the figures, the same parameters and initial conditions were

selected as in figures (4.13) except here α = −1, so we have that −P4 is sink because

the expected outcome is that V goes to zero, Q goes to −1
2

and y goes to −4.

Figure (4.14) plots the model (4.2) for −P4 on the interval c < 1
2
, α > 0 with varying

k values.

Figure 4.14: The numerical graph of the solution curves for −P4 when α = 1, c = 1
4

and k = 0.1 in figure A, k = 0.5 in figure B k = 2 in figure C, but with different initial
conditions.
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Figures (4.14), illustrates the models with the condition of c < 1
2
, α > 0 and varying

values of k. Graphs A, B, and C indicate k values of 0 < k < 1√
6
, 1√

6
< k <

√
3
2
, and

k >
√

3
2
, respectively. The models take into consideration the sink conditions outlined

in table (4.6). In the figures, the same parameters and initial conditions were selected

as in figures (4.13), except here α = 1, so we have that −P4 is sink because the expected

outcome is that V goes to zero, Q goes to −1
2

and y goes to −4.
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Figures for +P5:

Figure (4.15) shows the direction field plot for the 2 - dimensional dynamical system

(4.8) in which α < − 2√
3

and k > 0 in the 2 - dimensional set, Q = 1. We observe that

the point +P5 is stable in the 2-dimensional invariant set for all values of k provided

α < − 2√
3
.

Figure 4.15: The numerical graph of the solution curves for +P5 when α = −2, k = 2
and c = 1.

Graph (4.15) indicates the direction field plot for the the 2 - dimensional dynamical

system (4.8) in which c = 1,k = 2 and α = −2. The initial condition y(0) = 0.02 and

V = 0.3 were selected. It can be seen from the graphs that +P5 is a sink in the 2 -

dimensional set, Q=1 when α < − 2√
3
.



Chapter 5

Conclusion

In this thesis we have studied spherically- symmetric cosmological models in Einstein-

aether theory with a scalar field, whose potential depends on the time-like aether

vector field through the expansion and shear scalars. Focusing on the special case of

the models where we assume that

3cθ ≡ c1 + 3c2 + c3 = 0

and a3 = 0, leads to a compact phase space. From the evolution equations we ob-

tain a three-dimensional dynamical system in terms of expansion-normalized variables,

which we used to simplify our analysis and make it easier to study. We studied these

models to find that there always exists a future attractor at some equilibrium points

at different values of the parameters k, c > 0, and −∞ < α < ∞. We found that

the only equilibrium points which are sink points are +P1,
± P2 and ±P4. The main

mathematical result we get is that the stability conditions depend on the values of c

and k but does not depend on α, which lead to two cases of c.

The first case is when c < 1
2
, we found that +P2 and ±P4 are sinks for any val-

ues of k. +P1 is a sink only for k >
√

3
2

and satisfy the conditions 4c2 + 3
2k2

< 1,

2 < y∗ < 1
c

√
1− 3

2k2
. Also, −P2 is a sink for two different ranges of k. To illustrate

this more, when k <
√

3
2

we found −P2 is sink when −2 < y∗ < 1
c
. On the other

hand, when k >
√

3
2

we found it is a sink for two different ranges which are given by

−2 < y∗ < −1
c

√
1− 3

2k2
and 1

c

√
1− 3

2k2
< y∗ < 1

c
.

The second case is when c > 1
2
: the entire line of +P2 is a sink for any value

of k. In additions, the entire line of −P2 is a sink for k <
√

3
2
, while, −P2 when

k >
√

3
2

is a sink if either one of these conditions satisfied 1
c

√
1− 3

2k2
< y∗ < 1

c
or

−1
c
< y∗ < −1

c

√
1− 3

2k2
. The most interesting result which we found in this thesis
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is that P5 and P6 are not equilibrium points of the 4 - dimensional dynamical system

while they appear to be equilibrium points of the 3 - dimensional dynamical system.

After studying the stability for P5 and P6 in the 3 - dimensional dynamical system we

have found that these points are points where the orbit changes from the positive root

of x to the negative root of x or vice-versa.

In summary, we have found that there always exists a future attractor for the points

+P1,
± P2,

± P4 at different values of the given parameters. The analysis for P7 to P10 is

taken from [34].

In the future, we recommend additional investigations of the three- dimensional

dynamical system, and studying what will happen if cθ and a3 are not zero. Moreover,

there is one equilibrium point on the boundary of the three dimensional dynamical

system which is not in the V = 0 invariant set nor in the FLRW set which needs

analysis, Q = ±1, V = ±
√

3α
2

and y = ±
√

2(2k2−3)−3k2α2

2ck
. In general, in this thesis

I have studied the local stability of some of the equilibrium points of the dynamical

system corresponding to physical cosmological models.
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