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ABSTRACT

The evaluation of hydrodynamic coefficients and loads on submerged or floating
bodies has a lot of significance in designing these structures. Some special type
of geometries such as circular cylinders, elliptic cylinders and spherical structures
(hemisphere, sphere, spheroid) can be considered to derive analytical solutions to the
wave diffraction and radiation problem. The work presented here is mainly the result
of water wave interaction with submerged spheres. We also present some analysis
and discussion regarding the hydrodynamic interaction with circular cylinders.

In the first part of this study, analytical expressions for various hydrodynamic
coefficients and loads due to the effects of diffraction and radiation are derived sep-
arately. The case of the combined effect of diffraction and radiation is also been
considered in a similar way. The solution to the boundary value problem is ob-
tained by considering two separate problems, namely the diffraction and the radia-
tion problem. The exciting force components are derived by solving the diffraction
problem: the added-mass and damping coefficients are evaluated by solving the ra-
diation problem. Theory of multipole expansions has been used to expressed the
velocity potentials in terms of an infinite series of associated Legendre polynomials
with unknown coefficients. The orthogonality of those polynomials has been ex-
ploited to simplify the expressions. The responses due to surge, heave and pitch,
induced by wave excitation, are determined from the equation of motion. Since the

infinite series appearing in various expressions have excellent truncation properties,



these series are evaluated by considering only a finite number of terms. Gaussian
quadrature has been used to evaluate the integrals. Numerical estimates for the
analytical expressions for the hydrodynamic coefficients and loads are presented for
various depth to radius ratios.

In the second part of the study, an analysis is presented for the second-order
diffraction problem for a large vertical cylinder. Expressions are derived for first-
order and second-order potentials. The second-order loads are divided into three
components: waterline force, dynamic force and quadratic force. The first-order
potentials contribute to the waterline and dynamic forces whereas the second-order
potentials contribute to the quadratic force. Our emphasis is on obtaining the
second-order potential: we also discuss the quadratic force. Numerical results for
various analytical expressions are presented in tabular and graphical forms, for dif-

ferent wave parameters.



Chapter 1

Introduction

Since the days of Havelock, the study of water waves has been considered a major
part of fluid dynamics. The forces exerted by the surface waves on a structure in the
water are very important for designing these structures. Accurate prediction of wave
loads becomes indispensable in order to design safe structures. Research is aimed
at the evaluation of the wave forces generated by waves on structures with different
geometries. The different structures that have caught the attention of mathemati-
cians and engineers are circular cylinders, elliptic cylinders, spheres, hemispheres,
spheroids and caissons. From the practical point of view, the investigations of wave
forces on circular cylinders and spherical structures are more important than those
on the other structures.

Due to the inherent nonlinear nature of the ocean waves, no perfect nonlinear

mathematical theory is presently available to predict the wave forces on an arbitrary



body in the water. Depending on the size and the shape of the structure, there are
basically three methods to evaluate wave forces.

They are:

1) Morison equation;

2) Froude-Krylov theory; and

3) Diffraction theory.

These theories along with analytical studies and experiments lead to some reasonably
accurate wave force estimates.

The Morison equation is applicable in evaluating wave forces on structures which
are small compared to the dominant wavelength. The Morison equation assumes
the total force is composed of two forces, namely the inertia and drag forces, linearly
added together. The coefficients of these two forces are the inertia (or mass) and
drag coefficients (due to the viscosity) which must be determined experimentally.

The Froude-Krylov theory can be applied when the drag force is small in com-
parison with the inertia force but the size of the structure is still relatively small
compared to the dominant wavelength. In this case, the force is computed using the
incident wave pressure and the pressure-area method on the surface of the structure.
This method has the advantage that for certain symmetric structures the force may
be obtained in a closed form and the force coefficients can easily be determined.

When the size of the structure is comparable to the dominant wavelength, or

when the structure is large enough to span a significant fraction of a wavelength,



the incoming waves undergo significant diffraction or scattering upon arriving at
the structure. The presence of the structure alters the conditions of the wave field
surrounding it. Hence the diffraction of the waves is a major factor which cannot be
neglected. That compels us to take into account the diffraction of the waves, from
the surface of the structure, in evaluating the wave forces. This is generally known
the diffraction theory. Adopting this method, analytical solution in closed forms are
possible for a number of structures.

A rigid floating or submerged structure may undergo six degrees of freedom:
three translational and three rotational. Assuming a suitable coordinate system,
OXYZ, the translational motions are in x, y and z directions (here longitudinal
along x, transverse along y and vertical along z) which are referred to as surge, sway
and heave respectively. The rotational motions about the x, y and z directions are
referred to as roll, pitch and yaw respectively. Here, the z axis is considered to be
vertically downwards from the still water level. Often the structure is restrained
to have fewer than six degrees of freedom, for example, the type of mechanical
connection used to fasten the structure to the sea-floor. Physically, the vertical and
longitudinal motions are of primary importance for a floating or submerged body.
All these motions are illustrated in Appendix C.

Structures in water require motion analysis, in addition to estimation of the wave
forces. Solution of the equations of motion for various degrees of freedom is required

in most cases. Because of the nonlinear damping and exciting forces as well as a



nonlinear restoring force, the equations are usually nonlinear. However, to the relief
of the researchers, in most instances, these nonlinearities can be eliminated without
bhaving any practical effect on the solution, or they can be linearized, so that useful
and important results can be obtained through a simplified solution.

The motions of a floating or submerged structure are influenced by the added-
mass effect in the water and the damping introduced by the motion of the structure
in the water. Correct determination of these quantities is very important in order
to analyze the motion. In fact added-mass and damping coefficients must be deter-
mined before a motion can be analyzed. For smaller structures these coefficients can
be found from various experiments already published. However, for large structures,
these quantities usually must be obtained analytically.

Many scientific investigations have been performed since the 1930’s in the field of
floating and submerged structures. These studies have resulted in understanding the
problems related to the wave forces on these structures. As mentioned earlier in this
chapter, only a few types of structures have earned the attention of the researchers.
Studies have mainly focused on determining the hydrodynamic effects on geometries

such as circular cylinders, spheres and spheroids.

1.1 Spherical Structures

Havelock can be considered as the pioneer in the area of hydrodynamic loading on

spherical structures. Havelock (1931) calculated the wave resistance of a submerged



spheroid by replacing it with a distribution of sources and sinks, or of doublets, using
the linearized free surface condition. Much later, Havelock (1955) discussed the fluid
motion due to a half-immersed floating sphere undergoing small heaving oscillations.
He obtained the velocity potential as a series, with the unknown coefficients given
by an infinite set of equations. Newman (1967) derived the second-order steady
horizontal force and vertical moment for a freely floating ship in regular waves. He
used momentum relations to derive general results for an arbitrary ship and for the
far-field velocity potential of the body.

Chey (1970) found that the first-order linearized wave theory was not ade-
quate to produce accurate results. Prior to that, study on second-order theory
for two-dimensional bodies had been carried out by Bessho (1957), Tuck (1965) and
Salvensen (1966). Chey (1970) developed a new second-order theory for a three-
dimensional body which provided a better description of the free-surface conditions.
In his study, only total resistance and deep-submergence resistance were measured,
with no attempt made to measure the viscous resistance.

Farell and Giiven (1973) presented some results originating from towing tank
measurements of the viscous resistance of a spheroidal model, by means of the wake-
survey technique. Farell (1973) used the theory of infinitesimal waves to calculate
the wave resistance, by obtaining the velocity potential of a low about a submerged
prolate spheroid in axial horizontal motion below a free surface which also exactly

satisfied the body boundary condition. Davis (1974) investigated the scattering




effect of a submerged sphere on a plane short surface wave. The amplitudes of the
outgoing cylindrical waves, which were generated, were found to be exponentially
small with the factor determined by the highest point of the sphere.

Gray (1978) considered a fully submerged, rigid, stationary sphere, reducing
the problem to the solution of an infinite set of linear algebraic equations for the
expansion coefficients in spherical harmonics of the velocity potential. This approach
was to formulate the problem as an integral equation. The scattering cross section
was evaluated numerically and was shown to peak for values of the product of the
radius and wave number somewhat less than unity. Srokosz (1979) investigated a
submerged sphere, considering it to absorb power from an incident wave through
an integrated moving and power take-off system. It was shown that the power
absorbed depended on the hydrodynamic properties of the sphere: in particular on
the added-mass and the damping coefficients.

Hulme (1982) considered heave and surge motions of a floating hemisphere, to
derive added-mass and damping coefficients associated with the periodic motions.
He has also briefly discussed the derivation of the long- and short-wave asymp-
totics of these coefficients. This method can also be used to treat the physically
distinct, but mathematically similar, problem of the diffraction of waves by a fixed
hemisphere. Considering a submerged vehicle as a neutrally buoyant sphere, Wang
(1986) discussed the free motions of a submerged vehicle with a spherical hull form,

but with different metacentric heights. The associated radiation and diffraction



problems were solved independently, in order to examine the motions and the sta-
bility of the submerged hull form. The works of Hulme and Wang were based on
the multipole expansions method (Thorne:1953) which proved to be very successful
for periodic motions without forward speed. However, this method did not seem to
be applicable to the problem of a body with forward speed.

Wu and Eatock Taylor (1987) analyzed the hydrodynamic problem of a sub-
merged spheroid in waves, based on linearized potential theory. The problem of a
submerged spheroid in head or following seas was considered and the subsequent
formulation was presented. It was suggested that this method could be extended
to deal with the problem of oscillating bodies at forward speed. Wu and Eatock
Taylor (1989) analyzed the problem of wave radiation and diffraction by submerged
spheroids, using linearized three-dimensional potential flow theory. The solution
was obtained by expanding the velocity potential into a series of Legendre polyno-
mials in a spheroidal coordinate system. However, this solution also could not be
extended for the cases with forward speed. As forward speed significantly affects the
body-surface, free-surface and radiation boundary conditions imposed on the veloc-
ity potential corresponding to the oscillations of the body, Wu and Eatock Taylor
(1988) considered a submerged sphere advancing in regular deep water waves at
constant forward speed. Linearized potential theory was adopted and a distribution
of sources over the surface of the sphere was expanded into a series of Legendre

polynomials. Although linearized potential theory has very little physical signifi-



cance for a spherical structure, the solution clarified doubts about the influence of
forward speed on hydrodynamic forces. Later, Wu and Eatock Taylor (1990) con-
sidered a submerged sphere moving in a circular path at constant angular velocity,
the analysis being based on the linearized velocity potential theory. The potential
was expressed by means of a Green’s function and a distribution of sources over the
body surface, written in terms of Legendre polynomials.

First- and second-order wave effects on a submerged spheroid were investigated
by Lee and Newman (1991). Based on a three-dimensional panel code, they pre-
sented numerical results for the linearized force and moment acting on a submerged
slender spheroid in regular waves, the subsequent pitch and heave motions and the
second-order mean force and moment. Linton (1991) investigated the problems of
radiation (both heave and sway) and diffraction of water waves by a submerged
sphere in finite depth using the multipole method. The resultant infinite system of
linear equations were solved numerically. Although the method adopted is appli-
cable to simple geometries only, it was successful in providing an approximation to
problems involving almost spherical bodies.

Wu (1994) considered the hydrodynamic problem of a sphere submerged below
a free surface and undergoing large amplitude oscillation. Velocity potential theory
was applied and the body surface boundary condition was satisfied on its instanta-
neous position, with linearized free-surface boundary conditions. Wu et al. (1994)

presented a solution for the wave induced drift forces acting on a submerged sphere



in finite water depth, based on linearized potential theory. The theory of multipole
expansions was used in terms of an infinite series of Legendre polynomials with un-
known coefficients. The series expression for the second order mean forces (drift
forces) was provided by integrating the fluid pressure over the body surface. The
horizontal drift force was also expressed by a series solution, obtained by using the
far-field method. Detailed description of the works carried out dealing with wave
interaction with spherical structures is summarized by Bora et al. (1996).

In the first part of our work, we analyze the effects of diffraction and radiation by
a submerged sphere in water of finite depth. We restrict ourselves only to first-order.
We present an analytical procedure for the boundary value problem: we evaluate the
hydrodynamic coefficients and motions for a submerged sphere in finite depth due to
surge, heave and pitch motions in the presence of an incident wave. The multipole
expansions method of Thorne (1953) was used to express the velocity potentials in
terms of an infinite series of Legendre polynomials with unknown coefficients. The
orthogonality property of associated Legendre polynomials was utilized in obtaining
the expressions for most of the potentials and forces. The exciting forces along x and
z directions were evaluated. The analytical expressions for the surge added-mass,
heave added-mass and the damping coefficients due to surge and heave motions were
derived and computed. We present the total wave loadings due to the combined
effects of diffraction and radiation by a submerged sphere. These results (the total

loads due to the combined effects of diffraction and radiation) are significantly absent
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in the published literature so far. The total effect of diffraction and radiation is very
important: this gives a better description of the happenings in the vicinity of the

submerged body, compared to the effect of either diffraction or radiation alone.

1.2 Circular Cylinders

Circular cylinders have attracted the maximum attention from the research commu-
nity, because of their extensive use in offshore engineering. An extensive literature is
available regarding the estimation of wave forces arising out of interaction of water
waves with a circular cylinder. Havelock (1940) worked on linear diffraction the-
ory for deep water waves by examining the diffraction of plane water waves by a
stationary obstacle with vertical sides. His main objective was to explore the ap-
plication possibilities for the problem of a ship advancing through a train of plane
waves. Ursell (1949) investigated the two-dimensional motion of a fluid of infinite
depth when a circular cylinder was immersed with its axis in the free surface and
oscillating about the axis with small amplitudes. It was assumed that the effects of
viscosity and surface tension were negligible. The wave amplitude at large distance
from the cylinder and the added-mass of the cylinder due to the fluid motion were
deduced from the potential and stream functions. Morison et al. (1950) obtained
an empirical equation for determining the force on a circular cylinder in terms of
inertial and drag forces, under the assumption that the incident wave field was not

sufficiently affected by the presence of the cylinder. Their result, better known
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as the Morison equation, has paved the way for the others to proceed with more
complicated problems. Morison et al. performed their experiment on a single pile
without bracing and hence leaving a great scope to deal with the wave force prob-
lem in a similar way but with multiple piles. MacCamy and Fuchs (1954) extended
Havelock’s deep water theory to shallow water waves to evaluate the wave forces
exerted on a cylindrical pile immersed in the ocean. However, due to the highly
nonlinear property of water waves, this solution has limited applications. They
have also presented some simple deductions based on the assumption of very small
ratio of cylinder diameter to incident wavelength. The linear diffraction theory by
MacCamy and Fuchs was extended to Stokes’ fifth order theory by Chakrabarti
(1972), without taking care of the nonlinear kinematic free surface boundary con-
dition. The combined nonlinear free surface boundary condition, consisting of the
kinematic and dynamic conditions, makes the solution of the problem very com-
plicated. Yamaguchi and Tsuchiya (1974), Raman et al. (1975-77) and Rahman
(1981) have proposed complete solutions but these studies still exhibit difficulty in
handling the boundary conditions. Lighthill (1979) was successful in obtaining an
expression for the second-order diffraction force due to regular waves in finite depth.
Molin (1979) showed that the previous theories failed because some components of
the second-order potential were omitted.

A more appropriate method for handling the non-homogeneous equations evolv-

ing from the boundary conditions has been discussed by Garrison (1978) and Shen
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(1977). It was suggested that the boundary value problem be broken up into two
boundary value problems, each having one non-homogeneous boundary condition;
the solutions from these problems are then summed up.

Hunt and Baddour (1981-82) investigated the nonlinear standing and progressive
wave forces on a vertical cylinder in deep water. The standing wave problem was
solved inside and outside a vertical circular cylinder. The solution for the second-
order progressive waves in deep water bounded by a vertical cylinder was obtained
as integrals of Bessel functions. Rahman (1984) formulated an exact second-order
theory to calculate the wave forces on offshore structures, extending Lighthill’s deep
water wave theory to shallow water. In some of the solutions mentioned above, there
were deficiencies as the formulations involved a free surface integral which oscillated
rapidly and converged slowly. Hence it was very difficult to obtain a convergent
solution. Eatock Taylor and Hung (1987) overcame this behavior of the integral by
adopting an asymptotic form. Their formulation is very similar to the one presented
by Molin (1979). Special consideration has been devoted to the far-field behavior
of the second order potential. The use of asymptotic forms has led to obtaining a
convergent solution to the awkward free surface integral arising from the second or-
der potential. Garrison (1984) made use of Green'’s theorem and a double-frequency
Green'’s function to formulate the second-order problem in regular waves by express-
ing the velocity potential as a distribution of wave sources and doublets over the

body surface and the free surface. Kim and Yue (1989) solved the second-order
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diffraction problem for the nonlinear sum-frequency potential for an axisymmetric
body in the presence of plane monochromatic waves. Their results showed that the
second-harmonic component of the diffraction field was significant at large depths.
To generalize the second-order theory to irregular waves, Kim and Yue (1990) consid-
ered the general second-order wave-body interactions in the presence of bichromatic
incident waves including the radiation problem and the second-order motion. Since
the calculation of the complete second-order solution was rather complicated, New-
man (1990) initiated some approximation methods. He derived an approximation of
the second-order diffraction potential for water waves of small amplitudes at large
depths; but the applicability of this result is still doubtful for complex geometries.
Chau and Eatock Taylor (1992), in a detailed analysis of the second-order diffraction
problem of a uniform vertical cylinder in regular waves, were able to provide results
for the free surface as well, in addition to the cylinder surface. The asymptotic
analysis developed by Newman for mono-directional waves was extended by Kim
(1993) to the case of multi-directional wave. Kareem et al. (1994) investigated the
diffraction of nonlinear random waves by a fixed, surface-piercing vertical cylinder in
deep water. The incident wave field was considered as a stationary random process
and the Stokes perturbation expansion method was utilized in the analysis. The sec-
ond order velocity potential was explicitly obtained by applying a modified form of
Weber’s Integral Theorem to invert the non-homogeneous second-order free-surface

condition.



14

Rahman and Bhatta (1993) presented an approximate method for estimating
the hydrodynamic forces to the second-order on a pair of bottom mounted, surface-
piercing circular cylinder in waves of arbitrary uniform depth. The theoretical re-
sults were based upon the large spacing approximation and the method involved
replacing scattered diverging waves by plane waves. Isaacson et al. (1988-92) have
investigated a full nonlinear solution for diffraction by adopting a time-stepping
procedure. Isaacson and Cheung (1990) applied a perturbation method to the time-
stepping procedure. However, this solution gave rise to some difficulties due to the
inept handling of the radiation condition at second-order. Isaacson and Cheung’s
(1991) method for the two-dimensional vertical piane problem has been extended by
them later on to three dimensions. Though the special case of regular wave diffrac-
tion around a surface-piercing circular cylinder is presented in their work, they have
theoretically extended it to any structure of arbitrary shape.

More recently, Newman (1996) has derived the second-order potential by Weber
transformation of the corresponding forcing function on the free surface. This forcing
function is reduced to a form which involves a simple factor inversely proportional
to the radial coordinate and an oscillatory function which decays more rapidly in
the far-field.

Generally, analytical solutions do not exist for problems with arbitrary geome-
try and more complex boundary conditions. However, over the past few years, the

application of numerical methods has helped hydrodynamicists to solve some com-
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plicated problems. The numerical methods frequently used to solve wave diffraction
and radiation problems are mainly : the Finite Element Method (FEM), Green'’s
function Method and Boundary Element Method (BEM).

Although FEM is mainly used in the stress analysis of complex geometries, it
has also found its place in the solution of water wave problems. Mei (1978) has
given an extensive review of the works done in this area. Bai (1975) considered
the diffraction of oblique waves incident upon a long infinite cylinder on the free
surface. The numerical method was based on a variational principle equivalent to
the linearized boundary value problem. Finite element techniques were used to
represent the velocity potential. The diffraction forces and moments were computed
for oblique wave incident upon a vertical flat plate, a horizontal flat plate and
rectangular cylinders. However, linear theory tends to underestimate the diffraction
force and it has been noticed that for steep water the error can be significant. Clark
et al. (1991) presented a new FEM approach for calculating nonlinear wave loads on
offshore structures in extreme seas. Stokes’ second-order wave theory was used to
model the diffraction wave field. The boundary value problem for the second-order
velocity potential, including the radiation condition, was solved to obtain wave-loads
and free surface elevations. Bai (1977) presented numerical results for the added-
mass and damping coefficients of semi-submerged two-dimensional heaving cylinders
in water of finite depth. The added-mass and damping coefficients were computed

for a circular cylinder oscillating in water of several different depths.
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Green’s function method, also known as the panel method in fluid dynamics, is
the early form of BEM. This method is quite powerful in handling linearized prob-
lems. Adopting this method, some important works on water wave diffraction theory
have been carried out by Garrison (1969), and Faltinsen and Michelsen (1974). The
typical procedure for this method begins with a special Green’s function that satis-
fies the governing equation and nearly all the boundary conditions except that on
the body surface.

BEM has most actively been applied to those problems where better accuracy
is required, e.g. problems with the domain extending to infinity. Brebbia (1980)
has been instrumental in applying BEM to the complex water wave diffraction prob-
lems. The mathematical model for BEM problems is a Helmholz integral. Lee (1988)
adopted the direct BEM to calculate the wave-exciting and motion-induced hydro-
dynamic forces for fixed and floating ocean structures in a fluid of finite or infinite
depth. The fluid potential was expressed by means of a Helmholtz integral, which
involved the normal fluid velocities at the fluid-structure interface. This method
is suitable for solving problems having high ratio of domain volume to boundary
surface area. Rahman et al. (1992) adopted BEM to solve the problem of water
wave diffraction by a large fixed rectangular shaped structure floating in the ocean
and subjected to regular incident waves. He obtained satisfactory results. Bora
et al. (1996) have discussed in details the formulation and results of most of the

important works carried out regarding wave-loading on circular cylinders.
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In this second half of our work, we analyze the effects of diffraction and radi-
ation by a floating circular cylinder. Adopting an analytical procedure, we obtain
expressions for all the four forces - linear force, dynamic force, waterline force and
quadratic force which comprise the total force, and also for the moments of these
forces. We mainly focus on the quadratic force and its impact. This second order
theory is mainly based on Lighthill’s method (1979). Interestingly, the contribution

of this quadratic force to the total force has not been discussed earlier in details.

1.3 Other Geometries

Though our work is related to the evaluation of wave forces due to the presence of
a spherical structure or a circular cylinder in water, it is a good idea to discuss in

brief, the important works carried out in this area with elliptic cylinder and caisson.

1.3.1 Elliptic Cylinder

There has not been a significant number of works carried out regarding estimation of
wave forces on elliptic cylinders. Chen and Mei (1971) investigated the problem of
scattering of linear progressive waves by an elliptic cylinder. The associated problem
of wave forces and moments on a stationary floating elliptic platform has also been
studied by Chen and Mei (1973) for the case with long wavelengths. Williams (1982)
presented a linear theory of wave diffraction by a fixed vertical cylinder of elliptic

cross-section in water of finite depth. He obtained approximate expressions for the
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force and moment coefficients under the assumption that the eccentricity of the

ellipse was small.

1.3.2 Caissons

Compared to other structures, caissons have received very scant attention from
engineers and scientists. Only a handful of attempts have been made to approximate
wave forces on caisson (usually rectangular) fixed vertically on the sea-bed. Rahman
and Chakravartty (1986), using a series of transformations, predicted wave forces
on rectangular caissons. In this method, the rectangular caisson was transformed to
represent approximately a circular cylinder because of the difficulty encountered in
satisfying the boundary conditions on structures with rectangular or square cross-
sections. Rahman (1987), adopting the same method as in his previous work (1986),
showed the effect of linear forces for the case of rectangular caissons as well as the
square caissons. Due to the lack of practical use for this type of structures with
regard to water waves, a complete analysis of wave forces has not been formulated

yet.
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Chapter 2

Mathematical Formulations for a

Submerged Sphere

We assume that the fluid is homogeneous, inviscid and incompressible and the fluid
motion is irrotational. The waves are also assumed to be of small amplitude. Here we
consider the coefficients related to the motion with three degrees of freedom, namely,
two translational motions in the r and z directions, i.e. surge and heave motions,
respectively, and the rotational motion about y direction, i.e. pitch motion. We
consider a surface wave of amplitude A incident on a sphere of radius a submerged
in water of finite depth d. The body is assumed to have motions with three degrees
of freedom in the presence of the incident wave with angular frequency o. The wave
is parallel to the z-axis at the time of incidence on the sphere and is propagating

along the positive direction.
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We consider two sets of coordinate systems. One is a right-handed Cartesian
coordinate system (z,y, z), in which the x-y plane coincides with the undisturbed
free surface and the z-axis is taken vertically downwards from the still water level
(SWL). The other coordinate system is the spherical coordinate system (r, 8, ¥) with
the origin at the geometric center of the sphere. Figure 2.1 shows the axes systems
along a sphere of radius a in water of depth d with its geometric center located at
(0,0, h) with respect to the Cartesian coordinate system.

The relationship between the coordinate systems is :

R = [z2+¢

r o= \/R2+(z—h)2

tanf = izh for0<f<m

8K N

tany = for - r<y <

For an incompressible and inviscid fluid, and for small amplitude wave theory with
irrotational motion, we can express the fluid motion by introducing a velocity po-

tential ®(r,8,,t). This ¢ can be written as:
®(r, 0,9,t) = Re[¢(r, 8, %)™ (2.1)

where Re stands for the real part.
The motion is assumed harmonic. Also, from Bernoulli’s equation, we get pressure,
P(r,0,v,t) as

od
P= —p'a (2.2)
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Figure 2.1: Reference Coordinate System

Note that the problem can be considered as a combination of two fundamental
problems: the diffraction problem of an incident wave interacting with a fixed body;
and the radiation problem of a body forced to oscillate in otherwise still water.
Because of the linearity of the situation, the time-independent velocity potential
¢(r, 0, v) can be decomposed into five velocity potentials ¢;, ®p, 1, $3 and @5 where
@1 is the incident potential, ¢p is the velocity potential due to the diffraction of an
incident wave acting on the sphere; and ¢,, ¢; and ¢s are velocity potentials due to
the radiation of surge, heave and pitch respectively.

Thus ¢ can be written as ¢ = ¢; + ¢p + X ¢; + X33 + Xs¢s where X, X,
and X are the displacements for surge, heave and pitch motions respectively. Here

é1,9p,9;,] = 1,3,5 are all functions of r,# and ¥ and X;,7 = 1,3,5 is the inde-
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To obtain the velocity potential ¢, the following boundary problem must be

solved:

1) Laplace’s equation in spherical coordinates:

V3¢ =0
2) free surface condition:
%3 +K$p=0 onz=0
3) bottom boundary condition:
g—f =0, z=d

4) radiation condition:

. 9
fim VR(5% — iko)$ =0

where K = "?2 and kp is the finite depth wave number defined by
ko sinh kod — K cosh kod = 0

and the incident and diffraction potentials satisfy the body surface condition

0% 0%p

—=-——]— onr=a

On On

where n denotes the normal vector from the body surface to the fluid.

The radiation potentials satisfy the body surface condition

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2-8)
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a) for surge motion:

¢

3 = iosinfcosyy onr=a (2.9)

b) for heave motion:

¢
or

= docosf onr=a (2.10)

c) for pitch motion:

g—f = 0, onr=a (2.11)
The boundary conditions (2.9)-(2.11) have arisen from the equation

s ..
ﬁz = (—io)nj,j = 1,3,5 (2.12)

2.1 Incident Potential

Incoming waves of amplitude A and frequency o, propagating in the positive x-

direction, can be described by the following incident velocity potential,

— ﬂCOShko(Z - d) eikOROOﬂ'l’ (2-13)

2 o cosh kod

Using McLachlan (1941) (Appendix A), this may be expressed as,

— ﬁcoshko(z —d)

or=-2 cosh kod

i €mi " Jm (ko R) cosmy) (2.14)
m=0

where ¢g =1 and ¢, =2 for m > 1.
Using Thorne (1953), the incident potential can be expressed in terms of associ-

ated Legendre’s polynomial as:



24
A S m
—_— €mt " CcOS MY X
2acoshkdmz=0 m

e 32 (hor) ELE ) . =) $5 gy B )
Ag >

= mZemz cos my X

o1

It

]

Z{( 1)rrmekold=h +e"°"‘“"}(('f';') jiFe(cos ) (2.15)

or we can write for our convenience,

o1(r,0,%) = 3_ é1(r,0) cosmy (2.16)
m=0

where

Ag

%0 cosh kgd ™ ™ 30 {(— 1)kl . gl Ll (kor)

él ) (COS 0)

Changing s to s+m, we have

- Ag

b = g™ T {(~1)rekod) 4 o) KTV pm gy (2.17)

por (8+2 )| s+m

which can be modified to write as

. s+m
¢I(T’0) = % m" de: (kor)

> X (g4 2m)i P (cos ) (2.18)

where

(__ l)seko(d—h) + e—ko(d—h)

Xs = 2 cosh kod
soshko(d—h) ¢ —,2 4,6,...
= coeh kod (2.19)
—sinhko(d-h) 5=1,3,5,.
Hence, the incident potential ¢; can be written in the final form as
r s+m
oi(r,0,9) = Z g m Z XsT———— (kor) P}, (cos @) cosmy (2.20)

(s +2m)!

m=0
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2.2 Diffraction Potential

The diffraction velocity potential ¢ satisfies eqns (2.3)-(2.6) and eqn (2.8). We can

express this potential by making it ¥-independent as:
¢p(r,8,9) = 3_ ép(r,0) cos my (2:21)
m=0
where the i-independent potential is

oo

ép(r,0) = 3 a**?AnGT (2.22)

n=m

Here, Ay are the unknown complex coefficients and G7* are the multipole potentials.
Multipole potentials are solutions of Laplace’s equation which satisfy the free surface
and bottom boundary conditions and behave like outgoing waves from the singular

point which, in this case, is the centre of the sphere. We can express G, as,

_ P*cosf) , Pp*(cosa) 1
Gw = ra+l * rptl * (n —m)! x
oo (K + k)[e—k(d+H) + (_1)n+me—kh]
n - kR)dK2.23
0 Fsmhkd— Kcoshkd  © coshk(z —d)Jm(kR)dN2.23)

The quantities a and r, are defined as :

no= \/R2+(d+H—z)2
tan —_— _R_.
* = d¥H-z

where R, d and H have already been defined.
The line integration in the expression for G* passes under the singular point of
the integrand at k = k¢. The potentials G' and ¢p satisfy Laplace’s equation, the

free surface condition, the bottom surface condition and the radiation condition.
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The second and third terms in eqn (2.23) can be expanded, in the region near

the body surface, into a series of associated Legendre’s polynomials by

Pm(:i)f a) i ).+m ™ (cos6) (2.24)
1 s=0
and
1 ® (K + k)[e~*@+H) 4 (—1)n+me—kh]
m=—m) o ksimhkd — Kcoshkd  © coshk(z — d)Jm(kR)dk
C , s+m pm +m 0 2.9
= 3 Culn m)G)" ™ Prim(eos0) (2.25)

where Bt and C,(n,m) are given by

m 1 (s +n +m)!
Bi = GEHY s+ 2m)in—m)! (2:26)
Cy(n,m) = (2H)*+™

(n — m)!(s +2m)!
(K + k)[e—k(d+m + ( 1)n+m —kh]
0 k sinh kd — K cosh kd

u,(kH)dk  (2.27)

with u,(kH) as

coshkH, s8=0,2,4,...
u,(kH) = (2.28)

—sinhkH, s=1,3,5,...

Hence the multipole potentials G' can finally be written as

P’"(cos 6)

Gr ==+ Z [Bra + Ci(n, m)l(5 7 )”"' P} m(cos6) (2.29)

Using the body boundary condition (2.8), we may write,

Z an+2Amn%|rn = _%m'lr=a (230)

n=m
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From the expressions for G™ and ¢; from equs (2.29) and (2.18) respectively, we

can evaluate
agr,: lfea = —(n+1)—2—rp—> P"'(cos f) Z '(2H (s +m)a’t™ P (cos )
+ z C,(n, m)( )’*"‘(s + m)a’*™"1P™  (cos6)
T = e S e B )

Using these two expressions in eqn (2.30), we get

Z Amn[—(n + 1) P (cos 8) + Z{B”‘ + Cs(n, m)}( )’+”‘(s +m)a™*' P, (cos8)]
n=m =0

_ — (koa)*+™

Z (312 )!

=0

(s + m)a!P™_ (cosf)
Multiplying this by P™(cos #) sin # and integrating with respect to#in0 < # < 7 and
using the orthogonality property of associated Legendre’s polynomials (Appendix
B), we arrive at

a )s+m(s+m n+l]

5 Amal=(n+ Déns + (BZ+Caln,m))(==

n=m ne 2H
m ( oG ).H-m 1
———Gm (—_*_—2-7(3 + m)a
which in compact form gives rise to
o0
S AmEl =T fors=mm+1m+2,... (2.31)
where
— Agko “m s—1 S
™" = . €mi (koa) Gt m) Xs—m (2.32)
ET' = —(n+1)bn, +DP(s —m) (2.33)

D™s) = a*'(s+ m)( )’*"‘[C (n,m) + BR] (2.34)
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The diffraction potential ¢p has the final form

o0 o

P*(cosf) & ,
dp=> > a."“A,,m[—-—-——--(,wl )+}:{ m+C,(n, m)}( )"*"" ™ m(€0s 8)] cosmy
m=0 n=m r =0

(2.35)
Equation (2.31) is a complex matrix equation in the unknowns A,.,. Since the
infinite series appearing in (2.32) and (2.34) have excellent truncation properties,
the infinite matrices can be truncated, after a finite number of terms, and we solve
(2.31) numerically. Commercially available complex matrix inversion routines are

used to obtain the solution of the modified equation. Once these coefficients are

known, the diffraction problem is completely known.

2.2.1 Exciting Forces

The forces associated with the incident and diffraction potentials are the exciting
forces which play a very important role in the wave field for a structure in water.

The exciting forces F}‘) can be obtained from:

Fj(e) = 2ipa’c A /t /: @1D|r=an; sin 0dOdy (2.36)

where j = 0 corresponds to heave motion and j = 1 corresponds to surge motion

and we have written ¢;p = ¢ + ¢p, where
nj = —P}(cosf) cosjiy, j=0,1 (2.37)

From eqns (2.20) and (2.35), we have the following

Toile = 3 et 3 (o4 m) P P c0s0) cos

m=0
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QgTD|r=a = i ZAmn[ (n+1)P"‘(c080)+Z(B":;+C)( )l+mx
m=0 n=m

(s +m)a™*' P (cos8)] cosmy

Applying the body surface condition %‘1 = —%’- at r = a, we have

oa(s + 2m)!
Agemi™(koa)*t™(s + m) S

Xs =~ ZAW.[ (n+1)+(B” +C,)(3+m)(%)’+"‘a"+l]

We can derive the following from the same expressions (2.20) and (2.35)

Ag

g

€mt E (koa) - (cos 8) cosmy

oo
¢I|r=a = mzz:o (8+2 ) s+m

¢D|r=a = Z E G-Amn[Pm(0080 +Z(Bm +C, )( ).H-m %

m=0 n=m

a**'Pm _ (cos@)] cosmy

After some simplifications we get

@1Dlr=c = a Z Z n+tl Aunn P™(cos 8) cos my (2.38)

m=0 n=m

Therefore, the exciting forces are given by

F}e) = —2ipoa’A / . [' ¢1D|r=aPi (cos ) cos j3 cos v sin 8dBd
_ 2zpoa2A1r /" e 2n +1

n=j

A;jnPi(cos 0) sin 6d0 (2.39)

wheree; =1 forj =0, ;=2 forj > L.

Using the orthogonality property of associated Legendre’s polynomials, we obtain

e : (1+4)!
F9 = —21p07rAa3612(1 )lAJl

= —dipoma®AA; (2.40)
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since the terms ¢; and -8—*_’-3—: cancel out for the respective values of j.

Hence the surge exciting force F{¢) = f_, is given by

fra = —4ipomAd®Ay (2.41)
and the heave exciting force F{®) = f,4 is given by

fza = —dipomwAa®An (2.42)

Nondimensionalizing the forces given by eqns (2.41) and (2.42), we can write the

non-dimensional forces as:

4ipafj1ra3 = ~Au (2.43)
and
4—,,521,— = ~An (244)

2.3 Radiation Problem

Having solved the diffraction problem for the submerged sphere, now we turn our
attention to the radiation problem. As mentioned earlier we will consider surge,
heave and pitch potentials only. All these potentials mainly satisfy the same set
of equations except for the body boundary condition which is different for each
motion. Surge and heave potentials are both related with translational motions and
have resemblance in their expressions. Hence we proceed to find the expressions for

surge and heave potentials at the same time and we consider the respective boundary
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conditions. One very important point to note is that, due to the body symmetry of

a sphere, no moment forces act upon the body.

2.3.1 Surge and Heave Potentials

The radiation velocity potential ¢,, must satisfy :

V24, = 0 in the fluid (2.45)
%+k¢m = 0 onz=0 (2.46)
0z
%m _ 0 onz=d (247)
0z

O0bm . )
5 = (—io)n;, j=13,50nr=a (2.48)
lim R%{—?— —ik}¢m = 0 (2.49)

R—o0 aR m

The kinematic boundary condition on the body surface for the radiation problem in

case of surge and heave motions, can be written as

9%m

== = io P (cos ) cosmy (2.50)

where m = 0 corresponds to heave motion and m = 1 to surge motion. The -

dependence of ¢,, can be removed by assuming

dm (1‘, 6, ‘¢') = &m(rv 0) cos my (2'51)

The velocity potential dm (r,8) will be expanded in multipole potentials which

have already been discussed while dealing with the diffraction potential. From
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Thorne (1953) section 5, removing the time dependence term, we write

P™(cosf) (—1)**tm! o K +k

. — n n_—k(z+d)
bm(r, 6) T h B ke Jm(kR)dk
-("l)m+n +1 ,—k(z+d)
+ 1 (n m)!21rK" e Jn(KR) (2.52)

where @,, can be finally expressed as

P’"(cos ) (-1)*™ ! roK+k

¢"‘( ,0) = nel T n—m)t Jo K- kkn( _ud( =" ’Zm("kr)’ X
Pr(eost)) o ED™ g2k m(_ geryr Eoo(c086)
Gtm) )dk +z(n — 2rK™ ’;n( )™(—Kr)'—— Gt (2.53)
which can be organized to write as
2 _ P(cost) (=)™t K4k nis, 24
m(r,0) = = +.§. (n—m)!(s +m)! rh (COSO)PV/ Kk~ dk
+ i = ( l)n-ﬂ 21rK"+’+‘e‘2""r’P;“(cos(9) (2_54)

i (n—m)!(s +m)!
where PV means the principal value of the integral is to be considered. Alternately,
we can write 43,,, as

pPT (cos 0)

bm(r,0) = E[A +iB,]r* P (cosf) (2.55)
where,
( 1 m+s—1 o K + k . _de
= nrs 2.56
A, Cr - V/ =k dk (2.56)
n+s
B, ( 1) 27rK*n+s+l -2Kd (2-57)

(n — m)!(s + m)!
Hence the radiation potential ¢,, can be written as

B (C“”) + 3 (A, +iB.)r* P™(cos )] cos m (2.58)

s=m

Om(r,0.9) = [P
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Applying the body boundary condition, we may write

(ot DBNe0sd) | 3 (A, +iBsa" PrcosO)], m=0,1.

s=m

ioP["(cos §) =
(2.59)
After simplifying and using the orthogonality of associated Legendre’s polynomials,

we obtain

2n+1) (mn+m)! 2io(1+m)!
(2n+1)a"2(n-m)! 3 (1-m)V’

00 n—1 [}
s 2na™ ! (n + m)! ~01

hn+1l(n— m)!(A" +iBa) =

(2.60)
which is an infinite system of linear algebraic equations in an infinite number of
unknowns. Solution of these will enable us to find the radiation potentials and
subsequently the surge and heave hydrodynamic coefficients. We can also write

Apn +iB, = D, to have complex coefficients D,. Then we can rewrite (2.60) as

st ntm), 2n+l) (am)l Zig(am! o) (g6

m+1l(n—-m)!" " (2n+la*2(n-m)! 3 (1-m)!

n=m

or we can equate real and imaginary parts from eqn (2.60), and we obtain

® 2na™! (n, =+ m)! _ 2(11 + 1) (n + m)'

,;n 2n+1(n—m)! n (2n + 1)a"+2 (n — m)! (2.62)
= 20"t (nm)! 2 (L+m)!

,.;n m+ln—m)i " ~ 3°@A-m) (2.63)

2.3.2 Pitch Potential

The pitch potential ¢s due to the pitch motion satisfies eqns (2.45)-(2.49). We note

that for pitch motion, eqn (2.48) is Q-grm =0atr=a.



As before, we can express ¢s as:

¢s(r,8,9) = ds(r, 8) cosmy

where

~ Pm 6 x - -

%m®=4%§l+2mfn&wmwmm
with

= _ (—=1)n+m-t © K +k min 24

‘“‘Xn—mmmwm!vl K-k ¢ o
and

B, = (—1)“+m op K tm—1,-2Kd
n 1

 (n—m)(n+m)!

Applying the body surface condition (2.48), we obtain

Preost) & i 2 n ..
_a(—n.,.g_ - n;n(An +1'Bn)n ¢ 1P™(cosf) =0

Using the orthogonality property of associated Legendre’s polynomials,

2 (n +m)!

ar(n+m)t 0
(2n + 1)a™*2 (n — m)!

1% n-m)

— (A +1By) L
n+

gives us

2(n+1)

/in 3 -n =
(An +iBa) n(2n + 1)a?+!

We can also write in terms of complex coefficient as

"7 n(2n + 1)a?n+!

and equating real and imaginary parts from eqn (2.68),

2(n+1)
n(2n + 1)a>*!

B, =0

A,

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)
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2.4 Determination of Hydrodynamic Coefficients

and Motion

The coefficients related with the radiation play a big role in allowing us to know
the impact of motions due to radiation. The evaluation of added-mass and damping
coefficients is of utmost importance in analyzing the contribution of radiation to the

total boundary value problem.

2.4.1 Surge Hydrodynamic Coefficients

From Sarpkaya and Isaacson (1981), the components of the radiated force can be

written as,

X 0X;
FiB = 3 (=52 + Aj=—=2) (2.72)
r ] atz 7 at

where pu;; and A;; are respectively called the added-mass and damping coefficients.
Those coefficients are taken to be real. These are termed added-mass and damping
coefficients respectively, since they assume corresponding roles in the equations of
motion.

The equation of motion can be written as

(M;; + #ij)% + 22

pY) gj—a_T + C,'J'Xj = Fi(e) (2.73)

where M;; is the mass matrix, C;; the hydrodynamic stiffness matrix and Fi(c) are

the exciting forces associated with the diffraction potential.
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The exciting force can be considered as the forcing function of the motion. It is
emphasized that this equation relates to an unrestricted floating or submerged body.
The added-mass u;; are analogous to those coefficients for a body accelerating in
an unbounded fluid: but they are not the same. The damping coefficients \;; are
associated with a net outward flux of energy in the radiated waves and thus represent
only damping due to the (radiating) fluid motion. u;; and A;; are not dimensionless
coefficients but possess appropriate dimensions.

The radiated force F;; due to the surge motion can be written as the real part

of f,1e~*** where f, is given by

fro = 2ipaloA [ [ %igu(a,6, 9y sinbdsats

= —2ipa%cA /0' /0'X1¢1(a,o,¢)sinzocos¢dad¢ (2.74)

This radiated force can be conveniently decomposed into components in phase with
the velocity and the acceleration,

FX X
Fry = —(pn 6t2l +Au Btl) (2.75)

Also, as X, = Re{X;e**}, we can write,

F.i = Re{(—o®)puXi + Au(—io) X1}

= Re{o’zﬂqu + W/\Xl} (276)
which implies

Pun Xy +iohy X, = ~2ipac A /0 i /0' X1é1(a, 8, ¥) sin®  cos YdOdu
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which will give us

A 2ipa’A
7381 -H—al:l' =27

/0’r /: 1(a, 8, %) sin® 6 cos dOdy (2.77)

Hence, the added-mass and the damping coefficients are respectively given by

b = 2’”‘“ [ [ Relita(a,6,9)]sin*0cos wdbds  (278)

Au = —2pAad? /0 /o Imli¢y(a, 8, )] sin? 8 cos wdOdy (2.79)
The surge potential ¢,(r,8,%) can be written from (2.58) as,

éu(r, 0, 9) = [ "(°°S 6 2 D, P} (cos 6)] cos % (2.80)

n=1
Hence, at r = a, we may write

P! (cos 6)

¢1(a,0,y) = [2——— 2 D,a"P.(cos )] cos (2.81)

Therefore, using eqn (2.81) in eqns (2.78) and (2.79) and simplifying by use of as-

sociated Legendre polynomials, we obtain the added-mass and damping coefficients

as
pu = ZPAa /'/ [Z —Bya"P,(cos 8)] cosy x P} (cos @) sin 8 cos ydfdy

_ 4pa31rA

= ;%8 (2.82)
and
Ay = —2pAad? /1/[ ,,(,:3?0) ZA,,a"P‘(cosﬂ]coswxP‘(cosH)smGdOdw

= —%mrA[l + AdY (2.83)



Alternately, we can represent u;; and Ay; as

H11
&rA = Bl
a

N

and

'\ll _ 3
%pﬂ'A = [1 +Ala ]

From the equation of motion, we get

#X, X, 80X, .
Mu—at—2 = —#ll-at—z - All?t— + F:( ) (2.84)

where M), is the mass of the displaced fluid, y,; is the surge added-mass, A; is the
surge damping coefficient and F{® is the z-component of the exciting force.

In complex form, the equation of motion can be sumnmed up as:

(Myy + pn)(—i0)2 Xy + (=) X1 A 11 = fza

which simplifies to

(Myy + pn)d? Xy +i0 X\ Ay = — fra
where

(2.85)

fza =

Y 9 x x . 2
%poa?A [) /0 é1p(a, 8, %) sin? 8 cos YdOdyp
This implies

v .fzd
Xi=— 2 A
o2(Myy + iy +2H)

(2.86)
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2.4.2 Heave Hydrodynamic Coeflicients

The radiated force F,3 due to the heave motion can be written as the real part of

frae™* where f,; is given by

fia = —2ipaAc [ . /0 " Xada(a, 8, ) sin 8 cos 0dfdy (2.87)

Considering X3 = Re{X3e **}, we have, proceeding as in the previous subsection,

As3 2ipAa?

pag + 72 = 22 /0 /0 #s(a, 6, ) sin 8 cos 0dd (2.88)

where p33 and A;3 are the heave added-mass and the damping coefficient due to
heave motion respectively. Hence,

ey = 2"‘4“ / /’ Religs(a, 8, v)] sin 8dfdy (2.89)

My = —2pAa® /o' /o Imlids(a, 8, )] sin 8 cos 8dfdy (2.90)

The heave potential ¢3(r, 8, %) can be written from (2.58) as

s(r, 0,%) = P°(°°S £alesh) | $> D Po(cost) (2.91)
n=0
Hence at r = a, we may write
ds(a, 8, %) = PO(°°S Fylcosh) | Z D,a"P°(cos ) (2.92)

Therefore, using eqn (2.92) in eqns (2.89) and (2.90) and simplifying by the associ-
ated Legendre polynomials, we obtain the heave coefficients as

2p¢12A

/ / (Z Bna™P?(cosf)) x P} (cos ) sin 8dfdy

n=0

K3z =

_ éﬂa A g (2.93)
3 o
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Or else we can represent u33 and A3 as:

H33

padAm -1

and

A
ii’[ = —[1 +A103]
3 o

The equation of motion in the complex form can be written as:
vss + (Mss + px)(—i0)? X3 + (i0) X3das = fua
where 133 is the restoring coefficient and and f,4 may be expressed as,
fra = —2ipoaA /0 . /0" é1p(a, 0, v) sin 8 cos fdOdy
which implies

Xs = fzd
vas — 02(Mas + pas + i23)

2.5 Evaluation of Forces

40

Falcosb) | $~ 4 amPO(cos 6)]PY(cos 6) sin 6dAdy
n=0

(2.94)

(2.95)

(2.96)

This section is concerned with the evaluation of wave forces due to the combined

effects of diffraction and radiation. We will derive the forces acting along x and z
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directions. The component of the horizontal force f, can be computed from

fr=fza+ fn (2.97)

where fzq4 is the x-component of the diffraction force and f;; the force due to the

surge motion. The mathematical expression for each case is given by
foa = —2ipoa®A / . / " $1p(a, 8, ) sin? 8 cos YdOdy (2.98)
o Jo
and
for = —2ipoa®AX, [0 . /0 " $1(a, 8, ) sin? 8 cos Ydody (2.99)

The vertical force component f, can be written as

fz = fzd + fz3 (2100)

where f.q4 is the z-component of diffraction force and f.3 the force due to the heave

motion. The mathematical expression for each case is given by

fea = —2ipoaA /01 /: 10(a, 8, ) sin 8 cos 8dfdy (2.101)
and

fua = —2ipoa? AR, /: /0' ds(a, 8, ) sin 0 cos §dOdy (2.102)
Substituting the value of ¢, (e, 8, 1) from eqn (2.81) into eqn (2.99), we can evaluate

le as

fa = —2ipoa®rAX, f/ [PI(E:SSIO) ZDna"Pl(cosﬂ)]cos¢

x  P}(cos8) cosysin 8dfdyp

I

—%imrAaXl(l + D,a®) (2.103)
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Substituting the value of ¢3(a, 8, ¥) from eqn (2.92) into eqn (2.102), we can evaluate

fz3 as,

fa = —2ipoa®AX; /1 [‘ [(——= Fy(cosf) ZDna"P“(cosﬂ]Po(cosﬁ)smodﬂdw

an+l

4 N
= —EAipmrXs[l + Dsa?] (2.104)
Hence, the total force along z-axis is,

fz = fza+ fn1

= —dipoma®A; — %imra'Xl(l + Dyd®) (2.105)
and the total force along z-axis is,

f: = Sfza+ f3

= —dipomalAAy - %ipaTrAX;;(l + D,a®) (2.106)

where X, and X; are given by,

X, = - fzd (2.107)

> A
o?2(My + p1y + ‘L-j")

" fzd
% = 2.108
: Vas — 0%(Mas + pas + i2R) ( )

with 11, A11, 423 and A3z as already obtained. Thus, eqns (2.105) and (2.106) re-
spectively give us the total horizontal and vertical forces due to the combined effect
of diffraction and radiation. The evaluation of the forces along x and z axis helps

us in understanding the combined effect of diffraction and radiation.
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The eqns (2.105) and (2.106) respectively representing the forces f; and f, can

also be written as

1X,

ﬁm = —Ay - EF[I + D103] (2.109)
2 1X
‘mpofm = —Aq — ga—;[l + D1a3] (2.110)



Chapter 3

Numerical Results and Discussions

for Submerged Sphere

In this chapter we present numerical results for the analytical expressions for vari-
ous hydrodynamic coefficients and loadings (derived in chapter 2) on a submerged
sphere. The complex matrix equation (2.31) must be solved in order to determine
the unknown coefficients A,,, for m = 0 and m = 1. To compute the horizontal
exciting force, fr4, we need to solve eqn (2.43). The vertical exciting force, f.q4, is
evaluated by solving eqn (2.44). This infinite system of equations represented by

eqn (2.31) is made finite and solved it numerically by truncating as

Np
z AmnET, =TT (3.1)

n=0
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where ET: and T;" are given by

— _Agko m s—-1 d
T:n = e €ml (koa) (8+m)!Xs—m
E" = —(n+1)8,, +D™(s—m)
D(s) = a™(s+m)(gg)""(Caln, m) + BT]

To compute the radiated forces and the hydrodynamic coefficients due to the
motion, we need to find the coefficients D, = A, +iB, from eqn (2.61).The added-
mass and the damping coefficients for surge and heave motions are obtained by
solving eqns (2.82), (2.83), (2.93) and (2.94). The main task is to find the coefficients
Amn and D, which help us in computing the various loading and hydrodynamic
coefficients.

These system of equations are solved by using a complex matrix inversion sub-
routine from IMSL on HP9000 computer system in the Applied Mathematics De-
partment at the Technical University of Nova Scotia, Halifax, Canada. We select
N, = 20, N, = 20 for our computations. We have observed throughout our numer-
ical calculations that addition of more terms beyond 20 terms does not have any
significant effect. Once Aq;, A;; are known, we can compute the exciting forces due
to surge and heave motions.

Tables (3.1)-(3.4) give us the exciting force coefficients for both fixed submer-
gence and fixed depth. The results have been compared with the results of Wang

(1986) and Wu et al. (1994) and they seem to agree with those sets of results.



Table 3.1: Surge exciting forces (h/a=1.25)

« d/a —

Ka 25 3.0 5.0 11.0 20.0

10 3.1539 2.7864 2.1872 1.5893 1.4897
20 2.1152 2.1152 1.5902 1.3151 1.2621
30 1.6347 1.3976 1.1861 1.1361 1.1102
40 1.2862 1.1471 0.9861 0.9858 0.9826
.50 1.1134 0.9876 0.8862 0.8852 0.8834
.60 0.9217 0.8692 0.8682 0.7809 0.8124
.70 0.7692 0.7418 0.7398 0.6947 0.7395
.80 0.6824 0.6675 0.6482 0.6345 0.6315
90 0.5824 0.5791 0.5789 0.5786 0.5785
1.00 0.5037 0.4981 0.4925 0.4911 0.4901
1.20 0.3476 0.3403 0.3391 0.3379 0.3377
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Table 3.2: Heave exciting forces (h/a=1.25)

~ d/a —

Ka 25 3.0 5.0 11.0 20.0

1 0.8241 0.9582 1.2041 1.3979 1.4671
20 0.7965 0.9297 1.1505 1.3192 1.3294
30 0.7752 0.9042 1.1421 1.2547 1.2609
40 0.7598 0.8847 1.1167 1.1147 1.1162
.50 0.7421 0.8624 0.9917 0.9867 0.9872
.60 0.7134 0.8261 0.9256 0.9269 0.9283
.70 0.6790 0.7931 0.8291 0.8304 0.8317
.80 0.6224 0.7391 0.7398 0.7404 0.7409
90 0.5631 0.6112 0.6123 0.6136 0.6149
1.00 0.4832 0.4841 0.4846 0.4850 0.4852
1.10 0.4162 0.4221 0.4247 0.4261 0.4275
1.20 0.3281 0.3289 0.3286 0.3284 0.3283
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Table 3.3: Surge exciting forces (d/a=6)

« h/a —

Ka 1.25 1.75 3.00

.1 2.0117 1.8694 1.7021
.2 15106 1.2864 0.9462
.3 1.2461 0.9862 0.6741
4 1.0967 0.7421 0.3909
.5 0.8984 0.6842 0.3646
.6 0.7791 0.5098 0.2517
.7 0.7364 0.4726 0.2021
.8 0.6274 0.3622 0.1271
.9 0.5097 0.2671 0.0983
1.0 0.4892 0.2491 0.0608
1.2 0.3972 0.1977 0.0323
1.4 0.2947 0.1389 0.0086
1.6 0.2566 0.1082 0.0016
1.8 0.2314 0.0627 0.0009
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Table 3.4: Heave exciting forces (d/a=6)

«— h/a -

Ka 1.25 1.75  3.00

d1  1.2561 1.0692 0.6841
2 1.2293 0.9542 0.6194
.3 1.2007 0.7781 0.4382
4 1.1467 0.7392 0.3922
5 0.9724 0.6107 0.2965
.6 0.8862 0.5566 0.2264
.7 0.6833 0.4192 0.1791
.8 0.6374 0.3643 0.1267
.9 0.5277 0.2818 0.1082
1.0 0.4721 0.2364 0.0927
1.4 0.2021 0.1028 0.0237
1.8 0.1161 0.0711 0.0081
2.0 0.098 0.0529 0.0072
2.4 0.0583 0.0294 0.0039
2.8 0.0185 0.0129 0.0014
3.0 0.0011 0.0081 0.0005
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Exciting force coefficients for the submerged sphere are presented in Figures
(3.1)-(3.12) at a fixed submergence (h/a = 1.25) for a range of water depths, e.g.
dfa=25,d/a=3.0,d/a=5.0,d/a =11.0 and d/a = 20.0. These results are calcu-
lated using eqns (2.43) and (2.44). The results obtained by Wang (1986) for infinite
water depth have also been included. There seems to be agreement between both
sets of results for deep water within the three figures although different expansions
of the velocity potential have been used. In long waves (Ka < 0.1), the shallow
water heave exciting force at this submergence reduces significantly from that in
deep water. The converse is true for surge exciting force where the values in water
of depth 2.5a are more than double of those in depth 20a.

Figures (3.1)-(3.5) give the surge exciting forces for various values of d/a at a
fixed submergence h/a = 1.25. Figure (3.6) presents all the surge exciting forces
together for the fixed submergence. Figures (3.7)-(3.11) give the heave exciting
forces for the same set of values of d/a at h/a = 1.25. Figure (3.12) presents those

force coefficients together.
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Figure 3.1: Surge exciting force for h/a=1.25 and d/a=2.5
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Figure 3.10: Heave exciting force for h/a=1.95 and d/a=11
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Figures (3.13)-(3.20) give exciting force coefficients on the sphere in fixed water
depth (d/a = 6.0) for a range of submergence values. The results indicate that the
force coeficients decrease for increased submergence value. Figures (3.13)-(3.16)
give the surge exciting forces for different submergence values 4 /a for a fixed depth
d/a whereas Figures (3.16)-(3.20) present the heave exciting forces for the same set

of submergence values for the fixed depth d/a.
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Figure 3.15: Surge exciting force for d/a=6 and h/a=3
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Tables (3.5)-(3.8) present the results for the added-mass and damping coefficients
for both surge and heave motions for different submergence values. The results show
good agreement with those obtained by Wang (1986). From tables (3.5) and (3.7), we
see that the added-mass p;, and p3; steadily decrease after reaching the maximum
values in the range 0.4 < Ka < 0.5. After Ka = 1.5 they vary very little. Tables
(3.6) and (3.8) show that the damping coefficients start from zero and after certain
value of Ka, they decrease uniformly to reach zero again when Ka = 5.0. Also, we
notice that the damping coefficients are smaller compared to the added-mass for all

the submergence values.



Table 3.5: Surge added-mass p,, for different submergence (h/a) values

Ka

1.5

1.75

h/a

2.0

-

3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.4

1.6

1.8

2.0

3.0

4.0

5.0

0.5287

0.5403

0.5545

0.5656

0.5693

0.5646

0.5527

0.5359

0.5160

0.4962

0.4776

0.4475

0.4286

0.4189

0.4158

0.4171

0.4381

0.4523

0.4582

0.5179

0.5266

0.5363

0.5422

0.5416

0.5347

0.5234

0.5107

0.4966

0.4841

0.4732

0.4578

0.4497

0.4475

0.4481

0.4505

0.4653

0.4721

0.4750

0.5118

0.5187

0.5255

0.5283

0.5255

0.5187

0.5092

0.4989

0.4895

0.4815

0.4752

0.4675

0.4648

0.4652

0.4676

0.4698

0.4787

0.4825

0.4839

0.5034

0.5066

0.5082

0.5069

0.5030

0.4986

0.4949

0.4920

0.4905

0.4893

0.4896

0.4903

0.4915

0.4925

0.4930

0.4938

0.4950

0.4955

0.4966
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Table 3.6: Surge damping coefficients Ay, for different submergence (h/a) values

Ka

—

1.5

1.75

h/a

2.0

—

3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.4

1.6

1.8

2.0

3.0

4.0

5.0

0.

0.0018

0.0113

0.0285

0.0506

0.0734

0.0934

0.1082

0.1172

0.1205

0.1190

0.1063

0.0873

0.0678

0.0504

0.0363

0.0053

0.0005

0.0000

0.0017

0.0098

0.0237

0.0398

0.0544

0.0655

0.0722

0.0745

0.0733

0.0695

0.0574

0.0438

0.0318

0.0220

0.0148

0.0015

0.0001

0.0000

0.

0.0016

0.0088

0.0200

0.0317

0.0412

0.0472

0.0496

0.0489

0.0460

0.0418

0.0317

0.0223

0.0148

0.0094

0.0058

0.0004

0.0000

0.0000

0.

0.0013

0.0057

0.0106

0.0138

0.0147

0.0138

0.0120

0.0099

0.0076

0.0057

0.0030

0.0014

0.0006

0.0003

0.0001

0.0000

0.0000

0.0000




Table 3.7: Heave added-mass u3; for different submergence (h/a) values

«— h/a —

Ka 1.5 1.75 2.0 3.0

0.0 0.5586 0.5362 0.5239 0.5070

0.1 0.5834 0.5539 0.5375 0.5131

0.2 0.6139 0.5742 0.5518 0.5166

0.3 0.6365 0.5859 0.5570 0.5133

0.4 0.6421 0.5831 0.5506 0.5055

0.5 0.6272 0.5667 0.5350 0.4969

0.6 0.5955 0.5414 0.5147 0.4895

0.7 0.5541 0.5127 0.4939 0.4845

0.8 0.5095 0.4846 0.4752 0.4890

0.9 0.4680 0.4598 0.4598 0.4794

1.0 0.4316 0.4394 0.4481 0.4793

1.2 0.3788 0.4123 0.4346 0.4805

1.4 0.3497 0.3998 0.4306 0.4827

1.6 0.3381 0.3971 0.4321 0.4847

1.8 0.3374 0.4000 0.4362 0.4863

2.0 0.3428 0.4055 0.4412 0.4874

3.0 0.3852 0.4331 0.4587 0.4901

4.0 0.4091 0.4457 0.4654 0.4910

5.0 0.4203 0.4513 0.4686 0.4918
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Table 3.8: Heave damping coefficients A3; for different submergence (h/a) values

Ka

«—

1.5

1.75

h/a

2.0

3.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.2

1.4

1.6

1.8

2.0

3.0

4.0

5.0

0.0040

0.0245

0.0631

0.1129

0.1627

0.2037

0.2304

0.2423

0.2414

0.2318

0.1966

0.1554

0.1172

0.0856

0.0609

0.0085

0.0009

0.0001

0.0036

0.0208

0.0505

0.0847

0.1149

0.1361

0.1473

0.1490

0.1439

0.1340

0.1078

0.0809

0.0579

0.0399

0.0267

0.0026

0.0002

0.0000

0.

0.0033

0.0182

0.0416

0.0658

0.0848

0.0958

0.0991

0.0964

0.0896

0.0805

0.0604

0.0421

0.0279

0.0177

0.0109

0.0007

0.0003

0.0000

0.0026

0.0116

0.0215

0.0276

0.0293

0.0275

0.0237

0.0193

0.0150

0.0115

0.0059

0.0028

0.0013

0.0005

0.0002

0.0000

0.0000

0.0000
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Surge added-mass for various values of h/a
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Figures (3.21)-(3.24) respectively give the surge added-mass y,;, surge damping

coefficients A,;, heave added-mass p33 and heave damping coefficients 33 for various

submergence values.
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Figure 3.22: Surge damping coefficients for various values of h/a
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Chapter 4

Formulation for a Floating
Circular Cylinder

We consider a rigid vertical cylinder of radius b acted upon by a train of regular sur-
face waves propagating on the surface of fluid of uniform depth d. A fixed coordinate
system Oxyz is employed with x and y axes in the horizontal plane and the z-axis
vertically upwards. The corresponding cylindrical coordinate system (r, 8, z) is also
assumed. We assume that the fluid is homogeneous, inviscid and incompressible and
that the fluid motion is irrotational in the region bounded by the free surface, rigid
bottom boundary and the surface of the cylinder. When the amplitude is large,
the small amplitude theory does not hold good. In practice, finite amplitude wave
theory, namely nonlinear wave theory, is of primary importance. In linear wave the-
ory, the wave amplitudes to the second and higher orders are considered negligible,
whereas in finite amplitude wave theory these higher order terms are retained so as
to give an accurate representation of the wave motion. A schematic diagram of a

vertical cylinder is depicted in Figure 4.1.



|y .
2]
- ~ame X
Incident
Wave
Dircction iz
U /_.-\ e
X
N—— N 1 "'1'

Figure 4.1: A Schematic diagram of a vertical cylinder
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Relating the two coordinate systems by

z=rcosf, y=rsinb, z = z,
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The boundary value problem is given by the following set of equations, with Laplace’s

equation in cylindrical coordinates expressed as,

3Pd 10 18*°®¢ 0°®
2
V3ip = 3r2+ 3r+2302+322 =0

intheregionb <r<oo, -d<z<7n, —-7t<O<
The dynamic boundary condition is

0 1.0

R [(—)2 ( aa)2+(a =0, z=m7 > b,

the kinematic boundary condition is

G+ OGS =5 mz=mr20,

the boundary condition on the body surface is

§=0 onr=b-d<z<n

and the bottom boundary condition is

a®
g—o on z=—d

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

Let us assume ®(r, 6, z,t) = Re[¢(r,0,z)e*t] = Re[(¢; + ¢s)e*t] where ¢s is

the scattered potential which satisfies the radiation condition. Thus, the radiation

condition can be stated as:

lim \/I;(—-:bzk)rﬁ =0

kr—o00

(4.6)



4.1 Mathematical Analysis

We know that the irrotational fluid flow pressure distribution can be obtained from

Bernoulli’s equation, which is

P 09 89
S tot o+l + (5 + ()1 =0 (4.7)

From the above equation we can define the following three pressure distributions:

(i) the hydrostatic pressure distribution, which is given by
Po — pgz (4.8)

at height z above the level z = 0, where the hydrostatic pressure is Pg,

(ii) the dynamic pressure distribution of Bernoulli, given by
1 2
7PU* ~ %) (4.9)

at a point where the fluid speed is ¢ and U is the fluctuating fluid velocity that
would be found where the body is, if the body were absent, and

(iii) the transient pressure distribution given by

8%
-, (4.10)

Equation (4.7) can be written as

P 3 1, _. .,
597+ 5 +5(V8)7 =0 (4.11)
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where
N
—dz _ 8%
U=% = 3z
—dy _ 8% ) 4.12
v=t =22 (4.12)
—dz _ 3%
w—dt—az J

Here, u,v and w respectively represent the velocity components along the x, y and

Z axes.

The total derivative of eqn (4.11) with respect to time ¢ gives,

d P dz
p7 ;) ('——) + EE(V(D) =0 (4.13)

which can be written as

d P [ + g— 3 ] + ——(V<I>)2 + q V(Ve)2 =0 (4.14)

where ¢ = (u, v, w). Equation (4.14) is evaluated at z = n, which gives

d P, o ) |
r ) ( at2 = 95-)imn + 5 (V) iy + 50V (VE)Z, =0 (4.15)

where P, is the atmospheric pressure. The first term in eqn (4.15) vanishes if the

atmospheric pressure is constant. Thus, we also get at z = n:

aZQ 6<I> 6 2 1 2 __
57 t95; a(v<1>) +52.V(Ve) =0 (4.16)

Retaining up to the second-order term in the variable ¢ in eqn (4.16), we obtain

62(I> 6<I>

2wt = --(v<1>) (4.17)
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4.2 Perturbation of Solution

We can choose to write

® = O+, +... (4.18)
n = m+ng+-.. (4.19)

where ®; and 7 satisfy linear diffraction conditions and ®, and 7, are the quadratic
corrections of the order of the sources of the disturbances. The linear and quadratic
terms are of order of 0(32) and 0{(232)?} respectively. 22 is defined to be the wave
steepness in which A is the wave amplitude and L is the wavelength. If higher order

corrections are ignored, then we can have a Taylor series expansion about z = 0:

®(z,y, 7(z, v, t),t] = &(z,y,0, t)+n( “)a=ot ..
= (P +P+.. )0+ (m+m+...)x
39, 8%,

(-a— + _32— +.. =0+ .- (4.20)

Hence the total velocity potential can be written as

=9+, + m(%)::o + higher order terms (4.21)

where ®; and ®, + 7(%Y),_, are the first and second-order terms respectively.
q a9z

Similar expansion by Taylor’s series gives us the following three expressions.

2% — a@l 6 6<I>¢
32 - s el 5 T M5, (5, )=l + (4.22)
2P ¢ P, ach
ot2 = izl + [a;t2 ( l)z-O] (4.23)

Ve = V<I>,+[V<I>q+m§(v<l>q)z=o]+... (4.24)



Using all these relations in eqn (4.17), we obtain the following:

linear part:

-+g— =0 (4.25)

quadratic part:

Pe 9%, I 2 9 7% 99,
5 t9a ~ T N Ty G teg )l (420)
with
_ 1%
m= g( 5 (4.27)

4.3 Incident Wave Potential

Due to the linearized boundary condition at z = 0, the problem of determining
the flow field becomes a purely linear problem. Also the flow potential satisfies the
familiar Laplace’s equation, which is linear. With such linear equations, sinusoidal
waves of amplitude A, propagating freely in the x-direction, have a vertical free
surface displacement of

n = Asin(dt — kz) (4.28)

The incident velocity potential takes the form

_ Ao coshk(z + d)

r k  sinhkd

cos(ot — kzx) (4.29)
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in water of depth d. The linearized boundary condition (4.25) leads to the well-

known dispersion relationship
o? = gk tanh kd (4.30)

4.4 Second Order Wave Loading

It has been demonstrated by Lighthill (1979) that a second-order contribution to the
irrotational flow loading on a structural component consists of the resultant force
Fy4 of the pressure, given by eqn (4.9), associated with the linear velocity potential

®,. This can be written as

Fy= / ~p(V®)?n.dS (4.31)

where n, is the direction cosine between the outward normal and the direction of
the force component F; being determined.

Another second-order force is associated with the linear velocity potential if the
structural component penetrates the surface. The whole additional second-order

horizontal x-component of force acting at the waterline w can be written as

0P
ﬂ(_‘

25 a0 )2ds (4.32)

w:

where the integral is the horizontally resolved force per unit length acting at the
waterline.
Following Lighthill’s technique, the quadratic potential ®,, which satisfies the

condition (4.26), is uniquely determined as the potential of the linearized motion
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generated in the presence of the stationary structure due to a fluctuating pressure
distribution

(VD) + %(tanhz kd — 1)(k®,)? (4.33)
applied at the surface. Expression (4.33) reduces to Lighthill’s expression (4.31) for
the deep water case (because we know limgy o, tanh kd ~ 1).

Thus the quadratic force takes the integral form
Fy=~ [Wol(Van)? + %(tanh’ kd — 1)(k®,)?]dS (4.34)

where W represents the vertical velocity distribution and dS is an elementary area
of the free surface S. This result is obtained by using Green’s theorem together with
a proper application of the radiation condition to the velocity fields.

Linear diffraction theory yields the potential function ®; from which a force F;
may be computed by linear analysis. By adding to Fj, three more terms Fy, F, and
F, given respectively by eqns (4.31), (4.32) and (4.34), more accurate values of the
horizontal x-component of the force can be obtained. The total force F exerted on

the body and the moment M of this force in vector notation are then given by

Ft) = - /5 Piids (4.35)

M) = - /S P(7 x 7)ds (4.36)

where 71 is the outward normal vector on S and 7 is the vector from the point about

which moments are taken.



4.5 Linear Diffraction Theory

Linear diffraction theory, for a vertical cylinder in an incoming wave train, was
given by Havelock for deep water waves and can be written for shallow water and

intermediate depth as

Ao coshk(z+d) ;.0 &
®; = Re[—————¢'"* mAm .

. el r oohid © g—;oa Am(kr) cosmé] (4.37)

where Re stands for the real part and
=1 ,an=2(-)",m>0. (4.38)

and
Am(kr) = Jn(kr) — MH,‘,?’(IW) (4.39)
HS (kb)

Here, H? is the m-th order Hankel function of second kind given by
HO(kr) = Jp(kr) — iYip (k)

(7,8, z) are the cylindrical coordinates and the prime denotes the differentiation with
respect to the arguments.

Since, in the calculation of ferces on the structures, only the cos# term in the
velocity potential will contribute, we are interested in the cos# term in ®; and thus

the linear velocity potential may be written as

Ao coshk(z+d) ;00 -
r  <nbkad © (—21) A, (kr) cos 6] (4.40)

Q; = Re[



From the expression of ®; from the above equation, we find

0P Ac? mcosh k(z +d) ]

% - Re[ P o 2(—1) A, (kr) cos 6]
_ Ao? . coshk(z + d)
= Re[ Pl —h kd A, (kr) cos 8]

This expression can be used to express the horizontal force per unit length of

the cylinder when acted upon by a fluid with density p, as

Fiat) = [ [0 (6%t emsda(~ cos 6) (546)

p2Ab20 ™ mcoshk(z + d)
kb sinh kd

= Rel Ax(kb)] (4.41)

The total horizontal force on the cylinder is given by

_ 0
Fi(t) = Re /_ | Filz 1)dz]
= Re[Cur(pgAnt?)e P tanh kd]

= Cu(pgAnb?) tanh kd cos(at — ) (4.42)

where the coefficient Cys specifies the cylinder’s inertial reaction to a fluid acceler-
ation advanced in phase by phase lead 8 over its value on the cylinder axis. These
calculations are shown in Appendix D.

In evaluating the integrals (4.41) and (4.42) we have used the relation

2A,(kb) —4i
kb k262 H®' (kb)

Cue™ = (4.43)

where

0? = gktanh kd (4.44)



The Wronskian of J; and H? is given by

Ty (kb)Y H® (kb) — H® (kb).J! (kb) = :; (4.45)
The values of Cj, and B can be extracted as
Cy = 1 (4.46)
k252 [T (kb) + Y;* (kb) '
and
_y, J1(kb)
! [pr ) (4.47)
4.6 Calculation of F, in Deep Water
Assuming
®, = Re[¢,e®"] (4.48)
and
= Re[¢re*] (4.49)
and substituting in eqn (4.26), we obtain
G - Konemo = ~ 2287 + Bp(-r T2 4+ g5 a50)

where K = %.
Let the potential due to a unit translation oscillation of the body be Re[ge?t].

Then on the body surface S, it follows that

o
G5 =r. (G205 =0 (451)
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where n. is the z-component of a unit inward normal to S, and also
o -
—— — z —_— 4- 2
(5, —KP):z0 =0 (4.52)
where ¢ also satisfies the radiation condition.

Applying Green’s theorem, we get

;3 o -0
/v/ [6,V%6 — ¢V ?0JdV = / [¢q£ - éi—"]ds (4.53)

SUz=0

taken over the boundaries of the fluid (S and z = 0). Here n is the normal outward
from the fluid.
Since ¢, and é both satisfy Laplace’s equation, we have
0 _ -0¢q -
— — 2 = 4.54
Jrpmol®em ~ F3dS =0 (454)
After performing the indicated integration in (4.54), and applying the conditions

(4.51) and (4.52), we have
- 0P, . _ -
/z =o¢(—az — K¢q)dzdy = /S Pgn-dS (4.55)
The force F, can be written as,

F

3¢,
/:9 (—p 5 )n.ds
=  Re[(—p2ice®?) /S denzdS] (4.56)
With the help of (4.55), (4.51) and (4.50), we can infer
1 )
F, = Re[(—pziaew)-,; [ 8.8 - Koazay
= Rel(-7- 2"‘) /. (—)z-o x

(V) - —451(— %'-i- Qzﬂ )ldzdy] (4.57)
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which reduces to
Fy=Rel— [_ pW[(Va)* + %(tanhz kd — 1)(k®,)|dzdy] (4.58)

with
W= () (4.59)
representing the vertical velocity on the free surface associated with the unit trans-
lational oscillation of the body.
The solution ¢ of Laplace’s equation satisfying (4.52) on the free surface and
(4.51) on the cylinder r = b, together with the radiation condition, can be written
as (Lighthill (1979))

- ; 00 imz (2)
¢=cosl9[%(PV)/ ° Ki(lm|r) dm + 2eX* H\"(KT)

w m(K — im) |m|K;(|m|b) KH® (Kb)

] (4.60)

Here (PV) signifies the Cauchy Principal values of the integral, K is the Bessel
function of imaginary argument and H® is the Hankel function of second kind of
order one. This expression is valid only for deep water waves. For finite depth water
waves, the reader is referred to the work of Rahman (1997).

To evaluate W from eqn (4.59), following Lighthill’s analysis, the appropriate

value of W for small kb is found to be
W ~ Ki:- cos @ (4.61)
where an effective range, b < r < B for which (eqn (4.61) holds, can be found from

B = (2¢7")K~' = c(ktanh kd)~!
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with ¢=0.28 and -y = .577 (Euler’s constant). Beyond the limiting radius r = B, W

is oscillatory and hence makes very little contribution to the quadratic force Fj,.

4.7 Exact Calculations for Second Order Wave
Loads

We recall that the total horizontal force F}, is given by eqn (4.41) and was evaluated
as

Fi = CppgAmb? tanh kd cos(at — 3)

with Cys and 3 given by (4.46) and (4.47). Similarly the moment of this linear force,

M, can be calculated from the following:
2x 0 6¢l
M, = /0 [ / (e + d)(—p5)dzle=s(— cos )b (4.62)
After evaluating the integrals, we obtain
M, = CppgAnb?®(kdtanh kd + sech kd — 1) cos(at — ) (4.63)
The dynamic force, Fy, can be evaluated from

Fa= il —%p(V@;)zdz](—COSO)bd@ (4.64)

Performing the integration, the total dynamic force Fy is found to be:

2pgA? & okd . I(1+1) 2kd
ok 2=~ Gnoed) T e Gt smnaRd)

[E; — (—1)*{Cicos 20t — S;sin 20t}] (4.65)

Fy




where

E, = (J' +1 l+1YI')/Tl
G = (NI, +Yad)/T
Si = (§¥ - Jidl)/T

T, = (J; +Y)) (i + Y
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(4.66)
(4.67)
(4.68)

(4.69)

and where the Bessel function arguments are kb. The result, eqn (4.65), is the sum

of the steady-state and oscillatory parts, with the expression multiplied by E; giving

the steady-state solution and the rest representing the oscillatory solution.

The moment of this force, My, can be calculated from the following formula:

M= [ :[ / :_d(z + d)[~£(V8,)?]dz(~ cos 0)bd

The integration gives us the result

2pgdA? & I(1+1)
wbk? 2L b2k2

=0

M, =

where

B =1 — coth2kd | _1+2k342
2kd 2kdsinh 2kd

- coth 2kd 1-2k2d2
D=1-2520+ g rinom

The waterline force, Fy,, can be evaluated from:

A a(bl 2 _
F / 2g at z=0r—b( 0080)de

The integration gives us the result

4 A2 oo
Fy = pgk_z Z[E[ {C[ cos 20t — S; sm2a't}]

B+ D] X [E‘ - (—l)‘(C’, cos 20t — S‘sinat)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)
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The moment of this force, M,,, is

2x
M, = -/; pd(a(pl 3—0,r=b(— cos 0)bd0

dF,

4pgA%d =
f,ikz 2_[Ei + (-1)'{Ci cos 20t — S sin 20t}] (4.75)

=0

The expression for quadratic force Fy is:

Fy = Rel-2icp— [ /_o az{-'—( #)? + 2 (1 - tanh?® kd) (¢1)?}dzdy]

= Re[-2 [ [ =o(§ [(Vé)? + ?(tanhz kd — 1)](¢,)2rdrd9] (4.76)
which can be rewritten as
F, = Re[—gezw‘ /:o rdr/ozt(%)zzo x
2
{(V1)? + - (tanh? kd — 1)()?},-odo] (477

We now aim to find (V¢;)? and (¢;)2.
Using the results for the expressions for (42)2|;=0, (%&")?|:=0, (3%)?|:=0 and

(Vé1)?|:=0 and the dispersion relation (4.30), we can write

0\, 9 2 & , J,. (kb) ‘
=0 = A%gk coth kd [ (kT) — —Z——H?) (kr)] x
i 2, L omoabmn) = o )
[J. (kr) — H;](:;T(IIZZ_)I))H’?)I (kr)] cos m8 cosnd (4.78)
A1 A%g 2 - Jm(kb) '
A = “Z9coth kd (k) — =50 ey
60) |2=0 £ co mz=o ?;mnama,.[.] (kr) 2% (k) H® (kr)] x

[/, (k) — %HQ)’ (kr)] sin m#@ sin nf (4.79)
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8 © > ‘
[, (kr) — —};('2')(,]:2)) H,(f)' (kr)] cos m8 cosné (4.80)
A2 oo o0 ,
(Vér)?|:=0 = Tgcoth kdmz_:o n;oaman[Jm(kr) - %Hﬁ) (kr)] x
[Jn(kT) — J(;)(]:Z)b) H(2)’ (kr)] cos m@ cos nd (4.81)
Also, we can evaluate
I (KD) v Qr(kr)
" ™ " b
and
Ton (kD) : Qm(kr).
Jm kr) — _,——H,(:) k
*n) HEY (kb) (kr) = B (k)

where Q,, will be defined later on. Substituting these two expressions in eqns (4.78)-

(4.81) and simplifying, we have

9% = 2 Galkr) Qukr)
(== )2|,=0 = —A2%gk coth kd an n
Eogo "HE (kb) S (kb)
cos m@ cos nf (4.82)
2 [o ¢] fo"e) -1 -~
(a¢l) lz—O = ‘ﬂ' coth kd Z zmmman Qm’(kr) Qngkr) %
k m=0n=0 H,(z) (kb) H,(‘z) (kb)
sin m@ sin nd (4.83)
%%, 2 Qmlkr) Qulkr)
(5=)%:=0 = —A’gktanh kd A
2 mZ—OnX—:o "HE (kb) HP (kD)
cos m# cos nb (4.84)
Alg 2 & Qm(kr) Qu(kr)
(V¢l)2|z- = ——= coth kd A Olp m’ n’
B k g.-:o,go H® (kb) HZY (kb)

cos m#é cos nf (4.85)
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Using those expressions and also the equation for (%‘-—;)z-_-o from Appendix D and

simplifying, we get
2 00 . G0 ~r =0
Fq = 126[2—pg—1i coth kd/ eM Z[2QnQn+l +
k r=b n=0

(2(72;21)11' ~ 1+ 3tanh® kd)QuQn+1]{(—1)"(Cn +iSn)} X

Hfz) (x7) sinh? kd
{Hfz)'(,;b) xd + sinh kd cosh kd
Kl(mjr) si.nh2 mjd
K (mjb) m;d + sinh m;d cosm;

d}r dr] (4.86)

j=1

where

Ap(kr) = Qu(kr)e ™
Qn(kr)

Qnlkr) =
V1 (kb) + Y (kb)

Qnlkr) = Ju(kr)Yo(Kb) — J,, (kb)Yn (kr)
Jo (kb)

Qn = tan~! -~

Y. (kb)

Here k and k are related through the dispersion relation

xtanh kd = K = 4ktanh kd
Similarly, the quadratic moment M, can be found from the expression
_ _P 2ige [T = 3¢
M, = Re| 5€ /; rdr/o az|,=0 X
2
{(Ve)2 + 7(tanh2 kd — 1)(Vé:)?*}db) (4.87)

where Re[£e?!] is the potential due to a unit rotational oscillation of the cylinder

about the ocean bottom.
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Chapter 5

Numerical Results and Discussions
for Circular Cylinder

In this chapter we present some numerical results for most of the coefficients and
forces obtained in the preceding chapter. We first compute the coefficients T}, C}, S;
and E; used in describing the forces and moments. The subroutines available for
Bessel functions have been used. We also compute Fj, Fy, F,,, M;, My and M, for
different values of kb.

In order to compute the linear force F; and the associated moment M; from eqns
(4.42) and (4.63) respectively, our primary task will be to first find the coefficients
Cwum and S given by eqns (4.46) and (4.47) respectively. We have considered kb for
a wide range and have presented the values of Cas, 3, Fi and M; corresponding to
the values of kb (table 5.1).

For various values of kb, Table 5.2 gives the various values of coefficients (which
are basically functions of Bessel functions of different kinds) T;, C;, S; and E;. These

coefficients help us in computing the dynamic force and its associated moment and



Table 5.1:

Linear forces and linear moments along with Cjs and

kb Cum Jé] F M,

2.50 0.10739666 -0.37286976 0.33536052 0.62186143
3.00 0.06804680 -0.83984989 0.21337043 0.50350577
3.50 0.05639605 -1.57079637 0.17706844 0.51064982
4.00 0.03597513 -1.30116045 0.11299837 0.38635602
4.50 0.02086744 -1.00241828 0.06555333 0.25964065
5.00 0.01168680 -1.12431347 0.03671457 0.16543712
6.00 0.00986637 -0.86911660 0.03099615 0.17363709
7.00 0.01295755 -1.57079637 0.04070742 0.27276373
8.00 0.00700104 -0.64894944 0.02199446 0.17156078
9.00 0.00624376 -0.71118051 0.01961539 0.17457804
10.00 0.00609685 -1.23904908 0.01915388 0.19153917

the waterline force and its associated moment.

Table 5.3 gives the values of the dynamic force F; and its associated moment M
given respectively by eqns (4.65) and (4.71). We have also computed the maximum
force for different values of kb.

Similarly, Table 5.4 gives the computed values of waterline force F,, and its

associated moment M,, given respectively by eqns (4.74) and (4.75).



Table 5.2: Various coefficients involving Bessel functions

kb T Ci St E

1.750  0.281559828E+01 0.5459365656 -0.2389927913 0.5459365656
2.750 0.100604499E+01 0.9908821164 -0.1101995985 0.3997354872
3.750 0.671746081E+00 1.2162293496 -0.0971800744 -1.2162293496
4.750  0.163258280E+01 0.0946316576 0.7768984523 -0.7347844788
5.750 0.171704718E+01 -0.5959826260 0.4766549057 -0.1983703436
6.750  0.369420184E+01 -0.2964898213 -0.4275374257 0.0411934910
7.750 0.761516203E+00 0.1073017561 -1.1409013986 1.1217893809
8.750  0.380979049E+00 1.5124219554 -0.5808579552 1.2667079058
9.750  0.411455032E+00 1.4984739127 0.4300874227 -0.6745992694
10.750 0.487532476E+00 0.4226616318 1.3683941410 -1.4215235975
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Table 5.3: Dynamic forces and moments

kb Fy Frnaz M,y

1.750 0.00103717 0.02471449 0.00169436
2.750 0.00570604 0.01905005 0.01549726
3.750  0.01275707 0.01277736 0.04917896
4.750 0.00496478 0.00512136 0.02487769
5.750  0.00214754 0.00340896 0.01325056
6.750 0.00077651 0.00168654 0.00569179
7.750  0.00002969 0.00281789 0.00025206
8.750  0.00034089 0.00312537 0.00328958
9.750 0.00173512 0.00242213 0.01875659
10.750 0.00182360 0.00183041 0.02182849




Table 5.4: Waterline forces and moments

kb Fy M,

1.750 0.0550718  0.11179247
2.750 0.02727803 0.08701694
3.750  0.00004071 0.00017710
4.750 0.00031327 0.00172611
5.750  0.00252295 0.01682810
6.750 0.00182008 0.01425125
7.750  0.00542879 0.04754534
8.750 0.00556895 0.05652485
9.750 0.00137402 0.01554021
10.750 0.00001362 0.00016987
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Figure 5.2: Linear forces at various submergence

Figure (5.1) shows the comparison between the coefficients Cas and . It is
interesting to note that g increases rapidly once it becomes positive. Cps attains its
maximum value around kb = .5 and it decreases steadily thereafter.

The linear forces F; have been plotted in Figure (5.2) for various submergence
values. Experimental values at d/b = 1.16 have also been included. The results

obtained seem to agree with the available experimental resuits.
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Figure 5.4: Comparison of linear and second-order wave forces with experimental
data

Figure (5.3) gives us the maximum force plotted against kb. Here we have con-
sidered 2A/d = .2 and d/b = 1.16. It reaches its peak at kb = 1 after increasing
suddenly. But after that it decreases rapidly till kb = 8 after which its decrease is
uniform.

Figure (5.4) gives the nondimesional maximum force plotted against kb. This
has been taken from the work of Rahman (1997). It compares the linear and second-

order wave forces with experimental data.
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Chapter 6

Conclusions and
Recommendations

A systematic mathematical procedure has been presented in the first portion of this
thesis to evaluate the hydrodynamic coefficients and loads on a submerged sphere
in finite water depth. The sphere has three degrees of freedom due to surge, heave
and pitch motion in water of finite depth in the presence of an incident wave. The
whole boundary value problem is divided into two problems, namely, the diffraction
problem of an incident wave acting on the submerged sphere and the radiation prob-
lem of the sphere forced to move in otherwise still water. The solution of these two
problems together provide the analytical solution for the total boundary value prob-
lem. The velocity potential has been obtained by using the multipole expansions
in terms of an infinite series of Legendre polynomials with unknown coefficients.
The exciting force components are obtained by solving the diffraction problem. The
added-mass and damping coefficients are obtained by solving the radiation problem.

The responses due to surge, heave and pitch induced by wave excitation are deter-
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mined from the equation of motion of the submerged sphere. Numerical results of
the derived analytical expressions for the hydrodynamic coefficients and loads are
presented in various figures for different depth to radius ratios and for different sub-
mergence. Our main objective was to find simplified analytical solutions to different
potentials and forces.

In the second portion of the thesis, a detailed analysis of the second-order diffrac-
tion problem for a circular cylinder is presented. The investigation mainly deals with
the exact second order calculations using the exact expression for the linear veloc-
ity potential of diffraction theory. The second-order forces are decomposed into
three components: waterline force, dynamic force and quadratic force. The main
focus is on evaluation of the quadratic force. Numerical results of various analytical
expressions obtained are presented for different wave parameters.

The combined linear problem due to diffraction and radiation or even the diffrac-
tion or radiation problem separately can be extended to two or more submerged
spheres. The analysis of interactions among several structures nearer to each other
would be important in many practical cases. The same theory of multiple expan-
sions may be applied to expand the total potential. The body surface condition for
various velocity potentials might involve the Kronecker delta. If the problem with a
group of spheres with the same radius yields good results, then an extension of the
analysis can be considered where the spheres can be supposed have different radii.

Also it might be advisable to use asymptotic solutions to get a clear idea and to
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have a simplified solution.

Similarly, the cylinder problem can be extended to two or more cylinders. The
work presented here may be extended to study the hydrodynamic coefficients and
loads up to second-order due to a pair or more circular cylinders.

Further investigations may include other types of structures too. As we have
seen, the solutions for sphere and circular cylinder involve Bessel functions and
Legendre polynomials respectively. A solution for the elliptic cylinder will involve
Mathieu functions.

The theory and solutions for a sphere or a vertical circular cylinder in water
provide an important step in understanding the effects of wave diffraction and radi-
ation on large bodies. The solutions obtained have a wide range of applications, but
eventually it becomes necessary to consider the case of bodies of arbitrary geometry
in order to deal with the challenges offered by the variety and complexity of design
configurations encountered in modern marine and offshore structures. Therefore, for
irregularly shaped bodies the results obtained here represent merely the preliminary
stage of the analysis. To be more precise, for an irregularly shaped body, the results

obtained here may only be used qualitatively.
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Appendix A

Expression for Incident Potential

The following calculations and relations are used to derive expressions (2.14) and
(2.15) of the incident potential ¢;.

Given the relation
N o0
€% = Jo(z) + 2 D" i"Ja(2) cosnd

n=1
and substituting R = rsin @, we obtain
eikoRcoevp — eikorsinﬁcosvb

= Jo(koR) +2 Z 1" Jm(koR) cos myp (A.1)
m=1

which gives the exponential part of the expression (2.14).

We can write

coshko(z —d) = coshko{(z —h)+ (h —d)}

- %ekouz—m(h—an + e—kol(z=h)+(A-a)]

which can be used to imply
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ekolz—h)+(h-d)]  _  ko(h—d) ko(z—h)

e~kol(z=h)+(h—d)] _ o—ko(h—d),—ko(z—h)

Thorne has deduced the following relation:

=N (kR) = (£)™ 3 (:tkr)"%—i%"!l (A.2)

which implies that we can write

)
eko(h—d)eko(Z—h)Jm(koR) — eko(h-d) Z(+1)mP;n(COS 9) (kor)’

= (s+m)!
el pP™ 4
eholh-d)g—ko(z=h) 7 (g By —  g—ko(h=d) .;. (—1)™+s (; gf:)!) (kor)*

These lead to expression (2.15).



Appendix B

Legendre Polynomial and Bessel

Function

Associated Legendre Polynomials
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The polynomial P*(z), known as associated Legendre’s polynomial, is a solution of

the following differential equation:

m2

&y dy
— 2 — — — -— —
(1 I)d.’l:z 2zdI+{n(n+1) 1—22}y—0
It has the following orthogonality properties:
1
[ Pr@Pr@dz = o
1 2 (n+m)!
m 2 —
/_1[P" (z)f'dz = 2n +1(n —m)!

P*(cos ) is related to Legendre polynomial P,(cos8) by

P™(cos8) = (—1)™ sin™ o%”"ﬂfz—), z = cosf

where P,(z) is a solution of

d? d
(1 —2:2)-d?z —2IEy+n(n+I)y =0

(B.1)

(B-2)

(B.3)

(B.4)
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Bessel Function

The Bessel function of first kind, of integer order m, is given by,

oo (_l)kzm+2k

Im(z) = ,;o om+ZEI(m + k)| (B.6)
which is a solution of Bessel’s equation
d*y dy 2
1-2@+ dz+(::2 m)y=0 (B.7)

Relating Bessel Function to Associated Legendre
Polynomial

From Thorne (1953),

P (cos )

KO (kR) = (~Um 3 (—hr) TS (B.5)
KD IKR) = (1) 3 (—Kr) ) (B.9)

We infer that the expression ¢n,(r,8) in eqn (2.52) to be expressed in terms of

associated Legendre’s polynomials:



e k+d) J (kR)

e K@+ g (KR) =

e-2Kd(_l)m i (—KT)"

e k(z-dlg=2kd J (KR)

P™(cosf)
(s + m)!

e (~ 1)"‘2( —kr) = ——

e—K(z—d)e—ZKdJm(KR)

(s +m)!

P (cos6)
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(B.10)

(B.11)
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Appendix C

Motions for Structure

Figure C.1shows the various motions due to radiation for a floating structure. We
have already discussed these six motions, related to a floating or submerged body
in water. This diagram shows a structure floating in water. The motions would
be similar for a submerged body, in which case the structure may be connected
to the sea-floor by some mechanical means. The structure is assumed to be rigid
and has six independent degrees of motions. Usually out of the three translational
motions, the longitudinal and the vertical motions are of most importance. Among
the rotational motions, different motion has different significance depending upon
the geometry.

We have considered the surge, heave and pitch motions in our study. Usually
three degrees of motion are sufficient to describe the radiation problem for a given
structure. Usually structures like articulated towers, moored tankers, tension leg
platforms, spheres, spheroids, cylinders, etc. undergo these motions. To determine

the stress distributions for these kind of structures, it becomes necessary to know
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3 - HEAVEi

Figure C.1: Motions for a structure in water

their associated motions with associated wave forces.
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Appendix D

Expressions for Linear and
Quadratic Forces for the Cylinder

Here we show how we calculate the linear force F; and the quadratic force Fj,.

Linear Force

From the complex linear velocity potential ¢; in Chapter 4, we can write

Opy.  10¢i~ Oy
Vér= 2"+ ao]-i-azk (D.1)

which gives us

Obi1, , 1 0P

(V)2 = (G277 + (52 + (e (D.2)

We find the coefficient A;(kr) at r = b in the following way:

J, (kb)
H® (kb)
Ju(kr) H® (kb) — J, (kb)HP (kr)

H® (kb)
Jy(kr) (T (kb) — iY; (KB)) — (Jy(kr) — Yy (kr))J, (kb)
H® (kb)
—~i(Jy(kr)Y; (kb) — J, (kb)Y; (kr))
H® (kb)

A(kr) = Ji(kr) — H® (kr)




which implies
Ay(kr) ey = —i(Jy(kb)Y; (kb) — J; (kb)Y (kb))
' H® (kt)
_ —iW{Ji(kb), Yi(kb)}
H® (kb)

—2i
rkbH®' (kb)

where W represents the Wronskian of J; and Y;.

Also, because of the expression

b . —2i

F = 2bAprm Alfsze[e‘“————( 311)

k rkbH® (kb)
_4bAdpr 1 ie*t

= k2  wkb el H?)' (kb) ]

using dispersion relation (4.30) and the following relation,

1 1
H® (ko) Ji(kb) —iYy (kb)
Jy(kb) + iY; (kb)
Jy (kb) + Yy (kb)
we get
Po— _4bAgtanhkd1riRe[i(cosa't+isinat)(J;(kb)+Y{(kb))
b k2 b Ji (kb) + Y;” (kb)

4Agmtanhkd 1 cos otY| (kb) + sin atJ; (kb)

k? b J7 (kb) + Y7 (kb)
4bAgm tanh kd_l_cos otcos 8 +sinotsin 8

k2 mb o [TR(kb) + Y7 (kD)
Cu(pgAmb?) tanh kd cos(at — B)

where we have chosen

Cy = 4

T wk262\/J7 (kb) + Y7 (kb)

]
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ﬂ _ tan'l['fl(kb) ]

Y; (kb)

Quadratic Force

Letting m = n+ 1 and using the orthogonality property of cosine and sine functions
in eqns (4.82)-(4.85), and also observing that the expression for F, has terms con-
sisting cos méf cosnf or sin m0 sin nf multiplied by cos 8, only the product of cos@

by cos @ will be non-zero.

Also since
an = 2(=1)", anyy =2(—3)""
we can obtain
A0y = —4(-1)"
Moreover, we can also write,
1 . .
= i(Cp + iSy)

H® (kb)H{Z (kD)
All these relations help us to find the solution of Fy in the form of eqn (4.86).
Determination of q;

We assume Re[¢e??!] to be the potential due to a unit translational oscillation of

the body. ¢ must satisfy



3P¢ 19¢ 189 &9
o ror T o
o¢ -

2 K¢

3¢

ar

94

oz

lim \/z;[% +inld

Kr—r0o0

Assume a solution of the form

@ = [P(r) cosh k(z + d) + U(r) cos m(z + d)] cos 8
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(D.3)
(D.4)
(D.5)
(D-6)

(D.7)

(D.8)

where P(r) and U(r) are arbitrary functions of r only and x, m are constants. Ap-

plying the above conditions gives

where

j=l1

xktanhkd =

m,- ta.nmjd =

K

-K

¢ = [pH® (k) cosh k(z + d) + > u;jK\(mjr) cosmj(z + d)] cos 8

(D.9)

Here p,u; are constants. It happens that cosh k(z + d) and cosm;(z + d),j =

L2,..

determine the constants p, u;. Therefore, it follows that,

.,00 form an orthogonal set on the interval (—d,0). This makes it easy to
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2H® (rr) cosh k(z + d) sin xd

KH{”' (xb) kd + sinh xd cosh xd
2. 2K, (mjr) cosm;(z + d) sin m;d
m; K (m;b) m;d + sinm;d cos m;

-

=1

Differentiating above expression with respect to z and the evaluating at z=0, implies

3% _ [2H§2’(m) sinh? xd
0z " g® (xp) xd + sinh kd cosh xd
_ §:2K1(mjr) sinzm}i
=1 Ki(mjb) m;d + sinm;dcosm;

(D.11)

d] cos 6 (D.12)
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Appendix E

Some Programs

O 00 0000000000000 0000000000000

The variables used in this program are listed below
Input

kb = kb .GT. 0.0EO

fnu = order of initial y function (fnu .GE. 0.0EO)

N = number of members in the sequence (N .GE.1)
Output

NZ = number of components of J set to zero

J = a vector whose first N components contain values for
the sequence J(K) = J/sub(alpha+K-1)/(X), K=1,...,N.

Y = a vector whose first N components contain values for
the sequence Y(I) = Y/sub(fnu+I-1)/(X), I=i,...,N.

Tsub = vector of coefficients of size N.

Csub = vector of coefficients of size N.

Ssub = vector of coefficients of size N.

Esub = vector of coefficients of size N.
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€CCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCe
z
c Routines called: besj, besy, recurrence
zccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Integer I, N, NZ, LL, KK
double precision CM, beta, F1, M1, Md, Fd, Fw, Mw, Fmax
double precision BB, GG, tau, kh, kh2
double precision sine, cosine, theta
double precision terml, term2, term3, term4, term5
real JJ1(30),YY1(30),JJ12(30),YY12(30),JJprime(30), YYprime(30)
real JJmi(30), YYm1(30), YYp1(30), JJIp1(30)
real YYpp1(30), JJpp1(30),YYpp12(30),JJpp12(30)
real YY(30),JJ(30), JJp12(30),YYp12(30)
double precision  Tsub(10),Csub(10), Ssub(10), Esub(10)
real HHb, Hh, hb, Hbhb
real fnu, order, kb
external besj, besy, recurrence
data pi /3.1416/
C set the values to be used

kb = 2.5

fnu =1.0



c set up the output files

open(unit=43, file=’out.dat’, status=’unknown’)
open(unit=45, file=’moment.dat’, status=’unknown’)
open(unit=55, file=’bessel.dat’, status=’unknown’)
open(unit=60, file=’dynamic.dat’, status=’unknown’)

¢ calculate other constants

write(43,10)

10 format(2X,’kb’,8X,’CM’,13X, ’beta’,14X,’F1’, 15X, M1’)
do while (kb .1lt. 70.0)

kh = 1.16*kb

call recurrence(kb, fnu, fnu, N, JJprime, YYprime)

do k = 1,N

JJ1(k) = JJprime(k)

YY1(k) = YYprime(k)

enddo

do k = 1,N

CM = 4.0/ (pi*kb**2x3qrt (JJ1(k)**2+YY1(k)**2))
beta = -atan2(JJ1(k),YY1(k))

F1 = abs(CM*pi*dtanh(kh))
Ml = abs(CM*pix*(1.1*kb*dtanh(kh)+1.0/dcosh(kh)-1.0))
enddo

write(43,33)kb, CM, beta, F1, Ml
33 format(£f5.2,4£16.8)

kb = kb + 0.1

enddo
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write(45,11)
11 format (4X, ’kb’,6X,’fnu’,6X,’Fd’,7X, ’Fmax’,8X,'Md’)

write(60,12)
12 format (4X, ’kb’,4X,’fnu’,5X, ’Fw’,5X, 'Mw?)

write(55,13)
13 format (4X, ’kb’,4X,’fnu’,7X,°’T_1’,13X,°’C_1’,15X,°S_1’,16X,’E_1’)

kb = 1.750
fou = 0.0
Hh = 0.2
HHb = 0.232
hb = 1.16
Hbhb = 0.26912
do 77 II-1,3
do 88 LL=1,80
¢ first term in derivative expression

call recurrence(kb, fnu, fnu, N, JJ, YY)

do k =1,N
JIpt(k) = JJ(k)
YYp1(k) = YY(k)
enddo
do k = 1,N
JIp12(k) = JIp1(k)=*=*2
YYp12(k) = YYp1(k)*#*2
enddo

¢ second term in derivative expression
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order = fonu + 1.0

call recurrence(kb, order , order, N, JJ, YY)

do k = 1,N
JIppi(k) = JJ(k)
YYppi(k) = YY(k)

JIpp12(k) = JJIppl (k) **2
YYpp12(k) = YYppl(k)**2
enddo

¢ compute coefficients now

do k =1,N
Tsub(k) = (JJp12(k)+YYp12(k))*(JJpp12(k)+YYpp12(k))

Csub(k) = (YYp1(k)*JJIppl(k)+YYppl(k)*JJpi(k))/Tsub(k)
Ssub(k) = (YYp1(k)*YYppl(k)-JJp1(k)=*JJIppi(k))/Tsub(k)
Esub(k) = (JJp1(k)*YYpp1(k)-JJppl(k)*YYp1(k))/Tsub(k)

write(55,44)kb,fnu, Tsub(k),Csub(k),Ssub(k),Esub(k)
44 format(f7.3,f7.3,E16.9,3f15.10)
enddo

do k=1,N
theta = -datan2(Ssub(k),Csub(k))
enddo

kh = 1.16%kb
kh2 = 2.0%kh

do k = 1,N
terml = HHb*(1.0/(kb)**2)*(1.0/pi)
term2 (1.0-kh2/dsinh (kh2)) +fnu*(fnu+1) /kb**2*(1.0+kh2/dsinh(kh2))
Fd = abs(termi*term2* (Esub(k)-(-1)**fnu*(Csub(k)=*dcos(theta)-Ssub(k)*dsin(thet:
Fmax = 2.0*terml*term2#(-1)=**fnu*(sqrt(Csub (k) **2+Ssub (k) **2))
BB = (1.0-1.0/(kh2*dtanh(kh2)))+ (1.0+2.0*(kh)**2)/(kh2*dsinh(kh2)})
GG = (1.0-1.0/(kh2*dtanh(kh2)))+(1.0-2.0%(kh)**2)/(kh2*dsinh(kh2))
term3 = Hbhb*(1.0/(pi*kb))*(fnu*(fnu+1)*BB+GG)
Md = abs(term3*(Esub(k)-(-1)#**fnu*(Csub(k)*dcos(theta)-Ssub(k)*dsin(theta))))
write(45,22)kb,fnu, Fd, Fmax, Md
22 format (£7.3,f6.2,3£15.8)

enddo

It M
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do k=1,N
term4 = HHb*(2.0/pi) *(1.0/kb**2)
Fw = abs(term4#*(Esub(k)+(-1)**fnu*(Csub(k)*dcos(theta)-Ssub(k)*dsin(theta))))
term5 = Hbhb#(2.0/pi)*(1.0/kb)
Mw = abs(termS*(Esub(k)+(-1)**fnu*(Csub(k)*dcos(theta)-Ssub(k)*dsin(theta))))
write(60,66)kb,fnu,Fw,Mw
66 format(f7.3,f7.3,2£15.8)

enddo

kb =kb + 0.2
if (LL .eq. 80) kb = 1.75
88 continue
fou = fau + 1.0

77 continue

close(43)

close(45)

close(55)

close(60)

stop

end

cceeeeeeceecceecceccecececceececceceececeecccececeececececcecceceecececececcecccececcececcecececececcececececccecceccecceccecccec

c c
¢ This routine calculates the derivatives of the bessel functionmns c
Cc using a recurrence relation. These derivatives are needed to compute ¢
¢ the coefficients under the summation sign. c
c c

€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC!
c

c Input :

c

¢ x =x .GT. 0.0E0 argument of the bessel function

c
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¢ fnu = order of initial Y function (fnu .GE. 0.0EOQ)

c

¢ alpha = order of initial J function (alpha .GE. 0.0EO)

c

¢ NN = number of members in the sequence (NN .GE. 1)

c

¢ Ouput:

c

Cc YYprime = vector containing the derivative for the Bessel function
c J.

¢ JJlprime = vector containing derivative for the Bessel function Y.
c

c

€CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCe
c

c

¢ Routines called: besy, besj

c
CCCCCCCCCCCCCCCCCLLCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeeceece
subroutine recurrence(x, fnu, alpha, NN, JJprime, YYprime)

integer NN, k

double precision JJprime(30),YYprime(30),JJ0(30),YY0(30)

double precision JJ2(30),YY2(30),YY(30),JJ(30)

double precision x

real fnu, orderl, order2, alpha

external besy, besj

¢ if alpha and fnu are zero then we need

C to stop the calculation immediately

if ((alpha .eq. 0.0) .and.(fnu .eq. 0.0)) then

orderl = 1.0
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call besy(x,orderi,NN,YY)
call besj(x,orderi,NN,JJ,NZ)
do k = 1,NN

JIprime(k) = -JJ(k)
YYprime(k) = -YY(k)

enddo

return
stop
Else if ((alpha .1t. 1.0) .and. (fnu .1lt. 1.0)) then

orderl = abs(1.0 - fnu)

call besy(x,orderi,NN,YY)
call besj(x,orderi,NN,JJ,NZ)
do k=1,NN
JJIprime (k)
YYprime (k)
enddo

(-1)*xorder1*JJ (k)
(-1)*xorder1*YY (k)

return
stop
endif

c if all is fine then, the first calls
Cc to the routines may be made.

call besy(x, fnu-1.0, NN, YY)

call besj(x, fnu-1.0, NN, JJ, NZ)

do k = 1,NN
JJo(k) = JJ(k)
YYO(k) = YY(k)
enddo

c the next call is made with the orders
Cc incremented by ome.
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call besy(x, fnu+1.0, NN, YY)

call besj(x, fnu+1.0, NN, JJ, NZ)

do k = 1,NN
JJ2(k) = JI(k)
YY2(k) = YY(k)
enddo

¢ the calculation of the derivatives is
¢ next performed.

do k = 1,NN

JIprime(k) = 1.0/2.0%(JJO(k)-JJ2(k))
YYprime (k) 1.0/2.0%(YYO(k)~-YY2(k))
enddo

return

end

SUBROUTINE BESY(X,FNU,N,Y)
C**xROUTINES CALLED ASYJY,BESYO,BESY1,BESYNU,I1MACH,R1MACH, XERROR,
c YAIRY
C
EXTERNAL YAIRY
INTEGER I, IFLW, J, N, NB, ND, NN, NUD, NULIM
INTEGER I1MACH
REAL AZN,CN,DNU,ELIM,FLGJY,FN,FNU,RAN,S,S1,52,TM,TRX,
1 W,WK,W2N,X,XLIM,XXN,Y
REAL BESYO, BESY1, R1MACH
DIMENSION W(2), NULIM(2), Y(*), WK(7)
SAVE NULIM
DATA NULIM(1),NULIM(2) / 70 , 100 /
C**xFIRST EXECUTABLE STATEMENT BESY
NN = -I1MACH(12)
ELIM = 2.303E0*(FLOAT(NN)*R1MACH(5)-3.0EOQ)
XLIM = R1MACH(1)*1.0E+3
IF (FNU.LT.0.0E0) GO TO 140
IF (X.LE.O.OE0) GO TO 150
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IF (X.LT.XLIM) GO TO 170
IF (N.LT.1) GO TO 160

ND IS A DUMMY VARIABLE FOR N

ND = N

NUD = INT(FNU)

DNU = FNU - FLOAT(NUD)

NN = MINO(2,ND)

FN = FNU + FLOAT(N-1)

IF (FN.LT.2.0E0) GO TQ 100

OVERFLOW TEST (LEADING EXPONENTIAL OF ASYMPTOTIC EXPANSION)
FOR THE LAST ORDER, FNU+N-1.GE.NULIM

XXN = X/FN
W2N = 1.0EO-XXN=*XXN
IF(W2N.LE.0.0EO) GO TO 10
RAN = SQRT(W2N)
AZN = ALOG((1.0EO+RAN)/XXN) - RAN
CN = FN=*AZN
IF(CN.GT.ELIM) GO TO 170
10 CONTINUE
IF (NUD.LT.NULIM(NN)) GO TO 20

ASYMPTOTIC EXPANSION FOR ORDERS FNU AND FNU+1.GE.NULIM

FLGJY = -1.0E0

CALL ASYJY(YAIRY,X,FNU,FLGJY,NN,Y,WK,IFLW)
IF(IFLW.NE.O) GO TO 170

IF (NN.EQ.1) RETURN

TRX = 2.0E0/X

TM = (FNU+FNU+2.0E0)/X

GO TO 80

20 CONTINUE
IF (DNU.NE.0.OEO) GO TO 30
S1 = BESYO(X)
IF (NUD.EQ.O .AND. ND.EQ.1) GO TO 70
S2 = BESY1(X)
GO TO 40
30 CONTINUE
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NB = 2
IF (NUD.EQ.O .AND. ND.EQ.1) NB =1
CALL BESYNU(X, DNU, NB, W)
S1 = W(1)
IF (NB.EQ.1) GO TO 70
S2 = W(2)
40 CONTINUE
TRX = 2.0E0/X
TM = (DNU+DNU+2.0EO0)/X
FORWARD RECUR FROM DNU TO FNU+1 TO GET Y(1) AND Y(2)
IF (ND.EQ.1) NUD = NUD - 1
IF (NUD.GT.0) GO TG 50
IF (ND.GT.1) GO TO 70
S1 =82
GO TO 70
50 CONTINUE
DO 60 I=1,NUD
S = 52
S2 = TM*S52 - S1
S1 =8
™ =TM + TRX
60 CONTINUE
IF (ND.EQ.1) S1 = S2
70 CONTINUE
Y(1) = st
IF (ND.EQ.1) RETURN
Y(2) = s2
80 CONTINUE
IF (ND.EQ.2) RETURN
FORWARD RECUR FROM FNU+2 TO FNU+N-1
DO 90 I=3,ND
Y(I) = TM*Y(I-1) - Y(I-2)
™ =TM + TRX
90 CONTINUE
RETURN

100 CONTINUE

OVERFLOW TEST

IF (FN.LE.1.0E0) GO TO 110

IF (-FN*(ALOG(X)-0.693E0).GT.ELIM) GO TO 170
110 CONTINUE

IF (DNU.EQ.0.0E0) GO TO 120
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CALL BESYNU(X, FNU, ND, Y)
RETURN

120 CONTINUE
J = NUD
IF (J.EQ.1) GO TO 130
J=J+1
Y({J) = BESYO(X)
IF (ND.EQ.1) RETURN
J=J+1

130 CONTINUE
Y(J) = BESY1(X)
IF (ND.EQ.1) RETURN
TRX = 2.0E0/X
™ = TRX
GO 80

gll

140 CONTINUE
CALL XERROR( ’IN BESY, ORDER, FNU, LESS THAN ZERO’, 35, 2, 1)
RETURN
150 CONTINUE
CALL XERROR( ’IN BESY, X LESS THAN OR EQUAL TO ZERO’, 37, 2, 1)
RETURN
160 CONTINUE
CALL XERROR( ’IN BESY, N LESS THAN ONE’, 24, 2, 1)
RETURN
170 CONTINUE
CALL XERROR( ’IN BESY, OVERFLOW, FNU OR N TOO LARGE OR X TOO SMALL
1’, 52, 6, 1)
RETURN
END

FUNCTION BESYO(X)

C*+x*FIRST EXECUTABLE STATEMENT BESYO
IF (NTYO.NE.O) GO TO 10
NTYO = INITS (BYOCS, 13, 0.1*RIMACH(3))
NTMO = INITS (BMOCS, 21, 0.1*R1MACH(3))
NTTHO = INITS (BTHOCS, 24, 0.1+*RIMACH(3))

XSML
XMAX

SQRT (4.0*R1MACH(3))
1.0/R1MACH(4)
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C
10 IF (X.LE.0.) CALL XERROR ( ’BESYO X IS ZERO OR NEGATIVE’, 29,

1 1, 2)
IF (X.GT.4.0) GO TO 20

C
Y =0.
IF (X.GT.XSML) Y = X=X
BESY0 = TWODPI*ALOG(0.5*X)*BESJO(X) + .375 + CSEVL (.125*Y-1.,
1 BYOCS, NTYO)
RETURN

c

20 IF (X.GT.XMAX) CALL XERROR ( 'BESYO NO PRECISION BECAUSE X IS BI
1G6’, 37, 2, 2)

c
Z = 32.0/X**2 - 1.0
AMPL = (0.75 + CSEVL (Z, BMOCS, NTMO)) / SQRT(X)
THETA = X - PI4 + CSEVL (Z, BTHOCS, NTTHO) / X
BESYO0 = AMPL * SIN (THETA)

c
RETURN
END

FUNCTION BESY1(X)
C+**ROUTINES CALLED BESJ1,CSEVL,INITS,Ri1MACH,XERROR

DIMENSION BY1CS(14), BMi1CS(21), BTH1CS(24)

DATA NTY1, NTM1i, NTTH1, XMIN, XSML, XMAX / 3%0, 3*0./
C+*xFIRST EXECUTABLE STATEMENT BESY1

IF (NTY1.NE.O) GO TO 10

NTY1 = INITS (BY1CS, 14, 0.1*R1MACH(3))

NTM1 = INITS (BM1CS, 21, 0.1*R1MACH(3))

NTTH1 = INITS (BTH1CS, 24, 0.1*RiMACH(3))

c
XMIN = 1.571+EXP ( AMAX1(ALOG(RIMACH(1)), -ALOG(RIMACH(2)))+.01)
XSML = SQRT (4.0*R1MACH(3))
XMAX = 1.0/R1MACH(4)

C

10 IF (X.LE.O0.) CALL XERROR ( ’BESY1 X IS ZERO OR NEGATIVE’, 29,

1 1, 2)
IF (X.GT.4.0) GO TO 20

C

IF (X.LT.XMIN) CALL XERROR ( ’BESY1 X SO SMALL Y1 OVERFLOWS’,
1 31, 3, 2)
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Y =0.
IF (X.GT.XSML) Y = X#X
BESY1 = TWODPI*ALOG(0.5+X)*BESJ1(X) +
1 (0.5 + CSEVL (.125%Y-1., BY1iCS, NTY1))/X
RETURN

c

20 IF (X.GT.XMAX) CALL XERROR ( ’BESY1 NO PRECISION BECAUSE X IS BI

16’, 37, 2, 2)

c
Z = 32.0/X*%*2 - 1.0
AMPL = (0.75 + CSEVL (Z, BMICS, NTM1)) / SQRT(X)
THETA = X - 3.0+%PI4 + CSEVL (Z, BTH1CS, NTTH1) / X
BESY1 = AMPL * SIN (THETA)

C
RETURN
END

SUBROUTINE BESYNU(X,FNU,N,Y)
C+**ROUTINES CALLED GAMMA,RIMACH,XERROR

EXTERNAL GAMMA
C

INTEGER I, INU, J, K, KK, N, NN

REAL A, AK, ARG, A1, A2, BK, CB, CBK, CC, CCK, CK, COEF, CPT,

1 CP1, CP2, CS, CS1, Cs2, CX, DNU, DNU2, ETEST, ETX, F, FC, FHS,

2 FK, FKS, FLRX, FMU, FN, FNU, FX, G, Gi, G2, HPI, P, PI, PT, Q,

3 RB, RBK, RCK, RELB, RPT, RP1, RP2, RS, RS1, RS2, RTHPI, RX, S,

4 SA, SB, SMU, ss, ST, Ssi, s2, TB, TM, TOL, Ti, T2, X, X1, X2, Y

REAL GAMMA, R1MACH, SINH, COSH

DIMENSION A(120), RB(120), CB(120), Y(*), CC(8)

SAVE X1, X2, PI, RTHPI, HPI, CC

DATA X1, X2 / 3.0E0O, 20.0E0 /

DATA PI,RTHPI / 3.14159265358979E+00, 7 .97884560802865E-01/
DATA HPI / 1.57079632679490E+00/

DATA CcC(1), Ccc(2), cc(3), cc(4), cc(s5), cc(6), CC(7), CC(8)

1 / 5.77215664901533E-01,-4.20026350340952E-02,

2-4.21977345555443E-02, 7.21894324666300E-03,-2.15241674114900E-04,
3-2.01348547807000E-05, 1.13302723200000E-06, 6.11609500000000E-09/
C**»*FIRST EXECUTABLE STATEMENT BESYNU
AK = RIMACH(3)
TOL = AMAX1(AK,1.0E-15)
IF (X.LE.0.0EO) GO TO 270
IF (FNU.LT.0.0E0) GO TO 280
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IF (N.LT.1) GO TO 290

RX = 2.0E0/X

INU = INT(FNU+0.5E0)

DNU = FNU - FLOAT(INU)

IF (ABS(DNU) .EQ.0.5E0) GO TO 260
DNU2 = 0.0EO

IF (ABS(DNU).LT.TOL) GO TO 10
DNU2 = DNU=DNU

CONTINUE

IF (X.GT.X1) GO TO 120

SERIES FOR X.LE.X1

Al = 1.0E0 - DNU

A2 = 1.0E0 + DNU

T1 = 1.0E0/GAMMA (A1)

T2 = 1.0E0/GAMMA(A2)

IF (ABS(DNU).GT.0.1E0) GO TO 40

SERIES FOR FO TO RESOLVE INDETERMINACY FOR SMALL ABS(DNU)
S = CC(1)

AK = 1.0E0

DO 20 K=2,8

AK = AK=*DNU2
™

S

= CC(K)*AK
=S+ TM
IF (ABS(TM) .LT.TOL) GO TO 30
CONTINUE
G1 = -(S+S)
GO TO SO
CONTINUE
Gi = (T1-T2)/DNU
CONTINUE
G2 = T1 + T2
SMU = 1.0E0
FC = 1.0E0/PI
FLRX = ALOG(RX)
FMU = DNU=*FLRX

™ = 0.0E0

IF (DNU.EQ.0.0EQ) GO TO 60
TM = SIN(DNU=HPI)/DNU

TM = (DNU+DNU) *TM*TM

FC = DNU/SIN(DNU*PI)
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70

80

90

100

IF (FMU.NE.0.O0EO) SMU = SINH(FMU)/FMU
CONTINUE
F = FC*(G1+COSH (FMU)+G2*FLRX*SMU)
FX = EXP(FMU)
FCxT1xFX
= FCxT2/FX
F + TMxQ
1.0E0
1.0E0
1.0E0
=G
=P
(INU.GT.0 .OR. N.GT.1) GO TO 90
(X.LT.TOL) GO TO 80
CX = X*X*0.25E0
CONTINUE
F (AK*F+P+Q) / (BK-DNU2)
P P/ (AK-DNU)
Q = Q/(AK+DNU)
G
CK

HHBERRESO
"

F + TM*Q

-CK*CX/AK
T1 = CK*G
S1 + T1
BK = BK + AK + AK + 1.0EO
AK + 1.0E0

S = ABS(T1)/(1.0E0+ABS(S1))
IF (S.GT.TOL) GO TO 70
CONTINUE
Y(1) = -81
RETURN

CONTINUE

IF (X.LT.TOL) GO TO 110
CX = XxXx*0.25E0
CONTINUE
(AK*F+P+Q) / (BK-DNU2)
P/ (AK-DNU)
= Q/ (AK+DNU)
F + TMxQ

-CK*CX/AK
T1 = CK=*G
=81 +T1
CK* (P-AK*G)

[72]
'y
]

&
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S2 = S2 + T2
BK = BK + AK + AK + 1.0EO
AK = AK + 1.0EO

S = ABS(T1)/(1.0EO+ABS(S1)) + ABS(T2)/(1.0E0+ABS(S2))
IF (S.GT.TOL) GO TO 100
110 CONTINUE
52 = -S2*RX
S1 = -S1
GO TO 160
120 CONTINUE
COEF = RTHPI/SQRT(X)
IF (X.GT.X2) GO TO 210

MILLER ALGORITHM FOR X1.LT.X.LE.X2

ETEST = COS(PI*DNU)/(PI*X*TOL)
FKS = 1.0EO
FHS = 0.25E0
FK = 0.0EO
RCK = 2.0E0
CCK =X +X
RP1 = 0.0EO
CP1 = 0.0EO
RP2 = 1.0E0
CP2 = 0.0EO
K=20

130 CONTINUE
K=K+1

FK = FK + 1.0E0
AK = (FHS-DNU2)/(FKS+FK)

PT = FK + 1.0E0
RBK = RCK/PT
CBK = CCK/PT
RPT = RP2

CPT = CP2

RP2 = RBK*RPT - CBK*CPT - AK=*RP1
CP2 = CBK*RPT + RBK*CPT - AK*CP1
RP1 = RPT

CP1 = CPT

RB(K) = RBK

CB(K) = CBK

A(K) = AK
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150

8

= RCK + 2.0E0
FKS + FK + FK + 1.0E0
FHS = FHS + FK + FK
AMAX1 (ABS(RP1) ,ABS(CP1))
= (RP1/PT)*%2 + (CP1/PT)#**2
PT*SQRT (FC) *FK
(ETEST.GT.PT) GO TO 130
= K
= 1.0E0
0.0E0
RP1 = 0.0EO
CP1 = 0.0EO
RP2 = 1.0EO
CP2 = 0.0EO
DO 140 I=1,K
RPT = RP2
CPT = CP2
RP2 = (RB(KK)*RPT-CB(KK)*CPT-RP1) /A (KK)

B

33

BRRHEI

CP2 = (CB(KK)*RPT+RB (KK) *CPT-CP1) /A (KK)
RP1 = RPT
CP1 = CPT
RS = RS + RP2
CS = CS + CP2
KK =KK - 1
CONTINUE
PT = AMAX1(ABS(RS),ABS(CS))
FC = (RS/PT)*%x2 + (CS/PT)x*x*2
PT = PT*SQRT(FC)

RS1 = (RP2*(RS/PT)+CP2*(CS/PT))/PT
CS1 = (CP2*(RS/PT)-RP2*(CS/PT))/PT
FC = HPI*(DNU-0.5E0) - X

P = COS(FC)

Q = SIN(FC)

S1 = (CS1*Q-RS1xP)=*COEF

IF (INU.GT.0 .OR. N.GT.1) GO TO 150
Y(1) = Ss1

RETURN

CONTINUE

PT AMAX1(ABS(RP2) ,ABS(CP2))

FC = (RP2/PT)*x2 + (CP2/PT)=*x2

PT PT*SQRT (FC)

RPT = DNU + 0.5E0 - (RP1*(RP2/PT)+CP1*(CP2/PT))/PT
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Q

Q

160

170

180

190

200

210

CPT = X - (CP1*(RP2/PT)-RP1*(CP2/PT))/PT
CS2 = CS1*CPT - RS1*RPT
RS2 = RPT*CS1 + RS1*CPT

S2 = (RS2*Q+CS2+*P)*COEF/X
FORWARD RECURSION ON THE THREE TERM RECURSION RELATION

CONTINUE
CK = (DNU+DNU+2.0E0)/X
IF (N.EQ.1) INU = INU - 1
IF (INU.GT.0) GO TO 170
IF (N.GT.1) GO TO 190
S1 = 82
GO TO 190
CONTINUE
DO 180 I=1,INU
ST = S2
S2 = CK*S2 - S1
S1 = ST
CK = CK + RX
CONTINUE
IF (N.EQ.1) S1 = S2
CONTINUE
Y(1) = s1
IF (N.EQ.1) RETURN
Y(2) =82
IF (N.EQ.2) RETURN
DO 200 I=3,N
Y(I) = CK#Y(I-1) - Y(I-2)
CK = CK + RX
CONTINUE
RETURN

ASYMPTOTIC EXPANSION FOR LARGE X, X.GT.X2

CONTINUE

NN =2

IF (INU.EQ.O .AND. N.EQ.1) NN =1
DNU2 = DNU + DNU

FMU = 0.0EO

IF (ABS(DNU2).LT.TOL) GO TO 220
FMU = DNU2#DNU2
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220 CONTINUE

230
240

250

260

ARG = X - HPI*(DNU+0.SEO)
SA = SIN(ARG)
SB = COS(ARG)
ETX = 8.0E0*X
DO 250 K=1,NN
S1 = 82
T2 = (FMU-1.0EO) /ETX
SS = T2
RELB = TOL*ABS(T2)
T1 = ETX
S = 1.0EO
FN = 1.0EO
AK = 0.0E0
DO 230 J=1,13
=Tl + ETX
AK + 8.0EO
= FN + AK
-T2*(FMU-FN) /T1
=85 + T2
T1 + ETX
AK + 8.0EO
FN + AK
T2*(FMU-FN) /T1
SS =SS + T2
IF (ABS(T2) .LE.RELB) GO TO 240
CONTINUE
S2 = COEF*(S*SA+SS#*SB)
FMU = FMU + 8.0EO*DNU + 4.0EO
TB = SA
SA = -SB
SB = TB
CONTINUE
IF (NN.GT.1) GO TO 160
S1 = 82
GO TO 190

daxdvgdax
]

FNU=HALF ODD INTEGER CASE

CONTINUE
COEF = RTHPI/SQRT(X)
S1 = COEF#*SIN(X)
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52 = -COEF*C0S(X)
GO TO 160

270 CALL XERROR( ’IN BESYNU, X NOT GREATER THAN ZERO’, 34, 2, 1)
RETURN

280 CALL XERROR( ’IN BESYNU, FNU NOT ZERO OR POSITIVE’, 35, 2, 1)
RETURN

290 CALL XERROR( ’'IN BESYNU, N NOT GREATER THAN 0’, 31, 2, 1)
RETURN
END

FUNCTION CSEVL(X,CS,N)
C+*xFIRST EXECUTABLE STATEMENT CSEVL
IF(N.LT.1) CALL XERROR( ’CSEVL NUMBER OF TERMS LE 0’, 28, 2,2)
IF(N.GT.1000) CALL XERROR ( ’CSEVL NUMBER OF TERMS GT 1000’,
1 31,3,2)
IF (X.LT. -1.0 .OR. X.GT. 1.0) CALL XERROR( ’'CSEVL X OUTSIDE (-
11,+1)’, 25, 1, 1)

B1=0.

B0=0.

TWOX=2.*X

DO 10 I=1,N

B2=B1

B1=BO

NI=N+1-1

BO=TWOX*B1-B2+CS(NI)
10 CONTINUE

C

CSEVL = 0.5 * (BO-B2)
C

RETURN

END

FUNCTION GAMMA(X)
C+**ROUTINES CALLED CSEVL,GAMLIM,INITS,R1MACH,ROLGMC,XERROR
DIMENSION GCS(23)
C SQ2PIL IS ALOG (SQRT (2.*PI) )
DATA SQ2PIL /0.91893 85332 04672 74E0/
DATA NGCS, XMIN, XMAX, DXREL /0, 3%0.0 /
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C

Cx*»*FIRST EXECUTABLE STATEMENT GAMMA
IF (NGCS.NE.O) GO TO 10

c

C

C INITIALIZE. FIND LEGAL BOUNDS FOR X, AND DETERMINE THE NUMBER OF

C TERMS IN THE SERIES REQUIRED TO ATTAIN AN ACCURACY TEN TIMES BETTER

C THAN MACHINE PRECISION.

C
NGCS = INITS (GCS, 23, 0.1*R1MACH(3))
c
CALL GAMLIM (XMIN, XMAX)
DXREL = SQRT (R1MACH(4))
C
C
C FINISH INITIALIZATION. START EVALUATING GAMMA(X).
C

10 Y = ABS(X)
IF (Y.GT.10.0) GO TO 50

c
C COMPUTE GAMMA(X) FOR ABS(X) .LE. 10.0. REDUCE INTERVAL AND
C FIND GAMMA(1+Y) FOR 0. .LE. Y .LT. 1. FIRST OF ALL.
c
N=X
IF (X.LT.0.) N=N -1
Y = X - FLOAT(N)
N=N-1
GAMMA = 0.9375 + CSEVL(2.*Y-1., GCS, NGCS)
IF (N.EQ.0) RETURN
C
IF (N.GT.0) GO TO 30
C
C COMPUTE GAMMA(X) FOR X .LT. 1.
c

N=-N

IF (X.EQ.0.) CALL XERROR ( ’'GAMMA X IS 0’, 14, 4, 2)

IF (X.LT.0. .AND. X+FLOAT(N-2) .EQ.0.) CALL XERROR ( °’'GAMMA X IS
1 A NEGATIVE INTEGER’, 31, 4, 2)

IF (X.LT.(-0.5) .AND. ABS((X-AINT(X-0.5))/X).LT.DXREL) CALL

1 XERROR ( 'GAMMA  ANSWER LT HALF PRECISION BECAUSE X TOO NEAR NE
2GATIVE INTEGER’, 68, 1, 1)
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DO 20 I=1,N
GAMMA = GAMMA / (X+FLOAT(I-1))
20 CONTINUE

RETURN
C
C GAMMA(X) FOR X .GE. 2.
C

30 DO 40 I=1,N
GAMMA = (Y+FLOAT(I))*GAMMA
40 CONTINUE
RETURN

C
C COMPUTE GAMMA(X) FOR ABS(X) .GT. 10.0. RECALL Y = ABS(X).
C

50 IF (X.GT.XMAX) CALL XERROR ( ’GAMMA X SO BIG GAMMA OVERFLOWS’,

1 32, 3, 2)
C

GAMMA = 0.

IF (X.LT.XMIN) CALL XERROR ( 'GAMMA X SO SMALL GAMMA UNDERFLOWS'®

1 , 35, 2, 1)

IF (X.LT.XMIN) RETURN
C

GAMMA = EXP((Y-0.5)*ALOG(Y) - Y + SQ2PIL + RILGMC(Y) )

IF (X.GT.0.) RETURN
C

IF (ABS((X-AINT(X-0.5))/X).LT.DXREL) CALL XERROR ( ’GAMMA  ANSWER

1 LT HALF PRECISION, X TOO NEAR NEGATIVE INTEGER’ , 61, 1, 1)
c

SINPIY = SIN (PIxY)

IF (SINPIY.EQ.0.) CALL XERROR ( ’GAMMA X IS A NEGATIVE INTEGER’,

131, 4, 2)
C

GAMMA = -PI / (Y*SINPIY*GAMMA)
C

RETURN

END

INTEGER FUNCTION I1MACH(I)
C*x*FIRST EXECUTABLE STATEMENT I1MACH
IF (I .LT. 1 .O0R. I .GT. 16)
1 CALL XERROR ( ’'Ii1MACH -- I OUT OF BOUNDS’,25,1,2)
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I1MACH=TMACH(I)
RETURN

END

FUNCTION INITS(OS,NOS,ETA)
C**xROUTINES CALLED XERROR
DIMENSION 0S(NOS)
C*+*xFIRST EXECUTABLE STATEMENT INITS
IF (NOS.LT.1) CALL XERROR ( ’INITS NUMBER OF COEFFICIENTS LT 1°,

135, 2, 2
C
ERR = 0.
DO 10 II=1,NOS
I =NOS+1-1I1

= ERR + ABS(0S(I))
IF (ERR.GT.ETA) GO TO 20
10  CONTINUE

C
20 IF (I.EQ.NOS) CALL XERROR ( 'INITS ETA MAY BE TOO SMALL’, 28,
1 1, 2
INITS = 1
c
RETURN
END

REAL FUNCTION R1MACH(I)
C+**ROUTINES CALLED XERROR

c
INTEGER SMALL(2)
INTEGER LARGE(2)
INTEGER RIGHT(2)
INTEGER DIVER(2)
INTEGER L0G10(2)

c
REAL RMACH(5)

C

EQUIVALENCE (RMACH(1),SMALL(1))
EQUIVALENCE (RMACH(2),LARGE(1))
EQUIVALENCE (RMACH(3),RIGHT(1))
EQUIVALENCE (RMACH(4),DIVER(1))
EQUIVALENCE (RMACH(S),L0G10(1))
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C#xx FIRST EXECUTABLE STATEMENT ROLGMC
IF (NALGM.NE.O) GO TO 10
NALGM = INITS (ALGMCS,6,R1MACH(3))
10 IF (X.LT.10.0) CALL XERROR (’ROLGMC X MUST BE GE 10’,23,1,2)
IF (X.GE.XMAX) GO TO 20

c
ROLGMC = 1.0/(12.0%X)
IF (X.LT.XBIG) RILGMC = CSEVL (2.0%(10./X)#**2-1., ALGMCS, NALGM)/X
RETURN

C

20 RILGMC = 0.0
CALL XERROR ( 'ROLGMC X SO BIG ROLGMC UNDERFLOWS’, 34, 2, 1)
RETURN

END

SUBROUTINE XERROR(MESSG,NMESSG,NERR,LEVEL)
C+**ROUTINES CALLED XERRWV
CHARACTER#*(*) MESSG
Cx**FIRST EXECUTABLE STATEMENT XERROR
CALL XERRWV(MESSG,NMESSG,NERR,LEVEL,0,0,0,0,0.,0.)
RETURN
END

SUBROUTINE XERRWV(MESSG,NMESSG,NERR,LEVEL,NI,I1,I2,NR,R1,R2)
C**xROUTINES CALLED FDUMP,I1MACH, J4SAVE,XERABT,XERCTL ,XERPRT, XERSAV,
c XGETUA

CHARACTER#*(*) MESSG

CHARACTER*20 LFIRST

CHARACTER*37 FORM

DIMENSION LUN(5)

C GET FLAGS
C+**FIRST EXECUTABLE STATEMENT XERRWV
LKNTRL = J4SAVE(2,0, .FALSE.)
MAXMES = J4SAVE(4,0, .FALSE.)
c CHECK FOR VALID INPUT
IF ((NMESSG.GT.O) .AND. (NERR.NE.O) .AND.
1 (LEVEL.GE. (-1)) .AND. (LEVEL.LE.2)) GO TO 10
IF (LKNTRL.GT.O) CALL XERPRT(’FATAL ERROR IN...’,17)
CALL XERPRT(’XERROR -- INVALID INPUT’,23)
IF (LKNTRL.GT.O0) CALL FDUMP
IF (LKNTRL.GT.O0) CALL XERPRT(’JOB ABORT DUE TO FATAL ERROR.’,
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1 29)
IF (LKNTRL.GT.0) CALL XERSAV(’ ’,0,0,0,KDUMMY)
CALL XERABT(’XERROR -- INVALID INPUT’,23)
RETURN

10 CONTINUE

20

RECORD MESSAGE
JUNK = J4SAVE(1,NERR, .TRUE.)
CALL XERSAV(MESSG,NMESSG,NERR,LEVEL,KOUNT)
LET USER OVERRIDE
LFIRST = MESSG
LMESSG = NMESSG
LERR = NERR
LLEVEL = LEVEL
CALL XERCTL(LFIRST,LMESSG,LERR,LLEVEL ,LKNTRL)
RESET TO ORIGINAL VALUES
LMESSG = NMESSG
LERR = NERR
LLEVEL = LEVEL
LKNTRL = MAX0(-2,MINO(2,LKNTRL))
MKNTRL = IABS(LKNTRL)
DECIDE WHETHER TO PRINT MESSAGE
IF ((LLEVEL.LT.2).AND.(LKNTRL.EQ.0)) GO TO 100
IF (((LLEVEL.EQ. (-1)) .AND. (KOUNT.GT.MINO(1,MAXMES)))
1.0R. ((LLEVEL.EQ.0) .AND . (KOUNT.GT .MAXMES) )
2.0R.((LLEVEL.EQ.1) .AND. (KOUNT.GT .MAXMES) .AND. (MKNTRL.EQ.1))
3.0R. ((LLEVEL.EQ.2) .AND . (KOUNT.GT.MAX0(1,MAXMES)))) GO TO 100
IF (LKNTRL.LE.O) GO TO 20
CALL XERPRT(’ °’,1)
INTRODUCTION
IF (LLEVEL.EQ.(-1)) CALL XERPRT
1(°WARNING MESSAGE...THIS MESSAGE WILL ONLY BE PRINTED ONCE.’,57)
IF (LLEVEL.EQ.O0) CALL XERPRT(’WARNING IN...’,13)
IF (LLEVEL.EQ.1) CALL XERPRT

1 (’RECOVERABLE ERROR IN...’,23)
IF (LLEVEL.EQ.2) CALL XERPRT(’FATAL ERROR IN...’,17)
CONTINUE
MESSAGE

CALL XERPRT(MESSG,LMESSG)

CALL XGETUA(LUN,NUNIT)

ISIZEI = LOG1O(FLOAT(I1MACH(9))) + 1.0

ISIZEF = LOG10(FLOAT (I1MACH(10))#**I1MACH(11)) + 1.0
DO 50 KUNIT=1,NUNIT
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IUNIT = LUN(KUNIT)
IF (IUNIT.EQ.O0) IUNIT = I1MACH(4)
DO 22 I=1,MIN(NI,2)
WRITE (FORM,21) I,ISIZEI
21 FORMAT (°(11X,21HIN ABOVE MESSAGE, I’,11,’=,1°,12,7) )
IF (I.EQ.1) WRITE (IUNIT,FORM) I{
IF (I.EQ.2) WRITE (IUNIT,FORM) I2
22 CONTINUE
DO 24 I=1,MIN(NR,2)
WRITE (FORM,23) I,ISIZEF+10,ISIZEF
23 FORMAT (’(11X,21HIN ABOVE MESSAGE, R’,I1,’=,E’,
1 12,°.7,12,%)?)
IF (I.EQ.1) WRITE (IUNIT,FORM) R1
IF (I.EQ.2) WRITE (IUNIT,FORM) R2

24 CONTINUE
IF (LKNTRL.LE.0) GO TO 40
ERROR NUMBER
WRITE (IUNIT,30) LERR
30 FORMAT (15H ERROR NUMBER =,I10)
40 CONTINUE
50 CONTINUE
TRACE-BACK
IF (LKNTRL.GT.O0) CALL FDUMP
100 CONTINUE
IFATAL = 0

IF ((LLEVEL.EQ.2).OR.((LLEVEL.EQ.i).AND.(HKNTRL.EQ.2)))
1IFATAL = 1
QUIT HERE IF MESSAGE IS NOT FATAL
IF (IFATAL.LE.O) RETURN
IF ((LKNTRL.LE.O).OR.(KDUNT.GT.MAXO(I,MAXHES))) GO TO 120
PRINT REASON FOR ABORT
IF (LLEVEL.EQ.1) CALL XERPRT
1 (’JOB ABORT DUE TO UNRECOVERED ERROR.’,35)
IF (LLEVEL.EQ.2) CALL XERPRT
1 (’JOB ABORT DUE TO FATAL ERROR.’,29)
PRINT ERROR SUMMARY
CALL XERSAV(’ ’,-1,0,0,KDUMMY)
120 CONTINUE
ABORT
IF ((LLEVEL.EQ.2).AND.(KDUNT.GT.HAXO(l,HAXMES))) LMESSG = 0
CALL XERABT(MESSG,LMESSG)
RETURN
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END

SUBROUTINE XERSAV(MESSG,NMESSG, NERR, LEVEL , ICOUNT)

C*++*ROUTINES CALLED I1iMACH,S88FMT,XGETUA

2

INTEGER LUN(5)

CHARACTER* (*) MESSG

CHARACTER*20 MESTAB(10) ,MES

DIMENSION NERTAB(10) ,LEVTAB(10),KOUNT(10)

SAVE MESTAB,NERTAB,LEVTAB,KOUNT, KOUNTX

NEXT TWO DATA STATEMENTS ARE NECESSARY TO PROVIDE A BLANK

ERROR TABLE INITIALLY

DATA KUUNT(i),KUUNT(2),KOUNT(3).KDUNT(4),KUUNT(S).
KOUNT (6) ,KOUNT(7) ,KOUNT (8) ,KOUNT(9) , KOUNT (10)
/9,0,0,0,0,0,0,0,0,0/

DATA KOUNTX/0/

C+*xFIRST EXECUTABLE STATEMENT XERSAV

c

c

10

15
20
30

40

50
60

IF (NMESSG.GT.0) GO TO 80
DUMP THE TABLE
IF (KOUNT(1).EQ.0) RETURN
PRINT TO EACH UNIT
CALL XGETUA(LUN,NUNIT)
DO 60 KUNIT=1,NUNIT
IUNIT = LUN(KUNIT)
IF (IUNIT.EQ.O0) IUNIT = I1MACH(4)
PRINT TABLE HEADER
WRITE (IUNIT,10)

FORMAT (32HO ERROR MESSAGE SUMMARY/

51H MESSAGE START NERR LEVEL COUNT)
PRINT BODY OF TABLE

DO 20 I=1,10

IF (KOUNT(I).EQ.0) GO TO 30
WRITE (IUNIT,15) MESTAB(I) ,NERTAB(I) ,LEVTAB(I),KOUNT(I)
FORMAT (1X,A20,3I10)
CONTINUE
CONTINUE
PRINT NUMBER OF OTHER ERRORS
IF (KOUNTX.NE.O) WRITE (IUNIT,40) KOUNTX
FORMAT (41HOOTHER ERRORS NOT INDIVIDUALLY TABULATED=,I10)
WRITE (IUNIT,S0)
FORMAT (1X)
CONTINUE
IF (NMESSG.LT.0) RETURN
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C CLEAR THE ERROR TABLES
DO 70 I=1,10
70 KOUNT(I) = 0
KOUNTX = 0
RETURN
80 CONTINUE
PROCESS A MESSAGE...
SEARCH FOR THIS MESSG, OR ELSE AN EMPTY SLOT FOR THIS MESSG,
C OR ELSE DETERMINE THAT THE ERROR TABLE IS FULL.
MES = MESSG
DO 90 I=1,10
II=1
IF (KOUNT(I).EQ.0) GO TO 110
IF (MES.NE.MESTAB(I)) GO TO 90
IF (NERR.NE.NERTAB(I)) GO TO 90
IF (LEVEL.NE.LEVTAB(I)) GO TO 90
GO TO 100
90 CONTINUE
THREE POSSIBLE CASES...
c TABLE IS FULL
KOUNTX = KOUNTX+1
ICOUNT = 1
RETURN
c MESSAGE FOUND IN TABLE
100 KOUNT(II) = KOUNT(II) + 1
ICOUNT = KOUNT(II)
RETURN
C EMPTY SLOT FOUND FOR NEW MESSAGE

QQ

Q

110 MESTAB(II) = MES
NERTAB(II) = NERR
LEVTAB(II) = LEVEL
KOUNT(II) =1
ICOUNT = 1
RETURN

END

SUBROUTINE XGETUA(IUNITA,N)
C*++*ROUTINES CALLED J4SAVE
DIMENSION IUNITA(S)
C+xxFIRST EXECUTABLE STATEMENT XGETUA
N = J4SAVE(S,0, .FALSE.)
DO 30 I=1,N
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INDEX = I+4
IF (I.EQ.1) INDEX = 3
IUNITA(I) = J4SAVE(INDEX,O, .FALSE.)
30 CONTINUE
RETURN
END

SUBROUTINE YAIRY(X,RX,C,BI,DBI)
C**xREFER TO BESJ,BESY
C**x«ROUTINES CALLED (NONE)
C
INTEGER I, J, M1, MiD, M2, M2D, M3, M3D, M4D, N1, N1D, N2, N2D,
1 N3, N3D, N4D
REAL AA, AX, BB, BI, BJN, BJP, BKi, BK2, BK3, BK4, C, CON1, CON2,
1 CON3, CV, DAA, DBB, DBI, DBJN, DBJP, DBK1, DBK2, DBK3, DBK4, D1,
2 D2, EX, E1, E2, FPI12, F1, F2, RTRX, RX, SPI12, S1, S2, T, TC,
3 TEMP1, TEMP2, TT, X
DIMENSION BK1(20), BK2(20), BK3(20), BK4(14)
DIMENSION BJP(19), BIN(19), AA(14), BB(14)
DIMENSION DBK1(21), DBK2(20), DBK3(20), DBK4(14)
DIMENSION DBJP(19), DBJN(19), DAA(14), DBB(14)
SAVE N1, N2, N3, M1, M2, M3, N1D, N2D, N3D, N4D,
1 MiD, M2D, M3D, M4D, FPI12, SPI12, CON1, CON2, CON3,
2 BK1, BK2, BK3, BK4, BJP, BJN, AA, BB, DBK1, DBK2, DBK3, DBK4,
3 DBJP, DBJN, DAA, DBB
CxxxFIRST EXECUTABLE STATEMENT YAIRY
AX = ABS(X)
RX = SQRT(AX)
C = CON1=AX*RX
IF (X.LT.0.0E0) GO TO 120
IF (C.GT.8.0E0) GO TO 60
IF (X.GT.2.5E0) GO TO 30
T = (X+X-2.5E0)*0.4E0
TT =T+ T
J=N1
F1 = BK1(J)
F2 = 0.0EO
DO 10 I=1,M1
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + BK1(J)
F2 = TEMP1



10 CONTINUE

20

30

40

50

BI = T*F1 - F2 + BK1(1)
J = N1D
F1 DBK1(J)
F2 = 0.0E0
DO 20 I=1,M1D
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + DBK1(J)
F2 = TEMP1
CONTINUE
DBI = T*F1 - F2 + DBK1(1)
RETURN
CONTINUE
RTRX = SQRT(RX)
T = (X+X-CON2)*CON3
TT =T+ T
J = N1
F1 = BK2(J)
F2 = 0.0E0
DO 40 I=1 M1
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + BK2(J)
F2 = TEMP1
CONTINUE
BI (T*F1-F2+BK2(1) ) /RTRX
EX EXP(C)
BI BI*EX
J = N2D
F1 = DBK2(J)
F2 = 0.0EO
DO 50 I=1,M2D
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + DBK2(J)
F2 = TEMP1
CONTINUE
DBI = (T*F1-F2+DBK2(1))=*RTRX
DBI = DBI=*EX
RETURN
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70

80

90

CONTINUE
RTRX = SQRT(RX)
T = 16.0E0/C - 1.0E0
TT =T+ T
= N1
F1 = BK3(J)
F2 = 0.0E0
DO 70 I=1,M1
J=J-1
TEMP1 = F1
F1 = TT+#F1 - F2 + BK3(J)
F2 = TEMP1
CONTINUE
S1 = T*F1 - F2 + BK3(1)
= N2D
DBK3(J)
0.0EO
DO 80 I=1,M2D
J=J-1
TEMP1 = F1
F1 = TT+#F1 - F2 + DBK3(J)
F2 = TEMP1
CONTINUE
D1 = T*F1 - F2 + DBK3(1)
TC=C+C
EX = EXP(C)
IF (TC.GT.35.0E0) GO TO 110
T = 10.0E0/C - 1.0EO
TT =T+ T
= N3

—

J
F1
F2

F1 = TT*F1 - F2 + BK4(J)
F2 = TEMP1
CONTINUE
S2 = T*F1 - F2 + BK4(1)
BI (S1+EXP(-TC) *S2) /RTRX
BI BI*EX
J = N4D
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F1 = DBK4(J)
F2 = 0.0EO
DO 100 I=1,M4D
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + DBK4(J)
F2 = TEMP1
100 CONTINUE
D2 = T*F1 - F2 + DBK4(1)
DBI = RTRX*(D1+EXP(-TC)*D2)
DBI = DBI*EX
RETURN
110 BI = EX*S1/RTRX
DBI = EX*RTRX*D1
RETURN

120 CONTINUE
IF (C.GT.5.0E0) GO TO 150
T = 0.4E0%C - 1.0E0
TT =T+ T
J = N2
F1 = BJP(J)
E1 = BIN(J)
F2 = 0.0EO
E2 = 0.0EO
DO 130 I=1,M2
J=J-1
TEMP1 = F1
TEMP2 = E1
F1 = TT*F1 - F2 + BJP(J)
E1l = TT+*E1 - E2 + BJN(J)
F2 = TEMP1
E2 = TEMP2
130 CONTINUE
BI = (T+E1-E2+BJN(1)) - AX*(T*F1-F2+BJP(1))
J = N3D
F1 = DBJP(J)
E1 = DBJIN(J)
F2 = 0.0EO
E2 = 0.0EO
DO 140 I=1,M3D
J=J-1
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TEMP1 = F1
TEMP2 = E1
F1 = TT*F1 - F2 + DBJP(J)

El1 = TT*E1 - E2 + DBJN(J)
F2 = TEMP1
E2 = TEMP2
140 CONTINUE
DBI = X#X*(T*«F1-F2+DBJP(1)) + (T*E1-E2+DBJN(1))
RETURN
150 CONTINUE

RTRX = SQRT(RX)
T = 10.0E0/C - 1.0E0
ITT=T+ T
= N3
AA(T)
BB(J)
= 0.0E0
= 0.0EO0
160 I=1,M3
J=J-1
TEMP1 = F1
TEMP2 = Ei
F1 TT*F1 - F2 + AA(J)
E1 = TT+#E1 - E2 + BB(J)
F2 TEMP1
E2 = TEMP2
160 CONTINUE
TEMP1 = T*F1 - F2 + AA(1)
TEMP2 T*E1 - E2 + BB(1)
CV = C - FPI12
BI = (TEMP1*COS(CV)+TEMP2*SIN(CV))/RTRX
= N4D
= DAA(T)
DBB(J)
= 0.0E0
= 0.0E0
170 I=1,M4D
J=J-1
TEMP1 = F1
TEMP2 = E1
F1 = TT*F1 - F2 + DAA(J)

CRRVE I

CRURNE =
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El = TT*E1 - E2 + DBB(J)
F2 = TEMP1
E2 = TEMP2

170 CONTINUE

TEMP1 = T#F1 - F2 + DAA(1)

TEMP2 = T+#E1 - E2 + DBB(1)

CV = C - SPI12

DBI = (TEMP1%COS(CV)-TEMP2+SIN(CV))*RTRX
RETURN

END

SUBROUTINE ASYJY(FUNJY,X,FNU,FLGJY,IN,Y,WK, IFLW)
Cx**xREFER TO BESJ,BESY
C**xROUTINES CALLED I1MACH,R1MACH
INTEGER I, IFLW, IN, J, JN,JR,JU,K, KB,KLAST,KMAX, KP1, KS, KSP1,
* KSTEMP, L, LR, LRP1, ISETA, ISETB
INTEGER IiMACH
REAL ABW2, AKM, ALFA, ALFA1, ALFA2, AP, AR, ASUM, AZ,
BETA, BETA1, BETA2, BETA3, BR, BSUM, C, CON1, CON2,
CON3,CON548,CR,CRZ32, DFI,ELIM, DR,FI, FLGJY, FN, FNU,
FN2, GAMA, PHI, RCZ, RDEN, RELB, RFN2, RTZ, RZDEN,
SA, SB, SUMA, SUMB, S1, TA, TAU, TB, TFN, TOL, TOLS, T2, UPOL,
WK, X, XX, Y, Z, Z32
REAL R1MACH
DIMENSION Y(*), WK(*), C(65)
DIMENSION ALFA(26,4), BETA(26,5)
DIMENSION ALFA1(26,2), ALFA2(26,2)
DIMENSION BETA1(26,2), BETA2(26,2), BETA3(26,1)
DIMENSION GAMA(26), KMAX(5), AR(8), BR(10), UPOL(10)
DIMENSION CR(10), DR(10)
EQUIVALENCE (ALFA(1,1),ALFA1(1,1))
EQUIVALENCE (ALFA(1,3),ALFA2(1,1))
EQUIVALENCE (BETA(1,1),BETA1(1,1))
EQUIVALENCE (BETA(1,3),BETA2(1,1))
EQUIVALENCE (BETA(1,5),BETA3(1,1))
SAVE TOLS, CON1, CON2, CON3, CON548, AR, BR, C, ALFA1, ALFA2,
1 BETA1, BETA2, BETA3, GAMA
DATA TOLS /-6.90775527898214E+00/
DATA CON1,CON2,CON3,CONS548/
C+xxFIRST EXECUTABLE STATEMENT ASYJY
TA = RIMACH(3)
TOL = AMAX1(TA,1.0E-15)

* % * # »
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TB = R1MACH(5)
JU = T1IMACH(12)
IF(FLGJY.EQ.1.0E0) GO TO 6
JR = I1MACH(11)
ELIM = 2.303E0*TB*(FLOAT(-JU)-FLOAT(JR))
GO TQ 7
CONTINUE
ELIM = 2.303E0*(TB*FLOAT(-JU)-3.0E0)
CONTINUE
FN = FNU
IFIW = 0
DO 170 JN=1,IN
XX = X/FN
WK(1) = 1.0E0 - XX*XX
ABW2 = ABS(WK(1))
WK(2) SQRT (ABW2)
WK(7) = FN#*xCON2
IF (ABW2.GT.0.27750E0) GO TO 80

ASYMPTOTIC EXPANSION
CASES NEAR X=FN, ABS(1.-(X/FN)=*=2).LE.0.2775
COEFFICIENTS OF ASYMPTOTIC EXPANSION BY SERIES

ZETA AND TRUNCATION FOR A(ZETA) AND B(ZETA) SERIES
KMAX IS TRUNCATION INDEX FOR A(ZETA) AND B(ZETA) SERIES=MAX(2,SA)

SA = 0.0E0
IF (ABW2.EQ.0.0E0) GO TO 10
SA = TOLS/ALOG(ABW2)
SB = SA
DO 20 I=1,5
AKM = AMAX1(SA,2.0E0)
KMAX(I) = INT(AKM)
SA = SA + SB
CONTINUE
KB = KMAX(5)
KLAST = KB - 1
SA = GAMA(KB)
DO 30 K=1,KLAST
KB =KB -1
SA = SA*WK(1) + GAMA(KB)



Q
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CONTINUE

Z = WK(1)*SA

AZ = ABS(Z)

RTZ = SQRT(AZ)

WK(3) = CON1*AZ*RTZ
WK(4) WK(3)*FN

WK(5) RTZ*WK (7)

WK(6) = -WK(5)=*WK(S)
IF(Z.LE.0.0E0) GO TO 35
IF(WK(4) .GT.ELIM) GO TO 75
WK(6) = -WK(6)

CONTINUE

PHI = SQRT(SQRT(SA+SA+SA+SA))

B(ZETA) FOR S=0

KB = KMAX(5)
KLAST = KB - 1
SB = BETA(KB, 1)
DO 40 K=1,KLAST
KB=KB -1
SB = SB*WK(1) + BETA(KB,1)
CONTINUE

KSP1 = 1

FN2 = FN=*FN

RFN2 = 1.0EO/FN2
RDEN = 1.0EO

ASUM = 1.0EO

RELB = TOL#*ABS(SB)
BSUM = SB

DO 60 KS=1,4

KSP1 = KSP1 + 1
RDEN = RDEN*RFN2

A(ZETA) AND B(ZETA) FOR S=1,2,3,4

KSTEMP = 5 - KS
KB = KMAX(KSTEMP)
KLAST = KB - 1

SA = ALFA(KB,KS)
SB = BETA(KB,KSP1)
DO 50 K=1,KLAST

163



aaQa

50

60
70

75

80

90

KB =KB -1
SA = SA*WK(1) + ALFA(KB,KS)
SB = SB*WK(1) + BETA(KB,KSP1)
CONTINUE
TA = SA*RDEN
TB = SB*RDEN
ASUM = ASUM + TA
BSUM = BSUM + TB
IF (ABS(TA).LE.TOL .AND. ABS(TB).LE.RELB) GO TO 70
CONTINUE
CONTINUE
BSUM = BSUM/(FN*WK(7))
GO TO 160

CONTINUE
IFLW = 1
RETURN

CONTINUE

UPOL(1) = 1.0EO

TAU = 1.0E0/WK(2)

T2 = 1.0E0/WK(1)

IF (WK(1).GE.0.0E0) GO TO 90

CASES FOR (X/FN) .GT.SQRT(1.2775)

WK(3) = ABS(WK(2)-ATAN(WK(2)))
WK(4) = WK(3)*FN

RCZ = -CON1/WK(4)

Z32 = 1.5E0*WK(3)

RTZ = Z32**CON2

WK(5) = RTZ*WK(7)

WK(6) = -WK(5)*WK(5)

GO TO 100

CONTINUE

CASES FOR (X/FN) .LT.SQRT(0.7225)

WK(3) = ABS(ALOG((1.0E0+WK(2))/XX)-WK(2))
WK(4) = WK(3)*FN

RCZ = CON1/WK(4)

IF(WK(4) .GT.ELIM) GO TO 75
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Z32 = 1.5E0*WK(3)
RTZ = Z32*xCON2

WK(7) = FN**CON2
WK(5) = RTZ+WK(7)
WK(6) = WK(5)*WK(5)

100 CONTINUE
PHI = SQRT((RTZ+RTZ)=*TAU)
TB = 1.0E0
ASUM = 1.0E0
TFN = TAU/FN
RDEN=1.0EO/FN
RFN2=RDEN*RDEN
RDEN=1.0EO
UPOL(2) = (C(1)*T2+C(2))=TFN
CRZ32 = CON548*RCZ
BSUM = UPOL(2) + CRZ32
RELB = TOL#*ABS (BSUM)
AP = TFN
KS =0
KP1 = 2
RZDEN = RCZ
L=2
ISETA=0
ISETB=0
DO 140 LR=2,8,2

COMPUTE TWO U POLYNOMIALS FOR NEXT A(ZETA) AND B(ZETA)

LRP1 = IR + 1
DO 120 K=LR,LRP1
KS =KS + 1
KP1 = KP1 + 1
L=L+1
S1 = C(L)
DO 110 J=2,KP1
L=L+1
S1 = S1*T2 + C(L)
110 CONTINUE
AP = AP*TFN
UPOL(KP1) = AP=*S1
CR(KS) = BR(KS)*RZDEN
RZDEN = RZDEN*RCZ
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130
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133
140
150

160

165

170

DR(KS) = AR(KS)=*RZDEN
CONTINUE
SUMA = UPOL(LRP1)
SUMB = UPOL(LR+2) + UPOL(LRP1)*CRZ32
JU = LRP1
DO 130 JR=1,LR
JU=JUu -1
SUMA = SUMA + CR(JR)*UPOL(JU)
SUMB = SUMB + DR(JR)=*UPOL (JU)

CONTINUE
RDEN=RDEN*RFN2
B = -TB
IF (WK(1).GT.0.0E0) TB = ABS(TB)
IF (RDEN.LT.TOL) GO TO 131
ASUM = ASUM + SUMA=*TB
BSUM = BSUM + SUMB*TB
GO TO 140
IF(ISETA.EQ.1) GO TO 132
IF(ABS(SUMA) .LT.TOL) ISETA=1
ASUM=ASUM+SUMA*TB
IF(ISETB.EQ.1) GO TO 133
IF(ABS(SUMB) .LT.RELB) ISETB=1
BSUM=BSUM+SUMB*TB
IF(ISETA.EQ.1 .AND. ISETB.EQ.1) GO TO 150
CONTINUE
TB = WK(5)
IF (WK(1).GT.0.0E0) TB = -TB
BSUM = BSUM/TB

CONTINUE
CALL FUNJY(WK(6), WK(5), WK(4), FI, DFI)
TA=1.0EQ/TOL
TB=R1MACH(1) *TA*1.0E+3
IF(ABS(FI) .GT.TB) GO TO 165
FI=FI*TA
DFI=DFI=*TA
PHI=PHI*TOL
CONTINUE
Y(IN) = FLGJY*PHI=* (FI*ASUM+DFI*BSUM) /WK(7)
FN = FN - FLGJY
CONTINUE
RETURN
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END

FUNCTION BESJO(X) C***ROUTINES CALLED CSEVL, INITS,R1MACH, XERROR
DIMENSION BJOCS(13), BMOCS(21), BTHOCS(24)
DATA PI4 / 0.7853981633 9744831E0 /
DATA NTJO, NTMO, NTTHO, XSML, XMAX / 3*0, 2%0./
C***+FIRST EXECUTABLE STATEMENT BESJO
IF (NTJO.NE.O) GO TO 10
NTJO = INITS (BJOCS, 13, 0.1*RIMACH(3))
NTMO = INITS (BMOCS, 21, 0.1*R1MACH(3))
NTTHO = INITS (BTHOCS, 24, 0.1*RIMACH(3))

XSML
XMAX

SQRT (4.0+R1MACH(3))
1.0/R1MACH(4)

10 Y = ABS(X)
IF (Y.GT.4.0) GO TO 20

c
BESJO = 1.0
IF (Y.GT.XSML) BESJO = CSEVL (.125*Y+Y-1., BJOCS, NTJO)
RETURN

c

20 IF (Y.GT.XMAX) CALL XERROR ( ’BESJO NO PRECISION BECAUSE ABS (X)
1 IS BIG’, 42, 1, 2)

c
Z = 32.0/Y+*2 - 1.0
AMPL = (0.75 + CSEVL (Z, BMOCS, NTMO)) / SQRT(Y)
THETA = Y - PI4 + CSEVL (Z, BTHOCS, NTTHO) / Y
BESJO = AMPL * COS (THETA)

c
RETURN
END

FUNCTION BESJ1(X)
C*»*ROUTINES CALLED CSEVL,INITS,R1MACH,XERROR

DIMENSION BJ1CS(12), BM1CS(21), BTH1CS(24)

DATA NTJ1, NTM1, NTTH1, XSML, XMIN, XMAX / 3%0, 3%0./
Cx*xFIRST EXECUTABLE STATEMENT BESJ1

IF (NTJ1.NE.O) GO TO 10

NTJ1 = INITS (BJ1CS, 12, 0.1*RIMACH(3))

NTM1 = INITS (BM1CS, 21, 0.1*R1MACH(3))

NTTH1 = INITS (BTH1CS, 24, 0.1*RiMACH(3))
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c
XSML = SQRT (8.0*R1MACH(3))
XMIN = 2.0«RIMACH(1)
XMAX = 1.0/R1MACH(4)

c

10 Y = ABS(X)
IF (Y.GT.4.0) GO TO 20

BESJ1 = 0.

IF (Y.EQ.0.0) RETURN

IF (Y.LT.XMIN) CALL XERROR ( ’BESJ1  ABS(X) SO SMALL J1 UNDERFLOW
1s’, 37, 1, 1)

IF (Y.GT.XMIN) BESIJ1
IF (Y.GT.XSML) BESJ1
RETURN

0.5=%X
X * (.25 + CSEVL(.125*Y*Y-1., BJ1CS, NTJ1))

C
20 IF (Y.GT.XMAX) CALL XERROR ( °’BESJ1 NO PRECISION BECAUSE ABS(X)
1 IS BIG’, 42, 2, 2)
Z = 32.0/Y%*2 - 1.0
AMPL = (0.75 + CSEVL (Z, BM1CS, NTM1)) / SQRT(Y)
THETA = Y ~ 3.0+«PI4 + CSEVL (Z, BTH1CS, NTTH1) / Y
BESJ1 = SIGN (AMPL, X) =* COS (THETA)

RETURN
END

SUBROUTINE GAMLIM(XMIN,XMAX)
Cx*xROUTINES CALLED R1MACH,XERROR
C*+*xFIRST EXECUTABLE STATEMENT GAMLIM
ALNSML = ALOG(RIMACH(1))
XMIN = -ALNSML
DO 10 I=1,10
XOLD = XMIN
XLN = ALOG(XMIN)
XMIN = XMIN - XMIN*((XMIN+0.5)*XLN - XMIN - 0.2258 + ALNSML)
1 / (XMIN*XLN + 0.5)
IF (ABS(XMIN-XOLD).LT.0.005) GO TO 20
10  CONTINUE
CALL XERROR ( ’GAMLIM UNABLE TO FIND XMIN’, 27, 1, 2)
c
20 XMIN = -XMIN + 0.01
C
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ALNBIG = ALOG(RIMACH(2))

XMAX = ALNBIG
DO 30 I=1,10
XOLD = XMAX

XLN = ALOG(XMAX)
XMAX = XMAX - XMAX*((XMAX-0.5)*XLN - XMAX + 0.9189 - ALNBIG)
1 / (XMAX*XLN - 0.5)
IF (ABS(XMAX-XOLD).LT.0.005) GO TO 40
30 CONTINUE
CALL XERROR ( ’GAMLIM UNABLE TO FIND XMAX’, 27, 2, 2)
c
40 XMAX = XMAX - 0.01
XMIN = AMAX1 (XMIN, -XMAX+1.)

RETURN
END

FUNCTION J4SAVE(IWHICH,IVALUE,ISET)

LOGICAL ISET

INTEGER IPARAM(9)

SAVE IPARAM

DATA IPARAM(1),IPARAM(2),IPARAM(3),IPARAM(4)/0,2,0,10/

DATA IPARAM(S)/1/

DATA IPARAM(6),IPARAM(7),IPARAM(8),IPARAM(9)/0,0,0,0/
Cx**FIRST EXECUTABLE STATEMENT J4SAVE

J4SAVE = IPARAM(IWHICH)

IF (ISET) IPARAM(IWHICH) = IVALUE

RETURN

END

SUBROUTINE XERABT(MESSG,NMESSG)
CHARACTER=* (*) MESSG

Cx**FIRST EXECUTABLE STATEMENT XERABT
STOP
END

SUBROUTINE XERCTL(MESSG1,NMESSG,NERR,LEVEL,KONTRL)
CHARACTER*20 MESSG1
Cx*xFIRST EXECUTABLE STATEMENT XERCTL
RETURN
END



SUBROUTINE XERPRT (MESSG,NMESSG)
C***ROUTINES CALLED I1iMACH,S88FMT,XGETUA
INTEGER LUN(5)
CHARACTER* (*) MESSG
C OBTAIN UNIT NUMBERS AND WRITE LINE TO EACH UNIT
C+**FIRST EXECUTABLE STATEMENT XERPRT
CALL XGETUA(LUN,NUNIT)
LENMES = LEN(MESSG)
DO 20 KUNIT=1,NUNIT
IUNIT = LUN(KUNIT)
IF (IUNIT.EQ.O0) IUNIT = I1MACH(4)
DO 10 ICHAR=1,LENMES,72
LAST = MINO(ICHAR+71 , LENMES)
WRITE (IUNIT,’(1X,A)’) MESSG(ICHAR:LAST)
10 CONTINUE
20 CONTINUE
RETURN
END

SUBROUTINE BESJ(X,ALPHA,N,Y,NZ)
C++*+ROUTINES CALLED ALNGAM,ASYJY,I1MACH,JAIRY,R1MACH,XERROR
C
EXTERNAL JAIRY
INTEGER I,IALP,IDALP,IFLW,IN,INLIM,IS,I1,I2,K,KK,KM,KT,N, NN,

1 NS,NZ
INTEGER I1MACH
REAL AK, AKM, ALPHA, ANS, AP, ARG, COEF ,DALPHA ,DFN, DTM, EARG,

REAL R1MACH, ALNGAM
DIMENSION Y(10), TEMP(3), FNULIM(2), PP(4), WK(7)

DATA RTWO,PDF,RTTP,PIDT / 1.34839972492648E+00,
C*x*«FIRST EXECUTABLE STATEMENT BESJ

NZ =0

KT =1
c I1MACH(14) REPLACES I1MACH(11) IN A DOUBLE PRECISION CODE
C I1MACH(15) REPLACES IIMACH(12) IN A DOUBLE PRECISION CODE

TA = R1MACH(3)
TOL = AMAX1(TA,1.0E-15)

I1 = TIMACH(11) + 1
I2 = TIMACH(12)
TB = R1MACH(5)

ELIM1 = 2.303E0#*(FLOAT(-I2)*TB-3.0EO)
c TOLLN = -LN(TOL)
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TOLLN = 2.303E0*TB*FLOAT(I1)
TOLLN = AMIN1(TOLLN,34.5388E0)
IF (N-1) 720, 10, 20
KT = 2
NN =N
IF (X) 730, 30, 80
IF (ALPHA) 710, 40, 50
Y(1) = 1.0E0
IF (N.EQ.1) RETURN
I1 =2
GO TO 60
I1=1
DO 70 I=I1,N
Y(I) = 0.0E0
CONTINUE
RETURN
CONTINUE
IF (ALPHA.LT.0.0E0) GO TO 710

IALP = INT(ALPHA)

FNI = FLOAT(IALP+N-1)
FNF = ALPHA - FLOAT(IALP)
DFN = FNI + FNF

FNU = DFN

X02 = X*0.5E0

SX02 = X02=*X02

DECISION TREE FOR REGION WHERE SERIES, ASYMPTOTIC EXPANSION FOR X
TO INFINITY AND ASYMPTOTIC EXPANSION FOR NU TO INFINITY ARE
APPLIED.

IF (SX02.LE. (FNU+1.0E0)) GO TO 90
TA = AMAX1(20.0EO,FNU)

IF (X.GT.TA) GO TO 120

IF (X.GT.12.0E0) GO TO 110
X02L = ALOG(X02)

NS = INT(SX02-FNU) + 1

GO TO 100

FN = FNU

FNP1 = FN + 1.0EO

X02L = ALOG(X02)

IS = KT
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IF (X.LE.0.50E0) GO TO 330
NS =0

100 FNI = FNI + FLOAT(NS)
DFN = FNI + FNF

FN = DFN
FNP1 = FN + 1.0E0
IS = KT
IF (N-1+NS.GT.0) IS = 3
GO TO 330
110 ANS = AMAX1(36.0E0-FNU,0.0E0)
NS = INT(ANS)

FNI = FNI + FLOAT(NS)
DFN = FNI + FNF
FN = DFN
IS = KT
IF (N-1+NS.GT.0) IS = 3
GO TO 130

120 CONTINUE
RTX = SQRT(X)
TAU = RTWO*RTX
TA = TAU + FNULIM(KT)
IF (FNU.LE.TA) GO TO 480
FN = FNU
IS = KT

UNIFORM ASYMPTOTIC EXPANSION FOR NU TO INFINITY

130 CONTINUE
I1 = IABS(3-IS)
I1 = MAX0(I1,1)
FLGJY = 1.0EO
CALL ASYJY(JAIRY,X,FN,FLGJY,I1,TEMP(IS),WK,IFLW)
IF(IFLW.NE.O) GO TO 380
GO TO (320, 450, 620), IS
310 TEMP(1) = TEMP(3)
KT =1
320 IS = 2
FNI = FNI - 1.0EO
DFN = FNI + FNF
FN = DFN
IF(I1.EQ.2) GO TO 450
GO TO 130
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350
360

370

380

SERIES FOR (X/2)**2.LE.NU+1

CONTINUE
GLN = ALNGAM(FNP1)
ARG = FN*X02L - GLN
IF (ARG.LT.(-ELIM1)) GO TO 400
EARG = EXP(ARG)
CONTINUE
S = 1.0E0
IF (X.LT.TOL) GO TO 360
AK = 3.0E0
T2 = 1.0E0
T = 1.0E0
1 =
DO 350 K=1,17
S2 = T2 + 81
T = -T*SX02/S2
S=8S+T
IF (ABS(T).LT.TOL) GO TO 360
T2 = T2 + AK
AK = AK + 2.0EO0
S1 =S1 +FN
CONTINUE
CONTINUE
TEMP(IS) = S*EARG
GO TO (370, 450, 610), IS
EARG = EARG*FN/X02
FNI = FNI - 1.0EQ
DFN = FNI + FNF

=

FN = DFN
IS = 2
GO TO 340

SET UNDERFLOW VALUE AND UPDATE PARAMETERS

Y(NN) = 0.0EO

NN = NN - 1

FNI = FNI - 1.0EO

DFN = FNI + FNF

FN = DFN

IF (NN-1) 440, 390, 130
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400
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420

430

440

450

460

470

KT = 2

Is = 2

GO TO 130

Y(NN) = 0.0EO

NN =NN -1

FNP1 = FN

FNI = FNI - 1.0EO

DFN = FNI + FNF

FN = DFN

IF (NN-1) 440, 410, 420

KT = 2

IS = 2

IF (SX02.LE.FNP1) GO TO 430
GO TO 130

ARG = ARG - XO2L + ALOG(FNP1)
IF (ARG.LT.(-ELIM1)) GO TOD 400
GO TO 330

NZ = N - NN

RETURN

BACKWARD RECURSION SECTION

CONTINUE
NZ =N - NN
IF (KT.EQ.2) GO TO 470
BACKWARD RECUR FROM INDEX ALPHA+NN-1 TO ALPHA
Y(NN) = TEMP(1)
Y(NN-1) = TEMP(2)
IF (NN.EQ.2) RETURN
TRX = 2.0E0/X
DTM = FNI
TM = (DTM+FNF)*TRX
K=NN+1
DO 460 I=3,NN
K=K-1
Y(K-2) = TM*Y(K-1) - Y(K)
DTM = DTM - 1.0EO
TM = (DTM+FNF)*TRX
CONTINUE
RETURN
Y(1) = TEMP(2)
RETURN
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ASYMPTOTIC EXPANSION FOR X TO INFINITY WITH FORWARD RECURSION IN
OSCILLATORY REGION X.GT.MAX(20, NU), PROVIDED THE LAST MEMBER
OF THE SEQUENCE IS ALSO IN THE REGION.

CONTINUE

IN = INT(ALPHA-TAU+2.0EO)
IF (IN.LE.O) GO TO 490
IDALP = IALP - IN - 1

KT =1

GO TO 500

CONTINUE

IDALP = IALP

IN=0

IS = KT

FIDAL = FLOAT(IDALP)
DALPHA = FIDAL + FNF

ARG = X - PIDT*DALPHA - PDF
SA = SIN(ARG)

SB = COS(ARG)

COEF = RTTP/RTX

ETX = 8.0E0*X

CONTINUE

DTM = FIDAL + FIDAL

DTM = DTM*DTM

™ = 0.0EO

IF (FIDAL.EQ.0.0EO .AND. ABS(FNF).LT.TOL) GO TO 520
T = 4.0EO*FNF* (FIDAL+FIDAL+FNF)
CONTINUE

TRX = DTM - 1.0E0

T2 (TRX+TM) /ETX

= T2

RELB = TOL*ABS(T2)

Ti1 = ETX

= 1.0E0

1.0E0

8.0E0

530 K=1,13

T1 = T1 + ETX

FN = FN + AK

TRX = DTM - FN

AP = TRX + T™

[72]
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530
540

550

560

570

T2 = -T2*AP/T1
S1 =81 + T2

TL = T1 + EIX
AK = AK + 8.0EO0
FN = FN + AK

TRX = DTM - FN
AP = TRX + TM
T2 = T2#*AP/T1
S2 =82 + T2
IF (ABS(T2).LE.RELB) GO TO 540
AK = AK + 8.0EO
CONTINUE
TEMP(IS) = COEF*(S1*SB-S2%SA)
IF(IS.EQ.2) GO TO 560
FIDAL = FIDAL + 1.0EO
DALPHA = FIDAL + FNF

IS = 2

TB = SA
SA = -SB
SB = TB
GO TO 510

FORWARD RECURSION SECTION

IF (KT.EQ.2) GO TO 470

S1 = TEMP(1)

S2 = TEMP(2)

TX = 2.0E0/X

TM = DALPHA*TX

IF (IN.EQ.0) GO TO 580

FORWARD RECUR TO INDEX ALPHA

DO 570 I=1,IN
S =82
S2 = TM*S2 - S1
™=TM + TX
S1 =8
CONTINUE
IF (NN.EQ.1) GO TO 600
S =82
S2 = TM*S2 - S1
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™=TM + TX
S1 =S8
CONTINUE

FORWARD RECUR FROM INDEX ALPHA TO ALPHA+N-1

Y(1) = s1

Y(2) = s2

IF (NN.EQ.2) RETURN

DO 590 I=3,NN
Y(I) = TM*Y(I-1) - Y(I-2)
™ =TM + TX

CONTINUE

RETURN

Y(1) = 82

RETURN

BACKWARD RECURSION WITH NORMALIZATION BY
ASYMPTOTIC EXPANSION FOR NU TO INFINITY OR POWER SERIES.

CONTINUE

COMPUTATION OF LAST ORDER FOR SERIES NORMALIZATION

AKM = AMAX1(3.0EO-FN,0.0EO)

KM = INT(AKM)

TFN = FN + FLOAT (KM)

TA (GLN+TFN-0.9189385332E0-0.0833333333E0/TFN) / (TFN+0.5E0)
TA = X02L - TA

TB = -(1.0E0-1.5EO0/TFN) /TFN

AKM = TOLLN/(-TA+SQRT(TA*TA-TOLLN*TB)) + 1.SEO

IN = KM + INT(AKM)

GO TO 660

CONTINUE

COMPUTATION OF LAST ORDER FOR ASYMPTOTIC EXPANSION NORMALIZATION
GLN = WK(3) + WK(2)

IF (WK(6).GT.30.0E0) GO TO 640

RDEN = (PP(4)*WK(6)+PP(3))*WK(6) + 1.0EO

RZDEN = PP(1) + PP(2)*WK(6)

TA = RZDEN/RDEN

IF (WK(1).LT.0.10E0) GO TO 630

TB = GLN/WK(5)

GO TO 650
TB=(1.25992104QEO+(0.167989473OEO+0.0887944358E0*WK(1))*WK(l))
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1 /WK(7)
GO TO 650
640 CONTINUE
TA = 0.SEO*TOLLN/WK(4)
TA=((0.049382716080*TA—O.1111111111E0)*T1+0.666666666730)*TA*HK(6)
IF (WK(1).LT.0.10E0) GO TO 630
TB = GLN/WK(5)
650 IN = INT(TA/TB+1.5EO)
IF (IN.GT.INLIM) GO TO 310
660 CONTINUE
DTM = FNI + FLOAT(IN)
TRX = 2.0E0/X
TM = (DTM+FNF)*TRX
TA = 0.0EO
TB = TOL
KK = 1
670 CONTINUE

BACKWARD RECUR UNINDEXED

DO 680 I=1,IN
S =TB
TB = TM*TB - TA
TA =S

DTM = DTM - 1.0E0
TM = (DTM+FNF)*TRX

680 CONTINUE
NORMALIZATION
IF (KK.NE.1) GO TO 690
TA = (TA/TB)+TEMP(3)
TB = TEMP(3)
KK = 2
IN = NS

IF (NS.NE.O) GO TO 670
690 Y(NN) = TB

NZ =N - NN
IF (NN.EQ.1) RETURN
K=NN -1

Y(K) = TM*TB - TA
IF (NN.EQ.2) RETURN
DTM = DTM - 1.0E0
TM = (DTM+FNF)*TRX
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KM =K -1
C BACKWARD RECUR INDEXED

DO 700 I=1,KM
Y(K-1) = TM*Y(K) - Y(K+1)
DTM = DTM - 1.0EO
TM = (DTM+FNF)*TRX
K=K-1
700 CONTINUE
RETURN

710 CONTINUE
CALL XERROR( ’BESJ - ORDER, ALPHA, LESS THAN ZERO.’, 36, 2, 1)
RETURN
720 CONTINUE
CALL XERROR( ’BESJ - N LESS THAN ONE.’, 23, 2, 1)
RETURN
730 CONTINUE
CALL XERROR( ’BESJ - X LESS THAN ZERO.’, 24, 2, 1)
RETURN
END

SUBROUTINE JAIRY(X,RX,C,AI,DAI)

INTEGER I, J, M1, MiD, M2, M2D, M3, M3D, M4, M4D, N1, N1D, N2,
1 N2D, N3, N3D, N4, N4D

REAL A, AI, AJN, AJP, AK1, AK2, AK3, B, C, CCV, CON1, CON2, CON3,
1 CON4, CON5, CV, DA, DAI, DAJN, DAJP, DAK1, DAK2, DAK3, DB, EC,
2 E1, E2, FPI12, F1, F2, RTRX, RX, SCv, T, TEMP1, TEMP2, TT, X
DIMENSION AJP(19), AJN(19), A(15), B(15)

DIMENSION AK1(14), AK2(23), AK3(14)

DIMENSION DAJP(19), DAJN(19), DA(15), DB(15)

DIMENSION DAK1(14), DAK2(24), DAK3(14)

Cxx*FIRST EXECUTABLE STATEMENT JAIRY

IF (X.LT.0.0E0) GO TO 90

IF (C.GT.5.0E0) GO TO 60

IF (X.GT.1.20E0) GO TO 30

T = (X+X-1.2EQ) *CON4

TT =T+ T

J =Nt
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F1 = TT*F1 - F2 + AK1(J)
F2 = TEMP1

CONTINUE

Al = T*F1 - F2 + AK1(1)

J = N1D
F1 = DAK1(J)
F2 = 0.0E0
DO 20 I=1,M1D
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + DAK1(J)
F2 = TEMP1
CONTINUE
DAI = -(T*F1-F2+DAK1(1))
RETURN

CONTINUE
= (X+X-CON2)=*CON3
TT =T+ T
= N2
F1 = AK2(J)
F2 = 0.0E0
DO 40 I=1,M2
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + AK2(J)
F2 = TEMP1
CONTINUE
RTRX = SQRT(RX)
EC = EXP(-C)

—

AI = EC*(T*F1-F2+AK2(1))/RTRX

J = N2D

F1 = DAK2(J)
F2 = 0.0EO
DO 50 I=1,M2D
J=J-1
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TEMP1 = F1

F1 = TT#F1 - F2 + DAK2(J)

F2 = TEMP1
CONTINUE
DAI = -EC*(T*F1-F2+DAK2(1))*RTRX
RETURN

CONTINUE
T = 10.0E0/C - 1.0EO
TT =T+ T

F1 = TT*F1 - F2 + AK3(J)
F2 = TEMP1
CONTINUE
RTRX = SQRT(RX)
EC = EXP(-C)
AI = EC*(T*F1-F2+AK3(1))/RTRX
J = N1D
F1 = DAK3(J)
F2 = 0.0E0
DO 80 I=1,M1D
J=J-1
TEMP1 = F1
F1 = TT*F1 - F2 + DAK3(J)
F2 = TEMP1
CONTINUE
DAI = -RTRX*EC#*(T*F1-F2+DAK3(1))
RETURN

CONTINUE
IF (C.GT.5.0E0) GO TO 120
T = 0.4E0*C - 1.0EO

TT =T+ T
J = N3

F1 = AJP(D)
E1l = AJN(D)

F2

0.0EO0
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TEMP1 = F1
TEMP2 = E1
F1 = TT*F1 - F2 + AJP(J)

El = TT*E1 - E2 + AINQJ)
F2 = TEMP1
E2 = TEMP2

CONTINUE

AI = (T*E1-E2+AJN(1)) - X*(T*F1-F2+AJP(1))
J = N3D
DAJP(J)
= DAJN(J)
= 0.0EO
= 0.0EO
110 I=1,M3D
J=J-1
TEMPL = F1
TEMP2 = E1
F1 = TT*F1 - F2 + DAJP(J)
El1 = TT*E1 - E2 + DAJN(J)
F2 = TEMP1
E2 = TEMP2
CONTINUE

sgapa

DAI = X*X#(T*F1-F2+DAJP(1)) + (T+E1-E2+DAJN(1))

RETURN

CONTINUE
T = 10.0E0/C - 1.0EO
TT =T+ T
J = N4
F1 = AQJ)
B(J)
0.0EO
= 0.0EO0
130 I=1,M4
J=J-1
TEMP1 = F1
TEMP2 = E1
F1 = TT*F1 - F2 + AQJ)
El = TT*E1 - E2 + B(J)

SRR

182
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F2 = TEMP1
E2 = TEMP2
130 CONTINUE

TEMP1 = T*F1 - F2 + A(1)
TEMP2 T*E1 - E2 + B(1)
RTRX = SQRT(RX)
CV = C - FPI12
CCV = cas(cv)
SCV = SIN(CV)
AI = (TEMP1*CCV-TEMP2*SCV)/RTRX
J = N4D
F1 = DAQJ)
DB(J)
= 0.0E0
= 0.0EO
140 I=1,M4D
J=J-1
TEMP1 = Fi
TEMP2 = Ei1
F1 = TT*F1 - F2 + DA(J)

SRR

El = TT*E1 - E2 + DB(J)
F2 = TEMP1
E2 = TEMP2

140 CONTINUE

TEMP1 = T*F1 - F2 + DA(1)
TEMP2 = T*El1 - E2 + DB(1)

E1 = CCV*CONS + 0.S5E0*SCV

E2 = SCV*CON5 - 0.5E0*CCV

DAI = (TEMP1*E1-TEMP2*E2)*RTRX
RETURN

END

CCCCCCCLCCCCLLCCCCClCCtCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee cccccecee

FUNCTION ALNGAM(X)

C***ROUTINES CALLED GAMMA,R1MACH,R9LGMC,XERROR
EXTERNAL GAMMA
DATA SQ2PIL / 0.9189385332 0467274E0/
DATA SQPI2L / 0.2257913526 4472T43E0/
DATA PI / 3.1415926535 8979324E0/
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DATA XMAX, DXREL / 0., 0. /

C+*xFIRST EXECUTABLE STATEMENT ALNGAM
IF (XMAX.NE.0.) GO TO 10
XMAX = R1MACH(2)/ALOG(R1MACH(2))
DXREL = SQRT (R1MACH(4))

C

10 Y = ABS(X)

IF (Y.GT.10.0) GO TO 20

c
C ALOG (ABS (GAMMA(X))) FOR ABS(X) .LE. 10.0
c

ALNGAM = ALOG (ABS (GAMMA(X)))

RETURN
C
C ALOG (ABS (GAMMA(X))) FOR ABS(X) .GT. 10.0
C

20 IF (Y.GT.XMAX) CALL XERROR ( ’ALNGAM ABS(X) SO BIG ALNGAM OVERFLO
iws’, 38, 2, 2)

C
IF (X.GT.0.) ALNGAM = SQ2PIL + (X-0.5)*ALOG(X) - X + RILGMC(Y)
IF (X.GT.0.) RETURN
C
SINPIY = ABS (SIN(PIx*Y))
IF (SINPIY.EQ.0.) CALL XERROR ( ’ALNGAM X IS A NEGATIVE INTEGER’,
1 31, 3, 2)
C
IF (ABS((X-AINT(X-0.5))/X).LT.DXREL) CALL XERROR ( ’ALNGAM ANSWER
1 LT HALF PRECISION BECAUSE X TOO NEAR NEGATIVE INTEGER’, 68, 1, 1)
C
ALNGAM = SQPI2L + (X-0.5)*ALOG(Y) - X - ALOG(SINPIY) - ROLGMC(Y)
RETURN
C

END
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