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Abstract 

This study investigated the value of electrocardiographic (ECG) body-surface 

mapping during sinus rhythm for noninvasively identifying individiials at risk of 

life-threatening ventricular arrhythmias. Training and test sets were formed from 

255 subjecfs — 51 normals, 102 patients with recurrent ventricular tachycardia 

(VT) and 102 patients with myocardial infarction (MI) but no clinical arrhythmias. 

Measurements analyzed for each subject consisted of 117 QRST-integral values cal­

culated from as many ECG leads; the rationale for choosing QRST-mtegral maps 

was that they reflect the distribution of ventricular repolarization properties, any 

disparity of which might constitute an arrhythmogenic substrate. The Karhunen-

Loeve (KL) technique was applied to represent each subject's measurements by 16 

coefficients, and the Kittler and Young (KnY) method of feature selection further 

reduced the number of characteristic features to only one or two. Nondipolar content 

of QRST-integral maps, determined from higher-order KL coefficients, was signifi­

cantly lower for the normal subjects than for the patient groups, but it differenti­

ated poorly between the latter groups. A much-improved diagnostic classification 

was based upon discriminant analysis which used three selected KL features or, 

alternatively, just one KnY feature. The best classification results were achieved 

with one KnY feature derived from the two patient groups of the training set; the 

diagnostic performance (percentage of patients classified correctly) was 89% for the 

training set and 85% for the test set. The errors to be expected in classifying future 

observations were estimated by bootstrap and cross-validation methods. Further­

more, the potential clinical usefulness of all classification procedures as methods for 

noninvasively evaluating the effectiveness of drug therapy was assessed. The results 

of this study demonstrate that multiple-lead body-surface ECGs contain valuable 

information that, if properly extracted, can identify an arrhythmogenic substrate in 

the myocardium of patients at risk of malignant ventricular arrhythmias. 

i 
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Chapter 1 

Introduction 

Sudden cardiac death is a critical issue in cardiology and a huge research effort has 

been directed toward understanding the factors associated with thi.3 phenomenon. 

Ventricular arrhythmias and fibrillation have been shown to immediately precede 

sudden cardiac death and thus it is highly desirable to establish valid and clinically 

practical predictive measures for detecting patients who are at risk for developing 

these lethal arrhythmias. 

Attempts have been made to identify risk factors which predispose individuals to 

malignant arrhythmias that cause sudden cardiac death. Clinical correlates—such 

as age, smoking habits, body type, cholesterol level, presence of coronary artery 

disease and hypertension—have been evaluated by epidemiological studies. Risk 

factors have been identified by means of multivariate statistical analysis and a set of 

factors which could potentially be altered to reduce the risk of heart disease has been 

established [80,100,180]. These factors alone have limited value in predicting malig­

nant arrhythmias, but in combination with other measurements (such as those made 

available by radionuclide ventriculography and computerized electrocardiography) 

provide valuable information. 

1 
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Assessment of the electrophysiological events of cardiac activation and repolar­

ization has been intensively pursued in an attempt to extract diagnostic information. 

Two methods which are commonly used for diagnosing arrhythmias and for eval­

uating their treatment are ambulatory monitoring and programmed stimulation. 

In ambulatory monitoring, the electrocardiogram (ECG) is recorded over a long 

period of time (e.g. 24 hours) and the record is analyzed for the number of irregu­

lar beats or other abnormal features. Ambulatory monitoring has been used with 

varying degree of success as a predictor of vulnerability to malignant arrhythmias 

[23,108,198] and as a method for guiding antiarrhythmic therapy [22,130,198]. The 

underlying assumption is that ventricular ectopic activity is a marker for sustained 

arrhythmias [81,83]. The presence of ventricular premature beats in patients with 

myocardial infarction or coronary artery disease has been considered a risk factor 

for the development of malignant arrhythmias [149], but the hypothesis that there 

is a causal relationship between ectopic activity and the development of arrhyth­

mias has been recently questioned [22,36]. Programmed stimulation, in conjuction 

with endocardial mapping, has provided a method of evaluating the stability of 

the electrophysiological state of the myocardium during a controlled application of 

extrastimuli [30,123,192]. The method is invasive, and while it has been consid­

ered the gold standard for predicting vulnerability to ventricular arrhythmias, it 

is known to have associated risks, for its objective is to attempt to induce (under 

clinically controlled conditions) the state which is ultimately the one to be pre­

vented. In spite of these shortcomings, endocardial mapping and programmed stim­

ulation constitute a valuable in vivo model for studying mechanisms of arrhythmias 
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[41,50,103,194,195] and they serve as one method of predicting successful antiar­

rhythmic therapy [22,60,61,203]. 

In recent years, ventricular activation and repolarization during sinus rhythm 

has been studied in search of a possible noninvasive predictor of malignant ventric­

ular arrhythmias. This approach differs from the two discussed above in that it 

attempts to characterize (from noninvasive body-surface measurements) the under­

lying electrophysiological state of a ventricle — rather than attempting to capture 

or induce the abnormal rhythm per se. The two approaches pursued are those that 

examine the late phase of ventricular depolarization, and those that examine the pri­

mary repolarization properties of the ventricles. Alterations in both depolarization 

and repolarization properties have been associated with vulnerability to ventricular 

arrhythmias. 

Analysis of the amplitude, frequency and, more recently, spatial characteristics 

of the terminal phase of the QRS complex from standard 12-lead ECGs during 

sinus rhythm is an attempt to quantify the late-depolarization properties of the 

ventricle [36]. This noninvasive method is based on the relationship between the 

low-level, high-frequency potentials recorded on the body surface during terminal 

QRS [38,40,174,175] and the late epicardial potentials which have been shown to 

be associated with malignant ventricular arrhythmias [28,99]. (The relationship be­

tween the late epicardial potentials and the low-level body-surface potentials with 

respect to the arrhythmogenic circuit was discussed by Ideker et al. [92].) The sen­

sitivity of these techniques for detecting abnormalities in the terminal QRS complex 

has been very good; however, the specificity percentages have been generally low 
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[36,37,187]. While many statistical studies have been conducted, the need to expand 

the analysis beyond temporal and frequency analysis of the late QRS complex has 

been considered necessary from the theoretical perspective [36,39,57]. 

Primary repolarization properties of the ventricle have been assessed as a mea­

sure of the risk for ventricular arrhythmias [2,32,109,186]. Several ECG measure­

ments from the body surface have been shown to reflect ventricular repolarization 

properties, and there is a sound experimental [6,8,9] and theoretical [71,72,155] ba­

sis for relating the QRST integral (the net area of QRST inscription) derived from 

body-surface ECGs to local primary repolarization properties. Therefore, assess­

ment of QRST integrals from ECG leads should quantify disparate repolarization 

properties and provide diagnostically valuable information concerning the anatomi­

cal and electrophysiological substrate that predisposes the ventricles to arrhythmias. 

While standard 12-lead ECGs have been used to examine both late potentials [37] 

and primary repolarization properties [169], the spatial distribution of these mea­

surements, obtained by means of body-surface potential mapping (BSPM), should 

provide a comprehensive picture of all electrocardiographic information available on 

the body surface [46,59,65]. Increasing the spatial sampling of the cardiac electric 

field by recording from a large number of ECG leads improves the probability of 

detecting regional events. This is particularly important in the study of arrhythmo-

genesis, since there can be local disparities in repolarization properties which may 

not be detectable with standard methods of ECG recording [9]. Both qualitative 

and quantitative assessments of BSPMs suggest that the individuals who are at risk 

of ventricular arrhythmias have unique map characteristics [46,59,65,88,148,153]. 
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For instance, the QRST-integral maps of individuals who are at risk for arrhyth­

mias have a more complex spatial distribution in comparison with normal subjects 

[46,65]. While the ability to differentiate between individuals vulnerable to arrhyth­

mias and normal subjects is of interest, much more desirable diagnostic distinction 

is between patients with an abnormal ventricle who are not vulnerable to arrhyth­

mias and patients at risk of malignant arrhythmias. This is an important issue 

to address, since complications such as myocardial infarction are often present in 

individuals who are being assessed for vulnerability to arrhythmias. Few studies 

have dealt specifically with this problem, and there are indications that with bet­

ter quantification of the BSPMs, the QRST integral should provide diagnostically 

significant information specific to an arrhythmogenic state [9,67,152,188]. 

The aim of this study was to evaluate whether advanced stochastic analysis 

applied to BSPM data acquired during sinus rhythm would extract the distinct 

information necessary to identify patients at risk for life-threatening arrhythmias. 

The spatial distribution of the QRST-integral maps was at the focus, because of its 

association with the primary repolarization properties of the ventricle, disparity of 

which is thought to constitute an arrhythmogenic substrate. Five objectives define 

the scope for this study: 

• To reduce (without losing diagnostic information) the pattern space of the 

BSPM data acquired from a training set consisting of individuals who are 

vulnerable to ventricular arrhythmias and those who are not. 

• To identify in this reduced feature space those features that best differentiate 
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among the constituent groups of the training set. 

• To evaluate the diagnostic performance in classifying the constituents of the 

training set in the reduced feature space. 

• To estimate the expected error in diagnostic performance for classifying future 

observations, based on the features and classification space derived from the 

training-set analysis. 

• To examine the applicability of features derived from the training set in differ­

entiating patients who were vulnerable to ventricular arrhythmias in a drug-

free state from their posttreatment state (presumably some will remain vul­

nerable and others nonvulnerable, as assessed by programmed stimulation). 

The hypothesis was that there would be quantifiable differences in the features de­

rived from the QRST-integral distributions between patients vulnerable to ventricular 

arrhythmias and patients with no arrhythmias. 

The background for the methodology and experimental design used in this study 

is provided in chapter 2, which reviews the literature dealing with ventricular ar­

rhythmias, body-surface potential mapping and antiarrhythmic agents. Chapter 

3 describes the methodology employed in the present study, including methods of 

acquisition, processing and analysis (feature selection and classification) of BSPM 

data, and description of the patient population. Chapter 4 presents the results 

of classification for the training set comprising a group of patients vulnerable to 

ventricular arrhythmias, a normal control group and a group of patients with my­

ocardial infarction, but no clinical arrhythmias. Chapter 5 presents the results of 
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classification for a two-group training set, made up ot only the two patient groups 

from chapter 4. The test-set results are presented in chapter 6, with the two groups 

of the test set being an independent group of patients vulnerable to arrhythmias and 

an independent group of patients with myocardial infarctions and no arrhythmias. 

The results for the treatment group are presented in chapter 7; the treatment group 

consists of the group of patients vulnerable to ventricular arrhythmias from the 

training set, after treatment with an antiarrhythmic agent (quinidine). Chapters 

8 deals with error estimates for classification procedures and chapter 9 contains a 

general discussion of results and conclusions. 



Chapter 2 

Background and rationale 

The heart normally undergoes highly synchronized electrical processes of activa­

tion and repolarization before it begins its contractile action [19]. Macroscopically, 

myocardium behaves as a syncytium, but microscopic examination reveals that it 

is comprised of distinct myocardial cells which are connected by tight junctions 

[147,177]. The transmembrane action potential of each cell is the result of ion trans­

port across the cell membrane; the action potentials of various types of myocardial 

cells differ, but they all have a much longer repolarization phase than do those of 

other excitable cells [63]. During the prolonged repolarization, the myocardial cell is 

in an absolute refractory period, and is unable to respond to an additional stimulus; 

this property ensures that the wave of propagated activation in the heart is unidi­

rectional [63]. The normal electrophysiological matrix is maintained by a complex 

feedback system [63] and of importance to this study are the processes of ventricular 

activation and repolarization. In the ventricular myocardium, the wave of activation 

follows a distinct pattern (progressing from endocardium to epicardium and from 

apex to base), whereas the repolarization process takes place in approximately the 

opposite order [63]. 

8 
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These electrophysiological processes are reflected by distinct electrocardiographic 

patterns measured at the body surface. Therefore, the electrocardiogram (ECG) 

noninvasively provides information on cardiac electrical activity and has been valu­

able as a clinical diagnostic tool [63]. The QRS complex reflects the ventricular 

activation process and the T wave reflects ventricular repolarization process. Nor­

mally, in most ECG leads, the T wave is concordant with the R wave; this is 

explained by the fact that the order of repolarization is essentially opposite to that 

of depolarization [33,159]. Primary and secondary components of the T wave can be 

distinguished [4,5], with the former related to the intrinsic repolarization properties 

of the ventricle and the latter predetermined by the ventricular activation sequence. 

The QRST integral, calculated from digital ECG recordings, is a lumped measure 

of the intrinsic ventricular repolarization properties [6,8,10]. 

The area of interest in this study is the association between arrhythmogenic 

conditions in the ventricular myocardium and their manifestations in the body-

surface potential maps. The following section discusses this association with respect 

to ventricular arrhythmias — disturbances considered a precursor to sudden cardiac 

death. 

2.1 Ventricular arrhythmias 

Arrhythmias are the abnormal electrical events in the myocardium that are caused 

by disruptions in either impulse initiation or impulse conduction through the highly 

organized system of cardiac excitable cells [64,203]. Arrhythmogenic mechanisms 

have been extensively reviewed [44,64,73,95,97,202,203]. Reentry, automaticity and 
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triggered activity are three proposed mechanisms of ventricular arrhythmias sup­

ported by cellular studies, animal models and clinical evidence [163]. The purpose 

of this section is to provide an overview of the most relevant literature on ventricu­

lar arrhythmias, focussing on the methods used to classify patients at risk for these 

arrhythmias. 

Reentry refers to an impulse that does not die out as it would normally but 

persists to reexcite the myocardium [56]. Two conditions are necessary for this to 

occur: the presence of a unidirectional block and that the wave of excitation pro­

gresses through the pathway and back to its point of origin. Janse [95] reviewed in 

detail the basic principles and clinical aspects related to reentry as an arrhythmo­

genic mechanism. The clinical support for the concept of reentry is provided by the 

fact that the ventricular arrhythmias can be initiated and terminated with pacing, 

although it is agreed that pacing alone does not distinguish reentry from all other 

mechanisms such as triggered activity [163,194]. 

Automaticity, which has been discussed in detail by Gilmore and Zipes [73], re­

lates to the inappropriate and spontaneous depolarization caused by a pacemaker 

current produced by a normal or an abnormal pacemaker. For example, sponta­

neous discharge of the sinus node can be altered by drugs, disease and autonomic 

nervous system [73]. Clinical documentation of automaticity relates to the inability 

to initiate the arrhythmia with a premature stimulus. Gilmore and Zipes [73] cite 

evidence that parasystole and accelerator idioventricular rhythms are probably due 

to enhanced automaticity. 
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Triggered activity refers to the impulse being initiated in the cardiac fibers by 

a mechanism that is dependent on afterdepolarization [202]. Early afterdepolariza­

tion (EAD) occurs during repolarization; delayed afterdepolarization (DAD) occurs 

after repolarization is complete. While clinical studies have not convincingly demon­

strated EAD (the clinical manifestations of this rhythm are thought to be torsades 

de pointes and triggered activity associated with the long QT syndrome), some an­

imal studies demonstrate this mechanism [163]. DAD has been manifested in vivo 

by exercise-induced ventricular tachycardia (VT) in the absence of coronary artery 

disease [163]. Triggered activity has been well defined at the cellular level, with sup­

portive evidence provided by animal models and clinical observations [56,163,202]. 

Since a complex interaction of factors provides the dynamic equilibrium for nor­

mal ventricular processes to occur [63], the substrate for disruptions of ventricular 

rhythm may be neurological, anatomical, or physiological (the latter being associ­

ated with ionic imbalances). Studies of cardiac nerve stimulation demonstrate that 

the sympathetic nervous system contributes significantly to arrhythmogenesis (see 

review by Corr et al. [44]). Long QT syndrome (LQTS) has been considered a 

precursor to the development of lethal arrhythmias [168,169] and the role of the 

autonomic nervous system in its genesis has been extensively reviewed [205]. The 

parasympathetic nervous system also affects cardiac function; in general, these ef­

fects are inhibitory with respect to arrhythmias and vagal stimulation was shown to 

mitigate to some extent the arrhythmic sympathetic effect [56,64]. 

Gardner and coworkers describe an anatomical substrate for arrhythmias as­

sociated with the activation wave front propagating through and around areas of 
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viable and damaged myocardium [68,69]. Electrograms from these areas are frac­

tionated. Damage to the intricate structure of myocardial cells disrupts the smooth 

current flow, and myocardium so affected has been considered the anatomical sub­

strate for developing arrhythmias in the ventricle [92]. The results of a ring model 

study by Quan and Rudy [158] showed the importance of cellular uncoupling and 

demonstrated that propagation itself provided the necessary unidirectional block for 

reentry. Neurochemical and ionic imbalances have also been associated with electri­

cal instability of the heart and these imbalances are also considered substrates for 

arrhythmias [43,73,163,202,203]. All of these substrates have been shown to have 

an effect on the electrophysiological processes of the ventricular myocardium, but 

their presence alone may not be sufficient to accurately identify a ventricle at risk 

for arrhythmias. 

Therefore, methods based on measurable electrophysiological alterations have 

been pursued to provide information for classifying patients at risk for developing 

ventricular arrhythmias. The objective of these methods is to identify the electro­

physiological substrate associated with vulnerability to ventricular arrhythmias. Sev­

eral approaches have been explored. They include ambulatory monitoring, temporal 

and frequency-domain analysis of signal-averaged ECGs, measures of disparate ven­

tricular repolarization, and intracardiac electrophysiological studies involving pro­

grammed stimulation (EPS studies). Ambulatory monitoring and EPS studies are 

the two clinical techniques most commonly used to evaluate an individual's vulner­

ability to ventricular arrhythmias and to guide antiarrhythmic therapy [77,204]. 

Ambulatory monitoring involves recording of ECGs for long periods of time dur-
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ing patient's normal activity; these records are then analyzed and various criteria 

for determining vulnerability to ventricular arrhythmias are applied [26,101,198]. 

This approach is based on the evidence that VT and ventricular fibrillation have 

been reported as terminal rhythms preceding sudden cardiac death [23,83,149], and 

that the presence of ectopic ventricular activity is a marker for VT [77,81]. It is as­

sumed that the higher the frequency of occurrence of ectopic or complex beats, the 

higher the probability of developing ventricular arrhythmias [81]. The prognostic 

value of ambulatory monitoring for detecting vulnerability to arrhythmias and for 

evaluating the effectiveness of antiarrhythmic therapy has been extensively stud­

ied [22,23,26,75,77,108,130,200,204]. Ambulatory monitoring in conjunction with 

other measures—such as EPS, left ventricular ejection fraction and signal-averaged 

ECGs—provide better results for predicting vulnerability to arrhythmias than does 

monitoring alone [26,75,108]. The duration of the recording has been shown to be 

important, since it increases the chance of capturing the abnormal activity. It has 

been suggested that 48 hours of monitoring provides a 93% sensitivity of detect­

ing ventricular ectopy [204]. For those patients who experience frequent ventricular 

arrhythmias, ambulatory monitoring has been useful for quantifying frequency and 

severity of the ectopy; however, for some patients with suspected VT the interval 

between occurrence of events may be much larger than 48 hours and thus ambula­

tory monitoring may be of lesser value [204]. The lesults from the CAST trial do not 

provide encouraging evidence that the suppression of ectopy is directly associated 

with a decrease in risk of ventricular arrhythmias [22] and this evi 1pi,ce severely 

undermines the underlying assumptions upon which this approach was developed. 
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EPS studies use programmed stimulation in an attempt to initiate the abnormal 

ventricular rhythm under clinically controlled conditions; this approach is based on 

the premise that if the substrate for ventricular arrhythmias is present, the pacing 

and ectopic stimuli will induce the abnormal rhythm. It has been demonstrated that 

a relationship exists between the patient's clinical arrhythmia and the arrhythmia 

induced during programmed stimulation [195]. Various efficacies have been reported 

for this method [23,30,77,123,149,193,204]. The discrepancies in results reported by 

different laboratories (sensitivities of 48-95% and specificities of 44-100% [77]) occur 

largely due to differences in: (a) the clinical arrhythmia itself, (b) the underlying 

cardiac disease [97,194,204], (c) the aggressiveness of the pacing protocol, and (d) 

the definition of the end point [77,91]. The aggressiveness of the protocol relates to 

the number of extrastimuli, the number of stimulation sites, the drive-cycle length 

and the strength of stimulation current. With three extrastimuli and rapid pacing, 

an arrhythmia was induced in 95% of patients [77]. The specificity of diagnostic 

classification was 90% for two extrastimuli and decreased with increasing number 

of stimuli used [77]. Horowitz et al. [91] reported that three or fewer extrastimuli 

were required to induce VT in 80-95% of the patients with clinically documented 

VT, and that two or less stimuli were highly specific. Therefore, there is a trade-off 

between sensitivity and specificity related to aggressiveness of the protocol. 

Programmed stimulation has been used to guide therapy; the underlying as­

sumptions are that pharmacological intervention results in an alteration of the elec­

trophysiological arrhythmogenic properties of the myocardium, and that there is a 

parallel between the induced arrhythmia and the clinically documented arrhythmia 
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[91]. Evidence has been presented that supports a good prognosis for patients whose 

arrhythmia is inducible in the drug-free state but not inducible in the state affected 

by an antiarrhythmic drug [77,165]. The predictive value of programmed stimula­

tion for accurately determining reoccurrence of arrhythmia has been cited as having 

a wide variability 30-100% [77,91]. 

Programmed stimulation studies have also been used as the standard for compar­

ing the efficacy of other methods of predicting the presence of arrhythmias — such as 

ambulatory monitoring and signal-averaged ECG analysis [26,37,140,183,187]. With 

the exception of long-term follow up, programmed stimulation appears to provide 

the best level of performance among available methods for predicting vulnerability 

to ventricular arrhythmias. While improvements and standardisation of protocols 

for both ambulatory monitoring and programmed stimulation may improve the clas­

sification of patients at risk for ventricular arrhythmias [204], both methods have 

their limitations (ambulatory monitoring is based on a hypothesis which is in doubt 

and programmed stimulation relies on inducing the potentially lethal rhythm and 

has other associated risks [164,194]). These limitations and risks provide incentive 

for exploring other methods for classifying high-risk groups, based on noninvasively 

detecting abnormal electrophysiologic events. 

There is evidence that specific electrophysiologic alterations during sinus rhythm 

are associated with arrhythmogenesis and that these alterations are manifested in 

body-surface potentials. Methods that analyze body-surface ECG during sinus 

rhythm include (a) the analysis of high frequency, low-level signals at the termi­

nal phase of the QRS complex, and (b) the analysis of the T-wave or QRST-integral 
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alterations. 

The high-frequency, low-level potentials measured at the terminal portion of the 

QRS complex have been associated with fractionated electrograms recorded from 

the patchy myocardium [92,128]. These late potentials have been found in patients 

with ventricular arrhythmias during normal sinus rhythm [28,99]; thus, they have 

been associated with the anatomical substrate for ventricular arrhythmias [68,69]. 

(Some debate exists [92] regarding the significance of low-level potentials as predic­

tors of ventricular arrhythmias, since there is evidence that the sites from which 

the late potentials are recorded do not appear to be part of the reentrant circuit 

[111,148]; as well, it has been recently questioned [39] that such signals would only 

be manifested during the terminal phase of QRS complex.) However, qualitative and 

quantitative examination of the frequency components of the terminal QRS portion 

of the body-surface ECG recordings show that patients with VT have, during their 

sinus rhythm, an increased content of higher-frequency low-level signals compared 

to those without arrhythmias [38,40,49,115,173,174,175]. A wide range of sensitiv­

ity and specificity percentages have been reported when temporal and frequency 

analysis of the terminal QRS complex has been used to identify post-MI patients 

at risk for VT and to predict successful antiarrhythmic therapy [36]. Many studies 

base their diagnostic discrimination upon confidence limits, but give no measure 

of future performance [140,201]. Vatterott et al. [187] recently developed a logistic 

model based on clinical measures in conjunction with signal-averaged ECG variables 

and validated the model by cross-validation techniques (one of the very few studies 

that did so). Their cross-validated sensitivity for distinguishing MI patients without 

I 
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arrhythmia from patients that had arrhythmia inducible by programmed stimula­

tion was 91% and specificity was 59%. In general, the deficiency of the present 

procedures that employ analysis of signal-averaged ECG is their lack of specificity; 

this occurs because high-frequency components at the terminal QRS complex are 

also associated with abnormalities other than VT [38,39,74,115]. Other reasons have 

been cited for the wide variation in diagnostic performance, including the technical 

aspects of signal processing and analysis, and considerations related to the under­

lying electrophysiology [29,36,39,57,92]. Further refinements of these techniques, 

to better identify features that are more specific to arrhythmogenic conditions, are 

presently being pursued [36,39]. 

Considerable attention has been directed toward the recovery properties of the 

ventricular myocardium and its association with ventricular arrhythmias. The pri­

mary T wave, a notion introduced by Abildskov [4,5], has been associated solely 

with ventricular repolarization properties and their distribution in the ventricular 

myocardium [3,35], Dispersion of repolarization properties causes heterogeneity of 

excitability, with reentry as the most likely mechanism for arrhythmias facilitated by 

this dispersion [109]. The role of heterogeneity of ventricular repolarization proper­

ties in the genesis of ventricular arrhythmias has been discussed by Kuo et al. [109]. 

Not just the presence of nonuniform repolarization is important; the degree of dispar­

ity in local recovery times has been shown to lower ventricular fibrillation thresholds 

[82]. Therefore, methods to accurately assess ventricular repolarization properties 

are indispensible in identifying myocardium at risk for developing arrhythmias. As 

mentioned earlier, the T wave is of the same polarity as ths R wave in normal ECGs, 
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which has been explained by the order of repolarization being essentially opposite 

to that of depolarization [33,159]. Alterations of the normal T-wave morphology 

have been demonstrated by means of experimentally induced abnormalities [34]. 

Several studies have demonstrated that there is a relationship between dispersion 

of repolarization, measured as T-wave fluctuations, and vulnerability to VT and 

ventricular fibrillation [11,31,32]. Simple measures such as QT duration and var­

ious temporal measures from the 12-lead ECG have been considered reflective of 

dispersion of repolarization properties [126] — in particular those associated with 

LQTS [18,168,169]. Abildskov [1] found abnormal QT lengthening in only a few 

patients with ventricular arrhythmias. A recent study by Benhorin et al. [18] used 

simple electrocardiographic measures, aimed at quantifying repolarization charac­

teristics, in an attempt to classify patients with LQTS from normal subjects. The 

95% confidence interval for their sensitivity percentage was 81.6-100%, based on 

five predictor variables in their model. Unfortunately, this high sensitivity reflected 

the low error in classifying over 300 normal subjects, while the mean error rate for 

classifying the LQTS patients was 9.3/37 or 25%. As well, the predictive value of 

this result is lessened, since the ratio of features to subjects was 1:7 (5 variables 

and 37 subjects). These results demonstrate the limitation of methods that rely 

on simple measurements to evaluate a complex phenomenon such as heterogeneity 

of ventricular repolarization. Since the QRST integral has been shown to reflect 

the distribution of ventricular repolarization properties [6,7,8,10,129], this measure 

could be used to assess susceptibility to ventricular arrhythmias [9]. A recent study 

by Kubota et al. [107] reported very high negative correlations between QRST 
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integrals and ventricular fibrillation thresholds after MI in a canine model (these 

correlations were modified by the size of the MI). In general, there is evidence sup­

porting the value of assessing dispersion of repolarization based on measurements 

from the electrocardiographic waveforms associated with this process; however, lo­

cal alterations in these properties would not be easily assessed using conventional 

ECG leads [9]. 

The regional disparities associated with both ventricular depolarization and re­

polarization processes have been a concern in assessing the ventricle at risk for 

arrhythmias. On the surface, these regional differences in depolarization and re­

polarization can be reflected in BSPM (as will be shown in the following section). 

Studies have demonstrated that BSPMs of individuals with ventricular rhythm dis­

turbances have both qualitative and quantitative differences in comparison with 

maps of normal subjects [65,66,104,151,153]. The spatial distributions of late de­

polarization potentials (measured as the spatial distributions of BSPMs from the 

terminal QRS) appear to be much more complex in patients with ventricular ar­

rhythmias than in terminal phases of normal ventricular activation [49,59]; these 

findings were corroborated in a canine model [148]. Attempts are voing made to 

measure the spatial distribution of late depolarization potentials for dt Meeting re­

gional differences in ventricular depolarization associated with VT [36]. Further 

examination of this spatial aspect of late depolarization, in contradistinction to 

analysis limited only to selected ECG leads, may provide a more complete picture 

of the arrhythmogenic substrate which could improvf- the specificity of classification 

based on late potentials. 
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This study focussed on quantifying the spatial aspect of dispersion of ventricular 

repolarization properties associated with ventricular arrhythmias. Local inhomo-

geneities of these properties should affect spatial measurements of QRST integrals 

[9,88,129], and it has been suggested that multipolar body surface distributions of 

the QRST integral reflect heterogeneity of repolarization properties [9]. Therefore, 

the QRST-integral distributions calculated from signal-averaged BSPM data were 

interrogated for diagnostic information. The theoretical and experimental basis for 

evaluating regional repolarization properties to assess the arrhythmogenic state of 

the ventricle is sound. Lacking is the clinical evidence that these regional repo­

larization properties can be accurately quantified to identify ventricles at risk for 

arrhythmias. Many studies have been based on qualitative assessment [66] or sim­

ple quantitative measures (e.g. number of extrema) based on visual inspection of 

morphological features; these studies observed that the QRST-integral maps of VT 

patients were more complex (multipolar) than normal maps [65]. However, multi­

polar QRST-integral maps were also noted in patients with MI and no arrhythmias 

[65,129]. It turned out that it is very difficult to distinguish between MI and VT 

patients by means of a qualitative assessment of their maps [46], and discrepancies 

in results have been noted when simple quantitative measures were employed [9]. 

Recently, the problem of more objectively measuring and classifying spatial char­

acteristics reflecting dispersion of ventricular repolarization properties in BSPMs has 

been addressed. A 2-D fast Fourier transform (FFT) of the QRST-integral maps 

of normal subjects, MI patients and VT patients quantified differences between the 

groups, but the overlap between groups indicated that this method was not spe-
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cific enough for classification [153]. Higher nondipolar content, determined by an 

orthogonal-expansion approach to data reduction, was reported for QRST-integral 

maps of VT patients compared to normal subjects [9,46,151]. Again the difficulty 

was in separating the MI and VT patients, since there was a large overlap between 

the two groups for nondipolar content and the classification based on this measure 

was poor [151]. In a study of post-MI patients, nondipolar content was significantly 

higher for those patients (n.=8) who later died suddenly than it was in those who 

survived [188]. In contrast to using a single measure, such as nondipolar content, 

De Ambroggi et al. [46] also showed that individual KL features, derived from the 

QRST-integral maps, differed between LQTS patients and normals; this suggests 

that there may be specific features that contain diagnostic information. In a re­

cent study based on the KL features, an approach proposed by Kittler and Young 

[102] was used to classify normal subjects, MI patients and VT patients; the re­

sults showed that a distinct classification separating the three diagnostic groups is a 

real possibility [67,152]. Cumulatively, the results above indicate the need for more 

rigorous evaluation of the QRST-integral maps to establish the degree to which it 

can be used in the diagnosis of ventricular arrhythmias. The following section deals 

with quantitative methods for evaluating BSPMs to assess regional disparities of 

ventricular repolarization properties. 

2.2 Body-surface potential mapping 

Standard 12-lead electrocardiography uses only a small set of all measurable ECG 

leads and therefore misses some noninvasively accessible diagnostic information 
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[78,127,133,166,181]. Vectorcardiography has been shown to be inadequate in de­

scribing regional cardiac abnormalities, because its underlying assumption is that all 

cardiac sources can be lumped into a single, fixed-location dipole [166]. In contrast, 

BSPM involves the simultaneous acquisition of multiple ECG leads placed over both 

the anterior and posterior torso [47,116,166,181,182]. Measurements from the entire 

torso, with high spatial resolution in the precordial area, ensure that BSPM captures 

nearly all noninvasively-available electrocardiographic information [86,127,133,166]. 

On the other hand, there is a great deal of redundancy in the entire set of BSPM 

data [58,119,184] and thus an optimal number of leads and their optimal placement 

have been explored [58,79,17,118,120]. 

Heart-produced BSPMs are affected by the volume-conductor properties, such 

as shape and internal inhomogeneities, of the torso. The solutions to the two fun­

damental problems in electrocardiology—the forward problem [15] and the inverse 

problem [16,166]—provide the deterministic foundation for utilising BSPMs to ex­

amine regional cardiac events in vivo. The ability to utilize this noninvasive method 

to accurately describe the regional electrical events of the heart has great clinical and 

physiological significance. The question addressed in this study is whether BSPMs, 

although distorted by volume conductor characteristics, can provide directly (i.e., 

without the benefit of forward/inverse calculations) the diagnostic information for 

differentiating the electrophysiological substrate associated with an arrhythmogenic 

state from the nonarrhythmogenic state. 

Typically, the BSPM data have been displayed at selected time instants as isopo-

tential maps, or as isointegral maps such as the QRST-integral maps [47,90,88,116]. 
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As identifying and differentiating the diagnostic characteristics from these maps 

is difficult, qualitative approaches to assess BSPMs—sometimes aided by simple 

quantitative measures—have prevailed. The qualitative assessment is based on the 

morphological features of the contour maps that can be related to some charac­

teristic events in the heart (such as right-ventricular breakthrough). The simple 

quantitative measures include, e.g., locations of extrema and their trajectories in 

time, number of extrema in different phases of activation/repolarization, and time to 

characteristic events such as breakthroughs [59,114,136,138,154,181]; all such mea­

sures represent only an arbitrary (albeit judicious) selection from the total spatio-

temporal information provided by BSPM. There has been some debate regarding 

the increased diagnostic information provided by BSPM compared to conventional 

ECG approaches for studying certain abnormalities, such as MI [179,185]. However, 

to capture body-surface information about the regional dispersion of repolarization 

associated with arrhythmogenic substrate, BSPM approach would seem to be clearly 

superior to any ECG lead system with a small number of leads. 

Despite limitations of the interpretation based on the qualitative or semi-qualitative 

assessment, BSPM has been used successfuly to locate accessory pathways in Wolff-

Parkinson-White (WPW) syndrome [48,52,94], to classify patients with MI [136,138] 

[142,154] and coronary artery disease [78,114,117], and to identify characteristics 

associated with the LQTS [46] and ventricular arrhythmias [59,65,66,114,125]. In 

general, qualitative assessments have provided initial evidence that diagnostic infor­

mation is contained in these maps, and recent studies indicate thct better quantifica­

tion procedures are necessary for statistical comparisons. BSPM has been explored 
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as a technique for identifying patients with coronary artery disease; sensitivities of 

88% and 94% have been reported for correctly classifying these patients from normal 

subjects, by means of signal representation procedures applied to the BSPM data 

and statistical analysis [78,117]. Vondenbusch et al. [189] recorded BSPMs during 

percutaneous transluminal coronary angioplasty and reduced the data by employing 

a KL expansion; they were able to differentiate between BSPMs of patients who un­

derwent balloon-inflation angioplasty of three different coronary arteries. Although 

the sample size was small in this latter study, the results illustrate that a small 

number of properly selected features can provide distinct information for diagnos­

tic classification. Sun [178] demonstrated that spatial features derived from the 

QRST-integrals were more effective than other spatial and temporal information 

for classifying—by means of a neural network algorithm—four diagnostic groups 

(normal, ischemia, anterior MI and left bundle branch block). As discussed in the 

previous section, recent studies [9,46,67,151,152,188] suggest that improved data re­

duction procedures and the implementation of sophisticated statistical analysis, is 

a plausible approach to identifying noninvasively the BSPM features unique to VT. 

In general, the number of patients has been relatively small in the BSPM studies, 

and few have used more advanced statistical procedures for feature selection and 

classification. 

Data reduction in body-surface potential mapping 

In order to achieve a more objective selection of diagnostic features from BSPMs for 

diagnostic classification, successful data reduction is necessary. The problem is to 
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reduce the amount of BSPM data—without losing important diagnostic information. 

Data-reduction procedures reduce the original pattern space to a feature space of 

smaller dimensionality, while maintaining the important characteristics; features are 

then selected that are the best discriminators for classification purposes [12]. The 

success of the classification procedure, however, is highly dependent on the success 

of the feature-reduction procedure to reflect the salient features in the map. 

The statistical approaches evaluate common features of the signals and these 

features are represented as a set of coefficients and basis functions. The limitation 

of these statistical approaches has been primarily with data representation. Since 

the data are reduced to a series of coefficients which are not easily related back 

to the morphological features of the pattern, the results are difficult to interpret 

intuitively [178]. 

There are various methods of statistical representation available, and two ap­

proaches that have been used with BSPM data are the 2-D F F T [134,151], and 

those based on orthogonal expansion. The success of the latter techniques in BSPM 

data reduction [58,119,151,178,184] illustrates its potential value to the problem of 

feature selection and diagnostic classification. The orthogonal-expansion approaches 

include KL expansion [58,119], principal component analysis [46] and singular value 

decomposition [184]. There are similarities and differences in these three techniques 

as discussed by Gerbrands [70]; however, in the context of statistical pattern recog­

nition, all three can be used interchangeably. The KL expansion is based on the 

statistical properties of an image and has been used for data compression where the 

discrete variables are transformed into a set of uncorrected coefficients, sometimes 
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referred to as the principal components [76]. Singular value decomposition has been 

considered a reliable method for computing the coefficients for a generalized least 

squares problem based on a matrix factorization [62,146]. It has been used to reduce 

the matrix dimensionality in the presence of redundancies, but this approach is de­

terministic in nature. The similarity between the singular value decomposition and 

the two stochastic approaches—KL expansion and principal component analysis—is 

based on the relationship between the singular values and the eigenvalues of a real 

symmetric matrix [62,70]. 

The KL expansion has been considered the optimal transform for signal repre­

sentation based on a mean-squared-error criterion [70]. A complete knowledge of 

the probability structure for the input pattern is not required [12]. Although this 

transform was developed for a continuous process, the KL transform can be dis-

cretized for use in digital image processing [76] and it has been applied to BSPM 

[58,119,151,178,184]. There are several reasons why the approaches based on the 

KL expansion have been successful when applied to BSPM data. First, they are not 

based on the assumption of periodicity of the signal; the only requirement is that 

electrode placement should be consistent in order to make comparisons. Secondly, 

these methods are not sensitive to noise in the signal, in particular random noise 

that is often present in ECG signals. Lastly, the basis functions are derived from 

the da ta itself and are not predetermined as is the case with other transforms such 

as the Fourier transform. 

Several studies have applied the KL theory to BSPM data — foi both spatial and 

temporal reduction and diagnostic classification [9,46,58,78,105,151,185,188,189]. 
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For example, dimensionality reduction reported was in the order of 16:1 and 12:1, 

with the entire set of temporal and spatial BSPM data being reconstructed from 

216 coefficients and the corresponding basis functions [58,119]. Given that the orig­

inal pattern space could be over 40,000 numbers, this was a substantial reduction. 

The low reported errors indicate that the salient features were maintained after re­

duction and classification procedures can be applied, based on these representative 

features [119]. The data-reduction procedures employed in this study were based 

on the KL-expansion theory. 

Feature selection and classification 

Ranking the eigenvalues in descending order of magnitude provides a set of principal 

features that best describe the total data set. Statistical procedures for classification 

can be then applied to the significantly reduced data. There are various approaches 

for defining a classification space, including those based on physiological consid­

erations, those that are statistical in nature, and more recently neural-networks 

approach [178]. Only a few studies have addressed the diagnostic classification of 

VT applying statistical procedures to the principal features derived from the KL 

expansion of BSPM data [46,151,178], One measure referred to as the nondipolar 

content, reflecting complexity in the BSPM patterns was extracted from the coef­

ficients calculated for each KL feature based on the definition by Abildskov et al. 

[9]. The nondipolar content of a given map can be calculated [46] by computing 

the cumulative contribution of all eigenvectors beyond the third as a percentage 

of the total map content. This can be explained by the fact that the first three 
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eigenvectors are basically dipolar in nature (with only one maximum and one min­

imum), while the following ones contain more than two extrema and are said to be 

multipolar in nature. The set of coefficients y,-, which are characteristic for each 

subject from the KL transform, may be used to compute the contribution of the 

eigenvectors to the total map content. Several studies indicate that subjects who 

are vulnerable to ventricular arrhythmias have a multipolar, and thus more com­

plex, QRST-integral distributions than normal subjects; this has been substantiated 

quantitatively by significant differences in nondipolar content [9,46,151]. Overlap 

between patient groups however suggests that this single measure may not provide 

sufficient separation [151] but should be further investigated. 

For LQTS patients and normals, each feature coefficient has been compared sep­

arately by means of nonparametric methods [46]. Since the KL expansion orders the 

features based on their contribution, statistical methods for feature selection (such 

as discriminant analysis ) could be applied directly to the feature coefficients. Inves­

tigators have applied discriminant analysis procedures to the KL features derived 

from BSPMs to differentiate patient groups such as coronary artery disease [78] 

and myocardial infarction [185] from normal control subjects with low classification 

errors. In the former study, 94% accuracy was reported for separating the normal 

subjects from coronary artery disease patients who displayed normal electrocardio­

grams [78]. Essentially the discriminant analysis attempts to find the best subset 

of features for differentiating between classes [110]. This can be achieved through 

forward, backward or stepwise procedures [93]. The latter method is independent 

of order and features are added and deleted by evaluating their discriminatory po-
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tential, based on statistical criteria [93]. 

Methods based on the KL expansion itself have also been used for feature se­

lection. Since the classification procedure depends to a large extent on the quality 

of the feature selection, the optimal feature selection procedure is of crucial im­

portance. Kittler and Young [102] have discussed various techniques of diagnostic 

classification based on the KL expansion; they grouped these techniques into two 

broad categories: (1) those where feature ordering is made irrespective of the mean 

vectors of the individual classes, and (2) those where the utilization of information 

about the mean vectors is presumed to be non-optimal. Kittler and Young suggested 

a method of feature ordering that utilizes the discriminatory potential of both the 

class means and the class variances HI the application of the KL transform [102]. 

The general theory for this approach is basically a two-stage KL decomposition, 

with the result being an optimal feature space for classification purposes. Feature 

selection is carried out by constructing the covariance matrix of the input vectors 

and by subtracting the mean vector for each class from the respective class vec­

tors and normalizing this for the class variance. The resulting classification space 

is ordered—based on the differences between diagnostic groups—and encorporating 

all of the features in the analysis, rather than a small subset of features as in the dis­

criminant analysis. Initial results based on the KnY approach illustrate its potential 

value for defining a classification space based on features derived from the BSPMs, 

of patients vulnerable to arrhythmia and those not vulnerable to arrhythmia [152]. 

The limitation of this result was that a very small sample size was used, thus the 

potential for overtraining existed. 
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Neural network algorithms have been explored for feature selection and classi­

fication. This approach was applied to classifying normal subjects, patients with 

ischemic heart disease, anterior myocardial infarctions and left bundle branch block 

[178]. While the classification results appear to be quite good, the author is cau­

tious of the future applicability of the results because of the small sample size in each 

group and the problem of convergence which was not evaluated since there was no 

test set on which to validate the results. These issues are imperative to the future 

value of any classification space. In general, the less sophisticated approaches to 

feature selection and classification have apparent limitations in separating patients 

vulnerable to VT. The more sophisticated approaches, while seemingly superior, 

have not as yet been rigorously evaluated for their predictive value. 

An examination of the literature illustrates that the number of features included 

in both the reduction and the classification space vary considerably [58,119,105,151] 

[184,178,185,189]. As mentioned previously, the important issue with respect to 

reconstruction is to ensure that adequate numbers of features are used to accu­

rately represent the original pattern space [119]. In defining a classification space, 

a concern, particularly with small samples is to minimize the effect of tailoring the 

features to the training set from which they were derived. Kozmann et al. recently 

discussed this issue, suggesting that the number of features derived from body sur­

face potential maps used in the classification space should be kept to a minimum to 

ensure that the space is statistically robust and efficient [106]. Encorporating large 

numbers of features into the classification space would reduce the general applica­

bility of the space for classifying future observations [55]. In any case, results from a 
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training set alone are overly optimistic and are of limited value for predicting future 

classification [53,54,55]. Various methods for estimating the true error associated 

with a classification procedure include evaluation of the procedure on an indepen­

dent test set, cross validation, jacknife and bootstrap [53,54,551. The bootstrap and 

cross-validation have been shown to be effective estimates of the true error, in par­

ticular with small sample sizes [54]. Therefore, these methods provide an evaluation 

of the error bias in a given classification [27]. It is important to establish how well 

any set of features proposed reflect a difference between diagnostic categories rather 

than a difference between a specific group of patients. 

2.3 Antiarrhythmic agents 

In addition to studying distinct diagnostic classes, a further question addressed in 

this study related to assessing the myocardium that has a presumably altered ar­

rhythmogenic state. Antiarrhythmic agents have facilitated the clinical study of 

arrhythmias, as they offer a controlled, easily altered treatment approach which has 

enhanced our understanding of arrhythmogenic mechanisms [30,98]. Many antiar­

rhythmic agents have been introduced [191,199]; they can be classified based on 

their predominant electrophysiological effects [172,197]. While modifications exist, 

the basic classifications are Class I, II, III, and IV, with a description of the differ­

ences and examples for each class presented in Table 2.1. The electrophysiological 

effects of the various drugs are not consistent across cells in the heart and Table 

2.2 provides an overview of some of these effects for selected antiarrhythmic drugs 

[84,143,156,191,199], illustrating that functions of SA nodal, AV nodal, ventricular, 
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Table 2.1: Classification of antiarrhythmic agents 

Class I Class II Class III Class IV 
Membrane 
stabilizers 

Sympathetic 
blockers 

Repolarization 
prolongation 

Ca+ + channel 
blockers 

Procainamide 
Quinidine 
Mexilentine 
Lidocaine 
Disopyr amide 
Phenytoin 
Tocainide 
Flecainide 
Encainide 
Propafenone 

Propranolol 
Bevantolol 
Atenolol 
Timolol 
Oxprenolol 
Alprenolol 
Nadolol 
Metoprolol 
Labetolol 

Amiodarone 
Sotalol 
Bretylium 
Melperone 
Sematilide 

Verapamil 
Tiapamil 
Nifedipine 
Gallopamil 
Bepridil 

atrial and Purkinje cells may be altered differently with the same drug [98]. Also, 

drugs from the same class may have different effects on the same cardiac fiber and 

function, resulting in a large variation of effects on the total cardiac activation and 

repolarization process. These variations indicate that accurate assessment of the 

arrhythmogenic substrate would assist with evaluating the effectiveness of antiar­

rhythmic treatment. This is of particular interest since the proarrhythmic effects 

for class I antiarrhythmic agents, reported recently by investigators involved in the 

CAST trial [20,21,22] and the cessation of the use of flecainide and encainide in this 

trial [150], emphasize the need for accurate evaluation of therapy. 

Are the antiarrhythmic agents actually altering the electrophysiological substrate 

for arrhythmias and can these alterations be accurately assessed? There are several 

difficulties with comparing the many efficacy studies and one has been the different 

operational definitions used to define efficacy of treatment [191]. The most common 
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Table 2.2: Electrophysiological effects of common antiarrhythmic agents 

Agent 
Quinidine 
Procainamide 
Propranolol 
Sotalol 
Amiodarone 

APD 

t 
t 
- 1 
t 
r 

"max 

i 
i 
" I 
— 

1 

Automaticity 

I 
i 
- 1 
— 

I 

A-H 

i , - T 
- T 
- r 
T 
T 

H-V 
T 
T 
-

— 

T 

ERP-AVN 

u 
- T 
- r 
T 
T 

ERP-V 
T 
T 
— 

T 
T 

APD = action potential duration, umax = maximum velocity of upstroke, A-H = 
A-H interval, H-V = H-V interval, ERP-AVN = effective refractory period AV node, 
ERP-V = effective refractory period ventricle, f = increase, j = decrease,— — no 
change 

methods for evaluating therapy are EPS and ambulatory monitoring; both methods 

have their limitations [22]. The association between suppression of ectopic activity 

and risk of VT has been recently questioned and while EPS has its drawbacks, its 

prognostic value for those that had their arrhythmia induced in a drug-free state and 

not induced in the drug state was relatively accurate [22]. More recently, analysis 

of late depolarization from signal-averaged ECGs [36] and assessment of BSPMs 

have been explored as method of evaluating effectiveness of antiarrhythmic therapy 

[132,131]. Initial results for both of these noninvasive methods indicate that they 

may be of value. Therefore, if noninvasive approaches are to be valuable they must 

be able to assess the electrophysiological effects of antiarrhythmic therapy by related 

changes in the surface potentials measured from ECG leads and detect a change (if 

one occurs) in the arrhythmogenic substrate. Since there was such a large variation 

in effects, even for agents within the same class, this study was limited to examining 

one agent, quinidine. 

Quinidine is currently being used as a treatment for altering, in a relatively con-
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trolled manner, the vulnerability state of individuals at risk for VT. Quinidine is 

a Class I drug; Class I drugs typically prolong action potential duration and are 

referred to as membrane-stabilizing drugs for reducing arrhythmias [96,124,197]. 

In-depth reviews of the pharmacokinetics, electrophysiological effects and clinical 

efficacy of quinidine as an antiarrhythmic agent have been presented elsewhere 

[84,190,191,199]. The ionic mechanisms of quinidine's action, which have been deter­

mined from single-cell and multicell studies [45,167], include inhibition of fast sodium 

current (INO.), delayed rectifier current (IX,IK), pacemaker current (2/,/*,), slow in­

ward current ( JSJ)> and steady-state "window sodium current." As indicated in Table 

2.2, quinidine typically prolongs the action potential duration and increases the ef­

fective refractory period of the ventricular myocardium [51,84,143,167,191]. While 

i there have been varied efficacies reported for its ability to reduce VT, there is evi-

i dence supporting its effectiveness for certain mechanisms and cellular environments 

' [24,25,85,96,113,156,191]; in particular, it has been considered an effective drug for 

t 

i treating sustained ventricular arrhythmias, especially reentry rhythms [84,170,191] 

I In general, studies showed that quinidine therapy reduced the frequency of VT and 
! 
i 
* fibrillation [24,25,42,96,170,130,200]. However, there is a considerable amount of 

» evidence that it also has arrhythmogenic effects [45,160,161,162,170]. 
i 

\ The effects of quinidine have been altered with changes in stimulation rates and 

j 
! in potassium (K + ) and magnesium (Mg + + ) levels [45,143,161]. These alterations 

! 
; have been supported clinically with reported proarrhythmic effects of quinidine in 
l 

the presence of hypokalemia and bradycardia, with the result often being a torsades 

de pointes rhythm [45,137,162], The proarrhythmic effects reported in some studies 
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affected only a small percentage of patients [137], but electrolyte imbalance such 

as changes in potassium and magnesium concentrations have been shown to alter 

the effectiveness of this agent [45]. Therefore electrolyte imbalance is an important 

factor to assess in the clinical setting. 

Studies of both the normal and abnormal myocardium demonstrate relatively 

consistent ECG changes with quinidine therapy. On the surface ECG, quinidine 

caused a dose-related response, increasing QRS and Q-Tc intervals [84,112,190]. 

From Table 2.2 the increase in QRS duration reflects the decrease in vmax; the 

increase in Q-T interval can be related to the increase in ventricular refractory period 

duration. The magnitude of these effects varies, based on several factors, including 

concentration levels, frequency of pacing, and time- and voltage-dependent factors 

[13,14,139]. The directions of the effects, however, appear to be relatively consistent, 

although there is evidence of a differential effect of quinidine on action potential 

duration in the endocardium and epicardium [13]. In addition to ECG alterations, 

differences have been noted in QRST-integral map variables between pretreatment 

and posttreatment maps of the patients who were treated with quinidine [131,132]. 

These differences were evaluated based on relatively simple quantitative measures, 

and no consistent changes were observed in map characteristics before and after 

treatment. Whether features from these maps can be quantified to assess objectively 

a change in arrhythmogenic state must be further explored. 

In summary, the literature reviewed in this section provides the rationale for 

conducting this study. The study focusses on evaluating the QRST-integral BSPMs 

for diagnosis of an arrhythmogenic state. There is a sound theoretical basis for 
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pursuing this approach; however, there is limited empirical statistical evidence sup­

porting the theory that the arrhythmogenic substrate (dispersion of repolarization) 

can be accurately quantified and used for diagnostic classification. 



Chapter 3 

Methodology 

3.1 Subjects 

Three sets of BSPM data were compiled: a training set, a test set and a treatment 

set. The training set was used to derive BSPM features suitable for diagnostic 

classification of patients vulnerable to ventricular arrhythmias. The applicability 

of the feature-selection and classification procedures was tested on an independent 

test set (in addition, the training set and test set were combined to evaluate the 

expected error for future diagnostic classification). The treatment set consisted of 

the posttreatment BSPM data of the training-set subjects who were vulnerable to 

ventricular arrhythmias before treatment; the latter group was used to explore the 

usefulness of training-set features in assessing effectiveness of antiarrhythmic drug 

therapy. 

Training-set groups 

The entire training set consisted of 153 subjects: 51 patients vulnerable to ven­

tricular arrhythmias (VTtrain group); 51 normal subjects (NC group); and 51 pa­

tients with myocardial infarction and no arrhythmias (MItrain group). Specific de-

37 
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mographic data and diagnoses for all training-set subjects are in Appendix A. 

Subjects who comprised the VT t rain group were selected from the patient pop­

ulation treated in the Cardiac Unit at the Foothills Hospital in Calgary, Alberta 

between January 1983 and January 1989. This population included males and fe­

males over the age of 15 years, who were diagnosed as suffering from VT. Patients 

were excluded from the study if there was a reversible cause of the VT, such as elec­

trolyte imbalance, proarrhythmic drug therapy, or a recent MI (< 2 weeks). Each 

subject was informed of the procedures of the study, in accordance with the estab­

lished ethical guidelines approved by the Conjoint Medical Ethics Committee of the 

Foothills Hospital and the University of Calgary. Patients were randomly assigned 

to different antiarrhythmic therapies. Those patients (n = 74) who were assigned to 

be treated with quinidine as their first antiarrhythmic drug were considered for the 

VT t r ain group, but only patients with pretreatment and posttreatment BSPM data 

of acceptable quality were selected. The final VT t rain group consisted of 51 patients 

(i.e., 70% of the total quinidine group), 47 males and 4 females, of an age range 

25-79 years and a mean age of 59.6 ± 12.2 years. All patients underwent thorough 

clinical examination, to establish functional angina class, dyspnea functional class 

and dominant-, secondary- and tertiary-heart-disease class; left ventricular ejection 

fraction (LVEF) was determined at rest by radionuclide ventriculography and the 

electrophysiological studies (EPS) were performed. All of the above procedures were 

part of the routine investigation. 

Of importance to this study were the results of EPS, which were used to support 

the VT diagnosis and to determine the effectiveness of the antiarrhythmic therapy 
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(for the posttreatment evaluation). The programmed stimulation protocol used in 

EPS studies has been described in detail elsewhere [130]. Briefly, 3 extrastimuli at 3 

pacing-cycle lengths of 600, 500 and 400 ms, at rates of 100, 120 and 150 beats per 

minute, were used. The end point of the programmed stimulation protocol used in 

EPS studies was an inducible monomorphic VT (5 consecutive VPDs at a rate > 120 

beats/min), not necessarily sustained. VT was defined as sustained if it persisted 

for 30 s or more, or if it required termination because of hemodynamic collapse. All 

patients were free of any antiarrhythmic agent at the time of the initial EPS. Cycle 

lengths and durations of the induced arrhythmia were measured. According to the 

results for the duration of the VT induced by the EPS, 84% of the members of the 

VTtrain group had a sustained VT, while the remaining 16% had a nonsustained 

VT. Patients were monitored by an ambulatory device for at least 24 hours during 

their drug-free state and the records were analyzed (if 18 hours of usable data were 

recorded) to determine the frequency and duration of abnormal sequences. The 

results of ambulatory monitoring were used to establish parameters associated with 

spontaneous ventricular arrhythmias, such as number of premature beats and runs 

of premature beats. The baseline BSPM data were acquired during normal sinus 

rhythm in a drug-free state. Detailed clinical characteristics for all patients of the 

VTtrain group are presented in Appendix C. 

The NC group and MItrain group were selected from a population that underwent 

BSPM recording at the Victoria General Hospital in Halifax. An attempt was 

made to match the VTtram group as closely as possible for age and gender. The 

main concern was that these subjects had no clinical evidence of arrhythmias and 
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that they had quality BSPM data recorded during sinus rhythm. Subjects who 

were selected for the NC group (n = 51; mean age = 45.9 ± 8.5 years), 47 males 

and 4 females, had no evidence of heart disease on history, 12-lead ECG, physical 

examination and echocardiographic examination. Patients in the MI t raiu group (n = 

51; mean age = 57.2 ± 11.1), 45 males and 6 females, all had suffered an MI (with 

the majority > 2 weeks earlier) and were, based on clinical assessment, without 

arrhythmias. The diagnostic classification for each patient in the MItrain group is in 

Appendix A (Table A.3); in summary, 55% of patients had an anterior MI and 45% 

had an inferior MI. 

Test-set groups 

The test set consisted of 51 patients with recurrent ventricular tachycardia (VT test 

group) and 51 patients with MI without arrhythmia (MItest group). Specific demo­

graphic data and diagnoses for all test-set subjects are in Appendix B. Again an 

at tempt was made to match patients based on their age and gender, but the main 

concern was that the VT test group consisted of patients who were vulnerable to ven­

tricular arrhythmias, based on clinical information, and the MItest group consisted 

of patients who had no clinical arrhythmias. 

The VTtest group (n = 51; mean age = 58.5 ± 14.9), 47 males and 4 females, 

was selected from the Cardiac Unit at the Foothills Hospital in Calgary, using the 

same inclusion criteria as for the VT train group. The difference was that VT tcst 

group was not restricted to one drug therapy, which was in this case irrelevant 

since no posttreatment evaluation was performed on BSPM data of these patients. 
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Diagnoses for all members of the VTtest group are in Appendix B (Table B.l) . 

Briefly, of 51 patients in VT test group, 57% had sustained VT induced by EPS; for 

the remaining 43%, VT diagnosis rested either on evidence of nonsustained VT (or 

SVT in 3 patients) induced by EPS, or on documented episodes of VT obtained 

during electrocardiographic evaluation. 

The MItest group (n = 51; mean age = 54.7 ± 8.9), 47 males and 4 females, 

was selected from the patients who underwent BSPM recording in Victoria General 

Hospital in Halifax, using the same criteria as for the patients of MItrain group. 

Diagnoses for all members of the MItest group are in Appendix B (Table B.2); in 

summary, 27% of the patients had anterior MI, 59% had an inferior MI, 4% had 

both anterior and inferior MI, and the remaining 10% had an unspecified MI. 

Posttreatment group 

An antiarrhythmic agent, quinidine, was administered to the patients who belonged 

to the VTtrain group—in the appropriate doses for the patient's age and body mass— 

and then the EPS studies were repeated. On the basis of the posttreatment EPS 

studies, the 51 patients of the VTtrain group were divided into two subgroups. The 

PET subgroup (n=14) consisted of those patients for whom quinidine was the pre­

dicted effective therapy (since the VT could not be induced after treatment by 

programmed stimulation). The nPET subgroup (n=37) consisted of those patients 

who remained susceptible to ventricular arrhythmias (since the VT remained in­

ducible by programmed stimulation even after treatment). The criterion for deter­

mining predicted effective therapy (PET) was that no more than 4 VPDs occur in 
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response to the programmed stimulation protocol. The posttreatment BSPM data 

were acquired within 24 to 48 hours of the EPS study; these recordings, like the 

pretreatment data, were collected during normal sinus rhythm. 

Summary statistics for age, left ventricular ejection fraction, quinidine blood 

levels and VT cycle lengths induced in the drug-free state for each subgroup of 

the VTtrain group are in Appendix C. Comparisons between groups on several of 

the above clinical characteristics were performed (the results are also in Appendix 

C). There were no statistically significant differences (p > 0.05) between groups for 

the quantitative measures. A chi square analysis revealed statistically significant 

differences (p < 0.05) between the PET and nPET groups for three qualitative as­

sessments; the PETs had a lower percentage of patients with ischemic heart disease, 

near miss sudden cardiac death as the presenting symptom and sustained VT in­

duced by programmed stimulation (pretreatment). The factor that differentiated 

between the two subgroups was their response to programmed stimulation following 

treatment, which reflected the predicted effectiveness of the quinidine therapy. 

3.2 Body-surface potential mapping 

Data acquisition and preprocessing 

Body-surface potentials were recorded from 117 torso leads and 3 limb leads, using 

the procedures and instrumentation developed in this laboratory [87,122,171]. The 

electrode placement is illustrated in Figure 3.1. The electrical potential differences 

were measured with respect to a Wilson's Central Terminal. The data were col­

lected for 15 s during normal sinus rhythm, with subjects in a supine position. The 
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Figure 3.1: Electrode placement on the torso for the 120 body-surface leads. The 
right and left margins correspond to the right mid-axillary line and the middle cor­
responds to the left mid-axillary line; each • corresponds to one of the six precordial 
leads. 

analog signals were filtered (bandpass from 0.025 to 125 Hz), digitized at a sampling 

rate of 500 samples/s/channel, transfered to a PDP-11/24 computer, and stored on 

magnetic tape. Further data processing was performed on the VAX-11/780 com­

puter (Digital Equipment Corp., Maynard, MA) and a Stellar GSIOOO computer 

(Stardent Computer Inc, Concord, MA). 

The raw-data plots were visually examined to determine the signal quality. The 

inspection was done by plotting 3 seconds of raw data. In addition, the entire 15-s 

recording was plotted for two leads. For randomly selected files, all 120 leads were 

plotted as a quality control. The raw data were then signal-averaged, using a T-

P baseline; signal averaging was shown to be effective for reducing noise in ECG 
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signals [87]. The averaged data were plotted as scalar ECG plots for all 120 leads 

and those plots were visually inspected to identify bad leads and to verify the onsets 

and offsets for the QRS complex and T wave. The averaged data for the VTtiai„ 

group (pretreatment data and posttreatment data), NC group, MItrain group, VTtest 

group and MItest group were stored on a designated study tape (MT222). 

In order to obtain the complete set of 117 body-surface potential values for each 

subject, including those with bad leads, three-dimensional interpolation of body-

surface potentials was performed. A description of the interpolation procedure is 

in Appendix D. The interpolation was performed on the designated bad leads for 

all data files in this study, and the results were stored as 352 values for each time 

instant (corresponding to potential values at 352 nodes of the three-dimensional 

torso model [121]). This allowed retrieval of the complete set of 117 potentials for 

any subject and any time instant. 

The QRST integrals were calculated for each subject, and for each of the 117 

leads, by simple summation of sampled potentials: 

/ QRST, = £ ™ T P W (3.1) 

where / QRSTt is the QRST integral in //Vs for lead i; V is the potential measured 

in fiV for lead i; nsamp is the number of discrete samples from Ron to TOII; St is the 

sampling interval in seconds (St — 0.002 s) [89,135]. Isocontour maps for the QRST 

integrals (isointegral maps) were plotted and the set of 117 QRST-integral values 

per subject was used as the input for the data-reduction procedures. 
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Data reduction 

The objective of the data-reduction procedures was to reduce the training-set pat­

tern space to a feature space of smaller dimensionality, while maintaining the im­

portant diagnostic information in the measured data. Features that were the best 

discriminators for classification purposes were then selected by statistical methods 

from this reduced space [12]. The KL expansion has been considered the optimal 

transform for signal representation based on a mean-squared-error criterion [70], 

and since accurate representation of the original measured data was important, the 

approach adopted in this study was based on the KL expansion. 

The KL transform was originally developed as the expansion of the stochastic 

process £(£) in the time-domain, into a complete set of uncorrelated deterministic 

functions i/}t(t). (For a complete description of the transform refer to Gerbrands 

[70].) The KL transform can be discretized for use in digital image processing [76]; 

this discretized KL transform has been applied to BSPM data by several investiga­

tors [58,119,151,178,184]. 

In this study, the discretized KL transform was applied in the following manner 

to reduce the pattern space of the QRST-integral maps of the training set into a 

feature space. The processsed BSPM data set consists of m channels and n discrete 

realizations of the random process. The number of body-surface ECG measurements 

at Dalhousie University and at the University of Calgary is 117 (i.e., m = 117). The 

vector x was defined as the random vector xj , dimensioned 117 X 1, representing the 
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potential distribution for subject i. Thus, we have n vectors xj, 

[X] = [ x i , x 2 , . . . , x a ] , (3.2) 

where [X] was a 117 x n data matrix, and n was the number of subjects in the 

sample (since the QRST integral was used). Applying the KL expansion theory 

to determine the linear combination of orthonormal basis functions to minimize a 

mean square error criterion was as follows. 

The unbiased estimate of the covariance matrix for both the KL expansion and 

principal component analysis is the sample covariance matrix [Sc] of the columns of 

[X] (see [70]). 

[Sc] = - ^ £ (xi - mx)(xi - mx)' (3-3) 

1 n 

or 

[Sc] = - 1 ^ {[X] - [X]} {[X] - [X}}1, (3.4) 

where [Sc] is the sample covariance matrix, m x is a column vector of the means 

obtained from a vector summation of xj, and [X] is an m X n matrix in which the 

columns are equal to mx ; m is equal to 117 for the spatial reduction. Calculation of 

the sample covariance matrix [Sc] for matrix [X] from equation 3.4 was performed 

by the FORTRAN program PCA.f. 

The KL transform of the vectors Xj defined as, 

yi = m'xi (3.5) 
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produces a vector of coefficients, y,, for each subject. The matrix [T] was calculated 

from an eigenvalue and eigenvector analysis of [Sc] 

[Sc] = [T][A][Tr. (3.6) 

This was done by the FORTRAN program EIGEN.f, which incorporated the NAG 

library routine F02ABF (The Numerical Algorithms Group Ltd.) to calculate the 

eigenvalues and eigenvectors of a real symmetric matrix using Householder's reduc­

tion and the QL algorithm. [A] is the diagonal matrix of eigenvalues, A,-, ordered 

in descending order of magnitude to minimize the mean-squared error. [T] is the 

matrix, dimension 117 x 117, of orthonormal eigenvectors <&j. The expansion can 

be truncated to k terms, where k < n. The vector x can be reconstructed using 

equation 

xi = [Tr]yi(r) (3.7) 

where X; is the reconstructed vector of body-surface potentials for subject i, [TT] 

is the reduced transform matrix of dimension 117 x k, and yi(r\ is the reduced 

coefficient vector of dimension k for subject i. If the number of basis vectors k is 

less than n, then data reduction is achieved. The required number of basis vectors 

k depends on the total information contained in them. An estimate of the error of 

truncation by k basis functions can be obtained from the average error ê  [58,119], 

e, = {(trace[Sc] - £ AO/117]1/2. (3.8) 
i=i 

This can be expressed as a percentage by considering the signal voltage associated 
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with the average error, 

k 100 
%ir0Ce[SJ = ( E A j ) x 7 - ^ I , (3.D) 

where trace[Sc] is the trace of the sample covariance matrix; eigenvalues, A;, are 

in descending order of magnitude. The percent trace was used to determine the 

number of eigenvectors required for reconstruction of the BSPMs. The k eigenvec­

tors representing the principal patterns were plotted as eigenmaps using the same 

display convention as that used for the measured BSPM data. The reduction and 

reconstruction were done by the FORTRAN program RECON.f. 

The measured, reconstructed and difference maps (x; — xj) for each subject were 

plotted and visually inspected for major discrepancies. The root-mean-squarcd error 

was calculated for each map as: 

/ \ p l l 7 I _ * | 2 \ 2 

Crms — (3.10) 
117 J 

where erms is the root-mean-square error. The relative error was also calculated for 

each map by, 

y i i 7 i Y , _ i , 12 

^ t - = l x i 

The peak error was defined as the maximum absolute difference between a measured 

and a reconstructed value at any lead for each map. 

Vak = ™<M | Xi — Xj | . (3.12) 

Means and standard deviations were calculated for each of the error measures for the 

constituent groups of the training set, test set and posttreatment set. Worst-case 

errors were identified for each error measure for each group. 
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In summary, the KL expansion was used to reduce the training-set pattern space 

into a feature space. This feature space was assessed to determine whether the salient 

features were maintained from the measured data which would then justify applying 

stochastic methods to define a classification space based on these features. 

Feature selection 

The next step was to identify a subset of features that contain the necessary di­

agnostic information for classifying the constituent groups. Three approaches to 

feature selection from this reduced KL space were used. First, the nondipolar con­

tent of the QRST-integral maps was evaluated as a single measure reflecting the 

complexity in the BSPM patterns; this measure can be calculated as suggested by 

Abildskov et al. [9]. The nondipolar content of a given map can be calculated [46] 

by computing the cumulative contribution of all eigenvectors beyond the third as a 

percentage of the total map content. This definition is based on the fact that the 

first three eigenvectors are basically dipolar in nature (with only one maximum and 

one minimum), while the following ones contain more than two extrema and are 

said to be multipolar in nature. The set of coefficients yj which are characteristic 

for each subject from the KL transform, may be used to compute the contribution 

of the eigenvectors to the total map content as 

%NDPC = ~ ^ f x 100, (3.13) 
Lj=i Xij 

where %NDPC denotes the percentage non-dipolar content and J2)=i xlj denotes 

the total energy in the signal. 

Thus, the 117 measured values were represented by only one feature of the map, 
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percent nondipolar content. Statistical tests were used to determine whether sig­

nificant differences existed between the constituent groups for this variable; the 

significance level was 0.05. When more than two groups were being compared, 

an analysis of variance model was used and if a significant difference was found, 

multiple range pairwise comparisons were done. When only two groups were being 

compared, independent t-tests were calculated. For the pretreatment and posttreat­

ment comparisons, dependent t-tests were performed. These tests were done using 

the SYSTAT statistical package [196]. (If statistically significant differences were 

found between the groups for this measure, a discriminant analysis using the SAS 

routine D I S C R I M would be performed [93].) 

The second approach utilized all k features derived from the eigenvector analy­

sis. Since the KL expansion orders the features based on their contribution to the 

pattern space, they are not necessarily in the best order for the discriminant anal­

ysis. A step-wise discriminant analysis procedure, applied directly to the feature 

coefficients, was used to determine which features provided the best discrimination 

between the groups. This was done by using the SAS routine S T E P D I S C [93]. 

In this analysis, subjects were divided into groups based on their clinical diagnosis 

and the analysis was used to find the subset of features that best characterizes the 

differences between groups [93]. Features were entered into the model and removed, 

based on their discriminatory power as measured by Wilks lambda and the F ap­

proximation [93]. The KL feature coefficients were entered as input; even though 

they are not physiological variables themselves, they represent the BSPM patterns 

with an acceptable degree of accuracy. 
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Given that the sample size was 51 subjects per group, only a subset of three KL 

features was chosen. Thus, the ratio of number of features to number of subjects 

was relatively conservative (1:17), to minimize the possibility of tailoring the clas­

sification space to the training set. The three features were then used as the input 

for the discriminant analysis routine DISCRIM. 

The final approach to feature selection was based on the application of the KL 

transform that uses an alternative method of feature ordering suggested by Kittler 

and Young [102]. This method utilizes the discriminatory potential of both the 

class means and the class variances. The general theory for this approach is a 

two-stage KL decomposition, which optimizes the feature space for classification 

purposes. Feature selection is carried out by constructing the covariance matrix of 

the input vectors by subtracting the mean vector for each class from the respective 

class vectors and performing a series of KL decompositions. 

The Kittler and Young (KnY) transform procedure was applied to the k weighting-

coefficient vectors y, derived from the eigenvector analysis for each subject. It was 

in essence a two-stage KL decomposition of the ^-dimensional vector yi(r)) denoting 

values of KL weighting coefficients for each subject's QRST-integral map. Each 

vector may belong to any one of the 3 (or 2) possible diagnostic classes u, which 

were predetermined from clinical evaluation of subjects. Each class was centralized 

by subtracting the mean of the coefficient vectors mw for that class. The sample 

covariance matrix for each class, [Scw], was constructed as 

[Sc] = E{{Tl - mw)(yi - m u f } . (3.14) 
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For the n classes of equal size, the sample covariance matrix [CKHY]
 n*ay be expressed 

as 

[CK„Y] = E -[Soul (3.15) 
u / = l 

where the probability of occurence of each class is 1/??.. The eigenvalues A and matrix 

of eigenvectors [R], arranged in decreasing order of eigenvalue magnitude, were 

computed for the covariance matrix [CKHY]- The eigenvalues A of [CRUY] represent 

only the transformed class variances, as the class means have been removed. The 

feature vector c was constructed using 

c* = yl[R]. (3.16) 

The second part of the transform normalized the variances by doing a simple linear 

transformation of the feature vector c into a new feature vector g by 

g' = y W ] , (3-17) 

where [Q] is a diagonal matrix, with the elements of the diagonal given as 

sqrt(\k) 

i.e., this transformation weights each feature in inverse proportion to its standard 

deviation. The mean vector of each class was now defined as 

kj = m\[B\[Q]. (3.19) 

and the covariance matrix [SCUJ] defined as 

W = £{(»-k , - ) (g . - -k f )
£ }. (3.20) 
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is the identity matrix. Applying the KL expansion to the transformed vectors g re­

sulted in a new basis set [B]. The transformation of the vector g by the eigenvectors 

[B] yields a set of uncorrelated coordinate coefficients f, such that 

= y<[P], t 3" 1 ) 

where [P] = [R][Q][B], and [B] was the system of eigenvectors of the covariance 

matrix of g arranged in the decreasing order of eigenvalue magnitude. The matrix 

[Cg] is defined as; 

[C,] = E l / n i 3 { g g f } . (3.22) 
w = l 

The FORTRAN program KnY.f was used to calculate the covariance matrices and 

perform the eigenvalue and eigenvector analysis described above for the KnY trans­

formation. Kittler and Young showed that the final feature vector f is ordered with 

respect to the discriminatory potential assumed to be optimal with respect to the 

class means and the class variance set to unity by the normalization process. Thus, 

the selection of I features according to the descending order of their total variances 

will provide a ^-component feature vector where the first I (I < k) feature coeffi­

cients have good classification potential. Kittler and Young showed that once the 

features were ordered using this two-stage KL expansion, a discriminant function 

analysis was the better method of ciassisfication compared to the nearest neighbour 

and nearest mean approaches [102]. The SAS routine STEPDISC [93] was used to 

determine which features, from this KnY feature space, provided the best discrim­

ination between the groups. Again, this analysis was limited to three features (to 

maintain a conservative ratio of features to the number of subjects), and these were 
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then used as input to the discriminant analysis routine D I S C R I M . 

3.3 Classification based on discriminant analysis 

After the features were selected that discriminated best between groups, a set of 

linear discriminant functions was calculated that minimized the squared differences 

between groups [110]. These functions were evaluated for classification purposes, 

with the assumption that the initial classification was correct. The SAS routine 

D I S C R I M [93] evaluated the general linear equation, 

dfiw = CI0LJ + a lw • zu + a2w • z2i 4-..., (3.23) 

where df{w is the discriminant function for subject i, evaluated for each class u>; aQ 

is the constant for class cu; a\, a2 ... are the discriminant coefficients for the features 

chosen from the S T E P D I S C analysis for class w; zu, z2{ ... are the weighting coef­

ficient from either the KL expansion (yu, y2i ••• ) or the KnY transform (fa, f2{ ... 

) for subject i, for features 1, 2, ... from the S T E P D I S C analysis. This equation 

would have only one term for the nondipolar content. The rule for classifying sub­

ject i was based on the value of their linear discriminant function for each group. 

Subjects were classified into the group corresponding to the largest c//;w. 

Three variables were calculated to assess the classification results: sensitivity 

(SE), predictive value (PV) and diagnostic performance (DP). Sensitivity was 

defined as 

SE = ^ x 100, (3.24) 

where SE is sensitivity in percent; nca/w is the number of subjects classified into 
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group u> that were from group u>; n ^ is the number of subjects actually in group 

a>. Sensitivity expressed the number of correct classifications for each group. The 

predictive value (PV) quantified the ability to classify only those subjects that truly 

belong to a group into that group and was expressed as 

PV = ^ ^ x 100, (3.25) 
" c / w 

where PV is predictive value in percent; nc/u is the total number of subjects classified 

into group u. Diagnostic performance was a single measure based on sensitivities 

for all constituent groups, denned as 

DP = -J2SEt, (3.26) 

where DP is the diagnostic performance for the classification that involves g groups 

and SE{ is sensitivity for group i. The above three measures were only applied 

to the classification results for the training set and the independent test set. The 

results pertaining to the treatment group were only evaluated to determine whether 

the posttreatment classification differed from the pretreatment classification. 

Error estimation 

The question of how well the discriminant functions will perform for classifying 

future observations has to be addressed, in order to assess the value of the selected 

features and discriminant functions [110]. The apparent error from the training set 

(defined as eapp = 100% — DP) provides an overly optimistic estimate of the true 

error for future classification [54,55]. Four methods for estimating the expected or 

true error (defined as e t rue = eapp + e^as) associated with the classification spaces 

were employed. 
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First, the classification space derived from the training set was applied to clas­

sify an independent test set and the difference between the training set and test 

set provided one estimate of the error bias [55]. In addition to the estimated errors 

calculated from the test sets, three other error estimates were calculated by methods 

that did not require an independent test set, but instead utilized all available data 

[54,53,55]. The bootstrap without replacement (random half sampling) [53], ran­

domized bootstrap with replacement [54] and cross-validation [54] were employed. 

In order to employ these stochastic techniques to estimate the true errors, the 

entire data set (training set + test set) was combined. The classification space 

for the KL feature space and KnY feature space were defined and evaluated for the 

entire set of data. The stepwise discriminant analysis procedure defined the features 

and their order in the subsets. 

The bootstrap method without replacement randomly assigned patient maps to 

a training set (n = 102) and the remaining 102 maps constituted the test set. The 

discriminant functions derived from a training set were applied to the correspond­

ing test set for each randomization and the classification was based on the linear 

discriminant functions: applied to the new test set. Using the same rules as in sec­

tion 3.3, this was repeated 1000 times. The average classification performance and 

variance estimates were calculated for the 1000 trials. 

The bootstrap method with replacement randomly assigned maps to training 

sets comprised of 204 maps [54]. The average number of maps in the designated 

bootstrap test sets were approximately 37% of the entire sample. Again, 1000 

randomizations were performed and average performance and variance estimates 
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for classifying the bootstrap training and test sets were calculated from the data. 

Lastly, a method of cross-validation was employed as described by Efron [54,53,55]. 

All maps but one were designated as the training set from which the discriminant 

functions were derived and the classification space was applied to the remaining test 

map. This procedure was repeated in a systematic fashion until all maps were ex­

cluded once. The variance estimates for this data were calculated using a binomial 

distribution. 

The error estimates calculated as described above provided estimates of the true 

error of the classification space derived in this study. This approach was also used 

to evaluate the appropriateness of the number of KL features included in the step­

wise discriminant analysis and the KnY transformation. The three error estimates 

were employed to calculate the expected classification errors associated with the 

classification space—which was derived from k features in either the discriminant 

analysis of the KL feature space or in defining the KnY feature space. This analysis 

was aimed at evaluating the effects of increased numbers of features on tailoring the 

discriminant functions to the training set. If the error bias between the training set 

and the test set was very large, or the training-set error decreased while the test-set 

error increased, this would provide evidence of overtraining or tailoring. 

Because of the large number of repetitions involved in these analyses, it was too 

cumbersome to call the SAS routine D I S C R I M . Therefore, FORTRAN routines 

were written to perform the sampling procedures for each method of estimating the 

true error; they also calculated the linear discriminant functions for classification 

purposes. 



Chapter 4 

Classification of the three-group 
training set 

This chapter deals with three-group classification of the training set consisting of 51 

patients with recurrent ventricular tachycardia (VTtrain group), 51 normal subjects 

(NC group), and 51 patients with myocardial infarction but no history of clinical 

arrhythmias (MItram group). These groups are described in detail in section 3.1 and 

in Appendix A. This chapter is developed in an order consistent with the objectives 

stated in chapter 1. 

Firstly, the pattern space comprised of the ECG measurements of all members 

of the training set was reduced to a much smaller feature space and the errors asso­

ciated with this data reduction were assessed. The measurements consisted of 117 

values of the QRST integral, obtained for each subject from 117 ECG leads, which 

were recorded simultaneously by a digital acquisition system. The QRST integral 

was chosen because it is known to reflect the primary repolarization properties of 

the ventricle, as established in chapter 2. A data reduction was accomplished by an 

eigenvector analysis of the sample covariance matrix, based on the KL expansion 

theory (see section 3.2). The ability of the feature space derived from this analysis 

58 
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to represent accurately the original pattern space was evaluated by an error analysis 

of the reconstructed QRST-integral values for each map. 

Secondly, in the feature space, three different approaches were used to determine 

whether there were statistically significant differences among the constituent groups 

that could be exploited in diagnostic classification. The first approach used an anal­

ysis of variance (ANOVA) to determine whether there were significant differences 

in nondipolar content among the three groups. The second approach used 16 KL 

features derived from all members of the training set in a stepwise discriminant anal­

ysis. The third approach required a transformation of the 16 feature coefficients by 

KnY transformation, to optimize the discriminating content before the discriminanf. 

analysis. 

4.1 Eigenvector analysis of QRST-integral maps 

The pattern space for the three-group training set was represented by a matrix [X], 

dimensioned 117x153, which contained 117 QRST-integral values for each member 

of the training set. The sample covariance matrix [Sc] and its eigenvalues and eigen­

vectors were then calculated for [X]. The percent trace was calculated to estimate 

the error of reconstruction; for the 16 highest eigenvalues it was 99% (Fig. 4.1). The 

16 corresponding eigenvectors were plotted as eigenmaps (Fig. 4.2). The percent 

contribution of eigenvectors beyond 9 was very small; however, 16 eigenvectors were 

chosen to ensure that complex features that may contain diagnostic information 

were included. 
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Figure 4.1: Percent trace vs. eigenvectors derived from the three-group training set 

Table 4.1: Reconstruction errors for the three-group training set 

rms error [/zVs] 

relative error [%] 

peak error [/uVs] 

mean 
SD 

mean 
SD 

mean 
SD 

Training set 
(n=153) 

3.25 
0.93 
2.47 
4.64 

11.42 
4.87 

VTtrain 
(n=51) 

3.42 
0.90 
4.16 
5.71 

10.96 
3.78 

NC 
(n=51) 

3.01 
0.87 
0.57 
0.48 

10.78 
5.81 

MItrain 
(n=51) 

3.31 
0.99 
2.67 
5.10 

12.51 
4.71 
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Figure 4.2: Eigenvectors derived from the three-group training set. Eigenvectors are 
plotted as spatial maps on the torso and arranged in descending order of the magni­
tude of their contribution. The plotting convention is the same as for the measured 
maps, i.e., the map's left and right margins correspond to the right mid-axillary 
line, with the left side of the map corresponding to the anterior torso and the right 
side to the posterior torso. 
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The weighting coefficients yt were then calculated for each of the 16 eigenvectors 

and for each subject, so as to account for the measured QRST-integral values. The 

16 weighting coefficients for each subject and the eigenvectors derived from the entire 

training set were then used to reconstruct the QRST-integral maps for each subject. 

These reconstructed maps were qualitatively examined, to detect possible differences 

in spatial patterns as compared to the measured maps, and three error measures were 

calculated to quantify differences between the measured and reconstructed maps: a 

root-mean-squared error (rms error), relative error and peak error. A summary of 

the errors for the total three-group training set and for each of the three constituent 

groups is in Table 4.1. 

The worst-case rms error was 6.6 fiYs, the worst-case relative error was 34.4%, 

and the worst-case peak error was 41.2 /itVs. The measured and reconstructed maps 

for the worst cases are in Fig. 4,3. While the rms error and the peak error were 

consistent across the three groups, tl i relative error was much smaller for the NC 

group than for both MItrain and VTtrain groups, and was the largest for the VTtraj„ 

group. 

4.2 Nondipolar content of QRST-integral maps 

The QRST-integral maps were qualitatively different in VTtrain, NC and MItrain 

groups; this is evident in Fig. 4.4. The QRST-integral maps of subjects who be­

longed to NC group had a consistently smooth spatial pattern with one maximum 

and one minimum, whereas patients belonging to both VTtrain and MItrain groups 

showed more variability in their distributions and had multiple extrema. The first at-
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measured: reconstructed: difference: 

Figure 4.3: Worst-case reconstruction errors for the three-group training set. 
The reconstruction was based on 16 weighting coefficients and corresponding eigen­
vectors. In the left column are measured maps, middle column are the reconstructed 
maps and right column the difference maps, a) Worst-case rms error (erms = 6.6 
jiVs, erei = 11.0%, epeak = 24.7 /xVs). b) Worst-case relative error (e™. = 3.3 ^Vs, 
erei = 34.4%, epeak = 13.7 /j,Vs). c) Worst-case peak error (e1Trls = 5.6 /J,VS, erei = 
1.2%, epeak = 41.2 ^Vs). The plotting convention is similar to that used in Fig. 4.2. 



64 

tempt to quantify the difference in spatial patterns employed the nondipolar-content 

measure as the feature representing the map. The nondipolar content was calcu­

lated for each subject in the training set. A one-way ANOVA on this data revealed 

a significant difference at the p < 0.05 level, and Duncan multiple-range test showed 

that the mean (±SD) nondipolar content of the NC group (6.31 ± 5.61) differed sig­

nificantly (p < 0.05) from those of the VTtrain group (13.10 ± 9.57) and the MItram 

group (12.83 ± 10.37). However, there was no significant difference between the 

VTtrain and MItrain groups, and, because of the high degree of overlap between these 

two groups (Fig. 4.5), a classification procedure based on the nondipolar-content 

measure was not attempted. 

4.3 Discriminant analysis employing KL features 

To identify features that would separate the three constituent groups of the train­

ing set, a stepwise discriminant analysis was performed. The disciiminant analysis 

described in this section used as input data the 16 weighting coefficients associated 

with the 16 eigenvectors of the KL expansion. Three coefficients (1/1,1/2 and y.\) 

were identified by the stepwise analysis as having the best discriminating abilities 

in separating the three groups of the training set. The spatial KL patterns corre­

sponding to these weighting coefficients are depicted as maps 1, 2 and 4 in Fig. 4.2; 

two of these three spatial patterns are dipolar by definition. Results of the classifi­

cation that employed the discriminant functions derived for the three KL features 

2/1,2/2 and 2/4, are summarized in Table 4.2. These results can be better judged from 

Table 4.3; 84% of subjects in the NC group were correctly classified, while only 
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Figure 4.4: Examples of QRST-integral maps for the three-group training set. 
Randomly selected examples of QRST-integral maps for individuals in each of the 
three constituent groups (VTtrain, NC and MItrain)- The plotting convention is the 
same as in Fig. 4.2. 



66 

%NDPC 6<> 

VT train tram 

Figure 4.5: Nondipolar content for the three-group training set. The inner box 
corresponds to the 50% confidence limits and the outer box to the 95% confidence 
limits. Mean for each group is indicated by the horizontal line. 
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Table 4.2: Classification of the three-group training set: discriminant analysis based 
on KL features j/i , y2 and y4 derived from this set 

Group 

VTfain 0 = 5 1 ) 
NC (n=51) 

MItrain 0 = 5 1 ) 
Total 0 = 1 5 3 ) 

Priors 

Category 

VT 
36 
0 
18 
54 

.333 

NC 
0 

43 
7 

50 

.333 

MI 
15 
8 

26 
49 

.333 

Table 4.3: Sensitivity, predictive value and diagnostic performance of classification 
based on KL features 1/1,2/2 and y4 derived from the three-group training set 

Group 

VTtrain 0 = 5 1 ) 
NC 0 = 5 1 ) 

MItrain («=5 l ) 

Sensitivity [%] 

71 
84 
51 

Predictive Value [%] 

67 
86 
53 

DP = 69%; K = .53 

51% of patients in the MItrain group were correctly classified. The overall diagnostic 

performance for this classification was 69%; i.e., this approach allowed correct clas­

sification of 69% of subjects who belonged to the training set. As in the analysis 

based on the nondipolar content (section 4.2), the most difficult task proved to be 

separating the VTtrain and MItrain groups. 

4.4 Discriminant analysis employing KnY features 

In an attempt to pack more diagnostic information into fewer features, the KnY 

transformation was performed on the 16 weighting coefficients associated with the 
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Table 4.4: Classification of the three-group training set: discriminant analysis based 
on KnY features f\ and f2 derived from this set 

Group 
VTtrain 0=51) 

NC 0=51) 
MItrain 0=51) 
Total (72=153) 

Priors 

Category 
VT 
44 
2 
10 
56 

.333 

NC 
0 

42 
5 

47 

.333 

MI 
7 
7 

36 
50 

.333 

16 KL features derived from the three-group training set. This transformation 

yielded 16 new features (KnY features), each of which was a linear combination of 

the 16 weighting coefficients yt- from the KL space. It followed from the stepwise 

discriminant analysis of this transformed data that the bulk of the discriminating 

information was contained in only two KnY coefficients, f\ and f2. The results of 

classification of the 153-subject training set, based on this analysis, are in Table 

4.4. Sensitivities were 86%, 82%, and 71% for the VTtrain, NC and MItrai„ groups, 

respectively, as shown in Table 4.5; thus, the sensitivity for the VTtrain and MItrain 

groups was improved compared to the one achieved in the KL feature space (Section 

4.3). The two KnY coefficients for each subject were plotted in two-dimensional 

space as shown in Fig. 4.6, illustrating the improved separation of the three groups 

in this feature space. Overall diagnostic performance achieved by this approach was 

80%, as shown in Table 4.5; i.e., 80% of all subjects in the training set were correctly 

classified. 
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tram 

Figure 4.6- KnY coefficients fx and f2 derived from ^he three-group training set. 
Coefficient /i is on the abscissa and f2 on the ordinate; the inner ellipses correspond 
to the 50% confidence intervals and the outer ellipses to the 95% confidence intervals; 
• represents one VTtram patient; • represents one NC subject; A represents one 
MItram pat ien t . 
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Table 4.5: Sensitivity, predictive value and diagnostic performance of classification 
based on KnY features /i and f2 derived from the three-group training set 

Group 

VTtrain 0=51) 
NC (n=51) 

MItrain 0=51) ' 

Sensitivity [%] 

86 
82 
71 

Predictive Value [%] 

79 
89 
72 

DP = 80%; K = .70 

4.5 Summary and discussion 

The results presented in this chapter demonstrate that reduction of the pattern 

space, consisting of electrocardiographic QRST-integral measurements, into 16 KL 

features can be achieved with relatively low average reconstruction errors. This was 

shown for the training set of 153 subjects. Even when the reconstruction errors 

were high, qualitative assessment of the maps showed that the overall patterns were 

maintained on reconstruction. The statistical analysis based on nondipolar content 

(quantitatively evaluated as a signal energy of all KL coefficients beyond y<\, relative 

to the total signal energy) demonstrated that this measure offered little discrim­

inating value for separating the VTtrain and MItrain groups, although it separated 

both of these groups well from the NC group. The discriminant analysis based on 

the three KL features yi,y2 and y\, selected out of 16 KL features derived from the 

three-group training set, was again most effective in identifying the NC subjects, 

while the VTtrain and MItrajn groups were not easily separated. The KnY transform 

of the 16 KL weighting coefficients derived from the training set yielded two new 

features, f\ and f2, which represented the majority of the diagnostic information. 
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Analysis based on these new KnY features improved overall diagnostic performance 

of classification from 69% to 80%. The highest sensitivity (86%) was achieved for the 

VTtrain group, while the NC group still retained the highest predictive value (89%). 

It is worth noting that no subjects from the VTtrain group, and only 5 subjects 

from the MItrain g r°up, were classified as NC subjects; this was reflected in the high 

predictive value for the NC group. Therefore, the KnY transform—applied to the 

weighting coefficients derived from the eigenvector analysis of the sample covariance 

matrix based on the QRST-integral measurements from the body surface—was the 

most effective approach for discriminating among training-set groups. 

The results presented in this chapter show that the major classification errors 

were associated with separating the VTtrain and MItrain groups from each other, not 

in separating the VTUain and MItram groups from NC group. 



Chapter 5 

Classification of the two-group 
training set 

It follows from the results of the previous chapter that inclusion of the NC group 

produced a discriminant function that distinguished well between normal individuals 

and patients but that separated VT and MI patients poorly. Therefore, the strategy 

adopted in the analysis presented in this chapter was to derive the set of 16 KL 

features solely from the sample of VT and MI patients. The two-group training set 

consisted of 51 patients with recurrent ventricular tachycardia (VTtrain group) and 

51 patients with myocardial infarction but no history of clinical arrhythmias (MItrain 

group). These groups are described in detail in section 3.1 and in Appendix A. The 

objectives of this new classification strategy were identical to those stated for the 

three-group analysis, and the results are presented in the same order. 

5.1 Eigenvector analysis of QRST-integral maps 

The pattern space for the two-group training set was a matrix [X], dimensioned 

117x102, which contained 117 QRST-integral values for the 102 patients. The sam­

ple covariance matrix [Sc] and its eigenvalues and eigenvectors were then calculated 
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Figure 5.1: Percent trace vs. eigenvectors derived from the two-group training set 

for [X]. The percent trace for the 16 eigenvalues in descending order was 99%, as 

illustrated in Fig. 5.1. The corresponding eigenvectors were plotted as spatial maps 

(Fig. 5.2). 

The 16 eigenvectors and the measured QRST-integral values from the 102 files 

were used to calculate 16 weighting coefficients y,- for each subject. The 16 weighting 

coefficients and 16 eigenvectors were then used to reconstruct QRST-integral maps 

for each subject. The mean and standard deviation for the three error measures 

associated with this reconstruction are presented in Table 5.1. The mean rms error 

and the mean peak error were similar in both constituent groups, while the VTtrain 

group had a slightly higher relative error compared to the MItrain group. The mean 

and standard deviation for all three error measures were lower for this reconstruc-

1 ' 1 1 i 1 1 1 1 1 1 1 i : ! 1 
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Figure 5.2: Eigenvectors derived from the two-group training set. 
Eigenvectors are plotted as spatial maps on the torso; the maps are arranged in 
descending order of the magnitude of their contribution; the plotting convention is 
the same as in Fig. 4.2. 
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measured: reconstructed: difference: 

Figure 5.3: Worst-case reconstruction errors for the two-group training set. 
The reconstruction is based on 16 weighting coefficients and corresponding eigenvec­
tors. In the left column are measured maps, the middle column are reconstructed 
maps and the right column are difference maps, a) Worst-case rms error (erms = 6.5 
/.(Vs, erci = 10.6%, epeak = 21.3 JUVS). b) Worst-case relative error (erms = 3.2 /iVs, 
erei = 33.4%, epeak = 13.S f.iVs). c) Worst-case peak error (erms = 4.2 /iVs, erei = 
5.1%, epeak = 22.6 (iVs). 
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Table 5.1: Reconstruction errors for the two-group training set 

rms error [fiVs] 

relative error [%] 

peak error [fiYs] 

mean 
SD 

mean 
SD 

mean 
SD 

Training set 
(n=l02) 

3.20 
0.80 
3.26 
5.29 

10.70 
3.77 

VTirain 

(n=5l) 
3.22 
0.70 
3.95 
5.56 

10.21 
3.23 

MItrain 
(n=51) 

3.17 
0.S9 
2.57 
4.97 

11.18 
4.22 

tion than were the errors that arose for the VT^;,, and MItram groups when the 

eigenvectors were derived from the three-group training set (see Table 4.1). The 

measured and reconstructed QRST-integral maps for the worst cases arc shown in 

Fig. 5.3. Even in these maps representing the worst cases, the main patterns are 

preserved. 

5.2 Nondipolar content of QRST-integral maps 

The mean (±SD) nondipolar content of the VTtrain group was 13.13 (±9.69) %, and 

that of the MItrain group was 12.92 (±10.19) %. An independent t-test revealed 

no significant difference between the nondipolar content of the VTtrain and MItrain 

groups at the p< 0.05 level (Fig. 5.4); thus, there was no improvement compared to 

the result achieved for the three-group training set. Because of the high degree of 

overlap in nondipolar content, no discriminant analysis was attempted on this data. 
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Figure 5.4: Nondipolar content for the two-group training set. 

The inner box corresponds to the 50% confidence interval and the outer box to the 
95% confidence interval; the mean for each group is indicated by the horizontal line. 
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Table 5.2: Classification of the two-group training set: discriminant analysis based 
on KL features y6,y2 and y^ derived from this set 

Group 

VTtrain (n=51) 
MItrain (f»=51) 
Total (n=102) 

Priors 

Category 
VT 
45 
16 
61 

.50 

MI 
6 

35 
41 

.50 

Table 5.3: Sensitivity, predictive value and diagnostic performance of classification 
based on KL features y6,y2 and VA derived from the two-group training set 

VTtrai„ (n=51) 
MItrain (n=5l) 

Sensitivity [%] 

88 
69 

Predictive Value [%] 

74 
85 

DP = 78%; K = .57 

5.3 Discriminant analysis employing KL features 

The stepwise discriminant analysis based on the 16 weighting coefficients for the two-

group training set revealed that the three KL features with greatest discriminating 

capabilities between the VTtrain and MItrain groups corresponded to—in order of their 

discriminating power—the sixth, the second and the fourth eigenvector (ye,1J2 and 

y^) displayed in Fig. 5.2. Thus, two of these features were by definition nondipolar. 

Table 5.2 summarizes the results of the classification based on the discriminant 

functions which employed features y6,y2 and y^; Table 5.3 shows that 88% of the 

VT patients and 69% of the MI patients were correctly classified, which resulted in 

the diagnostic performance of 78%. Thus, 78% of all patients were correctly classified 
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by this method based on three KL coefficients derived from the two-group training 

set. These performance figures represent a marked improvement over corresponding 

figures achieved by the same approach based on features yi, y2 and yA of the three-

group classification. 

5.4 Discriminant analysis employing KnY features 

The KnY transform was applied to the 16 weighting coefficients associated with the 

16 KL patterns derived from the two-group training set. This produced 16 KnY 

features that were each a linear combination of the 16 KL weighting coefficients. 

The stepwise discriminant analysis revealed that virtually all diagnostic information 

discriminating between the VT t r ain and MItrain groups was contained in one KnY 

feature associated with coefficient f\. Results of the classification of the 102-patient 

training set, by discriminant analysis based on one KnY coefficient, arc presented 

in Tables 5.4 and 5.5: 92% of the VT patients and 86% of the \"ll patients were 

correctly classified. The diagnostic performance of this analysis was 89%. The KnY 

coefficient for each subject of both VTtrain and MItrain groups is plotted in Fig. 5.5, 

with group means and confidence intervals. OveraL1 this approach led to correct 

classification of 89% of patients from the entire two-group training set. 

5.5 Summary and discussion 

The errors associated with the reconstruction of the QRST-integral maps from the 16 

eigenvectors derived from the two-group training set, were lower than corresponding 

r 
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Figure 5.5: KnY coefficient f\ derived from the two-group training set. 
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Table 5.4: Classification of the two-group training set: discriminant analysis based 
on KnY feature / i derived from this set 

Group 

VTtrain (n=5 l ) 
MItrain (n=51) 
Total (n=102) 

Priors 

Category 
VT 
47 
7 
54 

.50 

MI 
4 

44 
48 

.50 

Table 5.5: Sensitivity, predictive value and diagnostic performance of classification 
based on one KnY feature / i derived from the two-group training set 

Sensitivity [%] 

VTtrain (n=51) 92 
MItrain (n=51) 86 

Predictive Value [%] 

87 
92 

DP = 89%; K = .78 

errors for the VTtrain and MItrain groups in the reconstruction from the 16 eigenvec­

tors derived from the three-group training set. Thus, excluding the NC group and 

using the two-group eigenvectors appears to have reduced the variability in the data 

set. The results of the nondipolar-content analysis were disappointing—showing 

that this measure was not capable of separating VTtrain and MItrain groups. 

Discriminant analysis of the 16 weighting coefficients, derived from the two-

group training set, resulted in the classification that identified 78% of all patients 

correctly, compared to 61% for the classification based on the eigenvectors from the 

three-group training set. It is interesting to note that the order of the KL features 

with the greatest discriminating abilities differed between the three-group and two' 

group classification. In the latter case, a more complex spatial pattern (feature 6) 

i "i 
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contains the largest amount of diagnostic information, followed by features 2 and 

4. This contrasts with the three-group analysis, in which features 1, 2 and 4 were 

selected, in that order, as the best discriminators. 

The KnY transform of the 16 weighting coefficients produced a single feature, 

which contained most of the diagnostic information discriminating between the 

VTtrain and MItrain groups. The discriminant analysis in the KnY feature space 

provided the best results—with 89% of all patients being correctly classified (only 

4 VT patients and 7 MI patients were classified incorrectly). These results were a 

substantial improvement over the same analysis applied to the three-group training 

set, in which only 78% of the patients were correctly classified (7 VT patients and 15 

MI patients were classified incorrectly). The high diagnostic performance achieved 

by this analysis provides clear evidence that important diagnostic information can 

be derived from the electrocardiographic QRST-integral distribution, noninvasively 

measurable on the body surface. At the same time, it is obvious—from the compar­

ison with the results of the simple nondipolar-coatent analysis—that this valuable 

diagnostic information has to be extracted by the reduction of feature space and by 

the careful selection of features. 



Chapter 6 

Classification of an independent 
test set 

The next issue, addressed in this chapter, was the ability of the features derived 

from the training set to classify an independent group of test-set subjects. The test 

set was analyzed by using the features and discriminant functions derived from both 

the three-group and the two-group training sets. The test set comprised indepen­

dent sets of 51 patients with recurrent ventricular tachycardia (VTtest group) and 

51 patients with myocardial infarction but with no history of arrhythmias (MItest 

group); these groups were described in detail in section 3.1. Since the nondipolar-

content results obtained for the training set showed that this measure had limited 

potential for differentiating between the VTtrain and MItrain groups, nondipolar con­

tent was not analyzed for the test set. Therefore, the results consist only of (1) 

a reconstruction-error assessment, (2) the discriminant analysis in the KL feature 

space, and (3) the discriminant analysis in the KnY feature space. 

Before the discriminant analysis of the test-set data was performed, plots of the 

QRST-integral maps were examined; examples of these maps from each of the two 

constituent groups of the test set are plotted in Fig. 6.1. This figure illustrates the 

83 
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Table 6.1: Reconstruction errors for the test set: based on eigenvectors from the 
three-group training set 

rms error [//Vs] 

relative error [%] 

peak error [/iVs] 

• 

mean 
SD 

mean 
SD 

mean 
SD 

Test set 
(n=102) 

3.50 
1.31 
2.41 
2.44 

12.33 
5.50 

VTtest 
(n=51) 

3.34 
1.30 
3.03 
2.58 

12.14 
5.64 

MItest 
(n=51) 

3.66 
1.30 
1.79 
2.14 

12.53 
5.41 

complexity cf the maps from the VTtest and MItest groups, which was also evident 

from the maps of the VTtrain and MItrajn groups of the training set (see Fig. 4.4). 

6.1 Analysis based on features from the three-
group training set 

The 117 measured QRST-integral values for each patient of the test set, and 

the 16 eigenvectors from the three-group training set (see section 4.1) were used 

to calculate the weighting coefficients y,- for each eigenvector and for each test-set 

subject. The 16 weighting coefficients for each test-set subject and the eigenvectors 

from the three-group training set were then used to reconstruct the QRST-integral 

maps for each test-set subject. These reconstructed maps were visually examined to 

detect possible differences in patterns compared to the measured values. A summary 

of the three error measures for the total test set and the two constituent groups is 

in Table 6.1. The errors for the VTtest and MItest groups were comparable to the 

results obtained for the three-group training set (Table 4.1). The worst-case rms 

error was 8.5 ^tVs, the worst-case relative error was 11.2%, and the worst-case peak 



85 

VT test MI test 

Figure 6.1: Examples of QRST-integral maps for the two-group test set. 
The display convention is the same as in Fig. 4.2. 

I 
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error was 31.7 /fVs. The measured and reconstructed maps for the worst cases are 

shown in Fig. 6.2. In general, the reconstructed maps were qualitatively similar to 

the measured maps. 

Discriminant analysis employing KL features 

The discriminant functions derived for the three-group training set—which were 

based on the three KL features j/i, y2 and y\ corresponding to spatial patterns 

shown as maps 1, 2 and 4 in Fig. 4.2—were applied to the corresponding three 

weighting coefficients evaluated for each subject of the test set. The results of this 

classification are summarized ii? Tables 6.2 and 6.3. Only 42% of the patients in 

the test set were classified correctly. Many patients (41%) who belonged to MItest 

group were classified as NC subjects, but on the other hand, only 4% of patients 

who belonged to VT test group were classified as NC subjects. The poor result of this 

classification was not unexpected, since the classifier for the three-group training set 

only identified 61% of the VT and MI patients correctly (cf. results in section 4.3). 

What was surprising was the amount of drop in diagnostic performance, which was 

reflected in the large error bias (19%) between the training and test set. These 

results indicate a poor ability of this classifier, based on the three KL features 

and discriminant functions derived from the three-group training set, to perform 

satisfactorily on an independent patient population. 
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measured: reconstructed: difference: 

Figure 6.2: Worst-case reconstruction errors for the two-group test set: based on 
eigenvectors derived from the three-group training set. 
Measured, reconstructed and difference maps are arranged in three columns; rows 
contain maps for: a) Worst-case rms error (erms = 8.5 /xVs, erei = 4.7%, epeak = 27.7 
//Vs). b) Worst-case relative error (em* = 4.3 ^JVS, erei = 11.2%, epeak = 12.5 fxYs). 
c) Worst-case peak error (erms = 6.5 /iVs, erei = 1.2%, epeak = 31.7 //Vs). 

m 
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Table 6.2: Classification of the test set: discriminant analysis based on KL features 
yx, y2 and y4 derived from the three-group training set 

Group 
VTteSl (n=51) 
Mlt^ (n=51) 
Total (n=102) 

Priors 

Category 

VT 
26 
13 
39 
.33 

NC 
2 

21 
23 
.33 

MI 
23 
17 
40 
.33 

Table 6.3: Sensitivity, predictive value and diagnostic performance of the test-set 
classification based on KL features y\, yi and y4 derived from the three-group train­
ing set 

VTt^t (n=51) 
M ^ t (n=51) 

Sensitivity [%] 

51 
33 

Predictive Value [%] 

67 
43 

DP = 42% 
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Discriminant analysis employing KnY features 

The discriminant analysis of the KnY coefficients derived from the three-group train­

ing set produced two features / i and f2 which contained most of the discriminating 

information for separating the training-set groups. Therefore, the 16 coefficients 

yi from the test set were first transformed, using the KnY feature space derived 

from the three-group training set. and then the discriminant functions based on 

KnY features / i and f2 were applied to this transformed data. The results of the 

classification based on this analysis show that (see Tables 6.4 and 6.5) only 63% 

of the patients from the test set were classified correctly, compared to 78% of the 

patients from the training set. A 15% error bias between the training and test sets 

indicates that the KnY features derived for the three-group training set did not 

contain enough discriminating diagnostic information that could be extrapolated to 

independent groups. Fig. 6.3 is a plot of the two KnY coefficients for each subject 

in the test set; the ellipses from the three-group training set (Fig. 4.6) arc redrawn 

in this figure. These results demonstrate that the discriminant analysis based on 

the KnY feature space, while improved from the one in the KL feature space, still 

provided poor sensitivity and PV for the MItest group. 

Since the results of classification for the test set based on the features derived 

from the three-group training set were so poor, no further analysis of these data 

was performed. These features did not seem to contain diagnostic information that 

would be capable of separating a test set of patients vulnerable to arrhythmia from 

f 
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Table 6.4: Classification of the test set: discriminant analysis based on KnY features 
fx and f2 derived from the three-group training set 

Group 
VT^t (n=51) 
MItest (n=51) 
Total (n=102) 

Priors 

Category 

VT 
39 
6 
45 
.33 

NC 
2 

20 
22 
.33 

MI 
10 
25 
35 
.33 

Table 6.5: Sensitivity, predictive value and diagnostic performance of the test-set 
classification based on KnY features f\ and f2 derived from the three-group training 
set 

VTtest (n=51) 
M W (n=51) 

Sensitivity [%] 

76 
49 

Predictive Value [%] 

87 
71 

DP = 63% 
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Figure 6.3: Two-group test set in feature space of KnY coefficients f\ and f2 derived 
from the three-group training set. 
The inner ellipses correspond to the 50% confidence intervals and the outer ellipses 
correspond to the 95% confidence intervals; Q represents patient who belongs to 
VTtest group; x represents patient who belongs to MItest group. 
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Table 6.6: Reconstruction errors for the test set: based on 16 eigenvectors derived 
from the two-group training set 

rms error [//Vs] 

relative error [%] 

peal' error [/xVs] 

mean 
SD 

mean 
SD 

mean 
SD 

Test set 
(n=102) 

3.65 
1.36 
2.54 
2.44 

12.38 
5.36 

VTtest 
(n=51) 

3.44 
1.33 
3.15 
2.54 

12.10 
5.38 

MItest 
(n=51) 

3.86 
1.36 
1.93 
2.20 

12.67 
5.39 

those who are not vulnerable to arrhythmia. Therefore, these features would have 

little value in classifying future observations. 

6.2 Analysis based on features from the two-group 
training set 

The 16 eigenvectors calculated for the two-group training set (section 5.1) were 

used to calculate weighting coefficients yt for each subject in the test set. The 

reconstruction errors for the QRST-integral maps of the test set are summarized in 

Table 6.6. The mean errors are slightly higher than the errors for the two-group 

training set (cf. Table 5.1) and for the corresponding reconstruction for the test 

set based on the eigenvectors derived from the three-group training set (cf. Table 

6.1). Fig. 6.4 shows the worst-case differences between the measured maps and the 

reconstructed maps. As in previous observations, the main patterns were preserved 

after reconstruction based on 16 features. 
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measured: reconstructed: difference: 

Figure 6.4: Worst-case reconstruction errors for the two-group test set: based on 
eigenvectors derived from the two-group training set. 
Measured, reconstructed and difference maps are arranged in three columns; rows 
contain maps for: a) Worst-case rms error (erms = 8.5 fiYs, erei = 4.7%, epeak = 28.1 
fxYs) b) Worst-case relative error ( e ^ = 5.7 //Vs, erei = 10.5%, epeak = 17.5 fiYs) 
and c) Worst-case peak error (erms = 4.8 f/Vs, erei = 3.9%, epeak = 26.8 fiYs). 
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Table 6.7: Classification of the test set: discriminant analysis based on KL features 
ye, y2 and y* derived from the two-group training set 

Group 
VTtest ("=51) 
MItest (n=51) 
Total (n=102) 

Priors 

Category 

VT 
40 
14 
54 
.50 

MI 
11 
37 
48 
.50 

Discriminant analysis employing KL features 

The three features from the two-group training set with the best discriminating ca­

pabilities correspond to maps 6, 2 and 4 in Fig. 5.2; the linear discriminant functions 

derived from these features were applied to the test set. The results of classification 

for the test set are in Tables 6.7 and 6.8. Overall, 75% of the patients from the test 

set were correctly classified, compared to 78% from the training set; in both cases, 

the same three KL features were used (Section 5.3). This represents a 3% error bias 

between the apparent error of classification from the training set and the error from 

the test set. Of interest is the fact that while, as expected, the sensitivity for the 

VTtest group dropped in comparison with the VTt rain group, the sensitivity of the 

MItest group actually improved in comparison with the MItrain group (from 69% to 

73%). 
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Table 6.8: Sensitivity, predictive value and diagnostic performance of the test-set 
classification based on KL features y6, y2 and y4 derived from the two-group training 
set 

VTtest (n=51) 
M ^ t (n=51) 

Sensitivity [%] 

78 
73 

Predictive Value [%] 

74 
77 

DP = 75%; K = .51 

Discriminant analysis employing KnY features 

The KnY features derived from the two-group training set were applied to the 16 

weighting coefficients y,- of the test set, as derived from the KL features from the 

two-group training set. The discriminant functions derived for the one KnY feature 

/ i from the two-group training set were then applied to the test set. The results of 

the classification based on the linear discriminant analysis are presented in Tables 

6.9 and 6.10. There were 87 subjects (85%) in the test set who were classified 

correctly, compared to 89% classified correctly for the training set by using the 

same approach (cf. Section 5.4); this is a 4% error bias. The KnY coefficients 

for the two training-set groups and the two test-set groups are plotted in Fig. 6.5. 

These results demonstrate that the diagnostic performance achieved in separating 

the VTtrain a n d MItrain groups was well mairtained for the VT test and MItest groups. 

While the VT test sensitivity decreased as expected in comparison with sensitivity 

achieved for the VTtrain group, the MItest sensitivity remained the same as the MItrain 

sensitivity. The sensitivity and PV were similar for both VTtest and MItest groups. 
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Figure 6.5: Two-group test set and two-group training set in feature space of KnY 
coefficient fi derived from the two-group training set. 
The inner box corresponds to the 50% confidence interval and the outer box to the 
95% confidence interval; the mean is indicated by the horizontal bar. 
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Table 6.9: Classification of the test set: discriminant analysis based on KnY feature 
/ i derived from the two-group training set 

Group 

VTtest (n=51) 
MItest (n=51) 
Total (n=102) 

Priors 

Category 
VT 
43 
7 

50 
.50 

MI 
8 

44 
52 
.50 

Table 6.10: Sensitivity, predictive value and diagnostic performance of the test-set 
classification based on KnY feature f\ derived from the two-group training set 

VTt^t (n=51) 
MItest (n=51) 

Sensitivity [%] 

84 
86 

Predictive Value [%] 

86 
85 

DP = 85%; K = .71 

6.3 Summary and discussion 

In summary, the errors for reconstructing the QRST-integral maps for the indepen­

dent test set, by means of the eigenvectors derived from both the three-group and 

two-group training sets were comparable to the reconstuction errors for the training 

sets. The main patterns were maintained upon reconstruction. The classification 

results for the test set, based on the eigenvectors derived from the three-group train­

ing set, were poor. Both the discriminant analysis based on the three KL features 

and the discriminant analysis based on the two KnY features derived from the three-

group training set, yielded low diagnostic performance in classifying the VTtcst and 

MItest groups. In contrast, the diagnostic performance of the test-set classification 
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based on the features derived from the two-group training set was maintained in 

comparison with that for the training set. The best result was achieved for the 

discriminant analysis based on the KnY feature space. The test-set result of 85% 

correctly classified patients was comparable to the training-set result of 89% of pa­

tients classified correctly. These results provide evidence that important diagnostic 

information for discriminating patients vulnerable to ventricular arrhythmias from 

those not vulnerable was contained in their QRST-integral maps. Features derived 

from a training set were capable of classifying independent groups of patients with 

a low error associated with the classification. The diagnostic performance achieved 

in classifying test-set patients provides one assessment of the expected error in per­

formance for classifying future observations based on the features derived from the 

training set. 



Chapter 7 

Classification of the post treatment 
VT group 

The next issue addressed was whether the features derived from the training set 

were sensitive to changes in arrhythmogenic state resulting from antiarrhythmic 

treatment. This chapter focussed on evaluating whether the differences in posttreat­

ment QRST-integral maps corroborated the results of programmed stimulation in 

the clinical assessment of the arrhythmogenic state. The features derived from the 

three-group and two-group training sets were applied in the analysis of the post-

treatment QRST-integral maps of patients with recurrent ventricular tachycardia 

who were included in the training set (VTtrain group). These 51 VT patients, whose 

clinical characteristics are described in section 3.1 and in Appendices A and C, were 

divided into a predicted effective therapy (PET) subgroup and a non-predicted ef­

fective therapy (nPET) subgroup, depending on the results of posttreatment EPS. 

The objective of this analysis was to explore the applicability of the features derived 

from the three-group and two-group training sets in assessing the outcome of treat­

ment (see objectives in chapter 1). The specific aim was to examine whether the 

classification of posttreatment QRST-integral maps would differ from their pretreat-

99 
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Table 7.1: Reconstruction errors for the posttreatment VT group: based on eigen­
vectors derived from the three-group training set 

rms error [fiYs] 

relative error [%] 

peak error [fiYs] 

mean 
SD 

mean 
SD 

mean 
SD 

PET+nPET 
(n=51) 

4.34 
1.89 
7.93 
8.10 

14.31 
7.61 

PET 
(n=14) 

4.53 
2.05 
6.91 
6.59 

16.42 
11.05 

nPET 
(n=37) 

4.27 
1.86 
8.32 
8.65 

13.51 
5.82 

ment classification, and if it did, which maps would remain classified as belonging 

to VT category and which would move to non-VT category (NC or MI). 

The first step of this analysis was to reconstruct the posttreatment QRST-

integral maps in the feature space derived from the three-group and two-group 

training sets and to evaluate the errors associated with each of these reconstruc­

tions. Subsequently, the capability of each feature space to serve as a basis for 

diagnostic classification was evaluated. The results are presented in the same order 

as in the previous chapters. 

7.1 Analysis based on features from the three-
group training set 

The 16 eigenvectors derived from the three-group training set and the QRST-

integral maps of the posttreatment VT group were used to calculate the 16 weighting 

coefficients y,- for each subject. The posttreatment maps were reconstructed by using 

these weighting coefficients and the errors between the original and reconstructed 

maps were quantified. The root-mean-squared errors, relative errors and peak errors 
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are summarized in Table 7.1. The mean rms error and peak error for the nPET 

subgroup were smaller than for the PET subgroup, whereas the relative error for 

the PET subgroup was smaller than for the nPET subgroup. The errors for the 

entire posttreatment group were, as expected, larger than the corresponding errors 

for the pretreatment data of patients belonging to VTtrain group (cf. Table 4.1). 

Fig. 7.1 shows the worst cases (in terms of quantitative error measures) for the 

reconstruction of posttreatment group's QRST-integral maps from the three-group-

training-set eigenvectors. In general, the main spatial patterns were maintained 

following reconstruction, but the reconstructed maps were smoother as a result of 

truncation of KL expansion. 

Nondipolar content of QRST-integral maps 

There were notable qualitative differences between the pretreatment and posttreat­

ment QRST-integral maps for some of the patients belonging to VTtrain group. 

Fig. 7.2 shows the pretreatment and posttreatment maps for six randomly selected 

cases. (The larger reconstruction errors presented in the previous section are in­

dicative of this difference as well.) A preliminary report showed that there were no 

differences in the number of extrema between the PET and nPET subgroups be­

fore treatment, indicating similar multipolarity indices between these two subgroups 

[131]. In the nPET subgroup, a significant difference (p < 0.05) was found between 

the number of extrema before and after treatment (with the posttreatment num­

ber being higher [131]). In the PET subgroup, there was no significant difference 

between the number of extrema before and after treatment. 
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measured: reconstructed: difference: 

Figure 7.1: Worst-case reconstruction errors for the posttreatment VT group. 
16 weighting coefficients and 16 eigenvectors derived from the three-group training 
set were used in reconstruction. In the left column are measured maps, in the 
middle column are reconstructed maps and the right column are difference maps, 
a) Worst-case rms error (erms = 12.3 fiYs, erei = 4.4%, epeak = 36.0 fiYs). b) Worst-
case relative error (erms = 3.5 ^Vs, erei = 47.8%, epeak = 10.3 fiYs). c) Worst-case 
peak error (erms = 9.4 fiYs, erei = 6.2%, epeak = 51.0 fiYs). 
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Figure 7.2: Examples of pretreatment and posttreatment QRST-integral maps for 
the VT group. 
The upper three rows are from the PET subgroup and the lower three rows are from 
the nPET subgroup. In the left column are the pretreatment maps, in the middle 
column are the posttreatment maps and in the right column are the difference maps. 
The same display convention as in Fig. 4.2 is used. 
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Figure 7.3: Nondipolar content of pretreatment and posttreatment, QRST-integral 
maps for the VTtrain group. 
Based on eigenvectors derived from three-group training set. The inner box corre­
sponds to the 50% confidence limits and the outer box to the 95% confidence limits; 
mean for each group is indicated by the horizontal line; PRE = pretreatment values; 
POST = posttreatment values. 
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Figure 7.4: Nondipolar content of pretreatment and posttreatment QRST-integral 
maps for PET and nPET subgroups. 
Based on eigenvectors from three-group training set. Box-plot convention is the 
same as in Fig. 7.3. 
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Quantification of these differences was at tempted by applying features derived 

from the training-set to the posttreatment maps, to determine if differences existed 

in maps recorded before and after treatment, or between posttreatment maps for 

the P E T and n P E T subgroups. The mean (±SD) nondipolar content for the total 

posttreatment group and for its subgroups was calculated. Box plots of the pre­

treatment and posttreatment states for the VTtrain group, and the pretreatment 

and posttreatment states for the P E T and n P E T subgroups are in Figures 7.3 and 

7.4. While the total posttreatment mean (15.36 ± 15.16 %) and the posttreatment 

mean for the n P E T subgroup (16.31 ± 16.63 %) were higher than the mean for 

the P E T subgroup (12.84 ± 10.39 %) , an independent t-test showed no statistically 

significant (p > 0.05) differences between the P E T and n P E T subgroups for this 

measure. Dependent t-tests on the differences between the pretreatment and the 

posttreatment values for the total group, the P E T subgroup and the n P E T subgroup 

showed no statistically significant differences at the 0.05 level of significance. 

Discriminant analysis employing KL features 

The discriminant functions based on the three KL features from the three-group 

training set were applied to the posttreatment coefficients yt- of the P E T and n P E T 

subgroups. The results of this analysis are summarized in Table 7.2. These results 

were evaluated based on whether subjects were classified into a group vulnerable to 

arrhythmia (VT) or a group nonvulnerable to arrhythmia (NC or MI). It was found 

that 71% of the P E T and 73% of the n P E T patients were classified into the VT 

group. Of the entire posttreatment group, 73% remained classified as vulnerable to 
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Tabk; 7.2: Classification for the posttreatment VT group: discriminant analysis 
based on KL features yi,y2 and y4 derived from the three-group training set 

Group 
PET (n=14) 

nPET (n=37) 

Total (n=51) 

Priors 

cases 
% 

cases 
% 

cases 
% 

Category 
VT 

10 
71 
27 
73 
37 
73 

.33 

NC 
0 
0 
1 
3 
1 
2 

.33 

MI 
4 

29 
9 

24 
13 
25 

.33 

VT; therefore, 27% of the entire posttreatment group were classified as nonvulncra-

ble to VT. This result was similar to the classification of this group before treatment 

(VT^ain group), when 71% of patients were correctly classified into VT category (cf. 

Table 4.3). 

Discriminant analysis employing KnY features 

The discriminant functions based on the two KnY features /i and f2 from the three-

group training set were applied to the coefficients derived for the QRST-integral 

maps of the posttreatment VT group. Two patients in the PET subgroup were 

classified in the MI group and six patients in the nPET subgroup were classified in 

the MI group. Fig. 7.5 demonstrates the overlap between PET and nPET subgroups; 

it shows that a large proportion of the posttreatment values lies within the 95% 

confidence interval of the pretreatment values of the VTtrain group. 
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Figure 7.5: Posttreatment VT group in feature space of KnY coefficients f\ and f2 

derived from the three-group training set. 
Coefficient f\ is on the abscissa and f2 on the ordinate; the inner ellipses correspond 
to the 50% confidence intervals and the outer ellipses to the 95% confidence intervals 
(cf. Fig. 4.6); 0 represents patient who belongs to PET subgroup; x represents 
patient who belongs to nPET subgroup. 
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Table 7.3: Reconstruction errors for the posttreatment VT group: based on eigen­
vectors derived from the two-group training set 

rms error [fiYs] 

relative error [%] 

pdak error [fiYs] 

mean 
SD 

mean 
SD 

mean 
SD 

PET+nPET 
(n=51) 

4.37 
1.83 
7.97 
8.05 

14.22 
7.68 

PET 
(n=14) 

4.54 
2.00 
6.86 
6.41 

16.09 
10.86 

nPET 
(n=37) 

4.31 
1.79 
8.39 
8.64 

13.52 
6.13 

7.2 Analysis based on features from the two-group 
training set 

The QRST-integral maps for the posttreatment group and the 16 eigenvectors de­

rived from the two-group training set were used to calculate weighting coefficients yt-

for each subject in the PET and nPET posttreatment subgroups. These weighting 

coefficients for each subject in the posttreatment VT group, and the 16 eigenvectors 

from the training-set analysis, were used to reconstruct the QRST-integral maps. 

Summary statistics for three error measures of this reconstruction are in Table 7.3. 

The mean rms error, relative error and peak error were all higher than the errors 

for the VTtrain group (cf. Table 5.1). The rms error and relative error were slightly 

higher for this reconstruction than for the reconstruction of the same maps in the 

feature space derived from the three-group training set (cf. Table 7.1). The peak 

error was slightly lower for the two-group eigenvector reconstruction than for the 

three-group reconstruction. The worst cases, in terms of reconstruction errors, are 

shown in Fig. 7.6. 
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Nondipolar content of QRST-integral maps 

The mean (±SD) nondipolar content was calculated, based on eigenvectors derived 

from the two-group training set, far the entire posttreatment VT group (15.16 ± 

15.64 %) and for the PET (12.35 ± 10.63 %) and nPET (16.23 ± 17.17 %) sub­

groups. An independent t-test revealed no significant (p > 0.05) difference for this 

variable between the PET and nPET subgroups. As well, dependent t-tests between 

pretreatment and posttreatment measures did not show significant differences, at 

the 0.05 level of significance, for the entire VTtrain group or the PET and nPET 

subgroups. The overlap between subgroups for the nondipolar-content measure is 

apparent in the box plots for the pretreatment and posttreatment maps of the entire 

VTt^n group (Fig. 7.7) and the PET and nPET subgroups (Fig. 7.8). 

Discriminant analysis employing KL features 

The discriminant functions for the three features ye, yi and y4 derived from the two-

group training set, were applied to the coefficients yt- from the QRST-integral maps 

of the posttreatment VT group. The results of the discriminant analysis of weighting 

coefficients for the posttreatment VT group are in Table 7.4. These results show 

that 84% of all QRST-integral maps for posttreatment VT group were classified into 

the VT category; this is a similar result to the one obtained for the classification of 

pretreatment maps for the VTtrain group (cf. Table 5.4). 
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measured: reconstructed: difference: 

Figure 7.6: Worst-case reconstruction errors for the posttreatment VT group. 
Based on 16 weighting coefficients and 16 eigenvectors derived from the two-group 
training set. In the left column are measured maps, in the middle column are 
reconstructed and the right column are difference maps, a) Worst-case rms error 
(erms = 11.7 fiYs, erei = 4.0%, epeak = 37.9 ^Vs); b) Worst-case relative error ( e ^ 
= 3.6 fiYs, erei = 49.1%, epeak = 11.2 fiYs); c) Worst-case peak error (e,™ = 9.4 
fiYs, erei = 6.2%, epeak = 51.2 fiYs). 
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Figure 7.7: Nondipolar content for pretreatment and posttreatment VT group. 
Based on eigenvectors derived from the two-group training set. Box-plot convention 
is the same as in Fig. 7.3. 
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Figure 7.8: Nondipolar content for pretreatment and posttreatment PET and nPET 
subgroups. 
Based on eigenvectors derived from the two-group training set. Box-plot convention 
is the same as in Fig. 7.3. 
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Table 7.4: Classification of the posttreatment VT group: discriminant analysis based 
on KL features y6,y2 and y4 derived from the two-group training set 

Group 
PET (n=U) 

nPET (n=37) 

Total (n=51) 

Priors 

cases 
% 

cases 
% 

cases 
% 

Category 

VT 
11 
79 
32 
86 
43 
84 

.50 

MI 
3 

21 
5 

14 
8 

16 

.50 

Discriminant analysis employing KnY features 

The discriminant functions derived for the KnY feature f\ derived from the two-

group training set were appHed to the coefficients of the posttreatment VT group. 

The results of classification are summarized in Table 7.5; 9 of 14 P E T patients and 

32 of 37 n P E T patients were classified into the VT category. Therefore, 80% of the 

posttreatment maps were classified as belonging to the VT category. The percentage 

of P E T patients classified as vulnerable to VT was lower than the percentage of 

nPET patients: 64% versus 86%. Plots of the KnY coefficient fx for the P E T 

and n P E T subgroups are in Fig. 7.9. The mean of both posttreatment groups 

was slightly lower than the pretreatment mean for the VT train group. Examination 

of the direction of change in the KnY coefficient (posttreatment state relative to 

pretreatment state) showed that 71% (n=10) of the P E T coefficients moved toward 

the MI group, whereas 29% (n=4) went in the opposite direction. This difference in 

percentages was not Somatically significant (p = 0.11). Fifty nine percent (ra=20) 
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Table 7.5: Classification of the posttreatment VT group: discriminant analysis based 
on KnY feature / x derived from the two-group training set 

Group 
PET 

nPET 

Total 

Priors 

cases 
% 

cases 
% 

cases 
% 

Category 

VT 
9 

64 
32 
86 
41 
80 

.50 

MI 
5 

36 
5 

14 
10 
20 

.50 

of the nPET subgroup had a change in their KnY coefficients toward the MI group 

and 41% (n=17) moved in the opposite direction. The probability for this latter 

result was p = 0.25, and thus this difference was also not significant. Fig. 7.10 shows 

the direction of change between pretreatment and posttreatment KnY coefficients 

for the P E T and nPET subgroups. 

7.3 Summary and discussion 

The reconstruction errors for the posttreatment maps were higher in comparison 

with errors for the pretreatment maps of the same patients; this was the case for both 

the reconstruction based on eigenvectors from the three-group and two-group train­

ing sets. The nondipolar-content measure could not differentiate between the P E T 

and nPET posttreatment data — although there was a trend for higher nondipolar 

content in the nPET posttreatment subgroup. There was a large variability asso­

ciated with the nondipolar content for the posttreatment data. The results of the 
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Figure 7.9: Posttreatment PET and nPET subgroups in terms of KnY coefficient 
fx derived from the two-group training set. 
Box-plot convention is similar to that used in Fig. 7.3. 
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Figure 7.10: Pretreatment and posttreatment PT/T and nPET subgroups in terms 
of KnY coefficient /i derived from the two-group training set. 
PRE = baseline, POST = after treatment. 
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discriminant analysis, employing the three KL coefficients and the two KnY coeffi­

cients from the three-group training set, did not indicate any discernible changes in 

electrocardiographic measurements as a result of treatment. The discriminant anal­

ysis of the posttreatment VT data, based on the three KL coefficients derived from 

the two-group training set, showed only a slight improvement over the three-group 

results. The KnY features derived from the two-group training set provided the best 

results — in terms of differences between pretreatment and posttreatment data of 

the VTtrain group; however, the results do not corroborate the assessment provided 

by EPS studies. The small sample size (in particular for the PET subgroup) and 

to some extent the uncertainty associated with the prediction of effective therapy, 

provide some explanation as to why it is so difficult to differentiate between PET 

and nPET subgroups. 



Chapter 8 

Error estimates for classification 
procedures 

The issue of diagnostic performance of the classification procedures has been par­

tially addressed in chapter 6. As expected, the diagnostic performance for the test 

set was lower than that for the training set. The best diagnostic performance for 

the test set was achieved by the discriminant analysis based on the features derived 

from the two-group training set. These results illustrate that the features derived 

from the QRST-integral maps of the two-group training set contain information 

that could be used to classify independent ob°crvations. In contiast, the test-set 

results based on the features derived from the three-group training set were poor, 

indicating that these features have limited diagnostic value. This chapter focuses 

on evaluating, for the diagnostic features identified in chapter 5, classification errors 

and confidence limits associated with the classification procedures for discriminating 

between the two patient groups. 

In the discriminant analysis, the error bias is the difference between the apparent 

classification error for the training set and the true error of classification. The 

difference between classification errors for the original training set and for the test 

119 
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set provides one estimate of the error bias; this estimate has been obtained for every 

error measure in chapter 6. The stochastic methods used in this study for evaluating 

the true error require that all of the data be allocated to training and test sets 

according to the different schemes, which are specific for each method. Therefore, 

the entire patient population was combined into the total patient set and used to 

identify the features that contained the best diagnostic information for classifying 

the two patient groups. The features derived from the total patient set were also 

applied to the posttreatment VTtrain group to evaluate whether their sensitivity to 

electrophysiological changes resulting from drug therapy was improved with a new 

stable set of features. 

This chapter presents the error estimates calculated for the classification proce­

dures that employed the KL features derived from the total patient set (n=204). 

Three different methods were used to evaluate the true error from the total patient 

set: the bootstrap method without replacement; bootstrap method with replace­

ment [54]; and cross validation method [55]. These approaches (described in chapter 

3) are particularly useful for estimating true error in relatively small data sets. i 

8.1 Eigenvector analysis of QRST-integral maps 

As for the previous data sets, the first task was to reduce the pattern space for 

the total patient set (consisting of all patients, i.e., VTtrain + VT test = 102 and 

MItrain + MItest = 102), and the next task was to find an optimal classification 

procedure in this reduced feature space. The pattern space for the total patient 

set was a matrix [X], dimensioned 117x204, for the QRST-integral maps of 204 
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Figure 8.1: Percent trace vs. number of eigenvectors for the total patient set 

patients. The sample covariance matrix [Sc] and its eigenvalues and eigenvectors 

were calculated for [X]. The percent trace for the 16 highest eigenvalues was 99% 

(Fig. 8.1); the 16 corresponding eigenvectors were plotted as eigenmaps (Fig. 8.2). 

The measured QRST-integral values and the 16 eigenvectors derived from the 

total patient set were used to calculate the weighting coefficients y, for each eigen­

vector and for each patient. The 16 weighting coefficients for each patient and the 

corresponding eigenvectors were then used to reconstruct the QRST-integral maps 

for each patient. These reconstructed maps were qualitatively examined to detect 

differences in patterns compared with the measured maps. Three measures of er­

ror were calculated to quantify differences between the measured and reconstructed 

maps: a root-mean-squared error (erms), relative error (erei) and peak error (epcak)-
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Figure 8.2: Eigenvectors for the total patient set. 
Eigenvectors are plotted as spatial maps on the torso, in descending order of the 
magnitude of their contribution; the plotting convention is the same as in Fig. 4.2. 
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Table 8.1: Reconstruction errors for the total patient set 

rms error [fiYs] 

relative error [%] 

peak error [fiYs] 

mean 
SD 

mean. 
SD 

mean 
SD 

Total 
(??.=204) 

3.18 
1.00 
2.67 
4.10 

11.24 
4.47 

VTtotai 
(n=102) 

3.15 
0.99 
3.28 
4.30 

10.88 
4.18 

MItotai 
(?*=102) 

3.21 
1.02 
2.06 
3.81 

11.60 
4.74 

Table 8.1 summarizes the errors for the total patient set and for the two constituent 

groups. The rms error and peak error were similar between the two patient groups, 

with the VTtotai group having a slightly higher relative error compared to the MItotai 

group. These errors were similar to the errors that were associated with the recon­

struction for the two-group training set and for the test set, both based on the 

features derived from the two-group training set. The measured and reconstructed 

QRST-integral maps for the worst cases, in terms of errors, are shown in Fig. 8.3. 

8.2 Discriminant analysis employing KL features 

The stepwise discriminant analysis of the 16 weighting coefficients for the total pa­

tient set revealed that the three features with the greatest discriminating capabilities 

between the two constituent groups of patients (VTtotai and MItotai) corresponded 

to maps 6, 4 and 13 from Fig. 8.2; thus, all three KL features that were selected 

were nondipolar by definition. The results of diagnostic classification based on the 

discriminant analysis which employed the KL features ye,y4 and yi3 are in Table 
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measured: reconstructed: difference: 

Figure 8.3: Worst-case reconstruction errors for the total patient set. 
Reconstruction was based on 16 weighting coefficients and corresponding eigenvec­
tors. In the left column are measured maps, middle column are reconstructed maps 
and right column are difference maps, a) Worst-case rms error (erms = 6.8 fiYs, erei 
= 11.8%, epeak = 21.8 ^Vs). b) Worst-case relative error (erms = 4.5 fiYs, erei = 
29.5%, epeak = 15.4 fiYs). c) Worst-case peak error (erms = 4.6 fiYs, erei = 1.9% , 
ePeak = 24.1 fiYs). 
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Table 8.2: Classification of the total patient set: stepwise discriminant analysis 
based on KL features ye,y4 and j/13 derived from this set 

Group 
VTtotai (n=102) 
MItotai (n=102) 
Total (n=204) 

Priors 

Category 

VT 
84 
25 
109 

.50 

MI 
18 
77 
95 

.50 

Table 8.3: Sensitivity, predictive value and diagnostic performance of to­
tal-patient-set classification based on KL features y&,y4 and j/13 derived from this 
data set 

VT^ai (n=102) 
MItotai (n=102) 

Sensitivity [%] 

82 
76 

Predictive Value [%] 

77 
81 

DP = 79%; K = .58 

8.2. Summary of overall diagnostic performance is in Table 8.3. 

The percentage of patients correctly classified (79%) for the total patient set was 

the same as the number for the two-group training set (cf. section 5.3). However, 

the results of classification for the constituent groups VTtotai and MItotai of the 

total patient set were different from those obtained for the original training set 

groups VTtrain and MItrain! the sensitivities appeared to be more balanced, with 

the sensitivity for the VT category being 6% lower and the sensitivity for the MI 

category being 7% higher. 
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8.3 Discriminant analysis employing KnY features 

The KnY transform was performed on the 16 KL features derived from the total 

patient set. The stepwise discriminant analysis of the KnY feature space identi­

fied one coefficient, / i , that contained nearly all of the information discriminating 

between the two constituent groups of patients. This one feature was used for classi­

fication in a linear discriminant analysis. The results of diagnostic classification for 

the total patient set, consisting of 204 patients, are in Tables 8.4 and 8.5. Overall, 

89% of the patients belonging to the total patient set were correctly classified; this 

is the same percentage as for the original two-group training set in chapter 5. The 

percentage of patients who were classified correctly for each of the two constituent 

groups was similar to that obtained for the original training set (cf. Table 5.4). The 

mean and confidence intervals for the one KnY feature, characterizing constituent 

groups VTtotai and MItotai of the total patient set, are depicted in Fig. 8.4. The 

variability for the KnY feature was lower for the VTtotai group than for the MItotai 

group. These results demonstrate that the diagnostic information contained in the 

QRST-integral maps can be represented with a high degree of sensitivity by a single 

KnY feature. The ability of one single feature to characterize an arrhythmogenic 

state is striking, as evidenced by the VT sensitivity of 92%. 
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Figure 8.4: KnY coefficient f\ for the total patient set. 
The inner box corresponds to the 50% confidence interval and the outer box to the 
95% confidence interval; the mean is indicated by the horizontal bar. 
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Table 8.4: Classification of the total patient set: discriminant analysis based on 
KnY feature f\ derived from this data set 

Group 
VT^tai (n=102) 
MItotai (n=102) 
Total (ra=204) 

Priors 

Category 

VT 
94 
14 

108 

.50 

MI 
8 

88 
96 

.50 

Table 8.5: Sensitivity, predictive value and diagnostic performance of to­
tal-patient-set classification based on KnY feature / i derived from this data set 

VTtotai (n=102) 
MItotai (n=102) 

Sensitivity [%] 

92 
86 

Predictive Value [%] 

87 
92 

DP = 89%; K = .78 

8.4 Classification of the post t reatment VT group 

The 16 eigenvectors derived from the total patient set were applied to the measured 

QRST-integral maps for the posttreatment VTtrain group. The weighting coefficients 

yi for each eigenvector and for each patient were calculated, and the QRST-integral 

maps were reconstructed and compared with the measured maps. The errors for 

this reconstruction are in Table 8.6. The reconstruction errors were higher and more 

variable than the errors for the total patient set, the original training set or the test 

set. They were, however, similar to the errors found for the reconstruction of post-

treatment data in sections 7.1 and 7.2. The worst cases, in terms of reconstruction 

errors, are plotted in Fig. 8.5. 
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measured: reconstructed: difference: 

Figure 8.5: Worst-case reconstruction errors for the posttreatment VT group. 
Reconstruction was based on 16 KL coefficients derived from the total patient set. 
In the left column are measured maps, the middle column are reconstructed maps 
and the right column are difference maps, a) Worst-case rms error (erm» = 11.3 fiYs, 
erei = 3.7%, ePeak = 35.9 fiYs). b) Worst-case relative error (erms = 3.5 fiYs, erei = 
48.5%, epeak = 10.9 fiYs). c) Worst-case peak error (erms = 9.3 fiYs, erei = 6.0% , 
epeak = 53.1 fiYs). 
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Table 8.6: Reconstruction errors for the posttreatment VT group: based on features 
derived from the total patient set 

rms error [fiYs] 

relative error [%] 

peak error [fiYs] 

mean 
SD 

mean 
SD 

mean 
SD 

PET+nPET 
(n=51) 

4.21 
1.83 
7.58 
8.01 

13.95 
7.90 

PET 
(n=14) 

4.37 
2.06 
6.50 
6.36 

16.08 
11.74 

nPET 
(n=37) 

4.14 
1.76 
7.99 
8.60 

13.15 
5.87 

Table 8.7: Classification of the posttreatment VT group: discriminant analysis based 
on KL features ye,y4 and 2/X3 derived from the total patient set 

Group 
PET (n=14) 

nPET (n=37) 

Total (n=51) 

Priors 

cases 
% 

cases 
% 

cases 
% 

Category 

VT 
13 
93 
31 
84 
44 
86 

.50 

MI 
1 
7 
6 

16 
7 

14 

.50 

K = .054 

The classification results for the posttreatment maps, based on the discriminant 

functions employing KL features ye,V4 and y13 from the total patient set, are sum­

marized in Table 8.7. These results show that 86% of the QRST-integral maps were 

classified as belonging to the VT category. 

The results of classification for the posttreatment VT maps, based on the single 

KnY feature derived from the total patient set, are summarized in Table 8.8; 86% 
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Table 8.8: Classification of the posttreatment VT group: discriminant analysis based 
on KnY feature / i derived from the total patient set 

Group 
PET (n=14) 

nPET (n=37) 

Total (n=51) 

Priors 

cases 
% 

cases 
% 

cases 
% 

Category 

VT 
12 
86 
32 
86 
44 
86 

.50 

MI 
2 

14 
5 

14 
7 

14 

.50 

K = .005 

of the QRST-integral maps remained classified in the VT category. The PET and 

nPET subgroups had a similar ratio of patients who were classified to the VT and 

MI categories. These results differed from those obtained for the posttreatment-

VT-group classification, based on the one KnY feature derived from the two-group 

training set (section 7.2). The KnY coefficient for both the PET and nPET sub­

groups is plotted in Fig. 8.6. As is evident from this figure, there was a large overlap 

between the two posttreatment subgroups (PET and nPET) and the VTtotai group. 

It follows from these results that—in terms of features that were best able to 

classify the VT from the MI categories—there is apparently no significant change 

in the posttreatment QRST-integral maps as a result of treatment. 

8.5 Error estimates 

The diagnostic performance of classification based on the one KnY feature was 

consistently better than that based on the three KL features, for both training 
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Figure S.6: Posttreatment VT group in terms of KnY coefficient /x from the total 
patient set. 
The inner box corresponds to 'the 50% confidence interval and the outer box to the 
95% confidence interval; the mean is indicated by the horizontal bar. 
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Table 8.9: Error and variance estimates of correct classifications for KL and KnY 
feature spaces obtained by bootstrap method without replacement 

Group 

Training set (n=102) 
VT (n=51) 
MI (n=51) 

Test set (n=102) 
TVT (n=51) 
TMI (n=51) 

KL (features ye, y4 and t/13) 

mean (±1.96 SD) 

79 (6) DP 
82 (7) SEvr 

77 (7) SEm 

78 (6) DP 
81 (10) SEVT 

75 (12) SEm 

KnY (feature fr) 

mean (±1.96 SD) 

89 (5) DP 
93 (6) SEVT 

85 (7) SEMI 

82 (7) DP 
87 (8) SEV? 
77 (13) SEMl 

Total number of 1000 classifications were used. Training set = sets of data randomly 
designated as the training set; VT = the training-set group vulnerable to ventricular 
arrhythmia; MI = the training-set group with myocardial infarction; Test set = sets 
of data randomly designated as the test set; TVT = the test-set group vulnerable to 
ventricular arrhythmia; TMI = the test-set group with myocardial infarction; mean 
= mean of 1000 randomizations; ± = 95% confidence interval (±1.96 SD). 

and test sets. The analysis described in this section provides an evaluation of the 

error associated with the classification procedures, based on both the KL and KnY 

feature space, and provides an estimate of the classifier's ability to extrapolate, i.e., 

to classify independent observations. The error and variance estimates obtained by 

a bootstrap method and cross-validation method for the classification features are 

presented in Tables 8.9-8.11. 

The results obtained by the bootstrap method without replacement are in Table 

8.9; these error and variance estimates were generated from 1000 randomizations of 

the total patient set into equal training and test sets. The 95% confidence limits 

were calculated from the results of these 1000 replications. 

The error and variance estimates obtained by the bootstrap method with re-
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Table 8.10: Error and variance estimates of correct classifications for KL and KnY 
feature spaces obtained by bootstrap method with replacement 

Group 

Training set (n=204) 
VT (n=102) 
MI (n=102) 

Test set (n=75) 
TVT (n=37.5) 
TMI (n=37.5) 

KL (features ye, y4 and yi3) 

mean (±1.96 SD) 

80 (6) DP 
82 (8) SEVT 

77 (8) SEMI 

78 (8) DP 
80 (13) SEVT 

75 (14) SEMI 

KnY (feature / i ) 

mean (±1.96 SD) 

89 (5) DP 
93 (6) SEVT 

84 (7) SEMI 

82 (8) DP 
87 (12) SEw 
77 (15) SEMi 

Total number of 1000 classifications were used. Training set = sets of data randomly 
designated as the training set; VT = the training-set group vulnerable to ventricular 
arrhythmia; MI = the training-set group with myocardial infarction; Test set = sets 
of data randomly designated as the test set; TVT = the test-set group vulnerable 
to ventricular arrhythmia; TMI = the test-set group with myocardial infarction. 

placement are in Table 8.10. These results are based on 1000 randomizations of the 

total patient set into training set and test set by means of a sampling with replace­

ment procedure. The training set was made up of data for 204 patients (some with 

repetitions) and the test set comprised data for 75 patients who were not selected 

by the sampling procedure. 

Table 8.11 summarizes the results produced by the cross-validation method, 

which consists of systematically removing one case from the total patient set of 

204 cases. The training set was made up of the data for 203 patients and the 

test set consisted of data for just one patient. The results were derived from 204 

classifications. The 95% confidence limits were calculated assuming a binomial 

distribution. 
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Table 8.11: Error and variance estimates of correct classifications for KL and KnY 
feature spaces obtained by cross-validation method 

Group 

Training set 
VT 
MI 

Test set 
TVT 
TMI 

KL (features y6,2/4, J/13) 
mean (±1.96 SD) 

79 (6) DP 
82 (7) SEVT 

76 (8) SEMI 

78 (6) DP 
79 (8) SEVT 

76 (8) SEMI 

KnY (feature /1) 

mean (±1.96 SD) 

90 (4) DP 
93 (5) SEVT 

86 (7) SEMI 

84 (5) DP 
88 (6) S£VT 
80 (8) SEMI 

Total number of 204 classifications were used. Training set = set designated as 
training set (204 sets of 203 maps); VT = the training-set group vulnerable to 
ventricular arrhythmia; MI = the training-set group with myocardial infarction; Test 
set = data designated as test set (204 sets of 1 map); TVT = the test-set group 
vulnerable to ventxicular arrhythmia; TMI = the test-set group with myocardial 
infarction. 

Consistent with the results of classification of the original training set and of the 

total patient set, the mean percentage of patients classified correctly for the training 

sets, on the basis of KL features ye, y4 and xjiz, was 10% lower than the percentage 

of correct classifications based on one KnY feature / j . (The mean percentages 

of correct classifications for the training sets in Tables 8.9-8.11 were comparable to 

those from the original training set presented in Tables 5.3 and 5.5, and for the total 

patient set in Tables 8.3 and 8.5. A notable difference was in the classification results 

between the original training set in chapter 5 and the calculated mean estimates for 

the two constituent groups based on the KL feature space. The percentage of VT 

patients who were correctly classified decreased from 88% in the original VTtrain 

group to the average value of 82% for both bootstrap methods and cross validation. 
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In contrast, the average percentage of correctly-classified MI patients, as estimated 

by the two bootstrap methods and cross validation method, was better than the 

69% correctly classified from the original MI group (cf. Table 5.3). The average 

error estimates of the diagnostic performance based on the KL feature space for the 

two groups were consistent with the results of the total patient set. 

The results of classification for the training set, based on the KnY feature space, 

were consistent for the two bootstrap methods and cross validation. These aver­

age error estimates were comparable with the original training-set results and the 

results for the total patient set. There was a high sensitivity for the VT patients 

(93%), with a low variance associated with this value. The number of MI patients 

classified correctly was also consistent across all methods (84-86%). The variance 

estimates were similar for the both KL and KnY classification procedures; however, 

the variance estimates for the MI data were consistently higher than those for the 

VT data. 

The error and variance estimates provided by the cross-validation method (Table 

8.11) suggest that classifications based on a single KnY feature perform better, in 

every department, than classifications based on the three KL features. The results 

were the best for the KnY-feature-based classification of the training set, with 90% 

of the patients classified correctly and a 95% confidence limit ranging between 86-

94%. Of particular importance was the VT sensitivity, with a 95% confidence limit 

ranging between 88-98%. 

The test-set results were more variable and had a higher error rate than the 

training-set results for all three error estimates. The worst test-set result was the 
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sensitivity for the MI group, for classification based on the three KL features. The 

variance estimates obtained by the bootstrap method with replacement are notice­

ably higher, which in part can be explained by the smaller sample size (T?.=37.5). 

The best test-set result was the VT sensitivity for the classification based on the 

KnY feature, as estimated by the cross-validation method (95% confidence limit 

ranging between 82-94%). 

The difference between the test-set and training-set errors from the above pro­

cedures provided a measure of the error bias. The results of classification for the 

test-set, based on the KL feature space, were comparable to the training-set results 

for all three error estimates and the error bias for the classifications based on the KL 

features were 1-2%. The average test-set classification results, based on the KnY 

feature, were 7% lower than the training-set results as estimated by both bootstrap 

methods, and 5% lower according to cross-validation method. The error biases were 

slightly lower for the VT group than for the MI group, for all error estimates. While 

the error bias is higher for the classification based on the KnY feature, the number 

of correctly-classified patients who belonged to the VTtest group set was still on 

average 5-7% higher for this classification than for the one based on the KL feature 

space. 

8.6 Number of features 

The test-set results (chapter 6) and error estimates (section 8.5) provided evidence 

that the features derived from the QRST-integral maps contain important diagnostic 

information; however, the issue of tailoring the features to the training set was 
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further explored. The KL feature space was examined first to determine how many 

features could be used in the discriminant analysis before an overtraining effect was 

observed. Then the KnY feature space was examined, to evaluate the effect of 1 to 

16 KL features on the diagnostic performance of classification based on the KnY 

transform. The two bootstrap methods and the cross validation were applied to the 

KL feature space and the KnY feature space, with 1 to 16 KL features employed in 

the analysis. 

The discriminant analysis of the KL features illustrated that both the training-

set and the test-set classification results improved as the number of features in 

the discriminant analysis was increased from 1 to 8. When more than 8 features 

were added to the discriminant analysis, the number of correctly classified patients 

improved only slightly for the training set and there was a slight deterioration for the 

test set. The decreased performance was mainly due to decreased sensitivity for the 

VT group. This suggests that up to 8 features could be used with minimal tailoring 

to the training set. The 8 features selected on the basis of stepwise discriminant 

analysis were: y$,y4, yiz, j/5> Vi, 2/2, I/n and j/i4 , corresponding to spatial patterns 

in Fig. 8.2. Table 8.12 provides a comparison of the results of the discriminant 

analysis based on 8 and 16 KL features. 

The analysis of the classification based on KnY features demonstrated that the 

diagnostic performance improved for both the training and the test sets as the 

number of KL features included in the KnY transformation increased to 14. The 

results of the discriminant analysis of the single KnY feature based on 13 and 14 

KL features are in Table 8.13. The results of the training-set classification improved 
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for the one KnY feature calculated from the 16 versus 13 KL features for the cross 

validation procedure, which may be indicative of a trend toward tailoring. However, 

it is evident that 13 to 16 KL features in the KnY procedure produced similar 

classification results for the test set, although the sensitivity for the MI group was 

slightly improved for the KnY feature calculated from the 16 KL features. The 

inclusion of the three extra KL features in the KnY calculation appears to have 

minimal effect on the diagnostic performance of that feature. 

In general, there was a similarity between the diagnostic classification from the 

discriminant analysis of the 16 KL features and the discriminant analysis of the KnY 

feature space based on 16 KL features. The advantage of the latter is that a single 

feature that is easily displayed graphically contains the diagnostic information from 

the entire QRST-integral map. 

8.7 Summary and discussion 

The eigenvectors were calculated for the total patient set and low reconstruction 

errors were achieved using the 16 highest eigenvectors. The results of diagnostic 

classification for the total patient set were consistent with the results from the 

two-group training set. The three KL features identified as having the highest 

discriminating abilities corresponded to three nondipolar features: sixth, fourth 

and thirteenth. Consistent with previous results, the KnY feature provided the 

best classification (89% patients correctly classified), which was 10% better than 

the result based on the three KL features. The lower variability for the KnY feature 
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Table 8.12: Error and variance estimates of correct classifications for the 8- and 
16-dimensional KL feature space 

Group 

Training set DP 
SEyi 
SEMI 

Test set DP 
1S.E/TVT 

SE^Mi 

KL (8 features) 

BS1 

mean (±) 

88(5) 
94(6) 
83(7) 

84(6) 
90(8) 
78 (12) 

BS2 

mean (±) 

88 (5) 
94 (5) 
83(7) 

84(8) 
90 (10) 
78 (14) 

cv 
mean (±) 

89(4) 
95(4) 
82(7) 

85(5) 
91 (6) 
78(8) 

KL (16 features) 

BS1 
mean (±) 

89(5) 
93(6) 
85(7) 

82(7) 
87 (10) 
77 (13) 

BS2 

mean (±) 

89(5) 
93(6) 
85(7) 

82(8) 
87 (12) 
77 (15) 

CV 
mean (±) 

89(4) 
93(5) 
85(7) 

84(5) 
88(6) 
79(8) 

Training set = set of data designated as the training set for each error-estimate 
procedure; Test set = set of data designated as the test set for each error-estimate 
procedure; BSl = bootstrap without replacement; VT = the training-set group 
vulnerable to ventricular arrhythmia (n=51); MI = the training-set group with 
myocardial infarction (n=5l); TVT = the test-set group vulnerable to ventricular 
arrhythmia (n=51); TMI = the test-set group with myocardial infarction (n=51). 
BS2 = bootstrap with replacement; VT = the training-set group vulnerable to 
ventricular arrhythmia (n=102); MI = the training-set group with myocardial in­
farction (n=102); TVT = the test-set group vulnerable to ventricular arrhythmia 
(n=37.5); TMI = the test-set group with myocardial infarction (n=37.5); CV = 
cross validation; ± = ±1.96 SD. 
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Table 8.13: Error and variance estimates of correct classifications for one KnY 
feature based on 13 and 14 KL features 

Group 

Training set DP 
SEVT 

SEMI 

Test set DP 
SEJVT 

SETMI 

13 KL features 

BS1 

mean (±) 

87(6) 
92(7) 
82(8) 

81(6) 
87 (10) 
75 (13) 

BS2 

mean (±) 

87(6) 
92(6) 
82(7) 

81(8) 
87 (12) 
76 (14) 

CV 

mean (±) 

87(5) 
92(5) 
82(7) 

84(5) 
90(6) 
78(8) 

14 KL features 

BS1 

mean (±) 

88(5) 
93(6) 
84(8) 

82(6) 
88 (10) 
76 (14) 

BS2 

mean (±) 

88(5) 
93(6) 
84(7) 

82(9) 
88 (11) 
77 (15) 

CV 

mean (±) 

87 (5) 
91(6) 
83(7) 

84(5) 
88(6) 
79(8) 

with the increased sample size indicated stability of the diagnostic classification 

based on this feature. 

The reconstruction for the posttreatment VT group, based on the features de­

rived from the total patient set, was fraught with high reconstruction errors. The 

results of classification demonstrated that the majority of patients remained clas­

sified, as in their pretreatment state, as vulnerable to ventricular arrhythmias—in 

both the KL and KnY feature space. This indicates that the features derived to 

separate the VT and MI categories were not effective in predicting the outcome of 

antiarrhythmic therapy (as assessed by programmed stimulation). 

The error and variance estimates for the classification results were calculated 

by three methods: bootstrap without replacement, bootstrap with replacement and 

cross validation. All three procedures produced estimates of the mean classification 

error for the training set—based on both the KL feature space and the KnY feature 
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space—that were comparable to the results of discriminant analysis for the total 

patient set; therefore, doubling of the sample size seemed to have produced a stable 

set of features. The diagnostic sensitivity from these error estimates for the VT test 

group was consistently better than that for the MItest group. The poorer results 

for the MI data were also reflected in the greater variability associated with the 

classification for that group, compared to the VT group. The results of these error 

and variance estimates associated with the KL and KnY classifications provide a 

comprehensive evaluation of the expected performance of these features. 

Finally, as the number of KL features used in the stepwise discriminant analysis 

increased to 8, there was little evidence of tailoring for the training set; this was 

reflected in the improved test-set results based on the error estimates. This suggests 

that the use of three KL features in the original analysis was a conservative number 

and thus for the sample size in this study a ratio of 1:13 was acceptable. There were 

similarities between the classification results based on the discriminant analysis of 

the 16 KL features and the results of the discriminant analysis of the one KnY 

feature calculated from the 16 KL features. Including all 16 KL features in the KnY 

procedure did not appear to tailor the training set, since the test-set performance 

was maintained or slightly improved. The advantage of using the KnY feature space 

for this diagnostic classification problem was the ease of representation of the data. 

The separation and confidence limits illustrated in Fig. 8.4 demonstrate that the 

KnY space for the VT and MI diagnostic categories was well defined. 



Chapter 9 

Discussion and conclusions 

This study explored whether individuals at risk for malignant ventricular- arrhyth­

mias can be noninvasively detected by means of BSPM during sinus rhythm. Mea­

surements analyzed for each subject consisted of QRST-integral values calculated 

from 117 ECG leads. The reason for selecting QRST integrals was that they reflect 

the distribution of ventricular repolarization properties (disparity of which creates 

arrhythmogenic conditions). A statistical empirical approach was used—first to ex­

tract characteristic features from measured data and then to perform diagnostic 

classification based upon discriminant analysis which employed selected features. 

The results demonstrate that multiple body-surface ECGs contain valuable infor­

mation that, if properly extracted, can identify an arrhythmogenic substrate in the 

myocardium. This discussion addresses the significant results of this study as they 

relate to the objectives stated in chapter 1. 

9.1 Spatial reduction of QRST-integral maps 

The orthogonal expansion was applied in data reduction of ECG signals by several 

investigators [46,105,119,151,184]. In this study, the Karhunen-Loeve (KL) tech-

143 
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nique has been applied to represent each subject's measurements by 16 coefficients, 

and the Kittler and Young (KnY) method of feature selection further reduced the 

number of characteristic features to only one or two. The results of this study 

provide further evidence that the orthogonal expansion method is very effective in 

reducing dimensionality of BSPM data, while maintaining features necessary for 

accurate reconstruction. 

Different criteria are being used to measure the quality of BSPM data recon­

struction. The percent trace [119] provides a useful estimate of the expected errors 

associated with reconstructions based on varying number of eigenvectors (from one 

to twenty); this is illustrated in Figures 4.1, 5.1, 8.1. In agreement with the pre­

viously reported results for spatial reductions [46,119,151], the percent trace for all 

three training sets investigated in this study plateaued at around nine to twelve 

eigenvectors, with a 99% trace reached at 16 eigenvectors. Sixteen eigenvectors 

were included in the subsequent analysis, in an attempt to maintain the diagnostic 

information that may be contained in the higher-order eigenvectors—even though 

they contribute only very small percentages to the covariance matrix. The previ­

ously reported complexity of the spatial patterns of QRST-integral maps for the 

patient groups investigated in this study [65,154] was a deciding factor for including 

16 eigenvectors. 

Consistent with the results of other investigators [46,119,151], the first three 

eigenvectors were dipolar by definition and the fourth to sixteenth were nondipo­

lar. This is illustrated in Figures 4.2, 5.2 and 8.2. The root-mean-squared errors 

and the peak errors calculated for the reconstructed maps, based on the 16 basis 
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functions derived from the eigenvector analysis of the training sets, were similar to 

previously reported results [119,184]. The magnitudes of these two error measures 

may seem smaller in this study in comparison with others; this is because QRST-

integral values (fiYs), rather than instantaneous potentials (fiY) [119,184], were 

reconstructed. The mean peak and root-mean-squared errors were similar across 

groups of the training sets and the test sets; however, the mean and variability 

of the relative errors were higher for the patient groups compared to the group of 

normal subjects (see Table 4.1). This reflects the larger signal energy contained 

in the maps of normals. Even though the reconstructed patterns were somewhat 

smoother than the original measured maps, they maintained the principal spatial 

features with respect to location of maxima and minima and the areas of negative 

and positive QRST-integral values on the torso—even for the worst cases in terms 

of reconstruction errors. The increased smoothness of the reconstructed, compared 

to originally measured, patterns has been previously noted; it is conceivable that 

the difference between the measured and reconstructed maps is largely noise and 

that data-reduction procedure serves as a spatial filter [151]. 

The reconstruction errors for the training sets were in general lower than those 

for either the test set or the treatment set; this was expected, since the basis func­

tions were derived from the training sets. The reconstruction errors for the test set, 

based on the training-set eigenvectors (from both the two-group and three-group 

training sets), were only slightly different from those of the training sets. There­

fore, the features derived from the training set represented the test-set maps with 

only a very small additional error as demonstrated by the confidence limits asso-
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ciated with the three quantitative measures. More important in this study was to 

establish an optimal classification space based on these features and choose suitable 

decision-making techniques for classification; however, accurate representation of 

th<3 measured data was an essential prerequisite [119]. The reconstruction errors for 

the test set and training sets justified the use of 16 KL features derived from the 

training set in the diagnostic classification procedures. (The noticeably larger errors 

arose in the reconstruction of the posttreatment data, as will be discussed below.) 

9.2 Nondipolar content of QRST-integral maps 

The percent nondipolar content of QRST-integral maps—determined from higher-

order KL coefficients—was significantly lower for the normal subjects than for the 

patient groups. This finding was consistent with the literature [9,46,134], as was 

the finding that a large variability accompanies this index for the patient groups 

(Figures 4.5 and 5.4). The nondipolar content percentages found in this study sub­

stantiated the qualitative observation that the QRST-integral maps of the normal 

subjects have dipolar spatial patterns (Figure 4.4) compared to the more complex 

maps of most VT and MI patients (some patients did have low nondipolar content). 

There was no significant difference between the VT and MI patient groups for this 

measure, calculated from either the two-group or three-group eigenvectors; there­

fore, this measure differentiated poorly between the two patient groups. Gardner 

et al. [65,66] found that some patients with MI and no clinical arrhythmias had 

multipolai- QRST-integral distributions, but that long-term follow up was required 

to determine whether this reflected heterogeneity of repolarization associated with 
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VT. Similar to this study, Gardner et al. [65] also found that some patients with 

VT had a low multipolar index for their QRST-integral map. 

A classification procedure based on nondipolar content was not even attempted 

in this study, since only the normal group was found to be different from the two 

patient groups. The nondipolar-content results in this study, and the poor results 

obtained by Periyalwar [151] for separating VT and MI groups based on nondipo-

larity, suggest that this index may not be specific enough for adequately separating 

these two patient groups. Although the percent contribution of nondipolar features 

to the QRST-integral map could be the same for both VT and MI groups, the 

percent contribution of each individual spatial pattern to the lumped nondipolar-

content measure might be quite different. De Ambroggi et al. [46] showed that two 

of nine eigenvectors derived from QRST-integral maps (third and sixth) had coeffi­

cients that were significantly different between normals and patients with long QT 

syndrome (LQTS); however, the nondipolar content was also significantly different 

between the two groups. These findings suggest that both dipolar and nondipolar 

features may be valuable for differentiating between the LQTS patients and nor­

mals. Therefore, the difficulty in separating the two patient groups in the present 

study on the basis of merely nondipolar content of the QRST-integral map was not 

unt-.-.pected. Patients with myocardial infarction have structural alterations (fibrous 

amongst viable tissue) in the myocardium that have been associated with distur­

bances of the smooth propagation of electrical excitation [68,95]. The question is 

whether disturbances that are not reflective of an arrhythmogenic state can be dif­

ferentiated from disturbances associated with the electrophysiological substrate for 
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arrhythmias. This very ability to differentiate between the two patient groups was 

considered important for evaluating the feature space for classification purposes, 

and therefore, the index of nondipolarity was not pursued any further as a means of 

solving the diagnostic classification problem. Instead, further interrogation of the 

individual KL features was attempted. 

9.3 Analysis based on features from the three-
group training set 

The discriminant analysis of both the KL and KnY feature spaces derived from 

the three-group training set confirmed that the normal group was relatively easy 

to classify, whereas the two patient groups were still difficult to separate. This 

observation was similar to that made for the nondipolar-content results; however, a 

very noticeable improvement in diagnostic performance indicated that there was a 

discernible difference between the VT and MI groups. 

The three features that best differentiated between the constituent groups of 

the three-group training set corresponded to coefficients j/i, y2 and y4 (see chapter 

4). Features one and two were smooth and dipolar by definition, whereas feature 

four was nondipolar. Although these features are not physiological themselves, the 

implicit assumption is that they represent the underlying cardiac generators [9] and 

therefore help to explain the differences noted between groups. Feature one (Figure 

4.2) was strikingly similar to the measured maps from the normal subjects (cf. Fig­

ure 4.4) and it was the dominant pattern contributing to the QRST-integral maps of 

normal subjects. The mean magnitude of the weighting coefficient yi was substan-
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tially higher for the NC group compared to both the VTtrain and MItrain groups. The 

domination of this pattern reflects the large span in amplitude between the prin­

cipal maxima and mimima for many of the normal subjects compared to the VT 

and MI patients (Figure 4.4). The lower signal energy in QRST-integral maps for 

patients compared to normals has been previously observed and has been described 

as reflecting more disorganized repolarization process throughout the myocardium 

for patients [65,88,129]. The MI maps had a larger span between the two prin­

cipal extrema than the VT maps; this difference was quantified by the coefficient 

associated with feature one. While this feature differed between groups, there were 

exceptions within each group; this explains why this single feature was not adequate 

to quantify differences in the organization of ventricular repolarization properties 

and thus did not differentiate between groups. 

Feature two was also dipolar and the mean magnitude of coefficient y2 was again 

higher for the NC group than for the VTtrain and MItrai„ groups, r.lthough the polarity 

was negative for the normals and the MI patients, and positive for the VT patients. 

The effect of this particular pattern on the total map pattern would be a negative 

distribution over the right shoulder area for the normals as illustrated in Figure 4.4— 

a pattern that has been previously noted as characteristic of normal QRST-integral 

maps [88,129]. 

The third pattern was nondipolar and corresponded to coefficient y4; this pat­

tern differed in magnitude among the three groups. The greatest difference was 

between the normal subjects and the VT patients; the MI patients lay in between. 

The polarity of coefficient y4 was negative for all three groups, indicating that the 
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pattern would be added with reverse polarity to what is depicted in Figure 4.2. The 

combined effect of these three KL patterns on the patient maps was more difficult to 

determine from the original maps, since their map patterns were much more diverse 

than for normals. In general, these features did not capture enough diagnostic infor­

mation to differentiate satisfactorily among the three diagnostic groups. The poor 

test-set performance provides evidence that the features yi, y2 and y4 (see section 

4.3) were to some extent reflective of differences between the groups of this specific 

training set and were not necessarily characteristic of the differences among the 

three diagnostic categories (in particular between the VT and MI categories). The 

classification results based on the three KL features were similar to those reported 

by Periyalwar [151] for the nondipolar content. This was not suprising, since two of 

the three features chosen in the present study were in fact dipolar by definition. 

Including only three features (to obtain number-of-features to number-of-subjects 

ratio 1:17) in the discriminant analysis was a conservative a priori choice based on 

the sample size; such conservatism was considered necessary to minimize tailoring. 

The error estimates presented in chapter 8 show (for the total patient set with 

??.=204) that eight features could be included in the analysis without tailoring them 

to the training set. Since the KnY feature space incorporates all KL features in 

weighted combination [102], it provides an indication of whether there would be an 

improvement in the diagnostic performance with an increase in the number of KL 

features. 

The results for the training set were improved for the discriminant analysis 

based on the KnY feature space compared to the classification based on the three 
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KL features. As well, the diagnostic performance for the test set that included 

only the two patient groups was better for the KnY space than for the KL space. 

However, the error bias for the patient group was 16%. Inclusion of more features 

in the discriminant analysis produced an improvement in diagnostic classification; 

however, the diagnostic performance remained quite low. The plots of the two 

KnY features for both the training set (Figure 4.6) and the test set (Figure 6.3) 

clearly demonstrate the overlap among the diagnostic groups, with the MI group 

wedged between the VTtrain and NC groups. A closer examination revealed that the 

patients with inferior MI in the MItest group were more frequently missclassified as 

normals than were the patients with anterior MI. There was a larger proportion of 

anterior-MI patients in the training set, and this might have influenced the result 

of classification by making the features more specific to the training set rather than 

to the diagnostic categories in general. 

Since 24% of the VTtest group and 51% of the MItest group were missclassified, it 

was concluded that the KnY feature space defined from the three-group training set 

did not adequately solve the classification problem. The three training-set groups 

represent a continuum from presumably low risk to high risk for ventricular arrhyth­

mias, and therefore, an overlap was expected; however, a sensitivity of only 76% for 

the VTtest group was considered unacceptable. The valuable finding was that the 

KnY approach that utilized the combined 16 KL features led to better results than 

the approach based on selecting only three best features from the KL space. This 

provided further evidence that the difference among the diagnostic groups, if any, 

would be based on a complex combination of characteristics. 
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One possible way to improve classification results was to increase the number of 

patients in each diagnostic group; however, that would not eliminate the dominant 

effect on both the feature space and classification space of the homogeneous group of 

normal subjects. The patient groups were more heterogeneous than the NC group 

with respect to their QRST-integral map patterns, and the larger differences in the 

dominant KL patterns were between the normals and patients than between the 

two patient groups. Therefore, it was doubtful whether increasing the number of 

patients alone would mitigate the dominant effect of the normal group on both the 

feature and classification space. Although the KnY feature space did have overlap, 

further analysis of these results based on nonparametric approaches such as those 

recently presented by Kozmann et al. [106] may improve the diagnostic performance 

since assumptions regarding normality of data are not required in these approaches. 

9.4 Analysis based on features from the two-group 
training set 

Based on the results of three-group classification, focus of this study shifted on 

defining a classification space that would distinguish best between the two patient 

groups. In many cases it was obvious from visual inspection that the patient maps 

differed from those for the normals and the three-group results showed that these 

differences were quantifiable on the basis of nondipolar content, KL features and 

KnY features. The two patient groups, however, were difficult to differentiate by 

mere visual inspection, or by the quantitative measures derived from the three-group 

training set. In contrast to the three-group results, the diagnostic performance of 
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classification based on the KL features and a single KnY feature derived from the 

two-group training set demonstrated that differences between the QRST-integral 

maps from, the VT and MI groups could be quantified with a good degree of accuracy. 

Based on objective criteria, characteristics from maps of patients who were not 

vulnerable to arrhythmias were distinguishable from maps of patients who were 

vulnerable to arrhythmia. 

For the two-group training set, the KL feature space was comprised of two 

nondipolar features, y4 and ye, and one dipolar feature, y2—a very interesting 

difference from the three-group analysis. Since feature one was not chosen, the 

signal-energy difference between VTtrain and MIt,aj„ groups was not one of the ma­

jor features distinguishing between the two groups. The more complex patterns were 

chosen as being more sensitive to the differences between the two patient groups. 

The value of the three KL features chosen for characterizing the two patient 

groups lies, in part, in the consistency of diagnostic classification based on these 

features when an independent test set was classified. The magnitude and polarity 

of feature two (y2) differed between the VTtrain and MItrain groups; however, this dif­

ference was not maintained for the test set (for which the coefficient associated with 

feature two for the VT test group moved toward the MItrain value and the coefficient 

for the MItest group moved toward the VTtrain value). In contrast, the differences 

observed between the VTtrain and MItrain groups for features six (yr>) and four (1J4) 

were consistent for the test set. The VTtrain and MItrain groups, as well as corre­

sponding test groups, had minimal overlap for these two KL features. From these 

observations, the value of feature two as a measure of the differences between the 
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VT and MI diagnostic categories was in doubt. 

The physiological significance of the KL patterns and their contributions to the 

total QRST-integral map pattern for each diagnostic group was difficult to inter­

pret. The additive effect of the average of these three features (y2, y4, ye) would 

result in a large negative value of QRST integral on the anterior torso for the VT 

group; however, this distribution was also prominent on QRST-integral maps of 

some of the MI patients. The large areas of negative QRST-integral values have 

been previously observed on the anterior chest of patients who were vulnerable to 

ventricular arrhythmias [46]. It should be noted, however, that some patients from 

the VTtrain and VTtest groups did not exhibit this pattern (i.e., ..here was a large 

variability among VT patients). The significance of certain patterns, such as the 

figure-of-eight pattern that appears in features four and six, is difficult to interpret, 

but perhaps worthy of further investigation. The combined effects of these three 

spatial features would be a complex spatial pattern for both patient groups. 

Only six patients from the VT t r ain group were missclassified when the classi­

fication was based on the three KL features derived from the two-group training 

set. However, the poorer diagnostic performance was noted for the MItrain group; 

in particular, there was a large percentage of false positives (31%), which indicates 

that not all salient information necessary for differentiating between the two patient 

groups was identified. The test-set results confirmed this observation. The overall 

diagnostic performance was only slightly lower for the test set (DP = 75%) than 

for the training set (DP = 78%), which was a substantial improvement over the 

three-group results; however, 25% of patients were still missclassified. An interest-
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ing finding was that the diagnostic performance of classification deteriorated for the 

VTtest group and actually improved for the MItes,t group. The inconsistent behaviour 

of feature two provided a partial explanation for these results. 

The diagnostic performance based on the one KnY feature clearly indicates that 

KnY transformation of the 16 KL features into one KnY feature captures a large 

amount of the diagnostic information contained in the QRST-integral maps. The 

KnY transform yielded a single index that performed very well in classifying the 

two patient groups (only 11% of patients were missclassified in training set). Com­

pared to the plot of nondipolar content for the two patient groups, the plot of the 

KnY coefficient for both the training and test sets (Figure 6.5) demonstrates the 

advantage of the KnY approach over the nondipolar-content measure for quantifying 

differences between the VT and MI groups. 

There was only a small deterioration in diagnostic performance between the 

training set (DP = 89%) and the test set (DP = 85%); this indicates potential 

value of the KnY feature for classifying future observations [54]. The sensitivity and 

predictive value for both the VTtrain group (92% and 87%, respectively) and VTtest 

group (84% and 86%, respectively) were comparable with corresponding values in 

the literature and the predictive value was either higher than or comparable with 

predictive values reported for other nonivasive techniques [36,174,187]. Also, there 

was no distinct trend for higher classification errors associated with location of MI 

as was the case with the three-group classification. 

Thus, the KnY feature space was the best for classification and it was easy to 

visualize graphically, since only one KnY feature contained a large percentage of 
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the diagnostic information extracted from the QRST-integral maps of two patient 

groups. The KnY coefficient reflected the weighted contributions of all KL features 

in Figure 5.2. The diagnostic performance and the stability between training-set 

and test-set results (error bias = 4%) for the KnY space provided further evidence 

that more than a few patterns were necessary to reflect the complexity of the differ­

ence between the VT and MI categories. Many different characteristics have been 

associated with the QRST-integral maps of patients with VT (such as maximum-

to-minimum span, negativity on the anterior torso and multipolar distributions); it 

appears that the KnY feature might have captured and quantified these character­

istics very well. 

The results from chapters 4, 5 and 6 demonstrated the merit of the approaches 

based on the KL expansion, but the issue of applicability of the features to classi­

fying future observations was only partially addressed by analysis of the test set. 

These findings provide the basis for quantifying those differences in the QRST-

integral maps that reflect vulnerabilty to VT, but still a question remains whether 

the training-set features are characteristic of the differences between the VT and MI 

diagnostic categories. Some of the errors in classification may have been due to dif­

ferent composition of groups, e.g. the different percentages of patients with inferior 

MI and anterior MI in the MItrain and MItest groups, or the different percentages of 

patients with sustained VT induced via EPS in the VT t r ain and VTtest groups. 

To shed more light onto this problem, a classification space based on all available 

patient data (total patient set) was developed. This pooled data set yielded a more 

stable set of features and discriminant functions for classifying the VT and MI 
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categories. This quantified the variability that may have resulted from the initial 

(perhaps biased) assignment of patients to training and test sets. 

When the total patient set was used, all three KL features chosen from the 

stepwise discriminant analysis (j/6,2/4 and 2/13) were nondipolar by definition (Figure 

8.2). The patterns for features four and six were similar to those for features four and 

six derived for the two-group training set. Feature thirteen was similar to feature six 

with two lateral maxima on the left anterior torso. It was interesting that feature two 

was not chosen amongst the best three features in this discriminant analysis. This 

lends support to the suspicion that this feature's inconsistent behaviour between 

the training and test sets was reflective of a specific difference found in the training 

set and not necessarily one of the prominent differences between the two diagnostic 

categories. The diagnostic performance for the KL space was similar to that of 

the original two-group training set (DP = 79%) and was 10% less than for the 

classification based on the KnY space (DP = 89%), supporting the finding that the 

three KL features do not contain enough diagnostic information from the QRST-

integral maps. The bootstrap and cross-validation procedures applied to this larger 

sample showed that the choice of only three features was perhaps overly conservative, 

and that up to eight features could be included in the analysis without a tailoring 

effect (see Table 8.6). The best eight features chosen (six of them nondipolar) 

reflected both complex patterns and (feature one) the difference in signal energy 

between the groups. The average sensitivities were good for the VT groups (95% 

confidence limits, based on cross validation, were 85-97%) for the classification based 

on the eight KL features; they were similar to those obtained in the KnY space (see 
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Table 8.6). Including more than eight KL features in this analysis did not improve 

the diagnostic results, since the test set result deteriorated. 

The diagnostic performance of classification based on the KnY feature for the 

total patient set was consistent with that in the original training set; the box plot 

of the KnY coefficient (Figure 8.4) illustrates a feature space with clearly defined 

separation between the two diagnostic groups. An important observation was that 

the variability of the KnY feature for the VTtotai group was lower than that of the 

original VT t r ajn and VTtest groups. This reassuring finding indicates an increase in 

stability of diagnostic performance with the increase in sample size. The features 

of QRST-integral maps remained more variable for the MItotal group than for the 

VTtotai group; this was a consistent finding throughout this study for MI and VT 

groups (which was reflected in higher missclassification errors for MI groups). An 

explanation for this diversity may be the inclusion of different proportions of inferior 

and anterior Mis in MI t rain and MItest groups (the variability estimates provide evi­

dence of this). The VT group, however, had also very diverse clinical characteristics, 

since patients with anterior and inferior MI were present as well as patients with 

other causes for VT. The variance estimates provide an indication of the worst-case 

results that may be caused by the variation among patients. 

The 92% sensitivity of diagnostic classification for the VT category demonstrated 

that the KnY classification space was particularly well defined for the VT group. In 

spite of the higher variability for the MI group, 86% of the QRST-integral maps were 

classified correctly in the feature space derived from the total patient set. Not only 

was there a high sensitivity for identifying patients at risk for ventricular arrhyth-
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mias, but there was also a relatively low error associated with falsely classifying MI 

patients that were not at risk for arrhythmias. Many classification approaches based 

on electrocardiographic features have been shown to be very sensitive in identifying 

high risk for VT; however, their limitation has been the error associated with iden­

tifying incorrectly those not at risk [36]. An effective classifier should yield both 

high sensitivity and high predictive value. 

Few studies have reported error and variance estimates, making it difficult to 

compare the results of this study with others. Papers which report only the training-

set results provide an overly optimistic estimate of future diagnostic performance 

[55]. The error and variance estimates based on the two bootstrap procedures and 

the cross-validation procedure, were quite stable for overall diagnostic performance 

and sensitivity percentages—in particular for the VT group. The cross-validation 

estimates were slightly higher than those obtained by the two bootstrap methods, 

but, no large discrepancies were observed. Efron [54] found that the bootstrap with 

replacement provided the best estimate of the true error in the general classification 

problem, but the sample size in his experiments was very small compared to this 

study. The consistency of the error estimates from all three methods indicated that 

they reflected reasonably well the expected error for future observations. 

The cross-validated sensitivity for the VT test group was 88%, with a 95% confi­

dence limit of 82-94%, and the MItest sensitivity was 80%, with a 95% confidence 

limit of 72-88% (the bootstrap estimates were only slightly lower). These results 

compare favorably with a model recently proposed by Vatterott et al. [187], which 

incorporates both clinical variables and variables that examine the terminal QRS 
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complex of the ECG. They reported cross-validated sensitivities of 91% for predict­

ing programmed stimulation outcomes in a similar patient population as VTtotai 

group. Their sensitivity value was within the 95% confidence limits for VT sen­

sitivity found in the present study; however, similar to many other studies that 

analyze the late QRS complex, they reported sensitivities of 59% (as estimated by 

cross-validation method) for patients not at risk of arrhythmias. Therefore, based 

on their logistic model, a large number of patients that were not at risk for VT were 

missclassified. One possible explanation for this poor sensitivity of signal-averaged 

ECGs for patients not at risk of arrhythmias is that high-frequency components at 

the terminal QRS complex are also associated with abnormalities other than VT 

[38,39,115], Further refinement of signal-averaged ECG technique, to better iden­

tify features that are more specific to vulnerability to ventricular arrhythmias, are 

presently being pursued [36,39]. Since the difficulty in distinguishing VT from MI 

was also noted in studies examining the QRST-integral maps [65,66,151], the results 

of this present study indicate that an improvement was made on previous work. 

In general, the diagnostic performance achieved in the present study compares fa­

vorably with reported sensitivities for VT achieved by other noninvasive approaches 

(such as signal-averaged ECG and ambulatory monitoring). Sensitivities 66-100% 

have been reported [36] for correctly predicting inducibility of VT on the basis of 

temporal and frequency analysis of signal-averaged ECG. In instances where the 

reported sensitivity was high, the specificity values were low. The exception was 

a study by Nalos et al., employing three criteria from signal-averaged ECG, which 

reported sensitivity of 93% and specificity of 94% for 100 patients [140]. These re-
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suits stand out from all other reported results; unfortunately, no variance or error 

estimates were given. Therefore, it is difficult to ascertain whether these results 

were reflective of the unique sample in the study or a true indication of diagnostic 

performance based on the three proposed measures. 

Recently, the association between delayed depolarization as the substrate for 

arrhythmias and the low-level potentials at the terminal portion of QRS complex has 

been questioned [36,39,57]. The criticism is that delayed ventricular activation may 

only be one possible anatomical/electrophysiological substrate for the development 

of VT and that analysis of the complete cardiac cycle—including both depolarization 

and repolarization—may be a more fruitful approach [39]. 

The diagnostic performance of Holter monitoring as a method of piedicting risk 

for ventricular arrhythmias has been generally lower than that for signal-averaged 

ECGs. Better results were achieved when Holter monitoring was combined with 

either signal-average ECGs or radionuclide ventriculography [183,201]—with best 

diagnostic performance of combined methods in the 80% range compared to results 

of programmed stimulation. In both of these studies, the specificity values were 

higher than the sensitivity values, but the number of patients with their arrhyth­

mia induced by programmed stimulation was relatively small (12 in reference [201] 

and 22 in reference [183]). Holter monitoring has been extensively used; however, 

recent studies have provided evidence that the presence of or the suppression of ec­

topic activity do not necessarily affect the vulnerability to ventricular arrhythmias 

[22,176]. 

In comparison with other noninvasive methods, only a few studies [9,18,65,66,151] 
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have addressed the problem of predicting risk for ventricular arrhythmias on the ba­

sis of assessment of disparate ventricular repolarization properties. This study con­

tributes supportive evidence that a comprehensive examination of these properties 

yields valuable diagnostic information and that quantitative measures that differen­

tiate between diagnostic groups can be extracted. Compared to some of the more 

simplistic approaches, body-surface potential mapping provides the comprehensive 

spatial information about ventricular repolarization properties [88,117]. A recent 

study by Benhorin et al. [18] evaluated the ability of electrocardiographic measures 

aimed at quantifying repolarization characteristics from 12-lead ECGs to classify 

patients with LQTS from normal subjects. They used a bootstrap technique with 

100 randomizations and estimated the 95% confidence intervals for their sensitivity 

percentage as 81.6-100% and specificity percentages as 93-98%, based on five pre­

dictor variables. However, these high values reflected the low error in classifying 315 

normal subjects, while the error rate for classifying the LQTS patients was 9.3/37 or 

25%. More complex analysis, such as applying the 2-D FFT to the QRST-integral 

maps, has shown poor diagnostic performance for classifying VT and MI patient 

groups [153]; large overlap in the peak Fourier spectrum was found between these 

patient groups and only a slight improvement was noted over the extrema-count 

method reported by Gardner et al. [65]. 

/ 

The present study provides evidence that local disparities in repolarization prop­

erties can be quantified and used to identify individuals at risk for ventricular ar­

rhythmias. The approaches employed in this study to identify features associated 

with arrhythmogenesis enhance previously used methods in that they incorporate a 
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large number of features in the analysis. Each feature has a distinctive pattern and 

assessing the combination of features appears to be necessary to accurately reflect 

the complex differences between the VT and MI groups. The classification space is 

well defined for the KnY feature and for the eight KL features; in these spaces it 

appears possible to discriminate between the two patient groups. However, the dif­

ference between the same patient groups is not easily quantifiable in feature spaces 

of smaller dimension. This intuitively makes sense, considering the complex interac­

tions of factors that contribute to the inhomogeneity of refractoriness in ventricular 

arrhythmias. 

Classification of posttreatment group 

The objective of the analysis of posttreatment QRST-integral maps was to evaluate 

whether the prediction of successful treatment—such as that currently made by the 

invasive EPS studies—could be also made from the feature space that differentiated 

QRST-integral maps of patients that were at risk of ventricular arrhythmias from 

those that were not. The posttreatment maps, however, had larger reconstruction 

errors indicating that the features derived from the training sets did not provide 

all the salient information for reconstructing the posttreatment distributions. All 

error measures (both their mean values and the standard deviations) were higher for 

the posttreatment maps compared to the corresponding training-set values for the 

same patients. The relative errors were considerably higher than the training-set 

values; this was partly caused by the lower signal energy in the posttreatment maps 

compared to the pretreatment maps (see Figure 7.3). Over 60% of the posttreatment 
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maps had lower maximum-to-minimum differences than their pretreatment maps. 

The reconstruction errors were similar between the P E T and nPET subgroups of 

the posttreatment set, indicating that the result of programmed stimulation was not 

an influential factor. 

Previous studies [84,112,190] show changes in the ECGs following quinidine ther­

apy, and perhaps the features characteristic of these alterations in the QRST-integral 

map were unique for the posttreatment group and were not represented in the set of 

eigenvectors derived from the training sets. Qualitative observations of the pretreat­

ment and posttreatment maps for patients in the VTtrain group (Figure 7.2) showed 

that, for many patients, there were noticeable differences between these maps; some 

of the posttreatment maps (e.g. PET 2 ) appeared to become less complex than their 

pretreatment maps, while others (e.g. nPETi ) appeared to became more complex. 

The inability to accurately reconstruct these maps provided quantitative evidence 

that differences existed between pretreatment and posttreatment maps. 

The nondipolar content of the pretreatment and posttreatment QRST-integral 

maps for the VTtrain group showed a trend toward a higher percentage of nondipo­

lar features for the posttreatment maps. The slightly higher means after treatment 

were reflective of a general increase in complexity of maps, in particular those for 

the nPET group. This result was not statistically significant, however, nor were the 

differences between the P E T and nPET subgroups (although the n P E T subgroup's 

nondipolar content, based on eigenvectors from both the iwo-group and three-group 

training sets, was slightly higher). The increase in the variability of the nondipolar 

content for the posttreatment maps indicated that alterations in the maps were not 
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consistent for all patients. This complexity has been previously reported, with pre­

treatment and posttreatment difference found between PET and nPET subgroups, 

based on simple quantitative assessment of map features [131,132]. The small sam­

ple size, in particular for the P E T subgroup, and the large variability may partially 

explain why the differences were not significant. 

The disturbing finding was that the direction of the trend was toward a more 

complex QRST-integral map after treatment with quinidine. This was particularly 

evident for the nPET subgroup, although the PET subgroup also demonstrated 

more variability for this measure. These results are in concurrence with other stud­

ies that reported the proarrhythmic effects of quinidine [45,161]; also, the recent 

cessation of the CAST trial [20,21,150] because of the ineffectiveness of some class 

I antiarrythmic agents (flecainide and encainide) suggests that quinidine's antiar­

rhythmic effects cannot be taken for granted. Several mechanisms associated with 

development of ventricular arrhythmias have been demonstrated in the presence of 

quinidine, including syncope and delayed repolarization [160], early afterdepolar­

ization and triggered activity [45], abnormal automaticity [161] and reentry [170]. 

Alterations in postrepolarization refractoriness and action potential prolongation 

may be reflected in the posttreatment maps that were either lower in amplitude or 

more complex than the pretreatment maps. 

The discriminant functions employing the KL and the KnY features derived from 

all three training sets were applied to classify posttreatment VT patients; very few 

patients actually moved from their pretreatment classification, i.e., in most instances 

they remained classified into the VT category. Both the KL and KnY features de-
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rived from the training sets for classifying maps of individuals with the high risk for 

ventricular arrhythmias (VT category) from maps of individuals with the low risk 

for ventricular arrhythmias (MI and NC categories) detected a change in clinical 

state due to the quinidine treatment in very few patients. This change in classifica­

tion to the nonvulnerable group was shghtly higher in most instances for the P E T 

subgroup, but these differences were not statistically significant. The difficulty in 

interpretation was to ascertain what was at fault—whether it was an insensitivity 

of the feature space to actual changes in the electrophysiological substrate, or an 

error in EPS studies' prediction of efficacy of therapy. This latter point has been 

an intensely debated issue [23,30,77,157] and few studies have addressed efficacy of 

EPS studies in randomized clinical trials [130]. In light of recent findings on class I 

antiarrhythmic agents [14], the efficacy of these agents for arrhythmia suppression is 

suspect. It is possible that the qualitative difference observed between the pretreat­

ment and posttreatment maps was the quinidine effect, which may be reflective of a 

suppression of the substrate for ventricular arrhythmias in the P E T group in some 

cases, but not for all patients. Therefore, if the classification space developed for the 

training sets contained the features associated with the arrhythmogenic substrate, 

the posttreatment results showed that the therapy was ineffective for the majority 

of patients. The posttreatment classification based on the total group data shows 

that only 14% of the patients in VTtrain group moved to the nonvulnerable category 

after treatment (for both the KL and KnY feature spaces). The P E T and nPET 

designations, based on the EPS studies, were not reflected in these values. 

Noninvasive methods for evaluating the effectiveness of therapy are being pur-
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sued and thus programmed stimulation, although it has limitations of its own, has 

been used as the standard for comparison [22]. Initial studies show that time-domain 

analysis of late QRS complex is not effective; on the other hand, frequency-domain 

analysis of the entire cardiac cycle has shown promise for evaluating effectiveness 

of treatment [36]. Further inquiry, to establish that the variables derived from 

the QRST-integral maps could evaluate effectiveness of therapy, will be required. 

Long-term follow up of patients may be needed to ascertain the true value of these 

techniques. 

9.5 Summary 

The stochastic pattern recognition approaches employed in this study identified 

spatial features from the QRST-integral maps that classified patients vulnerable to 

ventricular arrhythmias from those that were not vulnerable to arrhythmias. From 

a diagnostic-performance perspective, the more sophisticated methods based on the 

KL expansion and the KnY transformation outperformed the simple measure of 

nondipolar content. The KnY transform in particular had very good error esti­

mates associated with applying KnY features to classify future observations. The 

KL classification space required 8 features to yield similar results. These results are 

promising, and the predictive values indicate that the measures extracted from eval­

uating the QRST-integral maps provide additional information for risk statification 

of VT vulnerabiUty. Based on the underlying assumption that the QRST integral 

measured from the body surface reflects the distribution of primary repolarization 

properties, these results demonstrate that spatial disparity of primary repolariza-
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tion properties can be quantified as features derived from the QRST-integral maps. 

Although such features are not physiological themselves, they do reflect complexity 

of cardiac electrical generator and accurately represent the measured map. This 

study, therefore, provides empirical statistical evidence supporting the link between 

alterations in primary repolarization properties measured from the QRST-integral 

maps, and myocardium at risk for ventricular arrhythmias. It also provides quan­

titative support for other clinical studies in which more complex QRST-integral 

distributions were associated with the ECG patterns recorded from individuals at 

high risk for arrhythmias. 

The value of the feature space developed for evaluating the arrhythmogenic sub­

strate of the ventricles in assessing effectiveness of quinidine therapy was difficult to 

establish at this stage. From this study, the effect of quinidine treatment—measured 

in terms of features derived from the QRST-integral maps—was that only a small 

proportion of the VT patients in either the P E T or nPET subgroups moved to a 

nonvulnerable diagnostic category. 

9.6 Conclusions 

The aim of this study—to extract the diagnostic information contained in QRST-

integral maps that is associated with high risk for ventricular arrhythmias—has 

been achieved. 

The pattern space for the QRST-integral maps acquired from training sets con­

sisting of patients vulnerable to ventricular arrhythmias and those not vulnerable 

to arrhythmias were reduced to a feature space by orthogonal expansion methods. 
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The errors associated with reconstructing the map patterns, based on 16 principal 

eigenvectors, were low and justified the development of a classification criterion. 

Features derived from the KL expansion were used to define a classification space 

that best differentiated between diagnostic groups of the training sets. The best 

results were obtained when the homogeneous group of normal subjects was removed 

from the analysis. The classification space based on the KnY transformation showed 

that this approach extracted a large portion of the diagnostic information contained 

in the QRST-integral maps. 

The test-set results and the error estimates provided a rigorous estimate of the 

error associated with applying these approaches to classifying future observations. 

In general, the sensitivity for the VT patients was higher than that for the MI 

patients; however, the low number of MI patients missclassified indicated that the 

classification space was specific. 

Increasing the number of maps in the classification space resulted in a stable fea­

ture space as evaluated by the error and variance estimates. Eight KL features were 

required in the classification space to yield results similar to the KnY transformed 

space. 

Finally, the classification space derived from the training sets did not corroborate 

the results of the EPS studies for predicting effective therapy from the posttreat­

ment maps following quinidine administration. Only a very small percentage of the 

patients in the PET subgroup were classified into a group considered nonvulnerable 

to arrhythmia after treatment, 

The diagnostic performance for classifying individuals at risk for ventricular ar-
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rhythmias achieved in this study provides further evidence that noninvasive methods 

can recognize cardiac states that are associated with vulnerabihty to arrhythmias. 



Appendix A 

Training-set groups 

The training set was used to derive BSPM features suitable for diagnostic classifi­

cation of patients vulnerable to ventricular arrhythmias. This Appendix provides 

demographic information about all members of the training set; this information 

comprises gender, age, heart rate and diagnosis according to the New York Heart 

Association [144]. BSPM data for all subjects listed in this Appendix arc stored 

on the study tape MT222. The entire training set consists of 153 subjects: 51 

patients vulnerable to ventricular arrhythmias (VTtiain group); 51 normal subjects 

(NC group); and 51 patients with myocardial infarction and no arrhythmias (MItrain 

group). Mean age and gender characteristics of these three training-set groups are 

in Table A.l . 

The VTtrain group (Table A.2) was selected from the patient population treated 

for VT with quinidine as their first antiarrhythmic agent, at the Foothills Hospital 

in Calgary. All patients who belonged to the VTtrain group underwent thorough 

clinical examination, the results of which are presented in Appendix C. As seen in 

Table A.2, 75% of the VTtrain group had a prior myocardial infarction. Of those 

that had an infarction, 45% were inferior Mis, 42% were anterior Mis, 8% had both 
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Table A.l : Age and gender of the training-set groups 

VTtrain NC MI, 
Age 
mean [yrs] 
SD 
males 
females 

59.6 
12.2 

47 
4 

45.9 
8.5 
47 
4 

57.2 
11.1 

45 
6 

an anterior and inferior MI and 3% had a lateral MI with 3% a nonspecified MI. 

The NC group (Table A.3) and MItrain group (Table A.4) were selected from a 

population that underwent BSPM recording at the Victoria General Hospital in Hal­

ifax. Subjects who were selected for the NC group had no evidence of heart disease 

on history, 12-lead ECG, physical examination and echo car diographic examination. 

Patients in the MItrain group all had suffered an MI and were, based on their clinical 

assessment, without arrhythmias; 55% of these patients had an anterior MI and 45% 

had an inferior MI. 



Table A.2: Training set: VT t r am group 

# 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

Subject 
AD01 
3D02 
GD03 
DE04 
RF05 
RG06 

WK07 
MK08 
RL09 

WM10 
DM11 
GR12 
DW13 
HZ 14 
NA51 
SB52 
OB53 
RB54 
RB55 
JC56 
JC57 

WC58 
WC59 
LC60 
ED61 
RE62 
AF63 
NF64 
DG65 
PH66 
WI67 
EI68 

FK69 
KL70 

MM71 
OM72 
RM73 
AN74 
JP75 
JP76 
RP77 
SP78 
LR79 

WR80 
OR81 
AR82 
AS83 

WS84 
AT85 
ZT86 
JW87 

Session 
457 
273 
601 
429 
176 
37 

430 
540 
592 
397 
408 

59 
327 

55 
510 
350 
431 

15 
276 
271 
67 

615 
235 
58 

241 
260 
91 

481 
134 
360 
452 
513 
590 
534 
497 
191 
198 
224 
395 
373 
522 
272 

57 
200 
494 
460 
111 
61 
64 

292 
609 

Sex 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

Age 
61/02 
41/06 
28/10 
49/03 
52/10 
79/11 
79/06 
68/06 
56/09 
68/01 
50/08 
54/01 
50/10 
55/00 
68/09 
62/01 
58/08 
44/07 
54/02 
64/09 
56/08 
69/00 
60/05 
61/03 
67/07 
78/06 
64/04 
68/03 
74/07 
62/01 
56/03 
58/10 
70/11 
69/03 
64/03 
70/11 
50/09 
25/06 
61/08 
49/11 
51/01 
73/03 
78/06 
54/05 
74/05 
68/02 
63/06 
52/01 
49/02 
65/09 
33/08 

HR 
55 
70 
69 
81 
62 
78 
50 
75 
58 
81 
86 

105 
94 
62 
63 
53 
82 
58 
68 
57 
51 
47 
56 
71 
74 
53 
70 
70 
69 
72 
87 
72 
66 
82 
81 
70 
83 
77 
83 
63 
87 
76 
58 
72 
66 
70 
68 
64 
75 
61 
74 

Diagnosis 
VT / Syncope / inferior Ml 
VT / Syncope / VPBs 
VT / Cardiomyopathy 
VT / anterior Ml 
VT / anterior Ml 
VT / anterior Ml 
VT / Syncope 
VT / anterior Ml 
VT / Atherosclerosis / inferior Ml / anterior Ml 
VT / Rheumatoid Arthritis 
VT / Hypertension / inferior MI 
VT / anterior Ml / lateral Ml 
VT 
VT / Syncope / Cardiomyopathy 
VT / Atherosclerosis / anterior Ml 
VT / Atherosclerosis / Syncope / inferior MI 
VT / Cardiomyopathy 
VT / inferior MI 
VT / VPBs / inferior Ml 
VT / anterior MI / inferior MI 
VT / anterior Ml 
VT / Atherosclerosis / VF 
VT / inferior MI 
VT / anterior Ml / lateral Ml 
VT / Syncope / inferior Ml 
VT 
VT / Syncope / anterior Ml / 1st degree AV hloc 
VT / inferior Ml 
VT / inferior MI / lateral MI 
VT / inferior MI 
VT / anterior MI / inferior MI 
VT/anterior M l / lateral Ml 
VT / anterior Ml / lateral Ml 
VT / inferior MI 
VT 
VT / VPBs / inferior Ml 
VT/inferior Ml / lateral Ml 
VT / WPVV 
VT / anterior MI 
VT / anterior Ml / lateral MI 
VT / lateral MI 
VT / Syncope / VPBs 
VT / inferior Ml 
VT / anterior MI / lateral MI 
VT / inferior MI 
VT / inferior Ml / lateral MI 
VT / anterior MI / lateral MI 
VT / inferior MI 
VT / anterior MI / lateral MI 
VT / MI 
VT 



Table A.3: Tiaining set 

# 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 

Session 
1419 
2304 

95 
97 

1897 
2863 
1915 
110 

2302 
23 
34 

2888 
2559 
1895 

25 
1923 
774 

2868 
2869 

28 
24 

2560 
90 

2043 
2279 
1865 

21 
89 

104 
108 

2294 
102 
93 
71 
56 
17 
18 

954 
69 

952 
2202 
2201 
1678 
1003 

94 
29 

794 
820 

2866 
808 

2912 

Sex 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
F 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

Age 
33/00 
53/11 
41/00 
43/06 
45/09 
39/03 
37/05 
63/01 
43/06 
44/01 
64/03 
57/07 
46/07 
48/11 
50/06 
38/08 
45/09 
36/03 
51/04 
50/03 
48/05 
44/02 
42/03 
42/01 
51/09 
38/09 
46/08 
46/11 
51/07 
69/05 
43/06 
43/10 
44/09 
49/11 
40/08 
55/01 
49/02 
30/10 
39/02 
47/09 
51/05 
66/06 
39/09 
30/03 
40/04 
54/00 
51/03 
36/02 
36/09 
43/08 
52/07 

Hit 
55 
80 
52 
55 
37 
58 
63 
67 
72 
62 
63 
64 
60 
49 
67 
73 
58 
44 
60 
61 
50 
60 
50 
60 
68 
71 
57 
60 
68 
57 
64 
49 
57 
60 
58 
68 
64 
63 
60 
65 
57 
71 
47 
65 
67 
57 
59 
61 
55 
65 
71 

Diagnosis 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal / Obesity 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 
normal 



Table A.4: Training set: MItrain 

# 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 

Session 
1401 
1756 
1443 
1575 
1177 
868 
866 

1397 
1310 
1361 
1422 
1958 
1327 
1562 
1548 
1232 
1519 
1306 
2530 
1663 
1550 
1374 
2662 
1683 
1372 
1601 
1599 
1539 
1586 
1297 
1080 
2529 

814 
870 

1225 
1079 
1146 
1637 
1675 
1522 
1582 
1509 
2164 
1369 
1135 
2008 
2018 
2065 
2139 
2494 
2557 

Sex 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
F 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

Age 
67/02 
46/11 
75/08 
41/11 
74/10 
44/10 
44/01 
54/05 
56/11 
55/06 
57/09 
72/03 
63/05 
44/08 
58/00 
44/04 
69/06 
52/05 
41/02 
59/01 
66/02 
44/08 
67/10 
61/07 
71/11 
70/09 
58/11 
63/00 
60/04 
25/02 
57/05 
62/01 
50/11 
49/00 
54/09 
68/05 
65/09 
58/07 
49/08 
76/05 
70/10 
65/00 
62/01 
69/05 
66/05 
55/10 
55/02 
36/02 
45/00 
60/11 
48/00 

HR 
77 
59 
76 
68 
56 
74 
73 
66 
72 
71 
85 
82 
59 
89 
77 
64 
80 
63 
56 
70 
58 
63 
62 
94 
53 
63 
85 
54 
87 
74 
53 
46 
65 
71 
87 
70 
46 
77 
69 
44 
69 
61 
72 
62 
69 
55 
63 
50 
72 
83 
69 

Diagnosis 
anterior MI 
inferior MI 
anterior MI 
inferior MI* 
anterior MI 
anterior MI 
anterior MI* 
anterior MI 
inferior MI 
inferior MI 
inferior MI 
anterior MI* 
inferior MI 
anterior MI* 
anterior MI* 
inferior MI 
anterior MI* 
anterior MI 
inferior MI 
inferior MI 
anterior MI* 
inferior MI 
anterior MI (nonQ) 
inferior MP 
anterior MI 
inferior MI 
inferior MI 
anterior MI* 
inferior MI 
anterior MI 
anterior MI 
inferior MI 
anterior MI 
anterior MI 
inferior MI* 
anterior MI 
anterior MI* 
inferior MI 
anterior MI 
inferior MI 
inferior MI 
anterior MI 
inferior MI 
inferior MI 
anterior MI 
anterior MI* 
inferior MI* 
anterior MI* 
anterior MI* 
inferior MI (nonQ) 
anterior MI (nonQ) 



Appendix B 

Test-set groups 

The general applicability of the feature-selection and classification procedures de­

rived for the training set (Appendix A) was tested on an independent test set. This 

Appendix provides demographic information about all members of the test set; this 

information comprises gender, age, heart rate and diagnosis according to the New 

York Heart Association [144]. BSPM data for all subjects listed in this Appendix 

are stored on t±ie study tape MT222. The entire test set consists of 102 subjects: 

51 patients with recurrent ventricular tachycardia (VTtest g r o u P) a n d 51 patients 

with MI without arrhythmia (MItest g r o uP)- Mean age and gender characteristics of 

these two test-set groups are in Table B.l . 

The VTtest group (Table B.2) was selected from the patient population treated 

for VT at the Foothills Hospital in Calgary, using the same inclusion criteria as for 

the VTtrain group (Appendices A and C). The VTtest group was not restricted to one 

drug therapy, which was in this case irrelevant since no posttreatment evaluation 

was performed on BSPM data of these patients. Of the 51 patients in the VTtest 

group, 29 (57%) had a sustained VT induced by EPS c nd 9(18%) had a nonsustained 

VT induced by EPS. Of the 13 remaining patients 9 had documented VT on Holter 
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177 

Table B.l: Age and gender of the test-set groups 

VTtest MItest 
Age 
mean [yrs] 
SD 
males 
females 

58.5 
14.9 

47 
4 

54.7 
8.9 
47 
4 

monitoring, with one patient having syncope of unknown origin and 3 patients had 

SVT induced by programmed stimulation. Of the 51 VT test patients, 65% had a 

myocardial infarction with the percentage distribution of the location of the Mis as 

follows: 36% inferior Mis, 39% anterior Mis, 15% both anterior and inferior Mis, 

6% lateral Mis and 3% unspecified Mis. The mean left ventricular ejection fraction 

was 36.9 ± 13.7% for this group. 

The MItest group (Table B.3) was selected from the patients who underwent 

BSPM recording in Victoria General Hospital in Halifax, using the same criteria as 

for the patients of MItrain group (Appendix A). In summary, 27% of the MI patients 

had anterior MI, 59% had an inferior MI, 4% had both anterior and inferior MI, 

and the remaining 10% had nonspecified MI. 

The patient groups from the training and test sets were combined for the stochas­

tic validation. For the VTrmf0faj, 71 patients had a prior myocardial infarction: 41% 

had an inferior MI, 41% had an anterior MI, 11% had both anterior and inferior Mis, 

4% had a lateral MI and 3% had an unspecified Ml location. For the MI rmio ia/ group 

of patients without VT (n=102): 52% had an inferior MI, 41% had an anterior MI, 

2% had both an anterior and inferior MI and 5% had an unspecified MI location. 
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Table B.2: Test set: VT t e s t group 

# Session Sex Age HR Diagnosis 
VT / anterior MI / inferior MI 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

158 
181 
197 
388 
102 
136 
16 
403 
68 
435 
412 
179 
135 
22 
160 
413 
184 
182 
186 
13 
219 
129 
488 
254 
277 
159 
407 
137 
368 
36 
374 
297 
251 
255 
458 
304 
113 
17 
462 
21 
311 
237 
8 

171 
165 
54 
152 
4 
56 
336 
381 

M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
F 
M 
M 
M 
M 
M 
F 
M 
M 

58/00 
36/09 
68/10 
63/06 
61/04 
19/08 
76/11 
50/01 
56/03 
55/04 
70/09 
49/00 
70/09 
76/10 
49/04 
74/07 
61/02 
69/04 
85/04 
26/04 
69/02 
74/01 
50/04 
31/05 
56/08 
80/09 
64/07 
59/06 
53/01 
76/11 
65/03 
15/09 
61/05 
55/08 
64/11 
62/09 
44/05 
43/10 
55/11 
68/00 
55/09 
64/00 
60/04 
60/08 
75/10 
37/10 
71/02 
67/06 
55/01 
61/02 
62/11 

54 
69 
88 
102 
109 
50 
79 
49 
77 
52 
55 
55 
122 
70 
89 
76 
69 
81 
50 
65 
87 
83 
64 
57 
67 
40 
66 
76 
88 
75 
99 
67 
78 
78 
70 
98 
66 
62 
78 
55 
91 
64 
71 
76 
74 
87 
66 
56 
82 
97 
55 

VT 
VT / VPBs / anterior MI / lateral MI 
VT / Atherosclerosis / inferior MI / Ventricular Failure 
VT / inferior MI / anterior Ml 
VT 
VT / lateral MI / LBBB 
VT / Atherosclerosis / inferior Ml / anterior Ml 
VT / Atherosclerosis 
VT 
VT / inferior MI / Obesity 
VT / anterior Ml / lateral MI / Mitral Regurgitation / LA enlargement 
VT / Mitral Regurgitation 
VT / anterior MI / Hypertension 
VT / inferior MI / Atherosclerosis 
VT / anterior MI / Ventricular aneurysm / inferioi MI 
SVT / VPBs / anterior MI 
VT / anterior MI / VPBs 
VT / VPBs / Atherosclerosis / inferior MI / anterior MI 
VT 
VT / Atherosclerosis / Hypertension / lateral Ml 
VT / VPBs / anterior MI 
VT / inferior MI 
VT 
VT / inferior MI 
VT / anterior MI / Hypertrophy 
VT / inferior MI / LV Hypertrophy 
VT / lateral MI / anterior MI / Atherosclerosis 
VT / Atherosclerosis / Diabetes / inferior Ml 
VT / Valvular obstruction / MI 
VT / anterior MI / Ventricular aneurysm 
SVT / LV Hypertrophy / VPBs / Mitral valve prolapse 
VT / Atherosclerosis / VPBs 
VT / Atherosclerosis / anterior MI 
VT 
VT / LBBB / Atherosclerosis 
VT 
VT / anterior MI / Ventricular aneurysm / lateral MI 
VT / anterior MI / lateral MI / Atherosclerosis 
VT / lateral MI 
VT / Cardiomyopathy 
VT / Atherosclerosis / anterior MI / lateral MI 
VT / inferior MI 
VT / inferior MI 
VT / Atherosclerosis / inferior MI 
VT / Atrial fibrillation / Cardiomyopathy / Obesity 
VT / Atherosclerosis / inferior MI 
VT / Atherosclerosis 
VT / VPBs 
VT 
SVT 



Table B.3: Test set: MItest group 

# 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 

Session 
1483 
1318 
2789 
2773 
2790 
2781 
1413 
1803 
2762 
2250 
1676 
1716 
1314 
2277 
1308 
1313 
1605 
1738 
1415 
2918 
U61 
1730 
1785 
2685 
3090 
1809 
2676 
2799 
1777 
1345 
1846 
1360 
2697 
1797 
1441 
1773 
1747 
1446 
1111 
3109 
1816 
2782 
2804 
2150 
1712 
2172 
1771 
1107 
1687 
2753 
1829 

Sex 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
F 
M 
M 
M 
F 
M 

Age 
47/08 
60/06 
43/03 
67/09 
48/07 
48/11 
67/02 
54/00 
67/10 
57/07 
54/07 
49/08 
31/11 
68/06 
54/01 
60/10 
48/01 
48/11 
50/06 
51/08 
64/03 
47/01 
54/03 
56/04 
69/09 
61/11 
55/07 
52/08 
55/09 
51/10 
53/09 
68/00 
42/10 
47/01 
48/04 
51/04 
53/08 
53/04 
47/05 
54/09 
59/02 
52/02 
55/06 
48/09 
58/10 
67/06 
77/03 
69/07 
37/05 
54/10 
62/07 

HR 
62 
56 
47 
68 
60 
54 
56 
67 
57 
79 
65 
57 
59 
94 
47 
55 
40 
73 
57 
54 
77 
54 
77 
68 
70 
70 
54 
63 
54 
74 
66 
80 
43 
51 
59 
68 
69 
62 
56 
60 
67 
52 
51 
48 
65 
55 
55 
88 
69 
66 
75 

Diagnosis 
inferior MI 
anterior MI 
anterior MI (nonQ) 
MI / Obesity 
MI / Obesity 
anterior MI (nonQ) 
anterior MI 
inferior MI 
anterior MI (nonQ) 
anterior MI / inferior MI (nonQ) 
inferior MI 
inferior MI 
anterior MI 
anterior MI / Obesity 
anterior MI 
inferior MI 
inferior MI 
inferior MI 
inferior MI 
anterior MI / anterior MI 
inferior MI 
inferior MI 
inferior MI 
MI 
inferior MI 
inferior MI 
inferior MI (nonQ) 
anterior MI / inferior MI 
inferior MI 
anterior MI 
inferior MI 
anterior MI 
inferior MI (nonQ) 
inferior MI 
inferior MI 
inferior MI 
inferior MI 
inferior MI 
inferior MI 
anterior MI 
inferior MI 
inferior MI (nonQ) 
MI / Obesity 
inferior MI (nonQ) 
inferior MI 
anterior MI 
inferior MI 
anterior MI 
inferior MI 
MI 
inferior MI 



Appendix C 

Posttreatment group 

The posttreatment group consisted of the members of the VTtrain group, in their 

posttreatment state (i.e., after they were treated with an antiarrhythmic agent, 

quinidine). This Appendix contains tables of the individual clinical characteristics, 

summary data and statistical results for the comparisons between the two subgroups 

(referred to as PET and nPET subgroups) of the entire posttreatment group. 

The electrophysiological studies (EPS) were used to support VT diagnosis and 

to determine the effectiveness of the antiarrhythmic therapy; all patients were free 

of any antiarrhythmic agent at the time of the pretreatment EPS. Cycle lengths 

and durations of the induced arrhythmia were measured. According to the results 

for the duration of the VT induced by the F?S, 84% of the members of this group 

had a sustained VT, while the remaining 16% had u nonoustained VT. Patients 

were monitored by an ambulatory device for at least 24 hours during their drug-free 

state and the records were analyzed to determine the frequency and duration of 

abnormal sequences. The baseline BSPM data were acquired during normal sinus 

rhythm in a drug-free state. Summary statistics for age, left ventricular ejection 

fraction, quinidine blood levels and VT cycle lengths induced in the drug-free state 
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for each group are in Table C.l. 

An antiarrhythmic agent, quinidine, was administered to the patients who be­

longed to the VTtrain group; the quinidine blood levels for the total sample are 

in Table C.l. On the same day, the EPS studies were repeated. On the basis of 

the posttreatment EPS, the 51 patients of the VTtrain group were divided into two 

subgroups. The PET subgroup (n=14) consisted of those patients for whom quini­

dine was the predicted effective therapy (since the EPS studies could not induce 

VT after treatment). The nPET subgroup (n=37) consisted of those patients who 

remained susceptible to ventricular arrhythmias (since the VT remained inducible 

by programmed stimulation even after treatment). The criterion for determining 

predicted effective therapy (PET) was that no more than 4 VPDs occur in response 

to the programmed stimulation protocol. 

A Bartlett test for homogeneity of variance between PET and nPET subgroups 

was performed on the four variables in Table C.l, using the SYSTAT (SYSTAT, 

Inc.) software package. The results of this analysis indicate that homogeneity of 

variance could be assumed and thus an independent t-test, using pooled variances, 

was performed between the two subgroups (see t-statistic for each variable in Table 

C.l. These results indicate that there were no statistically significant differences 

(p > 0.05) between PET and nPET subgroups for these four variables. Tables C.2 

and C.3 provide, respectively, the individual characteristics for the PET and nPET 

subgroups. Comparisons between PET and nPET subgroups on several clinical 

pretreatment characteristics were performed; the results are presented in Tables 

C.4-C.6. There were no statistically significant differences (p > 0.05) between 
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Table C.l: Summary statistics for VTtrain group and posttreatment subgroups 

Total PET nPTZT t-stat p 
Age 

mean [yrs] 
SD 

59.6 
12.2 

56.7 
13.8 

60.7 
11.5 

1.040 NS 

LVEF 
mean [%] 

SD 
38.1 
16.1 

44.1 
19.4 

35.8 
14.3 

1.676 NS 

Quin 
mean [/umole/1] 

SD 
9.3 
2.6 

9.9 
2.4 

9.1 
2.6 

0.896 NS 

EPS-RR 
mean [ms] 

SD 
246.8 
54.1 

252.6 
58.7 

244.5 
52.9 

0.46S NS 

t-stat = calculated t-statistic for independent test between the PET and nPET 
subgroups; p = probability value for t-statistic; NS = nonsignificant at the p < 
0.05; LVEF = left ventricular ejection fraction at rest; Quin = blood serum levels 
of quinidine after treatment; EPS-RR = cycle length of ventricular tachycardia 
induced with programmed stimulation. 

groups for the quantitative measures. 

Since fibrillation was coded as a 1 for the VTS-RR, these data were ranked for 

nonparametric-comparison purposes. A Mann-Whitney U statistic was calculated 

for AFC, DFC and VTS-RR, using the SYSTAT statistical package. The summary 

results for the rank sum and U statistic for these three variables are in Table C.4. 

No statistically significant differences were found between the subgroups for these 

three variables. 

A Bartlett test on the VPB, CPLT and GE3 data showed that the variances 

between subgroups could not be assumed to be homogeneous. The VPB data were 

transformed using a natural log transformation and the CPLT and GE3 data were 

transformed using a sine transformation. The Bartlett test was recalculated on 
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Table C.2: Clinical characteristics for PET subgroup 

Subject 

ADOl 
JD02 

GD03 
DE04 
RF05 
RG06 

WK07 
MK08 
RL09 

WM1Q 
DM11 
GR12 

DW13 
HZ14 

AFC 

2 
0 
0 
2 
0 
0 
1 
2 
2 
0 
1 
4 
1 
0 

DFC 

0 
0 
3 
2 
0 
0 
0 
2 
2 
0 
1 
4 
1 
1 

Pres 

suo 
weak 
sync 

nsscd 
nmscd 

suo 
sync 

weak 
weak 
weak 
palps 
sync 

weak 
sync 

VTS-RR 

-

350 
380 

1 
1 
-

400 
40G 
500 
270 
400 
240 
370 
360 

HM 

-

sus 
sus 
sus 
sus 

-

ns 
sus 
ns 

sus 
sus 
sus 
sus 
ns 

VPB 

156.8 
107 
68 
69 

.780 
2.8 
1.7 

193.5 
89 

3.4 
379 

1 
100 

7 

CPLT 

4.7 
0 

2.5 
3.2 

0 
0 
0 

1.68 
2.5 
.43 
.82 

0 
16 
0 

GE3 

0.25 
0 

.08 

.04 
0 
0 

0.8 
2 

.04 

.08 

.27 

.08 
69 
0 

PES 

ns 
sus 
sus 
sus 
ns 
ns 
ns 
ns 
sus 
sus 
sus 
sus 
ns 
sus 

AFC = angina functional class; DFC = dyspnea functional class; PRES = present­
ing symptoms; VTS-RR = spontaneous ventricular- tachycardia cycle length; HM = 
ventricular tachycardia duration from Holter monitoring; VPB = ventricular pre­
mature beats per hour; CPLT = ventricular couplets per hour; GE3 = runs of 3 or 
more consecutive ventricular beats per hour; PES = duration of induced ventricu­
lar arrhythmia in drug-free state from electrophysiological study; suo = syncope of 
unknown origin; sync = syncope; nmscd = near miss sudden cardiac death; palps 
= palpitations; ns = nonsustained; sus = sustained. 

the transformed data and the results showed that homogeneity of variance could be 

assumed for all three sets of transformed data. An independent t-test was performed; 

the summary results are presented in Table C.5, together with the original mean 

and standard deviations for each variable. 
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All nominal variables (Table C.6) were calculated as a percent of each subgroup. 

Both the percentages and actual numbeis are shown, because of the difference in n 

between the two subgroups. As illustrated, there were large percentage differences 

between subgroups on some of the variables. For example, a larger proportion of 

the nPET subgroup had ischemic heart disease, MI, near-miss sudden cardiac death 

and sustained VT induced during programmed stimulation. A larger proportion 

of subgroup PET had no dominant heart disease. Statistical comparisons between 

subgroups were not performed on these variables, because of the small sample size. 



Table C.3: Clinical characteristics for nPET subgroup 

Subject 

NA51 
SB52 
OB53 
RB54 
RB55 
JC56 
JC57 

WC58 
WC59 
LC60 
ED61 
RE62 
AF63 
NF64 
DG65 
PH66 
WI67 
EI68 

FK69 
KL70 

MM71 
OM72 
RM73 
AN74 
JP75 
JP76 
RP77 
SP78 
LR79 

WR80 
0R81 
AR82 
AS83 

WS84 
AT85 
ZT86 
JW87 

AFC 
1 
3 
0 
1 
2 
2 
3 
1 
1 
0 
0 
0 
3 
2 
0 
0 
1 
1 
3 
1 
0 
1 
0 
0 
1 
0 
0 
0 
2 
2 
3 
2 
1 
0 
2 
4 
0 

DFC 
1 
0 
0 
0 
2 
1 
0 
1 
1 
0 
0 
0 
2 
2 
2 
0 
3 
1 
3 
1 
0 
4 
0 
0 
1 
0 
0 
0 
1 
2 
3 
1 
2 
2 
1 
2 
0 

Pres 
nmscd 

suo 
suo 

weak 
sync 

nmscd 
weak 

nmscd 
weak 

nmscd 
suo 

weak 
sync 

weak 
sync 
v/eak 

nmscd 
weak 
weak 
weak 

nmscd 
sync 

nmscd 
weak 

nmscd 
suo 

nmscd 
suo 

weak 
nmscd 
nmscd 
nmscd 

weak 
palps 

nmscd 
palps 
weak 

VTS-RR 
1 
-

-

430 
215 

1 
300 

1 
320 
300 

-

380 
400 
300 
280 
460 

1 
250 
400 
461 

1 
360 

1 
260 
350 

-

190 
-

320 
1 

320 
277 
280 
315 
300 
500 
320 

HM 
sus 

-

-

sus 
ns 

sus 
sus 
sus 
sus 
sus 

-

ns 
ns 

sus 
ns 

sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 

-

sus 
-

sus 
sus 
sus 
sus 
sus 
sus 
sus 
ns 

sus 

VPB 
390.7 

.02 
.2 

357 
359 

8 
554 

13 
19 

7.3 
40 

31.6 
44.3 

8 
56 

238 
121 

.9 
287.16 

341 
41.4 
135 

1.13 
10 

431 
47 

0.04 
56 

1050 
0.17 

112.8 
37.49 

119 
607 
48 

56.26 
204 

CPLT 
0 
0 
0 

.04 
35 
.22 

0 
.04 

0 
.04 
.04 
1.8 

.740 
0 

.04 
24 

8.3 
0 

20.5 
10.67 

0 
5.3 

0 
0 
1 
0 
0 

130 
19.1 

0 
.48 

0 
4.6 
111 
.26 
2.5 
10 

GE3 
0.5 
0 
0 
0 

.08 

.13 
0 
0 
0 
0 
0 
0 

.17 
0 
0 
2 
.2 
0 
6 
0 
0 

1.03 
0 
0 
0 
0 
0 
4 

1.4 
0 
0 
0 

.35 
26 
.04 
1 

.29 

PES 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
ns 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
sus 
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Table C.4: Summary statistics for ranked clinical data 

Variable PET nPET 

VTS-RR 
AFC 
DFC 

count 
12 
14 
14 

i'ank sum 
282.0 
350.5 
368.0 

count 
32 
37 
37 

rank sum U-stat 
708.0 204 
975.5 246 
958.0 263 

PROB 
NS 
NS 
NS 

U-stat = calculated Mann-Whitney U statistic; PROB = probability; NS = non­
significant. 

Table C.5: Summary statistics for transformed data 

Variable 

VPB 

CPLT 

GE3 

o 
t 
o 
t 
o 
t 

PI 
X 

84.2 
3.1 

2.274 
.142 
5.1 

.122 

IT 
SD 

105.7 
2.2 
4.2 

.497 
18.4 
.247 

nPET 
X 

159.0 
3.4 

10.4 
-.002 

1.2 
.125 

SD 
227.3 

2.7 
27.95 

.531 
4.4 

.341 

t-stat 

.477 

.908 

.975 

PROB 

NS 

NS 

NS 

X — mean; SD = standard deviation; t-stat = calculated t statistic; PROB 
probability; NS = non significant; o = original data; t — transformed data. 
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Table C.6: Summary statistics 

Variable 

HDl 
IHD 
other 
none 
HD2 
MI 

WPW 
none 

PRES 
nmscd 
sync 
suo 

other 
HM 

ns 
sus 
nd 

PES 

ns 
sus 
Sex 

PET 

M 
F 

(n=14 

57.1 (8 
21.5 (3 
21.4 (3 

57.1 (8 
7.14 (1 
35.7 (5 

7.1(1 
28.6 (4 
14.3 (2 
50.0 (7 

21.4 (3 
64.3 (9 
14.3 (2 

42.9 (6 
57.1 (8 

85.7 (12 
14.3 (2 

br nominal clinical data 

nPET 
(n=37) 

86.5 (32 
11.8 (4: 

2.7(1 

81.1 (30 
2.7 (1 

16.2 (6: 

35.1 (13 
10.8 (4 
13.5 (5 

40.6 (15 

13.5 (5 
73.0 (27 

13.5 (5 

2.7 (1 
97.3 (36 

94.6 (35 
5.4(2 

()=actual values; HDl = dominant heart disease; HD2= secondary heart disease; 
HD3 = tertiary heart disease; WPW = Wolff-Parkinson-White syndrome; IHD = is­
chemic heart disease; HM — Holter monitor results; PES = programmed stimulation 
results; M = male and F = female. 

f> n H 



Appendix D 

Interpolation procedure 

To obtain the complete set of 117 body-surface potential valves for each subject, 

the bad leads in the data files from individual subjects had to be inteipolated. (The 

number of bad leads per map varied between none and twenty.) The approach 

proposed by Oostendorp, van Oosterom and Huiskamp [145] was used to perform a 

3D interpolation of potentials on the body surface. The Dalhousie boundary-element 

model of the torso was used; the model has 352 nodes and 700 surface triangles 

[121]. A detailed description of the interpolation procedure which simultaneously 

minimizes Laplacian of electric potential at all nodes by solving the r,et of equations 

in a least-squares sense is elsewhere [141]. The program INTERPVAR2.f, written by 

J. Nenonen performed this procedure; interpolation results presented by Nenonon 

[141] were very good, even when large number of leads were removed. These results 

illustrate that the procedure can be applied to measured BSPM data with a variable 

number of randomly placed bad leads. 

The ability of this procedure to interpolate bad leads in a measured data set was 

tested by comparing the interpolated values of leads with the actual measured data 

values. Three good leads (60, 80 and 106) from a normal subject were designated 
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Table D.l: Mean error, percent en or and correlation coefficients of measured versus 
interpolated leads for a normal subject 

Lead emear,[A
<VJ Perr[%] CC 

60 
80 
106 

6.4 
3.4 
8.4 

6.8 
3.6 
7.0 

.999 

.999 

.998 

Cmean = mean error; Perr = percent error; CC= correlation coefficient. 

as bad leads and were interpolated by the program INTERPVAR2.f. The mean 

error (emeari), percent error and correlation coefficient were calculated i,o compare 

the original data and the interpolated data fo: these three leads (Table D.l). The 

mean error was defined â  the sum of the absolute differences between the measured 

and the interpolated values divided by the number of data points: 

e = h=l I v* Vt 1 (D i) 
Crnean — \1J,±J 

nsamp 

where emean is the mean error, vt is the measured potential in lead i, vt is the 

interpolated pctential in lead i, nsamp is the number of samples interpolated for 

one lead. The percent error is a ratio of the mean error with respect to the mean 

signal magnitude: 

Perr = ^ T ^ , X 100, (D.2) 
nsamp 

where Perr is the percent error. The correlation coefficients were calculated using a 

NAG library routine G02BAF (Numerical Algorithms Group, Inc.). 

Applying this interpolation procedure to the BSPM data for two randomly se­

lected VT patients illustrates the fit of the interpolated ECG complexes to the 

surrounding leads (Figures D.l and D.2). 
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Figure D.l: Interpolation results for a VT patient. Plot of 61 signal-averaged ECGs 
following the 3D interpolation procedure. The x indicates leads that were judged 
as bad before the interpolation. 
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Figure D.2: Interpolation results for a VT patient. 

This 3D interpolation was performed on the designated bad leads for all data 

files in this study. These data files were then stored as 352 values (corresponding 

to potential values at 352 nodes of the three-dimensional torso model) for each 

time instant. This allowed easy retrieval of the 117 lead potentials for use in the 

data-reduction analysis. 
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