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ABSTRACT

The development of analytical methods demands a reliable method for modeling
the instrumental response function. This is particularly true for multivariate
measurements and is closely related to the measurement error characteristics cf the
method. This work presents new methods for extracting information from univariate and
multivariate data sets based on the principle of maximum likelihood. These maximum
likelihood techniques allow for the incorporation of measurement errors in the modeling
process and therefore yield a more reliable representation of the true underlying model.

The potential of these techniques is first evaluated in two-dimensions where it
was shown that these methods have properties that make them statistically desirable. A
maximum likelihood analog to principal component analysis (PCA) is then developed for
the multivariate case. The theoretical foundations of maximum likelihood principal
component analysis (MLPCA) are initially established using a regression model and then
extended to the framework of PCA and singular value decomposition (SVD). The
proposed technique also allows for the incorporation of correlated errors and intercept
terms. Simulated and experimental data are used to evaluate the performance of the new
algorithm. In all cases, models determined by MLPCA are found to be superior to those
obtained by PCA when non-uniform error distributions are present, although the level of
improvement depends on the error structure of the particular data set.

To demonstrate the practical implications of MLPCA, this technique was applied
to problems in multivariate calibration, the modeling of incomplete data sets, and
calibration transfer. Two new calibration methods, maximum likelihood principal
component regression (MLPCR) and maximum likelihood latent root regression
(MLLRR), are developed which exhibit superior performance over conventional
multivariate calibration methods when there is a non-uniform error structure. MLPCA is
also shown to be useful in handling incomplete data sets in a reliable and simple manner
by assigning large uncertainties to missing measurements. This approach is extended to

the general problem of multivariate calibration transfer.

xiii



ABBREVIATIONS AND SYMBOLS

In general, the conventions used in this paper is are follows. Matrices are
represented as upper case bold letters and column vectors are represented as bold lower
case letters. Normal face fonts (upper and lower ease) are used for scalars. Normal,
Greek and script fonts are used with no particular pattern, but where possible, we have
tried to adhere to symbols commonly used in the literature. Symbols which represent
estimates of unknown quantities are designated with a caret (“~”). Symbols which
represent truncated matrices are designated with a tilde (“~”). A matrix transpose 1is

indicated by a superscript “T” and the Euclidean norm of a vector by “[s|”. The

Kronecker product of two matrices is indicated by “® ™.

A list of important abbreviations in the paper follows:

ANN artificial neural networks

CLS classical least squares

CR continuum regression

DAD diode array detector

EVM effective variance method

GRAM generalized rank annihilation method
HE homoscedastic, equal

HU homoscedastic, unequal

iid independent and identically distributed
ILS inverse least squares

LRR latent root regression

LWR locally weighted regression

MLCFA maximum likelihood common factor analysis

Xiv



MLLRR
MLPCA
MLPCR

MSE

NAS
NAS*
NPS
OLS
PCA
PCR
PE
PLS
PMF
PPR
PU

RMSE
RMSECV
RMSEP

SEN
SVD
TLS
UPCA

WPCAL
WPCA1*

maximum likelihood latent root regression
maximum likelihood principal component analysis
maximum likelihood principal component regression
multiple linear regression

mean squared error

multiply weighted regression -

net analyte signal

net analyte signal projected into PCA or MLPCA subspace
noise power spectrum

ordinary least squares

principal component analysis

principal component regression

proportional, equal

partial least squares

positive matrix factorization

projection pursuit regression

proportional, unequal

random

root-mean-square-error

root-mean-square-error of cross-validation
root-mean-square-error of prediction

ridge regression

sensitivity

singular value decomposition

total least squares

unweighted principal component analysis

weighted least squares

weighted principal component analysis (using standard deviations)
WPCAL parameters scaled by R
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WPCA2 weighted principal component analysis (using statistical weights)
WPCR weighted principal component analysis
WPLS weighted partial least squares

A list of important symbols in the paper follows:

0, an px1 vector of zeros -
1, an mx1 vector of ones
a (i) model coefficient (slope)
(ii) slope of double sigmoid mask for data set 8 (Chapter 5)
a; a model coefficient (element of A)
a; a left hand vector of the true model
i absorbance of sample i at wavelength j
A, lower (m-p)xp submatrix of A
A (1) matrix of absorbances (Chapter 1)
(if) matrix of model coefficients
(iii) left-hand matrix of p-dimensional model (Equation 4.2)
A matrix of estimated model coeffieients
b an intercept term (offset of regression vector)
b a column vector of offsets (intercept term)
b; a column vector of B (offsets)
b, lower (m-p)x1 subvector of B
b overall vector of regression coefficients for PCR
B (i) matrix of model offsets
(ii) right hand matrix of p-dimensional model (Equation 4.2)
Cik concentration of component £ in solution i
c offsets for MWR model
c vector of column offsets for MLPCA model
C matrix of concentrations
d;’ element of D'
d vector of row offsets for MLPCA model
D' matrix of measurements weighted by corresponding measurement errors



element of E(i)

E (i) matrix of measurement residuals
(i1) unfiltered measurement errors for X

Esn Ec matrices of measurement residuals for CLS and ILS models

f residual matrix for PCR

F matrix of filter coefficients (mnxmn) for calculating Q of filtered data
G; an intermediate matrix in the calculation of dS%/da;

H; a substitution equal to (U™¥; ') U ;!

| I nxn and pxp identity matrices

J; derivative of rotation matrix, T, with respect to angle o;

normalization constant for normal distribution

k
K (1) commutation matrix for X (Chapter 4)
(ii) matrix of coefficients for CLS model (Chapter 1)

K matrix of estimated coefficients for CLS model

~

function minimized for maximum likelihood projection (log likelihood
function)

L probability density function for measurement vector x
L matrix of PCA loadings

L; an exchange matrix with the property that F; =L, T;
m number of rows in X

n number of columns in X

N riumber of experimentally observed points

Neat» Nyres  number of calibration and prediction samples

p (i) rank of data matrix (pseudomatrix)
(i) amount of proportional error added (data set 9)

P probability of observing a x* value less than a given value
P.P matrix of theoretical and estimated coefficients for LS model
P; maximum likelihood projection matrix for X;

q, q regression vector for PCR

q; projection of r; into PCA or MLPCA subspace



Q mXxn matrix of measurement error variances

Q; projection of R; into PCA or MLPCA subspace

r; column vector of pure spectrum for component

max amplitude of double sigmoid error mask for data set 8

R ratio of o, to o,

R; matrix of column vectors of all pure spectra excluding spectrum for
component i

59.Gg standard deviations of estimated angles

s° objective function

twk. G Scores for unknown sample by MLPCA and PCA

T}, Ty, ... individual rotation matrix

T (i) matrix of PCA scores
(ii) overall rotation matrix (Chapter 4)

T matrix of maximum likelihood scores

T matrix of truncated scores from PCA

u,s,v elements of U, § and Vv

US.vT matrices returned by SVD

0.8,V"  matrices returned by MLPCA (SVD form)

U.S.V"  truncated U,S,VT matrices (obtained by PCA)

0,0, upper and lower submatrices of U  (pxp and (m-p)xp)
U,.V, initial estimates for U and V

uv super-matrices for U and v

Vy retention volume

Vi, V, upper pxp and (n-p)xp submatrices of V

Vp upper pxp and (n-p)xp submatrices of V
w weight of absorbent

w; weights for WPCA2

X; measured data point (independent variable)
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<>

< )

true value of x;

predicted vaue of x? by maximum likelihood
elements of X, X and X°

estimated value of x? by PCA

column vectors of X

column vectors of X

column vectors of X°

predicted value of x° by MLLRR
upper px1 vectors of X, X and X°
residual vector for x (x-z)

measurement data matrix

upper p elements of X;

matrix of maximum likelihood estimates of X°
upper and lower submatrices of X (pxn and (m-p)xn)
matrix of true measurements

matrix of truncated PCA estimates of X°

goodness of fit

(i) dependent variable in classical regression
(ii) transformed retention data

observed dependent data matrix
estimated values of y? by OLS and PCA
predicted value of y? (general)

true value of observed y

estimated value of y? by LRR
maximum likelihood estimate of °

vector of dependent variables in classical regression



R

-

> B o~ B o}

PCA LOLS

o < E

D DD

vector of reference concentrations
residual vector fory (=y-y)
vector of maximum likelihood estimates of y°, by MLLRR

significance level for hypothesis testing
rotation angle about axis i
vector of regression coefficients in classical regression

(1) bias component of error (Chapter 1)
(ii) vector of errors in y in classical regression

random error (Chapter 1)
column vector of measurement errors for column j of X

model residuals associated with PCA and OLS

measurement error for x;; after filtering

molar absorptivity of component k at wavelength ;

matrix of filter coefficients for errors corresponding to measurement Xij

vector of row offsets for Mandel model
incomplete gamma function

(i) convergence criterion for MLPCA algorithm (Chapter 4)
(if) wavelength (Chapter 5)

grand mean for X

degrees of freedom

angle of model parameter with respect to axis

angle of estimated model parameter with respect to axis
average of estimated angles

angular deviation of eigenvector i from true model space

angle of true model parameter with respect to axis

vector of column offsets for Mandel model

error covariance matrix for row i of X (or column i of X") or unknown
sample



zpred predicted covariance matrix of sample i by maximum likelihood projection

Q full error covariance matrix of vec(X)

= full covariance matrix of vec(X")

¥, scores covariance matrix for sample i

¥; error covariance matrix for column vector j of X
c standard deviation of the Gaussian distribution
Oy, Oy standard deviation of x and y variables

G, baseline noise for data set 8

o} measurement variance for x;;

& ™ element of £P=

(o;,)z propagated error containing o2 and o?
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1
INTRODUCTION

1.1 THE NEED FOR STATISTICAL ANALYSIS

The demand for chemical information in virtually all fields of technology is now
greater than it has ever been before. Furthermore, innovative advances in chemical
instrumentation allow more data to be obtained for a system under study. Unfortunately,
situations may arise in which potentially useful information is lost amid the complexity
of the data. The field of chemometrics has evolved from a need to address this problem.
The role of chemometrics is to provide a variety of mathematical and statistical tools to
aid in the extraction of information from measurements on chemical systems [1-7]. This
work introduces a generalized approach to the treatment of analytical data from a modern
generation of analytical instruments.

Over the span of only a few decades, chemometrics has revolutionized many areas
of interest in the scientific community. The importance of chemometrics can be
illustrated with a few examples [8-12]. In the petroleum industry, chemometric tools
permit the determination of octane numbers in gasoline through simple spectroscopic
techniques, as opposed to a long and costly procedure involving a specially designed
engine and a skilled technician. Likewise in the food industry, methods have been
developed for the measurement of various properties (e.g. protein, fat and moisture
content) which previously required tedious wet-chemical procedures. In medicine,

chemometric methods have allowed for the early diagnosis of cancers through simple



spectroscopic techniques, and are leading to the development of non-invasive sensors
used for the determination of glucose in blood. In industry, chemometric procedures are
routinely employed in process monitoring and improving the quality and output of
process streams. All of these advances are only possible because of the ability of
chemometrics to extract information out of seemingly-useless data.

Chemometric techniques range in complexity from the very simple to the very
complex, and which approach is appropriate for a particular analysis depends very much
on the data being scrutinized. The remainder of this chapter will examine the nature of

experimental data and discuss some general approaches to modeling these data.

1.2 CLASSICAL AND MULTIDIMENSIONAL MODELING

As noted in the preceding section, the required complexity of a mathematical
model is tied to the nature of the data under analysis which, in turn, is dictated by the
instrumental means used to acquire the data. The type and amount of data an instrument
can produce depends on the characteristics of the instrument. In general, instruments can
be classified by the order of the data they produce (zero-order, first-order, etc.) [13]. This
classification refers to the order of tensor an instrument produces. The relationship
between the form of the data and the order of instrumentation is presented in Figure 1.1.

The remainder of this section will briefly consider the characteristics of zero, first and
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second-order instruments, but the emphasis will be placed on zero and first-order
instruments as they have direct applicability to this work.

Zero-order instruments are those which yield a single datum per sample analyzed,
such as pH meters and single wavelength spectrometers. When modeling data of this
type, a regression model is often proposed that relates a single response to some known

property for a particular sample which is given by Equation 1.1:

r=f(x) (1.1)
where f(x) is the function relating the property, x, such as concentration, to the

response, r. It should be noted from Figure 1.1 that when a single sample is analyzed by
a zero-order instrument, the form of the data is also zero-order, but when a series of
samples are-considered, the result is a first-order data set. In general, the order of the data
to be analyzed is one greater than the order of the instrument used for the acquisition.
When a chemist refers to modeling, two steps are implied: (1) the determination of a
mathematical model from known data (calibration step), and (2) the prediction of some
property for an unknown sample from new responses (prediction step). This latter step

may be accomplished using the inverse form of Equation 1.1:

X =f7(7) (1.2)
Of course, this implies that the inverse is uniquely defined, which is not always the case.
The widespread popularity of univariate regression arises from the fact that the

model building and property estimation are fairly straightforward. Also, models are



usually parsimonious (i.e. simple) and can be related to fundamental principles.
However, the choice of the response to be measured and its relationship to the property of
interest is critical. For example, if one were to consider a typical absorbance-calibration
experiment, an investigator would choose a single wavelength at which to measure the
response for a sample. Obviously, this wavelength nrust be related to the concentration of
the analyte and be free of any interferences from other species in solution. A statistical
framework for linear models that may be used for univariate calibration, such as ordinary
least-squares (OLS), is given in Chapter 2.

The development of new and innovative instrumentation over the years has led to
the availability of more chemically relevant data to be analyzed. Instruments that yield a
vector of zero-order data for one sample are called first-order instruments. One example
of a first-order technique is chromatography, in which a single channel (zero-order)
detector reading is acquired at set time intervals. The spectrometer is another common
example of a first-order instrument. Innovations such as diode array technology for UV-
visible absorption instruments, charge coupled devices for fluorescence instruments,
Fourier transform techniques for infrared spectroscopy, and quadrupoles for mass
spectrometry have made first-order data more readily available with such instruments. In
the case of chromatography, the vector of data is the chromatogram, while in
spectroscopy, the vector is the spectrum. The growing popularity of these methods have
led to the development of a number of data analysis techniques (known as multivariate
methods) to extract as much information as possible from the multichannel responses.

Two traditional methods available to model multivariate data from linear systems such as



those described above are classical least-squares (CLS) and inverse least-squares (ILS).
Although these methods have some limitations in modeling complex data sets, they are
described here because of their historical significance.

Classical least-squares, also known as the K-matrix method, assumes that the
responses are related to a proposed model where all the components are known. To
illustrate this we will consider a Beer's Law model applied to m solutions containing p
components for which measurements are made at n wavelengths. The absorbance for

solution i at wavelength ; is given by:

A4; =Zc&s,q.+e,.]. (1.3)
where €,; is the molar absorptivity of component k at wavelength j (a path length of 1 cm
is assumed), c, is the concentration of component % in solution i, and e; is the error
associated with the measurement of A; (this will be addressed in Section 1.4). In matrix

form, this can be written as:

A A, Cu Cip || € €1n én €in
A A Cy v Gyl €y v € e, - e

21 2 21 2p 21 2 21 2

; ; "= . . . . . .n +| . . ." (1 .4)
Aml Aaul cﬂll cmp Spl epn eml emn

or by:

A=CK+E, (1.5)



where K is a matrix of constants estimated by the direct measurement of pure component

spectra or by employing a calibration data set of known concentrations and solving for K:
K= (C'f.,,,Cm,)_l CL/A_,. Here K is the classical least squares estimate of K determined

by assuming uniform, normally-distributed, uncorrelated measurement errors in E A- The

concentration of unknowns may then be determined by:

€t = ALK (RKT) (1.6)

The principal advantages of using first-order data for calibration are: (1) it allows for the
simultaneous determination of multiple components, (2) potential interferences can be
included in the calibration model (even if they themselves are not of interest), (3) the
precision of the analytical result is often improved, and (4) the presence of interferences
not included in the calibration set and outliers can be detected [14].

CLS is normally the best approach to use for multivariate calibration when all
components within the samples are known, but tends to fail when dealing with complex
mixtures containing one or more unknown components. An alternative model to CLS is
inverse least-squares, also known as the P-matrix model or multiple linear regression

(MLR), which assumes the model:

C=AP+E, (1.7)
where C is the (mxp) concentration matrix and A is the (mxn) absorbance matrix. The

matrix P is a (nxp) matrix of regression coefficients to be determined using a calibration



set of m solutions and is given by: P = (A;,Am,)-‘A;,Cm,. Equation 1.7 is the inverse

relationship of the Beer's Law model given in Equation 1.5. This approach has an
advantage over CLS in that all of the chemical constituents in the sample need not be
known. However, there are a number of drawbacks inherent in ILS [14-15], with the first

being a restriction on the number of wavelengths used in the calibration. Because the

calculation of P requires the inversion of (ATA) , the number of wavelengths must be

less than or equal to the total number of samples (n<m) or else singularity will result. A
second problem is the potential for a high degree of collinearity among the chosen
wavelengths (i.e. absorbances may be linearly related at certain wavelengths) resulting in
a matrix which is nearly singular and numerically ill-conditioned. Therefore, application
of ILS typically requires the selection of a few wavelength channels. Optimization of this
selection is tedious and the reduction in the number of wavelength channels can
counteract precision advantages gained in making multichannel measurements.

The central weakness of ILS is in the computation of the so-called pseudoinverse
of A, designated as A" = (ATA)_| AT. A wide range of methods have been developed to

address this problem and this list includes techniques such as principal component
regression (PCR), ridge regression (RR), partial least squares (PLS) and continuum
regression (CR). Some of these techniques are discussed in more detail in Chapter 5.

At present, methods to deal with first-order data sets are more refined than for

second-order and higher, but significant advantages in second-order calibration have been



made. [Examples of second-order bilinear data sets include those obtained from
chromatography with multivariate detection (e.g. GC-MS, LC-DAD) and fluorescence
emission/excitation spectra. Methods applied to these data sets include the generalized
rank annihilation method (GRAM) and trilinear decomposition [16-17]. A potential
advantage of these approaches is that they can account for interferences not included in
the calibration data. Although the methods presented in this thesis have potential
application to second-order instruments, they are currently restricted to the first-order

case and higher order methods have been described only for completeness.

1.3 PRINCIPAL COMPONENT ANALYSIS

In the previous section, the difficulty in calculating the pseudoinverse of the
matrix A in ILS was introduced. This problem can be resolved by using methods based
on principal component analysis (PCA). PCA is a member of a broader group of
methods known as factor analysis, originally developed by social scientists, and is a
powerful and widely used tool for the analysis of multivariate data sets. The differences
between PCA and factor analysis have been discussed by Lawley and Maxwell [18].
PCA has important chemical applications in mixture analysis, exploratory data
analysis/pattern recognition, modeling and multivariate calibration [19-22]. The first of
these applications attempts to determine the number of components present in an

unknown mixture. For exploratory data analysis, PCA attempts to detect distinct classes
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among the samples. When used in modeling, PCA can determine whether the system
being analyzed has a simple underlying physical model. Finally, when applied to
multivariate calibration, PCA is used to solve some of the problems associated with CLS
and ILS. To achieve these various goals, each of these applications make use of the
dimensionality-reducing aspect of PCA. -

PCA is usually carried out by a method known as singular value decomposition

(SVD). For an mxn data matrix, X, the application of SVD gives:

X=USV'=TL (1.8)

where U is mxn, and S and V are nxn (S is diagonal). The matrix T (= US) is called the
mXxn scores matrix and the matrix L (= VT) is the nxn loadings matrix, also known as the

matrix of eigenvectors of X'X or principal components. The scores describe the
contribution of each principal component to each sample, while the loadings for a given
eigenvector (rows of L or columns of V) indicate the importance of each of the original
variables in defining that eigenvector. The decomposition is carried out so that the first
eigenvector will account for most of the variance in the data set, the second will account
for the most of the remaining variance, and so on. The eigenvalues (squared elements of
the matrix S) give the amount of variance that is accounted for by each eigenvector. In
general, there is no real advantage to the decomposition if the full matrices are retained.
Therefore, a reduction in dimensionality to p-dimensions occurs when U is reduced to
mxp, S to pxp and V to nxp (T is mxp and L is pxn). It is hoped that by removing the

eigenvectors associated with lesser amounts of variance (i.e. the last (n-p) "factors" or
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principal components) a minimum amount of information will be lost. The question
regarding how many principal components should be included in the truncated model will

not be discussed here, but will be addressed in the following chapters.

1.4 ERROR, NOISE AND SOURCES OF VARIATION

In modeling data from chemical systems, the chemometrician generally assumes
that there is some true underlying mathematical model (ultimately connected to some
chemical principle), and it is the goal of chemometrics to identify this model as
completely as possible. In chemistry, the term "model" most often refers to a
deterministic (or "functional") model, while in statistics the model description is often a
probabilistic (or "structural") one. In attempting to develop the functional model
underlying a set of chemical data, it is necessary to realize that all chemical

measurements are corrupted with measurement errors. If the true measurement (unknown

to the observer) is x°, and the observed measurement is x, then we have:

x=x°+e (1.9)
where e is the error in the measurement. It is apparent that since the inference of a model
is based on measured observations, errors in these observations will lead to errors in the
inferred model. Thus, an understanding of the characteristics of the errors is essential in

developing methods to estimate models.
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The error term, e, in Equation 1.9 is a random variable and by definition cannot be
predicted, only characterized. One way to characterize the error is in terms of a non-

random bias component, §, and a random error, or "noise" component, €, given by:

e=0+g _ (1.10)
The distinction between bias and noise is often blurred and typically depends on
the definition of the measurement. For example, if we consider an absorbance

measurement in UV-visible spectroscopy, this can be represented as

A=A’+e=A°+8+¢ (1.11)

If a large number of replicate measurements are made it is expected that

E(A)=A°+8 (1.12)

because the expectation value of e is:

E(e)=35 (1.13)
Obvious sources of random noise in this example include photon shot noise and Johnson
noise in the electrical circuits. Another source of random noise is the random variations
in the source intensity, known as flicker noise. The positioning of the sample cell is also
a potential source of error, since small changes in the orientation can modify the optical
characteristics of the instrument. Whether this is considered bias or noise, however,
depends on how the replicate measurement is defined. If the replicate involves the

removal and replacement of the sample cell, the variation in the cell positioning can be
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considered to be noise. However, if a replicate measurement is performed by leaving the
sample cell stationary, then this can be considered to be bias. This applies to other
sources of error as well (e.g. blank measurement). Analytical chemists often distinguish
bias and noise using the terms accuracy and precision. In principle, bias can be
eliminated by a careful experimental design and, in this work, will be assumed to be zero.

Random errors can be characterized by a number of properties, the most common

being variance. The variance of e is given by:

o' =E(e’)= tim [Ze /N] (1.14)

In practice, o* is usually not known but can be estimated from a limited number of

measurements and is represented as s>. Another way to describe random errors is by
looking at the distribution of these errors which is represented by a probability density
function. The most common distribution assumed for experimental measurements is the

normal or Gaussian distribution, which (in the absence of bias) is given by Equation 1.15.

f(e)— exp[—e /26> ] (1.15)

Other distributions are also found in experimental systems (log normal, Poisson) but in
the absence of other information, a normal distribution is usually assumed.

For single measurements, the preceding descriptions are generally sufficient.
However, for multiple measurements, such as a series of measurements from a zero-order

instrument or a vector of measurements from a first-order instrument, additional
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descriptions are often used. One such description classifies the noise as homoscedastic or
heteroscedastic. Homoscedastic means that all measurements have the same variance
while heteroscedastic implies different variances among the measurements, but how these
terms apply has to be considered in context. For example, for data obtained on a
spectrometer, errors could be homoscedastic within a particular wavelength channel
(ie. all samples measured give the same error variance at that wavelength), but
heteroscedastic among different channels. If heteroscedastic noise is present, the
characteristics of the noise may be further described in terms of the form of the
heteroscedasticity. For example, the term "proportional errors" is often used to describe
cases where the standard deviation is proportional to the magnitude of the measurement.
Another way to describe the relationship among multiple measurements is

through their covariance. For measurements x, and x, (with corresponding errors e

and e, ), the error covariance is given by:

6, = E(ee,) =p,,0,0, (1.16)
where p,, is the correlation coefficient between e, and e,. For multiple measurements,

a general description of errors is provided by the error covariance matrix. For example, if

three measurements are considered the error covariance matrix is:

2
6, O,;, Oy
_ 2
Z=|c,, O, Oy (1.17)
Ci3 Oy O3
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Note that this is a symmetric matrix with the diagonal elements being the measurement
variances. For uncorrelated measurement errors, the form of the error covariance matrix
will be diagonal.

If multiple measurements are related by time, the correlation among adjacent
measurements is often described by the noise power spectrum (NPS), which is the
expectation value of the Fourier transform of the sequence of errors. Errors which are
uncorrelated in time give rise to white noise which has an NPS that is constant with
frequency. For errors correlated in time, the NPS is not flat and the most common
example of this is pink noise or 1/f noise, which has an NPS that decreases in magnitude
with the inverse of the noise frequency. Some examples of pink noise are source flicker
noise in spectroscopy and signal drift. Interference noise, such as 60 Hz noise, usually
gives regular peaks in the NPS and is another example of correlated noise. Examples of
noise power spectra for different types of noise are shown in Figure 1.2. The NPS is also
used to describe correlations among errors that are related by a variable other than time
(e.g. among adjacent wavelength channels in a spectrometer). In this case, the abscissa of
the NPS will not correspond to the frequency.

As for a single measurement error, errors in multiple measurements can be
described by a multivariate probability distribution. In practice, multivariate probability
density functions are difficult to obtain, and a multivariate normal distribution is usually

assumed. For a vector of measurement errors, e, this is given by:
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1 LJE S
f(e)—Wexp,:—Ee z e:l (1.18)

where n is the number of response channels (i.e. the length of e) and ¥ is the error

covariance matrix. This is the distribution generally assumed in this work.

1.5 RESEARCH OBJECTIVES

Traditional methods of data analysis from univariate and multivariate data sets
usually make very little use of the information about measurement errors. Typically,
these methods make assumptions about error structures (e.g. homoscedastic, independent
errors) that are frequently violated. While these assumptions often have only minor
effects on the development of a model, this is not always true. The consequences of
making invalid error assumptions is particularly important in multivariate data analysis,
where the effects of minor variations can be exaggerated and the model can be rendered
useless.

What is needed, from both a practical and theoretical perspective, is a method to
deal with a varietv of error structures in an optimal or near-optimal manner. The
objective of this work is to describe new approaches to data analysis based on principles
of maximum likelihood estimation. Chapter 2 begins with the simple case of bivariate
data sets. Chapters 3 and 4 extend these theoretical principles into higher dimensions for

multivariate measurements. Chapters 5 and 6 examine practical applications of these new
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methods by comparing them with traditional methods and using them to solve new kinds

of problems. Finally, Chapter 7 considers some of the implications for future work.



2
MODELING IN TWO DIMENSIONS

2.1 INTRODUCTION

Perhaps no tools are more widely used when analyzing chemical data than
regression and principal component analysis (PCA). Least-squares regression methods,
including univariate and multivariate methods in both linear (such as CLS and ILS,
described in Section 1.2) and nonlinear forms, have been used extensively by chemists
for many years. PCA has had a shorter history, but nevertheless has become an
indispensable tool for modern multivariate analysis in areas such as exploratory data
analysis, modeling, mixture analysis, and calibration. Although regression and PCA have
developed from different origins and are generally viewed as serving different purposes,
some similarities between the two methods can be drawn, particularly in cases where
PCA is used for modeling applications. Throughout this chapter, these similarities will
be examined and, perhaps more importantly, differences that are relevant to modeling
applications will be identified. In accomplishing this task, the emphasis in this chapter
has been placed on bivariate data sets, primarily because of the relative simplicity of the
treatment and the ease of visualizing the results in two dimensions.

As a typical example, consider a series of x,y pairs that are linearly related, but
corrupted by measurement errors in one or both dimensions. To further simplify the
problem (and facilitate a direct comparison of least squares and PCA) we will assume that

the intercept for the true linear relationship is zero and therefore can be ignored in any
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modeling approach. For such a data set, two methods that can be used to estimate the
true linear relationship are least squares regression (hereinafter referred to as ordinary
least squares, or OLS) and PCA. For OLS, the model is described by the estimated slope
parameter, while for PCA it is the direction of the first eigenvector that describes the
linear model. Generally speaking, these two model estimates will be similar but not
identical. For example, the PCA solution is invariant under a reassignment of the axes,
whereas the OLS solution is not. On the other hand, the OLS solution is invariant under a
scaling of the axes, but the PCA solution is not. The question: "Which method best
describes the true model?" can now be posed. In attempting to answer this question, one
quickly becomes entangled in the issue of measurement errors and a variety of other
modeling methods that have been developed over the years.

For the purpose of demonstration, seven different methods for modeling bivariate
linear data are considered: ordinary least squares, weighted least squares, the effective
variance method, multiply weighted regression, principal component analysis, and two
forms of weighted PCA. It will be shown that these methods can be unified by
considering their relationship to maximum likelihood estimation. Furthermore, the
equivalence of certain methods under a variety of error conditions will be demonstrated.
While some of these results will have immediate utility for simple modeling applications,
the principal objective of this chapter is to present a more unified view of these methods

and suggest guidelines for their use.
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2.2 TECHNIQUES FOR MODELING IN TWO DIMENSIONS

2.2.1 Principal Component Analysis

In its early applications, PCA was primarily used to describe the relationships
among random variables in the social sciences. Consider, for example, samples drawn
from a bivariate normal distribution in which there is a correlation between the variables.
An example might be, say, the height and shoe size of individuals. If all of the sample
pairs are plotted in a two-dimensional space, the distribution of measurements might
appear as shown in Figure 2.1. In this example, the data have been mean-centered in both
variables, designated as V1 and V2. PCA will describe the major axes of the ellipse
representing the distribution, both in terms of their direction (as indicated by the
eigenvectors or loadings, E1 and E2) and their magnitude (as reflected in the
eigenvalues). In this way, PCA characterizes the variance and covariance of the variables
in a useful way. Later, applications in the physical sciences became more widespread,
but the objectives of such applications were often considerably different. Generally, in
the social sciences, the question of measurement errors does not arise, since the variance
in the population can be considered to be the dominant factor. In chemistry, where PCA
has served a multitude of purposes, there are two principal objectives: dimensionality
reduction and modeling.

Dimensionality reduction means that data which were originally represented as
objects (or samples) in an n-dimensional variable (or feature) space are represented as

samples in a redefined m-dimensional space (m<n) with minimal loss of information.



Figure 2.1

Bivariate normal distribution with a correlation between variables V1 and
V2. E1 and E2 represent the eigenvectors.
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PCA is a very useful tool in this regard, since the m eigenvectors, or principal
components, account for the largest amount of variance in the data set and in that sense
provide the optimum linear combination of the original variables. For this reason, PCA
has been widely used for exploratory data analysis in chemistry.

Modeling is also a form of dimensionality reduction, but in this case the objective
is not only to describe the data in a space of lower dimensionality, but also to determine
the minimum dimensionality needed to reproduce the information within experimental
measurement error. Thus, modeling involves two steps: rank estimation and model
determination. In this process, the objective is to separate the chemically meaningful
variance in the data set from that which is associated with measurement uncertainty.
Perhaps the most dominant applications of this type in chemistry are methods for the
analysis of mixtures based on second-order data.

The simple case of using PCA to produce a one-dimensional model in a two-
dimensional space is analyzed within this chapter. Consider an example in which the
absorbance of a solution containing one chromophore is measured at two different
wavelengths for ten different concentrations. The result is a 10 x 2 (or a 2x10) data
matrix. This data set can be visualized either as ten points plotted in a two-dimensional
absorbance space, or as two points plotted in a ten-dimensional sample space. Because
these two perspectives are ultimately equivalent from the standpoint of PCA, only the
former will be considered here. A typical data set is plotted in the absorbance space in
Figure 2.2a. As a consequence of Beer's Law, and barring any effects of nonlinearities or

interferences, we expect the ratio of the two absorbances to be fixed. The data should



24

@ Al
@]
7El
(@)
- O
O
o @)
A2
(b) Al .
T
%El
HOH
1l
A2

Figure2.2  (a) PCA results for two-dimensional linear data showing the direction of
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therefore fall on a straight line, although there will be some deviations from this due to
experimental errors. The directions of the first and second eigenvectors calculated by
PCA (E1 and E2) are also shown in Figure 2.2a. The eigenvectors themselves should
both be unit length, but for the purposes of illustration, they have been scaled. Note that
the first eigenvector accounts for the largest amount of the variance and is predominantly
affected by changes in concentration. The slope of this eigenvector will ideally be equal
to the ratio of the molar absorptivities at the two wavelengths, but the influence of
measurement noise will cause some deviation from this. The second eigenvector will be
orthogonal to the first and will account for the remaining variance. Ideally, the residual
variance would be entirely attributed to measurement errors and therefore would not
contain chemically relevant information, but in practice this is not the case. For this
situation, we would say that the data set has an intrinsic dimensionality or a pseudorank
of one, since the important information is described by the first eigenvector. In many
chemical applications, such as mixture analysis, estimation of the pseudorank (or
chemical rank) of a data set is a principal objective. In such applications, the usual
procedure is to reproduce the data matrix with progressively more factors until it is
reconstructed within experimental error. Obviously, the role of measurement errors is of
critical importance in such applications. For this chapter, the concern is not with the
problem of rank estimation as with finding the best parameters for the rank one model,
although the two are ultimately related. A procedure to determine the true rank of a
multidimensional data set, while accounting for experimental error, will be discussed in

Chapter 4.



26

The data in Figure 2.2a have not been mean-centered, but an intercept of zero has
been assumed. The eigenvectors always extend from the origin and a non-zero intercept
will generally increase the rank estimate by one. Often the intercept can be forced to zero
by mean-centering, but this will not always be the case if measurement errors are not
uniform. This will be further discussed in Section 3.4.2. For this reason, results reported
here are for non-mean-centered data.

It should also be noted that the arguments presented here for two-dimensions also
extend to higher dimensions. If more wavelengths were used for one-component
mixtures, the first eigenvector would still retain essentially all of the significant
information. Alternatively, if two-component mixtures were used, the plane described by
the first two eigenvectors would contain the relevant information.

Measurement errors can play a very important role in the application of PCA to
chemical data sets, both in problems of dimensionality reduction and modeling. This is
illustrated with the following two examples.

In modeling applications, the failure of PCA to develop accurate models under
certain measurement error conditions is readily illustrated. Figure 2.2b demonstrates this
for the case where absorbance measurements are made at two wavelengths for several
samples and the error associated with one measurement is inordinately large. Because of
the leverage associated with this sample, the error in the first eigenvector compared with
the true model (i.e. the ratio of absorbances at the two wavelengths) is quite large. Under

these circumstances, recourse to some sort of weighted regression method is suggested.
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In exploratory data analysis, one is often interested in visually determining if
classes can be distinguished when samples are projected into a space of lower
dimensionality. PCA is a way to do this, since projection onto the first two or three
eigenvectors accounts for the largest amount of variance and this often produces the best
separation. One of the contentious issues in this application is whether or not variables
should be scaled prior to PCA. The argument for scaling is that variables with radically
different ranges (sometimes orders of magnitude) will lead to eigenvectors skewed
towards the variables with largest ranges. On the other hand, scaling can also lead to
problems, as illustrated by the following hypothetical case. Consider two measurements
made on a series of samples which belong to two classes. Measurement one is capable of
distinguishing the two classes and is about two orders of magnitude larger than
measurement two, which consists of pure noise. Figure 2.3a shows the data (mean-
centered) in the two-dimensional measurement space, and Figure 2.3b shows the
projection of the data onto the measurement one axis. It is obvious that the two classes
are separated in the one-dimensional space. Figure 2.3c shows the projection onto the
first-eigenvector when no scaling of the original data is used and it is clear that the two
classes are still separated. Figure 2.3d shows the corresponding projection when both
variables are autoscaled (scaled to unit variance). In this case, the random contribution of
the second variabie means that the two classes are no longer completely separated when
e samples are projected into one dimension. This weakness of autoscaling can be

extrapolated into higher dimensions, but there are many counter-examples which show
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Figure2.3 A two-dimensional pattern recognition example. (a) Original data plotted
in measurement space, (b) projection of data onto first measurement axis,
(c) projection onto first eigenvector obtained without autoscaling,

(d) projection onto first eigenvector after autoscaling.
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the benefit of autoscaling. It is apparent that the key to correct scaling lies in estimates of
the measurement error and a more general model is necessary to take this into account.

In summary, the objective of PCA in most chemical applications is to efficiently
extract information from the variance in multiple dimensions. A major weakness of this
approach, however, is that it makes implicit assumptions about measurement errors which
are often incorrect. This corrupts the quality of information provided and may lead to
erroneous results. It is clear, then, that a more general method of dealing with

measurement errors is required.

2.2.2 Linear Regression

Returning to Figure 2.2a (or Figure 2.1), it might be asserted that an
approximation to the first eigenvector could be obtained by a least-squares fit to a straight

line with the equation,
y=ax (2.1)

followed by appropriate normalization. Note that there is no intercept included here
because the eigenvector is defined to extend from the origin. A question then arises
regarding the distinction between PCA and unweighted linear regression (or ordinary
least squares, OLS). These methods produce similar but usually not identical results, and
it is known that regression of y on x does not generally produce the same result as
regression of x on y, whereas the first eigenvector is invariant (relative to the original

frame of reference) under such an exchange of axes. Both methods minimize a sum of
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squared residuals, but the definition of the residual changes as shown in Figure 2.4. For

OLS, the residual, €,, is calculated in the vertical direction:

e =y, -y~ (2.2)
where y, is the observed response and y/“ is the point on the line corresponding to x; .

In contrast, PCA seeks to minimize the sum of the squares of the residuals orthogonal to

the first eigenvector:

el = J(x - %) + (3, - yrt) @3)

where x; and y; are the observed data and x”“and y/™ are the coordinates of the

orthogonal projection of the point onto the first eigenvector.
2.2.3 Maximum Likelihood Estimation

For the general case, we imagine that we have N experimental (observed) data

points (x,y pairs), each of which has an associated standard deviation (o,,0,). For the

development of the method, we will assume that the measurement errors are random,
uncorrelated, and normally distributed. Although the assumption of independent,
normally distributed errors is not universally valid, it is commonly made for the analysis
of chemical data sets and will be used throughout this work to simplify the discussion.

Further, it will be assumed that there is a true (unknown) linear relationship of the form:

J=ax+b (2.4)



(a)

® [

Figure 2.4  Graphical representation of residuals for (a) OLS and (b) PCA.
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where j is the y value estimated from the model for a given x, and a and b are the slope
and intercept parameters estimated for the model.

Using these assumptions, the principle of maximum likelihood estimation is
illustrated in Figure 2.5. The line through the points represents a trial solution for the
desired model. For each experimentally observed p;.ir of measurements (represented by
the X’s in the lower part of the figure) we will assume that there is a corresponding "true"

point (x7,y;) that lies on the line defining the trial model. Of course, we do not know

where these "true" points are, or even if we have the correct model, but we use the
maximum likelihood principle to guide our estimates of them. Centered around each of
the "true" points on the line is a bivariate probability distribution associated with the
errors in both dimensions, as indicated by the mesh plots in the top part of the figure and
the contour lines in the lower part of the figure. For the maximum likelihood solution,
the positions of the "true" points along the line are first adjusted so that the observed

values are at the highest point on the bivariate probability density functions. The points
on the line are then called the maximum likelihood estimates of (x7, y;) for each pair of
x; and y; , and their coordinates will be designated %, and ,. The maximum likelihood
solution is obtained by changing the slope of the trial solution to minimize the objective

function, §*, which is given by:

A \2 ~ 2]
Sz_i (xi—xi) +(.Vi—)’i)J @.5)



Figure 2.5
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Ilustration of maximum likelihood estimation. The surfaces and contours
show the bivariate probability density functions around the maximum
likelihood estimates. The X’s show the cbserved measurements.
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Minimizing this function maximizes the joint probability density function for the

observed points and therefore is called the maximum likelihood solution. Note that this

equation is similar to the goodness of fit ( X?) that is normally minimized in regression
problems, except that it considers errors in both variables and also requires maximum
likelihood estimates of the "true" points. Mathematically, the procedure is as follows.

First, we define the coordinate system to have its origin at (X, y) as shown in Figure 2.6.
With this definition, moving the maximum likelihood point along the line described by
the model (/, in Figure 2.6) is equivalent to moving the experimental point along a
parallel line (,), which is offset by an amount equal to (y— y) when £ =x. In this new
coordinate system, we are actually determining Ax and Ay directly, where Ax = (x-x) and

Ay = (y—y). The equation of the line containing the experimental point is:

Ay=alAx+c (2.6)
Note that the slope of this line is the same as for the trial solution, but the intercept is

cifferent in the new coordinate system and will be given by:

c=y—(ax+b) 2.7)

The bivariate probability density (likelihood) function around ( £, ») is given by:

2
gy

2 a?
L=ke ’ (2.8)



Figure 2.6  The geometry of maximum likelihood estimation for a single
measurement. See text for details.
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where k is a normalization constant. Qur objective is to find the £ and y that maximize

L subject to the constraint of Equation 2.4. Normally, the negative logarithm of the

likelihood function is used for simplification. Substituting for j, taking the negative

logarithm and dropping the constant term gives:

1=l{(x‘f) Lmaiob) } 2.9)

2
2| o, c,

Minimizing Equation 2.5 is the same as maximizing L. Differentiating with respect to %

and setting the result to zero gives:

(x-%)  aby-at-b) ax +2% g (2.10)

ol o} c: o}

Substitution of Equation 2.6 and rearrangement provides the results:

2
acoc,
Ax=—0_2 PR (2.11)
¥y x
A _—ccj (2.12)
Y = 2 2.2 ‘
o, +a‘c;

Equations 2.11 and 2.12 allow calculation of £ (=x — Ax) and y (=y — Ay) for this point

given the trial model parameters. The procedure is repeated for each of the N points and
the objective function is calculated. When the objective function is minimized, the trial

model is the maximum likelihood solution. Although maximum likelihood model
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estimates are often preferred, the method of solution is not as straightforward as for PCA
and other regression methods, so they tend to be underused.

It is important to note that OLS and PCA do yield maximum likelihood estimates
when certain conditions arise. OLS is consistent with a maximum likelihood solution if
the errors in x are negligible with respect to the e-rrors in y, and the errors in y are
homoscedastic and normally distributed. (“Homoscedastic” indicates that the errors for
all measurements of a given variable have the same standard deviation). PCA produces
the maximum likelihood solution if the errors for all measurements are independent and
identically distributed (iid); that is, they are homoscedastic in x and ¥, and ¢,~c, for all
measurement pairs. This means that the contours in Figure 2.5 are vertical lines for OLS
and circles for PCA. While the assumptions made for both PCA and OLS may be valid

in many cases, it is clear that they lack generality for dealing with measurement errors.
2.2.4 Weighting Methods in PCA and Regression

A number of methods have been developed to provide a more reliable treatment
of errors in both regression and PCA. The simplest approaches scale or weight the data
in an attempt to change the error structure (without altering the form of the underlying
model) and reduce the influence of measurements with large errors. In general, the goal
is to turn conventional solutions into maximum likelihood solutions by transforming the
measurements. Some of the more common weighting techniques will be summarized in
this section. In order to distinguish these, the unweighted methods will be referred to as

UPCA (for unweighted PCA) and OLS.
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From a regression perspective, most scientists are familiar with weighted least
squares (WLS) [23]. This method minimizes the goodness of fit, given by,
2
N (y,“’c _y:bx)

Xr=y_ _— J (2.13)

i=1 o,

This procedure produces a maximum likelihood ;stimate when errors in y are not
homoscedastic, but still requires that the errors in x are negligibly small. For cases where
there are errors in both variables, Riu and Rius provide a thorough discussion of
univariate regression methods in a recent review [24]. One of these methods is the

effective variance method (EVM) [25], which is a form of iteratively reweighted least

squares. With this method, errors in x are propagated to y using the relation,
Y2 22
(c ) =0, +ac; (2.14)

In this equation, o, and Gy, are the standard deviations in x; and y;, a is the slope of the
straight line model, and oy’ is the total error propagated to y;. Once the error has been

propagated this way, WLS can be used. Of course, an initial estimate of a, a, is
required, so this method is carried out iteratively, and continues until convergence is
achieved. Although EVM does incorporate the errors in x and is relatively simple to
implement, the results are not consistent with a maximum likelihood solution [26].

For bivariate data sets, maximum likelihood estimation of the desired parameters

is accomplished through a technique which will be referred to here as multiply weighted
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regression (MWR). This approach minimizes the objective function, S2, described in the
previous section. Implementation of the method was outlined by York in 1966 [27], with
subsequent improvements by Williamson [28] and others [29-30]. This study of the
bivariate case utilizes the regression procedure detailed by Lybanon [3 1].

A variety of weighting methods have also béen used for PCA. Generally these
involve scaling of the data prior to analysis by PCA. In an excellent analysis of these
scaling procedures, Paatero and Tapper [32] showed that, in order for such scaling to be
optimal in a maximum likelihood sense, the matrix of standard deviations associated with
the measurements needs to be of rank one. While this will not be true in the general case,
it will be realistic in certain situations. Paatero and Tapper demonstrate, for example, that
scaling by the norm for each variable (i.e. autoscaling) will be optimal only if the
uncertainty in each variable is a constant proportion of the variable norm. For this study,
two approaches to scaling will be examined. One of the simplest and most popular
approaches is to divide each measurement in the data matrix by its associated standard
deviation [33]:

d; = di (2.15)

Gy

PCA is then carri.ed out on D'. For this study, this method will be referred to as WPCAL.
Because this approach does not impose any structure on the matrix of standard deviations,

it is easy to see that in the general case it will destroy the inherent structure in the data
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matrix. However, for certain error structures, it will be shown that this pretreatment can
be effective.

Another method for weighting data matrices prior to PCA was described by
Simeon and Pavkovic in 1992 [34]. With this method, each row of the data matrix is

divided by a weight value, W}, calculated according to

W, =| —ai (2.16)

where,

w, = (Hci) : (2.17)

J=1

In these equations, » and ¢ are the number of rows and columns in the data matrix,
respectively. If each row of the data matrix is considered to represent a point in the
original data space, that point is weighted in inverse proportion to the geometric mean of
the variances of the coordinates of that point. Therefore, the greater the error, the smaller
the influence of the point. This method will be referred to as WPCAZ2.

Other scaling methods have also been described in the literature. One of these

was employed by Cochran and Home in the analysis of spectroscopic data from rapid
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scanning kinetics experiments [35]. Their method assumed that the error structure could

be represented by a linear relationship of the form:

cl=xz. (2.18)

UJ Ly

where x; is a function of the wavelength and z; is a function of the spectrum number.

Another approach is the “balanced scaling” method of Paatero and Tapper [32]. Thisis a
heuristic technique which attempts to find the best scaling for cases where the rank of the
matrix of standard deviations is greater than unity. This method produces optimal scaling
(i.e. the maximum likelihood solution) when this matrix is of rank one. Since the
conditions for maximum likelihood estimation are clearly defined for both of these
methods, they were not included in this study.

In higher dimensions, analogs to MWR have been developed that produce
maximum likelihood solutions for PCA. These include the criss-cross regression method
of Gabriel and Zamir [36], the positive matrix factorization method of Juntto and Paatero
[37], and the maximum likelihood PCA method that will be introduced in the next
chapter. Because these methods will produce results equivalent to those from MWR for
bivariate data sets, they are not considered separately here.

Under particular error conditions, many of the methods described here can be
considered equivalent to one another. It is the objective of this chapter to compare these
methods for two dimensional data sets and to make recommendations regarding methods

of data pretreatment and analysis.
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2.3 EXPERIMENTAL

All of the results presented in this chapter were obtained using simulated data.
This is necessary because the large number of data sets required to make statistically
valid conclusions precludes the use of experimental data. Simulations were carried out
using Matlab v. 4.2c.1 for Windows (Mathworks, Natick, MA) on a P5-based personal
computer.

A variety of simulated data sets were examined, but in all cases the true model
was linear with a zero intercept in accordance with Equation 2.1. There are a number of
parameters that may influence the fit of a line to a given set of data. The slope, number
of points used, and the magnitude and nature of the errors were varied in the studies
carried out, but it was primarily the effect of experimental errors that was the subject of
this study. To minimize the effect of the slope, the line being estimated was kept at a
constant length.

There were five error structures examined in this study. In all cases, experimental
errors were simulated using random numbers drawn from a normal distribution. In the
simplest case, homoscedastic equal errors (HE), the standard deviations in x and y were
taken to be equal to each other and the same for all points. The magnitude of o is
specified as a percentage of the length of the line being fit. For the homoscedastic

unequal case (HU), all of the standard deviations in x and y are the same, but o, does not

equal oy, The level of error is specified by a percentage of the length of the line being fit
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for x and by the desired ratio of c}/crx=R for y. For proportional equal errors (PE), 6y
and oy are given as a constant percentage of the displacement of the true points along the
vector from the origin. For proportional unequal errors (PU), o, is calculated by the
procedure outlined for PE errors, and oy is determined by again using the specified ratio
of the standard deviations, R. Finally, for random errors (RA), o, and oy for each point

are determined by drawing a random number from a uniform distribution between zero
and a percentage of the length of the line being fit. These five cases are intended to
represent cases which might arise for a typical chemical data set, with the last
encompassing the most general situation. The five cases are summarized pictorially in
Figure 2.7. The known standard deviations (as opposed to measured values) for the data
sets were used in the data analysis. Experimentally measured standard deviations can

themselves possess a high level of uncertainty [38],

RSD(s) ~ —=—= (2.19)

but this source of variability was not explored in this study.

Obviously, any study like this cannot possibly encompass all possible scenarios,
so the simulations were carried out to represent a large range of reasonable
circumstances. The slopes employed were 0.1, 0.5, 2, and 10, and ratios of standard
deviations (R) were 0.01, 0.2, 5, and 100. Error levels, as defined above, were 4% and

10% of the line length. In all cases, 10 simulated data points were generated, with the
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noise-free values located at equal intervals along the length of the line and no point at the
origin. Because the objective of this study is to compare regression methods and PCA,

no intercept term is included.

24 MATHEMATICAL EQUIVALENCE OF METHODS

In this section, the seven methods and five error structures under consideration are
compared in several ways. To simplify the study, the equivalence of various methods is
examined from a mathematical perspective under the different error conditions.

Each of the methods treated here tries to minimize some criterion that is generally
known as the objective function. Table 2.1 presents the form of the objective function for
each of the methods used in this study when different noise types are imposed. For the
general case, the expressions for OLS and WLS can be found in standard introductory
textbooks on regression, and the equation for EVM can be derived from these with the
weights adapted accordingly. The expressions for MWR and UPCA can be readily
derived and have been given in the literature [39-40]. The weighted PCA equations can

be obtained from appropriate extensions of the UPCA equation.
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It can be seen from Table 2.1 that when certain noise structures arise, methods
that generally differ can become mathematically equivalent. For example, when the
errors are homoscedastic equal (HE), all of the linear regression methods minimize the
same objective function. This can also be seen for MWR and the principal component
methods. For other noise structures, the equivalence among methods is not as extensive,
but is useful nonetheless. It should be noted that for the cases of HU and PU errors, the
minimization criteria show that the MWR estimate of the slope can be obtained from the

WPCAL estimate of slope by multiplying the latter by R. (We denote this method

WPCAI*). This equivalence is expected, since the scaling introduced by WPCAI
effectively reduces the problem to HE and PE conditions, but also alters the slope of the
line. These results are also consistent with the analysis of Paatero and Tapper [32] and
Cochran and Home [35]. For all of the error conditions other than RA, the matrix of
standard deviations can be represented as the outer product of two vectors and will have a
rank of unity. Therefore, it should be possible to provide the maximum likelihood
solution through simple scaling. Note, however, that WPCA2 only provides results
equivalent to MWR for the cases where 0,=0), and for the fairly common case of HU
errors, it is identical to unweighted PCA.

The equivalence of methods expressed in Table 2.1 simplifies the task of
comparison since redundant methods may be omitted when certain noise cases are
examined. Furthermore, the cases where the results of MWR are identical to other

methods are particularly important since they simplify extension of the maximum
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likelihood method to higher dimensions. This extension will be the focus of subsequent

chapters.

25 COMPARISON OF METHODS -

A study similar to the current investigation was carried out recently by Kalantar er
al [41], but with several important differences. First, these authors compared only OLS
and MWR in their study and did not include PCA methods or WLS. Second, because the
cited study focused on implications for regression, both slope and intercept terms were
included. Because the objective of the present study is to compare regression methods
and PCA, no intercept term is included. Finally, Kalantar et al/ concentrated on
examining the bias of the methods, which is not necessarily the most important criterion
from a chemist's point of view.

The utility of a particular modeling method relates to how closely the estimated
model compares to the true model. This can be evaluated by Monte-Carlo methods
employing a large number of data sets with the same noise characteristics and examining
the distribution of estimated slopes around the true slopes. To assess performance,
measures of central tendency and dispersion can be used, but, as indicated by Kalantar et
al [41], care must be taken in the parameter to be assessed. For this study, the estimated
slope would be considered a poor parameter choice because it is a biased estimator of the

true model slope, even when there is a geometrically symmetric distribution of estimated
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models around the true model. For example, an angular change of, say +10°, around the
true line will not correspond to an equal change in slope in both directions unless the line
is coincident with one of the axes. Thus the distribution of slopes around the true value
will be skewed. This is because there is a nonlinear relationship between the slope and
the angle that the model makes with the axes (6=tan"a). It is expected that a symmetric
distribution of models about the true model would be reflected by a symmetric
distribution of angles. Therefore, it is the angular distribution about the true model
(6- 0. ) that is evaluated in this study.

Initial studies were carried out to examine the angular distributions about the true
model for the various cases of noise and modeling methods used in this chapter. Figure
2.8 shows typical results for the case of purely random error (RA) at a noise level of 4%.
In this example, ten coordinate pairs (equidistant along a line of length 25) and a slope of
0.5 were used to generate the noise free data. Results from other cases were similar.
Distributions, based on 10,000 data sets, were generated with each of the seven modeling
methods included in this study (OLS, WLS, MWR, EVM, UPCA, WPCAI, and
WPCA2). The distributions given in Figure 2.8 are shown relative to the true slope,
which therefore corresponds to an angular deviation of zero. In general the distributions
appear fairly symmetric about the true model, with the exception of WPCA1. (It should
be noted that under other error conditions examined (HE, HU, PE, PU), the distributions
for WPCAL1 were in fact symmetric.) The angular deviations were therefore considered

to be useful for comparison of the methods.
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Figure 2.8  Histograms showing the distributions of centered angular deviations (4%
RA error with =0.5) for (a) OLS, (b) WLS, (c) EVM, (d) MWR,

(e) UPCA, (f) WPCAL and (g) WPCA2.
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2.5.1 Bias Study

One method of evaluating the different modeling techniques is according to their

bias, which is defined as the difference between the expectation value for the estimated

angle of the linear model, 8, and the angle for the true model:

bias = E(é) -0 (2.20)

frue

For this study, the mean of the angle estimates obtained from the 10,000 simulations was
compared to the true model angle. The large number of simulations ensures, by the
Central Limit Theorem, that the mean estimated angle is normally distributed, and that a
Z-test of the bias can be used. The test statistic has the form:

(6-0,.. VN

Z=L  TmeNT 21)
Sg

where 0 and sg are the average and standard deviation of the 10,000 estimated angles.

Values of Z greater than 1.96 in magnitude were taken to indicate bias which is
statistically significant. A summary of typical results for the case of 10 evenly distributed
points is shown in Figure 2.9. In this figure, the methods are ranked according to the
magnitude of the Z statistic and classified as either biased or unbiased based on the
critical value. Also, methods which are mathematically identical under various error
conditions are indicated by being enclosed in the same dashed box. Several observations
can be made for this particular study. For homoscedastic equal (HE) errors, MWR and

the equivalent principal component methods produce unbiased results while the
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regression methods become significantly biased as the orientation of the line becomes
more vertical. For the HU and PU cases, these same methods were again found to be
unbiased (but were not equivalent as in the HE case), although these results were
sensitive to the particular conditions used and under the right circumstances all of the
methods exhibited bias. For the remaining error types (PU and RA), only MWR (and its
equivalent for the PU case, WPCAI') was found to give unbiased results.

One should be careful not to read too much into this particular study, since
different levels of bias can be observed as the conditions of the simulations are changed.
However, some general conclusions can be drawn. First, for the majority of the error
conditions studied here MWR and the PCA methods appeared to be less biased than the
linear regression methods. (As the errors in x approach zero, however, the regression
methods are expected to perform better than the PCA methods.) Second, and perhaps
more importantly, in all of the cases that were studied in this chapter, MWR consistently
provided results with a smaller bias than the other methods. Finally, it should be noted
that, while bias is a useful means of comparison, it is not necessarily the most important

parameter to consider in most chemical applications, as discussed below.
2.5.2 Mean-Squared Error Study

From a chemist's point of view, the utility of a modeling method should be based
on how closely the results from a single set of data approximate the true model
underlying those data. This will depend not only on bias, but also on the dispersion of

results from the true model under a given set of error conditions. The total error of an
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estimator, 0, arising from both of these sources is referred to as the mean-squared error

(MSE) [42] and is given by:

MSE = E(6~ e,,,,,)2 (2.22)

where E is the expectation operator, 0 is the angle of the linear model obtained by a
particular method for a given data set, and e is the angle for the true model. It can be

shown that:

MSE = o} +(bias); (2.23)
where 0'; is the variance of the estimated angles about their mean, and the bias is defined

in Equation 2.20. In other words, the uncertainty in the analysis of a single data set will
be determined not only by the bias, but also by the distribution of the estimated parameter
about the mean. This is illustrated in Figure 2.10. When the bias of a method is small
relative to the spread of the distribution (as in the cases examined here), it will be the
latter that is the dominant factor in the determination of uncertainty for a given data set.
To examine the performance of the various methods included in this chapter in
terms of MSE, a study similar to that used to examine bias was carried out. The results of
the MSE study will vary with the conditions used (number of points, error level, slope),
but trends emerge and some general observations can be made. As expected, the
performance of the various methods with respect to MSE depends on the error structure

and other conditions used. Typical results of the MSE study are summarized in Figure
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Figure 2.10  Graphical representation of mean-squared error.
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2.11. In generating these results, paired Z-tests were used to compare the MSEs from
10,000 data sets. In the figure, methods are ranked according to their MSE. Because of
the sensitivity of these tests (due to the large number of data sets) statistically significant
differences were found for virtually every pair of methods, but such differences were not
always meaningful. For example, while a 5% difference in variances may be statistically
significant, from a practical point of view it is of little importance. For this reason, the
solid boxes in the figure encompass methods which were the same from a practical
perspective. A practically significant difference is somewhat arbitrarily defined as a case
where the difference in MSEs is greater than 10% of the average MSE for the two
methods. As in Figure 2.9, the dashed boxes indicate methods that are mathematically
identical.

Figure 2.11 shows that there is considerable variation in the performance of the
methods under different error conditions, as was observed for the bias study. For many
cases, it is found that several methods produce results that are not practically
distinguishable, at least for the rather conservative conditions used here. An exception is
the most general case (RA), where more meaningful differences in MSE were observed.
Overall, however, MWR consistently produced the smallest MSE, which means that it
should give the smallest uncertainty in any single experiment. This conclusion reinforces
the results of the bias study in the last section and suggests that MWR is the preferred

method among the seven techniques examined.
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2.6 CONCLUSIONS

It was the primary objective of this chapter to clearly elucidate the relationships
among regression and PCA methods for modeling linear bivariate data with normally
distnbuted, uncorrelated errors. It has been shown that these relationships can be
understood from the perspective of maximum likelihood estimation. MWR can be
regarded as providing the maximum likelihood estimate for the model parameters in the
general case, while each of the other methods are special cases which will provide the
maximum likelihood solution when the appropriate error structures hold. It is the implicit
assumptions about errors that are made for each modeling method that distinguishes it
from the others and determines its strengths and weaknesses in a given situation. It was
found that, under certain conditions, all of the various methods studied here will reduce to
the maximum likelihood method. For ease of reference, equivalent methods under the
various conditions are shown in Table 2.1.

A secondary objective of this chapter was to demonstrate that, at least for some
common cases, MWR produces results which are superior in terms of both bias and
mean-squared error. While this conclusion was not rigorously proven or generalized
through an exhaustive study of all possible conditions, the results are consistent with the
widely held belief that maximum likelihood methods perform best for well-behaved data
sets.

Of the error structures considered here, it will be noted that WPCAL is equivalent

to MWR in all cases but RA. Therefore, this approach to scaling should be useful as a
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pretreatment for PCA in higher dimensions when the appropriate error structure is valid.
However, it should be noted with some caution that this method of scaling performs
badly when general unstructured errors are present and can destroy the structure of the
data in those instances. This observation is consistent with the conclusions of Paatero
and Tapper [32]. Furthermore, no particular advantages to using WPCA2 were found in
this study, so no further results for WPCA2 will be reported for the remainder of this
work.

It can be concluded that the maximum likelihood method, manifested as MWR for
the two-dimensional case, serves as a general approach to modeling, and that other
methods can be unified by their relationship to MWR. Additionally, the use of maximum
likelihood renders redundant issues of scaling in PCA, since appropriate weighting of the
data is automatically incorporated into the method. The conclusions presented here for
simple two-dimensional linear modeling have implications for multivariate modeling in
higher dimensional spaces as well. Thus, the use of maximum likelihood modeling as a
substitute for PCA in higher dimensions will eliminate the need for scaling and produce
results with less bias and smaller uncertainties. In the next chapter, a method for

maximum likelihood modeling in dimensions greater than two will be developed.



3
MODELING IN HIGHER DIMENSIONS

3.1 INTRODUCTION

In the previous chapter, the use of PCA In two dimensions was described.
Although shown to have utility in this case, the strength of PCA arises in its ability to
readily handle multivariate data sets. Because of the many applications of PCA, some of
which were outlined in Section 1.3, it has become a tool of choice for chemometricians.

One important aspect of PCA which has been largely ignored (despite its
widespread use) is the role of measurement errors in the decomposition procedure.
Problems arising from these errors have been loosely acknowledged through the
introduction of various scaling techniques, and this has led to numerous interesting
debates over when such techniques should be used. For example, autoscaling, in which
data columns are first mean-centered and then scaled to unit variance, is commonly used,
but can lead to problems for certain types of data.

Despite the fact that PCA has been described (albeit briefly) in the first chapter, a
more in-depth treatment is required for application in higher dimensions. In this chapter,
a novel approach to PCA is described that inherently accounts for measurement errors af
their variances are known) and removes the need for any kind of preprocessing to scale or
offset the data. This new technique will be referred to as maximum likelihood principal
component analysis (MLPCA) because it is based on the principle of maximum
likelihood model estimation. This name is somewhat inaccurate, since PCA is described

by a specific definition, and to alter this means that one is no longer performing PCA, but

60
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we will use the description to emphasize the close relationship of the new method to the
objectives of PCA. It is demonstrated that MLPCA produces results identical to
traditional PCA when conditions of uniform measurement error are assumed, but
provides results that better estimate the true model when non-uniform noise is present.
MLPCA also renders mean-centering and scaling obsolete as data pretreatment steps and

therefore avoids the problems that these techniques can introduce.

3.2 MODELING IN HIGHER DIMENSIONS

3.21 PCA

For multivariate analytical measurements, we may consider the mxn matrix X
which consists of m samples measured at n sensors. Whatever the application, the
general objective of PCA in chemistry is to map such multivariate data into a space of
lower dimensionality. This is done by first determining the direction of greatest variance
in the data set and assigning a unit vector to this direction. The unit vector is called the
first eigenvector or the first principal component. The projections onto this vector are
called the principal component scores and represent the linear mapping of the data into a
one-dimensional space. The second eigenvector accounts for the largest amount of
residual variance (i.e. that not accounted for by the first eigenvector) and is orthogonal to
the first eigenvector. The scores on the first two eigenvectors map the data into a two-
dimensional space defined by the plane of these two vectors. This process continues until

the number of eigenvectors equals the dimensionality of the original space. By selecting



62

the appropriate number of eigenvectors (normally in order of decreasing variance)
projection of the data into a space of arbitrary dimensionality can be achieved.

In practice, PCA is now most often implemented through singular wvalue
decomposition (SVD). This decomposes the original data matrix into the product of three

matrices:

X=USVT G.1)
where the superscript “T” denotes the transpose of a matrix. In this application, U is
mxn, S is a diagonal nxn matrix of singular values, and V is nxn. To describe the data in

a p-dimensional subspace, U is truncated to mxp, V to nxp, and S to pxp. This gives,

X=USV" (3.2)
where X represents the orthogonal projection of the measurements onto the model. The

product US is often referred to as the scores matrix and V' as the loadings matrix.
Various methods can be used to determine whether the p-dimensional space is sufficient
to represent the data within experimental error, but these will not be addressed here.
Instead, we will consider the question of whether or not PCA is the best method to model
the p-dimensional subspace.

One of the weaknesses of PCA is that, while it is sensitive to variance in a data
set, it ignores the source of the variance. Chemists are interested in systematic variance,
that which arises from sources other than purely random measurement error, but PCA
does not distinguish between these two sources. If some information about the

magnitude of the measurement errors is known, it seems logical that a better model could
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be obtained by taking this into consideration. To see how this could be done, it is helpful
to view PCA from a geometric perspective.

Each of the rows (samples) in the data matrix X can be considered to represent a
point in an n-dimensional sensor or column space. Alternatively, we can view each of the
columns as a point in the m-dimensional row or sample space. In either case, our
objective is to fit these points to a p-dimensional model (hyperplane) in the corresponding
higher dimensional space. As demonstrated in Chapter 2, both PCA and classical
regression methods can be considered to be maximum likelihood estimation methods
under the right conditions. PCA will provide a maximum likelihood estimate of the p-
dimensional model when the errors in the measurements are independent and identically
distributed (iid) with a normal distribution.

The requirement for iid measurement errors for maximum likelihood estimation
by PCA has been one of the most cumbersome aspects of its use. It has long been known
that PCA is scale sensitive and this is a direct consequence of the implicit assumptions
regarding measurement errors. Cases of non-uniform noise abound in analytical
chemistry. For example, many applications involve measurement variables that have
inherently different uncertainties because of different ranges or different units. As well,
measurement errors in areas such as spectroscopy typically vary with signal intensity
(often referred to as heteroscedasticity) and may also be correlated. Numerous methods
have been developed to reduce these cases to uniform uncertainty prior to PCA, but no
universal method exists. Methods such as WPCA1 and WPCA2 previously discussed in

Section 2.2.4 may be adequate for certain error structures, but are ineffective in general
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situations. It would therefore be useful to develop a true maximum likelihood estimation

procedure which can take measurement errors into account.
3.2.2 Maximum Likelihood PCA

For each measurement, x;, we will assume there is an associated random
measurement error, e;, which is characterized by its variance, 0',-j2, or standard deviation,
o;. Furthermore, if we consider each sample as a point in n-dimensional sensor space
and that the measurement errors are normally distributed, then each of these points can be
considered to be bounded by an n-dimensional hyper-ellipsoid which represents a region
of specified probability (e.g. 95%) for the true measurement. This ellipsoid is

characterized by the nxn error covariance matrix for the point, given by:

s, = E[(x,. -x;)(x, —x;’)T] (3.3)

where x; is the column vector of measurements (nx1) for sample i (i.e. the transpose of

the ith row of X) and x; is the column vector of expectation values for those

measurements. If the measurement errors are uncorrelated, Z; is a diagonal matrix whose
elements are cijz. In this case, the major axes of the ellipsoid will be parallel to the sensor
axes. If the errors in the measurements are correlated (as is often the case in spectral
measurements, for example), the off-diagonal elements of =; will not be zero and the
ellipsoid can be viewed as tilted away from the sensor axes. Similarly, an mxm

covariance matrix can be calculated for each point in the sample space.
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In maximum likelihood estimation, the error ellipsoid for each point in the space
is considered to be associated with some “true” point which lies on the hyperplane
described by a trial model. Of course, the actual error-free measurement is not known, so
a best guess is required, and this is the maximum likelihood estimate for the point. For
both classical regression and PCA, the location of this point is defined by a particular
projection onto the hyperplane, although it will be a true maximum likelihood estimate
only if the error assumptions made for those two methods are valid. For the general case,
the maximum likelihood estimate is obtained by finding the point in the plane of the
model] for which the experimentally measured point is at the highest point on the
multivariate probability density function for that measurement. Thus, the maximum
likelihood estimate of point x; (= [x;; Xy ... x;;]') is the one for which the observed

measurement is "most probable”. This process is repeated for all of the points in the

space until a matrix of maximum likelihood estimates, designated X, is obtained for the

trial model parameters.

This is only the first step in the maximum likelihood estimation, since it finds the
most likely true values of the measurements for a set of trial model parameters, but does
not assess those parameters. The maximum likelihood fit is obtained by adjusting the
parameters in the trial solution to minimize the goodness-of-fit objective function, S°,
given by:

§2=3 (%, -&)" =7 (x, - £,) (3.4)

i=l



66

where x; and X; represent the observed and maximum likelihood estimates of the

measurement vector for sample i. In effect, this is a sum of squares of residuals for all
measurements weighted by the appropriate error covariance matrix. For uncorrelated

measurement errors, this function reduces to:

2

S? = izn: (x";_zx") (3.5)
=] j=1 i

For the maximum likelihood fit, this sum of squared residuals will approximate a y’
distribution with (m-p)x(n-p) degrees of freedom (for the case of no intercept terms),
where p is the dimensionality of the model. The minimization of S corresponds to the
maximum likelihood estimation of the p-dimensional hyperplane.

As seen in Section 2.2.3, the maximum likelihood estimation procedure therefore
consists of two nested algorithms: one which determines the maximum likelihood
estimates of the true measurements and the corresponding objective function in
conjunction with a set of trial model parameters, and the other which updates the
parameters to minimize S°. Further details of these algorithms are treated in subsequent
sections, but first the method outlined above is considered in view of current literature.

The concept of maximum likelihood estimation is quite general in nature and
therefore has been employed extensively in all fields of science, including chemistry.
However, an extensive search of the literature has indicated that no reference to
maximum likelihood implementations of PCA have appeared in the literature, at least in
the manner considered here. The closest work of this kind describes “maximum

likelihood common factor analysis” (MLCFA) and was reported in the chemical literature
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quite recently by De Volder and coworkers [43-44]. Although the terms are often used
interchangeably by chemists, PCA and factor analysis are distinctly different approaches
to multivariate analysis [18,p.109]. MLCFA is based on an approach described by
Lawley and Maxwell [18,Ch. 4] and later employed in programs such as LISREL
[45-46], but does not include estimated measurement errors in the determination of
common factors. The MLCFA method assumes that the measurements are random
variables, an assumption that does not generally hold for chemical measurements.
Nevertheless, the chemical reports claim better results with MLLCFA than with PCA. The
reason for this is unclear, but it is suspected that the superior results are a consequence of
the fact that autoscaling is used and factor analysis, which minimizes residual covariance,
should perform better under these conditions than PCA, which minimizes residual
variance. However, MLCFA does not generally use information about measurement
errors. Elsewhere, Thomas discussed maximum likelihood prediction based on a
calibration model, but does not use the principles to develop the calibration model itself
[47]. Several authors [36,48] discuss the development of models by minimizing an
objective function of the form of Equation 3.5, but do not incorporate maximum
likelihood estimates of the measurements in doing so.

Another errors-in-variables method that has become popular recently is total-
least-squares (TLS) [40]. This method uses SVD for the purpose of developing a
regression model and is similar to MLPCA in some ways. However, it is less general in

its ability to obtain maximum likelihood estimates of model parameters. To our
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knowledge, the method described in this work is unique in its approach to PCA model
estimation.

The remainder of this chapter is devoted to the specific aspects of the MLPCA
algorithm. Extensions of maximum likelihood parameters into higher dimensions will be

made, building on the bivariate principles set down in Section 2.2.3.
3.2.3 Extension of Model Parameters into Higher Dimensions.

The procedure for the estimation of a rank one model in a two-dimensional space
is relatively straightforward and has been addressed in detail in Chapter 2. To develop an
analogue to PCA based on maximum likelihood, the principles described in two
dimensions need to be extended to higher dimensional models in higher dimensional
spaces and incorporate a non-diagonal error covariance matrix. If a point in an n-
dimensional space is given by (x,, x,, ..., x,), then the objective function for a trial model
is calculated in a manner described by Equation 3.4. First, however, we must develop
equations to calculate the maximum likelihood estimates of the points in the
multidimensional space. This requires a set of model equations, which will be defined by
the dimensionality of the space and the dimensionality of the model. For example, a one-

dimensional model in three dimensions would be given by a set of parametric equations:

X, =a,x, +b, 3.6)
X; =a,x, +b, y

where the a's and b's are the model parameters to be estimated (the subscript notation will

become evident shortly) and x; is the (arbitrarily chosen) independent variable. Note that
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n—1 equations are necessary to describe a line in n dimensions. When the objective
function is optimized with respect to the parameters, the solution will be analogous to the
first eigenvector produced by PCA for this three-dimensional data set, but should possess
better properties when the homoscedastic error assumption for PCA does not hold.
Models of higher dimensionality can also _be used, generally requiring n—p
equations, where p is the dimensionality of the model. For example, a two-dimensional

model in four dimensions is described by the two equations:

Xy =a;x, +a,x, +b, G.7)
X, =a,x, +a,x, +b,

These equations will define a two dimensional plane in a four-dimensional space in the
same way that the equations in Equation 3.6 define a line in three dimensions. (In
Chapter 4, the dimensionality of the subspace will be more apparent from the PCA
formulation.)  Again, with maximum likelihood estimation, the assignment of
“independent” and “dependent” variables is arbitrary, but we will normally consider the
first p variables to be “independent”.

Determination of maximum likelihood estimates of points in higher dimensions
proceeds in the same manner as for the two-dimensional case, except that now we are
dealing with matrices of independent and dependent variables in the equation for the log
likelihood and a covariance matrix that is more complicated if the assumption of
independence is no longer valid. Suppose we define the measurements for a particular
point in the n dimensional space to be given by the vector x = (X223, ... x)". A p-

dimensional model in this space is given by the matrix equation,
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x=Ax, +b 3.8)
where,
- - - -
IP 0P xl
I ap-o-l.l ap*l,z ap+l.p 0 bp-o»l x
[A2 pf l p: ? . p; T b, pzz ’ :
X
N an.l an,z ot an.p J L bn J g

Here I, indicates a pxp identity matrix and 0, indicates a px1 vector of zeros. A is the
nxp matrix of regression coefficients, with the coefficients for the » “independent”
variables set to unity in the corresponding variable. The nx1 vector b contains the
intercept terms for the model. The point x will have an associated error covariance

matrix Z and the multivariate probability density function is described by Equation 3.10.

L =m exp|~4(x-%) 2" (x - %) (3.10)

The vector of maximum likelihood estimates, £, is obtained by minimizing the function:

I=1(x-%)"=7"(x-%) (3.11)
subject to Equation 3.8. It can be shown in a manner analogous to the two dimensional
case that the solution is,

Ax=x-%=-A(ATZ7A) ATE e e (3.12)

where,

c=x-Ax, -b (3.13)
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From this result, X can be calculated, for the given point (X = x — Ax), but usually it is
Ax that is required for substitution into Equation 3.4. This procedure is repeated for each
point in turn prior to evaluation of the objective function given by Equation 3.4. The
model coefficients (A and b) are then updated and the process continues until S° is
minimized, at which point the coefficients represent the maximum likelihood model.

The maximum likelihood model obtained in this way will describe a p-
dimensional hyperplane in the n-dimensional space, analogous to the hyperplane
represented by the first p eigenvectors found by PCA. Note that the MLPCA approach
does not define individual eigenvectors as in the case of conventional PCA, but in most
applications it is the subspace defined by the eigenvectors and not the vectors themselves
that are important. Where individual vectors are required, it is a simple matter to

calculate them once the subspace has been defined.
3.2.4 General Procedure

The MLPCA algorithm begins with an mxn data matrix, X, where the rows of X
represent the points to be modeled. An estimate of the error covariance matrix for each
row of X is also required. Generally, unless the noise is very well characterized, the
errors in X will be assumed to be independent. In this case, the standard deviations in
each measurement can be placed in a matrix that is the same size as X and the rows of
this used to generate the diagonal elements of the error covariance matrix. After these
matrices have been defined, the first step is to obtain an initial estimate of the

coefficients. If an intercept is not included in the model, perhaps the simplest way to do
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this is to perform SVD on X. If this is done and the results are truncated to the form

given in Equation 3.2, the coefficients are calculated as:

~

A=YV (.14

where V is the loadings matrix from SVD truncated to rank p, and Vp is the upper pxp

submatrix of V. This method becomes more complicated when an intercept is involved
and in this case we have used the effective variance method (EVM) [25] to determine
initial estimates. This method is an adaptation of weighted regression which propagates
the errors in the independent variables to the dependent variables in an iterative fashion.
EVM was found in general to give the best initial estimates of the coefficients, even in
the absence of an intercept.

Once initial estimates of A and b have been obtained, Equation 3.12 is used to
evaluate the maximum likelihood estimates for each row of X and §” is calculated from
Equation 3.4. The process of searching for a minimum then begins. At each iteration in
this process, a new trial solution is generated and a new value for $° calculated until the
optimum solution has been found. A variety of optimization procedures could be
employed, including gradient algorithms, genetic algorithms and simulated annealing, but
in this study we used simplex optimization [49]. This is not necessarily the most efficient
method, but is robust and was convenient to implement for these initial studies. A more
efficient solution will be introduced in the next chapter. It should be noted that to
enhance the performance of the optimization procedure, it is not carried out in the

original space of the model parameters, but rather the space of angles that correspond to
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the A matrix (i.e. 6; = tan'la,-j). The reason for this is the nonlinear behavior of the slope
parameters. For example, in two dimensions, a step change in the slope causes 2 much
greater adjustment for a line with a slope of 1 than for a line with a slope of 1000.
Because of this, the rate of movement of the simplex over the search space would depend
on the value of the parameter and it would be difficult to choose an optimum step size. In
angle space, the surface is more homogeneous, leading to a more effective search and an
easier determination of convergence. Of course, the intercept terms cannot be treated in
this way.

One of the major differences between conventional PCA and MLPCA is that the
former produces eigenvectors and scores, whereas the latter produces model parameters
and maximum likelihood estimates (confined to a p-dimensional hyperplane in the
original n-dimensional space). As already noted, it is generally the subspace that is of
interest rather than the way it is defined, but the availability of eigenvectors is comforting
to some and useful in many respects (e.g. for visualization of the samples in the
subspace). Because of this, a simple method has been developed for generating what will
be termed "pseudo-eigenvectors”. This is accomplished by carrying out singular value
decomposition (SVD) on the maximum likelihood estimate of X and retaining the first p
eigenvectors (note that because these estimates are confined to a p-dimensional
hyperplane, additional eigenvectors are meaningless). In PCA, it is assumed that the
maximum likelihood estimates are the orthogonal projections of the data onto the first p
eigenvectors (i.e. the scores). Unfortunately, this does not necessarily hold true for

MLPCA and an orthogonal projection may result in a loss of any extra information
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gained by incorporation of the error estimates. Instead, "pseudo-scores" are obtained by
multiplication of the maximum likelihood estimate of X by the p pseudo-eigenvectors.
These procedures produce results that are analogous to conventional PCA. Likewise,
new measurement vectors x can be projected into the principal comporent space by first
computing their maximum likelihood values in accorfiance with the model obtained.
Another difference between PCA and MLPCA is that the former produces
estimates of all eigenvectors in a single treatment. Therefore, the dimensionality of the
subspace is specified simply by selecting the corresponding number of eigenvectors. In
contrast, for MLPCA, the dimensionality of the desired model must be determined in
advance, and the process must be restarted if a model of higher or lower dimensionality is
desired. While this, when coupled with the potentially long calculation times for
MLPCA, is an inconvenience, it will be shown that in certain cases the advantages of

better model estimation warrant its use.
3.2.5 Equivalence of Methods

As noted above, the optimization procedure for MLPCA can be quite time
consuming when compared to traditional PCA carried out via SVD. Because of this, it is
worthwhile to point out cases where more conventional methods will serve as well. In
the case of iid errors, MLPCA and conventional PCA produce identical results. The case
of homoscedastic, unequal errors (i.e. same variance for all measurements of a given
variable, but different variances among variables) can also be readily treated. In such an
instance, the method previously described in Section 2.2 4, referred to as WPCAL1 can be

used. With WPCAL, each variable is scaled by dividing by its corresponding standard
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deviation prior to analysis by PCA. This has the effect of reducing the problem to the
homoscedastic, equal error case. This produces a projection which is equivalent to
MLPCA in terms of the spatial relationships of the samples, although the scale and
orientation of the axes are different from MLPCA. For most other error cases it is
necessary to use the MLPCA approach. Using the WPCALI method in cases where errors

are not homoscedastic within a variable can seriously distort the data.

3.3 EXPERIMENTAL

All simulations in this study were carried out using Matlab v.4.0 for Windows
(Mathworks, Natick, MA) on a 486-based personal computer. Simplex optimization of
maximum likelihood solution was based on the modified simplex of Nelder and Mead

[49]. Further details of the simulations employed are given in the following sections.

34 ADVANTAGES OF MLPCA

There are four principal advantages of MLPCA over conventional PCA for
multivariate data analysis: (1) it eliminates the need for scaling the data, (2) it eliminates
the need for mean-centering the data, (3) it provides a reliable statistic for rank
estimation, and (4) it handles missing data in a simple and statistically valid manner. The

first two advantages are illustrated with some simple examples in the following sections.
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The latter points will be explored further, in Chapters 4 and 6 respectively, following an

examination of the theory behind MLPCA in the next chapter.
3.4.1 Scaling

Over the years, many methods of preprocessing data prior to implementing PCA
have been devised. The most common techniques involve mean-centering and scaling.
We will consider each of these steps separately. Scaling of data has always been a
subject of debate among practitioners of PCA, but it is clear that in some cases it is very
beneficial, while in others it can be detrimental. Deming has considered the effect of
some common scaling methods from a geometric perspective and illustrated how these
can distort the original data [50]. Perhaps the most common type of scaling is variance
scaling, which consists of dividing the rows or columns of a data matrix by the standard
deviation of that row or column so that it has unit variance. When used in conjunction
with mean-centering, this technique is known as autoscaling. It is normally done in such
a way that the row or column treated consists of measurements of one type. Range
scaling, in which each row or column vector is scaled by the range of its elements, is also
used. In practice, both of these methods are attempts to reduce the measurements to
uniform measurement error by assuming that the errors for a given variable are
homoscedastic and are a fixed percentage of the observed range. This is a rather
simplistic view and fails dramatically, for example, if one or more measurements consists
of pure error. Another technique is to scale each measurement by the reciprocal of its
standard deviation. This approach, which we have referred to as WPCAL, is somewhat

better, but seriously distorts the data if measurement errors for a given variable are not the
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same. Paatero et al give an excellent summary of different scaling methods and discuss
their assumptions [32]. They show that optimal scaling requires a rank one matrix of
standard deviations, which is often not observed in practice. A “balanced scaling”
approach is shown to perform well, but is still sub-optimal. MLPCA can provide an
optimal model for the data with no preprocessing.

To illustrate the effects of scaling on data, we will examine an artificial rank two
data set with three variables. In practice, most data sets will contain many more
variables, but this small data set is more easily visualized. Consider an equilateral
triangle with sides of unit length centered at the origin of a three-dimensional coordinate
system and lying in the xy plane. Now, ten points, representing samples of different
classes, are placed at each comer of the triangle, and normaily distributed noise
representing measurement variance, is added to each sample for all three variables. This
noise has a standard deviation of 0.1 in the x and y directions, and 1 in the z direction.
The projection of the samples onto the xy plane is shown in Figure 3.1a and exhibits a
good separation of the three classes. The z axis is not shown, but has no value in class
separation, although it does have a variance (from measurement error) roughly equivalent
to the systematic variance along the x and y axes. Because of this, the projection of the
samples into the two-dimensional space defined by the first two eigenvectors obtained
from conventional PCA produces a poor separation of the clusters compared to the
original xy projection and is shown in Figure 3.1b. The significant random variance in
the z direction leads to a major contribution of that axis to the first two eigenvectors, thus

contaminating the projection with noise. In this case, variance scaling does not help, as
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shown in Figure 3.1c. This is because the variance in each variable is comparable.
Although the variance in x and y is largely due to class differences and the variance in z is
due to random noise, variance scaling does not distinguish between the two, so the
projection is once again contaminated by noise. In contrast, Figure 3.1d shows that the
projection of the maximum likelihood values onto the first two pseudo-eigenvectors
obtained by MLPCA produces a class separation which is comparable to the ideal
projection into the xy plane. In this case, the known measurement standard deviations
were used in the calculation, so systematic variance could be more effectively
distinguished from random variance by the algorithm. As a final comparison, WPCAl
was carried out on the data matrix and the projections are shown in Figure 3.1e. As
previously noted, the spatial relationships of the samples in this space is equivalent to that
produced by MLPCA (and the separation is therefore as good), but the orientation and
scaling of the axes are different.

Given the equivalent performance of MLPCA and WPCAL, one might question
the necessity of using MLPCA, especially since it is much more involved
computationally. This is best illustrated with an example in which the noise is no longer
homoscedastic within the variables. The same procedure was used to generate the data as
for Figure 3.1, but in this case half of the samples in each group had a standard deviation
of 0.02 in x and y, and the other half had a standard deviation of 0.2. As before, the
standard deviation of z is unity. The projection of these samples onto the xy plane is
shown in Figure 3.2a, along with the projection onto the first two eigenvectors by

conventional PCA in Figure 3.2b. Again, PCA provides a rather poor separation of
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classes. In contrast, MLPCA provides quite a good separation as shown in Figure 3.2c.
For comparison, WPCAI results are shown in Figure 3.2d. Not only does this method
provide a poor separation for half of the samples, but the results are misleading. Four
groups are clearly evident rather than three, a direct consequence of the scaling used. For
errors which are heteroscedastic within the variables, WPCA1 can seriously distort the
original data because of the scaling used. Although these simple examples are simulated,
they indicate some of the pitfalls that can be encountered when traditional scaling
methods are used with PCA. Such problems will likely be compounded as the

dimensionality of the measurement space increases.

3.4.2 Mean-centering

The subject of mean-centering as a preprocessing tool for PCA is almost as
contentious as the issue of scaling. Mean-centering involves subtracting the mean
measurement for each variable from the row or column corresponding to that variable.
From a modeling perspective, the purpose of mean-centering in conventional PCA is to
eliminate the contribution of intercept terms in describing the subspace. These intercepts
may arise, for example, from a constant baseline contribution or the existence of closure
in a data set. Generally speaking, variance due to the intercept is usually not considered
important in evaluating systematic variance in a chemical system. For the case of
homoscedastic errors in all variables, mean-centering eliminates the variance due to the
intercepts in a manner consistent with maximum likelihood estimation. Because of this,

if intercept terms are non-zero, mean-centering prior to PCA reduces the pseudo-rank of
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the data matrix by one. A number of authors have discussed the effects of mean-
centering on multivariate analysis [20,42,51].

Although the sample mean can be considered to be an unbiased estimator of the
population mean, the variance in this estimation will be related to the variance in the
measurements. Because of this, an imprecise estimate of the mean can cause the rank of
a data set to be overestimated by PCA. This can be especially problematic in the case of
heteroscedastic errors. In MLPCA, however, the intercept can be estimated using
principles of maximum likelihood, so each measurement is given its proper weight. This
is illustrated with the following simple example in two dimensions.

Consider the two-dimensional data set shown in Figure 3.3a. These data were

generated from the relationship:

y=x+1 (3.15)
where x = 1,...,10. Normally distributed noise with a standard deviation of 0.1 was added
to all of the x values and to all of the y values except the last two. The last two y values
were assigned noise with a standard deviation of 10. In this particular realization of the
data, both of these measurements are high, but they cannot be considered outliers since
they fall within an acceptable region of the known distribution. The dashed line in the
figure (T) shows the true model and the solid line (E1) shows the direction of the first
eigenvector obtained by applying MLPCA (with an intercept term) to these data. Note
that no preprocessing was performed in this case and the slope of the first eigenvector
(1.070) is close to the true value of unity, and the intercept value found by MLPCA was

0.9594. In contrast, Figure 3.3b shows the mean-centered data and the first eigenvector
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resulting from the application of conventional PCA. It can be seen that, because the
errors in the last two points are larger and occur in the same direction, mean centering
does not compensate for the true intercept of the model. In this case, the slope of the first
eigenvector is 1.733, significantly different from the true value. This error is due in part
to the fact that measurement precision was not taken into account, but is also a
consequence of mean-centering.

Although the use of MLPCA with intercept terms makes mean-centering of the
data unnecessary, it is still left to the analyst to address the question of whether intercept
terms should be included in the MLPCA model or forced to zero. This is analogous to
the case of fitting or forcing an intercept in a simple linear calibration plot and can only
be answered with a knowledge of the data set. In order to remain consistent with PCA
when an intercept is fit, the pseudo-scores and pseudo-loadings in MLPCA are obtained
by conducting SVD after subtracting the intercept terms from the maximum likelihood
estimates. This means that the reproduced data matrix will have an offset, but this is
easily corrected by adding the intercept terms. Also, when performing rank estimation,
the degrees of freedom will have to be reduced by n—p if intercept terms are included.
Further discussion on the role of intercepts in general can be found in the following

chapter.
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3.5 CONCLUSIONS

The purpose of this chapter was to introduce the principles of MLPCA and to
illustrate its features with some relatively simple examples. It has been shown that
MLPCA is a reliable method for dealing with measurement errors in PCA problems. By
incorporating measurement errors into the model e;timation, a better model should be
obtained. Furthermore, it has also been shown that MLPCA removes questions of mean-
centering and scaling which have plagued applications of multivariate analysis to
chemistry from the beginning. These features support the further development of this
technique which will be addressed in the next chapter.

The largest drawback to the use of the MLPCA algorithm described here is that it
1s more time consuming and cumbersome to implement than conventional PCA. This
problem will be addressed by exploring the theory behind the method in the next chapter.
From this treatment, an improved, efficient algorithm will be proposed to make
implementation of MLPCA easier. In addition, a procedure for rank estimation via the S°

statistic will be described.



4
THEORETICAL FOUNDATION OF MLPCA
AND ALGORITHMIC IMPROVEMENTS

4.1 INTRODUCTION

In the previous chapter, a procedure was introduced to incorporate measurement
errors into the multivariate modeling process. This is normally done by minimizing the
usual weighted residual sum of squares in accordance with some p-dimensional model.

Mathematically, this corresponds to the minimization of Equation 4.1,

a2
=33 (x’;—zx') (4.1)
i=l j=I i

where X; corresponds to the estimated value of the measurement. In the general case,

where there are no offsets in the model, this is given by:

~

X=AB 4.2)
where A is mxp and B is pxn. By analogy to PCA, A and B correspond to scores and
loadings matrices, but in Equation 4.2 the individual vectors which make up the columns
of A and rows of B are not required to be orthogonal. A variety of methods have been
devised to obtain A and B through minimization of Equation 4.1 and these differ largely
in their representation of the problem, the constraints applied to the solution, and their
approach to the nonlinear optimization. Gabriel and Zamir [36] describe a method based
on “criss-cross regressions” as a means to obtain lower rank approximations of the matrix
X. Paatero ez al [48] have described what they call “positive matrix factorization” (PMF)

and have applied this to environmental problems. In addition to satisfying the

86
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minimization criterion, PMF also requires A and B to have only positive entries. The
MLPCA solution developed in the previous chapter is somewhat different from these
earlier approaches in several respects. First, rather than alternately optimizing A and B,
one of the matrices is determined through a maximum likelihood projection onto the
other. This leaves only one matrix to be optimized, simplifying the procedure. This is
important, since these are multiparameter problems, often with more than one solution
and prone to local minima. A second difference is that the parametric equations allow for
the inclusion of intercept terms, an important consideration in chemistry where offsets are
commonplace and cannot generally be remedied by mean centering in maximum
likelihood estimation. Finally, this approach explicitly includes the error covariance
matrix in the estimation of the model parameters.

Although the utility of MLPCA was demonstrated in Chapter 3 with several
examples, the method was considered to have several drawbacks. These are best
illustrated by considering the matrix form of the parametric equations for a p-dimensional

hyperplane in an m-dimensional space:

x=Ax, +b (4.3)

In this equation, x represents a column vector of X (X has been transposed from the
previous chapter to facilitate the development of the MLPCA theory), x, is a vector of the
upper p elements of X, A is an mxp matrix of model coefficients (slope parameters) and b
is a pxl vector of intercept terms. - Note that the upper pxp matrix of A is the identity
matrix and the upper p elements of b are zeros. If we assume that the intercepts are zero
as in traditional PCA, this leaves the coefficients of A to be estimated - a total of (m-p)xp

parameters. However, finding the optimum model should be just a matter of finding the
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optimal rotation of the p-dimensional hyperplane, so only m-1 angles should be required.
Therefore, the problem is “over-parameterized”. Furthermore, the number of parameters
to be estimated can change dramatically depending on whether X or X is being analyzed.
Another problem is the practical implementation of this model. In Equation 4.3, x,
represents the p “independent variables” for the parametric equations, which are
arbitrarily chosen to be the first p rows of x. In practice, the maximum likelihood
estimates of X, are obtained from the observed measurements and the trial value of A, and
then used to estimate the remaining rows of x. In principle, the maximum likelihood
approach is independent of which rows are chosen as the independent variables, but in
reality computational instabilities can arise if they are highly collinear. A final drawback
of this approach is that the problem is not presented in terms of scores and loadings
which are so familiar to practitioners of PCA.

In this chapter, the theory of MLPCA will be formulated in terms of singular
value decomposition (SVD), which is a very common method for implementing PCA.
Additionally an easy-to-implement MLPCA algorithm will be described, consisting of an
alternating least squares procedure which is robust and very efficient compared to
conventional gradient search methods.

The objective of this chapter is to develop the MLPCA approach in a manner
consistent with the PCA formulation and present algorithms which are computationally
practical. A complete analysis of the statistical properties of the method is beyond the
scope of this treatment, but examples are presented to validate the method and
demonstrate some of its features. Additional applications will be presented in Chapters 5

and 6.
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4.2 THEORY OF MLPCA

The development of the theoretical aspects of MLPCA is presented here in four
sections. First, the parametric models discussed in Chapter 3 are extended to a PCA
framework, and a strategy for gradient optimization of th; model parameters is discussed.
In the second section, a more efficient optimization procedure based on an alternating
least squares approach is described. This procedure assumes that the model contains no
intercept terms and the measurements have uncorrelated errors. This algorithm will be
referred to as the “standard” MLPCA algorithm since it represents the simplest case. The
more general case which accommodates correlated errors is discussed in Section 4.2.3.
Finally, as an analog to mean centering in traditional PCA, the incorporation of intercept

terms into the MLPCA procedure is treated in Section 4.2.4.
4.2.1 MLPCA with No Intercept Terms

As mentioned in the previous chapter, starting with the mxn matrix of
measurements, X, the MLPCA problem can be regarded simply as one of finding the
equation for the optimum p-dimensional hyperplane to fit n points in the m-dimensional
row space or, alternatively, m points in the n-dimensional column space. In the analysis
presented here, the former approach is used, but it will become apparent that this is not
important. As previously mentioned, maximum likelihood model estimation is an
iterative two step procedure. First, for a set of given hyperplanar model parameters (i.e.

slopes), the maximum likelihood estimates for the points (the column vectors of the
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observed data matrix, X) are found. These are then used to calculate the objective
function in Equation 4.1 (or an analogous equation). In the second step, the model
parameters are adjusted in an attempt to minimize S°. The new model parameters are
used to calculate new maximum likelihood estimates of the points and a new $°, and the
process continues until the objective function is minimized. Thus, there are two problems
to address: (1) how to calculate the maximum likelihood estimates for a given set of
model parameters, and (2) how to optimize the model parameters. The former was
addressed in Chapter 3, but these results will be reiterated to make comparison with PCA
easier. The latter problem was initially addressed with simplex optimization, but due to
the points raised in Section 4.1, a more elegant optimization is described.

In accordance with the assumptions stated earlier, each column of the data matrix
X can be considered to represent a point in the m-dimensional row space, with the true

measurements corrupted by normally distributed errors:
X=x"+¢ 4.4

Here x is a column vector of X, x° represents the error-free column vector, and € is the

vector of measurement errors, which has an error covariance matrix ¥ :
¥ =cov(e) = E(s eT) 4.5)

where “E(e)” denotes an expectation value. Note that each column of X can have a

different error covariance matrix. In the development of an MLPCA model, it is assumed
that the error-free measurements lie on a p-dimensional hyperplane that can be modeled

by a set of parametric equations with p independent variables. The independent variables
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for these parametric equations will be arbitrarily chosen to be the first p rows of X. As

before, the general equation to be solved is:

X=Ax’ +¢ (4.6)

where x_ is the vector containing the first p elements of x°. In this equation, A is the

mxp matrix of model coefficients (slope parameters), and the upper pxp submatrix of A is

the identity matrix. Our problem here is to find the best estimate for x; given the vector

of observations (x), a matrix of estimated model coefficients (A), and an error
covariance matrix (). The form of the solution is analogous to that for generalized

least squares regression and yields:

-l A

£ = (A“P"A) ATy @4.7)

The derivation of Equation 4.7 is presented in Appendix A. Here X, is the maximum

likelihood estimate of x,. Substitution back into the model equation gives the maximum

likelihood estimates for the remaining elements of x.
&= Az, = A(AT¢"A) ATwx (4.8)

Equation 4.8 solves the first of the problems posed, allowing maximum likelihood
estimates of the measurements to be easily obtained for a given set of model parameters.

However, to obtain the maximum likelihood fit, it is necessary to adjust the model

coefficients (A) to minimize the objective function, §°. In the case of uncorrelated
errors, this objective function is given by Equation 4.1. In the case where errors are

correlated among the rows, a more general form of Equation 4.1 is minimized:
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" (4.9)
= Ax}'¥;'Ax,
=1

where, as before, X; represents a column vector of X. Equation 4.9 reduces to Equation
4.1 for a diagonal error covariance matrix. For the case where the error covariance

matrix, ‘¥, is the same for each column of X, Fuller has given a closed form solution for

A that minimizes §° [39, p. 292]. If W is also diagonal, this is equivalent to the solution
obtained by SVD if appropriate row scaling is used. However, in the general case, when

the error covariance matrix varies with the columns of X, there is no closed form solution

for A. Fuller suggests an iterative solution in this case [39, p. 217]. Simplex and

gradient based algorithms have been successfully employed to optimize the coefficients

of A, but in general convergence is slow and prone to local minima. Furthermore,
depending on which rows are used for the “independent” variables, the numerical
stability of the solution algorithm is questionable. Another drawback to this approach is
that the equations developed thus far are in the form of a regression model rather than the
PCA model which is sought. For these reasons, it would be more convenient to represent
Equation 4.8 in terms of a PCA decomposition, i.e. in terms of scores and loadings. To

do this, consider the form of the PCA model normally arrived at through SVD:
X=USVT (4.10)

where X is mxn, © is mxp, § is pxp,and V is nxp. The caret on X denotes that these

are the maximum likelihood estimates of the measurements in accordance with the p-

dimensional model, and U, §, and V are obtained from the singular value
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decomposition of X, which is constrained to be rank p. Now X and U are partitioned

into the upper p rows (f(, and fJ,) and the lower m-p rows ()“(2 and sz) to give:

x=|%|-|U sv’:( Y, U;‘)U,SVT= o 1X 4.11)
xz UZ UZ UZU;

or, with reference to Equation 4.8: -
A=00] (4.12)

which is similar to the first step in the general procedure introduced in Chapter 3. Thus,
there is a direct relationship between the parametric equations and SVD form of the

model in the absence of intercepts. Substituting this into Equation 4.8:

(ﬁfl)TﬁT‘P" 'x; (4.13)

=00, 0, (07%'0) 07 (07)" 07w;'x,
=0(07¥;'0) 07w 'x,
=P x.

where the projection matrix, P;, is given by:
P, = 0(07¥;'0) O} (4.14)

Like Equation 4.8, Equation 4.13 allows the maximum likelihood values for the matrix of
measurements to be calculated, but in accordance with a given SVD model rather than a

regression model. It is also similar to an equation developed by Bartlett in the
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psychometrics literature as early as 1937 [52-53] and discussed later by Lawley and

Maxwell [18, Ch. 4], who describe it as an unbiased method for estimating factor scores.
It should be noted that because S is diagonal, the scores matrix, (=US), can be

substituted for U in Equations 4.12-4.14. In order for Equation 4.13 to provide

maximum likelihood estimates, the measurement errors should be normally distributed

and the error covariance matrix needs to be available. In the case of uncorrelated errors,
¥ will be a diagonal matrix with the diagonal elements equal to the measurement
variances.

As before, Equation 4.13 is used to optimize the elements of U in accordance

with the objective function given in Equation 4.9. In this case, however, there should be
fewer parameters to optimize. While the matrix A has p(m-p) variable coefficients, the

columns of U define an orthonormal set of vectors in the row space and it is only

necessary to optimize (m-1) angles in this space to define the optimum hyperplane.

To optimize the SVD model, an initial estimate for U, designated ﬁo, is first
obtained. The column vectors of ﬁo are then rotated in the m-dimensional space by

applying an mxm rotation matrix, T. This gives a new estimate for U :
U=T0U, (4.15)
One easy way to define the rotation matrix is in terms of successive rotations about each

axis. In an m-dimensional space, there are m-1 rotation angles to be specified, so we

have:
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m-1
T=TT, T, =[]T, (4.16)
i=l
where,
[cosat, —sinc, 0 --- 0] 1 0 0 - 0]
sino;, cosa, O --- O 0 cosa, -sina, --- 0O
T,={ O 0 1 - 0f, T,=|0 sina, cosa, --- O], etc. (4.17)
0 0 0 - 1] 0 0 0 - 1]

The problem now is one of optimizing the rotation angles (ct; ... 0y) to minimize the
objective function in Equation 4.9.

The optimization of the rotation angles can be carried out by a number of
methods, but gradient methods are generally regarded as being the most efficient. These
require the calculation of derivatives of §° with respect to the rotation angles. Since this
is a non-trivial calculation, the derivation is included as Appendix B. The result is given

in Equation 4.18:

08?
oo

-2 Ax;'¥;'GPxx; —x]¥;'P,G P, Ax,
;[ LI | 77 LI A | J J (418)

Tags- Ty~
where the matrix G; is defined in the appendix. This equation has been checked against
numerically calculated derivatives and found to be correct. It can be used in conjunction
with standard gradient techniques to find the optimum rotation of eigenvectors to
minimize the objective function in Equation 4.9. In practice, this procedure is faster and

more reliable than using the regression form of the equation, but it is still relatively slow



96

and susceptible to local minima. Therefore, an alternative approach was sought. This is

described in the next section.
4.2.2 An Efficient MLPCA Algorithm

In order to be useful with large data sets, an MLPCA procedure is needed which
converges relatively quickly. Among the most efficient methods in this regard are
iterative procedures, such as alternating regression approaches. Such a solution was
developed for the MLPCA problem and was based on the following rationale.

It will be assumed for the moment that all measurement errors are independent so
that error covariance matrices in both the row and column spaces are diagonal. If this is
true, the p-dimensional model obtained by maximum likelihood estimation must be
equivalent in both spaces. This follows because the objective function in both cases
reduces to the same summation given by Equation 4.1. Mathematically,

A \2
s? =zz(x—"’_f#)=zljm}w;'uj =) Ax[Z'Ax, (4.19)
=

i=1 j=l ij i=l
Here, Ax; is a column vector of AX, Ax; is a column vector of (AX)T, and ¥, and Z; are

the corresponding column and row error covariance matrices for X, both of which are
diagonal. For ease of visualization, some of the matrices are represented pictorially in
Figure 4.1a. In order to develop the alternating regression algorithm, Equation 4.10 will

be rewritten as:

X" =vS80T (4.20)
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This suggests that the maximum likelihood estimates of the measurements in column

space are given by an equation which is analogous to Equation 4.13:
£, = V(VTEV) VT, . @.21)

where, as before, x; is a column vector of X" and Z, is the corresponding error covariance
matrix. When the maximum likelihood solution has been obtained, the estimates of X in
the row and column spaces will be identical. This implies that an alternating regression
approach can be developed by alternately transposing the maximum likelihood estimates
and performing SVD.

The algorithm for the alternating regression procedure is given in Table 4.1 (with
the Matlab code presented in Appendix C). It should be noted that the algorithm has been
expanded to show a full iteration for clarity, but there are some redundancies in the
procedure that can be exploited to make the actual code more compact. The algorithm
alternately uses the maximum likelihood estimates in the original row space to update the
estimates in the column space (i.e. the row space of the transposed matrix), and vice
versa. This procedure has been found to be simple, fast and reliable. It does not appear
to be susceptible to local minima, as is the case for gradient methods. Convergence time
will depend on the dimensionality of the problem, the accuracy of the initial SVD
estimate, and the structure of the errors. The algorithm is easily applied to cases where
there are missing data simply by incorporating large variances for the missing
measurements. Convergence is somewhat slower in these cases due to the poor initial
estimates obtained when the missing measurements are replaced with zeros, but is still

reliable. Some comparative data on convergence times are given in the Section 4.4.1.
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Table 4.1 Standard MLPCA algorithm (uncorrelated errors, no intercepts)

1.

Given an mxn data matrix X and a corresponding mxn matrix Q of measurement error
variances, use SVD to obtain an initial approximation to the MLPCA solution. The
SVD solution is truncated to rank p as indicated by the notation svd(X,p). This means
that U, 8, and V are truncated to mxp, pxp, and nxp, respectively.

[0.8,9] = svd(X. p) (T-1)
Transpose X and Q and calculate the maximum likelihood estimates in the alternate
space using V. N
X=X", Q<«<Q', I, «<digq) (T-2)

%, = V(VE¥) Ve (T-3)

Here x; is a column vector of the now transposed X. From this result, the objective
function can be calculated using eqn T-4.

8t =3 (x, — &) = (x, - &) = ZZ-—l (T-4)

o (xji = X;
3
i=1 i=l j=1 O

Compute the SVD of X from step 2 and, as before, truncate the results to obtain a
new V.

[I‘J,é,\‘f] = svd()‘(, p) (T-5)
Repeat step 2 to estimate the model in the original space.
X=X, Qe=QT, V¥ < diag(q;) (T-6)
~ ~ ~ - o -l ~ -
& = V(v o) VT, (T-7)

~\2

n AT . m o &x; - X;:

S =2(x - %) ‘Pj‘(xj—xj)=ZZ—-—( : z’) (T-8)
=1 i=1 j=1 G

Compute the SVD of X to obtain a new estimate of the MLPCA solution in the

original space.

[ﬁ,é, \“f] = svd(f(, p) (T-9)
Calculate the convergence parameter, A.
A=(S2-82)/8? (T-10)

If A is less than the convergence limit (typically 10" in this work), terminate.
Otherwise return to step 2.
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The algorithm presented in Table 4.1 does impose certain restrictions. First, it is
assumed that there are no offsets in the row or column space. Normally, this would be
equivalent to saying that the data have been mean-centered, but in the case of non-
uniform measurement errors, mean-centering is not generally equivalent to eliminating
offsets. The topic of row and column offsets is discussed in Section 4.2.4.

Another restriction to the algorithm presented here is that it assumes uncorrelated
errors in the row and column spaces. The algorithm will not converge to a common
solution if the covariance matrices used are not diagonal in both spaces. This raises an
interesting question. Suppose, for example, that one is dealing with a series of m samples
whose spectra are measured at n different wavelengths. Also imagine that, because of
instrumental characteristics, errors are correlated in the wavelength direction, but there is
no correlation in the errors among the samples. Under these conditions, the mxm error

covariance matrices in the row space, ¥ ;» are diagonal and minimization of $> should

lead to the same solution regardless of whether the nxn error covariance matrices in the
column space, Z; , are diagonal or not, since there is no information about wavelength

correlation in the ‘¥';. However, it is apparent that the maximum likelihood estimates of

X obtained by Equation 4.21 depend on whether or not the Z; are diagonal and will not be
the same as the maximum likelihood estimates obtained by Equation 4.13 if there are
correlated errors. Therefore, it seems that the maximum likelihood solution found in one
space is not generally equivalent to that found in the alternate space in the presence of
correlated errors. The reason for this apparent paradox is that the points in the row space

are assumed to be independent, which will not be true if errors are correlated in the
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wavelength direction, so the model is invalid. The subject of correlated measurement

errors is addressed in the next section.
4.2.3 Error Covariance

When measurements are made during the course of an experiment, there is a
realistic possibility that random errors in-these measurements will be correlated with one
another because of the design of the experiment or the nature of the samples. Even if the
original measurement errors are not correlated, it is possible that pre-processing methods
such as digital filtering can introduce such correlation. To our knowledge, no one has
attempted to develop PCA models which deal with correlated measurement €rTors,
although there has been recognition of the importance of correlated errors in the literature
[54]. Earlier works cited [36,48] attempt to develop algorithms to minimize Equation
4.1, which assumes uncorrelated errors for maximum likelihood estimation. In the more
general case, we wish to minimize Equation 4.9, which incorporates the non-diagonal
error covariance matrix. Furthermore, the model developed should be consistent with an
SVD formulation such that the maximum likelihood estimates obtained in either the row
or the column spaces will be the same. In practice, one is fortunate to have individual
measurement standard deviations available, and information on error covariance is rare.
Nevertheless, it is useful to develop a theoretical framework for using such information if
for no other reason than to assess its value.

There are essentially three common cases of error correlation that can be
distinguished: (1) all measurement errors are uncorrelated, (2) correlations among errors
exist along either the rows or columns of the data matrix, but are uncorrelated in the other

direction, and (3)there is some degree of possible correlation among all of the
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measurement errors. The first case was dealt with in the preceding two sections and the
third is the completely general case which has yet to be addressed. To begin, however, it
is helpful to examine the second case which is more restricted.

An example of the second case was presented earlier and will be considered again
here. Consider a series of spectra whose errors are correlated in the wavelength direction
(e.g. by source fluctuations) but not correlated among samples. If this were true, the error

covariance matrix for column j of X (m samples by n wavelengths), ¥;, would be

diagonal, but that for row i, £;, would not. Variance information is carried in both spaces,
but covariance information is only carried in the column space in this case. Therefore it
would seem logical to compute the maximum likelihood estimates using Equation 4.21
and minimize the objective function by rotating the columns of V. In principle, this can
be done and will lead to the correct result. However, it would have to be done using the
gradient methods described in Section 4.2.1 rather than the much more efficient algorithm
described in Section 4.2.2, since we can no longer interchange the row and column
spaces. Furthermore, when the final solution is obtained, the maximum likelihood
estimates of X computed by Equation 4.21 in the column space will not be the same as
those calculated in the row space using Equation 4.13. This is an apparent contradiction,
since there should only be one set of maximum likelihood projections which are the same
in either space. The reason for this paradox is that there is no information about
wavelength correlation in the row space, so the maximum likelihood estimates generated
there are wrong. Realizing this, one could simply use the estimates obtained from
Equation 4.21, but this does not address the more general problem of incorporating the

error covariance information in both spaces.
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To arrive at a more general solution for correlated errors, it is necessary to realize
that any pair of measurement errors could be correlated and redefine the problem
accordingly. Rather than considering it as modeling n points in an m-dimensional space,
or m points in an n-dimensional space, it will be viewed as modeling a single point in an
mn-dimensional space. To do this, X is vectorized by applying the vec operator and the

equations are adapted as necessary. The generalizations of Equations 4.13 and 4.9 are:

ved(X) = 0(0%2"0) "0t vee(X) (4.22)
and §* = vec(AX)" Q" vec(AX) (4.23)
where, 0 = & U (4.24)

and Q= El:(vec(x— X°)).(vec(x-X°))T] (4.25)

Here the vec operator gives an mnx1 vector with the column vectors of X arranged in

sequence [55]. The symbol “®  indicates the Kronecker product such that each element

A

of I, is multiplied by U [55]. Thus, U is an mnxnp matrix with U (mxp) repeating
along the diagonal. Q is the full covariance matrix for vec(X), providing the error
covariance among all of the measurements. X" represents the true (or expectation) values
for X. For greater clarity, some of these matrices are shown pictorially in Figure 4.1b.
Note that the column covariance matrices of X, represented as ‘¥, fall along the diagonal
of Q. The remainder of Q is made up with the row covariance information () and other

covariances.



104

With these definitions, an alternating regression algorithm similar to the one in the
preceding section can be developed, and is given in Table 4.2. As before, the algorithm
above uses the maximum likelihood estimates in one space to estimate the solution in the
alternate space. As the solutions are exchanged, the error covariance matrix for vec(X)
(given by Q) needs to be modified to give the covariance matrix for vec(XT) (given by ).
This can be done on an element-by-element basis, but it is easier to use the commutation

matrix, K [55]. The commutation matrix is an orthonormal matrix that has the property:
veq(AT) = Kvec(A) (4.26)

When combined with the definition in Equation 4.23, this leads to the use in
Equation B-12 to transform the error covariance matrix into the alternate space. In
practice, the commutation matrix can be computed as follows. Begin with a mnx1 vector
a, such that q; =i. Reshape a so that it forms the mx» matrix A and then setb = vec(AT).
Now the corresponding elements of a and b are the row and column indices, respectively,
of the elements of the mnxmn commutation matrix, K, that should be set to 1. The
remaining elements of K should be set to zero, making it a sparse matrix with mn non-
zero elements.

The algorithm in Table 4.2 represents a completely general treatment for the case
of correlated measurement errors and therefore is a significant advance in multivariate
modeling. The algorithm (written in Matlab code) is presented in Appendix D. It
converges rapidly to an optimal solution (unless the matrices involved are numerically
unstable) and yields results identical to the earlier algorithm in the presence of
uncorrelated errors. In practice, use of the algorithm is currently limited to some extent

by the size and stability of the matrices. In the completely general case, the covariance
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Table 4.2 MLPCA algorithm for correlated measurement errors.

1. Given an mxn matrix X, a corresponding mnxmn matrix Q of measurement error
covariances for vec(X), and a commutation matrix, K, for X, use a truncated SVD to
obtain an initial approximation to the MLPCA solution.

[ﬁ,é, \“r] < svd(X, p) (T-11)

2. Transpose X and calculate the maximum likelihood estimates in the alternate space
using V. -

XX, E'<KQ'KT (T-12)
V=L ®V (T-14)
N AL A AN=l A
ved(X) = V(VTF_" V) V=" vec(X) (T-15)
From this result, the objective function can be calculated using eqn T-16.
S} = vec(AX)' ="' vec(AX) (T-16)
3. Reconstruct X from vec(X ) and compute the truncated SVD of X.
[I“J,é, \“f] P svd()“(, p) (T-17)
4. Repeat step 2 to estimate the model in the original space.
X=X, Q'eK'E'K (T-18)
V=L oV (T-19)
- AL A AN\~ A
ved(X) = V(VTQ" V) V'Q" vee(X) (T-20)
S; = vec(AX)' Q"' vec(AX) (T-21)

5. Reconstruct X (original dimensions) and compute the truncated SVD of X in the
original space.

[ﬁ,é, \“I] < svd(X, p) (T-22)

6. Compute the convergence parameter (eqn T-10) and terminate if is less than the
convergence limit. Otherwise, return to step 2.
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matrix will have m’n’ elements and easily exceeds the storage capacity of most machines
for large matrices unless special measures are used. The matrices also tend to become ill-
conditioned as X becomes large, causing convergence problems. However, for many
chemical problems, error covariance is limited to either the row or column directions. In
these cases either Q or Z will be block diagonal and can be stored as sparse matrices.
The diagonal blocks of these matrices (‘P or Z) can be inverted individually, and the
covariance matrix in the alternate space can be calculated with the commutation matrix.

In this way, the algorithm can be extended to a much wider set of problems.
4.24 MLPCA with Intercepts

In models for chemical systems, it is common for row and column offsets to be
present for the matrix of measurements. Returning to the earlier example from
spectroscopy, one can imagine a situation in which a constant background spectrum is
present for all of the samples. If X is m samples by n wavelengths, this can be considered
a vector of column offsets. Since this is invariant for all samples, it is often desirable to
subtract it from each sample spectrum prior to decomposition of the data matrix, thereby
achieving a reduction in rank. Likewise, one can imagine a vector of row offsets that
arises from, say, variations in cell position or sample preparation. This can also be
removed. Models which include such effects in chemistry are the same as that developed
by Mandel for analysis of variance [56], namely:

p
Xi =H+p; +7Y; +Zumskkvﬁ( (4.27)

k=]
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Here u is the grand mean of X, p; and Y; represent row and column offsets, respectively,
and , s, and v are individual elements of the SVD of the matrix with the offsets removed.
The elements of the vectors p and y are often taken to be the means of the rows and
columns after the grand mean is subtracted. Note that Equation 4.27 is a general
formulation. In a given application, the row and/or column offsets could be set to zero
(as they often are) or could even be constrained, for example, to each have identical
elements (a situation rarely imposed in chemistry). Also note that the grand mean, since
it is constant, can be incorporated into either or both of the offset terms, so can be
excluded from Equation 4.27. For the purposes of this discussion, an alternate form of

Equation 4.27 will be used:

m " (4.28)

In this equation, ¢ and d are column vectors of the row and column offsets, and 1., and 1,
are column vectors of 1’s of length m and n. This representation of the matrix of offsets,
B, is shown pictorially in Figure 4.1c. It is clear from the figure that the presence of row
or column offsets will increase the rank of an untreated data matrix by one, while the
presence of both will increase the rank by two.

In chemistry, realization of a model of the form of Equation 4.28 is normally
accomplished by column and/or row mean centering to determine ¢ and d. If only one of
these is to be used, the means of the columns or rows can be used directly as cord. If
both are used, the grand mean must first be subtracted from the data matrix, or one set of

offsets needs to be calculated after the other has been subtracted from X.
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It should be pointed out that there are an infinite number of row and column offset
vectors which will provide equivalent models in terms of quality of fit. This is illustrated
in Figure 4.2 for the case of rank one data (with an offset) in a two-dimensional space.
Note that a zero intercept for the model can be obtained in at least three ways, and there
are infinitely more. In fact, the illustration shows that any one of the offset terms (x or y)
can be set to zero without changing the quality of the fit. In general, any p offset terms
can be set to zero for both ¢ and d, which is why the degrees of freedom is reduced by
(n-p) and/or (m-p) when mean-centering is used.

When all of the measurements in X have normal iid errors, mean-centering
to remove offsets is a convenient approach to use because the characteristics of PCA
guarantee that the mean will fall on the optimum model, so forcing the mean to zero
ensures that all of the intercept terms will also be zero for the centered data. However,
for MLPCA, the presence of non-uniform and/or correlated error distributions means that
this is no longer generally true, although it may be a good approximation. For this
reason, the row and column offset vectors need to be optimized along with the scores and
loadings in order to obtain a true maximum likelihood solution. Attempts to include
these parameters into the alternating regression algorithms already presented have not
been successful thus far, and generally result in convergence on a suboptimal solution.
As an alternative, more traditional gradient methods have been coupled with the
alternating regression procedure to yield the MLPCA solution. Although this is slower
than the standard MLPCA algorithm, it converges reliably. The algorithm (written in

Matlab code) is presented in Appendix E.
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The procedure begins by finding initial estimates for the row and/or column offset
vectors. One way to do this would be to use the corresponding means, but an alternate
procedure is chosen here. The data are first analyzed using the algorithm with no
intercepts, but increasing the model rank by 1 or 2 to account for the offset vectors. The
row and/or column means of the maximum likelihood estimates are then used as a
starting point for the offset parameters. As noted above, the procedure should require the
optimization of only (n-p) row offsets and/or (m-p) column offsets. However, the full
vectors in each direction (n and/or m parameters) have been used in this work to simplify
the conversion from and comparison with the row and column means. This will lead to
degenerate solutions, but does not seem to affect convergence.

Once initial estimates for ¢ and d have been obtained, these are used to calculate
B (see Equation 4.28) and this is subtracted from X. The alternating regression algorithm
is then applied to the adjusted matrix. As soon as the convergence criterion has fallen
below an acceptable value, a gradient search is implemented to optimize ¢ and/or d. The
results of this are used to calculate a new B, which is then subtracted from the original X,
and the process is repeated until the change in the objective function is acceptably small.
In order to carry out the gradient optimization, the derivatives of S2 with respect to the
intercept parameters are needed. For uncorrelated errors, these can be obtained by using

the equation for Ax in the presence of intercepts:
A fa A\N-l A
Ax; =(I—U(UT P! U) UT‘I’J.") (xj —bj) (4.29)

Here b is a column vector of B. This gives:
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2 R arel
Z‘Z = axTe(1-6(07;0) 07 ) 1, (4.30)
i
B - 3| axre(1-v(ome0) ome)|
<

These equations were employed for the gradient optimization.

-

4.3 EXPERIMENTAL

All of the calculations performed in this study were carried out on a DEC
3000/300X UNIX-based workstation with a clock speed of 175 MHz and 96 MB of
memory (Digital Equipment Corp., Maynard, MA). Programs were written in Matlab
v. 4.2a (The Math Works Inc., Natick, MA). Seven data sets were used to evaluate the
algorithms.

Data set 1 was a simulated rank two data set of dimensions 10x20. The error-free
data matrix was generated by multiplying a 10x2 matrix of elements from a uniform
distribution of random numbers between 0 and 1 (U(0,1)) by a 2x20 matrix that was also
drawn from U(0,1). Measurement standard deviations corresponding to this 10x20
matrix were determined by generating a 10x20 matrix of random numbers from
U(0,0.01). This ensured that there was no pattern in the standard deviations. Finally, a
10x20 matrix of measurement errors was generated by taking a 10x20 matrix of normally
distributed random numbers (mean=0, standard deviation=1, or N(0,1)) and multiplying
this on an element-by-element basis by the matrix of standard deviations. The result was

added to the error free matrix to give the noisy data, X. The matrix of variances, Q, was
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obtained by squaring the elements of the standard deviation matrix. The matrices X and
Q were passed to the MLPCA algorithm for uncorrelated errors.

Data sets 2 and 3 were also rank two matrices generated in the same manner as
data set 1, except that their dimensions were 20x20 and 20x100.

Data set 4 was simulated rank three spectral data. Pure component spectra were
simulated as three Gaussian profiles spaced 20 nm apart, each with a standard deviation
of 20 nm and a maximum height of unity. The maximum of the center profile was at 500
nm, and 41 equally spaced points were calculated for each spectrum in the range of 400 to
600 nm. A 20x3 concentration matrix was generated by drawing random numbers from a
U(0,1) distribution. The 20x41 error-free matrix was the product of the concentration
matrix and the 3x41 matrix of spectral profiles. To provide a matrix of standard
deviations that was unstructured (ie. rank>one) but still realistic, constant and
proportional errors were used. The constant part was taken to be 1% of the maximum
value of the noise-free data matrix. The 20x41 matrix of proportional standard deviations
was calculated as 5% of the elements in the error-free data matrix. The overall matrix of
standard deviations was the square root of the sum of the squares of the proportional part
and the constant part. Finally, random numbers from an N(0,1) distribution were
multiplied by each element of the standard deviation matrix to give the error matrix,
which was added to the error-free data to give the noisy data matrix, X.

Data set 5 was generated in exactly the same manner as data set 4, except that
random offsets, drawn from an N(0,0.1) distribution, were added to each row and column
of the final X. This was intended to test the version of the MLLPCA algorithm designed to

fit intercept terms.
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Data set 6 consisted of near-infrared spectroscopic data for three-component
mixtures containing toluene, chlorobenzene, and heptane. The mixtures were prepared as
part of a calibration transfer study [57] by Scott Specialty Gases (Houston, TX) and
consisted of 31 samples from an augmented three-level, three-factor factorial design. The
concentrations varied between 20% and 70% by weight for toluene and chlorobenzene,
and 2% and 10% by weight for heptane: The mixtures were sealed into standard 1 cm
pathlength cuvettes and spectra were obtained over the range 400-2500 nm on an
NIRSystems Model 6500 (NIRSystems, Silver Spring, MD) grating spectrometer at
intervals of 2 nm and were the average result of 32 scans. The spectrometer employed a
Si detector in the range 400-1100 nm and a PbS detector at longer wavelengths. A
typical spectrum is shown in Figure 4.3a. Clearly there are some regions above 1600 nm
which are essentially opaque and therefore of little utility for analysis. Consequently,
standard deviations in this region are high. However, these wavelengths were retained in
this study for the purpose of illustrating the features of MLPCA. Unfortunately, replicate
data were only available for the first sample, for which 400 spectra had been obtained, so
a complete matrix of standard deviations could not be constructed. Instead, the standard
deviation data for the first sample, shown in Figure 4.3b, was used for all of the samples.
Although this is not completely accurate, it should serve as a reasonable approximation,
especially for regions where the standard deviation is very large due to high absorbance.

Data set 7 was a 5x10 matrix constructed in the same manner a data set 1, except
that correlated errors were introduced. To produce error covariance, a 3x3 moving
average filter (coefficients = 1/9) was applied to the 5x10 matrix of errors before it was

added to the error-free measurements. At the boundaries of the error matrix, the filter
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was wrapped around to the opposite side in order to eliminate edge effects. Although this
approach is not particularly realistic, it represents a general case for which the covariance
structure could be easily predicted. The covariance matrix for this data set was calculated

using the following definitions:

F=[vec(®,) vec(®,) - vec(®,,)] (4.32)

Q = F" diag(vec(Q)) F (4.33)

Here Q is the 5x10 matrix of error variances prior to the application of the moving
average filter. The 5x10 matrix ®;; contains the nine filter coefficients applied to the
error matrix to give the filtered error corresponding to measurement jj. This is illustrated
in Figure 4.1b for ®,;, where the filled squares show the positions of the filter
coefficients. For ®,,, the squares shift right, and for ®,,, they shift down. Expressed
another way, if E represents the 5x10 matrix of uncorrelated errors generated in
accordance with the variances in Q, and g;; represents the error added to element ij of the

pure data matrix, we have:

e = [vee(®;)] vec(E) (4.34)

The errors generated in this way were added to the pure data matrix. The noisy data

matrix, X, and the error covariance matrix, Q, were passed to the MLPCA algorithm.
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44 RESULTS

4.4.1 Algorithm Performance

Table 4.3 summarizes the results of applying the various MLPCA algorithms to
the data sets described in the preceding section. For data sets 1-4 and 6, the standard
algorithm (Table 4.1) was used. The version which incorporates intercept terms (Section
4.2.4) was used for data set 5, and the routine for correlated errors (Table 4.2) was
employed for data set 7. In all cases, the MLPCA model rank was varied from 1 to p+l,
where p is the true rank of the data set (i.e. the rank in the absence of measurement
errors). All of the data sets were also analyzed by PCA, with mean centering used as a

pretreatment step for data set 5. The models generated by PCA and MLPCA were used

to estimate the error-free measurements (X) by orthogonal and maximum likelihood
projections of the measurements, respectively. These were used to calculate the objective
function, S‘Z, in each instance. For this purpose, Equation 4.1 was used for data sets 1-6
and Equation 4.23 was used for data set 7. For cases with no intercept terms, S° for the
model with correct rank should approximate a x* distribution with (m-p)(n-p) degrees of
freedom. In accordance with this, the last two columns of Table 4.3 give the probability
of realizing a value of S’ below that observed if the model were correct. In other words,
values of P below 0.025 or above 0.975 would constitute rejection of the null hypothesis
that the model is correct for a two-sided test (a=0.05). For data set 5, the same test was
done using (m-p-1)(n-p-1) degrees of freedom to account for row and column intercepts.
The convergence times given in Table 4.3 are the result of single runs that were

carried out with no competing tasks running on the computer. The results are “typical” in
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the sense that no attempt was made to adjust the random number seeds to improve
performance. Note that there is a separate convergence time listed for each rank analyzed
by MLPCA. This is because, unlike conventional PCA, the MLPCA solutions are not
generally nested (ie. the rank p model does not contain the rank (p-1) model).
Convergence times listed are generally reasonable, with most cases requiring no more
than a few minutes and all but one case requiring less than an hour. Although size seems
to play some role in convergence time, a much more important factor is the structure of
the errors. Experience has indicated that the totally random error structure, such as that in
data sets 1-3, is the most difficult case, and this observation is supported by the results in
Table 4.3. This case is therefore useful in estimating upper limits for the convergence
time. The rank one model for data set 3 (the largest of the “random” error models)
proved to be unusually difficult to solve, requiring nearly 12 hours. It is not clear at this
point whether the slow convergence is the result of the error structure itself or poor initial
estimates that arise from it. However, convergence seems to be considerably faster for
other error structures, such as data set 4, where the convergence time is typically a few
seconds. This case is likely to be much more typical of experimental data than the
random structure. Data set 5, which is the same as data set 4 except for the presence of
row and column offsets, required considerably more time because of the gradient
optimization of intercept vectors, as described in section 4.2.4. Data set 6 represents a
typical experimental data set and demonstrates that MLPCA is a practical alternative to
PCA for such cases. Relatively slow convergence in this instance was probably due to
poor initial estimates resulting from the inclusion of very noisy measurements in the data

set. Finally, data set 7 shows that convergence time is not a problem for correlated errors.
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Analysis of the objective function values in Table 4.3 shows that MLPCA always
produces a lower $° than the corresponding PCA model. This is expected, since PCA
does not optimize the same criterion. It is interesting to note, however, that for data sets
2 and 3, the value of S’ obtained by PCA actually increases in going from a rank 2 to a
rank 3 model. At first this may seem contradictory, since the general rule is that
increasing the rank of a model improves the fit to the data. However, accounting for a
greater amount of variance in the data set by increasing the number of factors in PCA
does not necessarily decrease the value of $°. This seems to be especially true for the
case of unstructured errors.

With reference to the last two columns of Table 4.3, it is expected that P should
drop significantly below unity when a model of the correct rank is found, since that is the
point at which S? should follow a xz distribution. For MLPCA, this is true for all cases
but one. The one exception is the experimental data, data set 6. In this case, it is not
surprising that P remains at unity for several reasons: (a) the matrix of standard
deviations was approximated using only information from the first sample, and therefore
is incorrect for the remaining samples, (b) the variance estimates are the results of
replicate scans, and do not account for other sources of variance, such as cell positioning,
(c) the variance estimates appear to reflect truncation of the signal in some places, (d) the
noise is known to be correlated, and (e) although there are only three known components
in the system, there is a real possibility of row and/or column offsets. This example
highlights some of the difficulties in using this sensitive statistical measure to estimate
the rank in practical cases, but does not diminish the utility of MLPCA for model

estimation. (Note that the objective function for the rank three model is more than two
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orders of magnitude smaller for MLPCA.) In contrast to MLPCA, the PCA models
almost always give P values of unity in the table, indicating an incorrect model even
when the rank is overestimated. The only exceptions are data sets 4 and S, where the
error structure is closer to uniform, but even in those cases P does not fall below 0.98 for

models of the correct rank.
4.4.2 Statistical Validation

Although the cases in the preceding section indicate that MLPCA produces
smaller values of the objective function than PCA, it does not guarantee that the
procedure converges on the optimum solution, since local optima are always possible.
One way to test for a global optimum is to use a different initial estimate and compare the
final solutions, but this method is not foolproof. A better method in this case is to exploit
the statistical characteristics of S° for the correct model. This is done by analyzing
replicate data sets, each with the same matrix of error-free data and standard deviations,
but with different errors. If the distribution of the S* values for these replicates follows a
x” distribution with the appropriate degrees of freedom, then it can be concluded that the
method is finding the maximum likelihood solution.

A convenient way to make this comparison is to use probability plots. First, the
replicate data sets (100 in this case) are analyzed and the S° values are stored. The §°
values are then sorted and assigned a cumulative probability according to their position in
the list (the observed probability). For example, the second element in the list would be

assigned an observed probability of 2/n, where n is the number of replicates. Then an
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expected probability is calculated using the y* distribution. The cumulative probability

density function for x° can be calculated using the incomplete gamma function [58]:

P($2|v)=T,, G‘—f—) (4.35)

where v is the degrees of freedom. If the two distributions are the same, a plot of the
expected probabilities against observed ;)robabilities should yield a straight line with a
slope of unity. If the model is insufficient to account for the systematic variance, either
because the form of the model is incorrect or the parameters are suboptimal, then the
points of the plot will lie above the ideal line. This means that the distribution of §” is
shifted right from the xz distribution. If the model accounts for an excessive amount of
variance (i.e. the estimated rank is too high and measurement variance is modeled), the
points will lie below the ideal line.

Figure 4.4 shows probability plots for four of the data sets used in this study: 2, 4,
5, and 7. These data sets were chosen to reflect the different error structures and
algorithms used. It is clear from the figure that, in all cases, the results from MLPCA
follow the expected distribution, with only minor deviations attributable to the statistical
limitations of this study. Therefore, it can be concluded that each of the algorithms is
converging on a global optimum (the quality of the optimum is discussed in Section
4.4.5). Furthermore, to varying degrees, the models generated by PCA do not adequately
account for the systematic variance in the data sets and are therefore likely to be inferior.

Additional comments on these plots are made in the following two sections.
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4.43 MLPCA with Intercepts

The results shown in Figure 4.4c confirm that the gradient optimization method
used to determine the intercept vectors for MLPCA performed as expected. However, an
additional analysis was done using the standard MLPCA algorithm after the data were
column and row mean centered. While this approach always produced $° values which
were higher than those for which the intércepts were optimized, the difference is barely
distinguishable in the figure. This implies that the intercepts determined are very close to
the mean values for this particular error structure. Therefore, although the use of mean-
centering may mean that the models obtained by the standard MLPCA algorithm are
suboptimal, the differences may be negligibly small in many cases and justify the use of
the faster algorithm. Larger differences are likely to be observed for cases where the
standard deviations become very large or where the data matrix is small. Such cases

Justify efforts to improve the efficiency of the modified algorithm.
4.44 Correlated Errors

Figure 4.4d reveals some interesting characteristics of MLPCA when applied to
cases of correlated errors. It is clear from the figure that the version of the MLPCA
algorithm that incorporates error covariance provides the optimum model according to
the maximum likelihood criterion, and that PCA models are inferior in this regard. An
additional analysis was also carried out using the standard MLPCA algorithm by
assuming no correlation among the errors and using the diagonal elements of the fiill
covariance matrix (Q2) for the variances. The models generated by this approach were not

visibly any better than the PCA models, although the plot does not allow a direct
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comparison of these two sets of results. Further studies have shown that PCA and the
standard MLPCA algorithm produce inferior results for correlated errors even when the
standard deviations are the same for all measurements (in this case, these two algorithms
are equivalent). This indicates the importance of the error covariance information. Since
many chemical measurements and data preprocessing methods give rise to correlated
errors, future studies need to be carried o1t to assess the importance of this contribution to
model estimation and to improve the numerical reliability of the algorithm incorporating

covariance.
4.4.5 Model Quality

Although MLPCA generates models with smaller values of the objective function
than does PCA, the key questions have yet to be answered: "Are the MLPCA models
closer to the true model and do they offer significant advantages over the PCA models?".
The second part of this question cannot be answered outside the context of particular
applications, since the advantages gained by MLPCA will undoubtedly depend on the
type and magnitude of errors involved, as well as the intended use of the model
(regression, mixture analysis, etc.). This aspect will be addressed in Chapter 5.
However, the first part of the question is readily answered using simulated data.

One way to compare the MLPCA and PCA models is to project the original
vectors used to generate the error free data onto the row space (U) or column space (V) of
the model. The angle between the projected vector and the original vector then gives an
indication of the agreement between the true model and the fitted model.

Mathematically, the angular deviations for the lefi-hand vectors are given by:
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4| _ajUUTa,
0, =cos ["af" UU__Tai"] (4.36)

where 6; is the angular deviation of the left-hand vector a; from the space of the model. A
similar expression can be used for the right-hand vectors. In order to be able to draw
statistically valid conclusions, 100 replicates were run for data sets 2, 4, and 7. The
results are reported in Table 4.4. Note ;hat, since Equation 4.36 always gives positive
values, the results in the table are the mean values of the absolute angular deviations.
Also given are the standard deviations of the distributions.

Application of the r-test to the results in Table 4.4 clearly indicates that the
MLPCA algorithm produces models with smaller angular deviations for all three data
sets. The extent of improvement varies considerably with the nature of the data and the
errors, however. Although these differences are statistically significant, the practical
significance of the differences remains as a subject for future research.

To further assess the quality of MLPCA model estimation, the experimental data
set, data set 6, was used. Of course, in this case, replicate data sets were unavailable, as
were pure component spectra. However, the deviations of the concentration vectors from
the model space could be measured. The concentrations for this data set were determined
gravimetrically and so were accurately known. Table 4.5 shows that, when the full
wavelength range is used, the model obtained by MLPCA is far superior to that obtained
by PCA. This is not surprising, since PCA attempts to model the variance due to
measurement errors in the high absorbance regions. Normally, in a situation like this, one
would preselect wavelengths prior to analysis by PCA. If the wavelength region used is

700-1600 nm, the variance is essentially uniform and PCA and MLPCA produce
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Table 4.5 Angular deviations of concentration vectors from PCA space for data set 6.

Wavelength Angular Deviations (degrees)
Range (nm) Component PCA MLPCA
toluene 13.7 0.127
400-2500 chlorobenzene 13.6 0.135
heptane 258 0.688
toluene 0.281 0.281
700-1600 chlorobenzene 0.359 0.359
heptane 0.792 0.792
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equivalent results. However, it will be noted that the angular deviation of the
concentration vectors is smaller when MLPCA is used with the full wavelength region as
opposed to the truncated data set, even though the error estimates in this case are only
approximate. This illustrates that information can be lost when data are excluded from
the modeling process. MLPCA uses the measurement error variance to optimize the
amount of information extracted from the data and in that sense represents a significant

advance in multivariate analysis.

45 CONCLUSIONS

In this chapter, the theoretical foundations of MLPCA have been established
using the framework of PCA (and SVD). By incorporating information about the
measurement errors, the procedure has been shown to be optimal for principal
components modeling in accordance with a maximum likelihood criterion. The
algorithm presented here is particularly efficient in its use of alternating regression to
achieve rapid convergence. Modifications to the algorithm also permit the incorporation
of intercept terms consistent with a maximum likelihood model. Furthermore,
generalization of the method allows the incorporation of correlated measurement errors.
This represents the first time that a PCA procedure has been developed that has the
capability of dealing with measurement error covariance. Results using simulated data
show that the objective function minimized by the algorithm approximates a xz
distribution with (m-p)(n-p) degrees of freedom (in the absence of intercept terms)

provided that the measurement error covariance matrix is known and the form of the
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model is correct. Results using simulated and experimental data also demonstrate that
model estimation by MLPCA is superior to models produced by PCA in cases where
non-uniform or correlated errors are present.

Practical implications of the theoretical aspects of MLPCA put forward here will
be the focus of the next two chapters. This work has clearly demonstrated the positive
features of MLPCA and answered many questions related to optimal scaling for PCA
models. The advantages of MLPCA over PCA are balanced to some degree by the
greater computational efficiency of the latter. As long as measurement errors are
approximately uniform or are very small in the context of the intended application, PCA
results may be sufficient, if suboptimal. However, there are many cases in chemistry
where these conditions do not hold. This study has demonstrated the importance of
measurement error data for maximizing the information available from chemical data sets
and MLPCA should serve as an important archetype for optimal modeling by PCA. The
area of calibration will benefit from the optimal modeling features of MLPCA and will be

addressed in the following chapter.



5
MAXIMUM LIKELIHOOD
MULTIVARIATE CALIBRATION

5.1 INTRODUCTION

Over the past several decades, advances in chemometrics have led to the
development of a multitude of multiv;riate calibration methods for the analysis of
chemical mixtures [59-61]. As a result, such methods are now routinely applied and are
indispensable tools for solving many “real-world” problems. At times, the proliferation
of multivariate calibration techniques seems unending and includes such methods as
multiple linear regression (MLR) (described in Section 1.2), principal components
regression (PCR), partial least squares regression (PLS), continuum regression (CR),
projection pursuit regression (PPR), locally weighted regression (LWR), and artificial
neural networks (ANNSs), among others. Each of these methods possesses its own
strengths and weaknesses and which works best for a given problem depends on the
characteristics of the data and the objectives of the analysis. However, as research
produces a clearer distillation of the similarities and differences among methods, a
number of techniques, such as PLS and PCR, have established themselves as the practical
workhorses of multivariate calibration. PCR is one of the oldest and most well-studied
methods currently in use and this chapter describes two fundamental enhancements to the
methodology involved which will extend its utility and reliability even further. Although
the techniques described in this chapter are general in their application, the focus will be

on spectroscopic data sets.

130
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Traditional univariate calibration, which assumes no interference with the
measured response variable, typically applies weighted or unweighted least squares
regression to a series of standards to develop the calibration model. This was discussed
in Chapters 1 and 2. Under the right conditions, the model developed in this manner will
be optimal in a maximum likelihood sense. Maximum likelihood parameter estimation
methods are widely used because of their desirable statistical characteristics [62]. In the
present context, maximum likelihood estimation means that the parameters determined
for the model are the ones most likely to give rise to the observed data given the
statistical characteristics of the measurement uncertainties. The conditions necessary for
ordinary least squares (weighted or unweighted, as appropriate) to provide maximum
likelihood parameter estimates are: (1) the form of the model needs to be correct (e.g.
straight line, quadratic, intercept if necessary), (2) the measurement uncertainties in the
response variable need to be uncorrelated and normally distributed, and (in the case of
weighted regression) have known variances, and (3) the measurement uncertainties in the
concentrations (x-variable) need to be negligibly small relative to the uncertainties in the
response variable (y). In practice, these ideal conditions are rarely met exactly, but
maximum likelihood methods are often still regarded as the best alternative if the
conditions are approximately valid.

In contrast to traditional univariate calibration, techniques such as PCR are known
as inverse calibration methods because the concentrations are regressed on the responses
(factor scores in PCR) rather than thg other way .around. Accordingly, PCR can only
qualify as a maximum likelihood method if the uncertainties in the responses (scores) are

negligible compared to those in the concentrations. While this is often true when the
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reference method for concentrations is relatively imprecise, there are many cases where
the assumption is somewhat tenuous. Furthermore, PCR ignores the uncertainty in the
spectroscopic data when it performs the initial decomposition by principal component
analysis (PCA). As pointed out in Chapter 2, PCA yields a maximum likelihood
decomposition only when the measurement uncertainties are independent and identically
distributed with a normal distribution (“iid normal”). It has long been known that
spectroscopic measurements inherently possess non-uniform measurement standard
deviations which can vary as a function of both signal amplitude and wavelength.
Furthermore, instrument characteristics often lead to correlated noise characteristics.
Although the noise characteristics for most common spectroscopic methods have
been well-studied by Ingle and Crouch [63], this information is generally ignored in
establishing multivariate calibration models. It should be apparent that, since each
spectral measurement can possess a different uncertainty, each can also carry a different
amount of information into the calibration procedure. (A summary of important noise
sources for some common spectroscopic techniques is presented in Table 5.1.) In PCR,
for example, principal component analysis (PCA) is first used to determine the subspace
of the component spectra of a mixture. The spectrum of each calibration sample is then
projected into this subspace to give a set of scores, or latent variables. These scores are
used in the regression procedure to produce the PCR calibration model. This projection
has the effect of combining the spectral measurements to reduce the overall error and also
makes the regression step more mathematically tractable. Obviously, the quality of
results obtained by PCR will depend on the quality of the estimation of the spectral

subspace by PCA.  Unfortunately, as mentioned earlier, PCA tries to maximize the
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variance accounted for by the extracted latent variables, regardless of whether the
variance is due to chemical effects (i.e. changes in chemical concentrations) or simply
measurement uncertainty. Because of this, including measurements with a large
uncertainty can degrade the quality of the calibration model developed by PCR. While
this problem has been addressed informally through approaches such as scaling and
wavelength selection, these pretreatments are generally suboptimal in a maximum
likelihood sense.

In this chapter, two new methods are described to account for measurement
uncertainty in multivariate calibration. These new methods, which will be referred to as
maximum likelihood principal components regression (MLPCR) and maximum
likelihood latent root regression (MLLRR), are actually more general forms of PCR and
latent root regression (LRR) and will produce solutions identical to these methods under
the right conditions. However, the new techniques, based on maximum likelihood
principal component analysis (MLPCA), are better-suited to providing optimal solutions
in the maximum likelihood sense when there are non-uniform uncertainties in the data. It
will be shown using both simulated and experimental data that MLPCR and MLLRR can
provide significantly better predictive ability than conventional methods in realistic
situations. Perhaps more importantly, the maximum likelihood methods provide a
general unifying framework from which multivariate calibration methods can be
examined.

Throughout this chapter, a number of assumptions and simplifications have been
made that should be clarified from the outset. First, it has been assumed that

measurement errors are normally distributed. While the principles of maximum
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likelihood estimation are general in nature, mathematical tractability in the development
of MLPCA demanded that this restriction be imposed. Although this assumption may not
be strictly valid in all cases, it is viewed as reasonable and, unless the violation is severe,
should not greatly diminish the general utility of the methods, just as simple regression is
often used without strict adherence of the underlying assumptions. A second assumption
made by MLPCA for maximum likelihdod estimation (and by weighted regression, for
that matter) is that measurement error variances are exactly known. In practice, however,
this is rarely the case, so true maximum likelihood estimates are technically unattainable
for real experimental data. Nevertheless, it will be shown that variance estimates are
sufficient to obtain significant improvement in results; ie. that some knowledge of
measurement uncertainty is often better than an implicit assumption of uniform variance.
Finally, throughout this chapter, it has been assumed that measurement errors are
uncorrelated; i.e. the error covariance matrix is diagonal. While such a condition can be
controlled in simulations, it is almost certainly invalid for experimental measurements. It
is demonstrated, however, that significant improvement in predictive ability can be
achieved even when the assumption of uncorrelated errors is tenuous. There are two
main reasons for excluding error covariance in this work. First, while estimates of
measurement error variance are often available, knowledge of the covariance matrix in
practice is still quite rare, so we wished to demonstrate the utility of these methods when
the covariance matrix is unavailable. Second, although the theory of MLPCA is capable
of dealing with correlated errors, there are several practical problems that need to be

addressed. These include rank deficiency in the estimated error covariance matrix and
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the computational burden of large matrices. These are subjects of ongoing research and

will not be treated in this thesis.

5.2 CALIBRATION METHODS

5.2.1 Principal Components Regression

For the purposes of this discussion, it will be assumed that we are trying to
develop a calibration model for a single analyte in the presence of multiple unknown
interferences, and that the measurements consist of spectroscopic data (although other
analytical techniques could also be employed). Conventional PCR begins with a set of
calibration samples for which the concentration of the analyte has been obtained by some
independent means. The first step in the procedure is to apply PCA to the spectra of the
calibration samples. This is usually done by way of singular value decomposition (SVD)

to give:
X=UsvT 5.1

Here X is the matrix of spectra in the calibration set (m samples by n wavelengths). The
component concentrations in the calibration set should reflect the distribution of those
concentrations for future samples (i.e. the calibration set should span the space of samples
to be predicted), and the number of samples and wavelength channels should be greater
than the number of independently observable components in the mixtures. Assuming that

m<n, the SVD gives the matrices U (mxm), S (mxm) and V (nxm). These matrices are

truncated by removing the right-hand columns and bottom rows to give U (mxp), S
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(pxp) and V (nxp), where p is the “pseudorank” of X, or the number of independently
observable components. In practice, p is usually unknown, but can be estimated by
statistical means or cross-validation. In this work, the tilde (“~") will be used to
distinguish the truncated matrices and the quantities derived from them. The truncation
gives X=USV™ =TVT, where X is the estimated data matrix and T = US is called the
scores matrix for the truncated solution. Alternatively, in a model and parameters

framework, we have,
X=TVT+E (5.2)

where E is the mxn matrix of residuals. PCA obtains T and V by minimizing the sum of
the squares of the elements in E. This estimation is optimal in a maximum likelihood
sense as long as p represents the true pseudorank and the measurement errors for the
elements of X are iid normal.

This reduction in the dimensionality of the problem is the key to PCR, since it
improves the reliability of the solution. The actual regression is carried out using
orthogonal projections of the spectra onto the subspace determined by PCA, i.e. the

scores. The regression assumes a model of the form:
y=Tq+f (5.3)

where y is the mx1 vector of analyte concentrations for the analyte set, q is a pxl
regression vector, and f is an mx1 vector of errors. The least squares solution to this

problem is:

§=(T"T)" TTy =807y (5.4)
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In this equation and elsewhere, the caret (“A”) is used to indicate an estimated quantity.

In the prediction step, the scores for the unknown spectrum are given by:

~

g =X V (5.5)

where 'fmk and X, are row vectors of length p and n, respectively. The unknown

concentration is then estimated by:

Vs =t (5.6)
More typically, the intermediate step of calculating the scores is incorporated into an nx1

regression vector, b, that is multiplied directly by the spectrum to obtain the

concentration estimate:

P =X b (5.7)

b=Vg=Vs"0Ty (5.8)

In conventional PCR, the representations in Equations 5.6 and 5.7, are equivalent, but this

is not the case for MLPCR, as discussed in the next section.
5.2.2 Maximum Likelihood PCR

When applied in the proper context, conventional PCR is a powerful tool for the
quantitative analysis of multicomponent mixtures. However, it suffers from a number of
weaknesses. One of these is that it relies on SVD to obtain a reliable estimation of the p-
dimensional subspace that contains the component spectra. In essence, the eigenvectors
produced by SVD (the columns of V) describe a p-dimensional hyperplane in the n-

dimensional wavelength space and should contain all of the pure spectral vectors. As



139

long as the measurement errors in all of the calibration spectra are all /id normal, the p-
dimensional hyperplane determined by SVD will be the optimal model for the data in a
maximum likelihood sense (assuming the system is linear and the pseudorank, p, has
been correctly specified). However, if the measurement errors are not independent with
uniform variance, this will no longer be true and the estimation of the subspace will be
suboptimal. -

There are several potential solutions to this problem. First, it may be possible to
scale the data in such a way that all of the measurement standard deviations become
equal. It has been shown, however, that in order for this to work in a manner which
preserves the structure of the data, the matrix of measurement standard deviations must
have a rank of unity [32] (e.g. when the uncertainty at each wavelength is independent of
signal amplitude). This restriction is frequently violated for experimental data sets,
making it impossible to obtain an optimum solution through simple scaling. A second
approach to the problem is to perform wavelength selection, removing those channels that
significantly violate the assumption of iid errors. This assumes, however, that noise is a
function only of wavelength and not signal amplitude. Furthermore, although a portion
of the spectrum may appear noisy, it may also be the region which is richest in
information about the analyte of interest. Wavelength selection has also been performed
by using leave-one-out cross-validation. In addition to being very time consuming, this
approach only mitigates the problem of finding the optimal subspace and does not
address the source of the problem.

What is needed is a modeling method which accounts for spectral measurement

errors in the estimation of the spectral subspace. Maximum likelihood principal
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component analysis, described in Chapters 3 and 4, is such a method and forms the basis
of MLPCR. In MLPCA, the eigenvectors are chosen to provide the optimal estimation of
the p-dimensional hyperplane in a maximum likelihood sense. The optimality of the
estimation is, strictly speaking, contingent on the assumption of normally distributed
measurement errors with known variances and covariances, but relaxation of these
conditions (i.e. near normality and/or-estimated variances) still yields significantly
improved estimates of the PCA subspace. For uncorrelated measurement errors, MLPCA
minimizes a weighted sum of squared residuals:

s=y 3l 59
ij

i=1 j=I G

In this equation, X;j 1s a measurement (an element of X), f,.j is the maximum likelihood

estimate of that measurement, and o;; is the corresponding measurement error standard
deviation. (In practice G is typically replaced by its estimate, si-) The MLPCA

decomposition can be represented as:
X=USVT +E=TVT +E=X+E (5.10)

where X, X and E are mxn, U and T are mxp, S is DXp, andV is nxp for a p-
dimensional model. The caret “A” above the matrices U, S, V, and E has been used here
to distinguish the MLPCA solution from the truncated PCA solution. It must be
reiterated that, unlike PCA, MLPCA solutions are not nested; that is, the rank p model
cannot be obtained simply by truncating higher rank models. Instead, the dimensionality
of the model needs to be specified before initiating the decomposition. Although this

tends to make MLPCA more cumbersome to use, the superior results often make it
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worthwhile. Another difference is that in conventional PCA, the estimate for any Ixn

spectral vector, x;, is given by an orthogonal projection into the spectral subspace:
£ =x,VVT (5.11)

In contrast, the maximum likelihood estimate of x; is given by a projection which is not

generally orthogonal, but rather one which is weighted by the errors in the measurements:
%, =x,Z;V(VTZ9) o (5.12)

Here, Z; is the nxn covariance matrix for x; (note that any multiple of X, could also be
used). For uncorrelated errors, this will be a diagonal matrix whose diagonal elements
are the variances for the corresponding spectral measurements. It is clear that Equation
5.12 will result in an orthogonal projection when all of the measurement errors are
uncorrelated and have equal variances; i.e. the PCA projection is equivalent to a
maximum likelihood projection under these conditions. For measurement errors which
are correlated only within a spectrum (i.e. row correlations but no column correlations),

Equation 5.12 is still valid, but the function minimized by MLPCA is modified to:

52 =3 (x, - %,)57 (x; - &,)" (5.13)

=]

which reduces to Equation 5.9 for uncorrelated errors. If measurement errors are
correlated among both rows and columns, a somewhat modified version of MLPCA is
needed. This is described in Section 4.2.3 and will not be treated here except to note that
MLPCA can handle any measurement error covariance structure provided that the error
covariance matrix can be estimated. As noted in Section 5.1, uncorrelated measurement

errors have been assumed throughout this work. Although this assumption is not



142

generally valid for experimental data, the error covariance structure is rarely known in
practical situations, so it is intended to reflect a realistic implementation of the methods
described.

The regression model in MLPCR is developed in a manner analogous to that in

PCR, following Equations 5.2 and 5.4:
q=(T"1) 17y =§"0"y (5.14)

However, unlike conventional PCR, a maximum likelihood projection is used to
determine the scores for the unknown sample, which are then used to estimate the

concentration:

fo =X ZRV(VTELV) (5.15)

Pk =t (5.16)

Note that in MLPCR there is no longer an analog to a universal regression vector, b, for
all unknown samples, as defined in Equations 5.7 and 5.8 for PCR. This is because the
projection matrix depends on the measurement error covariance matrix, which can be
different for each unknown sample. This, however, is one of the main advantages of
MLPCR, since the projection of the unknown sample onto the spectral subspace will
exploit those measurements that have the smallest errors in order to obtain the best
estimate of the scores.

To summarize, MLPCR improves the quality of the regression over PCR in two
ways. First, it uses MLPCA in conjunction with measurement error information to obtain

a more reliable estimate of the subspace containing the pure spectral vectors. Because
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measurements in the calibration set are appropriately weighted, a maximum likelihood
estimate of the PCA model is obtained which is generally superior to that obtained by
SVD. This is important because it is the determination of this initial space that ultimately
affects the sensitivity of the calibration procedure. The second advantage of MLPCR
derives from the projection of the measurements (calibration and unknown) onto the
subspace determined by MLPCA. Because the projection is not orthogonal but rather
optimized through the use of measurement uncertainties, the maximum information is
extracted for the best estimation of the true measurements. These factors tend to lead to a

superior calibration model.
5.2.3 Maximum Likelihood Latent Root Regression

Although MLPCR can offer a significant improvement over conventional PCR, it
is still not a “pure” maximum likelihood approach to calibration because of the final
regression step. For this step to be optimal from a maximum likelihood perspective, the
absolute uncertainties in the scores need to be much smaller than those in the
concentration values. Since this will not always be true, it would be useful to develop a
method which could accommodate an arbitrary error in the final regression step. This can
be done by incorporating a variation of latent root regression (LRR).

Unlike PCR, LRR [64-66] is not well known among chemists. With this
technique, the original calibration matrix of response variables is augmented by the
corresponding concentration vector(s). PCA is then carried out on the augmented matrix.
In this way, the reduction of dimensionality and the determination of the calibration
model are performed simultaneously. Using the previous example for the estimation of

the concentration of a single component, we have:
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[i | y] =USVT (5.17)

As before, X is a matrix of m spectra measured at n wavelengths, y is an mx1 vector of
concentrations for the component of interest, and the tilde indicates that the SVD results
are truncated to pseudorank p. If V (which now has dimensions (n+1)xp) is partitioned

into the upper V, (nxp) and lower Vz (lip), then the regression vector will be given by:
c (ot VT
b=V,(V/V,) ¥, (5.18)

such that the predicted concentration is y_, =x_b, where X, 1S 1xn.

LRR is similar to PCR in its approach to calibration, but for some reason it has
been virtually ignored in chemistry. It is possible that it is simply more cumbersome and
less intuitive than PCR, and in many cases it does not offer significant advantages.
Another difference between the two methods is that the predictive ability of PCR is
unaffected by changes in the scale of the y variable. This is because the regression step in
PCR implicitly assumes (for the maximum likelihood solution) that all of the error
resides in y, so a vertical projection is always used. In contrast, LRR is consistent with a
maximum likelihood solution if the absolute uncertainties in all of the measured
quantities (x and y) are the same (iid normal), leading to results that will change with the
scale of y. The situation is exactly analogous to the differences between ordinary least
squares and PCA when used for modeling purposes, as discussed in Chapter 2. In reality,
neither set of assumptions is likely to be valid. It would therefore be useful to have a
single step modeling procedure like LRR which accounts for all of the uncertainties.

Such a method is presented here as maximum likelihood latent root regression (MLLRR).



145

The procedure for MLLRR is similar to that for MLPCR, except that, as in LRR,
an augmented matrix is used. In a manner analogous to Equation 5.17, the augmented
matrix is decomposed using MLPCA rather than PCA. This requires a companion matrix
of measurement variances, also augmented to include the variances in the concentration
values. In the absence of other information, measurement uncertainties are usually
assumed to be uncorrelated, but correlated errors can be accommodated by MLPCA as
well. Once MLPCA has been carried out, prediction is performed using an augmented

spectral vector:

R | P ] =X 1 0 JELV(VTZL V) VT (5.19)

In this case, I, is the error covariance matrix of the augmented row vector for the

unknown, and V is the loadings matrix obtained from applying MLPCA to the
augmented calibration matrix. The equation is written so that it produces a row vector,
since this is the manner in which the spectra appear in the original calibration matrix.
Note that Equation 5.19 is simply a maximum likelihood projection of the unknown
spectrum into the MLPCA subspace. The key is that, since y,, is the quantity sought, the
last entry in the error covariance matrix, Z,, is set to be numerically equivalent to
infinity, forcing this value to be predicted from the others. Thus the last entry in the first
row vector on the right hand side is unimportant and is set to zero in the equation.
Extension of Equation 5.19 to additional components is easily accomplished by further
augmentation of the calibration and prediction matrices. As with MLPCR, there is no
universal regression vector for MLLRR unless the covariance matrices are identical for

all of the spectra obtained.
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MLLRR is more general in its treatment of measurement errors than MLPCR in
that it includes uncertainties in the concentration values. It is an optimal modeling
method in the maximum likelihood sense, subject to the usual restrictions (linear model

of known pseudorank, normally distributed errors with a known covariance structure).

5.3 EXPERIMENTAL

To examine the two new methods proposed here, three simulated and two
experimental data sets were employed. To distinguish the new data sets from those
described in preceding and following chapters, they will be designated as data sets 8
through 11 (data set 6, described in Chapter 4, was the remaining data set). The
simulated data sets were used to test the methods under carefully controlled conditions to
evaluate their potential. Each of these was generated from a model of a three-component
mixture. The pure component spectra consisted of Gaussian profiles centered at 480, 500
and 520 nm (for components 1,2 and 3, respectively) with widths (o) of 20 nm. Spectral
data points were generated at 5 nm intervals between 400 and 600 nm. Calibration and
prediction data sets consisted of 20 and 100 samples, respectively, whose component
concentrations were generated randomly from a uniform distribution between 0 and 1. In
all simulations, normally distributed measurement errors were added using a Gaussian
random number generator.

Data set 8 was characterized by wavelength dependent noise which was
essentially uniform near the center of the spectral range but amplified on either side. To

accomplish this, a baseline noise level of o, was first selected. This standard deviation
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was then multiplied by a wavelength dependent function to give the standard deviation
for a particular wavelength. The function used in this work was a “double sigmoidal”
mask, with a value close to unity near the center of the spectral region and values of | .
at the limits. The profile of this mask is shown along with the individual spectral profiles

in Figure 5.1. Using this mask, the standard deviation at wavelength A is given by:

c(}\.)=[l+(r )( L }m_”)] oy (5.20)

l1+e

In this equation, A, is the inflection point of the sigmoid on the left hand side of the range
and A, is that on the right hand side. The parameter a determines the slope of the

sigmoidal curves such that:

_2In9 439

= 5.21
AA AN (>21)

where AA is the 10% to 90% rise range of the sigmoid. In this work, Ay =460 nm, A, =
540 nm, and AA = 40 nm. The standard deviation of the baseline noise level, o, was
taken to be 1% of the maximum absorbance in the noise free calibration data. The noise
amplification factor, r,,, was varied between 1 and 20 for this work. The concentration

data used for calibration with data set 8 were assumed to be error free.

Data set 9 was the same as data set 8 except for the noise structure. In this case,
both proportional and constant error were added to the signals to give measurement
uncertainties that depended on signal amplitude. The formula used to calculate the

standard deviation for a given absorbance, A, was:
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FigureS5.1  Spectral profiles for simulated three component mixtures (data sets 8, 9
and 10) and error mask for data set 8.
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;= \/cf, +(p4;)’ (5.22)

where o, is the level of the constant noise component (in this case, 1% of the maximum
signal in the calibration matrix) and p is the level of proportional noise (varied between 0

and 0.20 in this work).

-

Data set 10, which was intended to exaggerate the differences between MLLRR
and MLPCR, included errors in the calibration concentrations in addition to those in the
spectral measurements. As for data set 9, the errors in the spectral measurements
included both a constant term (1% of the maximum in the calibration set) and a
proportional term (in this case fixed at a level of 2% of the pure signal). To simulate non-
uniform errors in the calibration concentrations, proportional error was added to the
reference concentrations. The proportional error had standard deviations that ranged
from 0 to 20% of the true concentration.

To demonstrate the utility of the maximum likelihood calibration methods for
practical applications, two experimental data sets were also examined. Data set 11, the
first of these, was obtained through a carefully designed experiment involving three-
component mixtures of metal ions (Co(II), Cr(III), Ni(Il)), a system suggested from the
work of Osten and Kowalski [67]. Stock solutions of the nitrates were prepared with
concentrations of 0.172, 0.0764, and 0.393 M for Co, Cr and Ni, respectively, in 4%
HNO;. All chemicals used throughout this work were analytical reagent grade or better
unless otherwise specified. A three-level, three-factor calibration design was used in
which 1, 3, or 5 mL aliquots of the various stock solutions were combined and diluted to

25 mL with 4% HNO,. Unfortunately, insufficient Ni stock remained for one solution
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(3:5:5 Co:Cr:Ni), so the calibration set consisted of 26 rather than 27 solutions. Final
concentration ranges were 6.88 to 34.40 mM for Co, 3.06 to 15.29 mM for Cr, and 15.70
to 78.58 mM for Ni. Five replicate spectra were obtained for each sample using
randomized blocks (i.e. 5 blocks of all 26 solutions, randomly ordered within each block).
To minimize the effects of instrument drift, a reference spectrum was run prior to each
new sample. Spectra were recorded over the range of 350-650 nm on an HP 8452 diode
array spectrophotometer (Hewlett-Packard, Palo Alto, CA) using a standard 1 cm quartz
cuvette. Measurements were made at 2 nm intervals witha 1 s integration time. In order
to introduce non-uniform noise characteristics, a dichroic bandpass filter (green, no. 67)
was placed between the source and the sample to decrease the source intensity at high and
low wavelengths for all measurements. The spectra of the individual components and the
optical filter are shown in Figure 5.2.

The second experimental data set employed in this work was data set 6 which
consisted of near-infrared spectra for three-component mixtures containing toluene,
chlorobenzene, and heptane. A further description of this data set can be found in Section
4.3. The purpose of this data set was to demonstrate that MLPCR can utilize all of the
available data to obtain superior predictive ability by extracting the optimum amount of
information at each wavelength, provided measurement variance information is available.
Unfortunately, standard deviation information for this data set was only available from
replicate scans of one sample. Not only will this fail to be a precise representation of the
standard deviations from the remaining 30 samples, but it also does not reflect all of the

sources of measurement error (e.g. cell positioning, sample preparation) for the sample
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Figure 5.2  Pure component spectra for data set 11 and absorbance profile of bandpass
filter applied to source beam for noise amplification.
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for which it does apply. Nevertheless, it will be shown that MLPCR can utilize even this
approximate information to provide better performance than conventional approaches.
The calculations performed in this work utilized a variety of computational
platforms including: (1) 486 and Pentium-based personal computers, (2)a Digital
Equipment Corporation 3000/300X workstation with a 175 MHz clock speed and 96 MB
of memory, and (3) a Sun Microsystems Sparc Server 1000 with 230 MB of memory and
four 50 MHz SuperSPARC CPUs. All calculations were performed in Matlab (The

MathWorks, Natick, MA).

5.4 RESULTS

5.4.1 Simulated Data

Initially, simulated spectroscopic data sets were used to assess the new calibration
methods. Data set 8 was used to examine the effects of measurement errors whose
standard deviation varies as a function of wavelength, but is constant at any given
wavelength. Such situations commonly arise when source intensity or detector sensitivity
changes with wavelength, or when there is a strongly absorbing (constant) background
component. Even when they are not coincident with the regions of the spectrum
containing relevant information, noisy measurements can still influence the analysis,
since the variance still needs to be accounted for by PCA. Although wavelength selection
can often reduce this problem, the task of selection becomes difficult when noisy regions
overlap regions of spectral significance, since the selection then relies on choosing the

correct balance between the signal and noise retained in a given measurement. Maximum
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likelihood methods simplify the analysis by extracting the appropriate amount of
information from each measurement.

Figure 5.3 shows the results of a comparison among PCR, PLS, MLPCR, and
MLLRR for data set 8. Results are presented in terms of a root-mean-square error of
prediction for components 1 and 2 in the three component mixture (by symmetry, the
results for component 3 will be statistically equivalent to those for component 1). The

RMSERP is calculated as:

RMSEP = Nz":“(y;"“ ~yme)? /Nm (5.23)

=l

where y7™¢ and y;© are the predicted and actual concentrations of the analyte in

prediction sample i, respectively, and Nyreq is the number of prediction samples (100 in
this case). In carrying out this calculation, the optimum number of latent variables was
taken to be three for PCR, MLPCR and MLLRR, since this should be the pseudorank of
the calibration matrix by the constraints of the simulation. To permit greater flexibility
for PLS, the optimum number of latent variables was selected by cross-validation (below
an amplification factor of 8, the optimum number of latent variables was 3; from 10 to 12
it was 2; and above 12 only 1 was needed). For MLPCR and MLLRR, the standard
deviation values known from the simulation were used for the measurement error
estimates. In actual practice, these standard deviations would likely be determined from
experimental replicates and would therefore be known with less accuracy, but the true
values were used here to avoid introducing the number of replicates as a variable and also
to examine a best-case scenario. For comparison, however, the MLPCR and MLLRR

simulations were also run using variances estimated from five replicates. The results
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under these conditions were virtually identical, with all of the prediction errors falling
within 3% of the values obtained when known variances were used. Thus, at least in this
case, the use of estimated variances did not have a large impact. Experimental data
presented later illustrates the case where standard deviations are estimated.

From Figure 5.3, it is apparent that when the noise amplification factor, Frnaxs 1S
unity (uniform noise) all of the methods perform equally well. This is expected since the
maximum likelihood methods reduce to PCR under these conditions and there is unlikely
to be any advantage of PLS over PCR. As the noise amplification factor is increased so
that the variance on either side of the spectral range is amplified, the performance of all
methods declines (prediction error increases). This is also expected, since increasing the
noise obscures the information content of the data and increases the uncertainty. As the
noise level is increased, the prediction error for the maximum likelihood methods remains
significantly smaller than either PCR or PLS, illustrating the advantages of these
techniques. It should be pointed out that even at the limits of this study, the amplified
noise on the wings of the spectrum represents only about 20% of the maximum signal in
the calibration set, and this is not an unrealistic level. Nevertheless, the prediction errors
obtained by the maximum likelihood methods are a factor of 2 to 3 smaller at this point
than the conventional methods. Comparison of the conventional methods indicates that
PLS performs somewhat better than PCR in this case. This is due in part to the selection
of an optimum number of latent variables for PLS, but a more important factor is likely to
be the fact that PLS places some significance on correlation with the y variable in

extracting latent variables, and so is not entirely based on x-variance.
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It will also be noted that MLLRR consistently performs better than MLPCR in
this example, although the difference is not substantial. The difference arises from the
regression step in MLPCR, which assumes that the errors in y are uniform and much
greater than the errors in the scores (for maximum likelihood estimation). In this
example, however, the y values were generated with no errors, so the situation is the exact
opposite of the second assumption and>MLLRR produces superior results. In a real
calibration problem, it is likely that y will be determined by a reference method which has
a significant uncertainty, so the assumptions of MLPCR may be more valid. It has been
observed throughout this work that MLLRR generally yields results superior to those
produced by MLPCR (because the most appropriate weighting of x and y is used), but
that the two methods rarely give large differences.

A final point worth noting here is that the magnitudes of the errors are comparable
for the two components in this example. In general, one might expect significantly larger
prediction errors for component 2, since it is overlapped by two interferences (as opposed
to one for components 1 and 3) and therefore should give a smaller net analyte signal
[13]. However, the lower sensitivity of the method for component 2 is offset by the lower
noise level near the center of the spectral range, so the prediction errors turn out to be
comparable. The results presented here represent a limited study and an infinite number
of variations (spectral resolution, noise profiles, etc.) are of course possible. However,
for all of the cases of this type that were examined, the maximum likelihood methods
gave lower prediction errors than the conventional methods.

Although data set 8 clearly shows the advantages of MLPCR and MLLRR,

comparable results for this data set could have been obtained simply by scaling each
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wavelength channel by its corresponding standard deviation prior to performing PCR. In
other words, because the standard deviation matrix is rank 1, optimal scaling is possible.
For this data set, scaling would be the preferred approach for reasons of computational
speed, but optimal scaling is not possible in cases where the noise depends on signal
magnitude. For this reason, data set 9, which contains both proportional and constant
components of error, was employed for flirther comparison. A combination of errors was
used to make the simulation more realistic, since purely proportional errors are rarely
encountered.

Figure 5.4 provides a comparison of the prediction errors for the same four
calibration methods applied to data set 9, as well as for two additional methods described
in the following paragraph. Results are shown as a finction of the level of proportional
noise added to the data. Again, component 3 is omitted because of statistical
equivalence, and, again, all methods are equivalent in the presence of uniform noise (0%
proportional error). For PLS, the optimum number of latent variables was 3 up to 4%
proportional noise and 4 thereafter. As before, the maximum likelihood methods show a
significant improvement over the conventional methods, with the same order of
performance as for data set 8. The improvement for component 1 is more striking than
that for component 2 in this case, possibly because the central region of the spectrum
remains more uniform in magnitude and therefore more uniform in noise. As with data
set 8, the use of estimated variances with MLPCR and MLLRR gave only small
differences in results (<7%).

To demonstrate that simple scaling is not sufficient to provide an improvement

equivalent to the maximum likelihood methods for cases where the noise depends on
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signal amplitude, data set 9 was also examined using “weighted” PCR and PLS,
designated as WPCR and WPLS in Figure 5.4. The data sets were scaled by the inverse
of a pooled standard deviation at each wavelength. As the figure shows, this often results
in smaller prediction errors compared to PCR and PLS (with notable exceptions for small
proportional errors), but the extent of improvement is less than what is achieved with the
maximum likelihood methods. Altheugh such suboptimal scaling may provide
satisfactory results in some cases, MLPCR and MLLRR are preferable because of their
optimal performance in the general case, regardless of the error structure.

In the first two data sets, comparable performance was observed for MLPCR and
MLLRR. It was speculated that differences would be exaggerated if significant non-
uniform errors were added to the concentrations in the calibration set. For this reason,
proportional errors were added to the reference concentrations in data set 10. This data
set is also more realistic in the sense that multivariate calibration methods often use a
reference method to determine concentrations in the calibration mixtures and such
measurements are prone to uncertainty. Figure 5.5 shows the prediction errors for
components 1 and 2 using PCR, MLPCR and MLLRR as the level of proportional error
in the reference concentrations is increased from 0 to 20%. The plot shows the actual
prediction errors, i.e. the errors from the true concentrations in the prediction set rather
than concentrations with errors added. As anticipated, the differences between MLLRR
and MLPCR become more pronounced as the errors in the calibration concentrations
increase, with MLLRR always providing superior results. In this example, there are only
marginal differences between MLPCR and PCR since the level of proportional noise is

small enough to make the spectral measurements close to uniform error.
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At this point, a comment should be made regarding the augmented error
covariance matrix used for MLLRR. Throughout this chapter, it has been assumed that
the errors in the calibration concentrations are uncorrelated with the errors in the spectral
measurements. Strictly speaking, in a “designed” experiment, this may not be true. A
designed experiment is one in which the mixtures are prepared by adding known amounts
of the analytes to the calibration mixture. As such, there is no reference measurement
used other than the gravimetric or volumetric data in the preparation. An error in these
measurements can be considered to be correlated with the true error in the spectral
measurements since it will affect these measurements proportionately. However, in
practical circumstances, instrumental measurement errors are often much greater than the
preparation errors and the correlation can be considered insignificant. More importantly,
multivariate calibration procedures more often employ “natural” calibration, where the
concentrations in the calibration set are determined by a reference method which should

be uncorrelated to errors in the spectral measurements.
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5.4.2 Experimental Data

The first of the experimental data sets examined, data set 11, consisted of
mixtures of Co, Cr and Ni ions in dilute nitric acid. Spectra for these mixtures are shown
in Figure 5.6a, with the corresponding measurement standard deviations for each set of
replicates in Figure 5.6b. Increased noise levels are apparent at either end of the spectral
range as the result of the optical filter placed in the light path. Two groups of samples
were also found to have inordinately high standard deviations near the center of the
spectrum, a problem that was traced to two of the samples out of the 130 which appeared
to have an offset. The questionable samples were excluded from subsequent analysis,
although it was found that their inclusion did not greatly affect the results. In the analysis
of this data set, a diagonal error covariance matrix consisting of the variances for each
measurement was used (ie. uncorrelated errors were assumed). Although this
assumption is known to be invalid, it was made to demonstrate the enhanced performance
of maximum likelihood methods even when the error covariance information is
unavailable.

To examine the predictive ability of various calibration methods, the technique of
leave-one-out cross-validation was employed (alternative methods could be used, but this
approach is the most widely used in chemometrics). In this approach, the calibration
model is first constructed for a particular analyte using all but one sample. The
concentration of the analyte in the excluded sample is then predicted using the model, and

the deviation from the expected concentration is measured. This process is repeated so
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that each of the 128 calibration samples is excluded once and a root-mean-square error of

cross-validation (RMSECYV) is calculated by:

New )
RMSECV = |} (yr — yrf ) /Nn, (5.24)

where yP™ and y* are the predicted and reference concentrations, respectively, of the

-

analyte in the excluded sample, and N, is the number of calibration samples. The
RMSECV was calculated for each of the three analytes in the mixtures. An overall, or

total RMSECV, was also calculated from:

RMSECV,, = \/(RMSECVCZO + RMSECVZ, + RMSECV, ) 3 (5.25)

The RMSECV values calculated in this way give an indication of the predictive ability of
the model. However, it should be pointed out that, for the PCR methods, two different
approaches can be used for cross-validation. In what will be referred to as “leave-one-
sample-out” cross-validation, PCA or MLPCA (as appropriate) is carried out on the
subset of 127 calibration samples and the results are used for calibration. In “leave-one-
score-out” cross-validation, all 128 samples are used for PCA or MLPCA, and these
results are retained for all subsequent calibrations, leaving the appropriate score out when
building the calibration models by regression. In other words, the basis set is developed
using all 128 samples, which are then projected onto the basis to obtain the scores. The
regression is carried out on the scores for each combination of 127 samples, leaving one
set of sample scores out in each case for cross-validation. This approach is faster, since
PCA or (especially) MLPCA is only performed once (or once for each model

dimensionality in the case of MLPCA). Although leave-one-score-out cross-validation
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can be considered a legitimate approach in that it doesn’t employ concentration
information about the prediction sample in the calibration procedure, purists may argue
that it is not as valid as the leave-one-sample-out approach, which is completely blind to
the prediction sample. For this reason, both approaches are included in the results
presented here. As expected, the differences are very small and the time savings of the
leave-one-score-out method is a factor of"N_,;, an important consideration with MLPCR,
which is substantially slower than PCR.

The results for data set 11 are presented in Table 5.2, which shows the RMSECV
for each method and analyte as a function of the number of latent variables. The
appropriate number of latent variables for this data set should be three, but since
experimental realities such as offsets and nonlinearities can affect the optimum number of
latent variables, results are given for up to six factors. The results are presented in tabular
rather than graphical format because the range of values and number of methods would
obscure a conclusive graphical interpretation. In addition to PCR, PLS, MLPCR, and
MLLRR, results are also given for weighted PCR and PLS, using pooled standard
deviations at each wavelength as weighting factors. For all of the methods examined, the
predictive ability is poor when one or two latent variables is used, as expected. The
maximum likelihood methods generally reach a performance plateau around three latent
variables, where the prediction errors level off, although there is some marginal
improvement with additional factors. For PCR and PLS, the plateau is less distinct, with
additional factors continuing to bring further improvement. However, even with the
addition of more latent variables than are shown in the table, the cross-validation errors

for PCR and PLS did not reach the level of those for the maximum likelihood methods
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Table 5.2 Comparison of calibration methods for data set 11 (mixtures of Co, Cr and
Ni). Values given are the root-mean-squared errors of cross-validation

(RMSECV) in mM.
Calibration Number of Latent Variables
Method Species 1 2 3 4 5 6
Co 10.68 6.34 0.32 0.32 0.19 0.17
MLPCR Cr 3.07 3.11 0.11 0.11 0.07 0.07

Ni 24.35 17.98 0.38 0.37 0.33 0.33
Total 15.45 11.15 0.29 0.29 0.23 0.22

Co 10.67 6.30 0.32 0.32 0.17 0.16
MLPCR Cr 3.07 3.09 0.11 0.11 0.07 0.07

Ni 24.37 17.93 0.38 0.37 0.33 0.32
Total 15.46 11.12 0.29 0.29 0.22 0.21

Co 10.89 7.08 0.33 0.17 0.16 0.16
MLLRR Cr 3.47 3.43 0.11 0.07 0.07 0.07

Ni 24.48 16.00 0.38 0.35 0.35 0.36
Total 15.60 10.30 0.30 0.23 0.23 0.23

Co 11.53 8.47 8.39 8.94 6.07 2.62
PCR Cr 3.51 3.11 3.15 3.29 2.44 0.85

Ni 20.69 11.51 11.73 12.42 8.03 3.44
Total 13.82 8.44 8.52 9.04 5.98 2.54

Co 11.53 8.42 8.27 8.33 5.80 2.46
PCR Cr 3.50 3.11 3.11 3.09 233 0.79

Ni 20.69 11.48 11.57 11.53 7.63 3.18
Total 13.82 8.41 8.40 8.41 3.69 2.37

Co 11.58 9.43 1.72 1.49 0.63 0.60
PLS Cr 3.55 2.87 0.79 0.58 0.46 0.42

Ni 2041 8.83 235 1.09 0.97 0.70
Total 13.70 7.64 1.74 1.12 0.72 0.58

Co 10.14 5.40 0.32 0.29 0.20 0.16
WPCR Cr 3.08 3.02 0.11 0.10 0.08 0.07

Ni 25.36 19.76 0.42 0.36 0.34 0.32
Total 15.87 11.95 0.31 0.27 0.23 0.21

Co 10.14 543 0.32 0.29 0.23 0.16
WPLS Cr 3.08 3.03 0.11 0.10 0.08 0.07

Ni 25.37 19.85 0.42 0.37 0.36 0.32
Total 15.87 12.01 0.31 0.28 0.25 0.21

Asterisk indicates leave-one-score-out cross-validation as opposed to leave-one-
sample-out cross-validation.
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(the minimum total error for both methods was 0.38 mM, attained at 16 latent variables
for PCR and 10 for PLS). The differences between the maximum likelihood methods and
the conventional techniques is dramatic. Compared to PCR, the cross-validation errors
for the maximum likelihood methods are more than an order of magnitude smaller in
most cases. PLS fares somewhat better, but the RMSECV values are still substantially
higher. Among the maximum likelihood methods, the results for MLPCR and MLLRR
are very similar in most cases for this application. It will be also be noted that there is
little difference between the leave-one-score-out and leave-one-sample-out cross-
validation methods, as expected. In this example, the weighted regression methods
(WPCR and WPLS) perform almost identically to the maximum likelihood methods, but
this is expected, since the variances are primarily dependent on the wavelength channel in
this absorbance range. As demonstrated for data set 9, differences from the weighted
methods are more obvious with errors that depend on signal magnitude. For this
application, we would expect to see a greater effect at higher absorbance values. In any
case, the utility of the maximum likelihood methods is that they guarantee an optimal
estimation of the PCA subspace, which is not always assured with scaling.

The remarkably poor performance of PCR in this example motivated further
examination of the reasons underlying the differences observed. In conducting this
investigation, it was decided to focus on a comparison of PCR and MLPCR, since these
two methods are the most complementary. Two of the most important factors influencing
the performance of an analytical method are the sensitivity of the technique and the noise
in the measurements. It is anticipated that, because of the nature of the geometric

projections used, the uncertainty in the scores will be smaller for MLPCR than PCR, but
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since such differences can be difficult to quantify in the general case, it was decided to
focus on the sensitivity aspect. For first-order calibration methods, the sensitivity is

related to the net analyte signal (NAS) by:

SEN =|NAS| (5.26)

where |[o] indicates the Euclidean norm, or length, of the NAS vector [13,68]. The NAS

for a given analyte is that part of the pure analyte spectrum that is orthogonal to the
spectra of all other constituents in the mixture. The pure component spectra for a p-
component mixture can be represented as vectors in an n-dimensional absorbance space
(n = number of wavelength channels) and will define a p-dimensional subspace
(hyperplane) within that space. If the vector representing the spectrum of analyte / (the
analyte of interest) is now excluded, it is possible to identify a vector that is orthogonal to
the remaining vectors and lies in the subspace defined by all p spectra. This vector is
called the contravariant vector [65], and it is the projection of the analyte spectral vector
onto the unit vector in this direction that defines its NAS. Mathematically, if the pure

component spectra of all constituents are known, the NAS is defined as:
NAS, = (I —R,(Rfki)"RI) r, (5.27)

where R; is an nx(p-1) matrix whose columns consist of the pure component spectra for
all constituents except the analyte, r;is an nx1 vector containing the analyte spectrum
(normalized to unit concentration), I is the nxn identity matrix, and NAS; is the net
analyte signal vector for analyte .

An obvious problem with Equation 5.27 is that the spectra of all constituents must

be known. For situations where there are unknown constituents, methods such as PCR
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are used to estimate the NAS by regression against concentration. To make the problem
mathematically tractable, PCA is used as the first step in PCR to identify the subspace of
the pure component spectra. Calibration spectra are projected into this space and
regressed against concentration. The NAS determined in the subspace, which will be

designated as NAS', can then be transformed back to the original space. The important

-

equations are:
q, =V, (5.28)

Q, = V'R, (5.29)

Nas; =(1-Q,(Q[Q)" Q! q, (5.30)

NASF® = V.NAS; (5.31)

In these equations, q; (px1) and Q; (px(p-1)) are analogous to r; and R, in Equation 5.27
and represent “abstract spectra” in the principal components space. NAS' represents the

PCR . ]
is the same vector in the

px! net analyte signal vector in the subspace, and NAS
original absorbance space. Note that NAS*® is distinguished from the “true” NAS in
Equation 5.27 since they will only be identical in the ideal case. If, for example, PCA
does not correctly determine the subspace of the component spectra, projection of
individual spectra will result in a shorter vector and reduced sensitivity.

In the present study, pure component spectra are available for the three
components in the mixture, and therefore it is possible to obtain the NAS directly as well
as by PCR and MLPCR. Figure 5.7 shows the results of this calculation for cobalt using

three latent variables. Similar results were obtained for chromium and nickel, which are

not shown. Note that the NAS obtained from direct calculation and NASMPCR are very
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similar and have the expected shape. However, NAST® is much smaller in magnitude
than the other two and it is clear even without resorting to the calculation of Equation
5.27 that the sensitivity of PCR will be much lower. These observations are consistent
with results of Table 5.2. Note that the small NAS for PCR does not derive from the
regression step, since none is used in this direct calculation method. Instead, it is
believed that the spectral space is poorly estimated by PCA as compared to MLPCA, and
subsequent projection into this space reduces the sensitivity of PCR. A comparison of
eigenvectors produced by PCA and MLPCA is made in Figure 5.8, which shows the
loadings (abstract spectra) for each of the first three factors. It will be noted that the first
two factors are virtually identical for both methods, but there are radical differences in the
third factor. While the third factor for MLPCA shows some meaningful structure in the
spectrally active region, the PCA results are essentially flat in this region and show
contributions mainly in the region dominated by noise. In other words, at the point at
which the third principal component is extracted, the residual variance in the data set is
dominated by the noise, and these are the regions modeled by PCA. MLPCA, on the
other hand, is able to better account for the systematic variations. This is clearly
indicated by the calibration results.

As a final illustration of the power of the maximum likelihood calibration
methods developed here, consider data set 6. Based on the typical spectrum shown in
Figure 4.3, one would normally choose to carry out PCR on a subset of the full spectral
range, e.g. in the region of 700 to 1600 nm. If the high noise regions are included, the
PCR results are very poor due to the tendency of the PCA decomposition to model the

noise variance. On the other hand, selecting a single region excludes other regions that
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may be useful for calibration. A more refined variable selection procedure could be used,
but this normally relies on cross-validation and is extremely time consuming. A better
approach is to apply MLPCR to the entire data set and allow the variance information to
determine the importance of each channel.

A comparison of PCR and MLPCR for data set 6 is presented in Table 5.3 in
terms of cross-validation errors (leave-one-score-out method). PCR was carried out over
the region 700-1600 nm, while MLPCR was applied to the entire data set. For both
methods, optimum performance occurs around three latent variables, as expected. It is
clear that MLPCR generates models with significantly better predictive ability for all
three components. Although it is not necessarily obvious from the spectra, it is apparent
from the results that the inclusion of additional wavelength channels in the analysis
improves the calibration model through MLPCR. This is because important information
exists in the region above 1600 nm on the shoulders of peaks that saturate the detector.
Thus, valuable information lost through sub-optimal wavelength selection can be
recovered through MLPCR.

It is also important to note that the results for data set 6 did not rely on precisely
correct standard deviation estimates since, for all samples, these were based on 400
replicate scans for just one sample. Correlations in the measurement errors, which are
known to exist, were also ignored. Nevertheless, this approximation was sufficient to
improve the calibration model. This suggests that even approximate information on
measurement errors, such as that which might be provided by a skilled spectroscopist, can

be used to advantage in multivariate calibration.
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Table 5.3 Comparison of PCR and MLPCR for data set 5 (organic mixture). Values

given are the root-mean-squared errors of cross-validation (RMSECV) in

weight percent.
Calibration Number of Latent Variables
Method Analyte 1 2 3 4 5 6

PCR’ toluene 16.60 | 7.68 0.61 0.60 0.60 0.46
(700- chlorobenzene | 16.55 10.32 0.57 0.54 0.54 0.42
1600 nm) heptane 3.13 " 2.66 0.15 0.14 0.14 0.14
MLPCR’ toluene 20.95 7.96 0.12 0.13 0.13 0.12
(400- chlorobenzene | 13.08 10.32 0.13 0.11 0.11 0.11
2500 nm) heptane 2.84 2.65 0.09 0.07 0.07 0.06

[ ] . -
Leave-one-score-out cross-validation was used for both methods.
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5.5 CONCLUSIONS

It has been the objective of this chapter to describe the theoretical basis of
maximum likelihood multivariate calibration methods (MLPCR and MLLRR) that are
based on MLPCA, and to present results demonstrating their ability to provide superior
calibration models over conventional methods in certain cases. This objective has been
accomplished through the use of both computer-generated and experimental data sets
which showed that significant improvements over PCR and PLS can be realized by
including measurement error information in the calibration procedure. In the majority of
cases, MLLRR provided better results than MLPCR, but the improvement was often
marginal for the cases examined here.

This study was not intended to be exhaustive in its investigation of the new
methods and leaves open many issues concerning, for example: situations under which
maximum likelihood methods should offer significant improvements, the relative merits
of MLPCR and MLLRR under different measurement conditions, the role of
measurement error covariance in the quality of a calibration model, and more extensive
comparisons with other methods. Nevertheless, the underlying reasons for the improved
results have been described from a fundamental perspective using standard figures of
merit for multivariate calibration.

Two of the most common arguments against methods such as MLPCR and
MLLRR relate to the requirement for measurement error variance estimates and the
extended computation time necessitated by the algorithm. The first argument asserts that
methods such as PCR require no variance information and are therefore more universally

applicable. This argument is deceptive, since the use of PCR implicitly assumes that the
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measurement errors are uniform, so variance information is, in fact, required. In the
absence of any knowledge of measurement error characteristics whatsoever, an
assumption of uniform errors may be reasonable, but practitioners of PCR and similar
methods should be aware of the limitations that such assumptions impose. It is the
author's contention that some instinct for measurement error characteristics on the part of
the analyst is almost always present. Even if measurement error variances are not directly
available, reasonable approximations of the error structure can be used effectively with
the maximum likelihood techniques, as was demonstrated with data set 6. This should
also be true even when the error distribution is only approximately normal, or when an
exact covariance structure is not known. Finally, the results presented here support the
case for designing instruments which provide measurement error information. Some
instruments presently have this capability, but more often the information is unavailable,
even when the instrument has the fundamental ability to provide it routinely from
replicate scans (e.g. FTIR spectrometers).

It is true that the maximum likelihood methods presented here are more
computationally intense than traditional PCA-based methods. However, the basic
MLPCA algorithm (presented in Table 4.1 and Appendix C) is quite simple to implement
and converges reliably without the need for any “fine tuning” like many algorithms.
Actual computation times vary with the size of the matrix and error structure and have
been described in Chapter 4. In this study, time for calculations ranged from several
minutes to several days, with the longest times being observed for leave-one-sample-out
cross-validation for MLPCR and MLLRR. As demonstrated here, leave-one-score-out

cross-validation is generally equivalent for MLPCR and reduces computation time by a
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factor equal to the number of samples. This might typically take a few hours.
Unfortunately, it is not possible to perform leave-one-score out cross-validation for
MLLRR because of the inclusion of concentration information, which is a drawback to
this method. In any case, the time spent on calibration is still much less than that
typically required to obtain the experimental data, and past history has demonstrated that
computational barriers erode quickly with"advancing technology.

Beyond the broad utility that these methods may find in practical situations, there
is a more important aspect of their development. Whereas many new techniques are
simply modifications of conventional methods designed to improve their utility, MLPCR
and MLLRR are generalizations of PCR and LRR, respectively. In other words, PCR and
LRR are special cases of the parent techniques that apply under conditions of uniform
error variances. The development of general principles and methods for incorporating
measurement uncertainties into the calibration process will allow the limitations and
strengths of other calibration techniques to be appreciated from a wider perspective, a
feature which is inherently valuable.

In the context of the preceding statement, the performance of PLS in the results
presented here can be examined. Direct comparisons with PLS have been avoided until
now because of basic differences in the fundamental philosophy towards the calibration
process. It is generally viewed that, for systems with a well-defined rank, PLS should
provide results comparable to PCR when the correct number of latent variables is used
(although PLS may provide better results than PCR when fewer latent variables are used).
We have found this to be the case when uniform measurement errors prevail, but in cases

where measurement errors are significantly non-uniform, PLS consistently performed
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better than PCR, although worse than the maximum likelihood methods. This is likely
because PLS uses correlation with concentration data to help exclude much of the noise
variance. Based on this observation, one can speculate that the presence of non-uniform
noise in many other applications may be partly responsible for the relative popularity of
PLS over PCR in practical environments. This factor may also be important in the
relative success of wavelength selection methods for some methods but not for others.
Whatever the reasons for these observations, further investigation is warranted and the
maximum likelihood calibration methods presented here provide a unifying framework
from which to better understand the application of multivariate calibration methods to
chemical problems.

The advantages maximum likelihood techniques can offer the area of calibration
have been illustrated in this chapter. The next chapter demonstrates the application of
these principles to other areas, such as the analysis of incomplete data sets and calibration

transfer.
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APPLICATIONS OF MAXIMUM LIKELIHOOD
PRINCIPAL COMPONENT ANALYSIS TO
INCOMPLETE DATA SETS AND
CALIBRATION TRANSFER

6.1 INTRODUCTION

It has been noted throughout this thesis that of all the different techniques
available to analyze multivariate data sets, none is more widely used than principal
component analysis (PCA). The strength of PCA stems from its ability to represent
multivariate data using a smaller number of variables, called principal components. To
do this, the information in many variables is compressed into the first p principal
components. If these reproduce the data within experimental error, then D represents the
intrinsic rank, or pseudorank, of the data. However, for PCA to be implemented directly,
a complete data set (i.e. no missing measurements) is needed, and this is not always the
case.

Incomplete data sets commonly arise in a number of situations in chemistry.
When modeling chemical data or in exploratory data analysis, it is conceivable that some
measurements for a particular sample may not have been recorded or are impossible to
obtain experimentally. In other instances, insufficient sample may be available for all
measurements, or some measurements may be excluded as erroneous. In the analysis of a
time series (i.e. in multivariate statistical process control), measurements may be missing
due to sensor failure for a period of time. The problem of calibration transfer, where one
wishes to transfer calibration results from a "master” instrument to a "slave" instrument

based on a small subset of samples, can also be regarded as a missing data problem. In
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this case, whole spectra from the slave instrument are unavailable. Given the
pervasiveness of the missing data problem, it would be extremely useful to have a simple
and reliable technique for minimizing the influence of missing measurements in PCA
without excluding the incomplete samples entirely. Furthermore, such a method should
have a sound theoretical basis and be capable of predicting missing measurements
according to some recognized criterion of optimality.

A number of methods have been developed over the years to handle missing
measurements in the multivariate analysis of chemical data [69-74]. Most of these
exploit the fact that the intrinsic rank of the data matrix is substantially smaller than the
full rank. However, there has been no consensus on a procedure that allows PCA to
address this problem in an optimal manner. In this chapter, a new approach to the
missing data problem is introduced through the application of maximum likelihood
principal component analysis (MLPCA), a method described earlier in this thesis.
MLPCA is a generalized form of PCA which allows estimates of measurement
uncertainty to be incorporated in the decomposition step. Thus, missing data can be
accommodated simply by assigning very large variances to these measurements prior to
implementing MLPCA. In this study, the feasibility and advantages of this approach are

demonstrated using a number of experimental data sets.
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6.2 THE PROBLEM OF MISSING DATA

As noted in the preceding section, there have been a number of techniques
developed to address the problem of missing data. The simplest of these involve
preprocessing of the data prior to the decomposition step in PCA. If the number of
missing values is small relative to the size of the data matrix, the usual approach is to
discard either all of the samples or all of the sensors with missing measurements (i.e.
delete entire rows and/or columns of the matrix). Unfortunately, potentially useful
information from the eliminated sensors (or samples) will be lost. As the proportion of
missing values increases, this loss of information can be very significant and, in some
cases, the pattern of missing data makes this approach impossible. An alternative would
be to "predict" the missing values prior to PCA. The simplest variation of this approach
involves the substitution of a zero wherever a missing point is encountered. In certain
instances this type of preprocessing may produce acceptable results, but it is not
recommended since it can seriously distort the underlying structure of the data. Usually,
a better estimate can be obtained via a substitution of the mean of the observed points [2].
Contrary to a popular view, however, substitution of mean values is not neutral from a
modeling perspective, and again serious distortion can result.

A more sophisticated approach uses a covariance calculation on the data. Usually,
PCA is performed on the original mxn data matrix, X, using singular value decomposition

(SVD) which gives the decomposition,

X=USVT (6.1

Alternatively, the covariance matrix of X can be decomposed by SVD yielding
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X™X = V§2VT (6.2)

or

XX' =ys?u” (6.3)
If the covariance matrix of X can be calculated by excluding missing values and reducing
the degrees of freedom accordingly, it may be possible to estimate U or V in this manner.
However, the decomposition will weight all of the matrix elements equally and therefore
is unlikely to yield an optimum solution. Furthermore, in cases where there are a large
number of missing values, this covariance calculation may not be possible.

An extension to the above procedure has been described by Wise in the
PLS_Toolbox [75]. In this method, the covariance matrix is calculated and then
decomposed by SVD. The intrinsic rank of the data, p, is determined before the analysis
and estimates of the missing points are obtained through a regression of the loadings.
These values are then substituted into the original data matrix and this updated matrix is
used to improve the estimates of the SVD model. This procedure is performed iteratively
until either the change in the estimated points falls below a predetermined tolerance or a
maximum iteration value is reached. Although this technique proves useful in many
instances, it is somewhat cumbersome and its statistical basis has not been explored.
Also, if the number of missing values is large, the algorithm may become unstable.

This work investigates the application of MLPCA to the missing data problem.
This technique performs a PCA-like decomposition of the data but, unlike PCA, uses
measurement error variance information to choose the p-cigenvectors. The procedure
generates a decomposition which is optimal in a maximum likelihood sense for a model

of given dimensionality (p) provided that the measurement errors are distributed as
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multivariate normal and their variances/covariances are exactly known. In practice, this
restriction is seldom met, but that does not detract from the utility of the method (in the
same way that the assumptions implicit in linear regression do not limit its use to cases
where those assumptions are valid). Usually, independent, normally distributed
measurement errors are assumed and sample variances are used. Although these
approximations may not be valid, they permit the application of the MLPCA algorithm,
which will incorporate the variance information in the decomposition (in contrast to PCA
which assumes equal error variances for all measurements). Similar to conventional
regression methods, MLPCA minimizes a weighted residual sum of squares which is

given by:

§? = i z": (x'f__x'f) (6.4)

i=l j=I 9

where x”,.,. is the maximum likelihood estimate of measurement Xj»

and o; is the
corresponding measurement error standard deviation. The MLPCA decomposition is

carried out using a form similar to Equation 6.1:

A A A

X=08V" (6.5)
where X is mxn, U is mxp , S is pxp and V7 is pxn. It is important to point out here
that one of the major differences between PCA and MLPCA is that MLPCA does not
have nested solutions (i.e. MLPCA must be performed for each change in the rank
estimate, p). Another difference, and a significant advantage, is that the projection of the

original data onto the MLPCA eigenvectors is performed using a maximum likelihood

projection, which weights the direction of the projection in proportion to the magnitude
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of the measurement error variances. That is to say, while PCA projections are orthogonal

and take the form:

£ =x,VVT (6.6)
where x; is a row vector of X, and V is the loading matrix truncated to p principal

components, MLPCA projections take the. form:

%, =x, 2 V(VTEV) VT (6.7)
where I;' is the nxn covariance matrix for the row vector X; (diagonal matrix of

variances for independent error). In a projection of this type, less importance will be
given to those measurements with large uncertainties. When the errors in all the
measurements are the same, the Equation 6.7 will reduce to Equation 6.6.

In this chapter, the advantages of performing a maximum likelihood
decomposition on incomplete data sets will be demonstrated by showing that: (a) even
when many of the data are missing, the scores and loadings can retain most of the original
information; (b) missing data can be reliably predicted; and (c) MLPCA can be used as an
alternative approach to calibration transfer and, under the right conditions, produces
results similar to those that would be observed if all the spectra on the slave instrument

were measured.
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6.3 EXPERIMENTAL

Three experimental data sets (data sets 6, 12 and 13) were employed to
demonstrate the advantages mentioned above. To distinguish the two new data sets from
those described in earlier chapters, they have been designated as data sets 12 and 13.
Data set 12 is a widely used archaeological data set described by Kowalski et al [76].
These data were obtained in a study intended to relate the origin of obsidian artifacts
collected at three different locations to samples taken from four quarries and consist of X-
ray fluorescence data on 10 elements for 75 samples. Data set 13 consists of results
compiled by de Ligny et al [77] in a study of chromatographic retention characteristics.
This set contains transformed retention data for 39 solutes with 2 eluents on 6 adsorbents,
but is only about 80% complete. Data set 6 (see also Section 4.3) was part of an
Infometrix (Seattle, WA) calibration transfer study [57] and consisted of near infrared
(NIR) absorbance spectra acquired for 31 samples (mixtures of toluene, chlorobenzene
and heptane) measured on two instruments. Further details on each of these data sets are
included in the appropriate section of the RESULTS.

The calculations in this work were performed using Matlab 4.2c.1 (The
Mathworks, Natick, MA) on two computer platforms: (1) a Pentium-based personal
computer and (2) a Sun Microsystems SparcServer 1000 with 230 Mb of memory and
four 50 MHz SuperSPARC CPUs. Under normal circumstances, convergence of the
algorithm is quite reliable, although it is considerably slower than for conventional PCA.
With missing data, the convergence times are often further extended and may be a
problem in extreme cases. Results in this work required times ranging anywhere from

under an hour to more than a day. Although this is a drawback to this method, we feel
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that its sound theoretical basis and versatility justifies its use and are confident that
algorithmic improvements (particularly in obtaining initial estimates for the solution) will

greatly improve its performance.

6.4 RESULTS

6.4.1 Exploratory Data Analysis

One of the methods commonly employed to visualize the characteristics of
multidimensional data sets is to utilize a projection of the original data into the space
described by the first two or three principal components. Samples with similar features
often appear "clustered” together in space after this dimensionality reduction. As an
illustration of this approach, we will consider data set 12. No pretreatment of the data
was performed prior to analysis and, in the absence of other reliable information, uniform
measurement errors with a variance of unity were assumed. In the case of a complete
data set and uniform errors, the actual magnitude of the error variance is unimportant,
since MLPCA is equivalent to PCA under these conditions. In the case of incomplete
data, it is only important that the magnitude of variance for missing measurements is
much greater than that for the measurements present (a factor of 10'® was used in this
case).

Figure 6.1a shows the MLPCA projection of the uncensored data onto the first
two eigenvectors. This projection is equivalent to the PCA projection because the
measurement error variances are uniform. The grouping of results according to class

(1 to 4 are different quarries; 5 to 7 are different artifact locations) is consistent with
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earlier studies and reveals an association between the quarries and the artifacts. However,
the actual interpretation of the data is not of interest here, but rather the behavior of the
principal components when data are deleted.

To test the ability of MLPCA to deal with missing measurements, 10% of the
measurements were eliminated in a systematic fashion. A "censoring" mask, as shown in
Figure 6.1b, was applied to the original-data and was generated by removing the first
measurement from row 1 (sample 1), the second measurement from row 2, and so on,
cycling back to the beginning when the end of each row was reached. Note that, because
each sample has at least one measurement missing, this data set cannot be analyzed by
conventional PCA by eliminating rows or columns. However, MLPCA easily handles
this situation by employing inflated variances for the missing measurements and the
projections are shown in Figures 6.1c and 6.1d. Figure 6.1c shows the projection of the
original data (i.e. uncensored) onto the first two eigenvectors which were determined by
MLPCA performed on the censored data set. This can be regarded as "cheating" because
if the data set were indeed incomplete, the measurements that had been removed would
not be available for this projection. However, the intent is to demonstrate that even with
the missing data, the eigenvectors retain nearly all the information that was contained in
the original data. This conclusion is verified by comparison of Figures 6.1a and 6.1c,
which are virtually identical. Figure 6.1d is a more accurate portrayal of what one would
observe if the measurements were truly absent. In this case, maximum likelihood
projections of the censored data onto the MLPCA eigenvectors were used. Although
there are small perturbations, it can be seen that the projection very closely resembles the

projection for the complete data set in Figure 6.1a, particularly with regard to the clusters
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observed. Slightly better results were obtained when the data were mean-centered, but
this method of preprocessing would not be valid if measurements were truly missing. Of
course, the success of such an application will depend on the data set and the correlation
of the measurements, but the availability of a statistically optimal procedure for treating
missing data is a significant advance.

Data set 12 was also analyzed under more extreme conditions, with as many as
54% of the measurements removed at random. The "censoring" mask used in this case is
presented in Figure 6.2b. Under these circumstances, the representation of the two-
dimensional subspace remained quite good. This is illustrated in Figure 6.2c which
shows the projection of the original data onto the eigenvectors for the censored data.
Although there is a reorientation of the eigenvectors, the spatial relationship among the
samples is largely unchanged. As might be expected, projection of the censored data was
not as successful. In this case, the projection is dominated by a few outlying samples
which are missing critical measurements. If these are eliminated, the projection in Figure
6.2d results. Although there is clearly a loss of information in this extreme case, some of
the associations are still apparent.

As well as projecting the individual samples into the subspace, a similar treatment
may be carried out on the uncertainties associated with the samples. If the nxn
measurement error covariance matrix for a sample (i.e. a row of X) is given by Z,, then

the pxp error covariance matrix for the scores of that sample, ‘¥,, will (by propagation of

error) be given by Equation 6.8.
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While this equation does not take into account the uncertainty in the eigenvectors, and so
cannot be regarded as a true measure of variance in the scores, it is useful in identifying
outliers which are the result of incomplete data. Normally, MLPCA reduces the
influence of uncertain measurements through the projection, but in some cases there is
insufficient information to do this, resulting in an outlier (e.g. sample 4 in the above
example, which only has one measurement). For the archaeological data, a projection of
the error covariance matrix for a given sample with uniform, uncorrelated errors will
yield a diagonal matrix (2x2) with measurement variances on the diagonal. If the
projection of the covariance matrix for some samples with missing data differs from this,
the magnitude of the difference will indicate the uncertainty of the scores in the new
space. Error bars may be obtained by taking the square roots of the diagonal elements of
the error covariance projection and error contours may be constructed utilizing the whole
error covariance projection. While caution should be used in interpreting these as true

variances of the scores, this approach is useful in the identification of outliers.
6.4.2 Modeling Incomplete Data

The treatment of missing data is expected to be even more successful when strong
correlations exist among the measurements. For data set 13, retention volumes (Vy) were

measured for 19 solutes (monosubstituted benzenes and polycyclic aromatic



192

hydrocarbons), 2 eluents (n-hexane and 35% v/v methylene chloride in n-hexane) and 6

silica-based adsorbents, and transformed according to:
y =log(V,, /W) (6.9)

where W is the weight of the adsorbent. QOut of a possible 228 measurements, however,
only 183 were available. These data have been analyzed in the past using a physical
model proposed by Snyder [78] and three-way factor analysis by de Ligny [77]. The
objective in the development of such models is to enable prediction of retention
characteristics of solutes with a minimum number of parameters. Estimation of such
parameters is made difficult by incomplete data.

Because this data set is third-order, some preprocessing had to be performed prior
to implementation of MLPCA. The easiest manipulation would be to analyze each
adsorbent or eluent individually and combine the results. Unfortunately, if much or all of
the data are missing for a particular solute in one subset, the predictive power of this
technique will be greatly reduced. Therefore, it would be beneficial to use any extra
information that may be contained in data for the other adsorbents or eluent in the
decomposition step. For this work, the third-order data were "unfolded" to give a 19x12
matrix where the first 6 columns correspond to the transformed retention data for eluent 1
and the latter 6 for eluent 2.

MLPCA was applied to this unfolded matrix and the simplest model that
produced reliable results had a rank of 3. The maximum likelihood projections were then
used to reconstruct the missing values, which are listed in Table 6.1. Also included in the

table are the values predicted by de Ligny [77] and Snyder [78]. From the table, it is
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Table 6.1 Predictions of missing data for data set 13 (transformed chromatographic

data).

Adsorbent Eluent Sample MLPCA de Ligny Snyder
i 1 5 2.08+.07 222+.18 2.07
2 1 18 0.53+£.06 0.54+.13 0.31
3 1 13 0.90+.03 0.91+.12 0.53
4 1 18 1.54+.13 1.53+.21 1.92
4 1 19 2.29+.13 2.25+.23 3.07
5 1 18 1.55%.12 1.53+.20 1.94
5 1 19 2.30+.12 2.26+.23 3.09
6 1 18 1.61+.13 1.64+.22 2.00
6 1 19 232+.12 241+25 3.12
1 2 7 -0.91+.12 -0.83+.18 -0.86
1 2 9 -0.86+.08 -0.81+.15 -0.90
1 2 10 -1.05+.12 -0.96+.19 -1.18
2 2 8 -0.60%.05 -0.66%.13 -1.09
2 2 14 -0.54%+.04 -0.56%+.12 -0.81
2 2 18 -0.41+.04 -042+.13 -0.86
3 2 1 -0.56+.07 —0.58+.16 -0.69
3 2 2 -0.75+.07 -0.78%.17 -0.74
3 2 7 -0.70=.11 -0.69+.20 -0.67
3 2 8 -0.71+.08 -0.78+.17 —0.86
3 2 10 -1.06+.11 -1.05+.23 -0.94
3 2 13 -0.45+.04 -0.45+.12 -0.30
4 2 1 -0.53%+.08 -0.52+.17 -0.42
4 2 2 -0.64+.08 ~0.64+.18 -0.65
4 2 7 -0.52%.11 -0.49+.19 -0.48
4 2 8 —0.48+.09 -0.51+.18 -0.64
4 2 9 -0.42+.07 -0.39+.15 -0.28
4 2 10 -0.99+.11 -0.94+.23 -0.54
4 2 18 045+.12 0.46x+.20 0.62
4 2 19 1.07+.12 1.08+.23 1.62
5 2 1 -0.45+.07 -0.50%.17 -0.39
5 2 2 -0.58+.07 -0.65+.18 -0.63
5 2 7 -0.50+.10 -0.52+.19 -0.48
5 2 8 -0.46+.08 -0.54+.18 -0.65
5 2 9 —0.38+.06 -0.41£.15 -0.29
5 2 10 -0.90+.10 -0.96+.23 -0.56
5 2 18 042+.11 0.44+.20 0.61
5 2 19 1.00+.10 1.07+.23 1.60
6 2 1 -0.67+.10 -0.58+.18 -0.36
6 2 2 -0.75%.10 -0.67£.19 -0.51
6 2 7 -0.58+.13 -0.49+.20 -0.23
6 2 8 -0.54=.11 -0.51+.19 -0.37
6 2 9 -0.48+.08 -0.40+.16 -0.02
6 2 10 -1.18%.13 -1.00+.24 -0.24
6 2 18 0.54+.15 0.50+.22 0.89
6 2 19 1.28+.14 1.63+.25 1.88*




194

clear that the MLPCA estimates of the missing data are in excellent agreement with those
determined by de Ligny [77] and, with the exception of the last entry, fall within the
confidence intervals determined in that work. This agreement is somewhat remarkable
given that de Ligny er al use a trilinear model (75 parameters) whereas this study used an
unfolded bilinear model (84 parameters). For a comparison, it would be useful to have an
estimate of the uncertainty associated with the data predicted by MLPCA. This may be
accomplished using an extension to Equation 6.8 which projects the covariance in the

scores back into the original space:
£ = Y(VTEV) VT (6.10)

The diagonal elements of 7 will contain the variance information for a given sample.
Although the magnitude of the uncertainties used in MLPCA will have no bearing on the
decomposition as long as it is the same for all of the data present, a valid estimate of
measurement uncertainty is required for use in Equation 6.10. De Ligny suggests that an
approximate measurement error variance for known values may be obtained using the
root-mean-squared error (RMSE) of the fit for the non-missing data. Confidence

intervals may then be estimated for data points using Equation 6.11.

95% CI = £, + 196G ;) (6.11)

i

In this equation, X; is the predicted measurement and (6‘ P ): is the square root of the ;"

diagonal element of £, It can be seen from Table 6.1 that the confidence intervals for

the MLPCA prediction are much smaller than their respective counterpart predicted by de
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Ligny. This results from a better fit of the known data by the MLPCA approach (RMSE
= 0.041) than that obtained by de Ligny (RMSE = 0.10). Although there is a difference
in the number of parameters used in the fit, the degree of improvement appears much
greater than one would expect.

While the MLPCA and de Ligny results were in good agreement with each other,
the estimates by Snyder were often at the limits of the conﬁdence interval of de Ligny
and beyond those of the MLPCA model. This suggests that there may be some
deficiencies in Snyder's approach. Although MLPCA produced a better fit than de Ligny
et al, it cannot be said with certainty which is the best approach since the models are
substantially different. However, MLPCA does have certain advantages, namely: (1) it
is based on a well-established statistical criterion and is easy to apply; and (2) if error
estimates are available for the known data, these can be incorporated into the

decomposition step.
6.4.3 Calibration Transfer

With the growing use of multivariate instruments in the workplace, a serious issue
that has arisen is that of calibration transfer or instrument standardization. The problem
is that a calibration model determined for a particular instrument may lead to very poor
prediction if used with data collected on another instrument. For example, calibration
parameters obtained on a laboratory spectrometer may not yield the same results as an
instrument used in an industrial setting, even if they are the same instrument model. A
variety of sources may give rise to the failure of a calibration model, including variations
in bandwidth, noise or sensitivity, differences in wavelength registration, and changes in

instrument characteristics with time or the operating environment. One solution to this
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problem is to rerun all of the calibration samples on each instrument. Unfortunately, this
procedure can be very time-consuming, especially if the number of calibration samples
and/or instruments is large. Compounding this, environmental changes may require
frequent recalibration of an individual instrument, which may in tumn require the
maintenance of a large number of standards. Therefore, it would be desirable to obtain
calibration data on a "master” instrument and then transfer it to a "slave” instrument using
only the data from a few representative samples. The subject of calibration transfer has
been addressed in several recent articles which introduce a variety of techniques [79-82].
An alternative approach, based on MLPCA, is presented here to illustrate the potential of
maximum likelihood methods. This study is not intended to be comprehensive, and a
more complete analysis and comparison with other calibration transfer methods should be
a subject for future work.

The approach to this problem is similar to the missing data examples addressed
above, except whole samples from the slave instrument are now regarded as missing. For
this work, data set 6 is used to illustrate the typical implementation of this technique. The
data from the first spectrometer (NIRSystems Model 6500) has dimension 30x201 (A
data, shown in Figure 6.3a) and will be regarded as originating from the "master"
instrument (range is 1100-1300 nm with 1 nm resolution). The second spectrometer
(Guided Wave Model 300P) represents the “slave™ and the data from this instrument (B
data, also shown in Figure 6.3a) has the same dimensionality (range is 1100-1500 nm
with 2 nm resolution). The data matrix used for analysis by MLPCA was an
augmentation of the A data with part of the B data and has dimension 30x402. The left

half of this matrix corresponds to the full A datd matrix, while the right half consists of
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Figure 6.3  (a) Plot of master (A) and slave (B) spectra for data set 6. (b) Graphical
representation of augmented data matrix with 5 representative samples
from B. (c) Plot of reconstructed data following analysis by MLPCA.
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five representative samples (rows) from B. The remaining samples in B are represented
by row vectors of zeros (shown in Figure 6.3b). The "known" spectra are assigned
uniform variance (the actual value is unimportant, but for this work selected as unity)
while the "missing" spectra were assigned a measurement variance equal to 10'°. The
issue of which subset of samples best represents the B data was addressed using the
procedure outlined by Kennard [83]. -

After application of MLPCA of rank three (determined by cross-validation of A),
the augmented data matrix was reconstructed (shown in Figure 6.3c) using the maximum
likelihood estimates of the scores and loadings. It can be seen that this reconstruction
very closely resembles the original data (Figure 6.3a), and therefore it appears that this is
a valid technique for the transfer of spectral data from one instrument to another. Once
the maximum likelihood estimates of the spectra on instrument B were obtained, they
were used to build a calibration model for that instrument (also three factors). This model
was then used to predict concentrations from the actual spectra obtained from instrument
B. The RMS errors of prediction are listed in Table 6.2. For comparison, the results
from the cross-validation of the original A and B data sets are also included in the table as
RMS errors of cross-validation (RMSECV). From the table, it is clear that the prediction
errors obtained after calibration transfer are comparable or slightly better than those .
obtained from the original data for instrument B. Of course there are many issues to be
considered in more detail, such as the nature of the transfer subset and the rank of the
transfer model. However, this work has shown that, when calibration transfer is regarded

as an incomplete data problem, it is possible to use MLPCA to predict calibration spectra
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Table 6.2 Comparison of prediction errors from MLPCA calibration transfer with cross-
validation errors from master (A) and slave (B) instruments. (Results in units
of weight percent; based on five calibration transfer standards and a rank

three PCR model).
Instrument A Instrument B Calibration Transfer
Component RMSECV RMSECV RMSEP
toluene 0.23 0.30 0.29
chlorobenzene 0.25 0.27 0.24
heptane 0.12 - 0.12 0.11
total 0.21 0.24 0.23
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on the slave instrument and obtain a calibration model similar to that which would be

obtained if all of the calibration samples were actually run on that instrument.

6.5 CONCLUSIONS

The problem of incomplete data sets is a pervasive one in the multivariate analysis
of chemical measurements. In this chapter, it has been demonstrated that MLPCA is a
convenient and reliable approach to solving this problem. While the assumptions for
maximum likelihood estimation may not be generally valid for the application of
MLPCA to all data sets (i.e. known variances, normally distributed errors), MLPCA
should be a better alternative for the analysis of multivariate data sets when these
assumptions are approximately valid. Furthermore, MLPCA provides a legitimate
statistical framework for addressing these problems. The application of MLPCA to a
range of missing data problems in exploratory data analysis, modeling, and calibration

transfer has shown its versatility and utility.



7
CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In order to deal with the increasing complexity of chemical data, the disciplines of
analytical chemistry and statistics have combined in order to develop an arsenal of
techniques to analyze these data and extract as much useful information as possible.
Unfortunately, most of the techniques commonly used today virtually ignore the role of
measurement error when modeling data. This work has demonstrated how the use of
maximum likelihood methods can accommodate these errors while potentially improving
the quality of information that would be obtained using existing methods and providing a
unifying framework for common multivariate techniques.

In Chapter 2, the concept of data modeling in two dimensions was introduced.
The low dimensionality of the data allowed for a simple graphical and statistical
comparison among existing univariate techniques. The concept of maximum likelihood
was introduced by considering errors in both axes when building the mathematical model.
It was shown that MWR (the maximum likelihood method) was a generalized approach
when compared to the other techniques discussed. The maximum likelihood approach
taken demonstrated how each method is a specific case of the general model (MWR) and
therefore guidelines were proposed regarding which model should be used when a given
error structure arises. In addition, for the data sets examined, this technique consistently

yielded a smaller mean-squared-error (MSE) and was less biased than any other non-
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equivalent method, indicating that this approach is the most desirable from a statistical
standpoint.

In Chapter 3, the principles which were developed in two-dimensions were
extended to higher dimensionality. The resulting model, called maximum likelihood
principal component analysis (MLPCA), demonstrated how contentious issues, such as
mean-centering and scaling, can be easily addressed. The limitation of developing this
model as a parameter-based method, which utilizes a simplex to determine the optimum
model, was noted.

In Chapter 4, the MLPCA model was restated using a PCA and singular value
decomposition (SVD) framework and its theoretical foundations were explored. It was
shown, using simulated and experimental data, that the model estimated by MLPCA is
statistically superior to the model produced by PCA for the same data. It was also
demonstrated that, for the first time, correlated measurement errors and intercepts may be
accommodated in a PCA-like decomposition.

In Chapter 5, MLPCA was applied to the problem of multivariate calibration.
Two new methods were introduced, maximum likelihood principal component regression
(MLPCR) and maximum likelihood latent root regression (MLLRR), and it was
demonstrated, through both simulated and experimental data, that these methods provide
superior calibration models over their conventional analogues for the cases considered. It
was shown that this improvement arises from better estimation of the subspace used in
the calibration. It was also seen, for the cases cgnsidered, that there is little difference in

model performance when estimates of the standard deviation are used instead of the true
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standard deviations. Finally, maximum likelihood calibration provides a unifying
framework for which to better understand the relationship between calibration model and
chemical data.

In Chapter 6, the MLPCA method that was developed in Chapters 3 and 4 was
applied to the problems of incomplete data and calibration transfer. It was demonstrated
that even when many of the data are missing, the eigenvectors obtained using MLPCA
retain most of the original information. This has important implications for exploratory
data analysis and modeling. By projecting the errors, it is possible to obtain an estimate
of the uncertainty associated with the predicted values corresponding to the missing
points. It was also shown that when calibration transfer is regarded as a missing data

problem comparable results to those obtained by conventional means may be obtained.

7.2 FUTURE WORK

The work presented here has demonstrated the implications of accommodating
measurement errors in the modeling process. While advantages of such maximum
likelihood techniques have been shown for a number of situations, more complete studies
need to be conducted and many other potential applications can be envisioned. For
example, the natural progression of this work would be the development of a maximum

likelihood technique for the analysis of third- and higher-order data. In general, any
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technique which relies on an accurate estimate of a subspace of a data set, such as target
testing, should benefit from the application of MLPCA.

It was shown that the maximum likelihood analogues of principal component
regression and latent root regression can dramatically improve the predictive ability of
these techniques. The role of these new techniques should be examined further, under
different measurement conditions, so that guidelines may be drawn regarding their use.
Up until now, the issue of correlated errors in spectroscopic data has been acknowledged,
but generally ignored. Therefore, the effect of error covariance on calibration should be
explored. Additional methods commonly used in multivariate calibration, such as partial
least squares, should be considered for potential improvement by a maximum likelihood
approach. While it was shown that maximum likelihood methods have the potential to
simplify the issue of calibration transfer, this should be studied more rigorously. In
particular, the questions regarding the choice of transfer samples, the number of transfer
samples and the rank of the transfer model should be considered.

One of the most significant contributions of this work has been the development
of a reliable and efficient alternating least squares algorithm for performing the MLPCA
decomposition. However, MLPCA is still significantly slower than techniques such as
SVD and this will hamper its potential for routine use in the analysis of complex
chemical data sets. Therefore, additional work is required to improve the convergence
time of the algorithm. Furthermore, practical issues concerning the inversion of large
covariance matrices have yet to be addressed. F inally, no efficient algorithm has yet been

developed for the inclusion of offsets (intercept terms) in the MLPCA model. When
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these problems are solved, the maximum likelihood approach to multivariate analysis
should instigate much more research in the fields of chemometrics and analytical

chemistry.



APPENDIX A

Derivation of maximum likelihood prediction equation

Given a vector x of length m of observed measurements and the corresponding

error covariance matrix, ‘¥, the multivariate probability density function at x is given by:

2= G AT e

(A-1)

where x° represents the (unknown) vector of true values. The vector of maximum

likelihood estimates of x° for a given A, designated as X, is obtained by maximizing the

probability density function subject to the parametric model % = Aip . This corresponds

to minimizing the function:
I=(x-%)"¥'(x- X)
with respect to £. Substitution of the parametric model gives:

-~ T ~
= (x - Aip) ‘P"(x - Aip)
=x"¥lx - xT‘P"AiP - f::AT‘P"x + i: A“P"Aip

Using standard relations for derivatives of vectors [84], this gives:

Eafo =0- AT x - AT¥ 'x + 24T A%,

P

Setting this equal to zero to find the minimum leads to:
~ ~ ~ _l -~
X, =(AT‘P"A) AT¥'x

which is the same as Equation 4.7 and leads directly to Equation 4.8.
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APPENDIX B
Derivatives of S°

The calculation of the derivative of S° with respect to the rotation angles (in the
absence of intercept terms) begins by finding the differential of S*:

ds? = zn:d(Ax}?,i‘Ax,.)

j=1
S —— @
=2 ) AX]'¥; 'd(ij)

It will be assumed that the that the symmetric error covariance matrix, ‘P, is known for

cach x. For convenience, from this point on the subscript “j” in Equation B-1 will be

dropped but will be implied. Also, for simplicity, we will use U in place of U. We can

write Ax as:
Ax = (I - U(UT\P-‘U)"U“P") X
= (1-Tu,((ru,) ¥ Tu,) (U, 9 x (B-2)
= (1 - TUO(UgTT\P"TU,,)"U;T“P") x
This gives:

AX"Pd(Ax) = ~ [AxT‘P" (AT)U,(U™UT) U 'x
+ Ax“P"U(d(UgTT\y"TUO)")UT\P"x (B-3)

;AxT\P"U(UHP-'UT)"U;(dTT)‘P-‘x]

If we make the substitution H = (UT‘I""U)‘l U™¥", eqn B-3 can be further expanded by
conventional means [55] to give:

Ax"¥"'d(Ax) = - [Ax"¥" (dT)U, Hx - x"¥"'UH(dT)U,H Ax B4
- Ax"¥'UH(AT)U,Hx +x"¥"(dT)U H Ax|
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The differential of the transformation matrix can be expanded as:

dT = (dT,)L,T,...T,, + T,(dT,)T,... T, +... B-5)
where,
dT, = -cﬁdoci = J.do; (B-6)
do;
Here J; is the derivative of the rotation matrix corresponding to ;. For example,
[-sino,, —cosa, O 0] [0 0 0 0]
cosae;, -—sina; O --- O 0 -sina, -—cosa, 0
J, = 0 0 0 0, J,=|0 cosx, -sina, 0! , etc.(B-7)
| 0 0 0] 0 0 0 0]
Furthermore, it is easily shown that:
J=LT, B-8)
where,
[0 -1 0 0] [0 0 0 0]
1 0 O 0 0 0 -1 0
L,=|0 0 O of,L,={0 1 O 0] , etc. (B-9)
0 0 0 0] 0 0 0 - 0f
From this we can write:
dT = J (T, T;.. )do, + TJ,(T,T,.. )do, +...
=L T,(T,T,.. .)dozl +T,L,T,(T,T,.. .)doz2 +...
=L, Tda, + T,L,T,"T,T,(T,T‘. . .)doa2 +... (B-10)
=L,Tde, +(TL, T )Tda, +...
= G,Tda, +G,Tda, +...+G__Tda
where,
G; = ('I‘ITZ'I‘IJ)LI(’I‘ITI'I:TZ’I‘I) (B-11)
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Substitution of eqn B-10 into eqn B-4 and recognizing that U = TU, and P = UH gives:

Ax"¥'d(Ax) = - [Ax"¥'G Px - x"¥PG PAX

Ty Tyl (B-12)
- AX"¥'PGPx + x"¥'G,PAx] da

This result leads to Equation 4.18 in the paper. Although this equation is correct and
faster than numerical evaluation of the derivatives, it is somewhat cumbersome. Each of
the m—1 parameters to be optimized requires the calculation and storage of an mxm
matrix G;, which is the product of 2i-1 matrices that are mxm. Even though these
matrices are sparse, the calculations are still time consuming and awkward. Some
simplification of eqn B-12 is possible by examining the characteristics of G. The matrix
G; is antisymmetric with zero elements everywhere except for the first i elements of
column i+1 and row i+1. If the rotation angles are small, the rotation matrices approach

the identity matrix and a good approximation is:
G, =L, (B-13)

We have found that this approximation works well in practice, particularly if U, is

updated as convergence is approached so that the angles remain small.



APPENDIX C
Listing of MatLab Code for MLPCA (No Intercept, No Covariance)

function [U,S,V,S0BJ,ErrFlag]l = mlpca(X,stdX,p);
MLPCA.M v. 4.0

This function performs maximum Likelihood principal components analysis with missing data. The
variables passed to the function are:

X is the mxn matrix of observations (measurements).

stdX is the mxn matrix of standard deviations associated with the observations in X. For
missing measurements, stdX should be set to zero.

p is the dimensionality of the model (p<n, p<m).

The parameters returned are:

u,s,v are pseudo-svd parameters (mxp, pxp, and nxp). The maximum tikelihood estimates are
given by: XML=U*S*V!
SOBJ is the value of the objective function for the best model.
ErrFlag indicates the termination conditions of the function;
0 = normal termination (convergence)

X
%
%
%
%
%
%
%
%
%
4
%
%
%
%
%
%
b4
% 1 = maximum number of iterations exceeded
%

Y YNNG NNNNNNNNG GGG N N N oyl &y &y by &y 2y Ay by g By 2y &y 2 Iy Uy 2y Uy Ay Uy Ay By By Uy g Uy By Uy Ay By Iy Iy By Uy dy Ay By Ay A Ay Iy Ay Ay Ay Ay by oy Ay Ay oy Ay Uy Ay dy Ay Ay Ay Ay A By A o o oy A o By Ay Ay By &

%
% Initialization
%
convlim=1e-10; % convergence limit
maxiter=50000; % maximum no. of iterations
XX=X; X XX is used for calculations
varX=(stdX. “2); X convert s.d.'s to variances
(i, j1 = find(varx==0); % find zero errors and convert to large
errmax = max(max(varX)); % errors for missing data
for k=1:length(i);

varX(i(k), j(k)) = tfe+10*errmax;
end
n=length(XX(1,:)); % the number of columns
%

% Generate initial estimates from covariance matrix assuming homoscedastic errors.

for i=1:length(X(:,1))
for j=1:length(X(:,1))
CV(i, J)=(XCi, 2)*X(j, 2)  )/minC[nnzCX(i, 2)) nnz(X(f,:))1);

end
end
[U,S,Vl=svd(CV,0); % decompose adjusted matrix
uo=u(¢:,1:p); % truncate solution to rank p
%
% Loop for alternating regression
X
count=0; X initialize loop variables
Sold=0;
ErrFlag=-1;
while Errflag<0; % check for termination
count=count+1; % increment iteration count
b4
% Evaluate objective function
Sobj=0; X Initialize objective function
MLX=zeros(size(XX)); % and maximum likelihood estimates
for i=1:n X loop for each column

Q=sparse(diag(varX(:,i)."(-1))); % covariance matrix
F=inv(UO*'*Q*U0);

MLX(:, i)=UO*(F*(UO**(Q*XX(:,1)))); % ML projection
dx=XX(z,i)-MLX(:,i); X residuals
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Sob j=Sobj+dx**Q*dx; % objective function
%
% Check for convergence or excessive iterations
if rem(count,2)== % Check on odd iterations only
if (abs(Sold-Sobj)/Sobj)<convlim % Convergence?
ErrFlag=0; % Yes
elseif count>maxiter % Excessive iterations?
ErrFlag=1; % Yes
end
end
[abs(Sold-Sobj)/Sobj Sobjl X display info
4
% Now flip matrices for alternating regression
X
if ErrFlag<0 % Only do this part if not done
Sold=Sobj; % Save most recent obj. function
{u,S,Vl=svd(MLX,0); % Decompose ML values
XX=XX*; % Flip matrix
varX=svarX*; % and the variances
n=length(XX(1,:)); % Adjust no. of columns
uo=v(:,1:p); % V becomes U for transpose
end
end
%
X All done. Clean up and go home.
%
(U,S,Vli=svd(MLX,0);
U=u(:,1:p);

§=S(¢1:p,1:p);
V=V(:,1:p);
SOBJ=Sobj;
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APPENDIX D
Listing of MatLab Code for MLPCA (No Intercept, Covariance)

function (U,S,V,S08J,ErrFlag]l = mlcov(X,Cov,covtype,p);

This function performs maximum likelihood principal component analysis with covariance in the
errors (non-diagonal covariance matrices). The variables passed to the function are:

X is the mxn matrix of observations (measurements).
Cov is the mnxmn error covariance matrix associated with the observations in X.
covtype indicates the type of covariance matrix passed to the function.

1 - means Cov is & stacked (mnxn) matrix consisting of nxn row covariances (no column
covariance)
means Cov is a stacked (mrum) matrix consisting of mxm column covariances (no row
covariance)

3 - means Cov is a full (mnxmn) covariance matrix for vecX
p is the rank of the model

~N
'

The parameters returned are:

u,s,v - are pseudo-svd parameters (mxp, pxp, and nxp). The maximum Llikelihood estimates are given
by : XML=U*S*Vv!
SOBJ is the value of the objection function for the best model.
ErrFlag indicates the termination conditions of the function;
0 - normal termination (convergence)
1 - maximum number of iterations exceeded

External functions: Uses the function mlsmall.m (MLPCA, No Intercept, No Covariance) to obtain
initial estimates.
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%

% Initialization

convlim=1e-10; % convergence limit
maxiter=200000; % maximum no. of iterations
XX=X; % XX is used for calculations
m=length(XX(:,1)); % the number of rows
n=length(Xx(1,:)); % the number of columns
mn=m*n; X total no. of elements

%

% Calculate the inverse of the full covariance matrix

X For only row or column covariance, calculate the inverse blockwise.
%
if covtype==1
=spal loc(mn,mn,mn);
for i=1:m
indx=(i-1)*n;
Tmp=Cov(indx+1:indx+n,1:n);
QCindx+1:indx+n, indx+1:indx+n)=pinv(Tmp);
end
elseif covtype==
Q=spal loc(mn,mn,mn)
for i=1:n
indx=(i-1)*m;
Tmp=Cov(indx+1:indx+m, 1:m);
Q(indx+1:indx+m, indx+1: indx+m)=pinv(Tmp);
end
else
Q@=pinv(Cov);

%
% Now find the commutation matrix for the covariance matrix and apply to @ if row covariances were
% given.

%
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ix=(1:mn)*;
iy=reshape((reshape(ix,m,n))',m,1);
=sparse(ix,iy,1,mn,mn);
if covtype==1
Q=K' *Q*K
end
%
%X Generate initial estimates assuming uncorrelated errors. First, the matrix of standard
X deviations on X are required.
%

stdX=zeros(m,n);
if covtype==1
for i=1:m
indx=(i-1)*n;
sth(i,:)=sqrt((diag(Cov(indx+1:indx+n,1:n)))');
end
elseif covtype== -
for i=1:n
indx=(i-1)*m;
stdX(:, i)=sqrt(diag(Cov(indx+1:indx+m, 1:m)));
end
else
stdX=sqrt(reshape(diag(Cov),m,n));
end
%
X Generate initial guess.
%
v,s,v,Sobj,ErrFlagl=mlsmat L (XX,stdX,p);
%

% Main loop to do alternating regression for MLPCA solution
%
count=0;
Sold=0;
ErrFlag=-1;
while Errflag<0;
count=count+1;

Vectorize X and create big U. A Kronecker product is probably prettier for generating Ubig, but
probably not as fast.

3R

vecX=reshape(XX,mn,1);
Ubig=spalloc(mn,n*p,mn*p);
for i=1:n
indx1=Ci-1)*m;
indx2=(i-1)*p;
Ubig(indx1+1:indx1+m, indx2+1:indx2+p)=U;
end
%
X Evaluate objective function
%
F=pinv(ful l(Ubig'*Q*Ubig));
vecMLX=Ubig*(F*(Ubig'*(Q*vecX)));
dx=vecX-vecMLX;
Sobj=dx'*Q*dx;
MLX=reshape(vecMLX,m,n);
4
% Check for convergence or excessive iterations

if rem(count,2)==1 % Check on odd iterations only
if (abs(Sold-Sobj)/abs(Sobj))<convlim ¥% Convergence criterion
ErrFlag=0;

elseif count>maxiter X Excessive iterations?
ErrFlag=1;
end
end
%
% Now flip matrices for alternating regression
%
if ErrFlag<0 % only do this part if not finished
Sold=Sobj; % Save most recent obj. function

u,s,Vl=svd(MLX,0); % Decompose ML values



XX=XX* ;
Q=K*Q*K';
K=K*;
m=length(XX(:,1));
n=length(XX(1,:));
U=v(:,1:p);

end

2

All done. Clean up and go

RPN R

U,Ss,Vl=svd(MLX,0);
u=u(:,1:p);
$=S(1:p,1:p);
v=V(:,1:p);
SOBJ=Sobj;

% Flip matrix

Adjust no. of columns

%
X V becomes U in for transpose
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APPENDIX E
Listing of MatLab Code for MLPCA (Intercept, No Covariance)

function @U,S,V,8,S0BJ,ErrFlag] = ml int(X,stdX,p, intercep);
MLINT.M

This function performs maximum Likel ihood principal components analysis using models with
intercept terms. The variables passed to the function are:

X is the mxn matrix of observations (measurements).

stdX is the mxn matrix of standard deviations associated with the observations in X. For
missing measurements, stdX should be Set to zero.

p is the dimensionality of the model (p< n and m).

intercep specifies whether or not the model includes intercept terms or not:

intercep = 0 - no intercept terms

intercep = 1 - include n column intercept terms (analogous to column mean centering)
intercep = 2 - include m row intercept terms (analogous to row mean centering)
intercep = 3 - include both row and column intercept terms

The parameters returned are:

U,S,V represent the maximum Likelihood decomposition of X-B. The maximum Likelihood estimate of
X is given by:
U*s*vi+g
B is the matrix of intercept (offset) values. It has the same size as X.
SOBJ is the value of the objective function for the best model .
ErrFlag indicates the termination conditions of the function;
0 = normal termination (convergence)
1 = maximum number of iterations exceeded

External functions: Uses the function objfn.m to evaluate the objective function and its
derivates during opimization.
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%

% Initialization

%

convlim=1e-10; % convergence limit

maxiter=200000; % maximum no. of iterations

XX=X; % XX is used for calculations

varX=(stdX. "2); % convert s.d.'s to variances

[i,j3 = find(varx==0); X find zero errors and convert to large

errmax = max(max(varX)); X errors for missing data
for k=1:length(i);
varX(ick), j(k)) = le+10*errmax;
end
m=length(XX(:,1)); % the number of rows
n=length(XX(1,:)); % the number of columns
iflag=intercep;
%
% Now we have the matrix. Generate initial estimates assuming homoscedastic errors.
%
=2eros(n,1);
D=zeros(m, 1);
if iflag==
Pp=p+1;
,s,v,Sobj,ErrFlag)=mtsmall(XX,stdX,pp);
MLX=U*S*y: .
C=mean(MLX)';
elseif iflag==2
pp=p+1;
,s,V,Sobj,ErrFlag) =mtsmall(XX,stdX,pp);
MLX=U*S*y!
D=(mean(MLX*))*;
elseif iflag»2
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pp=p+2;
,s,v,sobj,ErrFlagl=mlsmal l (XX,stdX,pp);
MLX=U*S*V!;
Xmu=mean(mean(MLX)});
Xcen=MLX-Xmu;
C=mean(Xcen)*;
D=mean(Xcen') *+Xmu;
end
B=ones(m, 1)*C*+D*ones(1,n);
F 4
Xtmp=XX-B;
vVtmp=varX;
u,s,Vli=svd(Xtmp,0); X Decompose adjusted matrix
uo=u(:,1:p); % Truncate solution to rank p
count=0;
Sold=0;
ErrFlag=-1;
while ErrFlag<0;
count=count+1;
[Sobj ,MLX]=cbj fn(Xtmp,Vtmp,U0,0,0);
convtst=abs(Sold-Sobj)/Sobj;
Sold=Sobj;
Ssave(count)=Sobj;
save mlint;
if (convtst<sqrt(convlim)) & (iflag™=0)
%
X Implements variable metric minimization [58]

if iflag==
Pest=C!;
elseif iflag==2
Pest=D';
else
Pest=[C* D'];
end
nvar=length(Pest);

implements Davidson-Fletcher-Powell minimization [58) (dfpmin)

LR

STPMX=10;

TOLX=4%eps;

gtol=1e-10;

stpmax=STPMX*max( [norm(Pest) nvarl);
(fp,MLX,gl=objfn(XX,Vtmp,UC,Pest, iflag);
hessin=eye(nvar);

xi=-g;

LoopFlag=-1;

while LoopFlag<0

implements lnsrch (line minimization) (58]

R

ALF=1e-4;
tolX=1e-10;
sumi=norm(xi);
if suml>stpmax
Xi=xi*stpmax/sumi;
end
slope=g*xit;
test=max(abs(xi)./max( [abs(Pest); ones(1,nvar)l));
alamin=tolX/test;
alam=1;
Stopflag=-1;
count2=0;
while Stopflag<0
count2=count2+1;
Pnew=Pest+alam*xi;
fret=obj fn(XX,vtmp,UD,Pnew, iflag);
if alam<alamin
Pnew=Pest;
Stopflag=1;
elseif fret<=(fp+ALF*alam*slope)
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Stopflag=2;
else
if alam==1
tmplam=-slope/(2*(fret-fp-slope));
else
rhsi=fret-fp-alam*slope;
rhs2=f2-fold2-alam2*slope;
a=((rhs1/alam 2)-(rhs2/alam2°2))/Calam-alam?);
b=((-alam2*rhs1/alam>2)+(alam*rhs2/alam2"2))/(alam-alam2);
if a==0
tmplam=-slope/(2*b);
else
disc=(b*b)-(3*a*slope);
tmplam=(-b+sqrt(disc))/(3*a);
end
tmplam=min( [tmplam (0.5*alamy);
end
end
if Stopflag<0
alam2=alam;
fe2=fret;
fold2=fp;
alam=max( [tmplam (0.1*alam)1);
end
end
%
% end lnsrch
%

fp=fret;
xi=Pnew-Pest;
Pest=Pnew;
test=max(abs(xi)./max([abs(Pest); ones(1,nvar)}));
if (test<TOLX) | (count2==1) X Second condition is a kluge
LoopFlag=0; X to prevent getting stuck
else
dg=g;
[ftmp,MLX, gl =objfn(XX,Vtmp,U0,Pest, iflag);
den=max( {fret 1]);
test=max(abs(g).*max( [abs(Pest); ones(1,nvar)]))/den;
if test<gtol
LoopFlag=0;
else
dg=g-dg;
hdg=(hessin*dg')®;
fac=dg*xi';
fae=dg*hdg’;
sumdg=dg*dg"' ;
sumxi=xi*xi';
if (fac™2)>(eps*sumdg*sumxi)
fac=1/fac;
fad=1/fae;
dg=fac*xi-fad*hdg;
hessin=hessin+fac'xi"xi-fad*hdg‘*hdg+fae'dg'*dg;
end
xi=xi-(hessin*g*)’;
end
end
end
%
% end dfpmin
b4
[Sobj ,MLX]I=0bjfn(XX,Vtmp,U0,Pest,iflag);
if iflag==
C=Pest';
elseif iflag==2
D=Pest’;
elseif iflag»2
C=Pest(1:n)*;
D=Pest(n+1:r*m)';
end
B=ones(m, 1)*C'+D*ones(1,n);
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MLX=MLX-8;
convtst=abs(Sobj-Sold)/Sobj;
end
if (rem(count,2)==1) & (convtst<convlim)
ErrFlag=0;
else
W, S, Vi=svd(MLX,0);
XX=XX";
=B|;
Tmp=C;
C=D;
D=Tmp;
Xtmp=XX-8;
Vtmp=Vtmp';
m=Length(Xtmp(:,1));
n=length(Xtmp(1,:));
uo=v(:,1:p); -
if iflag==1
iflag=2;
elseif iflag==2
iflag=1;
end
end
end
%
X% ALl done. Clean up and go home.
r4
U,S,Vl=svd(MLX,0);
U=U(:,1:p);
S$=S(1:p,1:p);
v=v(:,1:p);
SOBJ=Sobj ;
%
%
function [Sobj,xmi,Gobjl = objfn(xobs,varx,us,P,iflag);
%
% OBJFN.M
%
% This function calculates the value of the objective function and its derivates and is used with
% MLINT.M
%

p=length(U0(1,:));
m=length(xobs(:,1));
n=length(xobs(1,:));

RN R

% This section for no intercepts

% Only the objective function and ML estimates needed

»

Sobj=0;

for i=1:n
Q=sparse(diag(varx(:,i)."(-1)));
F=inv(UO'*Q*u0);
xml(z,i)=U0%*(F*(UOD**(Q*xobs(:,i))));

=xobs(:,1)-xml(:,i);

Sobj=Sobj+dx ' *Q¥*dx;

end

Gobj=0;

This section incorporates intercept terms.

lse

FRM AR PR PR

Pl1=zeros(1,n);
P2=zeros(1,m);
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if iflag==1
P1=pP;
elseif iflag==2
P2=P;
else
P1=P(1:n);
P2=P(n+1:n+m);
end
%
if nargout<3
%
% Only the objective function and ML estimates needed
%
Sobj=0;
for i=1:n
Q=sparse(diag(varx(:,i)."(-1)));
A=inv(UO'*Q*yQ);
b=P2'+ones(m, 1)*P1(i);
xml(:,i)=UO*(A'(U0"(Q'(xobs(:,i)-b))))*b:
=xobs(:,i)-xml(:,i);
Sobj=Sobj+dx!*Q*dx;
end
Gobj=0;
%
else
%
% Objective function and derivative needed
%

Sobj=0;

Gobj1=zeros(1,n);

Gobj2=2zeros(1,m);

for i=1:n

=sparse(diag(varx(:,i). (-1)));

A=inv(U0'*Q*u0);
b=P2'+ones(m, 1)*P1(i);
xml(:,i)=UO'(A'(U0"(Q'(xobs(:,i)-b))))+b;
dx=xobs(:,i)-xml(z,i);
Sobj=Sobj+dx'*Q*dx;
C=dx'*Q;
D=C-C*UQ*A*UQ'*Q;
Gobj1(i)=sum(D);
Gobj2=Gobj2+D;

end

if iflag==
Gobj=Gobj1;

elseif iflag==2
Gobj=Gobj2;

else
Gobj(1:n)=Gobj1;
Gobj (n+1:n+m)=Gobj2;

end

Gobj=-2%*Gobj;

end
end
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