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Abstract

In this work, we demonstrate, implement and critically assess the capabilities and
the limitations of the Transfer Matriz (TM) method to the statistical mechanics of
single polymer molecules within their classical models. We first show how the TM
can be employed with the help of computers, to provide highly accurate results for
the configurational statistics of polymers in 6 —conditions. We proceed gradually from
simple to complex polymer models, analyzing their statistical properties as we vary
the model parameters.

In the order of their complexity, the polymer models approached in this work
are: (i) the freely jointed chain (FJC); (iz) the freely rotating chain (FRC); (ii%) the
rotational isomeric state (RIS) model with and without energy parameters; (iv) the
continuous rotational potential model (for n-alkanes); (v) an interacting chain model
(ICM) with virtual bonds for poly(ethylene glycol)(PEG).

The Statistical Mechanics of polymer chains is carried out in both the Helmholtz
and Gibbs ensembles, depending on the quantities of interest. In the Helmholtz
ensemble the polymer’s Green function is generally a function of both the spatial
coordinates and orientations of chain bonds. In the Gibbs ensemble its arguments
are the bond orientations with respect to an applied external force. This renders the
latter ensemble more feasible for an accurate study of the mechanical properties of
the mentioned models.

We adapt the TM method to study statistical and thermodynamical properties
of various models, including: chain end distribution functions, characteristic ratios,
mean square radius of gyration, Kuhn length, static structure factor, pair correlation
function, force-extension curves, Helmholtz and Gibbs free energies.

For all cases, the TM calculations yielded accurate results for all these quantities.
Wherever possible, we compared our findings to other results, theoretical or experi-
mental in literature. A great deal of effort was focused on precise determination of
the stretching response for each model for a wide range of applied external forces.
A remarkable finding on the functional form of the stretching curve is the similar
behavior that the FRC and the continuous rotational potential model present to the
FJC model in the large-force regime, in contrast to the RIS and the ICM for PEG,
which display drastic differences. We found that the latter two models, while reliable
for the study of unperturbed chains, do not realistically represent polymers under the
action of a strong external force. In that situation, a larger set of rotational states
must be included for an accurate description.

The influence of the chain length and model parameters, where applicable, on the
spatial configuration of polymer chains is investigated in great detail. In the complex
stages of the modeling we analyze the effects of the energy parameters incorporated
in the models. We use this information to extract the Kuhn and persistence lengths
and make a comparison to the Gaussian chain distribution.
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CHAPTER 1

INTRODUCTION

The statistical physics of polymers has gained considerable interest in the last few
decades. Some of the reasons for this are closely related to the realization that the
biological systems at molecular scale can be described in terms of the properties of
a particular class of polymer molecules, namely, biopolymers. Moreover, the recent
advances in the technology of natural and synthetic polymeric materials has shown
wide applicability and usefulness of this field.

An important branch of this subject, the configurational statistical physics is
concerned with the study the molecular properties deriving from the spatial arrange-
ments and motion of atoms within the polymers. Although it is based on the classical
statistical mechanics, this field is enriched with new ideas and techniques of mod-
ern physics. Historically[1], the development of this field originated shortly after H.
Staudinger proved the chain-like structure of polymers, in 1922. Kuhn, Mark and
Guth in their pioneering work on high elasticity of polymer networks set the con-
ceptual basis for the contemporary understanding of physical properties of polymer
materials. The next developments are associated with the work done by Flory(2]
and Volkenstein[3] in the 1950’s, and more recently by Edwards[4], de Gennes and
Lifshitz[5].

The motivational aspects behind theoretical investigations in this field are many-
fold. The conformational behavior of polymers are known to be responsible for many
properties of polymeric materials, such as rubber elasticity, morphological properties,
glass-transition temperatures. A particularly interesting and vast class is the rep-
resented by the biological phenomena involving biopolymers. One cannot hope to
understand the structure and functions of such biological systems without an insight
in the conformational properties of macromolecules at a representative scale.

Another great incentive to the study of single polymer properties is the recent
capability of direct comparison between the theoretical and experimental results for
particular systems. With the advent of Atomic Force Microscope techniques, single
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molecule stretching experiments brought a wealth of data. For instance, in the exper-
iment performed by Oesterhelt et al.[6], thiol and butoxy terminated poly(ethylene
glycol) (PEG) molecules were placed in hexadecane. The molecules were allowed to
adsorb on a gold surface, after which an AFM tip was employed for stretching. Once
adsorption of a PEG molecule on the tip occurred, the latter was moved away from
the grafting surface in a direction perpendicular to it. The resistive force as a func-
tion of chain extension was recorded for several chain lengths. It was verified that the
obtained curves are fully reversible by recording the trace backwards (tip moving to-
ward the grafting surface) and retrieving identical results. When normalized by their
contour length, all curves were found to superimpose. This is in agreement with our
findings on the long chain limit behavior. A rigorous statistical mechanical analysis
of the polymer-cantilever system is made by Kreuzer et al.[14].

Recently, the increasing interest in problems of polymer physics has been ac-
companied by an import of powerful techniques from other topics of the Physics of
Condensed Matter. Among these, the Transfer Matrix (TM) method stands out due
to its wide applicability and adaptability as a computational method. The feature
that makes this technique particularly suitable for studying polymer chains is their
linear connectivity. Owing to this characteristic, the macromolecule can in many sit-
uations be treated as a system with nearest neighbor interactions, which enables an
elegant treatment of polymer problems. In this work, we will demonstrate, implement
and critically assess the capabilities and the limitations of the TM technique to the
statistical mechanics of single polymer molecules within their classical models.

As mentioned before, a polymer molecule is a chain-like entity consisting of atoms
linked by covalent bonds. Given a large set of atoms of specified nature, one can
imagine the vast number of possibilities in which the links could be realized—we
call this the polymer’s primary structure—a fact that justifies an attempt or need to
classify polymers. At first glance, out of the whole variety, one can distinguish those
that have a linear backbone without any added branches. These are known as linear
polymers. Among them, we can further differentiate the ones that have a periodical
structure (repeating sequence of atoms) along the backbone —homopolymers—and
others, whose structure varies in an arbitrary way—heteropolymers. Other primary
structures like ring polymers (a chain whose contour is a closed cycle), star-like (chain
sections that meet in a common centre), comb-like (linear chain sections attached to



a common central segment) and randomly branched will not be the subject of this
dissertation.

With the advent of polymer physics, a variety of polymer models have been
established in the literature, the usefulness and propitiousness of which vary from a
physical situation to another. A crucial question when dealing with a specific polymer
problem therefore is “how reliable is our model?”. Thus, it is clearly of considerable
importance that the formulation of such a model is accompanied by its statistical
treatment and, subsequently, comparison to experimental results, if available.

The simplest polymer models also seem to be the most widely known and success-
ful ones, due to their amenability to analytical treatment. Among these we mention:

e the Gaussian chain (GC)

the worm-like chain (WLC)

the freely jointed chain (FJC)

the freely rotating chain (FRC)

the rotational isomeric state (RIS) model

In their basic formulation, all of these models are “phantom” chains in that their
path is allowed to intersect itself without any restrictions—there are no long range
interactions whatsoever with other monomers or molecules of the solvent. Mathemat-
ically, they are distinguished by the form of the connectivity operator, characterizing
the links between adjacent repeat units in the chain.

The Gaussian chain, worm-like chain and freely jointed chain have enjoyed the
most extensive attention in the literature, because of their accessibility to analytical
calculations. Especially for the GC, the mathematical apparatus is well established
and its exact treatment can be carried out to a great extent. Simply stated, the GC
is a chain with a Gaussian (normal) probability distribution for the bond length or,
the distance between two adjacent monomers, while the angular distribution of a link
is uniform. A good review of results on the GC can be found in reference [1]. The
more sophisticated WLC[11, 32] is defined as a continuous model obtained from a
FRC in the limit in which its bond length and bond angle tend to zero, while the
contour length and the persistence length remain fixed.
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A detailed description of the last three models in the above list will be given
in the following chapters of this work. The other two models in that list, GC and
WLC, will appear wherever reference to them is ‘deemed relevant. Remarkably, even
for some simple models, exact treatment is non-trivial. For example, the analytical
treatment of FRC and RIS does not go beyond calculating a few statistical quantities,
like the end-to-end distance, radius of gyration and other closely related quantities
in the absence of any external field.

The main concern of this work is to analyze the role of the internal architecture
and short-ranged interactions in the configurational statistical mechanics of single
polymer chains. For this purpose, we adapt the transfer matrix method (or the
Green function of polymer chains) to determine the statistical quantities associated
with polymer chains. We cover a diversity of polymer models found in the literature,
from simple to complex, and implement our method in an appropriate way for each
of them. We will analyze the role of the structural and energy parameters entering
the various models.

One of the main assumptions throughout this work will be that the polymer chains
are found in the so-called §—condition. This entails the fact that the excluded volume
interactions and the action of the solvent molecules mutually cancel out. We will not
approach here the case of charged polymers, since the electrostatic interaction is long-
ranged and therefore impossible to handle in a transfer matrix approach. Moreover,
this also enables us to treat the polymer as a Markov chain, a concept that will be
clarified in the beginning of the next chapter. In the centre of our investigation will be
neutral linear polymer molecules in their various models having specific geometrical
structures and potential energy functions.

A principal advantage of the TM method is the possibility to study polymer
chains of arbitrary lengths, anywhere between very short and very long, thus seizing
the effects of chain lengths on the statistical properties. This is usually not possible
by analytical methods, when only the asymptotic limit of infinitely long chains is
accessible.

Chapter 8 will be dedicated to the study of the FJC model. This model was
extensively studied by analytical methods, therefore very few new results can be
added. Its purpose will be twofold: it will serve both as the simplest example and as
a reliability test of the transfer matrix method. Only the Helmholtz ensemble will



be employed. We will critically assess the potential and precision of our method. In
Chapter 4 we approach the FRC, a model that presents a further complication —a
fixed bond angle. This model was studied analytically only to a certain extent and
we conjecture that the TM method can bring valuable new insight. Therefore, we
do extensive calculations in both Helmholtz and Gibbs ensembles in order to obtain
chain end distribution functions, characteristic ratios, mean square radius of gyration,
and force-extension curves for a large array of chain lengths and bond angles.

The next logical step in single polymer modelling would be to introduce the effects
of rotational potentials associated with the variation of the dihedral angles. This
task is undertaken in the fifth and sixth chapters as case studies of two concrete types
of polymer: n-alkanes and poly(ethylene glycol), respectively. Chapter 5 is dedicated
for the study of n-alkanes and we proceed gradually by studying in this order the RIS
model with: (i) no energy parameters, (ii) self energies only, (iiZ) self energies and
nearest neighbor interactions. For all cases we analyze the role of the parameters on
the statistical properties such as the characteristic ratio, the radius of gyration, the
temperature coefficients, the force-extension curve and the persistence length of the
molecule. Next, we attempt to incorporate the continuum of the rotational potential
by increasing the number of rotational states with their appropriate weights. Due to
the great computational resources required for the implementation of the TM method
for this case, the feasibility is limited to mainly calculations in the Gibbs ensemble.
Nonetheless, this enables good quantitative and qualitative findings on this type of
molecule.

Finally in Chapter 6 we approach a more challenging case study — poly(ethylene
glycol). This molecule is built from a monomer comprising three covalent bonds with
two different lengths and exhibits strong intrachain interactions, with larger range
than those aforementioned models. Recently there have been important ab initio
studies on short molecules of this type, a fact that enables us to utilize quantum
mechanical results as input. Again we will focus on the statistical mechanics in
the Gibbs ensemble for this molecule, particularly on the force-extension curves and
related quantities.

To further clarity and ease of reading we will define below a number of frequently
used terms in this work.



e monomer — the basic structural repeat unit of a polymer chain;
e N-mer — polymer chain with N monomers;
e chain bond — the covalent bond that joints two consecutive monomers;

e chain subunit — a sequence of one or more monomers of a polymer chosen for
convenience of statistical study;

e spatial configuration of a chain — the collection of all points in space where the
chain monomers are located;

e conformer or conformation— the sequence of states occupied by all bonds along
the chain (e.g. rotational states);

e ideal chain — polymer chain whose monomers have no interaction with molecules
in its environment or with other monomers in the chain.

e intrachain interactions — interactions between monomers of a single chain.

1.1 The Geometrical Structure and the Potential Energy of a Polymer
Molecule

A linear polymer consists of a sequence of atoms (or group of atoms) — the
chain’s monomers — each of which is bonded by covalent bonds to two others. The
only exception from this rule are the two end monomers, which are bonded to only
one other monomer each. The connection between two consecutive monomers is
geometrically described by a bond vector, b. For a linear polymer with (N + 1)
monomers there are N bond vectors: by, bs,...,by. Due to the directional nature
of the covalent bonds, the angle formed by two consecutive bond vectors — the bond
angle, ¥ — is restricted to a limited range, around 70° in most cases. In Figure 1.1
for a sequence of four bonds, we indicated the intervening bond angles by 75,723 and
~34- Finally, the other geometrical parameters relevant to the chain structure are the
dihedral angles, ¢, defined as the angle formed by the planes of consecutive pairs of
bond vectors (e.g. (by,b,) and (bg, b;), or the planes containing the atoms 012 and
the plane containing 123 in Figure 1.1).



Figure 1.1: Schematic representation of a sequence of four consecutive bond vectors.

If we are concerned with the ground state of a polymer molecule, the bond length,
the bond angles and the dihedral angles associated with a given bond vector generally
depend on the chemical structure of its adjacent monomers, the contour length, and
the location of that bond within the molecule. For a particular molecule, these
parameters are determined experimentally or by quantum chemistry methods. In
the fortunate case when these parameters are available, they can serve as input for
statistical mechanical analysis of that molecule. However, in order to make long
chains amenable to study, we can assume that they are only dependent on the type
of monomers involved in their construction.

With each of these degrees of freedom certain potentials are associated, more
or less realistic, in order to mimic the intramolecular energy landscape. Near its
equilibrium position, by, the potential energy curve associated with bond stretching
is well approximated by a parabola

E,(6) = 206~ o), 1)

in other words, a Hooke’s law behavior. Similarly, the potential describing the bond
angle bending is accurately represented about its minimum, v,, by

E,(m) =2y — o) (12)

Here, ks is the elastic constant of stretching the bond vector and k-, is the elastic
constant of bending the bond angles.
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Figure 1.2: Typical shape of a three-fold rotational potential E,(y), given by eq. 1.3 with
the parameters arbitrarily chosen E; = E3 = 2.

The strong directional character of the covalent bonds confers great stiffness to the
bond stretching and bond angle bending, to the effect that these degrees of freedom
can in many situations be safely ignored. On the other hand, the potential energy
curve associated with the variation of the dihedral angles—the rotational potential, or
sometimes called the torsional potential—is the “softest” among the elastic potentials
and therefore plays the most important role in the configurational statistics of the
polymer coil. Usually, it has a shape with three minima labeled, trans (t), gauche
plus (g*), gauche minus (g-) like in Figure 1.2.

The precise determination of the actual shape of the rotation potential is the
subject of quantum chemistry, but often the two leading Fourier components are
sufficient:



E FE.
E,(p) = ?1- (1 +cosep) + —53- (1 + cos 3yp) (1.3)

The accuracy of the approximations for the potentials above will not be exten-
sively discussed in this dissertation. In our study theyenter as an input and it is
important to make use of reasonable approximations and appropriate values for the
parameters, many of which are encountered in the specialized literature. Herein, we
give priority to the objective of analyzing the role of the most relevant parameters
involved in the statistical mechanical properties of the polymer.

If in a chain the rotational potentials described above are independent of each
other, then the total potential energy of that chain can be written as a sum of bond
energies and, consequently, the chain partition function can be expressed as a product
over all bond partition functions, which greatly simplifies the statistical mechanical
treatment of the chain. In general, however, this does not hold true. The rotational
potentials may depend on the rotational angles of nearest neighboring bonds, as
well as of second neighbors or even bonds further along the chain. This dependence
is due to the interactions between atoms comprising the monomers — belonging
either to the backbone of the molecule or to the pendant groups. For such complex
cases, the potential energy associated with a chain segment will be a function of the
set of rotational angles belonging or adjacent to that segment. When interactions
are present the chain partition function cannot be factored out into bond partition
functions, thus posing a considerable complication to the statistical treatment. In
all models studied in this work, we will neglect interactions beyond second nearest
neighbors.

A great simplification for the configurational statistics of a polymer chain is in-
troduced by the rotational isomeric state (RIS) approximation(2, 3]. This procedure
incorporates fixed bond lengths and bond angles and it allows only for a small number
of dihedral states for each bond, representing the rotational potential curve by a few
sample points — its minima, i.e. the points marked ¢, g*, g~ in Figure 1.2. This
yields an accurate representation of the configurational statistics of a chain only if
the potential barriers between the rotational minima are large with respect to kgT.
In other cases, nonetheless, it can serve as a good mathematical tool for dealing with
single polymer problems.
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All the potential energy functions described in the above have a common char-
acteristic: they are short-ranged. A single polymer chain in solution experiences
interactions with the molecules of the solvent and with other monomers of the chain.
The latter is known in literature as the ezcluded volume interaction, or simply the vol-
ume interaction. Simply put, this is the restriction that two or more chain monomers
cannot occupy the same volume element of space. The “path” assumed by the chain
cannot intersect itself, or come close, within an arbitrary distance, to itself. There-
fore a monomer-monomer repulsion is present, regardless of the distance along the
backbone between two monomers. By including the volume interaction and the in-
teractions with the solvent one takes a step beyond the ideal chain in constructing a
successful model for real polymers.

Without considering the quantitative aspects of the problem, in the general case

of neutral polymer solutions, the solvent is generally classified to fall in one of there
distinct types:

e good solvent: the attraction between monomer and solvent molecules and the
volume interaction act to create an effective repulsion between chain monomers;
the coil is swollen from its ideal size;

e 6— solvent: the monomer-solvent interaction and the volume interaction mutu-

ally cancel their effect; to a good approximation, the polymer can be treated as
an ideal chain;

e poor solvent: the repulsion between monomer and solvent molecules and the
volume interaction act to create an effective attraction between chain monomers;
as a result, the coil shrinks.

The presence of volume interaction poses additional difficulties in calculating the
statistical properties of a polymer coil, since then one encounters all the complica-
tions of a many-body problem. However, there are many situations when one can
neglect this type of interaction. From the perspective of this work, it will suffice to
consider that the polymer molecule is always found in a #—solvent (or, equivalently,
6—conditions), thus disregarding the excluded volume effects.
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1.2 Statistical Characterization of Polymer Configuration

Owing to their large number of degrees of freedom that grows exponentially with
the length of the molecule, polymer chains must be treated as statistical systems.
In the following we will present a series of characteristics, or physical quantities of
specific interest in the study of polymers. Let us assume that the molecule under
consideration has N bonds (and therefore N +1 monomers) characterized by the bond
vectors b; (i = 1,2,..., N) of length b; for now we ignore the details of the internal
structure of the chain. Thus these considerations apply to all models of polymers.
Throughout this section, angular brackets (...) designate statistical averages.

The unperturbed mean square end-to-end distance of the polymer coil is given
by(2]

(Bf)y = <(Z bf)2> = (b)+2 Y (biby) (14)

i=1,N i=1,N 1<i<jSN

= Nb® +2b° Z (cos;) ,

1<i<iSN

where 9,; is the angle between the bond vectors b; and b;. The statistical quantity
(cos ¢,~J—) is a measure of the correlations between the orientations of the two bond
vectors and it is generally determined by the internal structure of the chain. For
a linear homogenous chain it will depend only on the difference |¢ — j|. Moreover,

assuming that the bond angles of any two monomers are statistically independent,
we can write

(cosy;) = (costhy) (costy;) , for any ¢ < k < j. (1.5)

This suggests that the correlation of bond orientations will decay exponentially ac-
cording to

(cosy;;) =exp (— ] I) , (1.6)

lp
where by definition lp is the persistence length of the polymer. The modulus of
bending elasticity of the chain is related to the persistence length by(1]
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H= ’CBTlp. (1.7)

The characteristic ratio Cy of a polymer is defined as

_ (R%)q
Cn = N2 (1.8)
If the bonds are variable in length, we can re-define the characteristic ratio as
_ (R%)o
CN = N-b—2 ) (1’9)

where b2 is the mean square bond length of the polymer.

In his pioneering work (1936) Kuhn showed that there is a connection between
the statistical structure of any given linear polymer and the FJC model. Namely, the
average square end-to-end distance of a long polymer chain with the characteristic
ratio Cn can be identified with the one of a FJC with the appropriate bond length,
say a, and a corresponding bond number, Ng

(R?), = CNN¥ = Nka® = La. (1.10)

The quantity a is known as the effective (or Kuhn) length of the chain. Here, L is
the contour length of the polymer and equals the length of the maximally stretched
chain and it generally has the expression

L = Nblgeom, (1.11)

where lgeom is a factor depending only on the geometrical structure of the chain and
is proportional to the length of the projection of a bond on the contour line, when
the chain is in the completely stretched configuration. For instance, for the FJC this
factor is 1, while for the FRC it equals cos Z, with v as the bond angle. Generally
speaking, the Kuhn length is approximately twice the persistence length, owing to
the fact that from any point of the chain, the bond orientation persists in the two
directions along the chain’s contour. With eq. 1.10, 1.11 we can re-express the
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characteristic ratio for long chains as

La a

On = Ng = ploeom

(1.12)
For an understanding of the chain’s spatial extent we need to look at the mean
square radius of gyration, (RZ), defined as

(R =(N+1)7" < > (ri— rcm)2> : (1.13)

i=0,N

where r.,, is the position of the centre of mass of the entire chain

Tem=(N+1)7" ) ra (1.14)
i=0,N
Owing to a theorem by Lagrange, (Rg) can be expressed in a manner that involves
only the distances between the different monomers of the chain denoted by r;; =
|r; —

(R =(N +1)‘2< > r?->. (1.15)

0<i<j<N
Remarkably{2], all the random models of polymers in the limit of very long chains
are characterized by a simple relation between the mean square radius of gyration

2
and the average square end-to-end distance: (RZ) — (F)a as N — oo. This can be

3
analytically demonstrated for simple models like the FJC, GC and the FRC.
A well known result for the stretching of the polymer in the small-force limit ;ﬁ"?

< 1 states that the relative extension is proportional to the force as well as to the
Kuhn length of the chain

fa
3kgT’

This fact is directly derived from Kuhn's finding that a long polymer chain can be
modelled by a corresponding FJC with an appropriate bond length, a.

For a more complete understanding of the spatial configuration of a polymer coil,
one has to define the end-to-end vector distribution, Wx(R), that is the probability

R

R.
= (1.16)
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density that the vectorial separation between the ends of a chain with N bonds is
within the interval [R,R + dR]. Assuming that the components of the chain end
vector are statistically independent, which is well justified for molecules long with
respect to their persistence length, we have

Wy (R) = W& (R,)WP (R,)WS(R.), (1.17)

where W,(\f ) (R.) is the probability distribution function for the z—component of chain
end, and similarly for y and z. Indeed, this property is satisfied by Gaussian-type
functions which are expected to be good approximations of WS’), S’), Wﬁ) and Wx
for long chains.

Alternatively, one can focus on the end-to-end distance distribution W (R), de-
fined as the probability density for the distance between the chain ends to be located
in the interval [R, R + dR]. Note that for an isotropic system we have

W (R) x R*®Wn(R). (1.18)

These quantities are also related for an ideal coil with isotropic distribution by the
identity([25]

) ) /R? + R2
ng)(Rz)zi/o‘ dRRWN( R? + :)'

2R+ B2 (1.19)

The end distribution functions defined above are in fact, up to a constant factor,
identical to the canonical configurational integral of the chain expressed as

Zn(R,T) =) _ e v Dg[r({Q:}) - R], (1.20)
{u}
where {;} designates a chain conformer, [r({€;} )| is the length of that conformer,

Un({Q4:}) is its potential energy and 8 = 1/kgT. The Helmholtz free energy of the
chain is

AN(R,T) = Ao(T) — ksTIln Zx(R,T), (1.21)
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where Aq(T) is a function of temperature only. If the Helmholtz free energy is known
for a system, then the various thermodynamic relations of that system are obtained
as partial derivatives, such as the mechanical equation of state

(g = ~VrANR,T) (1.22)
and the entropy
Sn(R,T) = — (%’g’—ﬂ) . (1.23)

When the chain is subjected to a fixed external force, the appropriate ensemble
is the Gibbs, or isothermal-isobaric one. The Gibbs partition function of the chain is
the Laplace transform of Zy(R,T) with respect to R

An(E, T) = / dRSTRZ, (R, T), (1.24)
and the Gibbs free energy

Fy (£, T) = —kTIn An(£, T), (1.25)

can be used to calculate the average length

(R) = VeFn(£,T) (1.26)
[RefRZy(R,T)dR

~  JFRIyR,T)dR 20
while the entropy is given by
SN (fiT) - aT c . (1'28)

Note that the Helmholtz and Gibbs ensembles for a “small system” (8], like a poly-
mer of finite length N, are not equivalent; the two force-extension curves represented
by the two relations, eq. 1.22 and eq. 1.26, will not be the inverse of one another.
However, as the size of the chain is increased, N — oo, they will converge, the system
becoming a thermodynamic system.
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A more detailed understanding of the spatial structure of a polymer chain can
be achieved through the study of the statistical quantities known as n-particle den-
sities[9]. In the canonical ensemble, they are defined as

pg;)(rn) — Q]‘_N//dr(N-n)deexp[__HN(rN,pN)/kBT] (1.29a)
_ _21; / dr®™=) exp [-Un (V) /ksT] , (1.29b)

where M,y is the Hamiltonian, Q is the canonical partition function, Uy is the total
potential energy and Zy is the configurational part of the canonical partition function

of the system. Closely related to this, one can define the n-particle distribution
functions

o (x™)
II P%) (r:)

i=1ln

") = (1.30)

If the system is homogeneous pﬁ) (r;) = p,, a constant, and the above becomes

(n)rn
Py (r
o) = 2,
Po
Of a particular interest for a homogeneous and isotropic system in which parti-
cles interact through pairwise additive forces is the 2-particle distribution function,

g(r), also named the radial distribution function (or sometimes the pair correlation
function)

(1.31)

Pg\zr) (1‘1, 1‘2) ! 32)
P '
where we decided to ignore the other scripts from this notation and r = [r; —r2|. An
interesting property of g(r) for a liquid medium is that it approaches unity as r — oo,

signifying the complete loss of order at large distances. It also can be expressed as

g(r)=g(r1 —r2|) =

g(r, ') = (p(r)p(r')) (1.33)
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where we introduced the local particle density at point r

p(r) = Z &(r —ry). (1.34)

i=0.N

Another relevant quantity for the structure of the polymer coil is the static struc-
ture factor defined as

2
Sk) = (N+ 1)‘1< Z exp(ik - r;) > (1.35a)
i=0,N
- (N+1>-‘< > exp[,-k.(r,._rj)]>, (1.35b)
1,j=0,N

which for a homogeneous chain is proportional to the intensity of the radiation with
the wavelength \ scattered at the angle  and k is the transferred momentum vector
having the magnitude (the wave number)

k= K| =4T7r sin -g-. (1.36)

For a homogeneous and isotropic system (e.g. a free polymer coil) the structure
factor is a function of the wave number only and can be re-expressed as

Sky=N+1) 3 <-S-‘-‘lm> (1.37)

1,j=0,N

The static structure factor is the Fourier transform of the radial distribution function

Sk) =1+ (N +1)7" / drdr'p$ (r,r') exp [—ik - (r — )], (1.38)

which for a homogeneous system is

S(k) =1+ p, / dr exp(—ik - r)g(r), (1.39)
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and if the system is isotropic, too, this becomes

sin(kr)
kr

S(k) =1+ 4mp, / r29(r) dr, (1.40)

which recovers the identity in 1.37. If the structure factor for a system is known, the

radial distribution function can be calculated as its inverse Fourier transform

1
(27")3 Po
We deem that the theoretical concepts presented in the above are of major impor-
tance for the theoretical polymer physics. They constitute very valuable information
wherever there is an attempt to investigate phenomena that involve macromolecules.
Besides the need of gathering, classifying and correlating the equilibrium properties
of such large molecules and systems of molecules, there is the possibility of direct
verification of the statistical mechanical analysis of small systems to experimental
data.

The above concepts represent not only tools in understanding the conformational
behavior of polymers, but also a starting point in studying other higher levels of
organization of soft matter, such as the secondary, tertiary and quaternary structure of
proteins. Other applications of high interest are: the helix-coil transition in biological
or synthetic polymers; the penetration of a cellular membrane by a single polymer
molecule; the properties of long adsorbed chains at interfaces; the role of the degree
of polymerization in the properties of polymeric materials etc.

It becomes apparent from the above why one of the objectives of this work is to
pursue the precise determination of the properties introduced in this chapter. In order
to proceed toward that objective, we have to identify and implement an appropriate

method to the variety of polymer models aforementioned. This will be done in the
chapters to follow.

gr) = / dk exp(ik - r) [S(k) — 1] (1.41)



CHAPTER 2

THE TRANSFER MATRIX METHOD

The Statistical Mechanics of such complex systems as polymer chains has been tackled
by a variety of techniques of which the transfer matriz (TM) method is the most
elegant and powerful. It was originally developed by Kramers and Wannier to solve
the Ising model of a ferromagnet(60] and has been implemented in polymer science
by Birshtein and Ptitsyn[61, 62], Nagai(63], Lifson[64] and others. A good review
of the transfer matrix method for calculating the partition function and averages of
3-state polymer chains in the absence of external fields is given in the classical work
of Flory[2] as well as by Boyd and Phillips(7]. Although there have been attempts
to develop the TM method for polymers subject to an external force field, to our
knowledge none has been satisfactory. A successful implementation will be presented
in this thesis.

The applicability of the transfer matrix technique to the study of single polymer
chains is subject to certain conditions with respect to the nature of their structure.
A convenient way to express these conditions is in terms of Markov chains. A k-
fold Markov chain (or process)[9, 11, in its most general definition, is a sequence of
systems (or events), each of which can occupy a particular set of states, and which
satisfies the following condition: the probability of finding a system in a certain state
at location s depends only on the states occupied by the systems at a limited number
of locations (s—1), (s—2), ..., (s—k), where s is the counting variable of that sequence.
If the system at any given location is independent of the states at all the preceding
locations, we have a simple Markov process. In our case the systems in sequence
are just the chain’s monomers or bonds, whichever is convenient, while the order of
the associated Markov process is dictated by the extent of short ranged interactions
within that chain.

19
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2.1 The Polymer’s Green Function

We consider the general case of a polymer chain with N subunits. Let i =
1,2,..., N be the order index of subunits along the chain. For each ¢, we comprise
all the independent coordinates relevant to the state of that subunit in the notation
T; (e.g. the position and orientation with respect to a reference frame). For any
i < j, we denote by G(j,T;;7,T;) the conditional probability that subunit j is in the
state [';, given that subunit 7 is in the state ;. This quantity is known in polymer
physics as the Green function of the polymer chain (or the chain’s propagator). For
example, for a Gaussian coil, in the absence of any external fields, the Green function
associated with the spatial location, R, is given by

. 9 (i — )2\ ~3/2 R.—R.[
GG RysiR) = 6 —i, Ry —R) = (U)W [—32'(7;5')%—] - 21)

The partition function for all possible conformations of the chain is

Iy = / drdCNG(1,T1; N,Ty) (2.2)

Following the definition of Green functions, for any i < k < j

G(j, T4, Ts) = f dT4dC%_1G(j, Ts: by Te) T(Tk Tot)G(k — 1, s, T2). (23)

Here, T(T;, [iy1) is the Green function of a dimer, also called the transfer operator.
This property of Green functions enables us to calculate by a recursive procedure the
Green function of any subunit (i + 1), in terms of the one of subunit ¢

G5 +1, e L,Ty) = [ DG T L, Ty T(Ts Pe). (2.4)

Together with initial conditions, the above equation determines G uniquely for any ¢
and j.

In the particular case when the state I'; is represented by discrete coordinates,
T(T;, T'i1) will be represented by a matrix — the transfer matriz. Indeed, in the
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following chapters we will discretize the coordinates to allow for a numerical solution
by matrix manipulations. Henceforth, we will use exclusively the denomination of T
as the transfer matrix.

For an ideal chain, the transfer matrix is determined just by the geometrical struc-
ture of the chain, mathematically expressed by the connectivity matrix, C(I';, [i11).
This matrix reflects only the geometrical constraints associated with the bond lengths,
bond angles and dihedral angles. If we also consider intramolecular interactions and
the presence of an external field, then the transfer matrix will include the connectivity
matrix and the Boltzmann factor due to these fields

T(T;, [iya) = C(T, L) exp (-%ﬁ) ' (2.5)

where U is the total field potential that subunit (i + 1) experiences when in state
Cig1-

For convenience, we introduce the notations

Gi(T) = / dryG(1, Ty, T), (26)

Gy(Ty) = / dTxG(i, Ts; N, Tw). @.7)

The statistical average of an arbitrary physical quantity, F (I';), that depends on the
state of subunit ¢ is calculated with the help of the Green function

(FT)) =5 / dr; / dsiF (0 GT)E(Te Tont)Gort(Tirr).  (28)

Similarly, if a quantity depends on the state of two subunits, F' (T';, ;), with (i+1) <
j, we have

1
(Frar) = o [dr [da [ar, [ar@ryem @9)
X T(Ls, Fir1) G + 1, Tep1; 5 — 1, Tyo1) T(T5-1, T5) G4(T)-

2.2 Transfer Matrix for the Gibbs Ensemble
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Figure 2.1: Vector geometry of a sequence of two subunits of a chain subjected to an
external stretching force f.

Depending on the quantities of interest, we can employ the TM formalism to study
the properties of a polymer chain in the (i) Gibbs ensemble or (iZ) Helmholtz ensemble.
Again, we must emphasize the fact that these two ensemble are not equivalent except
in the limit of very long chains. To match the experimental situations, one must
carefully identify the environmental variables, e.g. a fixed external pulling force, and
choose the appropriate ensemble.

Henceforth, we will designate the chain subunit vector i, 1 < i < N, as the vector
joining the ends of the sequence of bond vectors belonging to monomer i. In the case
where the monomer is comprised on only one bond, the subunit 7 is just the bond
vector b;. Henceforth we will use the notation b; for the chain subunit, regardless of
how many bonds it contains.

In the situation in which the chain is acted upon by an external stretching force,
f, at its ends, we can employ the Gibbs ensemble to calculate its average properties.
The arguments of the Green function of subunit 7, denoted in this case by Gf-f ) (") for
“force” as the environmental variable, need to be adapted to encompass the relevant
coordinates for this problem. I' will necessarily include the angle 6 formed by the
direction of the subunit with the external force and the length of that subunit b (if
variable with I') (see Figure 2.1).

Assuming that the stretching force is the sole external influence on the molecule,
the transfer matrix becomes
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T (T;Tiy1) = C(Ty, T +1)eﬂ"“ cosdiv1/knT (2.10)

and the integral equation 2.4 now reads

G (Din) = eftirreostin/haT / dr,GY (T C(Ts, Tin).- (2.11)

The Gibbs partition function of the polymer chain is calculated from the Green
function by

AN, f,T) = / dry G (Tw)- (2.12)

The mechanical equation of state or the force-extension curve for the polymer chain

(Re) = kaT 5z AN, £T), (2.13)
where (R.) is the average chain extension along the direction of force. The force-
extension relation can also be determined from knowledge of the radial distribution

function, for a chain with isotropic distribution as

[ dR [, d(cos )W (R)R cos 6 exp(f Rcos 6/ kpT)

(R.) — - = (2.14)
Jo dR [_, d(cos )Wy’ (R) exp(f Rcos 8/kgT)
ksT Jo° dEW (6ksT/ f)Elch(€)/4 — sh(€) /€] (215)

f & dEW S (eksT/ f)sh(€) /€
where § = fR/kgT.

Alternatively, one can calculate the chain extension for an infinitely long mole-
cule using the N-independent Green function, G(,Q ("), obtained for N larger than
a threshold value, N*. The latter can be chosen large enough so that the shape of
Gfp (T') is practically the same for all N > N* (as one can expect for a diffusion-type
process). In this situation, the force-extension curve can be calculated according to

’ N () rpnyep(f) '
<Rz> _ (beost) = L4 L dTbeos0GRMGR TN, 1)
N‘

N Jdr fdr 'ng (F)vafz (T)TU(T, IY) (2.16)

N
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Given a desired accuracy for the force-extension curve, for any given chain model,
we can estimate the value of the chain length for which the Green function becomes
practically independent of NNV, as we will see in subsequent chapters.

We can also calculate the probability that chain subunit i assumes a given state
T’ under an external force f according to eq. 2.8

#0) = 57 [ & [ AP @IERLENTO@, M6 -, (217

and the average fraction of chain units found in state I' will be given by

N
#O(0) = 5 3 o(@). (218)

i=1l
The probability for a pair of subunits to occur in the states I' and I' is obtained by
particularizing eq. 2.9 to read

Ny — 1 _ ADPAED (T
p‘i (P’F) A(N, f, T) /drl/dPN—1.Gl (Fz)GN_l(I‘N_;) (2.19)
xTWO (T, Cn_i)6(T; = T)6(Cy—; — ).

2.3 Transfer Matrix for the Helmholtz Ensemble

To calculate the end vector distribution function of a chain in 8 —condition, we can
employ new coordinates as arguments of the Green function in eq. 2.4. In proceeding
with this task, we will distinguish and discuss two possible choices for the orthogonal
coordinate system used for computation:

(i) a frame with the origin at one of the chain ends and arbitrary but fixed
direction of axes; this frame is appropriate for studying the z—component probability
distribution of the chain.

(#1) a frame with the origin at one of the chain ends and one of its axes in the
same direction as the end-to-end vector; this frame is advantageous in calculating the
end-to-end distance (or radial) distribution of the chain.



25

Figure 2.2: Geometry of a sequence of two subunits with their 2-coordinates and relevant
angles.

Note that while the first choice is a unique frame for all the configurations of
the chain, the second one will change with the chain configuration. If we want to
calculate the z-component probability distribution we should carry out computations
in the frame (i) and identify the necessary coordinates. They include the position
z;, of the i-th bond along the z—axis and the angle 6; formed by the bond vector
b; with the positive direction of this axis (see Figure 2.2). Thus we must replace
[; in eq. 2.4 by the set {z;,60;} and designate the Green function for this case by
G (2, 6:), while the transfer matrix, T®) ([, Li1) = T (2,65 241, 6:41), should
equal the probability distribution that subunit (¢ + 1) is at z;+; with an orientation
f:+1, given that subunit ¢ is at z; with an orientation 6;.

Alternatively, if we want to calculate the end distance distribution function (frame
(43)), we must replace the z—coordinate by the radial coordinate, r; = |r;| (Figure
2.3) and the angle 6; designates the angle formed by the bond vector b; with r;.
Consequently, the Green function is denoted by Gg’}) (r;,0;) and its argument are
T; = {r:,6:}.

Once we have calculated Gg’,) (R, ), we can readily find the Helmholtz partition
function Z,(N, T, R.), Helmholtz free energy A.(N, T, R.) and the average contractile
force in the chain (f;) by the following relations

Z.(N,T,R.) = / 460G (R.,9), (2.20)
0
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Figure 2.3: Geometry of a sequence of two subunits with their radial coordinates and cor-
responding orientations.

A.(N,T,R,) = —kgTn Z,(N, T, R.), (2.21)

0A.
(=13 Rz)T . (2.22)

Alternatively, if we study the chain in the reference frame (%)
Z(N,T,R) = / d6GS)(R, 6), (2.23)
0

A.(N,T,R) = —kgTln Z,(N,T, R), (2.24)

0A,
1 =(58). (2.25)

Let us also denote the end-to-end distance distribution, which is obtained by
normalizing the Helmholtz partition function, by WS'(R) and the chain end z-
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component distribution function by W,if ) (R:), in other words,

(r) —_ Zr(N , T, R)
Wv () = 1= 3Rz, (N, 7. )’ (2.26)
and
(z) —_ Zz(Ns Ta Rz)
Wi'(R) = 1= 4R, Z.(N,T, Bo)’ (2.27)
The relation between these distribution functions is
o0 W (/RE + R2)
(z) — N z
W (R,) = /0 dR27R [ e (2.28)

Knowledge of the end-to-end distribution functions W,»(') (r) for any ¢ is partic-
ularly useful in calculating other quantities of interest. In the following, we will
assume homogeneity along the chain’s contour, which guarantees that the monomer-
to-monomer distance distribution, W,('J') (r) depends on the values of ¢ and j only
through the difference (i — 7) and is thus identical to W,-(:}(r). For instance, the pair
correlation function of the chain can be calculated directly using

1 Wi (r)/r?
g(r) = ———= — - , (2.29)
N(N +1) ,.,Z-O?N J5 drw ) (r) /r2
i#
which obviously has the normalization
/ drg(r) =1. (2.30)
0

The mean square radius of gyration (R?) can be calculated according to eq. 1.15
by summing terms of the form (r%), which in turn can be calculated by

(%) = /0 drP’[’i(:}(r)rz. (2.31)

Furthermore, the chain’s structure factor S(k) in eq. 1.37, can be determined if the
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averages under the sum are calculated according to

<sm(kr,,)> / dr W't(:.)‘] smkf::r)' (2.32)

kr;;

2.4 The Role of the Boundary Conditions

The thermodynamics of a single macromolecule can be measured and calculated
under different boundary conditions:

(i) One can fix the length of the macromolecule and measure the force necessary to
maintain this length; this suggests doing the statistical mechanics in the isothermal-
isochoric or Helmholtz ensemble, in which the length is a control variable and the
average force and its fluctuations are calculated by differentiation.

(#2) One can apply a given force and measure the resultant extension of the mole-
cule; this suggests doing the statistical mechanics in the isothermal-isobaric or Gibbs
ensemble in which the force is a control variable, and the length and its fluctuations
are calculated by differentiation[2].

Because different ensembles in statistical mechanics are only equivalent for ther-
modynamically large systems, but not for small systems, it is important to formulate
the right statistical mechanics for the stretching of a macromolecule. The question
to be answered is which of the two thermodynamically conjugate variables, force or
length, is held constant and which is the fluctuating response. It has recently been
shown that in stretching a single polymer molecule with an Atomic Force Microscope
(AFM), both situations can be realized by changing the force constant of the can-
tilever: for a soft cantilever the Gibbs ensemble is appropriate and for a stiff cantilever
one can use the Helmholtz ensemble[14, 13]. Recently a first principles theory was
also developed using both Gibbs and Helmholtz ensembles(12].

An additional observation is in place. If in a stretching experiment[6] one end of
the macromolecule is attached to a surface and the other end to a cantilever tip, as the
force is increased the length and direction of the end-to-end vector R will change. It
is important to discern the overall orientation of the chain with respect to the external
force. In general, some force component f, will act in the direction of R, and the angle
between the force and the end-to-end length will vary from experiment to experiment
and we must define the appropriate boundary conditions on the ensemble suitable to
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the set of constraints to which the chain is subjected. Here, we mention two distinct
physical situations requiring different boundary conditions (BC) on the ensemble:

e BC 1: the polymer is stretched by its ends and the end-to-end vector is con-
strained to be parallel to the direction of the external force. This is the experi-
mental case of PEG stretched by an AFM tip[6], when the chain is grafted to a
hard surface and the AFM tip is made to “pick up” the other chain end close to
the grafting point and then apply stretching force perpendicular to the grafting
surface; under these conditions, equations 2.23-2.25 should be employed.

e BC 2: the polymer is stretched by its ends and the end-to-end vector can form,
with appropriate weights, any angle with the direction of the external force; for
this case the relations 2.20-2.22 are applicable.

Both boundary conditions are discernible only for short chains and small stretch-
ing forces and produce identical results when the chain length exceeds the deflection
length, A = \ﬂm/_f , where [p is the persistence length of the molecule. Hence-
forth we will mention these distinctions only where they play an essential role in the
physical picture.

Generally speaking, one can imagine a variety of boundary conditions for a single
molecule. This does not necessarily mean the conditions in which the ends of a mole-
cule are found, but it can refer to any of the chain’s monomers or group of monomers.
In a given single chain experiment, in order to formulate the appropriate boundary
conditions one has to identify the nature of external constrictions (e.g. grafting cova-
lent bonds, impenetrable surfaces) imposed by the molecule’s environment and, given
the spatial scale for this problem, this is sometimes a non-trivial task.

2.5 Implementation of the TM Method

With the advent of hardware capabilities in computers (speed and memory size),
computational theoretical physics in the past decade has experienced a great boost,
to the extent that problems that were virtually intractable ten or twenty years ago,
can now be tackled with the help of a PC. In fact, the newest PC’s are the equivalent
of supercomputers in the beginning of the nineties.
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The Green function for any of the chain’s monomers can be obtained by successive
numerical iterations, as given by eq. 2.4. In order to perform this on a computer, we
must translate the whole procedure described above into a proper program algorithm.
To this end, we convert the continuous coordinates spanned by I' to discrete ones. For
instance, if I includes an angular coordinate 8, whose range is [0, 7], we sample this
continuous interval by an array of Mp+ 1 uniformly distributed points (Mjp intervals),
which will constitute the only allowed values for . Similarly, if I' includes a radial
coordinate r, too, with range [0, Nb] we will divide this range into M, intervals—
corresponding to M, + 1 allowed values of the discrete coordinate r. Assuming that
8 and r are the only coordinates included in I', the number of allowed values for I’ in
this discrete model is My = My x M,. The transfer operator T(I';, ;1) in eq. 2.4
thus becomes a 2-dimensional, My x Mr transfer matrix. In the following, we will
refer to My, M,, My as the mesh parameters.

Since we aim to study the properties of continuous models, like the FJC, FRC etc.,
the role of discreteness of our coordinates (discretization effects) on the final results
must be critically analyzed. Intuitively speaking, the desired transition from discrete
to continuous models can be achieved if the representation of continuous coordinates
by discrete ones is fine enough, that is, if the parameter Mr is sufficiently large.
With the increase in Mr one expects the discretization effects to vanish. Anticipating
results in the following chapters, we will say here that we performed the entire pro-
cedure for increasing values of the mesh parameters and compared the outcomes. We
found that the results converge to a unique limit, which can be appropriately called
the continuous limit. All results obtained for Mr larger than a threshold value are
virtually identical to each other and therefore to the results obtained with continuous
I’ coordinates.

The precision of our calculations, or the degree to which they approach the con-
tinuous limit, will increase with larger mesh parameters. But the magnitude of these
parameters is practically limited in a numerical procedure by the size of the com-
puter’s memory. Therefore, judicious use of the computational resources is required,
especially for complex models. As an example, for linear coordinates (e.g.  and 2),
in order to increase the precision of the calculation, we can adapt the range at each
iteration step ¢, for instance making it proportional to a maximal distance Rmaz = tb.

All computations have been performed on a 1GHz Pentium III with 512MB
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memory and, depending on the complexity of the model, may take from minutes
to days of CPU time and can easily occupy the entire memory. For all polymer
models considered the computational cost of the method increases linearly with the
size of the chain. A GNU FORTRAN 77 compiler was used to process all the codes
generating the numerical results of our analysis. A sample code for the calculation of
the force-extension curve of the FRC model is given in Appendix A.

For a given computer system, one can evaluate the limits of feasibility for imple-
menting this method. Roughly speaking, the maximal value of Mr will be propor-
tional to the size of the memory. More precisely, a real (double precision) matrix of
dimension M used to store the values of the Green function at all the mesh points
cannot occupy more than half the computer’s memory. Two such matrices are nec-
essary in order to perform numerically the TM iteration from any given bond to its
neighbor. For our system, we found the maximal value of Mr to be about 12 x 106.



CHAPTER 3

THE FREELY JOINTED CHAIN

The freely jointed chain is a sequence of segments, mimicking chemical bonds, of the
same length b, the ends of each being linked to the end of the neighboring bond to
form a chain-like structure (Figure 3.2) .

The probability of a chain bond to have a certain direction with respect to the
position of the previous bond is constant over the solid angular interval. In other
words, if we look at a sequence of two consecutive bonds of the FJC, like in Figure
3.1, the angular variables # and ¢ have constant probability densities over their entire
range.

If we denote the position vectors of any two consecutive chain links by r, r’ the
connectivity operator for the FJC, will be given by

Ol —~r)) = pblie 1| -b), 3.1)

with the normalization property

/ 4mq®Clq)dq = 1, (3.2)
0

where ¢ = [r —r/|.

The average end-to-end distance of the FJC model is calculated according to eq.
1.4

(R?) = N®?, (3.3)

since (cost;) = 0 for any 1 < i < j < N. Note from the above relation that the
characteristic ratio for FRC is exactly 1 for any N. Also, since the contour length
of this model is L = Nb, using eq. 1.10 and 3.3 one can derive the effective length of
this model to be a =b.

32
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Figure 3.1: Sequence of two bond vectors of the FJC and their associated angular degrees

of freedom.
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Figure 3.2: A random three-dimensional configuration of a FJC with 100 bonds.
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The mean square radius of gyration for this model can be calculated from eq.
1.15, if we use (%) = (j —%)b?, and yields[2]

(R2) = 1IN +2

6N+ 1Nb2 (34)

Note that there will be a slight dependence of %%%} on N for small chain lengths,

which will rapidly diminish as N increases and in the limit of very long chains one
R2 Cy _ 1
has "5 — - =5

The force-extension relation for the FIC is analytically known for all forces,
namely the Langevin function

R, fb o\t
L = coth (kBT) ('E;f) . (35)
In the large-force regime (,—é%: > 1) one can see that coth (;‘;’LT) — 1, and the
relation becomes
R, ., fb
T (chT) . (36)

The chain end distribution functions for this model were investigated by Lord
Rayleigh by means of Fourier decomposition and were found to be of the general
form[2]

. N
WE(R) x R / dgsin(gR) [—’1‘;("71‘)-] @ 37)

which yields, with the help of eq. 1.18, the following expressions[2] of Wy (R) for
small chain lengths:

1
Wo(R) = —p (3.8)
Wi(R) = 1/8mb3, for 0S<R<Y)b 3.9)
7Y (3-R/b)/16mb°R, for b<R<3b ' '
WAR) = (8 —3R/b)/64mb3, for O<R<2b (3.10)
4 (4— R/b)? /64nb?R, for 2b<R<4b’
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For large N, the radial distribution can be approximated with Gaussian-type func-
tions of the form

3 \¥2 3R?
Wn(R) = (m) P (‘zw)- (311)

This approximation however is reasonable only for extensions up to values slightly
larger than the position of the maximum of W,(vr ) (R).

3.1 Transfer Matrix Method for the FJC

Below we will formulate and apply the TM method for the FJC model. We
should state that this chapter serves before anything else as a test of TM method,
since we can compare our results to the well known analytical findings for this simple
model. The transfer operator approach in the Gibbs ensemble is trivial for this model,
since there is no correlation whatsoever between the directions of two adjacent bonds.
Accordingly, we will only proceed to study the FJC using the transfer operator in the
canonical ensemble.

To calculate the end-to-end probability distribution for the FJC, we refer back
to the geometry depicted in Figure 2.3. This time, since the orientations of the two
adjacent bonds are completely independent, it suffices for us to focus only on the
angular coordinates # and ¢ shown in Figure 3.1, which must be integrated over.
Thus, for this problem the only coordinate serving as argument of the Green function
Gs") , is the radial distance, r. Without loss of generalization, we can assume that the
radial vector for monomer % is parallel to the bond vector b;. Then, to calculate the
Green function for the monomer (i + 1) we perform an iteration according to

) = [ 4GOI ) (3.12)

where the transfer matrix in this case is identical to the connectivity matrix

2 T
TO(r, ") = CO(r,r') = / do / d@sin 06[r" — g.(r,0)], (3.13)
0 0

and g, is given by

g-(r,0) = V12 + b2 + 2rbcos6. (3.14)
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Figure 3.3: The end-to-end distribution function for FIC of lengths N' = 3,4, 10 in (2) and
N =20, 50,100,200 in (b). The curves have increasingly higher maxima with the increase
of N. Our computations are plotted as circles, while the solid lines are given by eq. 3.7.

The end-to-end distance distribution function is calculated with this procedure
via eq. 2.23 and 2.26. In Figure 3.3 we show as circular symbols the results of our
computations for Wg ) (R) versus the rescaled end-to-end distance R/Nb. From the
lowest to highest maxima, the chain lengths are 3, 4, 10 in panel (a), and 20, 50,
100, 200 in (b). Note that we multiplied the distribution function by the number
of bonds N in order to make the curves more easily comparable. The accuracy of
these calculations is checked by comparing the TM results with the exact results of
Rayleigh, eq. 3.7, shown as solid lines. The mesh parameter for the radial coordinate
r, is the only variable that dictates the accuracy of our calculations. Here we have
used the number of mesh points M, = 1000.

The curves in Figure 3.3 can also be compared to Gaussian-type distributions of
the form given in eq. 3.11, which constitutes a good approximation only for relatively
long chains. There are important deviations from Gaussian form most noticeably on
the “tail” of the curve, which corresponds to the highly extended chain region, where
R is larger than approximately twice the most probable distance. As we will see
later, this region plays an essential role in the shape of the force-extension curve. To
show the deviations from the Gaussian forms we plotted in Figure 3.4, the results for
W in semilogarithmic axes, for N = 4,10 in panel (a) and N = 20,50, 100,200 in
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Figure 3.4: End-to-end distribution function plotted in semilogarithmic axes, for N = 4,10
in (a) and same chain lengths as in Figure 3.3 in panel (b). Our computations—circles; the
solid lines— exact formula, eq. 3.7; dashed lines-~Gaussian curves, eq. 3.11.

(b), together with the corresponding Gaussian curves (dashed lines). As above, the
curves can be distinguished by the location of their maxima and the plotting symbols
previously used in Figure 3.3. We can see that, in the tail region, for chains up to
few tens of bonds, the exact curves differ by order of magnitudes from the Gaussians
in eq. 3.11.

Proceeding in a similar manner as above, we can calculate the end-to-end vector
z—component distribution. For this purpose we refer back to the geometry in Figure
2.2. Based on the observations made in the above subsection regarding the local
angles 6 and ¢, we can state that the only argument of the Green function for this
problem is z. Thus, we will calculate the Green function G?) (z), for all bonds of the
FJC, by repeated application of the formula

GE\(2) = / 4262 (2)T) (2, ), (3.15)

where the transfer matrix in this case is just the connectivity matrix

2r T
T (z, ) = CP(z, ) = / do f d0sinb8[7 — g.(z,0),  (3.16)
0 0



38

] 'S BT | 1 { llllllJllllllLlIlll

5 3 3
@ |20 ®)
4
155
€ 3 3
2 23 10
13 53
03 0 3 |
0 02 04 06 08 1 0 01 02 03 04 05
R/Nb R/Nb

Figure 3.5: End vector distribution function for the FJC with the same chain lengths as in
Figure 3.3. Circles—our computations; solid curves-exact result by eq. 3.7

and g is given by
9z(z,60) = z + bcos#. (3.17)

In Figure 3.5 we present the end vector distribution, as calculated from eq. 1.18,
for the same chain lengths as in Figure 3.3. Once more, we can see excellent agreement
between our computations and the Rayleigh result, eq. 3.7.

Using the calculated distribution function, W,(J ) (R), we next determine the force-
extension for the FJC with eq. 2.14, and plot it in Figure 3.6 together with the
analytical prediction — the Langevin function in eq. 3.5. If plotted versus the
extension rescaled by the contour length, R./Nb, this curve has exactly the same
shape for any N, and our TM computations (circles) follow the Langevin result very
precisely.

Since we already have the distribution functions VV,-(T) (r) for any %, the mean
square radius of gyration can be calculated using eq. 1.15 and 2.31. In Figure 3.7 we
plot the quantity (RZ) /Nb? versus N as calculated by TM (pluses) and the analytical
expression in eq. 3.4 (circular symbols). As the chain length increases, this quantity
will tend to the limit Qgﬁ valid for any random polymer model.

Furthermore, by employing the distributions W}(') (r) for all ¢, we can determine
the structure factor S(k) for this chain model. For this purpose, we need to refer
back to eq. 1.37, where we calculate the averages under the sum by using eq. 2.32.
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Figure 3.6: Force-extension curve for the FJC. Solid curve-the Langevin relation, eq. 3.5;
circular symbols—- the transfer matrix result.

Figure 3.7: Mean square radius of gyration for the FJC versus chain length (pluses— the
TM results; circles— the analytical prediction, eq. 3.4).
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Figure 3.8: Structure factor of the FJC. Panel (a): continuous lines— TM calculations for
N = 10,20, 30; pluses— Debye function for N=10. Panel (b): continuous lines— TM calcula-
tions for N = 10, 20, 50, 100; dotted line- Debye function for N = 100.

In Figure 3.8 we present the results of these computations. In panel (a) we show in
continuous line, the structure factor for N = 10, 20, 30 (from bottom to top) and, as
plus symbols, the structure factor for the Gaussian chain model with 10 bonds, given
with the help of the Debye function(4]

SN(k) = NfDebye(k2 (Rg>)1 (3.18)

with 0
[Debye(T) = ol (x—1+€7%). (3.19)

In panel (b), we plot in double logarithmic axes S(k) for chains of length N =
10, 20, 50, 100 (solid lines) and for the Gaussian chain with 100 bonds (dotted line).

Proceeding in a similar way, we next calculate the pair correlation function for the
FJC, using Wi(r) (r) and eq. 2.29. The results are displayed in Figure 3.9. The plots
correspond to chain lengths N = 10,20, 50, 100, with maxima from top to bottom.
For better visualization of the differences between them, we plotted the curves in both
linear axes, panel (a), and semilogarithmic axes, panel (b). All curves display a sharp
peak (delta function) at r/b = 1, corresponding to the presence of the immediately
adjacent monomers situated at distance b.
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Figure 3.9: Pair correlation function of the FJC in linear (a) and semilogarithmic (b) axes.
With maxima from top to bottom curves correspond to chain lengths N = 10, 20, 50, 100.

To summarize this chapter: we have used the FJC model to demonstrate the
accuracy achievable in the discrete transfer matrix method by comparing our results
with the exact solution. The TM technique in the canonical ensemble proved to be
extremely accurate, coming in excellent agreement with all the analytical predictions.
Instead, we can concentrate our efforts on using the insight gained here to handling
more realistic models of polymers, where the behavior is not analytically known. This
will be done in the following chapters.



CHAPTER 4

THE FREELY ROTATING CHAIN

The FRC model consists of segments having the same length b while the angle formed
by any two segments has a fixed value 4. For the FRC, any bond can freely rotate
about the direction of the previous bond maintaining the same angle between the two,
as sketched in Figure 4.1. Although a simple model in its geometrical formulation,
the statistical mechanical treatment of this model is non-trivial and can be carried
out analytically only to a certain extent. The statistical mechanics of the FRC is
summarized in the classical book of Flory[2] as well as in the more recent text of
Grosberg and Khokhlov{l]. A theoretical study of the FRC using the Green functions
method was performed by Kostrowicki and Scheraga[49]. Their work was focused on
calculations of the end-to-end distributions for short chains only.

We will employ the TM technique to the study of the FRC with bond angles
within a large range of values including very small ones and for a variety of chain
lengths. We are interested in the end distribution functions and their comparison
with Gaussian forms. We calculate the mechanical equation of state and study in
detail the stretching behavior of the FRC emphasizing the effect of the bond angle
on the force-extension relation. For small bond angles, we expect to find similarities
with the WLC (or the semiflexible) model, which is mathematically obtained as the
limit b6 — 0, — 0, with the chain length being held constant. For large bond angles
we can speculate that the FRC will resemble more the FJC than the WLC. This will
be critically assessed in the following, based on accurate results obtained by the TM
method. Most results in this chapter are reproduced from the work coauthored in
ref. [25].

Denoting the bond vectors of the chain by b;, withi = 1,2, ..., N, the connectivity
operator for this model can be written as

1 b;-bi
C(bi, b{_l) = -4?5 m COS‘Y) 3 (4.1)

42
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which as one can see, depends only on the angle between the two bond vectors. If ¢; is
the dihedral angle between the planes (b;, b;_;) and (b;_;, b;—2) then the probability
distribution for ¢, is a constant function over its entire range [—, 7] for any i.

Figure 4.1: Schematical representation of a section of FRC indicating the path of the free
rotation for the last bond vector.

The average end-to-end distance in the FRC model(2] is calculated according to
eq. 1.4

(R?y=Nb2+26% D (cosyy;), (4.2)
1<i<j<N

and since (cos,;) = (cos ~Y = for any 1 <7 < j < N, the above can be evaluated
to give[2]

14+cosy 2cosy 1—(cosvy)V
2\ __ 2 —_
(R?) = Nb (1—cos'y N d—cosv)?)’ (4.3)

which, in the infinite chain limit N — oo, becomes

1+ cosy

2 = 2 - »
(R?*) = Nb T cosy (4.4)
The characteristic ratio for FRC in the long chain limit will then be equal to
Cn= 1_-*'_(5’31 (4.5)

1 —cosy’



The effective (or Kuhn) length a is defined by eq. 1.10 as

(R?) = La, (4.6)

where L is the contour length of the polymer, which for the this model is given by

L = Nbcos(v/2). 4.7)
This yields for the Kuhn length

1 +cosy

@= b(l —cos ) cos(y/2)

(4.8)

The mean square radius of gyration can be derived with the use of eq. 1.15 and
4.3 to yield[2]

(RZ)  1(N+2)(1+cosy) cos~y 49
Ntz ~ 6(N+1)(L—cosy) (N+1)(1—cosv)? (4.9)
N 2 (cos')r)2 _ 2 (cos 'y)a (1 — (cos 'y)N)
T (N+1)2(1—cosvy)® N(N+1)*(1—cosvy)*’
For N — oo one gets
(Rg) _Cn
(_N—b-z_ N—oo - _6—, (4.10)

as expected for any random polymer model. Finally, the persistence length for the
FRC is given by

5 os/2)
|In(cos v)|
Since we intend to compare our results with other models such as the worm-like
chain, we list here some relevant relations. An interpolation formula for the force
response function of the WLC was proposed by Marko and Siggia[38]

(4.11)

fle _E:. 1 1
ksT L[  4(1—R./L)* 4

(4.12)
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Figure 4.2: Relevant coordinates for the Green function of the end vector z-component for
the FRC.

which has a maximum error of 10% in the intermediate force regime, but accurately
represents the small and large force regimes. From here we can derive the corre-
sponding large-force relation for the WLC (;% > 1)

R._. 1(flp\
T El-3 (ka_;’) . (4.13)

4.1 Transfer Matrix in the Helmholtz Ensemble

As outlined in the ‘TM Method’ section of this work, there exists a variety of
different boundary conditions on the Helmholtz ensemble. For the FRC, we will
approach the following two cases: (i) for a chain free to rotate about a fixed but
arbitrary z—axis, we will calculate the probability distribution of the end-to-end vector
z—component; (i) the end-to-end distance probability distribution. Each of these
requires a particular formulation of the TM formalism, which constitutes the topic of
the following discussion.

4.1.1 Green Function for the End Vector z—component

To calculate the distribution function of the end vector z-component we must
use the coordinate pair I' = {z,6} (see Figure 4.2) and the corresponding transfer
matrix for this case is
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Figure 4.3: Relevant coordinates for the Green function method for calculating the end-to-
end distance for the FRC model.

2r

T¢) (Zi 6; Z’, 0l) = 0 d¢5[o, - 90(01 ¢)]5[2, -z gz(oa ¢)]‘ (4'14)

Here, gg characterizes the geometrical restriction exhibited by the orientations of two
adjacent chain segments. Following a well-known trigonometric relation, we have

go(0, ¢) = cos™! (cos 8 cos ¥ + sinfsin-ycos ) , (4.15)

while g, reads

g:(8, @) = b(cos 6 cos~y + sinf siny cos ¢). (4.16)

As initial condition, the unnormalized probability for this case is

G$)(z,0) o 8(z — beosf) sind. (4-17)
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4.1.2 Green Function for the End-to-End Distance
For the “radial” Green function Gf\',) (r, ), (see Figure 4.3) the transfer matrix is

21
TO(r, ;7' 9") = A dpb[y)’ — gy (r,r)6[r' — g-(r, 9, 8)], (4.18)
where g, is given by
gr(r,0, @) = [r? + b? + 2rb(cos v cos  + sin 4 siny cos ¢)] Y2 (4.19)
and
N -1 (,,J)'Z + b2 —_ 1.2
gu(r,7") = cos [ 7% . (4.20)
The initial condition is
G (r, ) = é[r — 2bcos YJé[y — 7/2]. (4.21)

In order to solve the integral equation for the Green’s function (2.1) we use a nu-
merical iteration scheme which employs discrete coordinates in direct correspondence
with small finite intervals in the continuous coordinates I';. There are IV iteration
steps for the Green function, corresponding to the number of chain bonds.

4.1.3 Results and Discussion

In Figure 4.4, we display the variation of the radial distribution function Wg) (R)
calculated by TM, according to eq. 2.23 and 2.26 for selected values of bond angle
and chain lengths. The bond angles were chosen ¥ = 20° in panel (a), v = 60°
in panel (b), ¥ = 90° in panel (c). In each panel, the curves for chain lengths
N = 10, 25, 50, 100, 200, 400, 800 can be identified by the location of their maxima
with the smallest being at the right extreme and gradually shifting to left. All
functions have been multiplied by Nb in order to ease the visual comparison, and
have been calculated with mesh parameters My = 200 and M, = 400. We estimate
an accuracy of +2.5% or better for these parameters, except for N = 400,800 where
errors may be higher. Note the shift in the location of the maxima, as we increase
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Figure 4.4: End-to-end distance distribution function N bW,(\; ) (R), €q.2.26, for selected val-
ues of bond angle indicated on each panel and chain length N = 10, 25, 50, 100, 200, 400, 800,
with location of maxima from right to left in this order.

the chain length, reflecting a loss in the stiffness of the chain. For instance, the chain
with N = 10 and v = 20° is extremely stiff, with the radial distribution function
being significantly different from zero only for R/Nb between 0.7 and 1, while for
N =100, the corresponding curve becomes much wider.

In Figure 4.5 we show an attempt to fit Gaussian-type distribution function
derived from eq. 3.11, W (R) o« R*Wy(R), to our results for N = 100, vy =
20°,60°,90°. The parameter (R?) was taken according to eq. 4.4. The solid lines
are our computed results and the dashed lines correspond to the Gaussian functions.
The significance of this procedure is that the FRC can be looked at as a FJC (as first
noted by Kuhn) with bond length a and number of bonds Ny = L/a. For v = 20°
the deviation from Gaussian form is very pronounced, indicating that the chain is
still very stiff, even at this length.

To facilitate a better view at the deviations of ng from the Gaussian shape we
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Figure 4.5: Comparison of computed radial distribution functions for N = 100 and v =
20°,60°,90° with Gaussian-type distribution functions with the parameter (Rz) given by
eq.4.4.

plot the curves together in logarithmic axes in Figure 4.6.

Figure 4.7 displays the chain end z—component distribution function W,ﬂ}’ (R.)
calculated by eq. 2.20 and 2.27 for the indicated values of bond angle and of chain
length. The curves correspond to the same chain lengths as in Figure 4.4 with maxima
from bottom to top for N = 10,25, 50, 100 in this order. The mesh parameters used
here are My = 200 and M, = 400, and we estimate again an accuracy of +2.5% or
better for all curves displayed.

Next we will use these distribution functions to determine other quantities of
interest. The characteristic ratio of the FRC is calculated from the end distribution
function via eq. 2.31 and compared to the exact expression, eq. 4.3. Good agreement
for three values of bond angles v = 20°,60°,90° can be seen in Figure 4.8. The small
deviations towards large N are mainly due to discretization effects, more specifically
to the value of M, chosen, and are well within the predicted accuracy for this method.

Similarly, we calculated the mean square radius of gyration for the FRC with
bond angles v = 20°,60°,90° and compared it to the analytical results, eq. 4.9, in
Figure 4.9. Again, we obtain good agreement between the two methods.

For the bond angles chosen above, we calculated the structure factor of the FRC
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Figure 4.6: Cross symbols: end-to-end distance distribution function N bWS:) (R) in double
logarithmic axes for selected values of bond angle indicated on each panel and chain length
N =100, 200, 400 with location of maxima from right to left in this order. Continuous lines:
Gaussian distribution functions derived from eq. 3.11, with the corresponding (R?) from

eq. 4.4.
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Figure 4.8: Comparison of the TM-calculated mean characteristic ratio versus chain length
curves for the FRC with various bond angles indicated in the legend, with the theoretical
prediction, eq. 4.3 (solid lines).

5 L} T T l ] l ] l

Figure 4.9: Comparison of the TM calculated mean square radius of gyration for the FRC
with various bond angles indicated in the legend, with the theoretical prediction of eq.4.9
(solid lines).
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Figure 4.10: Structure factor of the FRC with N = 10 and bond angle v = 20° in (a),
v = 60° in (b) and ¥ =90° in (c) calculated by eq.1.37 and 2.32.

with eq. 1.37 and 2.32. The results for N = 10 can be seen in Figure 4.10. Note the
variation with the bond angle in the shape of the “wavelets” appearing in the three
curves. The mesh parameters M, = 200, My = 200, have been found to be sufficiently
large to yield results independent of them. As the bond angle decreases, one expects
the peaks to sharpen about their respective locations.

A closer look at the differences between the curves in the long wavelength range
is pictured in Figure 4.11, where we compare them with the structure factor of the
FJC model, as calculated in the previous chapter. Different features can be seen
in this k-range, dependent on the bond angle. The 90° FRC in particular has very
pronounced differences from the others, for instance at about kb = 4, as can be seen
in the plot.

In Figure 4.12 we show a scaling analysis of the structure factor with the chain
length for fixed bond angle, ¥ = 20°. For this purpose, we chose the chain lengths
N = 10,20,30. As expected intuitively, we see that only in the long wavelength or
small scattering angle limit are the static structure factors different for the three chain
lengths. As the wavelength is decreased, the curves rapidly overlap; there seems to
be no difference between the curves for FRC for kb > 1. Again, for comparison we



54

Stk

Figure 4.11: Small wavenumber details of the structure factor curves for the FRC with

N =10 and bond angles v = 20°, ¥ = 60° and v = 90° also compared with the FJC with
the same length.

show the corresponding curve for the FJC.

A better view at the large-k region is obtained in Figure 4.13. The differences
between the different data sets do not seem to diminish as kb increases (for short
wavelengths), but the curves appear to settle down to a damped oscillatory form
with a relatively slowly decaying amplitude. The location of the maxima can be
approximately determined by the formula characterizing the ‘classical’ double slit
interference pattern: kb = 2rm, m = 0,1,2,.... We should note that the structure
factor given in this region (short wavelength) does not describe any real polymer
chain, but is rather an artifact of the model. At this scale, the structure of a polymer
cannot be studied within a simple model like the FRC, which naively regards the
monomer as the immaterial joint between two “phantom” segments.

As the bond angle is decreased, one expects to recover the limit of the rod-like
polymer, which for small kb can be well approximated by the formula (see Appendix

B)
1 : T 2
S(k)=N fo do [5%%“572/)1)] : (4.22)
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Figure 4.12: Scaling analysis of the structure factor of the FRC with NV for fixed bond angle
v = 20°, in log-log axes. Curves for N = 10,20,30 are plotted in continous line with
maxima from lowest to highest in the respective order. The curve for the FJC with N = 10
is plotted in dashed line.
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Figure 4.13: Large wavenumber details of the structure factor curves for the FRC with
N = 10 and bond angles v = 20°, ¥ = 60° and v = 90° also compared with the FJC with
the same length.
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Figure 4.14: Comparison between the structure factor of FRC with bond angles given in
the legend and the rod-like polymer, eq.4.22, in the small kb (long wavelength) range.

A comparison between the structure factor of FRC with small bond angles and the
above expression is presented in Figure 4.14 and we see indeed excellent agreement
up to the region where the oscillatory behavior begins to manifest.

4.2 Transfer Matrix for the FRC in the Gibbs Ensemble

In computing the Green function of the chain stretched by its ends by a constant
external force f (Gibbs ensemble), we must account for a single coordinate, namely
the angle, 6, formed by a bond vector with the direction of the external force (thus
[ = 6). Since there are no interactions, the integral equation for the Green function
in the Gibbs ensemble reads

Gy (60) = ore=orta [ @I 6,0) (4.23)

In Figure 4.15, we depict the relevant geometrical configuration of two chain
segments for this situation. The transfer matrix in this case is

T(6,6) = :wd«ﬁa[ev — 90(0, 9], (4.24)
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Figure 4.15: Relevant coordinates for a sequence of two adjacent bonds vectors of FRC with
respect to an external force f.

where the ¢ is the dihedral angle between the planes (f,b;) and (b;, b;y;) and the
function gp characterizes the geometrical restriction of the consecutive chain segments
and is given by eq. 4.15. The initial condition for this problem is

Ggf )(6) o exp (fb cosB) sin 4. (4.25)

ksT

4.2.1 Results and Discussion

Since the stretching behavior of the FRC is of major interest, being a first step
to the theoretical study of real polymer stretching, we have focused in great detail on
the Gibbs ensemble for this model. In order to optimize our computation method,
we performed the entire procedure for various parameters Mp, M, and compared the
results. In all cases, we found that results converge practically to the continuous limit
for values of the mesh parameters no higher than a few hundreds.

The variation of the probability distribution function of the orientation of the
last chain bond, Gg) (6), with respect to the direction of the external force under
increasing forces is shown in Figure 4.16 for chains with N = 100 and v = 20°, 60°, 90°
respectively in panels (a), (b), (c). All curves are normalized to an undergraph area
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Figure 4.16: The probability distribution function of the orientation of the end chain bond
with respect to the direction of the external force for chains with N =100 and (a) v = 20°,
(b) ¥ = 60°, (c) ¥ = 90°. The force values are fb/kpT = {0,1,4,9, 16, 25, 36,49, 64, 81, 100}
corresponding in this order to curves from the flattest to sharpest in each panel. The mesh
parameter for all cases is Mp = 500.
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Figure 4.17: (a) Dependence of the force-extension curve on the mesh parameter Mj, for
fixed chain length and bond angle, N = 100, v = 20°. From bottom to top curves are for the
values Mp = 10, 20, 40, 100, 200. (b) Dependence of the force-extension curve on the chain
length at constant bond angle v = 20° and mesh parameter Mp = 200. From top to bottom
curves are for the values N = 10, 25,50, 100. (c) Variation of the force-extension curve with
the bond angle at constant chain length N = 100 and mesh parameter My = 200. From
bottom to top curves are for v = 20°,60°,90°.

of one. The mesh parameter is fixed to My = 500. The force values have been chosen
rather arbitrarily to follow a parabolic form: fb/kgT = n?, with n = 0,1,2, ..., 10,
corresponding in this order to curves from the flattest to sharpest in each panel. For
better visualization of the region of maximum interest, we show only the angular
range [0°,100°]. Note the almost constant increase in the maxima, accompanied by a
decrease in the width of the curves as the force increases. At large forces, a sharp peak
forms in Gn(6x), with the 6y value close to 4/2 — the most probable orientation
as is intuitively expected for strongly stretched chains. This value however is only
asymptotically approached.

In Figure 4.17 we present a scaling analysis of the force-extension relation with
respect to all the model parameters 4, N and the number of angular mesh points
Mp,. In panel (a), we show the results of a scaling analysis of the force-extension
curve with the mesh parameter Mp, for fixed chain length N = 100, and bond angle,
~ = 20°. From bottom to top curves are for the values My = 10, 20, 40, 100, 200. For
better visualization of the differences between the curves at small forces, we chose a
logarithmic axis for the force. This is also a means of determining the accuracy of
our method for a given number of mesh points. The curves practically overlap for
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values of My greater than 200, a trend that can be noticed already in the closeness
of the curves with Mp = 100 and M, = 200. In panel (b), we can see the variation
of the stretching curve with the chain length. From top to bottom curves are for the
values N = 10,25, 50,100. The important differences appear for force values ranging
from 102 to 1. Again, the behavior of the force-extension curves is characterized by
a limit — all curves tend to overlap for chain lengths larger than 100. Finally, in
panel (c), we see the modification of force-extension curves for constant chain length
N = 100 and mesh parameter Mp = 200, when the bond angle has various values.
From bottom to top curves are for v = 20°, 60°,90°.

We should note that these and all subsequent findings on the force-extension curve
have been obtained by using eq. 2.13, which was found to yield the most accurate
results.

In Figure 4.18 we present a scaling analysis of the force-extension curve in the
form (1—R./L)~! versus fb/kgT plotted in logarithmic axes with the mesh parameter
Mj in the long chain limit. The chain length is N = 1000. The force has been varied
by about four orders of magnitude, in order to have a comprehensive picture of the
behavior. In panel (a) we display the results for large values of bond angle v = {30°,
50°, 70°, 90°} (corresponding to curves from top to bottom in this order), while in
panel (b) the curves for small bond angles are shown, v = 1°,5°,10°,20°. Note that
the results for My = 200 and Mp = 400 are almost indistinguishable, which means a
high accuracy reached at this point.

We have now enough data to make a comparison between the FRC model and
other simple models, such as FJC and WLC. The Langevin function (eq. 3.5) is
displayed for comparison in Figure 4.18(a) as a continuous line. Note that in the
large-force regime, all the curves in this panel are practically parallel to the Langevin
curve, that is their slope is very close to 1. In fact the curve (1—R./L)™ = 2fb/ksT,
thick dashed line in both panels, gives a very good fit to our large-force results. On
the other hand, for small bond angles, we expect the behavior of the FRC to be rather
similar to the one of the WLC model. Therefore, we plotted in Figure 4.18(b) straight
lines representing the large-force behavior of the latter, given by eq. 4.13, having the
same persistence lengths as the FRC with the bond angles appearing here (eq. 4.11).

Figure 4.19 presents the (1L — R./L)™* versus fb/kpT curves in a double logarith-
mic plot for bond angles v = 1° in (a), ¥ = 5° in (b), v = 10° in (c), and ¥ =20° in
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Figure 4.18: (a) Modified form of the force-extension relation in logarithmic axes for large
chain length (IV = 1000) and for large values of bond angle v = {30°,50°,70°,90°} (corre-
sponding to curves from top to bottom in this order). The Langevin function, eq. 3.5, for the
FJC is shown for comparison in continuous line, while the curve (1 — R./L)~! =2fb/kgT
is drawn as a thick dashed line. (b) Same as (a), but for small values of bond angle
4 = {1°,5°,10°,20°} (from top to bottom). For comparison, we show in continuous lines
the corresponding analytical result for strong stretching regime of WLC, eq. 4.13 with the
persistence length given by eq. 4.11
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(d). The chain lengths are N = 10, 100, 1000, 2000 and the mesh parameter was set
to 1000.

The quantity (R./Nb)( fb/ksT)™" as a function of the force for FRC is found
to be constant for small forces ;% < 1. Figure 4.20 displays our data for various
bond angles and for chain lengths 100, 200, 400 and 2000 (from top to bottom). The
only important deviation from constant behavior appears for v = 1°. The values for
f = 0 are obtained by simple linear extrapolation of the nearest two points. The exact
same results were obtained by numerically computing the derivative of force-extension
curve with respect to f.

Since we know from eq. 1.16 and 4.8 that in the infinite chain limit, N — oo, the
slope of the curve R./Nb versus fb/kgT is 5((1,:*'_1—":;%, it would be relevant to compare
this result with the zero-force points extracted from data in Figure 4.20. This is
displayed in Figure 4.21. All data sets overlap for bond angles larger than 30° and
coincide also with the theoretical curve (continuous line). These functions strongly
diverge when the bond angle is decreased, a trend that can be seen in the figure for
the values of v spanning from 1° to 30°. For increasing chain length we recover the
predicted curve for N — oo, plotted as a continuous line. We see that for N = 2000

significant deviations from the infinite chain limit appear only for v < 5°.

It is useful to parametrize the stretching behavior of the FRC model in the long
chain limit in terms of analytical expressions in the small-force regime (T:%’ < & .
For comparison we use eq. 1.16 with the corresponding effective length in eq. 4.8.
The agreement (see Figure 4.22) is good for all 4 > 10° for chain length N = 1000.
To obtain good agreement for smaller bond angles, one has to go to chains longer
by at least an order of magnitude. This appears from the fact that for the limit
of long chains to be approached, the contour length has to be much larger that the

persistence length, the latter increasing asymptotically as v — 0°.

Next, we analyze the intermediate force regime, ,—';— < ;E’T < ‘2. Figure 4.23
depicts the comparison of our computations with the asymptotic WLC behavior, eq.
4.13. The corresponding persistence lengths for the bond angles appearing here is

given by eq. 4.11.

Finally, the large force behavior is shown in Figure 4.24 to be approximately of
the form



63

A EER AL
3
10 ! (a) .o'. !
T E ot o 3
) - ® °®
S 0 et e y
gm 3 ..' ..O.
- .
: 1 [ vll“ '.. o'..
S i T " o’ .
3 --':::‘. o* ’ o‘...
- [} ] [ ]
10° fesespiiiiseceesantiicecencenet®” - .
w'E (b)
S LT s ]
~, 10 r < X
1] -4 ..
-4 < «*®
. ! . o’ B
T 10F el ot Y
E o® N
- n-"... cot?® o e N=10
10°9 * 089088300 000005° R el o4 * N=100
Ssr 1+ N=1000
1°F () 1+ N=2000
T 3
-~
J 0
" 3
& -
J 1
SR () o
10° peceesreee
0’'f (d) 3
-~ .o‘:
3 : ... -
~ 10 3
<" 3
SHETS -

10° geogeneepree sapett
10" 10° 10?

3
saanud

.
20eeee’
saansl A

10" 10 10' 10*
S/ k,T

Figure 4.19: Scaling analysis of the force-extension relation with the chain length for small
bond angles. The mesh parameter Mp is maintained to a high value of 1000. The four
panels correspond from top to bottom to: (a) ¥ =1°, (b) v =5, (c) v = 10°, (d) v = 20°.
Curves for various chain lengths are plotted in different symbols indicated in the legend.
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Figure 4.20: Study of the force-extension curves in the small-force regime. The slope of
the force-extension curve, (R./Nb)(fb/ksT)™!, is plotted as a function of the force. Few
representative bond angles have been chosen (indicated in the legend) and the chain length
has been increased from top to bottom (a) N = 100, (b) N = 200, (b) N = 400, (d)
N = 2000. The values of the intercept at zero force is shown in dashed line and is obtained
by a linear extrapolation of the nearest two points.
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Figure 4.21: Slope of the graph R;/Nb vs. fb/kgT in the limit of zero force as a function
of bond angle for increasing chain lengths, specified in the legend. The slope values are
taken from data displayed in Figure 4.20. The analytical result (continuous line) for N —
00, derived from eq. 1.16 and 4.8, is displayed for comparison.
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Figure 4.22: Small force fit of the force-extension curve for FRC in the long chain limit
(N = 1000). The circular symbols represent computation results and the continuous
curves are given by eq.1.16 From top to bottom v = {10°,20°,30°,50°, 70°}.
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Figure 4.23: Intermediate force fit of the force-extension curve for FRC in the long chain
limit (N = 1000). The circular symbols represent computation results and the continuous
curves are given by eq.4.13. From top to bottom v = {1°,5°10°,20°,30°,50°}.

(1— R,/L)~ = 2fb/kgT. (4.26)

To summarize, the stretching of the FRC model can well be described by the
following formulae

a fb
R FhpT i for 7 < Tb;
z [} b {
T 1—(3%5,-) for t<l<ie . (4.27)
1 -1 t b
1- (5%;%) for &< ;%7—,

At this point we are in the position to derive a formula that accurately describes
the stretching of the FRC in the long chain limit for any force. In order to retain the

small force and large force behavior we fit the force-extension curve by a relation of
the form

(1 - B/ Dy = {Fwsc(ro/af +RfO/RTI} " (428)

where g is a fitting coefficient and Fwrc(fb/ksT) is the function that characterizes
the WLC model, according to eq. 4.12. We find that 8 = 2 gives an acceptably good
fit for all curves with bond angles between 5° and 70° as illustrated in Figure 4.25.
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Figure 4.24: Large force fit of the force-extension curve for FRC in the long chain limit (N =
1000). The circular symbols represent computation results, while the continuous curve is
given by (1—R./L)~! = 2fb/kgT. From top to bottom v = 1°,5°, 10°, 20°, 30°, 50°, 70°, 90°.
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Figure 4.25: Global fit of the force-extension curve for FRC in the long chain limit (¥ =
1000). The circular symbols represent computation results, while the continuous curves are
given by formula 4.28 with 8 = 2. From top to bottom v = {1°,5°,10°,20°, 30°,50°, 70°}.
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4.3 Conclusion

In this chapter we studied the FRC model by transfer matrix techniques in both
the Helmholtz and Gibbs ensembles. In the canonical ensemble, we calculated chain
end distribution function and the related quantities and compared them to the ana-
lytical predictions for the FRC, as well as with other classical models. As expected,
chain end distribution functions were found to almost overlap appropriate Gaussian
curves for long polymers, but they strongly deviate from the latter for short chains
— more so than the FJC model. The role of the bond angle was analyzed in detail.

The stretching of the FRC was investigated by carrying out the statistical me-
chanics in the Gibbs ensemble. The force-extension curves were calculated with high
precision. Under weak forces, the FRC obeys the Gaussian stretching law. As the
force is increased a FRC with small bond angle and large N closely resembles the

semi-flexible chain model. We base this statement on the results displayed in Figures
4.18 to 4.25.

We found that for even larger forces, the FRC will cross over to a new type of
behavior, where the scaling behavior is that of a discrete-chain (DC)[25] characterized
by a response similar, but not identical, to the large-force response of the FJC. This
can be understood as a result of a force-induced decoupling between adjacent chain
segments. This finding should have important consequences from an experimental
point of view for fitting the large-force stretching data of polymers. At a force larger
than fb/kgT ~ lp/b, one enters the DC regime, in which the stretching is described
by R./L ~1—(cbf/kpgT)™* replacing the WLC behavior observed for smaller forces,
R./L ~ 1—(4lpf/ksT)~'/2. The constant c is sensitive to the details of the molecular
structure and, to anticipate the following chapters, to the intrachain interactions. Its
determination for a particular model emerges as one of the results of a TM treatment
of the type performed herein for the FRC model.

As noted in a recent study[25], the differences in the stretching behavior with
respect to the WLC are attributable to the chain fluctuations probing progressively
smaller length scales as the force is increased. A typical value for the crossover force
is 100pN, which is in the region of much interest, for instance, in a single chain
AFM experiment[6]. This more than justifies proposing a new fitting formula for the
stretching of polymer, having as a starting point the exact calculations on the FRC



presented in this chapter.
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CHAPTER 5

TRANSFER MATRIX METHOD FOR THE STUDY OF
N-ALKANES

Up until now, we dealt with relatively simple polymer models, whose energy is inde-
pendent of the chain conformation. There is no energy difference and no interaction
between any chosen pair of chain monomers. This is definitively not the case for
real polymer chains. In this chapter we will develop a realistic model that includes
relevant geometric and energy details.

The variation of dihedral angles in real polymers is always accompanied by a
variation in the potential energy associated with that particular conformer. Often,
this rotation potential has the shape depicted in Figure 1.2. While some values of
the rotational angles, like the potential minima ¢, g%, g~ are favoured, the continuous
variation as a function of the dihedral angle should be incorporated for an accu-
rate description. If the situation requires, one should also account for short-ranged
interactions between monomers two or more bonds apart along the chain.

As a case study for real polymers, we have chosen n-alkanes as the simplest
hydrocarbon chain where we can account the rotational potential energy variation
associated with the dihedral angles. The chemical structure is given by the general
formula C H3 [-C H,),, — CHj, with the monomer being [-C H,). Below we give a few
classical considerations on the statistical mechanics of such a system.

5.1 Polymer Chains with Rotational Potentials

As we have mentioned above, a step further towards describing real polymer
molecules is made if we associate more or less realistic potentials with the variation of
the dihedral angles, E;(¢;), firstly mentioned in the introductory chapter. Since for
most real polymers, each bond has a three-fold rotational potential, we can assume
that this potential curve has the shape presented in Figure 1.2, with the appropriate

70
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Figure 5.1: Local reference frame for bond 7, defined with the help of bond (¢ — 1).

Fourier coefficients. In contrast, the RIS approximation simplistically samples the
potential curve by considering only its minima and neglecting the remaining details
of the curve. In other words, only three rotational angles, ¢,,¢,.,¥,_, are allowed
for each chain bond.

If continuous rotational potentials are assumed and there is no interaction be-
tween non-bonded monomers, the individual partition function of adjacent bonds will
be independent of each other. The probability that the rotational angle ¢; falls within
the interval [¢;, ¢; + de;], is given by the Boltzmann factor

1 amre
P(p:)dp; = —-e BE(ei)dop, (5.1)

where z; is the bond partition function given by
2r
= / dcpie‘ﬁa‘(*"). (5.2)
0

One can choose(7], as shown in Figure 5.1, a local orthogonal frame for each
bond %, with the z-axis along the direction of the bond vector and y-axis in the plane
(bi, bi—1), such that the y—component of b;_; is negative. The rotational angle ;
is the dihedral angle formed by the plane (b;;;,b;) with the plane (b;, b;_;) with
the positive sign given by the clockwise direction about b;. Within this convention,
the rotational angle corresponding to the trans conformation is ¢, = 180°, while the
gauche angles will have values about 70° and 290°.

With this choice of coordinates, any bond vector in its own reference frame will
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have the components

0
bi = 0 . (53)
b

The rotational matrix associated with the i-th bond vector is defined as

cosp; —sing;cosy sing;siny
ti= | siny; cosp;cosy —cosp;siny | . (5.4)
0 sin cosvy

The components of the i-th bond vector in the frame of the bond (i — 1) are related
by

(®)g,i1 (5:),
(b)yizy | = i1 | (Bi)y: | (5.5)
(b‘i) z,i~1 (bi ) zi

and thus the components of the i-th bond b; vector in the frame of the first bond
vector are

(bi)a:,l (bi)::,i
(b:)y1 | = tata---tiza (b3)y; | - (5.6)
(b‘i ) z,1 (b‘i) 2,

Then one can, by successive multiplications and summations of matrices of this type,
calculate the end-to-end vector of FRC in any configuration according to

0
rN(P1 Qo PN) = D b= D titatiy | 0| 3. (5.7)
=1N i=1,N b

Since we assume that the rotational potentials for adjacent bonds are independent
of one another, the configurational energy of the whole chain, Un (1, ¢3, ---» @), Ca0
be separated as the sum of all bond potentials
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Un (1,02 -1 PN) = Z Ei(yp;)- (5.8)
i=2,N—1

This implies that the average of a product like the one in eq. 5.6 can be separated as
a product of averages

(t1ta...t;1) = (t1) (t2) ... (tiz1) , (5.9)
where
o (cosp)) —(singy)cosy (sing)siny
N A dpitie P50 = | (sing;) (cosyp;)cosy —(cosy;)siny |,
0 sin vy cos~y
(5.10)
1 27
{cosp;) = — dep; cos pe PR, (5.11)
Zi Jo
and
1 27
(sing;) = oy dep; sin p,ePF0), (5.12)
i JO

If the potential E;(¢;) is a symmetrical function with respect to the trans an-
gular position (like the one in Figure 1.2), we can further simplify the problem by
noting that (siny;) = 0. In addition, if we assume that all bonds are identical, the
characteristic ratio in the infinite chain limit reads[2]

__ (L+cos?) (1 + (cosgp))
~ (L —cos) (1 —({cosp))
This relation recovers eq. 4.5 for the FRC, as the particular case when the rotational
potential is a constant function and (cosp) = 0 (i.e. free rotation). In the more
complicated case of an arbitrary shape of the rotational potential, exact calculation
of the characteristic ratio and the mean square radius of gyration can be carried
out[2] by diagonalization of the matrix (t;) but the details of this approach will not
be discussed here.

Co (5.13)
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Figure 5.2: The allowed positions of a bond in the RIS model: trans (CD), gauche + (CD'),
gauche — (CD") .

5.2 The RIS Approximation for N-Alkanes

The presence of the intrachain “non-bonded” interactions introduces additional
difficulties of dealing with the statistical treatment of polymer chains. In order to over-
come these difficulties, some simplifications are required to the problem. A widely
accepted scheme of approximations is the Rotational Isomeric State model[3]. It
combines a realistic description of the detailed structure of polymer chains with an
accurate statistical treatment. In brief, the RIS model assumes a discrete set of rota-
tional angles, three in most cases, ordinarily chosen as the local potential minima, and
keeps bond lengths and angles fixed. This approximation accounts for the statistical
weights of various bond conformations and for the interactions between neighboring
bonds.

In most cases, the rotational potential associated with a bond has three minima,
therefore the RIS model will allow three distinct states for that bond. The basic
geometrical configuration of a RIS chain is depicted in Figure 5.2. Here we have a
sequence of three bonds, among which AB and BC are fixed in the plane of the figure.
The last bond is allowed to be only in three positions labeled trans (CD), gauche
+(CD') and gauche — (CD"), corresponding to values of dihedral angles 180°,70°
and 290° respectively. The trans conformation is perfectly aligned in the plane of the
figure and is the maximally stretched one, while the gauche + and — are out of that
plane (behind and above respectively).

In the pioneering work of Lifson[64] and Nagai[63] a statistical theory was devel-
oped to study the average dimensions of n-alkanes as well as of other types of linear
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polymer. This exact theory is based on the statistical matrix method first proposed
by Eyring[31] and has the merit of rigorously taking into account first and second
neighbor interactions. Unfortunately, the method is limited to the study of unper-
turbed chains and cannot be used to obtain quantities like the end-to-end distribution
or force-extension curves.

Starting from the statistical weight matrix in the RIS approximation, it is in prin-
ciple possible to construct various matrices for calculating any statistical properties of
polymer coils. Unfortunately, for a polymer chain in an external field this approach
becomes impractical. A theory for calculating the distribution of rotational states
as a function of extension has been given by Abe and Flory[15] for n-alkane chains
with nearest neighbor interactions. However, this method is applicable only for small
to moderate degrees of stretching and fails to give insight into the highly stretched
polymer regime.

More recent developments in the study the RIS model are mainly based on
Monte-Carlo (MC) computer simulations. The RIS Metropolis Monte-Carlo (RMMC)
model[65, 66, 67] was used to calculate the conformational and orientational behav-
ior of poly(ethylene terephthalate). The effect of the short-ranged interactions on
the end-to-end distance distribution and average fractions of various rotational states
and bond orientations were obtained as functions of end-to-end distance. Monte-
Carlo simulations on a tetrahedral lattice[68] with short-ranged interactions along
the chain and also with volume interactions (solvent effect) were employed to pro-
duce end vector distribution functions, Helmholtz free energy and force-extension
curves for various solvency and flexibility conditions. A high-coordination lattice
model[69] based on the RIS approximation was the base for Monte-Carlo simulations
for studying polythiaethylene[70] and polypropylene[71]. This model makes use of
statistical weight matrices for dealing with short-ranged interactions while taking the
energy and geometrical (bond lengths, angles and rotational angles) parameters from
the existing literature in order to calculate characteristic ratios, dipole moments and
orientational correlation functions.

A mixed scheme[72], combining the so-called Polymer Reference Interaction Site
Model and various approximations for the chain segment correlation function was de-
signed to study the chain structure in polyethylene melts. This work was compared to
earlier Monte-Carlo results of Yoon and Flory[73]. A critical analysis of the accuracy
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of the RIS approximation and the role of intrachain interactions has been given for
polyoxyethylene[75], while for polyoxypropylene, a RIS force-field model is critically
discussed by Stepto et al.[76].

While these studies bring valuable insight into the properties of the RIS chains,
an ezact statistical mechanical treatment of many other properties of interest is still
needed. In particular, we refer to the quantities presented in the latter part of the
introductory chapter, such as: end vector distributions, pair correlation function and
force-extension curves. In the context of this work, we conjecture that the TM, as an
exact method, can be adapted to determine those characteristics for the RIS model
and thus join the panoply of techniques available in literature.

5.2.1 TM for the Helmholtz Ensemble

Proceeding in a similar manner as in the previous chapters, where we studied the
FJC and FRC models in the Helmholtz ensemble with the help of the TM method, we
will adapt here the same formalism for n-alkanes treated in the RIS approximation.
In undertaking such a task, the important complication resides in the fact that the
coordinates of any given bond vector depend, through the geometrical restrictions of
the rotation and bond angles, not only on those of the immediately preceding bond,
but of the one subsequent, too. We therefore need a set of coordinates that will
describe this dependence. To facilitate determining those coordinates, the geometry
of a segment of four chain bonds is depicted in Figure 5.3.

In order to carry out the statistical treatment of n-alkanes within the RIS model,
we need as input numerical values for the geometrical parameters, bonds length b,
bond angle v, dihedral angles ¢, ¢,., ¢, for respectively trans, gauche +, gauche
— conformations, as well as energy parameters E,, Vog (a,8 = t,g%*,g7) for our
specific chain. The geometrical parameters can be obtained experimentally, by x-ray
and electron diffraction[77] on crystalline and gaseous alkanes, respectively, and more
recently by quantum chemistry studies on short n-alkane molecules, see for example
ref. [55). The energy parameters, being artifacts associated with the RIS model,
are typically chosen to reproduce existing experimental data on this specific chain(2],
and are therefore subject to discussion. Since exact knowledge of these parameters is
not critical for demonstrating our method, here we have chosen the following widely
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accepted set of parameters[2, 7]:

e the geometrical parameters: b = 1.533A,7 = 68°%,¢, = 180%, ¢y = —pg_ =
67.5°%;

e the energy parameters: E, = 26meV , V ., =56meV and V;; = Vi = Vg =0.

Note that the above energy parametrization is sometimes called the “pentane
effect”, due to the fact that in a sequence of alkanes with increasing length, it first
appears in pentane. The strong g* g~ interaction is in fact one between non-bonded
monomers situated four bonds apart along the chain, which is exactly the number of
bonds in pentane.

5.2.1.1 The Green Function for the End-to-End Distance

If we are to find end-to-end distance distribution for this model, we need to
calculate a Green function for this problem, which is the solution of equation 2.4.
The transfer matrix is given by

T(r) (Ff, Fi'*-l) = C(Pi, Pi-{»-l.) exp[(-Eﬂi-n - Eﬁ.-.q.; - ‘/ai-(»lﬂi - ‘/tli+1ﬁ.-+1)/k3T]1 (5’14)

where I; is a collection of coordinates associated with subunit ¢ that correctly reflects
the geometrical constraints of the problem. The initial condition is the same as the
one given by eq. 4.21. To facilitate identifying these coordinates, we show the vector
geometry of a sequence of four chain bonds in Figure 5.3.

We denote the bond vectors of this sequence by a;, b;, a;1, biy1. Each of these
vectors has its ends at the locations of consecutive carbon atoms in the molecule. We
will take the chain subunits s; encompassing two bond vectors (s; = a; + b;, with
length s = 2bcos(/2)) as basis for implementing the TM method. Note that this
time, the index 7 numbers a pair of monomers (and thus runs from 1 to N/2) and
not only a single monomer. We choose the following coordinate set for this problem:
T; = {r:, 0:,9;, o, B;}, where:

e 7; is the radial distance from the chain’s end considered as origin;
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Figure 5.3: Vector geometry of a sequence of four bond vectors of a n-alkane chain and the
coordinates necessary to calculate the end-to-end distribution.

e 6; is the angle formed by the bond vector s; with the direction of r;, with range
[0, 7];

e 1, is the dihedral angle formed by the planes (a;,s;) and (s;,r;), with range
[—'Ws 7r);

e q; is the rotational state corresponding to bond vector a; (i.e. one of the ¢, g*¥,
g~ states);

e f3; is the rotational state corresponding to bond vector b; (i.e. one of the ¢, g*,
g~ states);

The choice of these coordinates is not unique, and should be made expeditiously.
For example, one could use, instead of 9;, the angle formed by the planes (s;,r;) and
(Si+1,Ti+1), but this would only complicate the calculations below.

To compute C, one has to find, from geometrical considerations, the orientation
of the s;;; vector when the orientation of s; and the rotation states of the vectors
a;, b;, a;1, biy1 are known. With the choice of the coordinate set above, the connec-
tivity operator becomes

C(T;, Fi+1) =6 [7'i+1 - gr(ria Pi+1)]5 [oi-i-l —go(Ts, Fi+1)]5 [¢i+1 - gw(ri, Pi-f-l)]: (5.15)
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where § is the Dirac delta function if the coordinates are continuous and the Kronecker
symbol if they are discrete. To express the functions g,, go and gy we can employ
the rotation matrices defined in eq. 5.4. To facilitate this, let us denote by t(y,%)
the rotation matrix with dihedral angle ¢ and bond angle 4. We choose the frame
Ozoyo2o in Figure 5.3 as reference for calculating the transfer operator, such that Oz
is parallel to s; and Oz, is perpendicular to the plane (r;,s;). In order to calculate

all the components of a;, b;, a;+1, bit1, i, Si+1 in this frame, we need the following
rotation matrices:

e to = t(v¥;,v/2), corresponding to vector s;;

e t; = t(m, ), corresponding to vector a;;

e t; = t(pp,,7), corresponding to vector b;;

o t3 = t(p,,,,,7), corresponding to vector a;.;.

Here ¢, are the dihedral angles characterizing bond 7 in state a;. With the help
of these matrices we get

0
ri= Ti sin 9,‘ y (5'16)
r; cos 6;
0
Al = totltg 0 ’ (5.17)
lais1]
0
b{.*.l = totltgts 0 . (5.18)
iy |
— cos™ (___ff " Sit1 ) 5.19

7= el Toel 519

As a result we can determine the unknown functions in eq. 5.15

gr(Ts, Tipa) = (72 + [2bcos (v/2)]* — 4ribeos (7/2) cosn) vz (5.20)
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LT, — cas—1 Si+1 * i1
9o(T';,Tiyq) = cos [ Sbrers 008 (7] 2)] , (5.21)
cos [gy(Ts, Tir)] = SepiPRern | Beil Tl (5.22)

|1'f+1><8i+1| |5i+1 X ai-f—ll’

. Li+1X8i41 Sit1 X Qi1
sin [gy (T, T = |=E X
I [g¢( Y ﬂ'l)]l Il'i+1 XSi+1| |Si+1 X a1

which completely defines the connectivity operator above.

, (5.23)

5.2.1.2 Results

In the following, we give a systematic presentation of TM results for the statis-
tical properties of the RIS model for n-alkanes. We will test our findings against
other methods in this work and others in the literature and also compare to other
models. For all the quantitative results throughout this chapter we maintained the
mesh parameters to values sufficiently high such that the discretization effects are
negligible, except where otherwise stated. We will unfold our study of n-alkanes by
gradually introducing in our model:

1. the geometrical restrictions of bond lengths, bond angles and hindered rotations;
2. the energy difference E, between the gauche and trans bond states;
3. the nearest neighbor interactions Vog.

This approach will allow us to identify the role played by each parameter in
the statistical properties of the chain. All results are for temperature T' = 300 K
unless otherwise stated. We begin by testing the results of TM calculations against
the ones obtained by other methods. For this purpose we calculated the end-to-end
distribution function for the RIS model with all energy parameters being made equal
to zero by the TM method and by an exact account of all chain conformers. Thus,
we calculated exactly the configurational canonical partition function Zy(R,T) in
eq. 1.20. For the RIS model there are 3N conformers, corresponding to the set of
all possible combinations of N dihedral angles {¢,, 3, ..., ox}- We can calculate the
end-to-end vectors for all the conformers ryx({®1,¥2, -, @n}), Via €q. 5.7, and use
them to perform the summation in eq. 1.20.
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Figure 5.4: End-to-end distribution for n-alkane chains, as RIS model with no energy para-
meters, with N = 10 (left) and N = 20 (right) and, as obtained by TM method (squares)
and by exact account of all conformers (solid line).

In Figure 5.4 we show the comparison between TM and exact results for N = 10
(left) and N = 20 (right). The mesh parameters in the TM were My = My, = 100 and
M, = 100. Since the results are extremely similar, it is not necessary to go to longer
chain lengths to conclude that the TM method yields excellent accuracy. Besides,
the exact calculation is only feasible for small chain lengths, it taking a tremendous
amount of time. Already for N = 20 we are faced with a computation time longer
than 2 hours, as opposed to TM, which took only 2 minutes on our computer. The
time ratio is expected to get only ‘worse’ for longer chains.

With this in mind, we can now calculate the end-to-end distribution functions for
longer chains, like the ones in Figure 5.5, which are for RIS chains with all energy
parameters zero and up to 100 bonds in length. Here we used the same mesh para-
meters as for the above result. For short chains, N between 10 and 20, we notice a
curve with many sharp maxima, spike-like features, which is due to the small number
of conformers, 3V, the chain can assume. As the chain length is increased, the end
distribution becomes more or less normal (Gaussian) due to the exponential increase
in the number of conformers, and thus the irregularities are smoothed out — a trend
that can be well observed in Figure 5.5.

Next we do a scaling analysis of the end-to-end distribution with the chain length,
comparing at the same time the three sets of energy parameters mentioned above. As
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Figure 5.5: End-to-end distributions for n-alkane chains as obtained by TM method within
the RIS model with no energy parameters for chain lengths N = 10, 20, 50, 100.

we can see in Figure 5.6 incorporation of the gauche energy difference and furthermore
of the interactions causes this distribution to shift to larger values of R/L. The
chain’s persistence length increases and the deviations from Gaussian behavior are
more pronounced.

Knowledge of the end-to-end distribution functions enables us to calculate, via
eq. 2.31 and 1.8, the characteristic ratio of the polymer. Furthermore, we can now
analyze the effects of energy parameters on the characteristic ratio. In Figure 5.7 we
present plots of the characteristic ratio versus chain length for the three parameter
sets and also for the FRC model with the same bond angle as the n-alkanes. The
trend is very clear: restricting a bond to only three possible states slightly increases
the characteristic ratio of the RIS model from the value corresponding to the FRC.
The RIS chain is stiffer than the FRC, given the same bond angle and number of
monomers. Following the introduction of different bond energies, the RIS model be-
comes even stiffer— its characteristic ratio doubles at intermediate chain lengths.
This can be phenomenologically explained by the fact the gauche states responsible
for the ‘coiling’ of the chain possess a higher self energy and thus become unfavor-
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Figure 5.6: Comparison of the end-to-end distribution functions for alkanes within RIS
model with various sets of parameters indicated in the legend. Three representative chain
lengths (also specified in each panel) were studied.

able. The chain will contain on average more trans bonds, which favours its overall
stretching.

We note that these calculations have been performed with the mesh parameters
My = My = 50 and M, = 400 for which we estimate a minimal accuracy of +3%.
Under these conditions, they require a good deal of computation resources, occupying
around 70% of our computer’s memory and they are time consuming, taking longer
than one day of CPU time. Consequently, obtaining the characteristic ratio in the
limit of infinite chains necessitates a careful analysis of the data at hand. Inset in
Figure 5.7 we plot the characteristic ratio versus the inverse of the chain length for
the same three sets of parameters in order to perform an extrapolation for N — oo.
The resulting values are: Co, = 2.58 +0.08 for hindered rotations, Coc = 5.25 +0.16
for chain with gauche energy difference only, and Ce = 9.10 £ 0.27 for chain with
all energy parameters. We also note that between N = 60 and 80 the increase of
Cy is less than 0.05% per added bond, fact that can also be used to extrapolate the
characteristic ratio for longer chains.

Similarly, the mean square radius of gyration for the RIS model can be calculated
for any chain length and is presented in Figure 5.8. Here we used the same parameter
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Figure 5.7: The characteristic ratio of n-alkanes for the energy parameters specified in the
legend versus the chain length. Also shown for comparison is the characteristic ratio of the
FRC with the same bond angle. Inset: the characteristic ratio versus the inverse of the
chain length.
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Figure 5.8: The mean square radius of gyration for n-alkanes and the FRC versus chain
length for the same cases as in Figure 5.7.

sets as above and compared again to the corresponding FRC. The same findings
stated above about the characteristic ratio of the chain, apply for this quantity, too,
except that now we must keep in mind that we deal with the distribution of all bonds
about their common center of mass. Note that, apart from a multiplicative constant,
the curves here are very similar in shape and order, to the ones in Figure 5.7.

The temperature coefficient of alkanes was determined experimentally by intrin-
sic viscosity measurements of this polymer in n-hexadecane, n-octacosane and n-
triacontane solvents[27] and also by stress-temperature studies on polymer networks(26].
The consistent value obtained from these experiments is (dln(R2) /dT) x 10°® =
—1.240.2 at T = 420K, in the limit of very long chains. The mean square end-to-end
distance for this molecule was also determined from intrinsic viscosities measurements
under #-conditions[28, 29] and they yielded a characteristic ratio of Co, = 6.7 +£0.3.

We performed TM calculations in the canonical ensemble at different tempera-
tures, T = 200, 300, 400K, and determined the characteristic ratios and temperature
coefficients for alkanes, whose dependence on the chain length is shown in Figures
5.9 and 5.10, respectively. This enables us to compare our results to the experi-
mental ones. At T = 400K, we obtain by extrapolation to the infinite chain limit



86

o-oo ¥ [ T r T l L4 T LS
i - T=200K i
eme T=300 K
) — T=400K
L0 \\, —
& W™
S K \‘ \\ |
~8 \ b N ———
~ ‘ ------------
E 200 \ _
g \
S \
X R \ .
) \
- \
3.00 — AN —
. \\\s - s e g e S S =
L I L. l L l L I L
'4'000 20 40 60 80 100

Figure 5.9: Temperature coefficients for n-alkanes versus the chain length at three different
temperatures indicated in the legend.

Co = 7.140.2 and (d1n (R?) /dT) x 10° = —1.22£0.10, in good agreement with the
values presented above and also with results found by other theoretical methods(2].

When making the comparison between the TM results and the experiment, an
important observation is in place. We recall that one of the essential assumption of
our procedure is that of #-condition. All of our results are valid and accurate if this
approximation is justified. However, the quality of the solvent and the temperature,
both dictate if the #-condition is satisfied in a given experimental situation. A chosen
solvent satisfies that requirement at only certain values of the temperature. There-
fore, it has to be emphasized that the curves for different temperatures in Figures 5.9
and 5.10 are to be taken as reliable only if the polymer is in f-condition at that tem-
perature, a decision that must be based on the knowledge of the specific experimental
situation.

Using the end distribution functions for each monomer we can now compute the
static structure factor for alkanes; we display the results for the three parameters sets
in Figure 5.11, where we also plot the structure factor for the FRC with identical
bond angle as in alkanes. While there are significant deviations from the FRC, the
influence of the parameter differences between the three RIS curves seem to fade
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Figure 5.10: Characteristic ratio for n-alkanes versus chain length at various temperatures
specified in the legend for each curve.

quickly as k increases.

In Figure 5.12, we present a scaling analysis of the static structure factor with
the chain length, for a limited but relevant set of N indicated in the figure for each
curve. As for the other models encountered in this work, there seems to be little
difference between the three curves for wave numbers larger than 1A, that is in the
small wavelength range.

Finally, the radial distribution function for alkanes is computed for the three sets
of RIS parameters. In Figure 5.13 we show a compilation of plots of this quantity
for short chains N = 10 (left panels) and N = 20 (right panels). From top to
bottom the curves correspond to the three sets of parameters approached throughout
this chapter. For all functions displayed, the closest peak to the origin mimics, in a
manner characteristic to our numerical procedure with M, = 100, a delta function
corresponding to the presence of the first monomer at 7 = b. The second peak
corresponds to a second neighbor at 7 = 2bcos 7. Beyond this distance g(r) becomes
non-singular but the monomers are still very localized, especially for N' = 10. As
we increase the chain length, the first two peaks are normally maintained, but the
remaining of the curve becomes smoother as we can notice in Figure 5.14, where
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Figure 5.13: Radial distribution function for n-alkanes with N = 10 (left three panels) and
N =20 (right three panels). From top to bottom the curves correspond to the same three
sets of energy parameters as in Figure 5.7.

radial distributions for N = 50 are plotted.

5.2.2 Transfer Matrix for the Gibbs Ensemble

To apply the TM method to this problem, we first identify the relevant coordinates
depicted in Figure 5.15. The Green function for this problem satisfies the integral
equation 2.4, where the transfer matrix is given by

T(f ) (Fi, [‘{.{..1) = C(F{, Fg.l) exp[(2fb Ccos (’)’ / 2) COSs 0,’.;.1 (5.24)
—E°i+1 - Eﬁn-r. - ‘/ai-i-lﬂi - Vai+1ﬁs+1)/ kBT]’

and the initial condition reads

sin6;. (5.25)

G(11) o exp (2fb cos (7/2) cosby — Ea, — Ep, — Vaxﬁl)

ksT
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Figure 5.14: Radial distribution function for n-alkanes with V= 50 for the three parameter

sets indicated in the legend.

Figure 5.15: Vector geometry of a segment of four chain subunits and the coordinate frame
Ozoyozo in which all vector components are calculated. Oz is parallel to s; and Oz in

perpendicular to the plane (f,s;).

Similarly to the previous section we denote aj;, b;, a1, byt and s; = a; + b;

the relevant vectors for this problem. The most convenient choice for describing the

orientation of s; is the coordinate set given by T'; = {0;,v;, az, B;}, which consists of:

e 0;, the angle formed by the bond vector s; with the force f, with range [0,~];
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e 1, the dihedral angle formed by the planes (a;, s;) and (s;, ), with range [—m, 7);

e «; the rotational state corresponding to bond vector a; (i.e. one of the ¢, g7,
g~ states);

e [3; the rotational state corresponding to bond vector b; (i.e. one of the ¢, gt,
g~ states);

In terms of the coordinates chose above, the connectivity matrix reads

C([;, Tis1) = 8[0:i41 — 9o(Ts, Tit1)16[W0i1 — 9w (Ti, Tin)]- (5.26)

To get go(T'i, Tir1) and gy(T:, Tiv1) we employ the rotation matrices t(yp, v) cor-
responding to the dihedral angle ¢ and bond angle 7. The frame Ozoyozo in Figure
5.15 is chosen as reference for calculating the transfer operator, with axes Oz par-
allel to s; and Oz perpendicular to (f,s;). Similarly to the previous section, we

will calculate the vectors a;, b;, @i+1, bit1, Si, Si+1 in this frame, we need the following
rotation matrices:

e to = t(1;,7/2), corresponding to vector s;;
e t; = t(m,+), corresponding to vector a;;
o t; = t(pg,,7), corresponding to vector b;;

o t3 = t(p,,,,,7), corresponding to vector a;,;.

Accordingly, we can write

0
f=| sin6; |, (5.27)
COS 0{
0
a;; = tot1te 0 ; (5.28)
[a»i+1l
0
biy1 = totitats 0 . (5.29)

it
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Consequently, we can now express the desired function in eq. 5.26 as

L f
g6(Ti, i) =cos™! [%] ) (5.30)

fxsi1  Si Xa

cos [gy(Ts, Tiga)] = |§ o Terr X acna]’ (5.31)
s g0 (T T )| = | ooty o S Z 2| (5:32)
\f X Siy1 i1 X Qi+1

5.2.2.1 Results

We are interested in exploiting the above formalism to derive the force-extension
relation and related quantities for this model. Let us start by analyzing the discretiza-
tion effects in our procedure, which also gives a good measure of the reliability of these
results. In Figure 5.16 we show force-extension curves for the RIS model with N = 10
calculated with various values of the angular mesh parameter My = 10,20, 40 (also
indicated in the legend). These curves imply that even for the second mesh parameter
used we obtain quite accurate results. Henceforth we will maintain a reliable value of
M, for which the discretization effects are negligible.

It would be interesting to see how the length of the molecule and the energy
parameters influence the force-extension relation. Therefore in Figures 5.17-5.19 we
present a compilation of such data for various sets of parameters. The short chain
behavior, N = 10, is illustrated in Figure 5.17, whereas in previous times we chose
for the RIS three energy parameter sets. Note that the presence of the interaction
does not affect much the shape of the curve.

With the self-energies and interactions incorporated in the model, we increased
the chain length from 10 to 200 and graphically compared the corresponding stretch-
ing curves in Figure 5.18. Little variation is seen beyond a certain chain length, say
N = 100, in the RIS model. The long chain limit has been reached, since L > lp.
Results in this limit are displayed in Figure 5.19 for the three sets (shown in the
legend) and chain length N = 200.
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Figure 5.16: Discretization effects in the force-extension curve for the RIS model with NV =
10. The values of the angular mesh parameters for different curves are indicated in the

legend.
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the curve in eq. 5.33 (thick dashed line).

To compare the large force-behavior of the RIS model with the ones of other
models it is convenient to look at a modified form of the force-extension curve: (1 —
Rz/L)™! versus fb/kgT . In Figure 5.20 we plot these curves in double logarithmic
axes for all models encountered so far. We see a strong divergence from one model
to another for large forces. To facilitate an analytical description of the large force
behavior of the RIS model for n-alkanes, we plotted in this figure a simple power law
curve of the form

(1~ R./L)™ = (fb/ksT)’, (5.33)

which approximates quite well the behavior of the RIS model for fb/kgT > a/b.

In Figure 5.22 we present the results of fitting Gaussian curves derived from eq.
3.11 to the end distribution function obtained in the previous section for relatively
long chains, N = 100 and N = 200. In each case, the appropriate width of the
Gaussian (R?) was taken from eq. 1.10, with the Kuhn length extracted from the
stretching results in the small-force regime displayed in Figure 5.21. In each panel
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parameters; (b) only gauche energy difference; (c) self energies and interactions included.

the curve for N = 100 has a lower maxima and a larger width. The Gaussian fits
give excellent agreement for the curves in panel (a), good in (b), and present visible
deviations from the curves in (c). This is attributable to the fact that the introduction
of interactions, besides making the chain stiffer, render the spatial distribution to be
non-trivial—impossible to characterize by a single quantity like the Kuhn length—
even for relatively long chains.

In Figure 5.23 we show the dependence of the characteristic ratio on the temper-
ature for alkanes of different lengths in a broad range of temperatures. The virtual
overlap of the curves for N > 400 entitles us to regard this length as a substitute for
the infinite chain limit. Our calculations for the longer chains shown in this figure
agree very well with the results obtained in the canonical ensemble (see Figures 5.7
and 5.10). At T = 300K, we recover the value of C = 9.1, also obtained in Figure
5.7, this time with a higher accuracy, better than 1%. At T = 400K, the value of
7 1 can be read on the curve for N = 400, in excellent agreement with the results in
Figure 5.10.
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Figure 5.23: The characteristic ratio of n-alkanes versus temperature for different chain
lengths specified in the legend.

5.3 N-Alkane Chains with “Continuous” Rotational Potential

With the advent of large scale quantum chemistry computations, one can now
obtain detailed information on the electronic structure of short polymer molecules.
This information can be used for larger molecules or systems of molecules. For in-
stance, we can extract the information we need from short molecules like n-butane
and n-pentane and use it for the statistical study of longer n-alkane chains. Such
data are available for n-butane(55].

While the shape of the potential is roughly as given in Figure 1.2, Smith et al.[55]
found the rotational potential in n-butane to be of the form

E, () = Z %—"- (1 + coskyp) , (5.34)

k=18
with the leading coefficients E; = 1.19, E3 = 3.41Kcal/mol. For simplicity, we neglect
the remaining coefficients, which are an order of magnitude smaller. The potential

depends only on one dihedral angle and accounts for interactions between the pen-
dant groups of monomers separated by three covalent bonds. It does not include
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interactions between atoms further apart along the backbone, like the “pentane ef-
fect”, which as shown in the previous section play an important role in the statistical
properties of long alkane chains.

Such longer-ranged intrachain interactions can be taken into account within a

force-field technique[2, 21, 23] for instance by using a Lennard-Jones potential

Vij(r) = f‘T; - %— (5.35)
where 7 and j denote a pair of atoms, r is the distance between them, A;; and C;; are
constants specific to the atomic species under consideration. For alkanes, the inter-
actions can take place between the following possible pairs: (C,C),(C, H),(H, H).
It was shown (see for instance ref. [21, 23]) that the interactions in the first pair
in this list are significantly greater than in the following pairs, so much so that we
can neglect the last two. For interactions between two C atoms the constants in
the expression of the rotational potential taken from ref. [23] are A;; = 908 x 10°,
C;; = 363 in units such that V;; is in Kcal/mol if r is in units of A.

Although in principle possible to incorporate in the TM treatment of n-alkanes,
the Lennard-Jones interactions will not be considered in the present formulation.
They bring a further complication — the necessity to account for distances between
monomers four and more bonds apart along the chain. In the present scheme we
restrict our attention to incorporating the bond rotational potential only. Accordingly,

we will keep this in mind when comparing the following results with the ones in the
previous section.

The TM method that we used to perform the configurational statistics of this
model is identical in its formulation with the method used for the RIS model, de-
scribed in the previous section, with the sole difference that the dihedral angle for
each bond, instead of having just three possible values, is allowed to assume a large
number of values, mimicking a continuous potential E,(¢). Within this procedure,
we were able to sample the potential curve by an array of M, rotational states with
M, = 10,20,30. We estimate that for M, = 20 the discretization effects are greatly
diminished for our model — the continuous rotational potential limit is approached.
Due to the increased computational cost when using large mesh parameters, we were
able to obtain only a few selected results for those, which nonetheless are valuable
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Figure 5.24: End to end distribution functions for alkanes with continuous rotational po-
tential for different lengths.

and will be displayed below.

Below we present a compilation of results obtained in the Helmholtz and Gibbs
ensembles. In Figure 5.24 we plot the end to end distributions for n-alkanes with
increasing lengths. The rotational mesh parameter used here is M, = 10. Note that
the chain with N = 10 bonds has a very irregular distribution and as we increase the
chain length this becomes smoother. There are significant differences between these
curves and the corresponding ones in the RIS model.

Calculation of some of the results presented in this section were feasible only
for a rather small value of the rotational mesh parameter (a few tens) and therefore
will carry some discretization effects. The role of the rotational mesh parameter in
the force-extension curve is shown in Figure 5.25 for just two relatively small chain
lengths. The results for M, = 30 are not shown here, but were found to virtually
overlap those for M, = 20, which signals the decay of the discretization effects.

Next, we turn to calculating the force-extension curves for alkanes with increasing
lengths, presented in Figure 5.26. As expected from previous findings, one can notice
that beyond a certain chain length these curves will practically overlap — the long
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Figure 5.25: Influence of the mesh parameter (in the legend) for the rotational potential on
the force-extension curve for two chain lengths: N = 10 (two left-hand curves) and N = 20
(two right-hand curves).

chain limit is reached. We will analyze in more detail the various regimes of the
mechanical equation of state in the subsequent discussion. For now it is relevant to
compare the stretching curves for long alkanes in their various models presented in
this work. We do this in Figure 5.27. It is important to observe that the maximal
length is not reached for the continuous potential model for the same magnitude of
forces as for the RIS model. In other words, this model is stiffer than the RIS, an
aspect which will be emphasized later in this section.

The small-force regime is studied by plotting the quantity (Rz/L)(fb/ksT)™*
versus the force (fb/kgT) in Figure 5.28, for the same array of chain lengths N =
10,20,50,100. We note the constancy of the slope for this range of forces which
indicates that the chain obeys the same law as the Gaussian chain in eq. 1.16.

We use this fact to extract the Kuhn length and via eq. 1.12, the characteristic
ratio at various temperatures as seen in Figures 5.30 and 5.29. The effects of the
rotational mesh parameter on the characteristic ratio are shown in Figure 5.29, where
we plotted this quantity as a function of the temperature for M, = 10, 20, 30. The
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Figure 5.26: Scaling analysis of the force-extension curve with respect to the chain length
for n—alkanes with continuous rotational potential.
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Figure 5.27: Force-extension curves for long alkane chains (N > 200) in the various models
with parameters specified in the legend.
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regime for alkanes with chain lengths indicated in the caption.

chain length was chosen to be relatively long (N = 50) with respect to the persistence
length of the model. We note that there are still some very pronounced discretization
effects for M, = 10, while for M, = 20 and 30 we see a convergence of results
indicating that the discretization effects are greatly diminished.

A scaling analysis of the characteristic ratio with respect to the chain length is
performed in Figure 5.30. Due to long computational time taken by this analysis, only
the mesh parameter M, = 10 was used. We would like to comment that for the chain
with continuous rotational potential Cy exhibits a more pronounced dependence on
the temperature than the corresponding RIS model. The experimental value of
Cs = 6.7 £0.3[27, 28, 29, 30] is not recovered as in the RIS model (after corrections
that compensate for discretization effects, we obtain 4.5+0.5). This underestimation
is mainly due to the fact that we neglected the interactions between monomers four
and more bonds apart along the chain. As we saw in the previous section, Figure
5.7, the presence of the interactions (e.g. Vy+,—) leads to a stiffening of the chain and
therefore to a pronounced increase of the characteristic ratio.

Figure 5.31 shows the modified form of the force-extension curve (1 — Rz/ L)1t
versus fb/kgT in the limit of long chains (L >> lp).We can now make a quantitative
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The chain length is N = 50.
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comparison between this model and the RIS, FJC and FRC models. In the large-force
regime, in contrast with the RIS, but with some similarity also to the FRC, the chain

with continuous rotational potential exhibits a behavior similar to the FJC model in
that

R, cfb\ !
%o Ef_T) , (5.36)

where ¢ is a coefficient whose particular value is specific to a given model. In other
words, the curves plotted here become parallel in the region of large forces. In Chapter
4, we saw that for the FRC the value of this coefficient is ¢ = 2. For n-alkanes, we
estimate with the help of the curves in Figure 5.31 that this coefficient is about 20
for M, = 10 and 10 for M, = 20. In contrast, the RIS model exhibits in this regime

a behavior of the form R 5\
= _1_ (L2
By (kBT) , (5.37)

with v = —3 and ¢ = 1, as seen in eq. 5.33. We should comment that the softness
of the RIS model in this regime relative to the FRC and FJC, reflected in a higher
magnitude of the exponent v is a non-physical effect, due to the small number of
rotational states allowed in the model. Thus, we conjecture that in real polymers one

could fit the large-force behavior to eq. 5.36, rather than to the corresponding result
for the RIS model.

5.4 Conclusion

In this chapter we went a step further towards the study of real polymers by
incorporating the effects of the bond rotational potential. We proceeded gradually,
by first accounting only for the hindered rotations within the RIS approximation and
then introducing energy parameters associated with the three possible bond states.
Then we introduced more rotational states that accurately sample the continuum
of the rotational potential curve. For this last model, we neglected the intrachain
interactions between monomers more than four bonds apart.

We adapted the TM method to study this model in both Helmholtz and Gibbs
ensembles. We tested the accuracy of the method and found it to be satisfactory
for all purposes needed here. Some shortcomings are present for the TM in the
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Figure 5.31: Plot of the modified force-extension curve in logarithmic axes for rotational
potentials with parameter M, specified in the legend for long chains. Also shown for
comparison are the corresponding curves for RIS and FJC models.

Helmbholtz ensemble, emerging from the size of the matrices involved in computations,
that require much time and computer memory, especially for the study of very long
chains. For the continuous potential model, we concentrated more on the Gibbs
ensemble, given that the feasibility of the method is not restricted there so much by
the finiteness of computational resources as for the Helmholtz ensemble.

We studied the influence of the model parameters in the statistical properties
such as the characteristic ratio, radius of gyration, static structure factors, radial
distribution, temperature coefficients, force-extension curve and the persistence length
of the molecule. Close agreement was obtained with findings in other experimental
and theoretical investigations. Overall our method performs well and gives insightful
information in the statistical properties of polymers.
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CHAPTER 6

INTERACTING CHAIN MODEL FOR POLY(ETHYLENE
GLYCOL)

Poly(ethylene glycol) consists of a sequence of ethylene glycol, EG, subunits where
EG denotes the group (—~O — CH; — CH,—). The theoretical study of a single
poly(ethylene glycol) chain presents an additional challenge when compared to the
molecular models approached in previous chapters. The impediment resides in that
this molecule features two different types of bonds along its backbone, C — C and
C — O. Furthermore, the intrachain interactions have seemingly a longer range than
those in simpler chains, like n-alkanes. For instance, there is clear evidence[12, 13]
that two adjacent EG subunits strongly interact when in opposite gauche states.
This adds considerable difficulty to the solving of the configurational statistics for
this molecule.

Two approaches to this problem have been developed. One is to perform quantum
chemical calculations on small PEG chains and use them to construct force fields for
use in Molecular Dynamics simulations. This avenue has been pursued, among many
others, by Smith and coworkers[56, 57| to study the structure and dynamics of PEG
melts and by Bandyopadhyay[58] et al. for PEG in water. These studies are limited
to relatively short chains, up to 12 EG subunits.

In another approach to the polymer problem that dates back half a century{2] one
sets up a simple model whose solution is amenable to statistical mechanics. Because
we are mainly interested in the stretching behavior of single molecules the latter ap-
proach is more appealing and will be pursued in this chapter. By treating the molecule
as an RIS chain[2, 7], one can employ the statistical weight matrix method proposed
by Eyring[31] to calculate mean square moments (end-to-end distance, radius of gy-
ration) and related quantities for this chain. However, other quantities, such as end
vector distribution functions and force-extension curves, are not obtainable by this
method.

107
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Stimulated by advances in single molecule experiments, the theoretical front also
registered considerable progress. Recently, the stretching of PEG molecules[12, 13
was studied starting from ab initio quantum mechanical calculations on short seg-
ments (up to four subunits) of PEG and the results were found to be consistent with
the experiment. The statistical mechanics analysis of macromolecules in an AFM[14]
was carried out for PEG chains with lengths ranging from 3 to 21 EG subunits. The
methods used there have the merit of providing exact results, but they are difficult
to apply to the long chain limit, which is the condition in the experimental study[6].
This chapter is dedicated to extending the statistical mechanical treatment to long
PEG molecules, with focus on the mechanical equation of state and related properties.

Whereas the standard RIS model treats the individual bonds as subunits, we will
argue in this chapter that an Interacting Chain Model (ICM) can be set up in which
the EG subunits of PEG themselves are treated as the repeat subunits. This is based
on the findings from ab initio calculations that the C — O bonds are predominantly
in the trans configuration while for the C —C bonds we must account for a rotational
potential with three minima, trans, gauche + and gauche - This reduces the number
of accessible conformers significantly but, in contrast to the standard RIS model,
allows us to include (z) variable subunit lengths, (iZ) more rotational states (up to
seven in this work) and (i) longer ranged interactions along the chain. Most of
the content of this chapter is based on the work coauthored in reference [24]. Our
programme is as follows:

1. We will use the results of ab initio quantum chemical calculations for the ener-
getically lowest conformers of short chains of up to 4 (EG) subunits to extract
the geometrical information such as bond lengths, bond angles and dihedral
angles needed for the ICM approximation, see Section 6. 1.

9. From the ab initio calculations for short chains we can also extract the self ener-
gies of the EG subunits and the interaction energies between pairs of adjacent
EG subunits needed for the 3-state ICM for molecules of any length, see Section
6.2. We will also generalize the RIS approximation to include further rotational
states in addition to those at the potential minima of each EG conformer, see
Section 6.3.
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3. Turning to the statistics of long polymer chains we will consider both the
Helmholtz and Gibbs ensembles, but we will argue in favor of the latter. An ex-
act evaluation is possible for PEG molecules with up to about N = 20 subunits
in the 3-state model by constructing all 3V conformers explicitly.

4. To obtain the statistics of long chains we develop the transfer matrix method
in the Gibbs ensemble, i.e. in the presence of an external force. This will
allow us to calculate all macroscopic properties of long chains such as the force-
extension curve (the mechanical equation of state of a long molecule), the chain
end distribution functions, probabilities of rotational states and the persistence
length, see Section 6.4.

In Section 6.5 we will present numerical results. For short chains of up to 21
subunits we will compare the results obtained by the transfer matrix method with
those obtained by the exact evaluation of the Gibbs partition function. We analyze
the effect of the variation of geometrical and energy parameters in the model, as
well as the effect of chain length on our final results. We show that the infinite
chain length limit is reached beyond 200 subunits. Chain end distribution functions,
probabilities of rotational states and the persistence length are calculated. Additional
rotational states beyond those of the potential minima used in the RIS approximation
as described in Section 6.3, can be included for a more accurate description. Finally
we show that the force-extension curve, calculated with the 7-state ICM, reproduces
the experimental results very well.

6.1 Ab Initio Results for Short Chains of Poly(ethylene glycol)

In a recent paper[17] extensive ab initio calculations were reported for (EG).
with n = 2, 3,4 and its interaction with water, using density functional theory with
nonlocal gradient corrections. By necessity, one is restricted in such calculations to a
tractable number of conformers which, however, must be chosen such that they are
representative of those states accessible at room temperature. It was shown in the
previous study that most low energy conformers have the C — O bonds in the trans
configuration and the C — C bonds in trans and clockwise and anticlockwise gauche
configurations, resulting in three states of the EG subunit, (tg*t), (tg7t) and (ttt),
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Figure 6.1: Stereochemical diagrams of three conformers of (EG)3 segments, (t|t|t) in panel
(a), (g~ [t|t) in panel (b) and (g7|g*|g*) in panel (c).

to be placed on N positions along the chain of (EG)x, for a total of 3N combinations
or conformers of the molecule. For a simpler notation we will drop the reference to
the trans configuration of the C — O bonds so that, as examples the all-trans and
helical conformers of (EG), are denoted by (t|t|{t) = (ttt — ttt —ttt) and (9%|g*|g™)
= (tg+t — tg+t — tg*t), respectively. In Figure 6.1, we depict for better visualization,
the stereochemical configurations of three representative conformers of (EG)s. Of
the 27 such conformers of (EG)3 only 10 are energetically different because, as an
example, the energies E(g*|g*|g") = E(9”[g"|g™) are the same.

In Table 6.1 we list the ground state energies for the ten energetically different,
conformers of (EG)3. The energies are relative to that of the helical conformer, e.g.
E(t|tlt) = E.(t|t|lt) — E(g*|g*|g™), because it is only their relative stability that
determines which conformers are likely to be present in a given environment.

All conformers except those with neighboring (g*|g™) pairs have about equal en-
ergy, with the helical (g*|g+|g*) conformer the most stable (by a margin), in agree-
ment with experiment and previous theoretical work on the density driven transition
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(EG)3 E[kJ / mol] 01 —04 Cl —Cs 01-03 02—04 D[Debye]
(E[ElE) 0.68 10.70 | 13.07 |7.12 |712 |00
(t|tlg) 0.55 9.78 12.23 | 6.38 7.12 141
(tlg[t) 0.15 9.58 11.11_ | 6.40 |6.39 |0.17
(g7|tlg™) 0.74 8.82 11.39 | 6.38 6.38 1.70
(g¥|tlg") | 0.48 936 | 1179 |6.38 |6.39 | 0.11
(g¥|gT]t) | 0.08 892 | 1060 |583 |6.37 |1.45
(gF|gF1g7) | 0.0 8.61 1044 |5.79 |58 |095
(gFlg~1t) | 1.92 799 1934 |[521 |639 |133
(g¥lg¥lg7) | 2.01 719 | 873 |5.71 |506 | 137
(gF|g~|g7) | 4.46 624 | 7.32 |5.18 |5.17 |1.27

Table 6.1: Energies of the inequivalent groups of conformers of (EG)3 relative to the helical
conformers. Also listed are the lengths, given either as the distance between terminal
oxygen or carbon atoms, and the distances between pairs of next nearest oxygen atoms, in
Angstroms. The last column lists the total dipole moments[12].

from the helical to the all-trans conformers{18] and on the effect of high electrostatic
fields on (EG)3; and (EG)[19, 20]. However, those conformers with neighboring
gauche EG units with opposite dihedral rotational angles, i.e. g*" next to g~ , are
energetically very unfavorable. The reason[17] is that, although the distances be-
tween subsequent oxygen atoms along the chain remains almost the same (2.96 A for
(g*+\g*lg™), 2.97 A for (g*|g*|g™), and 2.99 A for (g*|g~]g™)), the distance between
at least one pair of next nearest neighbor oxygens is reduced considerably from a
value of 5.81 A for (g+|g*|g") to only 5.17 A between the second and fourth oxygens
in (g*|g*|g~), whereas for (g*|g~|g*) such a reduction is observed for the distances
between the first and the third, and between the second and the fourth oxygen atoms.
This leads to an enhanced repulsion between these (partially charged) oxygens, en-
hanced also by the fact that the hydrogen atoms on the carbons are turned towards
the other side of the molecule. A similar argument applies to the (9*|g~[t) conformer
in which the distance between the second and fourth oxygens is reduced to 5.21
A from 5.83 A in (g*|g*|t). It is astounding how close in energy the (g¥|g~[t) and
(g+|g*|g™) conformers are, 1.92 and 2.01 kJ/mol, respectively! Indeed, this net loss in
energy for changing a neighboring pair of (g*|g*) EG subunits to (g*|g™) subunits is
very close, within less than 5 %, to the energy difference between the (g*|g™) and the
(g*]g™) conformers of (EG),, and also between the (g*|g*|g*|g*) and (g*]g*(g¥|g7)
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conformers of (EG),. Thus as long as conformers of different lengths in a given se-
quence differ only by the last subunit, their energy differences are independent of the
length of the molecule. However, if a different subunit is built into the middle of the
molecule such as for the (g*|g~|g*) conformer of (EG),, there is a synergetic effect

that is obviously absent in (EG), but again is more or less the same in (EG); and
(EG),.

6.2 Derivation of the 3-State ICM

We can use the results of the ab initio calculations for short polymer molecules
to construct a 3-state ICM with nearest neighbor interactions valid for any length of
the polymer. By necessity, one loses some details, both structurally and energetically,
but it turns out that this loss is by far compensated by the possibility of being able
to deal with large molecules.

In the 3-state ICM of PEG we allow individual EG subunits to be in three
independent conformations, (ttt), (tg*t), and (tg~t). We define occupation number
vectors, n;, whose transpose take values n7 = (100), (010) and (001) if the i-th
EG subunit aleng the chain is (ttt), (tg™t) or (tg~t), respectively. We also define a
vector of self-energies E = (E, E,+, E,-) and a matrix of nearest neighbor interaction
energies

‘/tt ‘/tg ‘/tg
Vo= Vg Vg Vorem |- (6.1)
Vig Vg+g- Vag

We then write the total potential energy of a chain of N EG subunits as

N N-1
Un(ny,ny, ., ny) = B, +ZE -n; + E ni -Va-ng. (6.2)
=1 =1

E, is the energy of the two terminating groups, either methoxy or hydroxy, at
each end of the chain. The degeneracies among conformers imply restrictions on the
model parameters. For instance, the fact that helical conformers with all clockwise
or all anticlockwise rotations around the C — C bonds are degenerate implies that
E,+ = E~ = E; and Vgige = Vy—g- = Vg Also, all conformers are degenerate in
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energy that do not have a g+ and a g~ subunit next to each other, such as, for (EG)s,

E(tlg*lt) = E(tlg™Ie), (6.3)
E(tltlg™) = E(titlg™)-

so that Vi;+ = V;g- = Vi,. This latter symmetry in the ICM with nearest neighbor
interactions only, implies degeneracies that are not present in the ab initio calcula-
tions. For instance for (EG)3 we find five relationships between the model energies
of the conformers, namely

(048)ESGY_ = ENn.(0.74) (6.4)

(0.36)2E5" — EGY . = E3Y(0.68) (6.5)
(—0.44)2EQ7.  —EGS. . = Egph,o(00) (6.6)
(0.01)2ESD, — ESP = ESY,,.(0.0) (6.7)
(3.69)2ECM, — ESY = EGTL. .(4.46). (6.8)

The numbers in brackets are energies (in kJ/mol) from the ab initio calculations
and show that keeping only nearest neighbor interactions is a satisfactory approxima-
tion. However, it must be stressed that these five relations imply that we have only
five independent conformers from which we can determine the six parameters of the
chain model. This by itself is not surprising because we need only relative energies,
and we will choose the self energy of the helical conformer as the energy zero.

The self energies and the nearest neighbor interactions are determined from the
ab initio calculations of short (EG), chains. Ideally, the length of the chain must be
chosen such that adding another EG subunit will yield more or less identical results
from the ICM and from the ab initio calculations. As we outlined in the introduction
we have only ab initio results for (EG), for n =2,3,4. It turns out that using the
27 conformers of (EG); gives excellent results.

In Table 6.2 we list the contributions of the self energies and nearest neighbor
interactions to the group of 10 energetically different conformers of (EG)s and four
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conformers of (EG)4. The entries in this table are exactly the coefficients that each
energy parameter must be multiplied by in order to obtain the conformational poten-
tial energy of each conformer in the first column, as prescribed by eq. 6.2.

As we discussed above, there are only five independent conformers left to deter-
mine the five model parameters (relative to E, = 0) in the chain model with nearest
neighbor interactions, and there is no further rule to select those five conformers, i.e.
to reject the remaining five. We have approached this problem as follows. In Table
6.3 we compile three sets of values to reveal the importance of each parameter in
discussion: set 1 neglects all energy and interactions; in set 2 we have included only
the “pentane effect”, the g*g~ interaction; and in set 3 we have done a least squares
fit of the five model parameters to all ten conformers of (EG)3. We also find that
parameters in set 3 reproduce the energies of the four conformers of (EG)4 to better
than ten percent.

So far we have only considered the energetics of the interacting chain model de-
termining nearest neighbor interaction parameters from ab initio calculations of short
polymer molecules. Because polymer chains are not linear but one-dimensional struc-
tures in three-dimensional space it is of equal importance to specify the geometrical



Parameter | Setl[meV] | Set2[meV] | Set3[meV]
E.— E, 0.0 0.0 -5.60
Vit 0.0 0.0 11.70
Vo 0.0 0.0 0.15
Vaa 0.0 0.0 5.80
Ve 0.0 20.0 2914
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Table 6.3: Self energies and nearest neighbor interactions. Setl: no energy parameters. Set2:

a simple parametrization, which includes only the “pentane effect”. Set3: least squares fit
to all ten conformers of (EG)3.

characteristics, i.e. bond lengths, bond angles and dihedral angles. Again, we do this
for the EG subunits as a whole rather than for the individual C —C and C —O bonds
within a EG subunit.

We proceed by listing the subunit lengths of the g and ¢ subunits in all the
conformers of (EG)s and then take averages. Similarly we look at all the bond
angles between (g|g), (glt), (g%|9~) and (t|t) neighboring pairs in all the conformers
and again determine their averages. Lastly, we determine the dihedral angles in all
the conformers of (EG);. In Table 6.4 we list these parameters.

The fact that the variation in the bond lengths and bond angles within the group
of all conformers of (EG); is so small, justifies, a posteriori, our attempt to char-
acterize the EG subunits themselves rather than the covalent bonds. Together with
the energies listed in Table 6.3, these geometric factors in Table 6.4 specify the ICM
for PEG completely. But before we proceed to the statistical mechanics we generalize
the RIS approximation to include more rotational states.

6.3 Generalization of the Interacting Chain Model

In real polymers, the spectrum of rotational states is not discrete. The dihedral
angles ¢ of each subunit can assume, with appropriate statistical weights, any value
between 0 and 27. The weights must reflect the fact that the rotational potential
is not flat, as assumed in the freely rotating chain approximation, but typically has
a parabolic shape around a minimum with finite barriers to the next conformer as
can be seen in Figure 6.2. In the 3-state ICM, as outlined above, only the minima of
the potential energy curves of (EG); were used, implying fixed dihedral angles for
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Sequence | Subunit length [A] | Bond angle[’] | Dihedral angle[°]
7 5.93£0.15
t 3.61
(9l9) 26.0£1.0
(g%lg™) 60.3+0.6
e 98.4£1.6
D) 20.2£0.1
(g*lg*lg™) 102.4
(9*lg*lg™) 34.4
(g*lg*lt 15.5
(g*1g”19%) 35.45
(g*1g”1t) 55.16
(g¥|tlg™) -173.92
(g*|tlgh) -12.29
9= 1D ¥85.66
(titlg=) +75.61
(t[t]E) 180.0

Table 6.4: Geometrical parameters of EG units as determined from ab initio calculations(12].

the 10 conformers as given in Table 6.4. As we will see when presenting numerical
results, this gives a qualitative fit to the measured force-extension curve. However, a
straightforward generalization of the RIS approximation to include more rotational
states will give quantitative agreement with experiment. In principle we are in a
position to include a continuum of such rotational states because we have the complete
potential energy curves for the relevant conformers of (EG); as a function of chain
length, see Figure 6.2[12]. This is equivalent to having the energy as a function of
dihedral angle as long as bond lengths and bond angles remain unchanged, which is
the case for all but the all-trans configuration. However, to retain the simplicity of an
ICM with a discrete number of conformers we add only a small number of additional
rotational states.

To incorporate further rotational states in our model, we must know their self-
energies and mutual interactions between neighbors along the chain (as in Table 6.3),
as well as their geometrical parameters (specified in Table 6.4). This is a non-trivial
task, considering the ambiguities we have already encountered in extracting energetic
and geometrical parameters for the EG subunits when only the energy minima of the
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Figure 6.2: Potential energy curves of the ten energetically different (EG)3 conformers versus
their lengths from left to right according to their minima: (¢%|g~|g%), (9%|g*1g7).(g¥Ig™1t),
(g*lg*lg*), (g™lgtIt), (gItlg™), (g™ Itlg™), (tlg™It), (g7 Itlt), (tleit)(13, 12].

potential energy curves are included in the model.

While the geometrical parameters of EG subunits within each possible conformer
of (EG); appearing in Figure 6.2 could be easily obtained for any length of these
conformers, extracting the corresponding potential curves for the rotation states of a
EG subunit from that data is again an overdetermined problem. We can still optimize
the quasi-solution, but we expect that the more states of EG we include, the poorer
the optimization will be.

For example, suppose that the (EG)3; molecule can assume a small number of
additional states. A simple choice is to take two further points, one on each side of
the minima. Furthermore, we assume that within these new conformers, each EG
subunit stretches out or is compressed in the same way as each conformer of (EG)s.
In that case, we have to include a total of four additional rotation states of an EG
subunit. These are: stretched g+, g~ and compressed g*,g~, which we denote g
respectively g=. Because for the trans subunit the dihedral angle is optimal for any
length, the variation in the (t|t|t) conformer in Figure 6.2 is entirely due to (t|t)
bond angle bending. We have ignored this degree of freedom because it requires
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forces far outside the experimental range. Due to the approximate symmetry of g*
and g~ states, the variation of rotation angles corresponding to these states upon
stretching/compression is roughly equal and opposite. Thus the generalization of the
RIS approximation takes the number of rotational states from 3 to 7 states generating
73 conformers of (EG); to approximate the continuum (as a function of length or
dihedral angle) of the 3% conformers represented in Figure 6.2. Within our assumption,
there is a unique correspondence between the length variation +AL of a given (EG)3
conformer about its potential minimum, and the variation +A¢ of dihedral angles
of the C — C bonds inside the gauche EG subunits of that conformer. Thus the
additional states g* and g are characterized by the same variation +A¢ which
becomes a parameter of our 7-state model.

If we try to extract the model parameters by means of a system of linear equations,
analogous to the one in eq. (6.2), we will get a total of 30 algebraic linear equations
(3 for each conformer in Figure 6.2) with 5 unknowns. To reduce the redundancy we
assume that the interactions between neighbors along the chain will take the values in
Table 6.3 for the rotational states at the potential minima, for instance V ;- = Vg+4-
etc. For the determination of the self-energies of g& and g we simply increased the
energy of g* by the same amount E’ which we treat as an adjustable parameter. This
concludes the construction of the 7-state ICM.

6.4 Transfer Matrix for the Gibbs Ensemble

Next the transfer matrix method will be implemented for the statistical treatment
of long PEG chains. We assume that the chain is placed in a #—solvent so that the
volume interactions and the monomer-solvent interactions mutually cancel out. In
this situation, the only factors to be considered are the self energies of chain subunits,
the nearest-neighbor interactions and the action of the external force.

The Green function for this problem satisfies the integral equation 2.4, where the
transfer matrix, T(L;, ['iy1) reads

T(Fi ’ Fi-i-l) = C(Fi, Fi+1) exP[(f 8i41 COS gi-i-l—Ea.-.H. _Eﬁ;.H -‘/ai-{—xﬁ.- —‘/"i+1ﬂi+1)/ kBT}-
(6.9)
Unlike previously approached models, this time the notation I'; designates the coor-
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dinates of a sequence of six covalent bonds—two EG monomers—which we regard as
a virtual bond of our chain. This is required in order to incorporate the nearest neigh-
bor interactions in our analysis. The initial condition (the probability distribution
function for the first virtual bond) reads

0, — ay — — Ya
G{(I‘l)ocexp(fslcos L ”;*T Es, ‘/lf’*l>.e,1‘llc1(91 (6.10)
B

6.4.1 Calculating the Connectivity Operator

There is a close similarity between the algorithm used in the study of alkanes in
the previous chapter and the one that will follow here for the study of PEG. Like
there, in order to find the connectivity operator C in eq. 6.9 we have to account for
the geometrical restrictions of the bond lengths, rotational angles and bond angles
characteristic for the RIS model.

As for alkanes, Figure 5.15 serves as a good representation for the vector geometry
of a PEG segment in an external force. When looking at this diagram, we must
bear in mind that within our PEG model there is an important difference from the
case of alkanes: the vectors a;, b;, ai+1, biy1 shown there correspond to entire EG
monomers and not bond vectors. Each of these vectors has its ends at the locations
of consecutive oxygen atoms in the molecule. Consequently, their lengths vary with
the state assumed by that monomer. Furthermore, the bond angles depend on the
states of a pair of adjacent monomers and the rotational angles depend on the states of
a trio of consecutive monomers. This further complicates the treatment of this model
and requires appropriate modification of the method used in the previous chapter.

We will take the vectors s; = a; + b; as the basis for implementing the Transfer
Matrix method. Note that this time, the index ¢ numbers a pair of subunits (and
thus runs from 1 to N/2, assuming N even) and not only a single monomer. The
most convenient choice for describing the orientation of s; is the coordinate set given
by I'; = {6:,v¥;, a:, B;}, which consists of:

e 0, the angle formed by the subunit vector s; with the force f, with range [0, |;

e 1, the dihedral angle formed by the planes (a;, s;) and (s;, f), with range [—m, 7);
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e o; the rotational state corresponding to subunit vector a; (i.e. one of the ¢, g*,
g~ states);

e [, the rotational state corresponding to subunit vector b; (i.e. one of the ¢, g™,
g~ states);

To compute C, one has to find, from geometrical considerations, the orientation
of the s;;, vector when the orientation of s; and the rotation states of the vectors
a;, b;, aiy1, biyy are known. With the choice of the coordinate set above, the connec-
tivity operator becomes

C(T:,Ti1) = 8[6ir1 — 9o(Ti, Ti1)])6[9i1 — 9y (T Tia)], (6.11)

where the functions go(T;, [iy1) and gy (T:, Tiy1) are yet to be determined. Similarly
with the procedure in the previous chapter, we refer back to eq. 5.4, where we denote
t(p,7v) as the rotation matrix with dihedral angle ¢ and bond angle v. Next, we
calculate the vectors a;, b;, @i, biy1, 8i,S:+1 in a common frame chosen as Ozoyoz2o
in Figure 5.15, for which we employ the rotation matrices in the list below:

o to = t(%;,74,p,), corresponding to vector s;;

® t; = t(7,7,,s,), corresponding to vector aj;

® ty = t(Pa,,ai11 Viais ) COTTESPONding to vector by;

o t3 = t(¥g.a,,, Bipy Yo +1ﬂ__+1), corresponding to vector a;y;.

Note that here we have a significantly larger number of parameters: 7,5, the bond
angles characterizing the (a;|8;) pair; ¥,,6.4,,, the dihedral angles characterizing the
(c:|B;|ai1) trio as evaluated in Table 6.4; v,,5. = sin™ (sin7v,,g, [a:l / [s:[). With the
help of these matrices we get

0
f=1| sing; |, (6.12)
cosf;
0
Al = tot]_tz 0 3 (6.13)

lai-i-ll



121

0
biy1 = tot1taot3 0 . (6.14)
(i
As a result we have
-1 | Si41” f

90(Ts, Tiy1) = cos [ Sl ] , (6.15)

fx Si+1 Si+1 X @441

Fi7 1- = * 3 .

€8 [gd,( : +1)] l? X s,»_Hl |Si+1 X ai+1| (6 16)

. _ f x Sit1 Siy1 X Qi1
‘Sln [gllJ(P” F1+1)]| - ‘f % Si+1l lS{+1 x a1+1| 3 (6-17)

which concludes our task of finding the connectivity operator.

6.5 Results

To evaluate the canonical partition function, Zy(R,T) in eq. 1.20, we note that
for (EG) n there are 3V conformers in the 3-state model, which we denote by the set of
dihedral angles of all bonds {¢;, ¥s, ..., ¢x}- We proceed by first calculating the end-
to-end vectors rx({®1, P2, - @n} ) by €q. 5.7, and energies Un({®1, 2, --- P} ), BY
eq. 6.2, for all the conformers and store them in an array from which they are recalled
when performing the summation in eq. 1.20.

The exact evaluation of the partition function can be done on our computer for
short molecules, up to 10 monomers, within a few minutes of processor time. To speed
up the enumeration of all conformers, we take the initial building blocks as large as
possible (e.g. (EG)s in our case) and double the chain length successively, storing
their energies and lengths in each step, up to (EG)12- To obtain the conformers of
(EG)2;, we start from the conformers of (EG);2 and (EG)s and join them appro-
priately. This procedure turns out to be much more efficient than the straightforward
approach of directly joining n EG subunit blocks. The exact account of all chain
conformers is a time consuming approach and becomes impractical for chain lengths
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Figure 6.3: End-to-end distribution function (a) and entropy S (b) for (EG)i12 and (EG)21
molecules as functions of length, R, calculated by exact enumeration of all conformers.

larger than N ~ 20 (computation time exceeds 10 hours for N = 21).

In the transfer matrix calculations we first checked their accuracy by increasing
the number of mesh points, My and M. We found that a mesh with My = M, =40
(used for the 7-state model) yields an accuracy of +0.5% or better, while My =
M, = 100 (used in the 3-state model) yields an accuracy of better than +0.2%. Such
computations took up to 10 hours on our computer for chains 200 EG subunits length
in the 3-state model, and 48 hours for the 7-state model.

In what follows, we shall present and discuss the results for various thermody-
namic and statistical quantities of short and long PEG molecules obtained in the
3-state and 7-state models. All results shown are for T = 300K and for parameter
sets 1, 2 and 3. The force-extension curves below obtained by TM are computed
exclusively by eq. 2.13.

To begin with we show in Figure 6.3 results for short chains, (EG)12 and (EG)a21,
using the exact account of all conformers technique. In panel (a) we show the end-to-
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Figure 6.4: Helmholtz free energy A (a) and the average contractile force f (b) of (EG)12
and (EG)21.

end distribution function calculated from eq. 2.26 as a function of normalized length
R/N. The maximum occurs at the most probable length of the chain for which the
contractile force, as a derivative of the free energy, is zero. The width is a measure
of the length fluctuations which are considerable for such short chains. In panel (b)
we show the entropy versus length which is zero for the most unlikely conformations
of zero and maximal end-to-end lengths of the chain.

The irregular appearance of the (EG),2 curves has its origin in the discrete nature
of the end-to-end length spectrum of an ICM molecule, which for this molecule consists
of 3!2 discrete points or conformers with rapidly varying degeneracies. For longer
chains, such as (EG)z;, the irregularities are smoothed out because of the exponential
increase in the number of conformers as a function of chain length. From the canonical
partition functions in Figure 6.3(a) we can also obtain the Helmholtz free energies,
Figure 6.4(a) and, by differentiation, the force-extension curves, i.e. the mechanical
equation of state.
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Figure 6.5 presents the comparison of the force-extension curves, calculated by the
exact and TM methods for the 3-state model of PEG chains (EG);2 and (EG)a, in
panels (a) and (b), respectively. For simplicity, we have selected as model parameters
only set 3 and set 2 in Table 6.3, while the exact calculation uses the interaction
parameters in set 3 only. The agreement between the two methods is very good.

The curves differ slightly in the intermediate force region. This is attributable
to the fact that in the exact enumeration procedure, we used (EG); segments as
elementary blocks to build up all the conformers of (EG),2 and (EG)2, while in
the TM procedure, we employed EG subunits as the elementary blocks. In the exact
enumeration, one thus has, as input, the correct ab initio energies of 27 conformers
of (EG)3, which leaves as the single source of error the nearest neighbor interaction
parameters necessary to join the elementary blocks. (It is unfortunately very difficult
to implement the TM method starting with (EG)3 as building subunits due to the
very large dimensions of the T operator involved in such a computation). Panel (c)
shows the length dependence of the force-extension curve for the 3-state chain with
parameter set 2. The long chain limit is reached for chains with more than 200 EG
subunits; the curve will practically remain unchanged (at least within our accuracy
limits).

Next we examine the generalization of the 3-state to the 7-state ICM. In Figure
6.6 we show in panels (a) and (b) the force extension curves for (EG)so and (EG)200-
We choose two values for E’, kgT and 2kgT, and vary A¢ between 10° and 40°. At
small and large forces, all models produce the same force-extension curves, indicating
that the persistence lengths for all models are approximately equal. In the low force
regime the chain extension is driven mainly by a decrease in its entropy, with no
perceptible effects of its internal energy: the stretching is purely entropic. In the
large force regime the entropy is essentially zero because all subunits are in the trans
configuration and stretching is accompanied by large increases in energy, so that again
3-state and 7-state models give the same results. In contrast, in the intermediate force
regime the chain entropy continues to decrease, but its energy increases. Therefore
we expect the details of the molecular structure (geometrical and energy parameters)
to play a role in the shape of the force-extension curve. Introducing two more subunit
conformations for each gauche conformation that are only slightly different in energy
(E' = kgT) and not much of a change in the dihedral angle (A¢ = 10°) has a
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Figure 6.5: Comparison of force-extension curves for the 3-state model obtained by the
exact enumeration of all conformers and by the transfer matrix method: (EG);2 in panel
(a) and (EG)2; in panel (b). The force-extension curves for increasing chain lengths up to
the asymptotic limit in panel (c). Set 3 and set 2 in the legend are given in Table 6.3. For
simplicity, in panel (c), only results for set 2 are displayed.
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Figure 6.6: Force-extension curves for PEG molecules with 50 and 200 subunits as obtained
by the transfer matrix method with parameter set 2: the 3-state and 7-state models for
(EG)so with selected A¢ and E' parameters in panel (a), for (EG)a200 in panel (b); com-
parison of the three- and 7-state models for (EG)2g0 with the experimental stretching curve
for PEG[6] in panel (c).
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significant effect by increasing the force necessary to stretch the chain. This is the
result of two counteracting effects, namely an increase in the entropy over the 3-state
model which would lower the force which is overcompensated by the fact that the
newly available states have a higher energy. However, this increase in force in the
intermediate regime can be reduced again by increasing the energy cost to E' = 2kgT
and reducing the entropy gain by changing A¢ to 40°. Such qualitative changes in
the force-extension curves can obviously be used to distinguish between chains with
different structure and energy on the basis of their stretching curves.

In panel (c) of Figure 6.6 we compare our results for the 3-state and a 7-state
model for N = 200 with the experimental curve[6] (which was measured for chains
of lengths between a few hundred and a few thousand subunits). The agreement is
extremely good for all but very high degrees of stretching. The deviation of the TM
result from the experimental curve in the region of f > 100pN can be explained on

the basis of our previous findings. We have already seen that with the transition from
'3 to 7 rotational states the characterization of the stretching behavior is improved.
We expect the agreement to improve as we further increase the number of allowed
rotational states in an attempt to approach the continuous limit for this degree of
freedom (as we noted in previous chapters for the FRC and alkanes).

In Figure 6.7 we plotted the probabilities (average fractions) of g and ¢ states as
well as those of all possible pairs in a molecule versus normalized chain length. For
small and medium extensions below half the full contour length these probabilities
vary slowly with the g and ¢ populations becoming equal close to two thirds of the
maximum extension, corresponding to an applied force of f ~ 14pN. This is a
measure of the supramolecular reorganization[12] of EG subunits for forces of this
magnitude. The least energetically favorable pair of states, (g*|g™), is less probable
by an order of magnitude compared to the most preponderant (t|g) pair throughout
the entire stretching regime. Note a slight increase of the (t|g) pair probability for
extensions up to 2/3 which reflects the evolution of the t state probability in panel a).
The following rapid decrease is due to the fact that the g state population subsides
with increasing force.

The small force regime behavior is captured in Figure 6.8, where we plot the
slopes of the force-extension curves for a variety of chain lengths and parameter sets.
As for the other models studied in this work, these slopes are found to be constant for
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chain extension in PEG molecules with 12, 21 and 200 subunits (plotted in this order
respectively in increasingly thick lines), as obtained in the 3-state model with parameter
set 3.

small forces, fb/kT < b/lp. Another trend is that, as we increase the chain length,
the slopes for a given parameter set become practically independent of N. For the

longest chain shown here, (EG),q,, the slopes are approximately equal to 3, see eq.
1.16, where a is the Kuhn length for this model.

Since the contour length of a (EG),, molecule is L = Nb, cos (7, /2) the charac-
teristic ratio can be expressed (see eq. 1.12) for long PEG chains as

_ La _ bicos(yu/2)a
NB2 b ]

oo (6.18)
Using the data in Table 6.4 we determined a mean square bond length b2 = 10.07A2
and the characteristic ratio

Co = 0.353a, (6.19)
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if a is expressed in units of A.

The Kuhn length of PEG was extracted from the slopes of the force-extension
curves in the small-force regime via eq. 1.16, and found to be a = 19.06A, which
is close to the average contour length of 6 EG monomers and considerably longer
than the 7A used in the phenomenological model based on the extended Langevin
function[6]. This finding explains why a freely jointed chain with this bond length
gives a good fit to the force-extension curves(13] and it also implies that the persis-
tence length of PEG is about 9.5A, close to the average contour length of a (EG),
segment. We also found that the characteristic ratio for this model exhibits a very
weak dependence on the temperature and is overestimated by a factor of 2 from the
experimental value for long chains Cy, = 42}, which may be due to the fact that in
this ICM we restricted the C — O bonds to be always in the trans conformer.

In Figure 6.9 we show the force-extension curve in the modified form (1 — R./ ™
versus fb/kgT for a long PEG molecule in the 3-state model as compared to other
previously studied models. We note an abrupt change in the slope of this curve at
about fb/kgT = lp/b,.To facilitate identifying a scaling expression for the large-force
regime we plotted on the same graph a straight line (dashed thick line)

(1 — R./L)™" o (fb/ksT)’ (6.20)

In comparing this result to the behavior of previous models, eq. 4.26, 5.33, we see
that the functional form of the stretching curve is given by an expression like eq.
5.37, where the exponent v = —5 indicates that the PEG chain is even softer in this
regime than other models shown in Figure 6.9. Like the RIS for n-alkanes, the model
for PEG exhibits a rather non-physical behavior for forces of this magnitude.

6.6 Conclusion

We have constructed n-state interacting chain models (with n =3 or 7) with near-
est neighbor interactions. For PEG we extract the energetic and geometric parameters
of the models from ab initio quantum mechanical calculations on short segments - up
to four repeat units. This allows us to extend exact statistical mechanical calculations
on short molecules to chains of any length. The models are essentially parameter-free.

One of the main objectives of this chapter is to extend the statistical mechanics
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long chains. The curves for PEG and n-alkanes are for N = 200.

analysis from short to long polymer molecules. For chains up to N = 21 subunits
we construct, in the 3-state model, all 3" conformers exactly. For longer chains we
develop the transfer matrix method in the Gibbs ensemble in the presence of an
external force. The results of the two methods have been compared with each other
and with experimental data. We have identified the contributions to the stretching
behavior of the geometrical structure parameters (the subunit lengths, the dibedral
and bond angles), the energy parameters (the interactions between subunits and their
self-energies).

We analyzed the modification of the force-extension curves with the change in
chain length (short chain effects). Within our accuracy limits (better than +0.2%),
the long chain asymptotics are reached for chains with more than 200 subunits. The
geometrical parameters (Table 6.4) of the ICM models are of major relevance: chang-
ing dihedral and/or bond angles leads to significant changes of the force-extension
curve in the intermediate force regime, where the stretching is both entropic and en-
ergetic. It is therefore imperative to have available ab initio data on the molecular
structure.
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Chain end distribution functions, probabilities of rotational states and the persis-
tence length are calculated. We show that additional rotational states beyond those
of the potential minima used in the Rotational-Isomeric-State approximation must
be included for an accurate description.

We summarize the physical picture emerging from our theory. Stretching a PEG
molecule by an external force proceeds in three stages: (i) initially trios of neigh-
boring EG subunits will change from those with small dihedral angles to those with
larger dihedral angles; this is mostly driven by entropy. (i¢) Pairs of neighboring EG
subunits will change to those with the larger bond angles, i.e. initially eliminating
the (g~|g*) pairs; both entropy and energy affect this regime. (¢%) Lastly, the helical
EG subunits will change to the longer trans subunits. Because these transformations
proceed over intermediate activation barriers, individual EG subunits, pairs and trios
will be stretched away from their lowest energy configurations. This stage is driven
solely by energy.



CHAPTER 7

CONCLUSION

The transfer matrix method has been successfully applied to the configurational sta-
tistics of the following models of polymer molecules:

o freely jointed chain;

freely rotating chain;

rotational isomeric state approximation;

model with continuous rotational potential for n-alkanes;

interacting chain model with variable bond lengths, bond angles and rotational
angles for PEG.

From a modelling point of view, pursuing the above is accompanied by a gradual
incorporation of the intrachain constrictions and interactions. Starting with the FJC,
where only the bond length is fixed, we can make a next step to the FRC, where the
directional character of the covalent bonds is reflected by a fixed bond angle. The
next logical step was to mimic the rotational potential of covalent bonds, first by the
RIS approximation and then by introducing a large number of rotational angles that
accurately sample the full potential curve. In addition to that, the nearest neighbor
interactions, when introduced in our model, are shown to play an important role in
the spatial configuration of a polymer.

The transfer matrix method was adapted for all models to carry out the statistical
mechanics within Gibbs and Helmholtz ensembles, whichever proved feasible for our
purposes. The TM method proved to be very flexible and yielded many new and
insightful results. For the FJC the Green function in the Helmholtz ensemble is a
function of a spatial coordinate only. The bond orientation is irrelevant, since there
is no correlation between the direction of adjacent bonds. Adaptation of the TM
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method to the FRC under the same ensemble required introducing one more angular
coordinate as argument of the Green function accounting for the bond orientation.
The procedure becomes more involved for the most complex models approached in this
work, where the dihedral angles come into play. The Green function argument must
include the spatial coordinate and a few angular coordinates, necessary to describe
the position of a set of two or more covalent bonds.

We investigated by this method the following statistical quantities: end distrib-
ution functions, characteristic ratio, mean square radius of gyration, static structure
factor, radial distribution function, force-extension curve. Wherever possible, we
compared our results with others, both theoretical and experimental in literature.
Overall, the TM calculations proved to be very accurate for all these quantities.

Scaling relations for various regimes of the force-extension curve for the models
under consideration were derived. A remarkable fact is that the stretching behavior
of the continuous rotational potential model and the FRC both present similarities
with the FJC model in the large-force regime, while the RIS model and the ICM for
PEG do not, proving to be much softer. As discussed in the final parts of Chapter
4, a FRC with small bond angle exhibits a crossover from the semiflexible model to
a discrete chain behavior similar but not identical to the FJC.

It becomes increasingly difficult to account for interactions further than the near-
est neighbor ones. Therefore, for PEG we choose to treat the chain not as a sequence
of covalent links, but as one of chemical monomers, EG, consisting of three covalent
bonds. This is done at the cost of having to deal with variable virtual bond lengths,
virtual bond angles and dihedral angles.

We have seen that, for the most complicated models approached in this work,
in order to make the statistical treatment feasible, we have to judiciously choose the
most relevant degrees of freedom, while other degrees of freedom must be ignored.
We illustrated this strategy for alkanes and PEG chains.

The polymers were considered to be in —condition, which justifies the neglect of
the excluded volume interaction canceled by the action of the solvent[l]. Designed for
systems with nearest neighbor interactions, the TM method in the present formulation
cannot directly account for excluded volume interactions. Nonetheless, it is possible
to design a scheme which investigates such interactions by a self-consistent mean-field
theory. In this scheme, the volume interactions are turned on gradually and the Green
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function accounting for their presence is repeatedly calculated until self consistency
is reached.

Owing to its efficiency in resolving the effects of the external fields, the TM tech-
nique can be further employed to investigate the properties of single molecules subject
to such fields. For instance, a simple application would be to calculate the free energy
of confining a molecule into a nanotube as a function of the radius of confinement.
This can be done for simple models, like the FIC and the FRC, by a slight adaptation
of the algorithm used in this work for determining end distribution functions in the
canonical ensemble with the modification that one more spatial coordinate must be
included as an argument of the Green function.

In a similar manner, one could also devise an implementation of the TM method
as a single chain thoretical approach to polymer brushes — polymer chains grafted
onto a surface. In this theory, one could do a self-consistent study of a “central” single
molecule placed in the field created by the surrounding polymers. Alternatively, one
can extract via TM the properties (e.g. free energies, average dimensions) of a chain
in the presence of a potential wall mimicking the interactions with the neighboring
grafted molecules and use that information to resolve a well defined statistical me-
chanical formalism for the whole system of chains. These ideas, together with the
prospect of applying the transfer matrix method to the dynamics of polymer chains
constitute, we hope, good seminal material for future projects.

In principle, one can use the TM method to study polymers with any primary
structures. To list a few cases of interest in recent literature we mention branched
polymers, copolymers and biopolymers. Since the TM technique can be adapted to
handle model systems with any type of short-ranged interactions, we can also employ
it to study secondary structures of biopolymers, in particular hydrogen-bonded struc-
tures, such as a—helices, 3—sheets and double helices. For instance, the helix-coil
transition in DNA can be investigated by such an approach(1].

As a final word on the method transfer matrix applied to single polymer chains
we would like to emphasize its efficiency as a computational method. It can deal with
chain-like systems that possess a tremendous amount of conformers, for instance in the
RIS model, for a chain with N bonds there are 3N conformers—a number that sharply
rises. Remarkably enough, the computational cost of the TM increases linearly with
the size of the system, thus surpassing this difficulty. Besides, the accuracy of the
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method can be very precisely determined and rendered as high as desired, the only
constraining factor being the memory size of the computer. These and many others

are the reasons for which we deem this method remarkable and worth pursuing in our
theoretical quest.
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APPENDICES

A. Fortran Code for Calculation of the Force-Extension Curve of the

FRC

#x* Code calculates the force-extension curve for the FRC [May 2000]
**xx Variable declarations:

implicit none

integer i, N,ip, it, ipi, ii,j, jf, ig, iig

integer itl, it2, izl, iz2, ith, Mt, Nf

parameter (Mt= 1000) !  the angular mesh parameter
integer gamma_table(100)

integer ITH2table(0:Mt,0:2=Mt)

real*8 kT, b, pi, cg, sg, gamma, phi, phil, Lmax

real*8 sumP, cth, Pmax, L, t1, t2, th, df, gm_deg

real*8 csl, cs2, thi, th2, sn2, fbl, z, zl1,Rzmax

real*8 , slope(0:100), Rz(0:100), £b(0:100)

real*8 Pnew(0:Mt), Pold(0:Mt)

real*8 Pnewl(0:Mt), Pold1(0:Mt)

real*8 cst(0:Mt), snt(0:Mt), csp(0:2*Mt)

real*8 expfb(0:Mt), expfb1i(0:Mt)

real*8 TH2table(0:Mt,0:2#Mt), CSTH2table(0:Mt,0:2xMt)

»x* Commands of the main program begin
N= 100 ! the chain length
Nf= 20 ! number of force points
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pi= 2.0* dasin(1d0)
b= 1.0d0 ! the bond length
df= 1d-10 ! ‘“‘infinitesimal’’ variation in force
***x Tables of SIN and COS functions
do ip= 0, 2«Mt
phi= pi* real(ip)/ real(Mt)
csp(ip)= dcos(phi)
end do ! ip
do ith= 0, Mt
th= pi* real(ith)/ real(Mt)
cst(ith)= dcos(th)
snt (ith)= dsin(th)
end do ! ith

*x* Table of selected bond angle values

do iig=1, 9
gamma_table(iig)= iig* 10
end do ! iig

*=x* Gamma loop begins:
**x Table of functions of gamma:
do iig=1, 9
ig= gamma_table(iig)
gamma= ig»pi/ 180.0
cg= dcos(gamma)
sg= dsin(gamma)
Rzmax= dcos(gamma/ 2.0) ! contour length per bond
*xx Calculation of the connectivity matrix:
do itl= 0, Mt
do ip= 0, 2=Mt
CSTH2table(itl,ip)= cg* cst(itl)+ sg* snt(itl)* csp(ip)
TH2table(itl,ip)= dacos(CSTH2table(itl,ip))



ITH2table(itl,ip)= nint(Mt* TH2table(itl,ip)/ pi)
end do ! 1ip
end do ! itl
***x Force loop:
do jf= 1, Nf ! force loop
fb(jf)= real(jf)**4/ 800.0 ! this is fb in [kT] umits
fbl= fb(jf)+ df
Z= 0.0d0
Z1= 0.0d40
! zeroing the Gibbs partition function for f and f+df
sumP= 0.0
*x Table of exponential functions
do it2= 0, Mt
expfb(it2)= dexp(fb(jf)* cst(it2))
expfb1(it2)= dexp(fbi* cst(it2))
end do ! it2
«x Initialization of Green function P
do it2= 0, Mt
Pold(it2)= expfb(it2)* snt(it2)
Pold1(it2)= expfb1(it2)* snt(it2)
end do ! it2
** Iteration of Green function proceeds
do j= 2, N
do it2= 0, Mt
Pnew(it2)= 0.0
Pnewl(it2)= 0.0
end do ! it2
SumP= 0.0
do it1= 0, Mt
do ip= 0, 2xMt
it2= ITH2table(itl,ip)
! here we use the connectivity matrix
Pnew(it2)= Pnew(it2)+ Pold(itl)

146



147

Pnew1(it2)= Pnew1(it2)+ Pold1(it1)
end do ! (ip)
end do ! (itl)
do it2= 0, Mt
Pnew(it2)= Pnew(it2)* expfb(it2)
Pnew1 (it2)= Pnewl1(it2)#* expfb1(it2)
SumP= SumP+ Pnew(it2)
end do ! (it2)
do it2= 0, Mt
Pold(it2)= Pnew(it2)/ SumP
Pold1(it2)= Pnew1(it2)/ SumP
end do ! it2
end do ! (j)
do it2= O,Mt
Z= Z+ Pnew(it2)
the Gibbs partition function
Z1= Z1+ Pnew1(it2)
end do ! it2
Rz(j£)= (1.0/real(N))=*(dlog(Z1)- dlog(Z))/df
the chain extension as the numerical derivative of log(Z)
write (6,*) £, Rz(jf) !write output as a 2 column table
end do ! force loop ends
write (6,*) ’’#°’,’’ gamma= ’’, ig
write (6,*)

end do ! gamma loop ends
write (6,%) ’'#’7,’’ Mt="’,Mt,’’, N=’’,N
close (6)

end program
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B. Structure Factor of a Rod-like Polymer

Based on the definition of the static structure factor, eq. 1.35a, one can show

that, for a rod-like chain with N bonds of equal length b, the structure factor can be
re-written as

1
Sk = o / du / dbydby...dbyp (by, u)p (by,u) ..p (by,u)  (B.la)

x { N+ z [eik.(r"—rm) + e—ik-(r,‘—rm)] } ’

n<m=0,N

where b, (n = 1, N') denote the bond vectors, the unit-vector u gives the overall
orientation of the chain, and p (b,,u) = § (b, — bu) is the probability distribution of
a bond vector b,, and orientation u. The above expression can be further simplified
expanding the curl bracket and performing the integration as

1
Sk) = 1+—— /du [ /dbké (by — bu) e’k (B.2)
4N <m—-0 N k=n+1,m
+ [I / db6 (bx — bu) e~ * ] X (B.3)
k=n+1m
Since the integral
/ dby6 (by — bu) ek = itk (B.4)
we have
S(k) =1 + z: / du [ i(m—n)bk-u + e—i(m—n)bk-u] , (85)
n<m=0,N
and further
Sk) = 1+ ——-/ dn/ dm/ducos [(m —n) bk - u] (B.6)
n+l
_ sin [(N —n)bk-u] sin(bk-u)
= 1+ 2«N/d“/ dn [ Pk u bk-u (B.7)

_ 1+-—-—/d [ —-cos(ka-u)_Nsin(bk-u)]

(bk - u)2 bk-u (B.8)
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Finally, performing the integration over u, we obtain

_ 1 1 2sin(bkz) 2[1 —cos (Nbkz)]
S(K) —N/O dx{—ﬁ-— i+ (o)’ } (B.9)

Assuming large N, we can neglect the first two terms under the integral above
and we are left with

sin(Nk:b:z:/2)]2 ’ (B.10)

S(k)e-.N/oldm [W

expression which was employed in Chapter 3 of this work.





