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ABSTRACT

Mathematical and numerical studies on the dynamics of highly unsteady non-
Darcy flow through porous media were performed under the constraints implied by a
relatively simple hypothetical experiment, i.e. the sudden introduction of a fixed head at
the upstream end of a conduit filled with a saturated porous medium. A wide range of
possible equilibrium pore Reynolds numbers was considered admissible. Theoretical
developments then proceeded on the basis of the momentum and continuity-equations. It
was found that the functional dependence of the dimensional parameter was not unique,
and dimensional analysis was used to reduce the complexity of the problem.
Dimensionless forms of the momentum and continuity equations were obtained and
seven dimensionless groups resulted. These groups gave direct indication of the relative
significance or contribution of each effect, whether viscosity, inertia, local acceleration,
convective acceleration or elevation.

The behaviour of the momentum-continuity model, and of sub-models having
different degrees of sophistication was then compared, under different eipplied hydraulic
gradients. The Darcy model, the Ergun-type model, the local-acceleration-included
model, and the complete model showedvonly small differences in dimensionless head
patterns for flow regimes from laminar to completely turbulent. However, the differences
in dimensionless velocity for these models were not always small. The solutions
obtained using various numerical methods, including the method of characteristics and
certain finite-difference schemes, were also compared.

Comparison of the solutions arising from the various models did not give
information about the individual effects of various terms in, or components of, the
momentum and continuity equations, i.e. viscosity, inertia, local acceleration, convective
acceleration, and elevation. Even though the magnitudes of most' of these components
were found to be small, it was considered to be of interest to discover their relative
magnitudes, whether some could be safely neglected, and any curious aspects of their
behaviour across the time-space continuum implied by the physical problem. The regular

perturbation method was used to answer these questions. The effects of each term were

! depending on the applied hydraulic gradient.

XX



expressed in terms of head or velocity, depending on the choice of the dependent
variable. ‘

Even though some of the terms in the governing partial differential equations
(PDE’s) were multiplied by parameter-groups that were found to have very small
magnitudes, application of this perturbation method revealed that these terms could not
simply be neglected, because the problem was found to depend on these small parameters
in a “singular” way. Matched asymptotic expansions were then used to solve these
singular problems near the upstream boundary at very small times. The resulting inner
and outer expansions were developed for the laminar, partially-developed turbulent
(PDT), and fully-developed turbulent (FDT) flow regimes. It was found that an inner
zone existed in which highly unsteady flow induced behaviours fundamentally different
from those predicted by widely-accepted PDE’s. The inner expansion of the complete
momentum and continuity equations gave rise to an evolving-wave equation which
cannot be obtained when Darcy’s Law or an Ergun-like equation replace the momentum
equation. It was also found that the local acceleration component, negligibly small in the
outer zone, played an important role in the inner zone, near the valve face. The extent of
the inner zone in time-space varied was found to strongly depend on the applied

hydraulic gradient.
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1. Introduction

1.1. Background

The title of this thesis makes reference to “non-Darcy flow”, even though laminar
flow is considered at a level of detail no less than that considered for the other two
regimes. The reason for this is two-fold: (1) Laminar flow can be considered to be
merely one of the two end-conditions or limiting cases of the most general condition of
the flow (the other being fully-developed turbulent flow). Indeed, equations such as the
Ergun equation, designed for the transitional or partially-developed turbulent
zone/condition, will often give reasonable estimates of flow for either these end-
conditions, especially given the considerable inaccuracies that tend to be associated with
attempting to make any independent estimate of flow rates through a given porous media.
(2) The desired to have a concise title that is neither complex nor too wordy.

The focus of this study was to seek a better understanding of highly unsteady non-
Darcy flow phenomena, starting from Newton’s second law of motion and the continuity
equation. The momentum equation is founded on the former fundamental principle and
explains the motion of the fluid and the resulting head loss>. The latter equation includes
consideration of the compressibility of the fluid, the media, and the ‘container’ (which
may be a confining geologic layer or a pipe-wall). Even though many groundwater flow
problems can be solved by simply using Darcy’s Law and the continuity equation, not all
flow through porous media is in laminar regime, outside of which Darcy’s Law is not
strictly applicable. In the partially-developed turbulent (PDT) flow regime, an Ergun-
type equation (Ergun 1952) can be used as an energy loss equation. In honor of Ergun
(1952) who developed the first practical energy loss equation for the PDT regime, the
phrase “Ergun-type equation” will hereafter be used to refer to any second-order
polynomial form of energy loss equation, for semantic convenience. Forchheimer (1901)
presented this form much earlier but gave little guidance as to how to estimate the two

coefficients.

? although it is the externally applied differences in hydraulic head that cause the flow.
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Porous media flow models can be used for a variety of purposes, e.g. they can aid
in process design, permit the computation of primary quantities that may be difficult to
measure, or provide insights into the causative or influencing mechanisms in the
secondary effects. Over the past century, various phenomenological, theoretically, and
hybrid models have been proposed. Dullien (1975) has categorized steady non-Darcy
flow models into five categories:

(1) phenomenological (e.g. regression-based),

(ii) based on a conduit analogy (e.g. Ergun 1952),

(iii) based on an analogy to flow around immersed objects (e.g. Brinkman 1947),
(1v) geometric (e.g. Du Plessis 1994),

(v) Statistical (e.g. random walk model of Scheiddeger 1975).

He considered a major categorization to be based on one of two fundamentally
different approaches. In one, the analogy of flow inside a conduit is used; in the other,
the analogy of flow around solid objects immersed in a fluid is used. Generally, the
conduit flow approach is appropriate for low to intermediate porosities, whereas the
second approach is more suitable for very high porosities. In groundwater-related aspects
of civil engineering, an upper limit on porosity would be about 0.45, unless the media is
in a ‘quick’ condition (the classical example being quicksand, somewhat analogous to an
expanded filter-bed undergoing backwashing). Few investigators have relied solely on a
multiple regression analysis of the data that is available to them in order to obtain a
purely empirical non-Darcy flow equation. Many non-Darcy flow models are based on
combinations of (i) and (ii). Similarly, Hayes (1995) classified all porous media flow
models into four groups.

Although numerous empirical and theoretical models have been developed, and
some of them have successfully predicted unsteady non-Darcy flows through particular
porous media, the physical interpretation of all of the associated phenomena has not been
well established. The accuracy of the predictions seems to depend on the method used to
solve the problem and/or the way to in which parameters are estimated, even though the
mechanisms behind these phenomena seem to remain the same. In the context of highly
unsteady flows, it appeared that in order to gain a better understanding these underlying

mechanisms, it was necessary not only to analyze the solutions obtained using various



phenomenological models and various numerical methods, but to also investigate the
‘inclusiveness’ governing partial differential equations themselves.

In this study, one dimensional flow through porous media was investigated under
various boundary conditions. The sudden opening of a gate or valve connected to a pipe
filled with porous media can result in a sharp change in head and velocity in a very short
time, especially near the upstream boundary. The velocity at the upstream end is infinite
if a simple head diffusion model is used. This infinite velocity is unrealistic, invalidating
the assumed governing mechanism in this small region of time and space. The error
introduced by using a simple diffusion equation to predict the flow near the boundary can
be assessed by finding the true mechanisms governing the flow. By investigating the
governing equations, it will be shown that the wave propagation process is the dominant
mechanism in this small region, whereas simple diffusion process is applicable to the
large time and space region.

The understanding of these mechanisms of the flow obviously is of practical aid
for the solutions of some of the problems connected with these processes, especially
highly time-dependent processes. Wave propagation in saturated porous media can be
related to geophysical, geological, and technological applications. For example, in
petroleum engineering, the wave-pulse treatment technique has been applied to petroleum
reservoirs in order to enhance oil recovery. This technique essentially consists of acting
upon the reservoir with periodic large-amplitude pressure pulses, generated in injection
wells. Another example from oil recovery is water flooding, which has become common
practice. It aids nature by forcibly injecting water into the producing horizon. The
sudden injection of fluid can also be found in in-situ groundwater treatment and filtering
processes. Wave propagation through porous media problems are therefore not
uncommon. This study provides a detailed framework for answering the questions of by
how far and by how much these phenomena dominate flow in the laminar, PDT and FDT

flow regimes.



1.2, Problem Statement

In order to study the dynamics of unsteady flow through porous media (any
regime), a simple 1-D sloped pipe connected to tanks at both ends was used. A schematic
of the experimental set-up is shown in Figure 1.1. The pipe packed some granular
material equipped with screens at both ends in order to keep it inside of the pipe. Both
are immoveable. The location of the upstream end is defined as x =0 and that of
downstream end as x = L. A head Hy, is the applied head difference; it drives flow and
cause the discharge Q. The porous medium in question is saturated before opening the
valve at x = 0. The valve is opened instantaneously at t = 0 and the length of the pipe (L)
does not change after opening the valve (zero-strain condition at x =L). The presence of
frequent axial expansion joints is also assumed. This prevents the hoop-stress shock-
wave from getting ahead of, and subsequently reflecting back onto, the perturbed porous

media in such a way that these phenomena are asynchronous.



Figure 1.1 Schematic of the experimental set-up.
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The head and bulk velocity of the flow were the dependent variables investigated;
distance and time were the independent variables. The applied boundary conditions were
temporally invariant. This meant not only that the applied head difference was fixed, but
that the individual head values at either end of the sample were also fixed. Dirichlet
conditions were applied by using fixed-head boundary conditions. In order to investigate
the variation of head and velocity under various boundary conditions, various hydraulic
gradients were applied. From Figure 1.1, a hydraulic gradient is defined by (ha-hy)/L.
Even though the heads at x = 0 and x = L are known, the velocity at the upstream
boundary cannot easily be obtained. The boundary conditions of velocity can neither be
accurately calculated using Darcy’s Law or an Ergun-type equation, nor can they easily
be measured with good accuracy. In this study, the boundary conditions of velocity were
unknown. These boundary conditions can be identified by analytical and/or numerical

studies.

1.3. Objectives and Expected Contributions

In order to understand highly unsteady non-Darcy flow phenomena, the governing
equations were analyzed using various mathematical methods. It was desired to assess
the individual effects of each term making up the governing equations and to quantify the
temporal and spatial variations of each such effect. It was suspected that the dominant
mechanisms in very small time and space were different from those associated with large
time and space. The objectives and expected contributions of this study can be
summarized as follows:

1. to develop dimensionless forms of the momentum and continuity equations, and
show that the functional dependence of each dimensional parameter is not unique.

It was hoped that said dimensional analysis could reduce the complexity of the

problem and can produce useful dimensionless groups.

2. to obtain the solutions of various models of flow through porous media using
numerical methods, and to compare the solutions using various numerical

methods.



3. to obtain regular perturbation solutions of the momentum and continuity
equations, and quantify the effects of the individual terms making up the
equations, including the temporal and spatial variations in the magnitudes of these
terms.

4. to use matched asymptotic expansions to solve the near-boundary problem, where
very sharp changes in head and velocity occur. It was surmised that conventional
approaches would not work very near said boundary, but that further away from it
the more conventional approaches would again be valid. It was therefore
surmised that the different approaches needed exploration, as to the limits of their
validity.

5. Using an analogy of existing dimensionless numbers, to provide dimensionless
numbers for flow through porous media, and show the applicability of the
combinations of dimensionless groups as criteria to identify the changes in

physical phenomena in porous media.



2. Literature Review

Highly unsteady flow through porous media phenomena can be described using
the momentum and continuity equations (Wylie 1976, Nilson 1981, Blick 1988). The
momentum equation can be replaced by an energy loss equation (Polubarinova-Kochina
1962, Bear 1972, Hayes et al. 1995). If viscous effects dominate, this energy loss
equation is simply Darcy’s Law. This law can be expressed as a linear relationship
between a hydraulic gradient and the bulk velocity of the flow:

v=Ki [2-1]
where:

K = hydraulic conductivity (L/T).

Although it is generally accepted that the range of validity of Darcy’s Law cannot be
definitively stated, it is widely considered to be superior to other methods for computing
seepage rates (Cedergren 1997). Dake (2001) states that the application of the Darcy’s
Law is required to describe 90 % of petroleum reservoir engineering. An independent
estimate of K can be obtained from the so-called Carman-Kozeny equation (Carman
1937, Kozeny 1927):

2
h, =L ?) 10y [2-2a]
n gh,

where:
n = porosity (volumeyeigs/ volumepyk, dimensionless),
Dp = diameter of sphere with volume equal to representative particle volume (L).
Chapuis and Aubertin (2003) applied the Carman-Kozeny equation to flow through
porous media of terrestrial origin. It can be re-expressed as (Hansen 2004):

v=c, [g—nmz}i [2-2b]

\Y

or:

h, ==Y YV [2-2¢]
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where:

m=—- [2-2d]

c¢; = empirical coefficient (dimensionless),

m = hydraulic mean radius (L),

e = void ratio (= n/(1-n)), (dimensionless),

d = particle diameter (L),

vy = V/n, void velocity (L/T),

r. = empirical coefficient that allows for departure from surface area efficiency of a

sphere (dimensionless), for which r. = 1 (Sabin and Hansen 1994).

Equations [2-1] and [2-2] are applicable if

Re =— %1 [2-3]

where the threshold of unity is a reasonable choice (compare Ergun 1952) but has a range
of in the literature. The above definition of Repo uses the most representative velocity,
v/n, also called the average linear velocity (Freeze and Cherry 1979) and characteristic
length, m. A measure of pore size, m, is much more rationale than the common use of
particle diameter in Re. The intrinsic permeability &; of a porous medium has dimensions

L* and is related to hydraulic conductivity by the following definition:

K=2k, [2-4]
A%

Since the most rationale choice for the characteristic length is the hydraulic mean radius:

k, =c,nm’ [2-5]

Equation [2-2d] is exactly true if the surface area of the pore volume is the same as the
surface area of the particles (no surface area is lost to particle-to-particle contact). This is
an approximation. How good it is depends on particle shape. It is very untrue for very
oblate particles. A no-flow value of m must be based on a value of r, that accounts for

the area lost to inter-particle contact. With flow occurring, the existence of dead zones



near the contact areas increases in importance as v, increases for PDT-and-above flow
regimes (Wahyudi et al. 2002). Hansen (2004) has pointed out that replacing D, with d

and comparing the Carman-Kozeny eqn to [2-2b/c] with r, = 1 yields:

K=20|80 2| 0.24[—g£m2:| [2-6]
150 v v
which means that:
k, = 0.24nm? [2-7]

Therefore, the Carman (1937, 1939) recommended c; value of between 0.2 and 0.5
appears to contradict the lower limit on r, of unity. Departures from spherical shapes
imply a value of c; that is larger than 0.24 (not smaller). This discrepancy may be due to
the dynamic effects of dead zones near contact areas, and/or to the presence of artificial
particles that Carman (1937) included in his research. For uni-sized media at loose-to-
average porosities, m is about 10 to 12 times smaller than d. For well-graded material m
can be much smaller. Laboratory methods for estimating m include gas adsorption and
mercury intrusion for fine-grained media (Gregg and Sing 1967) and the use of coatings
for larger particles (Garga et al. 1991). However, it is far better to measure K from a one-
dimensional flow experiment, for which procedural standards exist (e.g. ASTM 2002a/b).

If the inertial effect is not negligible, a linear relationship between head loss and
velocity cannot be used and some other (non-linear) equation needs to be considered.
Examples include the Forchheimer (1901) equation, the Ergun (1952) equation, and the
Burke-Plummer equation (see Sissom and Pitts 1972), all of which include ‘inertial’
terms in them. For flows outside the range of validity of Darcy’s Law, the Brinkman
equation (Brinkman 1947) is the most popular in petroleum engineering whereas the
Ergun equation is probably the best-known relationships in chemical engineering. For
FDT flow through porous media, there is no universally-accepted equation used to

describe it. Stephenson (1979) has suggested:

h, = K( L ]V— [2-8]

where:
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Ks: = Stephenson’s friction factor, a parameter accounting for particle angularity, ranging
from 1 for polished spheres to 4 for rough and angular crushed stone (dimensionless).
The Burke-Plummer equation (Burke and Plummer 1928), used mainly by

chemical engineers, is specifically intended for application to FDT flow through porous
media:

175 L 1-n ,
= — 3 A\

g Dpn

hy [2-9]

(Re > 100)

For PDT flow, a rather large body of similar literature built up in which revised values of
the two coefficients in the zero-intercept second-order polynomial have been presented.
The zero-intercept second-order polynomial form, is sometimes called the Forchheimer
equation or Forchheimer form. It appears that Forchheimer (1924) actually held the

following forms of non-Darcy flow expression in roughly equal regard:

J=0,v+B,v? [2-10a]
I= a;)vB;’ [2-10b]
J=a,v+Byvi+y,v° [2-10c]

where:
J = hydraulic gradient.
His 1924 treatise indicates clear awareness that the o, and B, coefficients should
depend on particle size, and his comments on the above also harken back to his own 1901
equation for “Lechfeldes gravel”:

J=0.71v +8v? [2-11]
for v from 0.12 cm/s to 1.2 cm/s.

and that of Kresnik (1906) for “pure sand”, said to be in “complete harmony” with his

own work:
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10007 = —%__ (1, ! TR [2-12]
07+u\d 08d+10.5d° 30000d’

in which u; was the “filter speed3” in m/day.
In the post-war years, interest continued in non-Darcy flow through porous media. Rose
(1945) presented parallel curves on a Moody-type diagram for materials of increasing
angularity. Brownell and Katz (1947) and Brownell et al. (1950), sought definitions of
the Reynolds number that could be applied to any porous media. They stated that
porosity was the most important parameter affecting resistance to flow, with particle
sphericity and angularity being of secondary importance. It does not appear that any of
these curves attained significant general usage, however. Dullien (1975), citing Rumpf
and Gupte (1971), suggests that universal constants and a general formula for describing
flow through porous media have not yet been found because of the effects of particle-size
distribution and packing structure. This continued search for constants and coefficient
has occurred in spite of the fact that the use of a conduit analogy with a form of friction
and a form of Reynolds Number results in some spurious correlation in the regression
(Hansen and George 1993). Further, such regressions are biased because they are usually
done using the log’s of the data (Duan 1983), and still worse, require the re-arrangement
of an ordinary least-squares regression result in order to be of practical use.

The original Ergun (1952) equation, as a friction factor versus Reynolds number

relationship, resulted in regression coefficients of A’ = 150 and B’ = 1.75:

3 f—
£l 2 |= 150(1—") +1.75 [2-13]
1-n Re
where: = 21d [2-14]
v©/2g
vd
and where: Re=— [2-15]
v
Re-arrangement gives:
h, =L(1_3nj 150v(12—n)v+ 175 [2-16]
n gDp gDP

3 Filter speed may refer to the velocity in the voids, computed as Vy,/n.
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Equation [2-16] is a combination of the Carman-Kozeny and Burke-Plummer equations.
It has been modified by Reichelt (1972) to allow for the wall-effect. In light of eqn [2-

16] Forchheimer eqn can then be expressed as:

i=r'vi+s'v? [2-17]
2
where: r'=A' zz (1—?)— [2-18]
g n
and where: §'= B'L (1-n) [2-19]
gd n’

- The form which velocity as the dependent variable is less convenient (Hansen et al.
1995):

3
150 v(1-n) \/1+4(1.725)2g[ nd }i_l (2-20]
21.75) d 150%v? | (1-n)

Macdonald et al. (1979) attempted to harmonize all existing non-Darcy flow data and
arrive at a single comprehensive fit. The independent variable was a form of Darcy-
Weisbach friction factor and the dependent variable was a form of Reynolds number, so

that spurious correlation was built in. Their result was:

n’ {1=mn :
f =C|—|+C 2-21
[l—n 1[ Re j 2 [ ]
D
f :@% [2-22]
dx pviu
D
Re = Yok eq [2-23]
H
C, =214.25-151.72n [2-24]

where:
C,’ = 1.8 for smooth particles and 4.0 for rough particles,

D¢q = diameter of equivalent spherical particle (L).

13



Before presenting the above and various other fits, they commented that:

“Pragmatically, the complexity of the flow pattern rules out a rigorous analytic
solution of the problem and suggests that an empirical or quash-empirical
correlation is the best that one can hope for.”

The above equation was stated as being accurate within £ 50 %, which is certainly not an
impressive outcome. As was obvious in Ergun’s original plot, the uncertainty in
Macdonald’s equation was found to increase with increasing Reynolds number, as clearly
seen by the intensity of the scatter in the versus Re plot. Du Plessis (1994) used
analytical methods and a form drag considerations to argue that the coefficients of 150
and 1.75 are themselves porosity dependent, being 207 and 1.88 at n = 0.44. He also
used a geometric idealization of porous media together with the Navier-Stokes equation
to lend some theoretical support to eqn [2-24]. The idealization was that the particles
were considered cubes, leading to a 3-D grid of pores. Du Plessis (1994) made a dubious
approximation. This was that the amount of fluid-to-fluid shear stress between main-
flow vectors (in the direction of the bulk flow) and side-channel flow vectors (oriented at
90°) was negligible. It is interesting that in spite of the approximation, the nominal
values of C;” and C,’ were not far from experimental values and that it was also possible

to express their values in terms of the porosity (as in eqn [2-24]).

In petroleum engineering, another widely-used equation is the so-called back-
pressure equation. This equation uses a power law, whereas Forchheimer and Ergun use
a second order polynomial. George and Hansen (1992) have shown that the parameters
in a second order polynomial can be computed from the parameters in a power law, and
vice versa. Using a power law, an exponent of 3/2 on average velocity has been proposed
by Chauveteau and Thirriot (1967) and by Skjetne (1999), for Re >> 1. Another
dimensionally inconsistent equation based on the power law form, and which is
commonly-used to describe flow through rubble mounds, is the Wilkins’ equation (1956).
The exponent of 1.85 in the Wilkins’ expression is a clear indication that this is

applicable to the upper end of the PDT regime.

Whitaker (1996) theoretically arrived at the so-called Forchheimer form by

beginning with the Navier-Stokes equations. He showed that the Forchheimer correction

14



is quadratic in the velocity even for small values of the Reynolds number and argued that
this functional dependence should not change greatly with increasing Reynolds number.
In the second-order polynomial form, the square-of-velocity term is generally accepted to
represent inertial effects. However, why and when this term arises has still not been
completely settled. Skjetne (1999) pointed out that although Forhheimer form has been
known for about 100 years, the component which has the square of the velocity is far
from well understood. Many efforts have been made to find out the mechanism behind
the square-of-velocity term. Happel and Brenner (1965) believed that Darcy’s Law failed
when the distortion that occurs in streamlines, owing to changes in direction of motion, is
great enough for inertial forces to become significant (compared with viscous forces).
Similarly, Foster (1967) explained that non-linear dependence of the ‘pressure’ gradient
on the velocity should naturally appear because the steady-flow stream lines in most
porous media are not parallel, but rather converge and diverge, even for steady flow.
Wright (1968) has described the fluid processes taking place in a porous medium as the
velocity of flow increases toward fully-developed turbulence. He proposed the existence
of "steady inertial" and "turbulent transition" regimes. For the "steady inertial" regime,
the convective accelerations are thought to be are important and cause the relationship
between hydraulic gradient and velocity to begin to be non-linear. These convective
accelerations, caused by the tortuosity of the flow paths, suppress full turbulence in this
regime. At higher velocities, a "turbulent transition" regime begins, in which random
micro-velocity fluctuations occur. These fluctuations cannot be measured directly
without sophisticated equipment. In this regime, the hydraulic gradient is proportional to
nearly the square of the velocity.

Hassanizadeh and Gray (1987) suggested Re = 10 as a critical value for non-
Darcy flow on-set and believed that it is due to an increase in microscopic viscous forces
at high velocities. A weak inertial law has been investigated by correcting Darcy’s Law
with a cubic term in velocity (Mei and Auriault 1991). They found that this weak inertia
law is valid when Re = O(1)*. The non-linear term has been modelled by Du Plessis
(1994) and was attributed (op. cit.) to a form drag resulting from the pressure difference

between a stagnation point and the wake. Hayes et al. (1995) stated that the non-linearity

* O(x) in this thesis indicates “of order x”’.
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is due to bends in the flow path and tried to include a pressure drop due to solely the
change in flow direction around corners, using an energy-loss equation for bends. They
applied a model based on square channels with sharp (90°) bends, which does not seem to
be very suitable as a physical model of porous media composed of spherical particles.
Andrade et al. (1999) explained the deviation associated with non-linearity as due to |
localized “channeling effects”. They characterized the flow transition from laminar to
PDT in terms of a partition in the spatial distribution of the kinetic energy in the system;
namely, that the flow at low Re values is more localized due to channeling effects than
the flow at high Re conditions. Skjetne (1999) felt that the rationale for the non-linearity
due to form drag and bends is rather weak. He proposed that the transition in the flow is
caused by the development of strong, localized dissipation zones around flow
separations.

One of the more recent and noticeable works to describe the relationship between
gradient for porous media flow and the velocity over the entire range of Reynolds number
has been achieved by Barree et al. (2004, 2005). They developed a new equation which
can predict the velocity at high gradients (so called trans-Forchheimer flow), and which
can be simplified to either the Forchhiemer or the Darcy equation under their governing

assumptions. Their so-called complete equation can be expressed as:

. HY [2-25]

where:

p = pressure (atm),

v = velocity of fluid (cm/sec),

p = absolute viscosity (g/100 cm-sec),

k4 = Darcy permeability coefficient (darcies or cm-g/ 100-atm-sec?),

Kmr = minimum permeability ratio (dimensionless),

T’ = transition constant which can be determined by non-linear regression of actual
laboratory apparent permeability data (100/cm if inertial flow parameter B has units of

atm-sec’/g).
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Their results show that the so-called trans-Forchheimer flow can occur at values of Re in
the range of 10-100. They explained the deviation from the Forchheimer equation as due
to either streamlining or flow diversion. The associated trans-Forchheimer (op. cit.)
equation implies that the inertial effect (V> term) may not be the sole factor causing
deviation from Darcy’s Law, or perhaps that the physical explanation for the V term is
something other than an inertial effect caused by local (convective) acceleration. Zeng
and Crigg (2006) suggested that the term ‘non-Darcy’ be used in place of ‘inertial effect’
and explained non-Darcy effects as being due to liquid-solid interactions. They pointed
out that in most porous media the pore diameter is very small, so that the spatial change
in velocity across and through pore throats must be negligible.

Even though high-velocity mechanisms within porous media are still not
completely understood (Golan and Whitson, 1991), and existing equations do not
quantitatively explain and account for all the mechanisms that induce deviations from
linear flow behaviour, a pragmatic approach was taken in this study. The research
described herein was not intended to unequivically resolve such questions and point to
the ‘best’ non-Darcy flow equation. In this study, a very widely used non-Darcy flow
equation was used, namely, the Ergun-type equation. It can be readily re-arranged to a
quadratic form and describes flow resistance over quite a wide range of Re numbers. By
incorporating such a (well-known) energy loss relationship in the momentum equation, it
was nonetheless possible to investigate the effects of the various individual terms found
in the governing partial differential equations. The contribution of each term was
compared, and the spatial and temporal variations of each term were investigated. It was
expected that, if desired, the approach used in this study could be applied to ‘more
accurate’ and/or more general energy-loss equations, so as to obtain more information
about the various solutions to the governing partial differential equations.

Various criteria have been suggested to indicate the on-set of the deviation from
Darcy’s Law. The Reynolds number has been very widely used as the criteria for regime
change and many researchers have reported various ‘critical’ Re values for the transition
from Darcy to non-Darcy flow (Fancher and Lewis 1933, Ergun 1952, Bear 1972,
Scheidegger 1974, Hassanizadeh and Gray 1987, Blick and Civan 1988, Du Plessis and
Masliyah 1988, Ma and Ruth 1993, Andrade et al. 1998, Thauvin and Mohanty 1998).
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Although the value of the threshold Reynolds number associated with transition from
laminar to turbulent flow is well-accepted for flow in conduits (Re =2000), said threshold
is difficult to define for flow through porous media. This is partly because investigators
have tended to define the Reynolds number for flow through porous media inconsistently.
Based on many researchers’ investigations, Bear (1972) presented a classification of flow
through porous media’. In Figure 2.1, three regimes of flow are identified: laminar flow,
transition flow (also called the non-linear laminar flow regime), and turbulent flow.
Herein these three regimes are referred as the laminar, partially developed turbulent

(PDT) flow, fully developed turbulent (FDT) flow regimes.

|-<— Darcy's Law is valid < Darcy’s Law is not valid —l

A4
A

i laminar P transitional | turbulent |
flow T flow flow
(PDT herein) (FDT hereiu)
105 . between laminar
and turbulent
4 flow, inertial

forces predominate

Fanning friction factor,
S

10 1
10° 1
1 ~
10 - | | ,
10° 10" 10 10! 10° 10°
Reynolds Number

Figure 2.1 Classification of flow through porous media of Bear (1972).

The three Repo. ‘thresholds’ shown in Table 1 are approximate. These thresholds of Re
= 1 and Re = 100 were however used in this study to identify the two transitions in flow
regime, partly for pragmatic reasons. The difficulty in selecting such regime-change

thresholds for flow through porous media can be readily appreciated in the presentation

5 others exist: McCorquodale et al. (1978), Arbhabhirama and Dinoy (1973).
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of the friction-factor Reynolds-number diagram found in such widely-used monographs
as Sissom and Pitts (1972). Beyond the fact that there is significant vertical scatter in the
data at any given Reynolds number, the best-fit through the three regimes is a smooth

curve with no ‘kinks’ in it.

Table 2.1 Flow regimes and parameters for conduit and porous media flow.

Laminar Partially-developed turbulent Fully-developed
(LAM) flow (PDT) flow turbulent (FDT) flow
Reconduit Recond < 2000 4000 < Recona < 3500/(€1/Dy) | Recona > 3500/(e1/Dy)”
Reporous Repore < about 1 1 <Repore < 100 Repore > about 100

" Pigott (1944).

Venkataraman (1998) derived an empirical equation to better identify the transitions from
laminar to PDT, and from PDT to FDT. The Reynolds number at which Darcy’s Law
deviates from the linear range was obtained as:

Re= 017 [2-26a]

(CW)LI

where:

C. =—— [2-26b]

d = a particle diameter,

k; = an intrinsic permeability.

The Reynolds number above which the flow becomes turbulent was expressed as:

_10
C

w

Re [2-27]

More detailed divisions of flow regime associated with Re are possible. For example,

Fand (1987) showed five regimes, including four regimes identified by Dybbs and
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Edwards (1975) and one regime pointed out by Bear (1972). These five regimes are the
pre-Darcy flow regime, the Darcy regime, the inertial flow regime, an unsteady laminar
flow regime, and a highly unsteady and chaotic regime that qualitatively resembles
turbulent flow. Using the range of Re reported in other studies, Zeng and Crigg (2006)
summarized critical Re values for “non-Darcy flow” from 1 to 100. They also suggested
the use of a Forchheimer number (Fo), which was first introduced by Ma and Ruth
(1993). Fo is the ratio of pressure drop caused by liquid-solid interactions to that by
viscous resistance. This number can be used as a criteria to indicate the on-set of non-
Darcy flow. Fo can be defined as:

FO — kBOpV
7!

[2-28]

where:
Bo = the non-Darcy coefficient,

p = the absolute viscosity of fluid.

Using dimensional analysis, many other dimensionless numbers can be used to describe
various aspects of the conditions of flow through porous media. In this study, analogies
to the Mach, Euler and Peclet numbers were used to find relationships between existing
dimensionless numbers and various dimensionless groups developed herein, and to
discover criteria for identifying changes in the relative importance of various physical
phenomena in fluid mechanics that are particular to flow through porous media.
Dimensional analysis can be used to reduce the complexity of a problem. Flow
through porous media studies tend to have many variables and parameters, and this
increases the complexity of the analysis and the challenges of interpretating the data.
Even though important dimensional parameters can be clearly identified, few (if any)
reasonable inferences about functional dependence can be made. By using dimensional
analysis, the number and complexity of variables which affect a given physical
phenomenon can be significantly reduced. Ward (1964) carried out a dimensional

analysis in order to obtain expressions for ‘a”” and ‘b’ in a Forchheimer type equation:

d_ a'v+b'v? [2-29]
dx
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By assuming the ‘pressure’ gradient to be a function of the velocity of the flow, the
permeability (k) of the porous medium, the density (p) of the fluid, and the absolute
viscosity (p) of the fluid, Ward (1964) obtained ‘a’”’ and ‘b” as:

R
o 2-30
a k [ 1

and
p=SP [2-31]

Jk

where ¢’ is a dimensionless constant of proportionality.

Ward (1964) also showed that the Reynolds number for porous media can be derived
from the ratio of the second term to the first term in eqn [2-29]. Greenkorn (1964) used
dimensional analysis to scale down the flows which takes place in a large petroleum
reservoir over a period of many years to flows which can be simulated within a smaller
time-space continuum. Barree et al. (2004) showed that the laboratory data obtained
using various porous-media types at various stresses collapse to a single line, using
dimensional analysis.

Mathematical models of various degrees of sophistication have long been used to
predict flow behavior in porous media. The traditional unsteady groundwater flow
equation is precisely analogous to one known as the heat equation (Freeze and Cherry
1979). It is derived from Darcy’s Law and the continuity equation, and is a form of
diffusion equation, with hydraulic head as the scalar potential (Freeze and Cherry 1979,
Fetter 2001):

»

’h Sg oh

oS 2-32
T K o [2-32]

where:

Ss = specific storage (dimensionless),

K = hydraulic conductivity (L/T).
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Wylie (1976) included a local acceleration term in the momentum equation to
apply the method of characteristics to radially-symmetric transient aquifer flows. Wylie
(1976) expressed this momentum equation for unsteady radial flow towards a well as:

é%% =% [2-33]
where:
r; = radial distance from center of well (L),
v = Darcy velocity (L/T),

h = hydraulic head (L).

Biot (1955) represented the link between the flow field and the stress field in three
dimensions, which necessarily accompanies the fluid movement in an elastic porous
medium. He showed that the deformation is determined by both strain tensors in both the
solid and the fluid, and suggested using the velocity of the fluid relative to the grains in
Darcy’s Law. However, a general groundwater flow equation (diffusion eqn) without
Biot’s correction terms can give satisfactory results in the vast majority of applications.
Gambolati (1973) showed that the diffusion equation is good when the formation
(aquifer) compacts less than 5 % of the initial thickness. Gambolati (1974) also showed
that the so-called ‘three-dimensional effect’ causes the deviation from the diffusion
equation. This effect is due to the pore pressure changes in the rest of the system
surrounding a given point of interest in a three-dimensional elastic system. He pointed
out that if this effect is negligible, the equation of flow reduces to the usual diffusion
equation and in one-dimensional problems, the effect is identically zero. Brinkman
(1947) modified Darcy’s Law by introducing Laplacian term to account for the friction at
the solid-fluid interface and the momentum transfer inside the fluid caused by a velocity
gradient. The Brinkman expression can be expressed as:

VP=—kilv+ﬁv2v [2-34]
where:
p = fluid pressure (F/L?),
p = fluid viscosity (M/L/T),
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ki = intrinsic permeability (L%,
v = velocity of fluid (L/T),
i = effective viscosity® (M/L/T).

Even though the use of the Brinkman equation is used for relatively large porosity i.e. the
fraction of void to total volume of the body is close to unity (Yamamoto 1973, Kolodziej
1988, Belhaj 2004), this expression can be used to generalize the Darcy’s Law by the
matching of velocities and stresses at the boundary between the fluid and the porous
medium (Yamamoto 1973). Yamamoto (1973) investigated the asymptotic behavior of
the flow near the surface of the porous medium.

These models can be used to predict the general behaviour of groundwater flow
but may not be used to predict the behaviour of high-Re flows because they do not
include a term to account for inertial effects. An Ergun or Forchheimer-like equation that
retains the local acceleration term in addition to the viscous and inertial terms, can be
used to account for the non-linear behavior of the flow. Many numerical and laboratory
studies have proven that flow through porous media can be predicted very well using a
simple model that has no local acceleration term and/or convective acceleration term
(Wiest 1962, Blick 1987 and 1988, Wylie 1976, Nield 1991). However, these studies
were limited to large space and time scales. In order to investigate dynamics of the flow
under various boundary conditions and within a more complete space and time region, a
local (temporal) acceleration term and/or convective acceleration term may need to be
included in the model. Polubarinova-Kochina (1952) suggested an extended form of the
Forchheimer equation that included a local acceleration term for cases of unsteady flow

in porous media:

i=a3v+b3|v|v+c3—ztl [2-35]

Burcharth (1995) pointed out that a possible convective acceleration term (V(av/ax)) can

not be treated in the same way as a temporal (local) acceleration term (ov/ ot ), so the

% usually taken to be the same as the nominal absolute viscosity. If n~ 1 under expanded-bed conditions,
Brinkman (1947) suggested using Einstein’s eqn (1906) to evaluate ﬁ .
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coefficient ‘c3’ cannot also be applied to a convective acceleration term. Therefore,
(0v/ot) cannot be substituted by the total derivative (dv/dt ). However, it can be
verified using dimensional analysis that the total derivative in Newton’s second law can
account for the fact that the quadratic term dominates over the local acceleration term,
which in turn dominates over the convective acceleration term. Therefore, the total
derivative can often substitute for the partial derivative in eqn [2-35]. Blick (1987)
proposed the so-called capillary-orifice model to better approximate high-speed flows
through porous media. This model included a convective acceleration term beyond the
extended Forchheimer model proposed by Polubarinova-Kochina (1952). This capillary-
orifice model uses a form of momentum equation very similar to that derived from the
Newton’s second law equipped with the Ergun equation. It exhibits a form similar to one
arising from the Navier-Stokes equation, which will be presented later. Macedo et al.
(2001) used the k-€ model for turbulence to investigate the influence of certain turbulent
effects on a fluid flow through porous media by numerically solving the Reynolds-
averaged Navier-Stokes equations.

Analytical solutions to the classical groundwater flow equation using Darcy’s
Law and continuity are available for various boundary conditions (Carslaw and Jaeger
1959). Various analytical methods for solving groundwater flow equation were
summarized by Bear (1972). However, relatively few analytical solutions and numerical
schemes are available in the literature for PDT flow through porous media, even though
there is practical and theoretical interest in such solutions (Moutsopoulos and Tsihrintzis
2005). Existing analytical solutions to the so-called Forchheimer equation include those
of Volker (1975), Lacher (1976) and Bear (1979). Approximate analytical solutions have
been obtained by Wu (2002) and Moutsopoulos and Tsihrintzis (2005) for certain
practical applications. The approximate solution of Moutsopoulos and Tsihrintzis (2005),
could be used to check the accuracy of the numerical solutions in this study. For
boundary conditions a Ah of 1 m and head of 0 m at L = co were used. The head of O m at
the downstream end (L = o) ensured that the disturbance at the upstream end never

arrived at the downstream end. Their approximate analytical solution was presented as:
h=1-2 _e_*z +arctg(6”) [2-36a]
n (1 +0 )
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where h, = hydraulic head,
B, = aquifer thickness,

S = storage coefficient,

by = empirical coefficient in Forchheimer-Dupuit eqn.

[2-36b]

[2-36¢]

[2-36d]

[2-36¢]

[2-36f]

Falade (1979) used a generalized Green'’s function approach to the problem of unsteady

fluid flow and indicated how this could be used for some of the systems frequently

encountered in oil and water reservoir problems. Furman and Neuman (2003) solved a

particular transient flow through porous media problem using a Laplace-transform

analytic element method (LT-AEM). They performed a Laplace transform of the original

flow problem and solved the equation using the analytic element method. The solution

was inverted numerically back into the time domain. The governing equation used was,

however, the two-dimensional linear diffusion equation. Auriault e al. (1985) applied a

‘homogenization process’, in which a macroscopic description of the problem was

constructed from the microscopic one.

When the problem includes complicated geometric configurations and variable

aquifer characteristics, analytical methods have very limited application. However,

numerical methods have reached a level of sophistication that efficient solutions to many

practical complex problems can now be obtained. Mahdaviani (1967) solved steady and

unsteady flow towards gravity wells using the method of characteristics (MoC).
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Mahdaviani (1967) demonstrated the power, simplicity, and practical uses of this
numerical solution for unconfined aquifers and also pointed out that the Theis solution
for confined aquifers is not very accurate for unconfined aquifers. The perceived
advantages of using MoC for solving transient flow problems included:
(1) the explicit nature of the solutions, both at interior positions and at interactive
boundaries,

(ii) the inherent stability of this method.

The method of characteristics has often been used to solve so-called water-hammer
problems. Even though the governing equations describe pipe-flow transients and not
unsteady flow in porous media, the mathematical methods used in the former can be
adapted to solve the latter because the partial differential equations governing these two
classes of problems have similar forms. The water-hammer equation describes the
propagation of a pressure wave, which can be accompanied by sharp changes in head and
velocity. In general, if explicit finite-difference methods are applied to solve this
problem, stability problems normally arise; these can be resolved using MoC. An
alternative way to solve this sharp-change problem using finite difference methods is to
use a technique to make the solution smooth, such as successive over relaxation (Smith
1978).

Wylie (1976) used the method of characteristics to solve the problem of transient
radial leaky aquifer flows. He transformed the governing partial differential equations to
a set of ordinary differential equations that can be integrated. The result was a set of
algebraic equations that could be solved using the method of characteristics. Wylie
(1976) used an inertia multiplier to modify the acceleration term. By introducing this
multiplier, unequal time and space steps could be used between computational sections.
Outcomes obtained using MoC compared well with the analytical solution for the case of
a single pumped well. Streeter and Wylie (1968) used the MoC to solve two and three-
dimensional transient flow problems using the one-dimensional water-hammer equations
arranged in a latticework. The latticework technique can be applied directly to problems
of 2-D and 3-D flows in porous media. The method of characteristics can also be

applied to the study of the seismic response of reservoir-dam systems (Wylie 1975). The
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response of a reservoir to seismic shocks was simulated and the numerical solutions were
shown to be compared well with analytical ones. Wiggert and Wylie (1976) solved a
two-dimensional transient groundwater flow problem using the method of characteristics
in the horizontal plane. They replaced the two-dimensional space domain with a
latticework of line elements which intersected at nodal points. They suggested that the
MoC could be adapted to other two-dimensional and even three-dimensional diffusive
problems.

Ghidaoui and Karney (1995) showed how the continuity and momentum
equations are interrelated by solving the so-called water-hammer equation using the
method of characteristics. Ghidaoui et al. (1998) subsequently developed an integrated
energy approach for transient problems in pipelines using the MoC, and estimated
discretization errors. Arfaie et al. (1993) studied the stability and accuracy of pipe
friction approximations within MoC solutions to water-hammer problems. They sought
to identify the physical and numerical conditions which effect both numerical stability
and accuracy, for various discrete models of the non-linear friction term. In addition to
the Courant-Friedrichs-Lewy (CFL) criterion, the pipe friction instability criterion
number of Wylie (1983) was used as a second criterion for numerical stability. Wylie
(1983) had presented the theoretical stability limit for large numbers of nodes (n’) as:

o1
Ce <3 [2-37]

Arfaie et al. (1983) rearranged this number into the following form:

. C
Cy = %(MaF{(nfl)} [2-38]

where:

n’ = number of solution nodes,
Cr = Courant number,

Ma = Mach number,

F = overall pipe friction-loss coefficient.
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Relatively recent interest in energy-related approaches has provided new impetus
for the study of flow through porous media. Nilson (1981) studied highly unsteady cases
and showed that the ‘early’ flows are inertia-dominated, in accordance with the Ergun
equation, but that ‘late’ flows are viscous-dominated, in accordance with Darcy’s Law.
These results are relevant to the solutions in which the regular perturbation method was
applied, to be described herein.

Pruess and Narasimhan (1985) applied a multiple-interacting-continua method
(MINC) for modelling fluid and heat flow in fractured porous media. They lumped
appropriate portions of the flow region (e.g., certain groups of well-connected fractures
or portions of porous blocks) into distinct continua that interact with each other. Mass
flux and energy flux were then used to model the thermodynamic conditions of the
system.

Pedras and Lemos (2000) studied the turbulent kinetic energy in flow through
porous media using a double-decomposition (time and volume) methodology. For the
interpretation of unsteady flow through porous media, Karney (1989) has suggested using
an energy concept. He applied this concept not only to unsteady Darcy flow through
porous media but also to unsteady closed-conduit flow (Mclnnis and Karney 1990). This

energy concept or balance can be derived from the first law of thermodynamics:

AU = W -V [2-39]
— - -

changein heat added work done

interal energy tothesystem by thesystem

The work done at the boundaries is partly used to increase the internal energy of the
system and partly to overcome the resistance to flow. The increase in internal energy is
further partitioned into the strain energy stored in the elastic soil matrix and the strain
energy stored in the pore water, due to fluid compression. An ‘energy-density’ concept
has been further suggested by Karney (1989):

AW — &[SOII + &l waterl + A dissipation
At dt dt At

[2-40]

where:

g, = energy density (FL/T/L>, F/TL?).
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For non-Darcy flow, the energy dissipation can be further partitioned into viscous
dissipation and inertial dissipation. This interpretation, using energy concepts, is similar
to the approach used in this study, i.e. the perturbation expansions associated with H and
V. However, the perturbation method (as applied herein) uses dimensionless head and
velocity to show the contribution of each term. It is therefore not necessary to convert
each term into an energy density form. Further, because dimensionless forms of the
governing equations were used in this study, the relative importance of each term can (in
general) be readily shown using an order-of-magnitude investigation of the dimensionless
groups, which become the coefficients of the individual terms in the governing PDE’s.

The momentum equation consists of viscous, inertial, local acceleration, and
convective acceleration terms. In the laminar regime, the viscous effect is dominant and
the magnitudes of the other terms are very small compared to the viscous term. Even
though the magnitudes of these terms are very small, it is of interest to know whether
these terms can be safely neglected, how small they are, and to better understand their
variations in time and space. It is also of interest to see how these various effects may
change in relative importance as the regime of the flow changes. In order to answer these
questions, information is needed about the nature of the solutions of the governing
equations. This information may not be obtained from the exact analytical solutions
because they are sometimes useless for making such physico-mathematical
interpretations. The only way to get this information is through the use of
approximations, numerical solutions, or combinations thereof.

Foremost among the so-called approximate methods are perturbation methods
(Nayfeh 1973). The terms in perturbation expansions are often governed by simpler
equations, for which exact solution techniques are available. Even though the exact
solutions of the perturbation expansions cannot be obtained, the numerical methods used
to solve the perturbation equations (even approximately) are often easier to construct than
the numerical approximations of the original governing equations (Bush 1993). In this
study, numerical solutions of the perturbation equations were obtained using explicit
finite-difference schemes. Perturbation methods have been widely used in the study of
flow through porous media. However, most of these studies have focused on the

investigation of the concentration of contaminants or thermal convection in saturated
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porous media (Nield et al. 2003a and 2003b, Hooman and Ranjbar-Kani 2004). Water-
hammer problem can also be solved using perturbation methods (Jayasinghe and
Leutheusser 1972, Walker 1975). Walker (1975) applied perturbation methods to fluid
transients using the steady-state form of a planar water-hammer wave equation.

Using the regular perturbation method, even though some of the terms are
multiplied by parameters having very small magnitudes, the presence of these terms
often cannot be simply neglected. This is because the problem can depend on these small
parameters in a ‘singular’ way. Matched asymptotic expansions can be used to solve
such singular problems. The method used by Ludwig Prandtl in 1904 to analyse viscous
boundary layers spread to other fields and has been generalized to the “method of
matched asymptotic expansions.” Blasius (1908) used it in boundary-layer theory to
arrive at an analytical expression of the velocity distribution in the laminar layer. The
theory was later generalized to cover the transition from laminar to turbulent flow, and
then to turbulent flow (Schlichting 1951). Kaplun (1954) introduced the formal inner-
limit and outer-limit processes for boundary-layer theory and presented the corresponding
inner and outer expansions. The application of this method to various fields has been
described by van Dyke (1975, 1994), O’Malley (1994), Cole (1994), Eckhaus (1994), and
Veldman (2001). Dyke (1994) presented applications of matched asymptotic expansions
in hydrostatics, hydrodynamics, elasticity, electrostatics, and acoustics. Benilov (2004)
compared the method of matched asymptotic expansions with intuitive approaches, and
presented some of its advantages. Similarly, Wang et al. (2003) used a two-scale
homogenized method to solve the Navier-Stokes equation at low Reynolds number. This
homogenization method adopted an asymptotic expansion of velocity and pressure
through the micro-structures of porous media. In the local problem (micro-scale), the
momentum component was derived from a version of the Navier-Stokes equation without

an acceleration term (3v/ét).

Asymptotic methods has also been applied for research on the dynamics of waves
in saturated porous media. Edelman (1997, 1999) used two-scale asymptotic methods to
solve the generalized Biot model (1955). The Biot model has a correction term to
account for deviations from the Darcy’s Law. This Biot correction term, included in the

momentum equation with a differential operator 1, may be written:
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where:

n = the porosity,

v = the velocity vector,
p = the pressure,

3; = the effective stress tensor,

and where the subscripts 1 and s indicate liquid and solid, respectively.

The above momentum equation does not retain the inertial term (v2). The Biot correction
therefore only has local acceleration and the second order derivative of velocity with
respect to time. Levy et al. (1996) added an inertial term to Euler’s equation to
investigate wave propagation in a saturated rigid porous media. The momentum equation

associated with pressure and velocity was expressed as:

@+vﬁ+le@=—F'v2 [2-43]

ox p
where:
F’ = coefficient which depends on porous material structure and associated with v? term
(1/L),

T¢ = tortuosity coefficient (dimensionless).

The above momentum equation does not account for the viscous effect. In this study, the
viscous term, inertial term, and local acceleration terms were included in the momentum
equation and the effects of these terms on the development of head and velocity were
investigated, and under a range of boundary conditions.

Even though the matched asymptotic method has seen numerous applications in

various areas, it is difficult to find examples where the interest has been in the hydraulic
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head and/or velocity of flow through porous media. Dagan (1968) developed a Dupuit
solution of steady flow toward wells using matched asymptotic expansions. He
investigated the steady-state free surface-flow of an incompressible liquid through a
homogeneous and non-deformable porous medium, toward a well. In his matched
asymptotic expansions, the inner expansion was only valid in the vicinity of the well and
the outer expansion only at large distances from it. The Dupuit approximation coincides
with the zero-order term of the potential outer expansion. The derivation of a second-
order outer term makes possible the discussion of the validity of the Dupuit
approximation, which tends asymptotically toward the exact solution. Carrier (1970)
applied matched asymptotic methods to geophysical problems to do with the dynamics of
oceans and atmospheres. Nayfeh (1971) used the method of multiple scales to describe
non-linear dispersive waves occurring at the interface between two fluids. The physical
systems of dispersive waves were divided into three sub-systems:

(1) waves on the interface between a liquid layer and a subsonic gas flowing

parallel to the undisturbed interface,
(i)  waves on the surface of a circular jet of liquid,

(iii)  waves in a hot electron plasma.

Nayfeh (1971) found that the partial differential equations governing the temporal and
spatial variations of the wave-numbers, amplitudes, and phases have the same form for
all these systems. Many other mathematical methods have been applied to solve wave
propagation problems in saturated porous media. Boer et al. (1993) derived a one-
dimensional analytical solution for transient wave propagation in fluid-saturated
incompressible porous media using Laplace transforms. Levin (1996) investigated the
propagation of pressure waves in saturated porous media for wave-pulses in petroleum
reservoir by solving the classical heat conduction equation (with a non-linear term) using
the method of quasi-characteristics. Zhang (2005) used a numerical method known as the
transmission matrix method to describe wave propagation in saturated visco-elastic
porous media. This was achieved by taking the Laplace transform for time and the

Fourier transform for space.
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If the matched asymptotic method is applied to the momentum and continuity
equations, the inner expansion can represent the wave propagation phenomena and the
outer expansion can represent diffusion. The diffusion part can be related with a so-
called porous medium equation (PME), which is well known in applied mathematics and
physics. In spite of the simplicity of the equation and of its applications, and due perhaps
to its non-linear and degenerate character, a mathematical theory for the PME has only
very recently been developed. Vazquez (1992) has remarked that although these
techniques depart strongly from the linear methods used to treat the classical heat
equation, and that some of the basic techniques are neither difficult nor require ‘heavy
machinery’. They can also be applied in, or adapted to, the study of many other non-
linear PDE’s of the parabolic type. The PME was first derived by Boussinesq in 1903, in
the study of gas flows through porous media. As discussed by Aronson (1985), the
porous medium equation can show non-linear diffusion mechanisms. It can be expressed

as:
u, = Alu™) [2-442]

or

u, = V- (m,u™"'Vu)= v-(vu) [2-44b]

where A is a Laplacian operator.

The quantity u can present any physical property in eqn [2-44] and is referred to as a
scalar potential. It can be the density or concentration in a diffusion process, the
hydraulic head in flow through porous media, or the temperature in a hot medium.
Depending on the exponent, m, equation [2-44] can be categorized into three
mechanisms. If mg > 1, the governing mechanism is a slow diffusion. If mg < 1, the
governing mechanism is a fast diffusion. When myp = 1, the equation reverts to the
classical heat conduction equation and the governing mechanism is simple diffusion.
One of the applications of slow diffusion can be found in the theory of ionized gases at
high temperature. Vazquez (1983) studied the asymptotic behaviour and propagation
properties of one-dimensional flow gases in porous media when mg >1. In that study, u

was the density of a gas which itself was a function of time and space. When my = 2, the
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PME can be applied to Prandtl’s boundary layer theory (Schlichting, 1960) and to the
Dupuit approximation for groundwater flow. Boussinesq was the first person to present
an exact solution of eqn [2-44], for mp = 2. Bear (1972) showed that Boussinesq’s
equation can be used to solve the Dupuit approximation. Using the Dupuit assumptions,

the total discharge through any vertical surface of thickness b can be expressed as:
Q= KB,h(0) [2-45]
dx

where:
Q = discharge (L),
B, = the thickness of confined aquifer (L).

The total discharge for a given vertical surface at specific location (given by x) is
constant. The Dupuit approximation, eqn [2-45], shows the form of the PME for a
steady-state case with mp =2. In most engineering fields, the study of the PME has been
focused on the slow diffusion equation. Applications of PME in the fast diffusion case
can be found in physics. When mgy = 0, PME arises in the study of the expansion of a
thermalised electron cloud (Lonngren and Hirose 1976), in gas kinetics as the central
dynamical limit of Carleman’s model of the Boltzman equation (Kaper et al. 1980), and
in ion exchange kinetics in the cross-field convective diffusion of plasma (Hellfferich and
Plesset 1958). Peletier and Zhang (1994) used a non-linear eignevalue to obtain solutions
to a fast-diffusion equation that do not conserve mass. Rosenau (1995) investigated fast
and superfast diffusion processes in which a subclass of superfast diffusions was
discovered where in the whole process terminates within a finite time. PME was applied
by King (1988) to the diffusion of impurities in silicon, where the values of mg were
between 0 and 1. Even though the PEM was derived from flows through porous media,
not many applications have been found in the fields of hydrogeology or petroleum
engineering. The main difficulty of applying the PME in these fields is that the forms of
the equations used in hydrogeology and petroleum engineering cannot be easily
converted to the form of the PME except the classic heat conduction equation (mo = 1).
As a result, even though numerous solutions and mathematical interpretations are

available for the porous medium equation, it is difficult to find the connections between
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the porous media equations based on the momentum and continuity equations, and the
porous medium equation. In this study, it will be shown the former equations for flow
through porous media (for a given regime) can be converted to the form of the PME, and
which mechanisms dominant under the defined boundary conditions. Aronson (1985)
has stated that

“the most striking manifestation of this nonlinear degeneracy is that in porous

medium flow there is a finite speed of propagation of disturbances from rest. This

is in stark contrast to the linear heat equation (mg = 1) where there is an infinite

speed of propagation.”
This study analytically arrives at this finite speed of propagation using matched
asymptotic expansions and suggests an equation to estimate this speed. Foster (1967) had
confirmed the existence of this finite speed of propagation. Using an analytical solution
known as the telegrapher’s equation, he showed that the pressure pulse through the pores
of the medium have a finite speed and that a time lag exists between initiation of a
disturbance and its arrival at same down-stream point. Matched asymptotic expansions

have been applied to the PEM with mg > 1 to show asymptotic behavior of the solutions
when t — oo (Peletier 1971 and 1977, Vazquez 1981 and 2003, Aronson 1985).
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3. Theoretical Development

3.1. Fundamental Equations

Energy loss equations have been presented for all three relevant regimes i.e.
laminar, PDT and FDT regime e.g. (eqns 3-3, 3-8, and 3-10). These equations were
presented in a form of a general power function and a zero-intercept second-order
polynomial. Energy loss equations accounted resistance of flow in the momentum
equation which could be derived from Newton’s second law whereas the continuity
equation from mass conservation. Head and velocity of the flow were the dependent
variables and time and space were the independent variables. Even though this study was
limited to 1-D in space, in order to present the effect of elevation head, the momentum

and continuity equations were developed for the conduit being not horizontal (6 # 0).

3.1.1. Energy Loss Equations
Flow through conduits and through porous media can both be described by either

a power function:

i=a, vV [3-1]

or by a zero-intercept second-order polynomial:

i=1r'v+s'v? [3-2]
where:
i = slope of the energy grade line, = h;/L (dimensionless),
aj, r’, and s/ = empirical coefficients,
v = velocity, definable as Q/A,

N = exponent whose value is bounded by 1 and 2 (inclusive).

The parameter a; is governed by the geometric characteristics of the porous medium in
question, as well as by the type of fluid moving through it. The parameter N is mainly

governed by the prevailing flow regime; i.e. by the intensity of the turbulence (if any).
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The values of some of the parameters are known a priori. Table 3.1 summarizes how the
turbulent regime and the values of a;, N, ¥, and & are related (certain terms to be defined
presently). It should be noted that while the transition from laminar to turbulent flow is
sudden for conduits, it is gradual for flow through porous media. Parameters for three

regimes were shown in Table 3.1.

Table 3.1 Flow regimes and parameters.

Laminar Partially-developed turbulent Fully-developed
(LAM) flow (PDT) flow turbulent (FDT) flow
, 1 or 32v 0
T < oD v.e.r.a.
s’ 0 v.er.a. 4
i or 32v v
aj K gD v.er.a.
N 1 1<N<2 2

v.e.r.a. = various empirical relations available (and/or the subject of on-going research).

v’ = well understood for conduit flow.

) Laminar (LAM) Flow Regime
If laminar flow is in effect, the hydraulic gradient will be directly proportional to
the velocity of flow through a porous medium. For laminar flow in a cylinder that

contains a porous medium, a re-arrangement of Darcy’s Law (v = K i) gives:

hy =2V [3-3]

where:
K = hydraulic conductivity (L/T),
L = conduit length, i.e. of the fracture (L),

v = average velocity (L/T).
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In light of eqn [3-3] it can be seen that the head loss associated with laminar flow through

a porous medium can be expressed as:

h, =Av [3-4a]

where:

A= [3-4b]

L
K

Hydraulic conductivity depends on the intrinsic permeability and the fluid moving
through the sample. An independent estimate of K can be obtained from the Carman-
Kozeny equation:

2
@—n)lﬁwv

3

n’ gD,

h, =L [3-5]

where:
n = porosity (volumeyoigs/ volumey,, dimensionless),

Dp = diameter of sphere with volume equal to representative particle volume (L).

The velocity at equilibrium, associated with the passage of an infinite amount of time,
can be found by using the instantaneously applied H instead of 4, in a re-arrangement of

eqn [3-4a]:

v,..=—H [3-6]

However, the above equation must also show that the applied head will not result in a
regime change, a transition that would make the underlying linear flow law invalid. This
is, in fact, the main use of said law when applying the flow establishment equation; it

provides the upper bound for the problem.

(i1) Fully Developed Turbulent (FDT) Flow Regime
Although this class of flow will be uncommon for the typical settings considered

herein, it does represent the maximum possible turbulent intensity. It is therefore a useful
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upper limiting condition (laminar flow representing the lower limit). If FDT flow is in
effect, the gradient will be proportional to the square of velocity. Fully-developed
turbulent flow through porous media is an even less common occurrence than FDT flow
in conduits. It may occur in flow through very coarse porous media (Hansen and Bari
2002) or in situations where the applied hydraulic gradient is very high (Anandakrishnan
and Varadalajulu 1963), or in combinations thereof. The Burke-Plummer equation can

be used to describe FDT flow through porous media. If ro = 1:

2
h, =0.583—— 2 [3-7]
mn° 2g
Or, since v, is more representative of the kinetic head than v and the preference for
porous media flow has always been to think in terms of conductance rather than
resistance:
2
h, = _1_[1‘_]& [3-8]
c,\ m)2g
Equations [3-7] and [3-8] show a form of:
h, =Avh [3-1]

with N =2.

(iii)  Partially Developed Turbulent (PDT) Flow Regime
Partially-developed turbulent flow through porous media has been studied by
many researchers. As with FDT flow, PDT may occur if the medium is made up of
coarse particles or if the applied gradient applied to it is high (or both). There is no
universally-accepted equation for describing PDT flow through porous media. Equations
of the form of [3-1] and [3-2] are both available. One of the commonly used equations

using the power law is due to Wilkins (1956):

1 L v'®
hL= ( 0.93) (3-9]
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where:

Wy = 5.243 for m-sec units.

The Ergun (1952) equation can be re-stated as:

2
hL=£( v Vv, 1 V—VJ [3-10a]

mlcm g ¢, 2g
or:
2
= Y, 1 W [3-10b]
cm” g c,m 2g
where:

¢y = 0.240 (due to Carman-Kozeny),
¢ = 1.714 (= 3/1.75, 1.75 being due to Burke-Plummer).

In this study, eqn [3-10b] was used to describe PDT flow instead of Forchheimer
equation. The main disadvantage of using Forchheimer equation is that the constants
cannot adequately account for the combined effects of geometry and viscosity and hence
the empirical constants contained therein must be re-determined for each specific porous
medium (Fand 1987, 1990). Equation [3-10b] is a simple expression. Engelund (1953)
synthesized a substantial body of data on PDT flow in porous media, including packings
of spheres. It is interesting that a ¢; of 0.20 and a c; of 1.67 can be inferred using the
lower limits on Engelund’s recommended range of values for these parameters and by
assuming n = 0.375 (an average value), d = 1 mm, and r.= 1. Table 3.2 summarized
parameters associated with the energy loss equation using a power law for three flow

regime cases.
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Table 3.2 Summary of parameters for three flow regimes associated with h, =Av".

LAM PDT FDT
ML v )L L(_L ) ool L)L
K Clm’n)g W, \m**n "¢, mn* J2g

N 1 I <N<2** 2

* Eqn [3-9] is dimensionally inconsistent. N = 1.85 according to both the Hazen-Williams and
the Wilkins’ egns.

** use N =2 but only if fis independently estimated; f under PDT flow is a function of the
Reynolds number. Use Swamee-Jain equation or Moody diagram to evaluate f.

Table 3.3 presented parameters associated with the equation using the zero intercept

second order polynomial for three flow regimes.

Table 3.3 Summary of parameters for three regimes associated with h, =r V+sV?.

LAM PDT FDT
N ST R T Y G S T .
K c{m’n)g c,\m’n) g
§ 1 L 1 1 L 1
0 o 2 |y - 2 |5y
¢, \mn” )2g c, \mn”)2g

It must be emphasized that for flow through porous media, only the expression L/K is
universally accepted (even if the use of the hydraulic conductivity K raises the difficult
question of how to obtain an accurate K without performing a packed column
experiment). For PDT and FDT flow through porous media, other expressions for A and

values of N can be found in the literature.

3.1.2. Momentum Equation

Schematic of the experimental set-up was shown in Figure 3.1. The pipe was

packed with sand. The variables h,, hy and L are constants, whereas v is time and space-
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dependent. The energy loss hy. depends on v, and is therefore also time and space-

dependent. The ‘driving force’ of flow, Ha, iS constant.

Q
Y

=L

®

Figure 3.1 Schematic of experimental set-up and the force valance inside of the pipe.

The momentum equation for pipe flow can be described as:
PA — [pA + %(pA)SxJ + p%%&x + YAdx sin B — 7, (27r, )dx = pASX % [3-11]

By computing the total time derivative of the velocity vector, acceleration vector field for

Newton’s second law can be obtained. Dividing both sides by pAdx gives:
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4
1P, pging_ 2t IV [3-12]

where:
ro = radius of the pipe (L),
vy = pore velocity, v/n (L/T).

For pipe flow, the head loss can be expressed as:

_ To(2mry )8x  27y0x

h [3-13]
" peA PEL,
Because p = pg(h-z), » = pg(@ - %] where h is hydraulic head and z is an elevation
Ox 0x Ox
head. Using 2 =-sinB:
ox

op [ oh . j A
— = —+sinb 3-14
3 P8 o [3-14]

Substituting to and Op/0x into eqn [3-12] gives:

ch g dv
8ox ox - dt B-13]

For porous media the head loss can be expressed using hy = rv + sv* (viscous and so-
called inertial effects). If the whole length of pipe is considered and the bulk velocity v is
used instead of vy eqn [3-15] becomes:

gna—h+v@+@+%(w+sv2)=o [3-16]

Using r and s of the Ergun equation (1952), the laminar case (s = 0) becomes:

oh  ov 8v+gn1[vlev_ Joh 8V+1(L]v=0 ;3-17]

n,12
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or using Darcy’s Law,

ch ov 0ov gn
—+v—+—+==v=0 3-18
Mo kot K B-18]
For PDT,
gn—a—}l+vﬁ+ﬁ+£( \; jv+ 2 ( lzjv2=0 [3-19]
ox 0x O ¢ \m'n 2¢, \mn
For FDT,
gn@+vg+§—v—+i( 12)v2=0 [3-20]
ox  ox &  2c, mn

1) Darcy’s Law and the Ergun-type equation
Darcy’s Law and the Ergun equation can be considered to be reduced forms of the
momentum equation. If we are considering ordinary groundwater flow, the acceleration
of the flow can be ignored because the velocity of groundwater is normally very small.
From eqn [3-16], if the acceleration terms are neglected, the momentum equation

becomes:

2
@+(rv+sv )=

0 3-21
o 3 [3-21]

Equation [3-21] is a form of the Ergun equation and has the so-called inertial term. By

setting r = % and neglecting the inertial term, eqn [3-21] reduces to Darcy’s Law:

—+—=v=0 3-22
< [3-22]

(i) Navier-Stokes equation
Navier and Stokes added newtonian viscous terms to the equation of motion

(White 1999). The equation of motion can be expressed as:

[3-23]



If the flow is incompressible and newtonian, and if the viscous stresses are proportional
to the element strain-rates and to the absolute viscosity, the 1-D Navier-Stokes equation

becomes:

v ov ov
PEx —%*"Hy:P(EJFV&) [3-24]

By multiplying p to the momentum equation (eqn [3-12]):

op ) 27, dv,
-—+pgsinf——== 3-25
Ox PE r P dt [ ]
Re-arrangement gives:
: Ep pg 2 E v E v
- === + — -y 4 3-26
pgsin L (rv+sv)=p o v [ ]

If we compare eqn [3-26] and [3-24], it can be shown that the only the only difference
between these two equations is the resistance of flow. The Navier-Stokes equation
explains it with viscous stresses which are proportional to the element strain-rates and the
viscosity coefficient. In the momentum equation (eqn [3-26]), the resistance force is

explained using viscous resistance (rv) and inertial resistance (sv?).

3.1.3. Continuity Equation

The continuity equation for typical groundwater flow can be expressed as:

_0(pv) _ 9(pn)
Ox ot

[3-27]
v is the bulk velocity of the flow. If pore velocity is used instead of bulk velocity and the
cross-section area of the pipe is considered variable in time and space, the continuity

equation can be expressed as:

_d(pnv,Acx) _ d(pnA)ox

3-2
ox ot [3-28]
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Figure 3.2 Control volume relevant to derivation of continuity equation.

Expanding and dividing eqn [3-28] by ox gives:

nVVA@+pVVA@+pan 8_A+ pnA v, + pn?é+nA@+ pA@ =0 [3-29]
ox Ox 0x ox ot ot ot

Dividing by pnA gives:
v,on 1én v, 0p 10p v,0A 1J6A Ov,
—t—— b ——+ =
nox not pox pot Aox Adt 0Ox

0 [3-30]

If the partial derivatives are converted to total differentials:
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ldn 1dp 1dA ov, _, [3-31]
ndt pdt Adt ox

elastic pipe

elastic porous media

elastic fluid

Figure 3.3 Schematic of Porous media in pipe.

The first term is related to the compressibility of the porous media. The associated
porosity change can be expressed in terms of the pressure change (Fetter, 2001):
ldn _I-n,dp [3-32]
n dt n dt
The second term accounts for the elasticity of fluid. The associated density change can
be expressed in terms of the pressure change (Freeze and Cherry, 1979):

ldp _gdp [3-33]
p dt dt

The third term accounts for the elasticity of the pipe itself. The associated cross-sectional

area change can be expressed in terms of the pressure change (Streeter and Wylie, 1975):
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—_—— = [3-34]
A dt tEdt
Using these three definitions in eqn [3-30], we obtain:
- ov
pdpf; lzna, D 13 ov, [3-35]
dt n B tEP ox

For convenience and using an analogy to the celerity of a pressure perturbation in a

pipeline’, the constants in eqn [3-35] are re-defined as follows:

B(Hl_—_nL_P_lj:le 3-36]
n B tEP pc,
Re-arranging for c, gives:
cl =L ! [3-37]
Bo(;,L-na DI
n B t'EB
Equation [3-35] then becomes:
ov
1dp 2T [3-38]
pdt ° ox
If vy 1s transformed to vy (V):
2
c
1dp & ov_, [3-39]
pdt n 0x
Using p = pg(h-2): .
dp op op (8h 82) (ah 82)
—=v—+-—=—=vpg| ——— |[+pg ——— 3-40
a ox o P o) PPla a (401

’ cp2 =vyK celerity of a hydraulic transient (‘water hammer’) in a water main, where K is a composite
elasticity of water and pipeline material.
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The pipe is not moving so % =0. Using gxz =-sin0:

l@zvg(@+sin9j+ga—h [3-41]
p dt ox ot
Equation [3-39] then becomes:
2
c
—p—iil+va—h+a—h+vsin6=0 [3-42]
gn 0x Ox Ot

Equation [3-42] is a continuity equation for an elastic fluid in a elastic pipe that is filled

with elastic porous media. If the pipe is horizontal then vsin6=0.

3.2. Dimensional Analysis

3.2.1. The Buckingham Pi Theorem

The Buckingham Pi theorem is a rule to decide how many dimensionless groups
can be derived or are implied by a problem. The momentum equation and the continuity
equation were expressed with eqn [3-16] and [3-42] respectively. These two equations
contain ng = 9 dimensional terms (h, v, X, t, g, 1, s, L, ¢;) which can be divided into
variables and parameters. The variables are h, v, x, t and the parameters are g, 1, s, L, cp.
In order to nondimensionalize the equations, the number of dimensions contained
amongst the variables and parameters must be found. From Table 3.4 it can be seen that

two dimensions exist, length {L} and time {T}.

Table 3.4 List of dimensions of variables and parameters

o | v | x| | s || s [1] &

w oy | ow | om | ey | m | || oarh

The number of dimensionless variables can be calculated by subtracting a number jo from

the number of dimensional terms:

k=n,-j, [3-43]
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where jo is the maximum number of variables which do not form a pi group among
themselves. This jg is always less than or equal to the number of dimensions describing
the variables. It can be shown that there are combinations of two terms which do not
form a pi among themselves, i.e. r and L. Therefore jo = 2 and from eqn [3-43], 7
dimensionless groups are expected. Head can be expressed as a function of 8

dimensional terms:

h=f(v,x,t,g,1,5L,c,) [3-44]

If r and L are selected as repeating parameters in pi:

. h VX g
removing length —=f(—,—,t,=,r,sL,—~% 3-45
( g length) L (L b1 L) [3-45]
o h Vs X g , sL ¢r
removing time —=f(—,—,t8,2r1r", —, — 3-46
( g ) L (L ST L) [3-46]

As expected from eqn [3-43], the number of dimensionless groups is 7. There can be
other options depending on which parameters are selected as repeating parameters. The
Buckingham pi theorem only indicates that there must be at least a certain number of
dimensionless groups involved. It gives little assurance that all the dimensionless groups
have been found (Ipsen, 1960). In this study, a more general approach is used. This

involves the use of the boundary conditions as scaling factors.

3.2.2. Development of Dimensionless Form

Dimensional variables in the equations are scaled by known values.

Defining:
H=1 [3-47a]
ha
Ve=— [3-47b]
V.,
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X = [3-47c]

= |

q= [3-47d]

L
bO
where h, is the applied head at the upstream end, V. is the steady state velocity at the
downstream end when t = co. L is the total length of pipe and b, is the time-scaling
factor. Scaling factors for H, V and X can be readily obtained using knowledge of the
boundary conditions. However, the time-scaling factor should be given a reasonable
value in order to make further study possible. The value of b, can be estimated from the
simplest form of momentum and continuity equation which is the typical groundwater
flow equation. The standard 1-D groundwater flow equation (Laminar regime) is a

simple diffusion equation, and includes storativity (S) and transmissivity (T).

S

B =B, [3-48]

By introducing the relevant scaling factors:
%Hxx = %};—O ; (3-49]

A dimensionless form of eqn [3-48] is then:
H,y =%%Hq [3-50]

For further numerical and analytical study it is beneficial to give b, a value that makes

the time scale order 1. It will therefore be approximated using:

. SL?
b, = = [3-51]
If all these scaling factors are applied to the momentum equation:
h V2 -
g H 4 ayy 4 ey BTy v B8 yay g [3-52]
L L SL* ' L L
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A dimensionless form of the momentum equation is then:

V2 %
H, +—= vV, +—=l v + Lv viSvivig [3-53]
gnha gnllaSL ha ha

Equation. [3-53] can be re-arranged to the following equation, for convenient formulation

of the numerical method.

SL \Y
gnh H SL

LsV
=y yv, - g5k, gndLsV, o [3-54]
C, G G ¢,

Similarly, if the stated scaling factors are applied to the continuity equation:

2
c,” V. \/
S Yoy s Yelayy v sinev+ly —o [3-55]
gn L L SL

A dimensionless form of the continuity equation is then:

j T
v, + B gy ELsinfy e T 4 g [3-56]

x 2

c c c,’V,SL *

p p

Re-arrangement gives:

2
\Y ¢,V SL 7 si
°°SLVH P v _V,SL smGV

H, = - [3-57]
q X X
T . gnh, T h,T
Cs Cs C

C; and Cs become identical. An additional time-scaling will make the momentum and

continuity equations simpler for subsequent manipulations and calculation:

C,q=1 [3-58]

The scaling from dimensional time is then:

= [3-59]

t
b, goh,L
C6

T =
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If the above scaling is applied, the momentum equation becomes:

Similarly, the continuity equation becomes:

3.23. Definition of Problem Scope

Cc,V.=-CH, -C,VV,-C,V-C,V?

CH,=-C,VH_ -C,V-C,V,

[3-60]

[3-61]

The dimensionless groups retain dimensional parameters which define the scope

of the problem. Although one set of physical parameters was used in the numerical

experiments, the effects of the various magnitudes of dimensional parameters on the

various dimensionless groups will be presented section 4.4.3. Table 3.5 shows the values

of the dimensional parameters used in the numerical experiments.

Table 3.5 Values of physical parameters used in numerical experiments.

(a) assumed parameter values.

No. | Symbols Parameters/constants ngiitc'sal Value Notes
1 d diameter of particle m 0.001 size of sand
2 D diameter of the pipe m 0.1 -
3 L total length m 10 -
4 t thickness of pipe m 0.0005 -
5 Ie shape factor - 1.0 -
6 n Porosity (sand) - 0.375 -
7 a compressibility of sand' 1/Pa 1.0E-08 -
8 compressibility of water 1/Pa 4 4E-10 -
9 Young's modulus of iron Pa 2.0E+11 -
10 ¢ empirical coefficient ; 0.24 due I?OS:;;MH'
11 C2 empirical coefficient - 1.714 dugl?mi;l;fe-
12 g gravitational acceleration m/sec? 9.806 -
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No. | Symbols Parameters/constants Tigilfsal Value Notes
13 P density of water kg/m’ 1000 -
14 y weight density of water | kg/m*/sec* | 9806 -
15 v kinematic viscosity m?/s 1E-06 -

! of the matrix or skeleton of the media, not of the individual grains.

(b) values of parameters computed using assumed parameters from (a),
via ‘accepted’ equations.

No. | Symbols Parameters/constants Tl};giitcsal Value Notes
1 e void ratio - 0.6 e= 2
l-n
2 m hydraulic mean radius m 0.0001 eqn [2-2d]
3 K hydraulic conductivity m/s 8.83E-03 eqn [2-6]
4 Ss specific storage 1/m 9.97E-05 S, =y(a +np)
5 T transmissivity m?/s 8.83E-04 T=KD
6 S storativity - 9.97E-06 S=5D
7 r viscous constant sec 1133.1 Table 3.3
8 s inertial constant sec’/m | 21154.6 Table 3.3
9 Cp celerity of pressure wave m/s 235.01 eqn [3-37]

With respect to the values that were simply assumed for the physical parameters anci
quantities stated in Table 3.5 (a), the intention was to conceive of a problem which, in
some sense, was ‘typical’ or representative of a 1-D unsteady permeability test, i.e. a
typical porous media in which LAM, PDT, or FDT regimes would be physically possible
(true of a coarse sand), packed to a typical or average porosity, having a typical matrix

compressibility (o), and placed in a relatively rigid but still elastic conduit (a steel pipe).

3.2.4. Magnitude of Dimensionless Groups

Table 3.6 shows the magnitudes of dimensionless groups in the momentum and

continuity equation. These dimensionless groups were obtained at various applied
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hydraulic gradients. It can be seen that for all the cases, Cy, Cs, C¢ and C; are very small

compared to C;, C; and Cs.

Table 3.6 Magnitudes of dimensionless groups.

i 0.01 01 0.4249 1 10 100 340 400
C, 470.55 470.55 470.55 538.33 883.50 | 2159.80 3522 3820.1
G, 1.0E-05 | 1.0E-04 | 42E-04 | 8.7E-04 | 5.3E-03 | 2.2E-02 0.045 0.049
G, 470.55 470.55 470.55 470.55 470.55 470.55 470.55 470.55
Cs 0.78 7.75 32.94 67.77 412.94 1689.20 3522 3820.1
Cs 1.0E-05 | 1.0E-04 | 42E-04 | 87E-04 | 53E-03 | 2.2E-02 0.045 0.049
Cs 1.50 1.50 1.50 1.31 0.80 033 0.20 0.18
C;” -1.0E-03 | -1.0E-03 | -1.0E-03 | -8.7E-04 | -5.3E-04 | -2.2E-04 | -1.3E-04 | -1.2E-04

" 45 degree up-slope applied

Table 3.6 shows how the ratios of various pairs of dimensionless groups change with

applied hydraulic gradient. By investigating these ratios, the effects of each term in the

PDE’s can be investigated and compared with traditional groundwater flow equations.

The magnitude of the ratio of dimensionless groups for traditional groundwater flow

equation C,/C, is unity for laminar regime. If the regime changes to PDT and then FDT,

the inertial effect C, /C, becomes significant. If the magnitude of the ratio of interest is

much smaller than unity, we may expect that the effect of that term is negligible.

Table 3.7 Ratio of dimensionless groups.

i 0.01 0.1 0.4249 1 10 100 340 400
Cy/Cy 2.1E-08 | 2.1E-07 | 9.0E-07 | 1.6E-06 | 6.0E-06 | 1.0E-05 | 1.3E-05 | 1.3E-05
GC5/C, 1 1 1 0.87 0.53 0.22 0.13 0.12
CJ/Cy 1.6E-03 | 1.6E-02 | 7.0E-02 0.13 047 0.78 1 1
Co/C,y 32E-03 | 3.2E-03 | 3.2E-03 | 24E-03 | 9.0E-04 | 1.5E-04 | 5.7E-05 | 4.8E-05
Cs/Cs 6.7E-06 | 6.7E-05 | 2.8E-04 | 6.7E-04 | 6.7E-03 | 6.7E-02 0.226 0.266
C4/Cq -6.7E-04 | -6.7E-04 | -6.7E-04 | -6.7E-04 | -6.7E-04 | -6.7E-04 | -6.7E-04 | -6.7E-04
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3.3. Models of Flow through Porous Media

The complete momentum equation consists of viscous term, inertial term, local

acceleration term, and convective acceleration term. Figure 3.4 shows the terms in the

complete momentum and continuity equation. Starting from the simplest law for flow

through porous media, Darcy’s Law, additional terms can be successively included to

show the effects of each term.

Viscous effect

Inertial effect
( Momentum Eqn.

Local acceleration effect

Convective acceleration term
Flow through <
porous media

Elasticity of fluid

L Elasticity of porous media
\ Continuity Egn.

Elasticity of container

Elevation head effect term

Figure 3.4 Terms included in fundamental equations.

3.3.1. Model Classification

The momentum equation can be re-arranged to help show the effects of each term,

starting from Darcy’s Law:
H, +%V+—C—“V2 + &VT +&vvX =0

1 1 1 1
~— [ — ——

viscous inertial local convective
term term acceleration acceleration
term term

The continuity equation can be re-arranged to help show the effects of each term:
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C C

H.+ V, +—VH_ +—2VH =0 [3-63]
—  Cq Cq
elasticity
term elevation head advection
term term

It can be seen from eqn [3-62] that various forms of momentum equation can be stated by

adding the relevant terms to the one based on the simplest model:

C
Hx+&V+&V2+&Vt+—2VVX=O [3-62]
Cl 1 1 C1
Darcy'slaw

J

v
Ergun or Forchheimer equation

~
Unsteady acceleration mod el

v .
Complete equation of motion

In light of eqn [3-63], two forms of continuity equation can be stated; again, by adding a
term to the simplest model (that based on Darcy’s Law):

C C
H +V, +—LV+—2VH, =0 [3-63]
C6 6
General
groundwater
continuity equation

. Y -
Continuity equation
with elevation head effect

iy
Complete continuity equation

3.3.2. Models for 1-D Flow through Porous Media

The generally-accepted model for laminar flow of naturally-occurring
groundwater consists of Darcy’s Law and the continuity equation. From Figure 3.4, this
model has a viscous term with respect to momentum equation and has three elasticity
terms with respect to continuity (for the porous media, the fluid, and the container). The
elasticity of the container (or confined layer) is not included in the usual statement of the
continuity equation for groundwater flow, but for the consistent use of dimensionless

groups in this study, it will be included in all the models, unless otherwise specified. If
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we neglect inertial, local acceleration, and convective acceleration terms from momentum

equation, eqn [3-60], we obtain:

H =-=2V [3-64]

Equation [3-64] is simply a dimensionless form of Darcy’s Law and V can be readily
calculated from the hydraulic gradient. Also, Vx can be obtained from the second
derivative of H by differentiating eqn [3-64]:

V, =——LH,, [3-65]

If we neglect the advection term in the continuity equation (eqn [3-63]), it becomes:

H, +V, =0 [3-66]

Substitution of Vx in eqn [3-65] into eqn [3-66] results in:
H. = % H, [3-67]

T
3

3.3.2.1. Darcy’s Law Combined with Complete Continuity

This model incorporates viscous effects into the complete statement of the
continuity equation. This is the same as saying that the momentum equation will only be
represented by Darcy’s Law. If V in eqn [3-64], and Vx in eqn [3-65] were substituted
into the complete continuity equation (eqn [3-63]) the following expression is obtained:
Gl p. Gy GG

(Hy )" +=FHo +

H, —
Cs Cs o8 Cs Cs

H, [3-68]
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3.3.2.2. Ergun-type Model

This model consists of viscous term, inertial term and continuity equation. If the

local and convective acceleration terms in eqn [3-62] are neglected, the following

equation is obtained:

H, =2 v-Sty
C C

X

After re-arranging for V:

So V as a function of Hy is:

If the negative V is neglected, then by re-arrangement:

v =G JC,2-4C/C H,
2C,

Differentiating eqn [3-70] by X yields:
ov: C, oV C, 0°H
+—=——+— =

oX C,0X C,ox?

or:
A\ 2V+& +&HXX=O
4 C4

or:
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Substitution of eqn [3-72] into eqn [3-75] results in:
V=G H oo [3-76]
JC -4C,C H, |

Substitution of 6V /0X (eqn [3-76]) and V (eqn [3-72]) into the continuity equation (eqn
[3-63]) gives:

—C, +4/C,? —4C,C,H, .
2C,

C
H - H,, +—
T XX C6

—C, ++/C,* -4C,C H
L6 75 VS, 14X g [3-77]
C, 2C,

3.3.2.3. Model which retains Local Acceleration Term

This model retains the viscous term, the inertial term, and the acceleration term in
the momentum equation. It uses the statement of the complete continuity equation. The
momentum equations for the previous models were essentially steady-state equations; in
other words, there was no temporal (local) acceleration term. As a result, the momentum
equation and continuity equation could be combined into one equation with relative ease.
However, if the temporal acceleration term is included in the momentum equation, this
becomes difficult. It becomes necessary to calculate H from the continuity equation and
V from the momentum equation, and to do so separately (but in a coupled model or
system). In order to get H at a given time, the H and the V from the previous time step
must be used. Similarly, to calculate V at a given time, both H and V from the previous
time step must be used. The momentum equation can be expressed as:

H, :—&V—&VZ—&VT [3-78]
Cl C1 C1

33.24. Complete Model

This model consists of the complete momentum equation and the complete

continuity equation. Because of the complexity of this model, the momentum and
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continuity equation cannot be combined to describe equation of H and V. Instead, these
equations are solved separately. The momentum equation is used to obtain V and the

continuity equation is applied to get H.

3.4. Regular Perturbation Method

Comparison of the solutions arising from the various models may not give
information about the individual effects of various terms in, or components of, the
momentum and continuity equations, i.e. viscosity, inertia, local acceleration, convective
acceleration, and elevation. In the laminar regime, the viscous effect is dominant and the
magnitudes of the other terms are very small compared with the viscous term. Even
though the magnitudes of these terms are very small, it is of interest to know whether
these terms can be safely neglected, how small these terms are, and their variations in
time and space. It is also interesting to see how these effects can change in relative
importance as the regime of the flow changes. In order to answer these questions, we
need to obtain information about the nature of the solutions of the governing equations.
This information may not be obtained from the exact analytical solutions because they
can be useless for such physico-mathematical interpretations. The only way to get this
information is through the use of approximations, numerical solutions, or combinations
thereof. Foremost among the so-called approximation methods are perturbation methods
(Nayfeh 1973). By defining the coefficients of each term as coefficients of regular
perturbation expanstons, the effects of viscous, inertial, acceleration and convective terms
could be investigated separately. The effects of each term could be expressed in terms of
head or velocity, depending on the choice of dependent variable.

The regular perturbation method was applied to two cases, one with the
coefficient of the inertial term included as one of the regular perturbation expansions, and
one with without it. The first case considered was the laminar regime. For this regime
the inertial effect is small and can be included as one of the regular perturbation
expansion terms. The second case considered was the PDT and FDT regimes, in which
inertial effects are relatively large or even dominant, and cannot be considered as RP

expansion terms.
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3.4.1. Perturbation Expansions for Laminar Case

The standard and simplest groundwater flow model, based on Darcy’s Law and
the continuity equation was the obvious starting point for investigating the separate
effects of the additional terms and their associated physical meanings. To facilitate this,
the momentum equation can be re-arranged so that the coefficient on Hx becomes unity:

C C C
H, +C—3V+&V2+—"’VT+—1VVx =0 [3-79]

1 Cl 1 1
If we define C4/C; as g, C¢/C; as 3, and C,/C; as y:

H, +%V+8V2 +3V_+yVV, =0 [3-80]

1

In the continuity equation, the coefficient on VHx can be re-written C; because Cs = C;:

HT+VX+QVHX+&V=O [3-81]
CG C6
If we define C»/Cs as &, and C7/Cg as o:
H +V _+&VH, +0V =0 [3-82]

Using a perturbation expansion, the quantity H can be expressed as:

H=H, +eH, +8H, +yH, + £EH, + oH, + O(¢®) [3-83]

Using a perturbation expansion, the quantity V can be expressed as:

V=V, +eV, +8V, +yV, + &V, + oV, + O(e?) [3-84]
From eqn [3-83], we can expect that the effects of each term on H could be found using
Ho, H;, H, H3, Hy and Hs. Similarly, from eqn [3-84], we can find the effects on V using

Vo, Vi, V2, V3, V4 and Vs. Table 3.7 summarizes the expansion coefficients with the
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order-of-magnitude and relevant H and V for each. The value of the order of magnitude

was obtained with an applied hydraulic gradient of 0.1.

Table 3.8 Expansion coefficient and relevant H and V.

expansion expression order of relevant H

coefficient presst magnitude and V
viscous effect - Cs/C, O Hj and V,
inertial effect € C/C, 010 H, and V;
local acceleration 8 Ce¢/Cy 0103 H; and V,
convective acceleration Y Cy/Cy 0109 H; and V;
advective acceleration & C./Cs 010 H,; and V4
elevation head o Cy/Cs 010 Hs and Vs

If we differentiate H with respect to t:

H =H, +eH,_+8H, +yH, +EH, +oH, +0(c?) [3-85]

If we differentiate H with respect to X:
H, =H, +eH, +8H, +yH, +&H, +oH, +O0(s*) [3-86]

If we differentiate V with respect to t:

V, =V, +&eV, +8V,, +yV, +EV, + oV, +0(e?) [3-87]

If we differentiate V with respect to X:

Vi =V, +&V, +8V, +7V, +EV, +0V; +0(s?) [3-88]

VVx and VHy can be expressed as:

VVy = VoV, +eV,V, +8V,V, +yV,V, +EV,V, +aV,V,

+eV\Vy, +8V,V, +7V,V, +EV,V, +0V,V, +O0(*) [3-89]
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VVx and VHx can be expressed as:

VHy = V,H, +eV,H, +8V,H, +yV,H; +EV,H, +oVH,

+eV\H, +8V,H, +yV;H, +&V,H, +oVH, +0(*) [3-90]

If the V* term is expressed with first-order accuracy:

V? =V} +2eV,V, +28V,V, +2yV,V, + 26V, V, + 20V, V, + O(e*)  [3-91]

Substitution of Hx, V-, VVx, and V? into eqn [3-80] gives:

C
H, +eH, +8H, +yH, +&H, +oH; +E3—(VO +eV, +8V, +7V, + £V, + 0V)

1

+eVy +8V, +yV,V, +0(e*)=0 [3-92]

Substitution of H;, Vx, and VHy into eqn [3-82] yields:
Hy +eH, +8H, +YyH, +&H, +@H; +V, +&V, +8V, +yV, +&V, +0V,

+EV,H, +0V,+0(s*)=0 [3-93]

From eqn [3-92], equating coefficients of €° gives:

GF H, = —%—VO [3-94a]
1

where (g)° represents order of €°.

From eqn [3-93], equating coefficients of ° yields:

(€)": v, =-H, [3-94b]

After differentiating eqn [3-94a] with respect to X, substitution of eqn [3-94b] for V,

gives:

H, =-2H, [3-94c]



From eqn [3-92], equating coefficients of &' gives:

(e)': H = —% vV, -V [3-95a]
1

where (a)1 represents order of el.

From eqn [3-93], equating coefficients of e yields:
(e)": Vv, =-H, [3-95b]
After differentiating eqn [3-95a] with respect to X, substitution of eqn [3-95b] for '

gives:

=—2H, -2V,V, [3-95¢]

From eqn [3-92], equating coefficients of 5" gives:

OF H, = —%- v, -V, [3-96a]
1

where (5)" represents order of 5t

From eqn [3-93], equating coefficients of 8' yields: }
(&) Vv, =-H, [3-96b]

After differentiating eqn [3-96a] with respect to X, substitution of eqn [3-96b] for V,

gives:

H, =—2H, -V, [3-96¢]

From eqn [3-92], equating coefficients of y' gives:

-2V, -V,, [3-7a]

1

OF H,

X
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where (y)' represents order of .

From eqn [3-93], equating coefficients of v! yields:
m': Vv, =-H, | [3-97b]

T

After differentiating eqn [3-97a] with respect to X, substitution of eqn [3-97b] for V,

gives:
c,
Hy, = H; - AN [3-97¢]

1

From eqn [3-92], equating coefficients of &' gives:

®" H, = ~%V4 [3-98a]

where (&)’ represents order of &',

From eqn [3-93], equating coefficients of gl yields:
®" V, =-H, - V,H, [3-98b]

After differentiating eqn [3-98a] with respect to X, substitution of eqn [3-98b] for V4x

gives:

H

4xx

S, +vH, ) [3-98c]
c, ot x

From eqn [3-92], equating coefficients of »' gives:

(@)": H, = —Eivs [3-99a]
X (:1

where (@)’ represents order of o'.

From eqn [3-93], equating coefficients of o' yields:
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(@)": Vv, =-H, -V, [3-99b)

After differentiating eqn [3-99a] with respect to X, substitution of eqn [3-99b] for A\

gives:
C3

Sxx = N B
Hy, =& (H, +V,) [3-99¢]
1

3.4.2. Perturbation Expansions for PDT and FDT Cases

If the regular perturbation expansion coefficient becomes large, the regular
perturbation method can fail. If the applied hydraulic gradient is increased, the inertial
effect becomes significant and the regime of the flow can change from laminar to PDT,
and from PDT to FDT. In the PDT and FDT regimes we may exclude the inertial term
from expansion. However, the inertial term can be investigated by subtracting H
obtained using the Darcy’s Law model from the H obtained using the Ergun model.
Ergun equation and continuity equation can be a starting point to investigate separate
effects of the each additional term. From eqn [3-79] and [3-81], if we define C¢/C; = ¢,
C,/Cy =9, Co/Cs =1, and C7/C¢ = &, the momentum equation becomes:

H, WL%VWL&V2 +&V, +8VV, =0 [3-100]

1 1

The continuity equation becomes:

H_ +V_ +yVH, +E£V=0 [3-101]

The inertial effects can still be investigated by comparing the Darcy’s Law model with
the Ergun model. If we define Hp and Vp as H and V of Darcy’s Law, the momentum
and continuity equations are:

H,, +%—VD =0 [3-102]

1

H, +V,, =0 [3-103]
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If we define Hg and Vg as the H and V associated with the Ergun model, the momentum
and continuity equations may be stated as:
H, ﬁL%vE ﬁL%VE2 =0 [3-104]

1 1

Hg +Vg, =0 [3-105]

The only difference between these two models is the inertial term. Eqns [3-104] and [3-
105] may be used to express Hg using Hp and Hinertiai:

C

H; =H, +_—4Hinenial [3-106]
CI
The inertial effect can be separated by re-arranging eqn [3-106] for Hinertial:
Cl
Hipenia = (HE —-H, )_ [3-107]
C4

In the PDT and FDT regimes the inertial effect can be investigated using eqn [3-107]. In
order to show the effects of the other terms, regular perturbation method was used. Using

a regular perturbation expansion on H yields:

H=H, +¢H, +8H, +yH, + EH, + O(c*) [3-108]

Similarly, V can be expressed as:

V=V, +&V, +8V, +7V, +&V, + O(e?) [3-109]

Equation [3-108] could be used to investigate the effects of each term (Ho, Hi, H,, H; and
H,) on H. Similarly, eqn [3-09] could be used to investigate the effects of Vo, Vi, V3, V3
and V4 on V. Table 3.8 summarizes expansion coefficients along with their orders of

magnitude and relevant H and V terms. The stated values of the order of magnitude were

obtained using an applied hydraulic gradient of 10.
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Table 3.9 Expansion coefficient and relevant H and V.

expansion expression order of relevant
coefficient p magnitude Hand V
viscous and inertial effect - C5/C; and C4/C, o) Hy and V,
local acceleration € Ce/C,4 0(10'3) H; and V;
convective acceleration b C,/Cy 0(10'5 ) H; and V,
advective acceleration Y C,/Cs 0(10'2) H; and V;
elevation head g C+/Cs O(107) | Hiand V4
Differentiating H with respect to t yields:
H =H, +eH, +8H, +yH; +&H, +O(?) [3-110]
Differentiating H with respect to X yields:
H =H, +eH, +8H, +yH, +&H, +O0(s*) [3-111]
Differentiating V with respect to t yields:
V =V, +&V, +8V, +vV, +&V, +0(s") [3-112]
Differentiating V with respect to X yields:
V =V, +&V, +8V, +yV, +&V, +0(’) [3-113]
VVx can be expressed as:
VV _=V,V, +eV,V, +3V,V, +yV,V; +&V,V,
+eV,V, +8V,V, +7V,V, +EV,V, +0(e?) [3-114]
VHgx can be expressed as:
VH =VH, +eV,H, +8V,H, +yV,H; +&V,H,
+eVH, +8V,H, +yV;H, +&V,H, +O0(*) [3-115]
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If the V* term is expressed to first-order accuracy:

V=V +2eV,V, +28V,V, +2yV,V, + 26V, V, +0(e?) [3-116]

then substitution of Hx, V., VVx, and V2 into eqn [3-100] gives:
q

H, +¢H, +8H, +vH, +&H, +%(V0 +gV, +8V, +V, +§V4)+%(V02 +

1 1

+26V,V, +20V,V, +2YV,V, + 28V, V, )+6V, +3V,V, +0(e?)=0 [3-117]

Substitution of H,, Vx, and VHx into eqn [3-101] yields:
H, +eH, +dH, +yH, +&H, +V, +&V, +8V, +yV, +&V,

+yVoH, +EV, +0(e*) =0 [3-118]

Using eqn [3-117], equating coefficients of &° gives:

OF H, = —%VO —%VOZ [3-119a]
1 1

where (g)° represents order of e,

Using eqn [3-118], equating coefficients of €° yields:
(e)": V,, =-H, [3-119b]

Similar arguments can be used to get the Ergun model solution. Differentiating eqn [3-

119a] with respect to X yields:

V, =- G H,_ [3-119¢]
JC, -4C,CH,
Substitution of Vox into eqn [3-119c¢] gives:
JCy’ —4C,CH,
H, =- c z H, [3-119d]
1

70



Using eqn [3-117], equating coefficients of &' gives:
&) H, = 25 Sy, -2=4 <, LV,V, -V, [3-120a]
C C .

X
1 1

where (g)' represents order of &'.

Using eqn [3-118], equating coefficients of &' yields:
@©)" v, =-H, [3-120b]

Ix

Re-arrangement gives:

(C3 <. =4V ]V =-H, -V, [3-120c]
1 1
or
C
V=—-L1—|-H_-V 3-120d
‘ C+2CV( =0 [ :
Differentiating eqn [3-120a] with respect to X:
H, =-Sv, 2S5 vy, +v, v, )-v, [3-120e]
XX C] (:1 1

Substituting V; and Vx yields:

_C C, C
H 2 —H, +2—= —L _{H, +V +H, V, |-V 3-121
lxx Cl C (C +2C V ( Iy 0, )VOX I, O\J O.x [ ]

Using eqn [3-117], equating coefficients of &' gives:
OF H, = E \A —22 VoV, =V, [3-122a]

1 1

where (8)' represents order of &'.
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Using eqn [3-118], equating coefficients of &' yields:
OF v, =-H, (3-122b]

Re-arrangement of eqn [3-122a] gives:

C C
[—3+2—4V0JV2 =-H, -V,V, [3-122¢]
1 1
or
C
V,=—>t ___(_H, -V.V 3-122d
g C3+2C4V0( o0 °x) [ ]

Differentiating eqn [3-122a] with respect to X:

=Sy, S Wy, 4, V)= (v, 2+ VY, ) [3-122¢]

H
R} C,

Substituting V, and V,x yields:

H, =91H2+2& —Cl—(H2 +V,V, IV, +2&(H2VO)
« ¢ e g 20y, x/ N0k TS

~(vo. 2+ vV, [3-122f]

Using eqn [3-117], equating coefficients of y' gives:
m'": H, = —%\@ - 2%V0V3 [3-123a]

X
1 1

where (y)' represents order of y'.

Using eqn [3-118], equating coefficients of y' yields:
OF Vv, =-H; -V;H,_ [3-123b]

Re-arrangement of eqn [3-123a] gives:
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or

Differentiating eqn [3-123a] with respect to X gives:
=Sy, 2&% v, v, V)

3xx C 3x C
1 1

H

Substituting V3 and Vix yields:

C, C,

H, =—(H3( +VOHOX )+ 2—{ G,

“ G C,

Using eqn [3-117], equating coefficients of &' gives:

C C
®" H, =-——2V,-2-4V,V
4 Cl 4 C1 0Y4

where (&)' represents order of &'.

Using eqn [3-118], equating coefficients of &' yields:
©" v, =-H, -V,

Re-arrangement of eqn [3-124a] gives:

-C
V,=—*—H,
C,+2C,V, ~

Differentiating eqn [3-124a] with respect to X:

C C
H, = —C—jV4x —26‘:—(V4V0X +V, V,)

73

— L __H,V, |+2
C,+2C,v, > ™) "C

[3-123c]

[3-123d]

[3-123e¢]

(H3, + VoH,, )Vo

[3-123f]

[3-124a]

[3-124b]

[3-124c]

[3-124d]



Substituting V4 and Vux then yields:

H, = g—?(m £V, )+ 22—‘1‘{

C,

—H,V, +{H, +V, 3-124e
sy Vo, +H, O)VQJ [3-124e]

3.5. Matched Asymptotic Expansions

3.5.1. Introduction

Using the regular perturbation method, even though some of the terms are
multiplied by parameters having very small magnitudes, the presence of these terms
often cannot be simply neglected because the problem can depend on these small
parameters in a “singular” way. Matched asymptotic expansions can be used to solve
such singular problems. The method of matched asymptotic expansions has been devised
as an efficient means to treat problems which have the different phenomenologies in
different regions of space and/or time. For example, the sudden opening of a gate which
is connected to a pipe packed with porous media can result in a sharp change in head and
velocity in very small space/time. This flow through porous media problem near such a
boundary cannot be properly solved using Darcy’s Law and an Ergun-type model. Even
though the resulting near-boundary wave propagation disappears quickly, it can cause
noticeable differences in head and velocity near the boundary, as compared to the
solutions to such ‘naive’ models. Figure 3.5 shows the inner, intermediate, and outer

region in space-time.
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Figure 3.5 Inner, intermediate, and outer zones in time and space.

In order to obtain asymptotic expansions that have an appropriately broad range
of validity, the fact that the sharp changes are characterized by a magnified scale which is
different from the scale characterizing the behaviour of the dependent variables outside
the sharp-change regions must be utilized (Nayfeh, 1973). Some important features of
singular perturbations (Naidu, 2002) can be summarized as follows:

(1) If the order of the problem becomes lower for € = 0 than for € # 0, then the
problem becomes a singular perturbation problem where ¢ is the small
parameter used as a perturbation coefficient.

(2) There exists a thin and/or short layer and/or zone where the solution
changes rapidly.

(3) The degenerate problem, also called the unperturbed problem, is of
reduced order and cannot satisfy all the boundary conditions of the
original fully perturbed problem.

(4) The singularly perturbed problem has two widely separated characteristic
roots, giving rise to slow and fast components in time and/or small and
large components in space. Thus, the singularly perturbed problem

possesses a multi-scale property. The simultaneous presence of multi-
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scale phenomena makes the problem stiff from a numerical solution point
of view because the numerical method should simultaneously satisfy

restrictions in each scale.

3.5.2. Template Problem

Using the regular perturbation method, the incremental effects of the each term in
the full problem were presented. Even though some of the terms were multiplied by
parameters having very small magnitudes, it was found that we may not simply ignore
the presence of these terms because the problem can depend on these small parameters in
a “singular” way. In this chapter, by solving one template problem using matched
asymptotic expansions:

(1) the singularity of the problem will be shown,

(2) the selection of inner variables will be presented ,

(3) the inner expansion becomes an evolving-wave form which has both wave
and diffusion aspects to it,

(4) which boundary condition can be dropped in the inner and outer zones is
analytically proved,

(5) that a matching between the inner and outer zones can be achieved,

(6) that a composite solution can be obtained using superposition,

(7) that the numerical solutions are valid; this is proved by comparing the

analytical and numerical solutions.

The template problem, which has a similar form to that of the laminar case, will
be solved with matched asymptotic expansion under the same boundary and initial

conditions as were used for the original problem. The template problem may be stated

as:
H, +V+g,V, =0 [3-125]
H +V,=0 [3-126]

where g can be the ratio C¢/C; in the problem statement.
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Boundary and initial conditions for H are therefore those stated in the original problem,
but it will be possible to derive boundary conditions on V using the special characteristics
of the delta function and the relationship between H and V in the continuity equation.
These additional conditions on V make it possible to solve for V regardless of the
behavior of H.

The boundary and initial conditions can be presented separately. The boundary

conditions for H are:

H=1atX=0 [3-127a]
H=0atX=1 [3-127b]
The initial conditions for H are:
H=0whent=0 [3-127c]
H.=0whent=0 [3-127d]

Similarly, the boundary conditions for V are:

Vx=-0(t)at X =0 [3-128a]
Vx=0atX=1 [3-128b]
The initial conditions for V are:
V=0whent=0 [3-128c]
V.=0whent=0 [3-128d]

The condition given by [3-127d] is derived from the fact that as X and t go to zero, the

equation for H becomes the wave equation:

H - u(t— /£, X) as (X,7) >0 [3-129]

The conditions given by [3-128a] and [3-128d] are derived from the fact that as X and ©

approach to zero, the equation of V becomes the wave equation:

Vot u(t—+/g,X) as (X,1) >0 [3-130]

7
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The condition given by {3-128b] is derived from the fact that H is constant at X = 1.

From the continuity equationatX =1, H =0 so V_=0.

3.5.3. Outer Expansions

If we combine eqn [3-125] and [3-126], we can get an equation in H:

H,, =H, +¢,H,_ [3-131]

The above equation in H was solved using Laplace transformations with conditions of [6-
3a] through [6-3d]. The three-step method of Kuhfitting (1978) was used:
(a) The Laplace transform of both sides of the differential equation was
found.
(b) The resulting equation was solved algebraically.

(c) The inverse transform was applied.

In general, a Laplace transform is defined by:

Lif(©}=Fp,)= [ e™f(nd [3-132]

where py._ is a complex variable. If we use H(t) instead of f (t):

L{H(v)} = H(p, ) [3-133]

The Laplace transform of the LHS of eqn [3-131] is:
L{Hxx } = ﬁxx [3-134]

The Laplace transform of the RHS includes a second-order derivative with respect to
time. The Laplace transform of second order derivative is:
L{H,.}=p,"L{H®}-p, H(O0) -H,(0) [3-135]

From the nitial conditions, H(0) =0 and H_(0) = 0. Therefore:
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L{H’f? } = plz.H

The Laplace transform of first-order derivative is:

L{H, }=p L{H(1)}-H(0)

From the initial condition H(Q) = 0. Therefore:

L{Hr } = pLﬁ

The Laplace transform of eqn [3-131] is:

H, -pH
where p* =p, +¢,p;.
The boundary conditions become:
H= fe‘p”d‘c=i atX=0
PL
H=0 atX =1

The general solution of eqn [3-139] can be expressed as:

H=Ae""* +Be™

Combining eqn [3-142] and [3-139]:

"o 2.8,X 20X _ =2 A a2aX "X
Aae™ +Bble™ =p (Ale +Be )

[3-136]

[3-137]

[3-138]

[3-139]

[3-140]

[3-141]

[3-142]

[3-143]

It can be readily shown that a, = p and b, =—p . Using the boundary condition given

by [3-140], if we substitute X =0 in eqn [3-143]:

&+Bpni

PL

From the boundary condition given by [3-141]:
Ae? +Be? =0
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Substituting A from eqn [3-144] into eqn [3-145] and multiplying both sides by e®
gives:
L B +Bie =0 [3-146]

PL

or
1

B, = - 3-147
1 PL 1—e™ : :

Using eqn [3-147], A| can be expressed as:

o2
A=l 1e - [3-148]
PL p.\l—-¢
Using A, and B, H becomes:
—  —e PPy
H== oy [3-149]

By re-arrangement of eqn [3-149], the exact solution for H is then:

pX 2-X)p
eFX _ o(2-X0p

H= m [3-150]
-

The first-order outer expansion of eqn [3-150] can be obtained by applying the limit

g, = 0:

eﬁx _ e(Z—X)\/p—,:
PL (1 - ezm )

where superscript (0) denotes outer.

H® ~

+0C(g,) [3-151]

Because the outer expansion follows a first-order approximation of the exact solution, the

governing equation for the outer zone can be expressed as:
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Hyy =H, [3-152]
for which the boundary conditions are given by [3-127a] and [3-127b], and the initial
condition by [3-127c]. One initial condition given by [3-127d] was dropped because as
g, = 0, the H , term in eqn [3-131] becomes negligible.

At this juncture it might seem natural to obtain the inverse Laplace transform of

eqn [3-151], but the solution of Laplace transform will instead be used to compare the

inner and outer solutions and to find a matching condition between them, a condition
which will exist within the overlap or intermediate zone. The expression for V will be

obtained via procedure similar to that used to obtain the one for H.

If we combine eqns [3-125] and [3-1276], we get:
Vi =V, +,V, ' [3-153]

Laplace transform of eqn [3-153] is:

vxx = ﬁzv [3-154]
where P’ =p, +&,p} -
The boundary conditions become:
Vy =-1 atX =0 [3-155]
V=0 atX=1 [3-156]

Using these boundary conditions, the exact solution for V can be found as:

er + e(Z-X)p

V=—W [3-157]

The first-order outer expansion of eqn [3-157] can be obtained by taking the limit

g, = 0:
T SRCD SN

\/a(l—ez‘m)

V(O) -

+0(g,) [3-158]
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Because the outer expansion follows a first-order approximation of the exact solution, it

can be expressed as:

Vix =V, [3-159]

The associated boundary conditions are given by [3-128a] and [3-128b], and the initial
condition given by [3-128c]. One initial condition (that of eqn [3-128d]) was dropped

because as g, — 0, the V_ term in eqn [3-153] becomes negligible.

3.5.4. Inner Expansion

(1) Selection of Inner Variables

In order to investigate the sharp-change region very near the upstream valve
immediately after it has been opened, it will necessary to magnify this small region. Both
independent variables, X and 1, will be rescaled so as to stretch the time and space scales.
For the dependent variables, H and V, only V needs to be rescaled because the H at the
upstream and the downstream ends of the conduit are both constant, and the variation in
H will be within the range of O to 1. However, the boundary conditions on V were not
completely defined by the problem. The quantity V at the upstream end can be expected
to be much higher than V at the downstream end because the wave equation will
dominate the flow at the upstream boundary.

To begin, X, T and V are rescaled:

g-X [3-160a]
a
T
T=— 3-160b
” [ ]
=Y [3-160c]
C
where a<<1, b<<l1, and c>>1.
If we substitute X, T and V into eqn [3-126] we obtain:
1 C =~
—H.+-V. =0 3-161
b " a * [ ]
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If we assume that the continuity equation is geometrically invariant in the inner zone, we

can get the identical form of continuity equation for the outer zone by defining:

1 ¢
—=— 3-162
== [ ]

Using eqn [3-162], eqn [3-161] becomes:
H,+Vg+=0 [3-163]

If we substitute X, T and V into eqn [3-125] we obtain:

1 ~ C ~
;Hx +cV+aO€V? =0 [3-164]

In order to investigate the sharp-change region, the unsteady acceleration component can
be enhanced by defining:

1 ¢, & [3-165]
a

which results in:

c= [3-166]
e
where ¢>>1.
In order to better investigate the role of diffusion, defining:
1 =c [3-167]
a
and using eqn [3-162] and [3-166], simple expressions for a and b are obtained:
a=,/g, [3-168]
b=g, [3-169]

Using the above new expressions for a, b and c (all in terms of &), the inner variables can
be redefined:
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X = [3-170a]
Veo
F=— [3-170b]
€9
V=&V [3-170c]

(i1 Inner Expansion
The conditions dropped in the outer expansion can be rectified by developing an
inner expansion. The conditions given by [3-127d] and [3-128d] were lost in the outer

expansion. An inner expansion would recover these conditions as g, — 0. If we

substitute the inner variables in eqns t3-125] and [3-126]:

H, +V+V, =0 (3-171]
H,+V,=0 [3-172]
The boundary conditions for H can be presented in inner coordinates using inner
variables:
H=1atX=0 [3-173a]
H=0at X=— [3-173b]

Je

The initial conditions for H are:
H=0when T=0 [3-173¢]
H. =0 when T=0 [3-173d]

Similarly, the boundary conditions for V are:
Ve =-8(%) at X=0 [3-174a]
1

N

=0 at X=

<1

kot

[3-174b]
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The initial conditions for V are:

V=0 when T=0 [3-174c]
V. =0 when T =0 [3-174d]

In the momentum equation, as €, — 0, the V? term becomes non-negligible. As a

result, we can satisfy the conditions given by [3-173d] and [3-174d] as ¢, > 0. If we

combine eqns [3-171] and [3-172], an equation for H is obtained:
H., =H; +H [3-175]

For the Laplace transform, the outer Laplace transform variable is rescaled as:

S, =€,PL [3-176]

The Laplace transform of eqn [3-175] is:
Hy; =3°H [3-177]

~2 _ 2
where s° =s; +5s;.

The exact solution of H becomes:
X _ o2 VaR)3 /e

sL(l—ezgl % )

H==

[3-178]

The first-order inner expansion of eqn [3-178] can be obtained by taking the limit

g, = 0:
. C—JS%‘HLX
H® = —+0(g,) [3-179]
S
This first-order expansion will satisfy:
Hyp =H; [3-180]
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The boundary condition is given by [3-173a] and the initial conditions by [3-173c] and
[3-173d]. One boundary condition, [3-173b], was dropped because as £, - 0, X 5w,
This condition can be replaced by:

HoOat X =0 [3-181]

If we combine eqn [3-171] and [3-172] for V, we can get an equation of v:

?

ax = Vi + Vi [3-182]
The Laplace transform of eqn [3-182] is:
Vo, =3V [3-183]
where 5% =5, +s’.
The exact solution for V is:
- X (2-{eeX)3 /2o
V-2 2% [3-184]
's'(l gtV )

The first-order inner expansion of eqn [3-184] can be obtained by taking the limit
g, > 0:

=, JENETS
VO =2 10, [3-185]

[.2
SL +8,

A first-order expansion will satisfy eqn [3-182]. The boundary condition is given by [3-
174a)], and the initial conditions by [3-174c] and [3-174d] are valid. However, one

boundary condition [3-174b] was dropped because as ¢, — 0, X — . This condition
can be replaced by:

V, »0at X =00 [3-186]
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3.5.5. Matching of Inner and Outer Expansions

The existence of an overlapping domain implies that the inner expansion of the
outer expansion should, to appropriate orders, agree with the outer expansion of the inner
expansion (Lagerstrom 1957). One of the principles of matching is:

“inner representation of the outer representation

= outer representation of the inner representation”

Through such a matching procedure it can be confirmed that conditions were properly
dropped in the inner and outer expansions. The solution of overlap region can then be

used to construct composite expansion.

3.5.5.1. Matching via Laplace Transform

(i) Conversion Factor
When matching is performed with Laplace transform it should be remembered
that there is a conversion factor between the inner and outer coordinates. This conversion
factor can be obtained using the simple example of a Laplace transform. If we define the

outer function as:

£ =" [3-187]
The Laplace transform of this is:
fo-_1 [3-188]
p; +1
If we define the inner variables to be the same for the template problem, T = X and s;. =
&

€opL, and the inner representation of (outer representation) for f is then:

fo) =<5 [3-189]
1+2L St
€

To compare this to in the outer coordinate, converting eqn [3-189] back to outer

coordinate gives:
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((fm))u))“” _1 (3-150)

Substituting the inner variables in the outer expansion gives:

fO =gt L1 [3-191]

The Laplace transform of eqn [3-187] is:

£ = 1 [3-192]
SL

The outer representation of the inner representation is then:

Foy oL 3-193
( ) €oPL : :

If we compare eqns {3-190] and [3-193], the conversion factor is seen to be —1- . Thus, in
€

order to compare and match the Laplace transform in outer coordinate form, this

conversion factor must be incorporated.

oy ) =<2y -194)

This inversion factor is due to the fact that we have an integral formulation in the Laplace

transform.

Lif}= [[efat [3-195]
The inversion factor will disappear when the inverse Laplace transform is taken.

(i1) Matching using Laplace Transform

Following the previously described matching principle, the inner representation of

the outer representation for H can be found using (ﬁ“’) )(l) , and the outer representation
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. . NI . .
of the inner representation can be found using (H“) )(0 . The inner representation of the

outer representation for H is obtained by applying the inner variables to eqn [3-151]:
Jsi X _e(z-ﬁi) s /ye0

()" ~ 2 [3-196]
Sy (1 _ ezﬁ 1z )
€
When €, << 1, this can be approximated by:
H) ~ 2 [3-197]
Su
€
In order to compare and match the Laplace transform in outer coordinate form,
converting eqn [3-197] back to outer coordinate form gives:
_ )] -ypX
(@) ~c [3-198]
PL

The outer representation of the inner representation is obtained by applying the outer

variables to eqn [3-179]:

(—(i) (0) e_‘/mthg
o SoP [3-199]
orL
After re-arrangement:
T3y Yo -/p.X
(H(l))( ) es . o
orp

Matching is obtained from eqn [3-198] and [3-200] by applying the conversion factor 1/gg

in eqn [3-198]. Similarly, the inner representation of the outer representation for V is

obtained by applying the inner variables to eqn [3-158]:
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(V(o) )(i) e‘/gi +e(2-,/§5‘()4§/¢§ (3201
oYYy -

€y

When g, << 1, eqn [3-201] can be approximated by:

(Vo) - [3-202]
So
€o
In order to compare and match the Laplace transform in outer coordinate form,
converting eqn [3-202] back to outer coordinate form gives:
- H Yo -ypX
((V‘°’ J )} -2 [3-203]

Jpe

The outer representation of the inner representation is obtained by applying the outer

variables to eqn [3-185]:

= .. o) e'w/mX/ﬁ
(Vm)‘ - [3-204]

22
VEPL T &PL

When g, << 1, eqn [3-204] can be approximated by:

= .. {0) e—‘/EX
[Fo ) - [3-205]

VE&oPL

In order to compare eqn [3-203] and [3-205], we need to use the conversion of V between

inner and outer systems:

7o) - ye oy (3206

Using eqn [3-206], eqn [3-205] becomes:
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oVPLX

80\/51.—

(Vo) - [3-207]

Therefore, matching between eqns [3-203] and [3-207] can be obtained by applying the

conversion factor 1/gy to eqn [3-203].

3.5.5.2. Matching without Exact Solution
The outer expansion for H can be expressed as:

H(o) — HO + SOHI + E(Z)Hz +ae [3-208]

Substitution of eqn [3-208] in the outer equation for H gives a first-order approximation

when g, —» 0:

H, =H, [3-209]
The boundary conditions for Hy are:
Hy=1atX=0 [3-210a]
Hy=0atX=1 [3-210b]
The initial conditions for Hy are:
Hyp=0whent=0 [3-210c]
Hy. =0whent=0 [3-210d]

The condition [3-210d] will be dropped because as €, — 0, no freedom in the definition

of Hy arises. The solution of eqn [3-209] becomes identical to that of eqn [3-151].

Outer expansion for V can be expressed as:

VO =V, +g,V,+&]V, +-- [3-211]

Substitution of eqn [3-211] in the outer equation for V gives the following first-order

approximation when g, — 0:
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V, =V, [3-212]

The solution to eqn [3-212] then becomes identical to that of eqn [3-158]. H is invalid
near T = 0 because the condition [3-210d] was dropped. The inner expansion for H can

be expressed as:

HY =H, +¢,H, +& H, +-- [3-213]

Substitution of eqn [3-213] in the inner equation for H gives a first-order approximation

when g, - 0:
Hoﬁ =H, +H,_ [3-214]
The boundary conditions for Hy are:

Hy=1at X =0 [3-2154]
1

Hy=0at X =

[3-215b]

I

The initial conditions for Hy are:
- Hp=0when 7 =0 [3-215c¢]
HO? =0when T =0 [3-215d]

The condition [3-215b] will be dropped because as €, — 0, X — . The solution is
identical to that of eqn [3-179]. The inner expansion for V is:
VO =V, +e,V, +2V, +--- [3-216]

Substitution of eqn [3-211] into the inner equation for V gives the following first-order

approximation when ¢, — O:

Vo =V, +V,_ [3-217]

The resulting solution is identical to that of eqn [3-185]. The matching results are same

the as those obtained using the Laplace transform method
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3.5.5.3. Implications of Matching
First, in the outer expansion, as €, — 0, the H_, term and the V_ term were seen
to become lost. As a result, the conditions of H, =0 and V_ =0 at =0 could be safely

dropped. Therefore H® and V© do not have the freedom to keep these conditions in the

definition of the outer problem. Second, in the inner expansion, as €, — 0,

X =1/.Je, & ©. Asaresult, the conditions H = 0 and \Nli =0atX= also

1
Jeo
became negligible. Therefore the quantities H” and V? do not have the freedom to keep
these conditions within the definition of the inner problem. The outer expansion in the

inner coordinate and the inner expansion in the outer coordinate were same. Therefore,

the solutions should be functionally identical in the overlap zone.

3.5.6. Composite Expansion

The inner and outer expansions complement each other. One is valid in the
region where the other fails. Using this complementary feature, a single uniformly valid
expansion can be constructed. A composite expansion was constructed using an additive
composition. This composition is the sum of the inner and outer expansions corrected by
subtracting the overlapping part. Thus, the overlapping part will not be counted twice.
The overlapping part can be calculated as the inner expansion of the outer expansion, or

vice versa. The composite expansion for H can be expressed by:

g5 )9 =g 4 (FoO)° _(_(o) D )‘°) 2
oL E D .

The composite expansion for Laplace transform of H can be obtained using eqns [3-151],

[3-179], and [3-198]:

— \0) eVPLX _ o 2-XVp e"\/m’“ 5l
(Hc) = 2 — + _ [3-219]
pL(]- -V ) pL D,
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Instead of getting the inverse Laplace transform, the outer and inner expansions can be
solved for H using numerical methods. For the overlapping region, the inverse Laplace
transform can be expressed with a complimentary error function. The inverse Laplace

transform was found as (see tables of Erdelyi, 1954):

X
Hoverlap = eI'fCl: Zﬁj] [3-220]

3.5.7. Results of Template Problem

In the outer zone, the composite solution was compared with the outer solution.
Figure 3.6 is a contour plot of the difference in H between the solutions of composite
expansion, and outer expansion in outer coordinates, when gy = 0.01. This difference can
be considered as an error which has an order of g over the whole region except the inner
and the overlap region. The inner region can be predicted using compound scaling

factors®. From this compound scaling, the maximum X and < in the inner region are
X =.,/g, and T=¢,. It can be seen from Figure 3.7 that X = 0.1 and t = 0.01 define the

inner region. The overlap region can be roughly defined as the zone having an order-of-
error larger than 0.01.

Figure 3.8 shows the spatial variation in H using the outer and composite
expansions, at various times. The solutions associated with these two expansions for t =
0.01 were compared to show the differences in H in the inner zone. Similarly, the
solutions for t = 0.05 were compared for the intermediate zone, and those for t = 0.2
were compared for the outer zone. Large differences are evident in the inner and
intermediate zones. However, these differences are not as large as those found in the
inner zone. In the outer zone, it is evident that small differences are evenly distributed
across the whole region.

Figure 3.9 presents the temporal variation in H using the outer and composite
expansions, at various locations. The largest differences between the two expansion
solutions are evident for X = 0.1 and at very small times. As X increases, the differences

decrease.

¥ i.e. factors which represent the second of two scale adjustments, so that a scaled quantity is scaled again.
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Figure 3.6 Contour plot for difference inf H between composite solution and
outer in outer coordinate when g5 = 0.01.
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Figure 3.7 Inner, intermediate and outer division from the difference in H
using outer expansion and composite expansion.
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Figure 3.8 Spatial variation in H at various t’s.

composite

T

0.7 0.8 0.9

Figure 3.9 Temporal variation in H at various locations.
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The composite expansion for V can be expressed by:

7\ _go  (To) o) [~ )

Substitution of the inner, overlap, and outer solutions gives:

X | 2-Xp  —Vedpi+eopX/ e -Jo. X
(—\7 )(o) _ € +e e e
)7 =-

N ) RN N

[3-222]

Instead of obtaining the inverse Laplace transform, the inner and outer expansions were
solved for V using numerical methods with the stated boundary conditions. For the
overlapping region, the inverse Laplace transform was found as (see tables of Erdelyi
1954): '

X2

41

e
Vovery = =7 [3-223]
Vit
Figure 3.10 is a contour plot of the differences in V between the solutions arising
from the composite expansion and outer-expansion solutions, in the outer zone, and when
go=0.01. Large differences are evident in the inner and the overlap zones. In the outer
zone, the error is small and distributed in a relatively uniform manner.

Figure 3.11 shows the division of the inner, outer, and overlap zones for V. The
large difference along t = JQ X is due to the fact that it falls on the characteristic line of

the evolving-wave equation. The properties of evolving-wave can be seen in Figure 3.12

and 3.13.
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Figure 3.10 Contour plot for difference in V between composite solution and outer in
outer coordinate when g5 = 0.01.
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Figure 3.11 Inner, intermediate and outer division from the difference in V using outer
expansion and composite expansion.
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Figure 3.12 shows the spatial variation in V using the solutions arising from the
outer and composite expansions, at various times. They show behaviours for V that are
similar to those found for H. The expansion solutions for t = 0.01 in Figure 3.12 bring
out the differences in V in the inner zone. Similarly, the solutions for t = 0.05 in Figure
3.12 bring out the differences in the intermediate zone, and for t = 0.2 in the outer zone.
Large differences are evident in the inner and intermediate zones again. However, the
differences in the intermediate zone are not as large as those found in the inner zone. In
the outer zone, small differences are evenly distributed across the whole region.

Figure 3.13 presents the temporal variation in H using the outer and composite
expansions, at various locations. The largest differences are evident between the
expansion solutions for X = 0.1, at very small times. As X increases, the differences

decrease. Further, it is evident that the outer expansion overestimates V’s, compared to

those obtained using the composite expansion up to the temporal position T = /g, X.

Beyond this ‘position’ the outer expansion underestimates V.
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Figure 3.13 Temporal variation of V at various locations.

100



3.5.8. Evolving Wave Equation

In the original problem, the boundary and initial conditions were clearly defined
for H. However, these conditions were not well defined for V. These conditions were
determined by using matched asymptotic methods. In this section, the validity of these
conditions is considered by comparing analytical solutions to numerical solutions. The

evolving wave equation for V can be expressed as:

VXX = V‘r + Vﬂ: [3'224]
The boundary conditions for V are:
Vi =-0(t) at X=0 [3-225a]
Vy=0atX=1 [3-225b]
The initial conditions for V are:
V=0whent=0 [3-225¢]
V. =0 whent=0 [3-225d]

3.5.8.1.  Solution using Laplace Transform

Laplace transforms were used to solve the evolving wave equation. In order to
obtain the inverse Laplace transform, a residue theorem (Dettman 1965, Rahman 1992)
was applied. Contour integrals were used in the residue theorem. Within these contour
integrals, all the integrals other than the residues from the poles became zero. Therefore,
the inverse Laplace transform was obtained using the sum of the residues of the two sets
of poles. The details of the derivation of the solution are provided in Appendix IV. The

solution of V can be expressed as:

V(X,1) = Hi 2cos(n'nX) sin[w /n'z n’ - itj} +2 sinh(%ﬂe‘% [3-226]
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3.5.8.2.  Solution using MoC

The boundary conditions for H can be used to obtain boundary values of V

without defining boundary conditions for V. The applied boundary conditions were:

H=1atX=0 [3-227a]
H=0atX=1 [3-227b]
The initial conditions were:
H=0whent=0 [3-227¢]
V=0whent=0 [3-227d]

The procedure to get H and V is similar to the method used to obtain numerical solutions

for the complete model (Appendix III). The dimensionless head H, can be expressed

as:
Hp =05 [Hi (tH + (Vi—l = Via )_ AX(Vi—l = Vi )] [3-228]

. - i+l

The dimensionless velocity V, can be found using the above-calculated H,, as:
Ve = | Hy +H —AXV, [+ v, [3-229]
or:

+ AXV.

V, =|H; -H Vi [3-230]

i+1

The V at the upstream end can be calculated using eqn [3-230] and V at the downstream

end can be calculated using eqn [3-229].

3.5.8.3.  Stability of Explicit FDM

Various magnitudes and ratios of AX and At were used to obtain the FD solutions
of the evolving-wave equation. An explicit finite-difference form of eqn [3-224] can be

written:
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Vo, - 2V;,,y Vouy _Vay Vi Vga —2V\;,y + Vi 3-231]
h; k, ko
where:
ho= AX,
ko= Ar,

(both dimensionless).

After many trials with various time and space steps, it was found that stable solutions
could not be obtained using this finite-difference scheme. The instability of this method
can be shown using von Neumann’s method. The errors at the points along t =0,
between X = 0 and N’*hgcan be defined as E(wh) = E,,. Using the complex exponential

form, E,, can be expressed as:
N' tor
E, =) Ae®™, w=0,1,..., N° [3-232]

where:
B.. =n’n/N’ho,
N’ = total number of spatial nodes,

w = number of spatial steps.

The coefficient A, is a constant and can thus be neglected. In order to present the
propagation of the error as time increases, an error function E, y was investigated. This

function can be expressed as:

E,, =e"%e* - [3-234]
where o’ is a complex constant.
Using X = phg and 7 = yko:

E,, =e®"el [3-235]
where:
g, =e™,

y = number of time steps.
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The error function given by eqn [3-235] shows that the error can be reduced to ™"
when y = 0 and that it will not increase as time increases if:

£ <1 [3-236)

Because the error function satisfies the same finite-difference equations, Ey y can replace
Vyw,y in eqn [3-231]:
rzz (eiﬁ'(w+1)h0 E_,())' _ e g(}; PR ACA LY &g )
— ko(eiB'whog(); _eiB'whoiéy—l))+eiB'whoé(y+1) _ 2eiB'wh0£(); + eiB'whog(()y—l) [3-237]
where 17 =k2/h}.
Bvho gives:

r2(eP¥ —2 e )= k(1 -8 )+ 8, -2+ [3-238]

Division by e

Using e®™™ +e " =2cos(B'h,):

—4r} sin{%) = k(l -&;! )+ E,—2+E&; [3-239]
Multiplying by & gives:
& + A8 +(1-k) =0 [3-240]
where A, = 4r; sinz(B h°)+ko -2.
2

The term & can be obtained from eqn [3-240]:

CAL A —4(-k,)

& = 2

[3-241]

When A;)Z +4k, >4 the roots are real; the values of &; and &, that result were presented

in Figure 3.14. If A, > ko - 2:
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| :I—A'O AL - 41-k,)
l 2

' [3-242]

If |£| <1the solutions are stable. However, &, induces instability if |&,| > 1 where:

1—A'o—w/A'02 —4(1-k,)

":zlzl ) I

[3-243]

On the other hand, if A, <ko-2, it is &; that induces the instability.
Stability only exists at two points in Figure 3-14; A; =ko—2and A; =2 -ko. If A, =

ko — 2, the following relationship can be obtained:

4r} sinz(B;°j+k0—2=ko—2 [3-244]

The above relationship is only true when n’ = 0. This condition can therefore not ensure

numeric stability along the whole length, L, of the problem.
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Figure 3.14 Stability using von Neumann’s method for ko << 1.
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Similarly, if A, = 2 — ko, the relationship can be true only for a specific n’, one which

cannot ensure the stability along the entire length L.

When A, +4k, <4, using A, =4r] sinz(B ;10 ] +k, — 2 the following

relationship results:
L] 2 1 2
[ko +2r, sin(ﬁ%]j [ko —2r, sin(%j] <0 [3-245]

Equation [3-245] can never be true because all of the terms in the parentheses are real
numbers. Therefore, stability cannot be obtained using an explicit finite-difference

method.

3.5.844. Comparison of Resuits

Spatial and temporal variations in V are compared in Figures 3.15 and 3.16,
respectively. Figure 3.15 shows a very good match between the solutions obtained using
MoC vs the method of Laplace transforms including the values of V at X = 0. It can be
seen in Figure 3.16, that the V’s approach the equilibrium velocity, at all three locations.
Figure 3.17 shows the temporal development of V at the upstream end of the problem. In
order to obtain the boundary V’s using MoC, it was necessary to obtain the solutions for
H and V for the entire time-space continuum of the rest of the problem. The method of
Laplace transforms, on the other hand, can be used to calculate the values of V at the
upstream end without the need to obtain the solution to the rest of the problem a priori.

The requisite values of V can be readily obtained using eqn [3-226] with X = 0:
V(0,7) = HZ 2 sin[1 In? a2 - %z}} + 2sinh(%ﬂe_5 [3-231]
n'=l

Similarly, if we substitute X = 1 into eqn [3-226], the expression of V at the downstream

end becomes:
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V(1) = Z2co.«;(n'n)sm(,/n'2 n? —%x} +2sinhGJ e? [3-232]
n'=l
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Figure 3.15 Spatial variation of V for various times.
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Figure 3.16 Temporal variation of V at various locations.
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Figure 3.17 Velocity development at X = 0.

108



4. Application and Results

4.1. Solutions of Models

An explicit finite-difference method was applied for the solutions of each model.
The results were compared for each regime, i.e. laminar, PDT, and FDT flow regime. In
order to show the accuracy of an explicit finite difference method using backward
difference in time and central difference in space under given boundary and initial
conditions, the results were compared with those obtained using analytical solution for
laminar case and also compared with those obtained using the Lax-Wendroff centered

half-mesh scheme and the method of characteristics.

4.1.1. Groundwater Flow Equation
(i) Explicit FDM Solution
The general groundwater flow equation was:

H. = —g—‘Hxx [3-67]
3

An explicit finite-difference form, using a backward difference in time, is:

k-1 k-1 k-1 k _ gkl
_&HHI 2H12 +H1—1 +Hx H1 =0 [4_1]
C, AX At

where subscript, i, denotes a space step and superscript, k, denotes a time step.

By re-arrangement:

k-1 k-1 k-1
Hf = &AT(H”‘ “2;;2 A J+H}“‘ [4-2]

The dimensionless velocity, V/*, can readily be obtained from Darcy’s Law. An explicit

finite-difference expression, using a central difference scheme in space, is:
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oo

Vik - i+1 [4_3]
C, 2AX
(i)  Analytical Solution
Equation [3-67] can be re-written as:
H, =JH,, [4-4]

where J = &
C

3

The analytical solution can be obtained by separating the problem into a problem of
steady head with the stated boundary conditions and a problem of unsteady diffusion with
fixed zero boundary head. The unsteady diffusion problem with fixed boundary head can
be solved using separation of variables. The analytical solution of eqn [4-4] is:

Heol-X —zie'“‘z"z’ sin(nnX) —0 [4-5]
i A n

The step-by step derivation of the solution, [4-5], was provided in Appendix I.

4.1.2. Model of Darcy’s Law with Complete Continuity Equation

This model incorporating viscous effects into the complete statement of the
continuity equation was expressed as:

C C
S G gy Sn, Sl [3-68]

H, =
Cs Gy (O Cs Cs

An explicit finite-difference form, using a backward difference in time and a central

difference in space, can be expressed as:

i+l i+l

2AX C, AX?

H*-H C,C (HY -HSY LG HE -oH- +HY
At C, C,
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k-1 _ pyk-1
Ry (&Jo [4-6]

By re-arrangement:

bt o a4 Cs G (HS -HS ) C HE -2HE +HY
i C,C,| 24X , AX?
k=1 _ pyk-1
racs G +H [4-7]
C,C, | 24X

Because Darcy’s Law is used as a momentum equation, the dimensionless velocity, V.lk s

can be obtained using eqn [4-3].

4.1.3. Ergun-type Model

Ergun-type model was expressed as:

GG+ JC,? -4C,CH, o
XX
JC.* -4C,CH, Cq 2C,

X

" ¢, -G +\/C32 -4C,C,Hy _

0 [3-77]
C, 2C,

An explicit finite-difference form of eqn [3-77], using a backward difference in time and

a central difference in space, is:
k k-1 k-1 k-1 k-1
H -H; _ C, HS, -2H +H

i+l
At HE! -HY! AX?

C,’ -4C,C, il
Jeu—acc, it

H -HT
-C +\/C2—4CC ' i S )
3 3 1~4 IAX H}(I_H:(_ll

i+l

2C, 2AX

+

@ |MO

[=%
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k=1 _ pyk-l
C —C3+\/C32—4C1C4M
2 28X 9 [4-8]
C, 2C,
By re-arrangement:
HE - C, s HY —2H§‘;1 +H!
\/C 2 ~4C.C Hi+l —Hi—l AX
3 1~4 2AX
HS -HY
_ 2 _ i+l i-1 ,
S ne - +\/C3 DAY S - i .
C, 2C, 2AX
HY! -H
c G +\/C32 —4C,C, — L
-G = 28X | ge [4-9]
6 4

An explicit finite-difference form of Ergun-type equation, eqn [3-72], using a central-

difference scheme for space, is:

k k
Hi+1 - Hi—l

-C, +\/c32 -4C.C,

Vk =

4-10
‘ 2C, [4-10]

4.1.4. Model which retains Local Acceleration Term

For this model, the momentum and continuity equations practically cannot be
easily combined into one equation associated with H or V. However, two equations can
be separately solved. The momentum equation which has a time derivative of V can be
used to obtain V and the continuity equation which has a time derivative of H can be used
to calculate H. Even though these two equations were not solved simultaneously, the
values of H and V obtained from each equation can interact to update V and H of next
time step. The momentum equation was expressed as:

H =-Sv_-Say2 Sy [3-78]
CI Cl Cl
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An explicit finite-difference form of eqn [3-78], using a backward difference in time and

a central difference in space, is:

HY -HY _ Gy G (V'k-l)z G Vi -V

1 [4-11]
IAX C, C, C, At
By re-arrangement:
k-l _ pyk-l
Ve S Ba B |G e _Sapver Pavet 1)
C6 2AX 6 C6

An explicit finite-difference form of the continuity equation, using a backward difference

in time and a central difference in space, is:

k k-1 k-1 _ k-1 k-1 _ k-1
Hi Hi +(Vi+1 Vi—l ]"‘&Vik-l(HH‘l Hi—l j_i_&vik—l - 0 [4_13]

At 2AX C, 2AX C,

By re-arrangement:

V~k_1 _ V-k_l }(—l _ !(—l
H* = —A‘c[—’“zAX -l j - % ATV (—H IZA}?I J - %Arvik-‘ +H [4-14]
6 6

Figure 4.1 shows the staggered mesh and the associated nodes used to get HY . In order

to get HY, the values of H and V in the previous time step were used.

AX

Figure 4.1 Staggered mesh and node stencil for H in explicit finite difference scheme.
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At the boundaries, V is not available which is required to calculate H of the nodes beside
the boundary at the next time step. This invokes a forward difference for the upstream
end and a backward difference for the downstream end. Figure 4.2 shows the staggered

mesh for H at the boundaries.

Figure 4.2 Staggered mesh for H at the upstream and downstream boundaries.

4.1.5. Complete Model
Q) Explicit FDM Solution

Explicit finite difference method was used to solve complete statement of the
momentum equation and continuity equations. If backward differences in time and space
are taken for V, and central differences in space and backward difference in time are

taken for H, a finite-difference form of the momentum equation can be stated as:

k=1 _ prk-1 k _ k-l k-l _ k-l
Hi., -H _ _& Vik—l _ & (Vik—n )2 _ E_s_ Vi -V, _ & Vik—l Vi - Vi [4-15]
2AX C, C, C, At C, 2AX

By re-arrangement:

k-1 _ k-1
V= —% AT[%] _ %- ATV - % I \AR
6 6 6

k-1
_ -2 A‘CVi i+l

C Vi oy
. 20X

J +VEL [4-16]
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Figure 4.3 shows the staggered mesh and the nodal definitions used to get V/*:

Figure 4.3 Mesh grid for V in explicit finite difference scheme .

HY can be calculated using eqn [4-14] which was used for the model retaining local

acceleration term. Table 4.1 summarizes the finite-difference strategies to be involved.

Table 4.1 Finite difference schemes of V and H

upstream interior nodes downstream
time (1) space (X) | time (t) | space(X) | time () space (X)
v backward forward | backward central backward | backward
difference | difference | difference | difference | difference | difference
H backward central backward central backward central
difference | difference | difference { difference | difference | difference

(i)

FDM Solution using Lax-Wendroff Scheme

‘The FDM solution of the continuity and momentum equation can be obtained

using Lax-Wendroff scheme:

C

Vi =vE - =LA

C6

k+l
2

G
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6 2 AX AX
k+l k+l
[V. 2+V 12]
St 2 [4-18]
Cs 2
Step-by-step derivation of the solutions was provided in Appendix IIL.
(ii1)  Method of Characteristics
Using method of characteristics, Hp; can be expressed as:
C6 C3
Hp, =05 H,_, +H,, + _(Vi—l - Vi+1)__AX(Vi—l - Vi+1)
‘ ¢, C,
C C
- Z AX(Vi—l + Vi+1 ) - AX(Vi—l IVi—l l - Vi+1 ]Vi+1 |) [4‘19]
C,C, C

After obtaining Hp; Vp; can be calculated using:

V, = S -H, +H_, - G, G AXVH—&AXVH]Vi_J +V,_, [4-20]
oy C, * c, .cc, C,

or

Ve, = & H, -H, + ‘EB—+ & AXViH_EiAXVm'Vm’ +Vi, [4-21]
N oP C, JCcC, G

Step-by-step derivation of the solutions was provided in Appendix III.
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4.1.6. Boundary Conditions

Figure 4.4 shows boundary conditions for the numerical simulations of a
horizontal case. Even though the sloped pipe (6 # 0) can represent elevation head effect,
this effect is neglected in the model comparisons because the equation can be much more
simplified by neglecting elevation-head term and it was found that the elevation head
term was negligible in most cases based on the order-of-magnitude study. The effects of
elevation head can still be of interest and will be investigated using the regular
perturbation methods.

Dirichlet conditions are used by applying various hydraulic gradients. From
Figure 4.4, a hydraulic gradient is defined by (h,-hy)/L. For any given hydraulic gradient,
if hy and L are known, h, can be obtained and used as a fixed-head boundary. Table 4.2
shows dimensional and dimensionless applied boundary conditions. Dimensionless
boundary values for L and H, are not changing but the magnitudes of dimensionless

groups will be changed.

Table 4.2 Boundary conditions for horizontal pipe

Ié)r,:(ri?;l:t(’: ol l[Tl]gth ) [Irlrj] Digi:ﬁ;ﬁ;iss [dimenI;Iiaonless]
1= (ha-hp)/L [dimensionless]

0.1 10 1 1 1

10 10 100 1 1

400 10 4000 1 1

Various hydraulic gradients were applied to compare the solutions of the models under
various regimes. The smallest applied hydraulic gradient is for laminar regime, the

applied hydraulic gradient of 10 for PDT flow and the largest one is for FDT flow.
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4.1.7. Various Models and Numerical Methods

In the studies of the various models having different levels of sophistication, only
the horizontal case was dealt with because the governing equations could be greatly
simplified by neglecting the elevation head term. Further, it was found that the effect of
elevation head was negligible in all cases (see Table 3.6), based on the order-of-
magnitude study. However, as a matter of interest, the effects of elevation head were still
investigated using the regular perturbation method. This elevation head term was
included in the model by considering a sloped pipe (0 # 0).

In Figures 4.5 and 4.6, various models were compared in terms of H with the
applied hydraulic gradient of 0.1. Figure 4.5 shows spatial variation of H at various
times. In the laminar flow regime, the viscous effect is dominant and the inertial effect is
negligible. It can be shown that the results of Darcy’s Law model matches very well with
the Ergun-type model at all three stated times. Similarly, the acceleration-included model
matches very well with the complete model which tells that the convective acceleration
effect is negligible. At very small time (t = 0.03), the acceleration-included model shows
some discrepancies with the Darcy’s Law model and the Ergun-type model. These
discrepancies are due to the local acceleration term. It was found that the local
acceleration term may not be negligible at very small times. Figure 4.6 shows temporal
variation of H at various locations. All the models show good match at three stated
locations. H approaches steady-state value of H before t becomes 1. In Figures 4.7 and
4.8, V using various models was compared under the applied hydraulic gradient of 0.1.
Figure 4.7 shows spatial variation of the V at various times. The comparison of models
shows similar results found in H. The V using the Darcy’s Law model and the Ergun-
type model matches very well, and the V using the acceleration-included model and the
complete model matches very well. The discrepancy in V using the Ergun-type model
and the acceleration-included model is large at small time (t = 0.03) and it becomes small
as time increases (t = 0.1 and T = 0.3). Compared with the magnitude of the discrepancy
appeared in H, it is relatively large. These discrepancies indicate that the local
acceleration term may not be neglected at small times. Figure 4.8 shows temporal

variation of the V at various locations. It can be shown that the difference between the V
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Figure 4.5 Spatial variation of H at various dimensionless times using Darcy’s Law, the
Ergun eqn, an acceleration-included model, and the complete model (i = 0.1).
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Figure 4.6 Temporal variation of H at various locations using Darcy’s Law, the Ergun
eqn, an acceleration-included model, and the complete model (i = 0.1).
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Figure 4.7 Spatial variation of V at various dimensionless times using Darcy’s Law, the
Ergun eqn, an acceleration-included model, and the complete model (i = 0.1).
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Figure 4.8 Temporal variation of V at various locations using Darcy’s Law, the Ergun
eqn, an acceleration-included model, and the complete model (i = 0.1).
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using Ergun model and acceleration-included model is large at small X (X =0.1) and t.
The V at three stated locations approaches to the one value of equilibrium/steady-state V.
In Figures 4.9 and 4.10, various models were compared in terms of H with the
applied hydraulic gradient of 10 (PDT flow). Figure 4.9 shows spatial variation of H at
various times. In the PDT flow regime, the inertial effect is not negligible. It can be
shown that the results of all the models match well except the Darcy’s Law model. As
can be expected, Darcy’s Law model could not predict the flow well. At three stated
times, the differences between the Ergun-type model and the local acceleration-included
model are negligible which shows that the local acceleration effect is not important.
However, in the matched asymptotic expansion studies, it can be shown that the local
acceleration can not be neglected in smaller time and space scale compared with those of
laminar flow regime. Figure 4.10 shows temporal variation of H at various locations. All
the models show good match at three stated locations except the Darcy’s Law model. H
approaches steady-state value of H before t becomes 1. In Figures 4.11 and 4.12, the V
using various models was compared under the applied hydraulic gradient of 10. Figure
4.11 shows spatial variation of the V at various times. The comparison of models shows
similar results found in H. The V using a model other than the Darcy’s Law model
matches well. It can be shown that the difference between the V using the Darcy’s Law
model and the other models is large at small T. Figure 4.12 shows temporal variation of
the V at various locations. The V at three stated locations approaches to the one value of

equilibrium/steady-state V.
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Figure 4.9 Spatial variation of H at various dimensionless times using Darcy’s Law, the
Ergun eqn, an acceleration-included model, and the complete model (i = 10).
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Figure 4.10 Temporal variation of H at various locations using Darcy’s Law, the Ergun
eqn, an acceleration included-model, and the complete model (i = 10).
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Figure 4.11 Spatial variation of V at various dimensionless times using Darcy’s Law,
the Ergun eqn, an acceleration-included model, and the complete model (i = 10).
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Figure 4.12 Temporal variation of V at various locations using Darcy’s Law, the Ergun
eqn, an acceleration-included model, and the complete model (i = 10).

124



In Figures 4.13 and 4.14, various models were compared in terms of H with the applied
hydraulic gradient of 400 (FDT flow). The results for FDT flow case are very close to
those of PDT flow case. Figure 4.13 shows spatial variation of H at various times. In the
FDT flow regime, the inertial effect is dominant. It can be shown that the results of all
the models match well except the Darcy’s Law model. As can be expected, Darcy’s Law
model could not predict the flow well in the FDT flow regime. At three stated times, the
differences between the Ergun-type model and the local acceleration-included model are
negligible. Figure 4.14 shows temporal variation of H at various locations. All the
models show good match at three stated locations except the Darcy’s Law model. In
Figures 4.15 and 4.16, the V using various models was compared under the applied
hydraulic gradient of 400. Figure 4.15 shows spatial variation of the V at various times.
The comparison of models shows similar results found in H. The V using a model other
than the Darcy’s Law model is close to each other. It can be shown that the difference
between the V using the Darcy’s Law model and the other models is large at small .
Figure 4.16 shows temporal variation of the V at various locations. The V at three stated
locations approaches to the one value of equilibrium/steady-state V. In Figure 4.17 and
4.18, various schemes of finite difference method were compared. The solutions were
obtained by solving the complete momentum and continuity equation under the applied
hydraulic gradient of 1 (PDT flow). Figure 4.17 shows spatial variation of H at various
times using the explicit finite difference method (FDM) with backward difference in time
and central difference in space, FDM with Lax-Wendroff scheme, and method of
characteristics. The results show excellent match at all three stated times. It was found
that the accuracy of explicit FDM can be considered good to predict H and V at stated
time and space scales. Figure 4.18 shows spatial variation of V at various times using the

methods applied for Figure 4.17.
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Figure 4.13 Spatial variation of H at various dimensionless times using Darcy’s Law,
the Ergun eqn, an acceleration-included model, and the complete model (i = 400).
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Figure 4.14 Temporal variation of H at various locations using Darcy’s Law, the Ergun
eqn, an acceleration-included model, and the complete model (i = 400).
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Figure 4.15 Spatial variation of V at various dimensionless times using Darcy’s Law,
the Ergun eqn, an acceleration-included model, and the complete model (i = 400).
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Figure 4.16 Temporal variation of V at various locations using Darcy’s Law, the Ergun
eqn, an acceleration-included model, and the complete model (i = 400).
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Figure 4.17 Spatial variation of H at various dimensionless times using an explicit FDM,
Lax-Wendroff scheme, and MoC (i = 1).
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Figure 4.18 Spatial variation of V at various dimensionless times using an explicit FDM,
Lax-Wendroff scheme, and MoC (i =1).
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4.2. Regular Perturbation Solutions

Explicit finite difference method was used to obtain solutions of Hy, H;, H,, H3,
Hy, and Hs separately. Similarly, Vg, Vi, Va, V3, V4 and Vs were obtained using explicit
FDM. For laminar regime, hydraulic gradient of 0.1 was applied, and for PDT and FDT
case hydraulic gradient of 10 was applied.

4.2.1. Solutions in Laminar Regime

The boundary and initial conditions of Hy, H;, H,, H3, Hs, and Hs can be obtained

using those of H. The boundary and initial conditions of H are:

H=1atX=0 [4-22a]
H=0atX=1 [4-23a]
H=0att=0 [4-24a]

Using the expansion on H, eqn [3-83], the boundary and initial conditions can then be

written:
H,(0,7) +eH,(0,7) + 8H,(0,7) + yYH,(0,7) + EH,(0,7) + oH(0,7) =1 [4-22b]
H,q,v)+eH,1,1)+6H, (1, v)+yH,(1,71)+EH, (1, 1) + oH;(1,7) =0 [4-23b]
H,(X,0)+eH,(X,0) + 8H, (X,0) + YH,(X,0) + EH,(X,0) + oH,(X,0) =0  [4-24b]

1) Solutions of Hp and V),
The boundary and initial conditions for Hy can be obtained from eqn [4-22b], [4-
23b] and [4-24b] and they are:

Ho=1atX=0 [4-22¢]
Ho=0atX=1 [4-23c]
Ho=0att=0 [4-24c¢]
If we recall equation of Hy:
H, = E—3—H0 [3-94c]
XX Cl T
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An explicit finite-difference form of eqn [3-94c], using a backward difference in time and

a central difference in space, is:

i =20 0 4-25
AX? C, At 4-23]
which may be re-arranged:
Hy, = AAXT %(H‘éi;‘l ~2HG 4 HE )+ HY [4-26]
3
Dimensionless V may then be obtained simply using Darcy’s Law:
Vk — _& Hl(;i+1 — Hl(;i—l [4_27]
“C, 2AX

(i) Solutions of H; and V;
The boundary and initial conditions for H; can be obtained from eqn [4-22b], [4-
23b] and [4-24b] and they are:

H =0atX=0 [4-22d]
H=0atX=1 [4-23d]
H =0att=0 [4-24d]

An explicit finite-difference form of eqn [3-95c], using a backward difference in time and

a central difference in space, is:

(L -2HT +HE) G HY-HE o Vi - Ve,
AX? C, At *2AX

[4-28]

Because V; is not defined at either X =0 or X =1, — H,, is used instead of V5 from
eqn [3-94b].

(Hi7 -2HE' +HEL)  C, HE -HY

C, Hg - Hy'
AX? C, At

+2V§

[4-29]
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which may be re-arranged:

k. _ Hk-_l
k = A‘Z S (HY, —2HY +HY)- 2L \/ Ho—Ho H [4-30]
AX* C, C, At
Using eqn [3-95a], the dimensionless velocity, V', becomes:
kK —H*
Vlli( = _&Hliﬂ Hh—l _&(V(; )2 [4_31]

C, 2AX G,

(iii)  Solutions of H; and V,
The boundary and initial conditions for H, can be obtained from eqn [4-22b], [4-
23b] and [4-24b] and they are:

H=0atX=0 [4-22¢]
Hy=0atX=1 [4-23e]
H,=0att=0 [4-24¢]

An explicit finite-difference form of eqn [3-96¢], using a backward difference in time and

a central difference in space, is:

Vo = Vot Vo = Voo
i+ i i i i At At
AX? - At 2AX [4-32]
1

which may be re-arranged:

At C vk o _ykl_yk oy ykd
1:2 ——I(Hl;:l _2H12<i-1 +H12cl—_11)+£1_( 0i+1 QOi+1 0i-1 01-1)+H12<i—1 [4_33]

H];i =
AX*" C, C, 2AX

Using eqn [3-96a], the dimensionless velocity, V:,_ki , is then:

k k k k-1
_ G, Hy —Hi _ C, Vo - Vs

Vi =
c, 24X C, At

[4-34]
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(1iv)  Solutions of Hs and V3

The boundary and initial conditions for H; can be obtained from eqn [4-22b], [4-
23b] and [4-24b] and they are:

H;=0atX=0 [4-22f]
H;=0atX=1 [4-23f]
H;=0att=0 [4-24f1]

An explicit finite-difference form of eqn [3-97¢], using a backward difference in time and

a central difference in space, is:

(s —2my" +HEL) (S -HE') (ve,-va,Y
AX? C, At 2AX
k k k
—vE [ % 2V02i + Voii ) [4-35]
AX

V, is not defined at either X = 0 or X = 1. However, using the relationships V, =-H,

and V, =-H, ,eqn[4-35]can be re-stated as:

(B4 -2HY' +HY) C, (S —H;-*)_[H:; —HY J

AX? C, At At
H](;m - Hl(;-ll _ H](;i—l — HI(;i_—ll
‘ At At
+ Vo [4-36]
2AX
By re-arrangement:
HE = AT&(H];:l "2Hlaci—l +H§;_11)+AT_C_1 Hl(;i —Hl(;i_l i
¥ C, AX? C, At
—&V". Hl(;m — Hgi—+I1 _Hl(;i—l +Hgi——ll +H&! [4_37]
C3 0i ZAX 3i
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Similarly, the dimensionless velocity, V3‘§ , can be obtained using eqn [3-97a] and the fact

that V, =-H, :

T

Vk — _& (Hl;i-é-l _H];i—l)_vk. Hl(;l —I-Il(;i“l [4'38]
o, 24X Moot

(v) Solutions of Hy and V4
The boundary and initial conditions for H4 can be obtained from eqn [4-22b], [4-23b] and
[4-24b] and they are:

H,=0atX=0 [4-22g]
H,=0atX =1 [4-23g]
Hs=0att=0 [4-24g]

An explicit finite-difference form of eqn [3-98c], using a backward difference in time and

a central difference in space, is:

(1%, - 205 +HE) C, [ Hy -Hy') Vk(ﬂgl_“’ok_lﬂ [4-39]
0i

AX ¢ a 20X

By re-arrangement:
¢, (H, -2Hy! +H)

HE -V
HY = At—L L ~ATV)| =L 0l |y gAY [4-40]
C, AX 2AX

The quantity V; can be expressed as:

k k
_ C1 H4i+1 —H4i-1

Vi = C. 2AX
3

[4-41]

(vi)  Solutions of Hs and V5
The boundary and initial conditions for Hs can be obtained from eqn [4-22b], [4-23b] and
[4-24b] and they are:
Hs=0atX=0 [4-42c]
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Hs=0atX=1 [4-23c]
Hs=0att=0 [4-24c]

An explicit finite-difference form of eqn [3-99c], using a backward difference in time and

a central difference in space, is:

k-1 k- k-1 k k-1
(Hsm — 2HSi21 +Hsi ) — & (HSi —-Hy )+ Véci [4-42]
AX C, At
By re-arrangement:
k-1 k4—1 k.—l
HE = AcSL (2, - 2Hy L) ATVE +HY! [4-43]

C, AX?

The quantity V& can be found using:

vk = __C_x Hls(i+1 — Hls(i—l [4-44]
oC, 22X

4.2.2. Effects of Each Term in Laminar Case

Spatial and temporal variations of each effect were presented in terms of H and V.

The RP solutions were compared with the solutions obtained from the relevant models.

(i) - Viscous Effect
The magnitude of viscous effects was computed using the RP expression for Hy
given by eqn [4-36] together with the previously stated boundary conditions for Hy and
Vo. It can be seen that the behaviour of Hy obtained using the RP expansion method is
virtually identical to the behaviour of H obtained from the FDM solution to the traditional

groundwater flow equation.

(i1) Inertial Effect
The Spatial variation in H obtained by solving eqn [4-9] of Ergun-type model and that

obtained by RP expansion (eqn [4-30]) is shown in Figure 4.19, for an applied hydraulic
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gradient of 0.1. The solution of RP expansion can be obtained from H = Hy + ¢H;. As
can be seen in said Figure, the outcomes from these two numerical simulations are nearly
identical. However, some differences between the Darcy’s Law and Ergun equation
outcomes. These differences are due to the inertial effect (¢€H;). The largest differences
occurred around mid-length of the conduit (see Figure 4.20). The difference is also
relatively even in this zone. Figures 4.21 and 4.22 show spatial and temporal variation in
H;. H; is negative for all observed times and locations. In Figure 4.21, the minimum H,
is found at the smallest observed time (t = 0.1). This result can be related to the ‘early’
flows which are inertia-dominated in accordance with the Ergun equation, and the ‘late’
flows which are viscous-dominated in accordance with Darcy’s Law suggested by Nilson
(1981). It can also be seen that the minimum H; for each snapshot in time is located near
the mid-length for all three such times, and that the location of minimum H; moves
downstream as time increases. Figure 4.22 shows that the minimum H; occurred near the
upstream end of the conduit. The time required to reach the minimum H; at a given
location increased in the downstream direction. From Figures 4.21 and 4.22 we may
conclude that the largest inertial effect occurs at expected at the beginning of the
experiment and nearer the upstream end of the conduit for the case of purely laminar
flow. The overall effect on H can be obtained by multiplying € and H;. Figures 4.23 and
4.24 show the spatial and temporal variation in Vi, respectively. V also shows negative
values at all tree observed times and locations. The results show trends that are similar to
those of H;. However, near the boundary V,; behaves quite differently. For example,
near the upstream end, inertial effect increases and reduces the velocity of the flow, as

time passes.
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Figure 4.19 Spatial variation of H using explicit FDM and RP (i=0.1 and t = 0.1).
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Figure 4.20 Close-up of spatial range, 0.4 < X < 0.6.
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Figure 4.21 Spatial variation of H; (inertial effect, i = 0.1).
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Figure 4.22 Temporal variation of H; (inertial effect, i = 0.1).
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Figure 4.23 Spatial variation of V, (inertial effect, 1 =0.1).
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Figure 4.24 Temporal variation of V (inertial effect, i = 0.1).
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(ii1)  Local Acceleration Effect
The local acceleration effect was investigated using H; and V; (eqn [4-33] and eqn [4-
34]). The regular perturbation solutions for H and V including viscous, inertial and local
acceleration term were obtained using H = Hyp + eH; + 8Hyand V=V + €V, + 6V, In
Figure 4.25, the results of applying the regular perturbation method are compared. These
include presentation of the effects of local acceleration, inertial effects, and viscosity
effects only (traditional groundwater flow model). Solutions obtained using RP
expansion with local accelerative effects included in the model show a near-perfect match
with the model described in the previous section. Only small differences are evident
between it and the H variation obtained using the Ergun (inertial) model. These
differences are evidently due to the local acceleration term 8H,. Figure 4.26 highlights
near the mid-length discrepancy. It can be seen that the difference between this three-
part model (laminar plus inertial plus local acceleration) and the previous two-part model
is spatially inconsistent. This implies that the local acceleration term H; can be positive
or negative with time and space. Figures 4.27 and 4.28 show the spatial and temporal
variation in H,. Figure 4.27 shows negative values of H; at small values of t. The
profile at t = 0.1 shows that the local acceleration term increases the H at the upstream
end but decreases it at the downstream end. Figure 4.28 shows that H, becomes close to
zero as time increases at all locations. The absolute value of minimum is larger than that
of maximum at any given location. The overall effect of H, on the propagation of H can
be obtained by multiplying & and H,. Figures 4.29 and 4.30 show the spatial and
temporal variation in V,. V; shows some positive and some negative values at all three
stated times and locations. It can be seen that V, shows patterns that are similar to V;
(and H,) at the upstream and downstream ends. Figure 4.30 shows that the effect of V,
becomes close to zero as time increases. The value of V; at X = 0.2 is always positive.
This can be related to the characteristics of the evolving-wave equation. This will be
explained later using matched asymptotic expansions. Positive values of H; are expected

at very small T and X from the same characteristics of evolving-wave equation. We may
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Figure 4.25 Spatial variation of H using explicit FDM and RP (i = 0.1 and © = 0.1).

0.4
| — -HO(RP&FDM) |
’ HO+H1 (RP) \
035 1 SO e HO+H1+H2 (RP)
i o  Ergun (FDM) ’
’ x  Acceleration (FDM) | ;
03 -
025 -
02 -
0.15 - : .
0.4 0.45 0.5 0.55 0.6

Figure 4.26 Close-up of spatial range, 0.4 <X <0.6.
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Figure 4.27 Spatial variation of H, (local acceleration effect, i = 0.1).
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Figure 4.28 Temporal variation of H; (local acceleration effect, 1 = 0.1).
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Figure 4.30 Temporal variation of V; (local acceleration effect, i = 0.1).
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summarize the effect of H; on the propagation of head as follows:
(1) as time increases, H, (and therefore V,) approach to zero. The local acceleration
term can increase or decrease H (and V) depending on time and location.
(2) as time increases, H; and V, approach to zero.
(3) H, obviously has fixed boundary values as set by the boundary conditions, but V;

has variable boundary values.

(4) positive V3 in small t and X can be explained by the concept of an evolving wave.

(iv)  Convective Acceleration Effect
The convective acceleration effect was investigated using Hs and V3 (eqn [4-37]
and eqn [4-38]). The regular perturbation solutions for H and V including viscous,
inertial, local acceleration, and convective acceleration term, were obtained using H = Hy
+¢H, + dHa+ yHz and V = Vo + €V, + 0V, + yV3. Figures 4.31and 4.32 show the spatial
and temporal variation in Hs. Figure 4.31 shows all positive values of H; at all three
stated times thus the convective acceleration term always increases head at any given
location and time. Figure 4.32 shows that Hj is large at small time and space and it
becomes close to zero as time increases. The overall effect of H; on the propagation of H
can be obtained by multiplying y and Hs. Figures 4.33 and 4.34 show the spatial and
temporal variation in V3. V3 shows some positive and some negative values at all three
stated times. Figure 4.34 shows that V; can be maximized at small values of T and
become close to zero as time increases. We may summarize the effect of H; on the
propagation of head as follows:
(1) convective acceleration term increases H for all given times and locations.
(2) convective acceleration term can increase or decrease V depending on the time
and location.

(3) as time increases H; and V; approach to zero.

(v) Advective Acceleration Effect
The advective acceleration effect was investigated using Hs and V4 (eqns [4-40]

and [4-51]). The regular perturbation solutions of H and V including viscous,
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Figure 4.31 Spatial variation of H3 (convective acceleration effect, i = 0.1).
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Figure 4.32 Temporal variation of H3 (convective acceleration effect, i = 0.1).
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inertial, local acceleration, convective acceleration and advective acceleration term, were
obtained using H=Ho + ¢H; + 6H,+ YH3; + EHsand V=V + €V + 8V, + yV3+ £V,
Figures 4.35 and 4.36 show the spatial and temporal variation in Hy. Figure 4.35 shows
all positive values of Hy at all three stated times thus the advective acceleration term
always increases head at any location and time. Figure 4.36 shows that H4 does not
become close to zero as time increases. The overall effect of Hs on the propagation of H
can be obtained by multiplying £ and H,. Figures 4.37 and 4.38 show the spatial and
temporal variation in V4. V4 shows some positive and some negative values at all three
stated times. V4 almost linearly increases as X increases when 1 = 0.2 and 0.5. Figure
4.38 shows that V4 decreases as time increases at small X (X = 0.2); however, it increases
as time increases at large X (X =0.8). We may summarize the effect of H3 on the
propagation of H as follows:

(1) the advective acceleration term increases H at all stated times and locations.

(2) the advective acceleration term can increase or decrease V depending on time and

location.
(3) H4 does not approach to zero as time increases.
(4) the magnitude of H, is relatively small compared with H;, H, and H3, and V4 also

shows small magnitude compared with V;, V,, and V3.

(vi)  Elevation Head Effect

The elevation head effect was investigated using Hs and Vs (eqn [4-43] and eqn
[4-44]1). The regular perturbation solutions of H and V including viscous, inertial, local
acceleration, convective acceleration, advective acceleration and elevation head term,
were obtained using H=Hy + ¢H; + 8H,+ yH3 + EHs + oHsand V=V + eV + Vo +
YV3+ EV4+ oVs. Figures 4.39 and 4.40 show the spatial and temporal variation in Hs.
Figure 4.39 shows that Hs is negative at all three stated times. The absolute value of the
minimum Hs at a given time increases as time increases. The convective acceleration
term always decreases head at any location and time. Figure 4.40 shows that the effect of

Hs does not become close to zero as time increases. The overall effect of Hs on the
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Figure 4.35 Spatial variation of Hs (advective acceleration effect, i = 0.1).
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Figure 4.37 Spatial variation of V, (advective acceleration effect, i =0.1).

Figure 4.38 Temporal variation of V4 (advective acceleration effect, i = 0.1).
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Figure 4.39 Spatial variation of Hs (elevation head effect, i = 0.1).

-0.02

-0.04

-0.06 A

-0.08 A

-0.1 4

-0.12 A

-0.14

0 0.1

0.2

0.3

0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.40 Temporal variation of Hs (elevation head effect, i = 0.1).
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propagation of H can be obtained by multiplying o and Hs. Figures 4.41 and 4.42 show
the spatial and temporal variation in Vs. Figure 4.41 shows that Vs almost linearly
decreases as X increases when © = 0.2 and 0.5. Figure 4.42 shows that Vs approaches to
some positive values as time increases at X = 0.2 and 0.5. On the other hand, at X = 0.8,
Vs decreases as time increases and converges to a negative value. We may summarize
the effect of Hs on the propagation of H as follows:
(1) the elevation head term decreases H for all stated times and locations (depending
on the slope of the pipe, whether positive or negative).
(2) the elevation head term can increase or decrease V depending on the stated time
and location (also depending on the slope of the pipe).
(3) the magnitude of Hs is relatively small compared with H;, H, and H3, and Vs also

shows small magnitude compared with V,, V;, and V3

4.2.3. Solutions in PDT and FDT Regime

Boundary and initial conditions are same as those in laminar flow regime. Using
the perturbation expansion of H, H=H; + ¢H, + dH, + YH, + EH, and the

boundary condition can be written as follows:

H,(0,7) +¢H,(0,7) + 8H,(0,7) + yH,(0,7) + £H,(0,7) =1 [4-45a]
H,1,t)+eH,(1,7)+6H, (1, 1) +yH,;(L,©)+EH,(1,7) =0 [4-46a]
H,(X,0)+eH,(X,0) + 8H,(X,0) + yH, (X,0) + EH,(X,0) = 0 [4-47a]

(i) Solutions of Hy and Vy
The boundary and initial conditions applied to Hp can be obtained from eqn [4-
45a], [4-46a] and [4-47a] and they are:

Hy=1atX=0 [4-45b]
Hp=0atX =1 [4-46b]
Hy=0att=0 [4-47b]

If we recall equation of Hy:
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H, =- H, [3-119d]

An explicit finite-difference form of eqn [3-119a], with a backward difference in time

and a central difference in space, is:

5 Hk—l _Hk—l
_ 0i+1 0i-1
(s, 2wy e mt) VO TROCTGC wy my
> = [4-48]
AX C, At
By re-arrangement:
AtC H —2Hy" + Hy -
Hl(;i - 1 ( 0i+1 012 0i l)_l_ Hl(;1 { [4_49]
H — g AX
C32 _ 4C1C4 Oi+1 0i-1
2AX
The V, may then be obtained from the explicit finite-difference solution of Ergun
equation:
k. _ Hk-
~C, +\/c32 -4C,C, Ho.o 0i-1
2AX
Vi = [4-50]
2C,

(ii) Solutions of H; and V;
The boundary and initial conditions for H; can be obtained from eqn [4-45a], [4-
46a] and [4-47a] and they are:

H =0atX=0 [4-45c]
H=0atX=1 [4-46c]
H,=0att=0 [4-47c]

In order to get finite difference form of eqn [3-121], the equation is re-arranged for H,.:

C
= o —H o + 1 Vox
C, +2C,V, C, +2C,V,
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2
2C, C,
- Hy +Vy. )V, 4-51
c [C3+2C4VOJ( i+ Voo Vo [4-51]

An explicit finite-difference form of eqn [4-51], using a backward difference in time and

a central difference in space, is:

o__ oo, (HE -2HY +HYY)
i
C,+2C, Vg AX?
+ Cl V()ki+x — Vokilll — Vt;—l + V(;(i:ll
C, +2C,V 2AX
_ 2ATC1C4 Hi(l:-ll - Hi(l:ll + V(;(l — \/(;(i—1 V(;(i*-l — V(;(i—l + Hk-_l [4_52]
(C3 +2C,VE )2 2AX AT 2AX .
Using eqn [3-120d], the dimensionless velocity, V,, becomes:
k _ Cl Hi(i+1 _H}(i-l + V(; ~ \/(;<i-1 [4_53]
= k
C, +2C,V, 2AX At

(iii)  Solutions of H, and V;,
The boundary and initial conditions for H, can be obtained from eqn [4-45a], [4-
46a] and [4-47a] and they are:

H,=0atX=0 [4-45d]
Hy=0atX=1 [4-46d]
H,=0att=0 [4-47d]

Re-arrangement of eqn [3-122f] gives:

C C,

H =—"__ {H —t (V.. )=V, V
21 C,+2C,V, 2XX+C3+2C4VO (( ox) 0 oxx)

2
2C, C,
_ H,.,+V.V.)V 4-54
C, (C3+2C4VOJ (Hoox + Vo Vox Vox [4-54]
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An explicit finite-difference form of eqn [4-54], using a backward difference in time and
a central difference in space, is:

K _ AtC, (le(:l - 2H3 +H§i——11)

2C,+20,V4 AX?

ClAT [(Hgm _Hgi——ll jz _Vk[Hgm _H](;i-+ll _Hgi—l +HI(§:1 JJ
0i

+
C, +2C, Vs At 2AXAt

___2ACC, (H;}ll —-HY, VK Hg -Hg' ](ng _Hgi—lj+Hk—l [4-55]
0i 2
[, +2cvef L 28X At At

Using eqn [3-122d] and V,, = -H,,, the dimensionless velocity, V,;, is then:

k k k _ k-l
\/zk1 - _ Cl - H2i+l H2i—l + V(;(, _ HOi V01 [4-56]
C,+2C,VE|  2aX At

(iv)  Solutions of H; and V3
The boundary and initial conditions for H; can be obtained from eqn [4-45a], [4-
46a] and [4-47a] and they are:

H;=0atX=0 [4-45¢]
Hy=0atX=1 [4-46¢]
H;=0att=0 [4-47¢]

Re-arrangement of eqn [3-123f] gives:

2
C, 2C C
=——_ __H,,-VH, -—* ‘ Hy V. 4-57
Toc,+2C,V, U ¢ (c3+2c4voj sxVox 14571

An explicit finite-difference form of eqn [4-57], using a backward difference in time and

a central difference in space, is:

HE = AtC, (Hl?;:-ll —2H; +Hy ) — ATV
3i k 2 o
C, +2C,V; AX

H l(§i+1 -H gi—l
2AX
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— 2A1:(:1(:4 - (H;‘:l — Hl?:l_—ll J(_ Hgl B Hl(;‘“l j + Hl;]—l [4_58]
c,+2c,vsf L 28X At
Using eqn [3-123d], the dimensionless velocity, V5 , is then:
ko _prk
V:;kl - _ Cl - H3i+l H31‘I [4_59]
C, +2C,V, 2AX

(v) Solutions of Hy and V4
The boundary and initial conditions for H4 can be obtained from eqn [4-45a], [4-
46a] and [4-47a] and they are:

H;=0atX=0 [4-451]
Hy=0atX=1 [4-46f]
Hi=0att=0 [4-47£)

Re-arrangement of eqn [3-124e] gives:

4t

_ o 2C, ( C,

2
H, -V, - H,V 4-60
C,+2C,v, ™ 7 c3+2c4voj axVox - 14-60]

An explicit finite-difference form of eqn [4-60], using a backward difference in time and

a central difference in space, is:

__ &C, (Mgl -ompeHE)
4 = m 2 — AtV
C, +2C,V, AX
_ 2ATC1C4 H]Zl_::l B HZI——II _ Hl(;l - Hl(;l—l + Hk~—1 [4-61]
(c,+2c,vif L 28X At ;
The quantity V, may then be found using:
Vk — Cl H§i+l — H:-(i—l [4_62]
oo e20, VAL 24X

i
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4.2.4. Effects of Each Term in PDT and FDT Case

The various modelled profiles of H and V in which viscous and/or inertial effects
are built-in are similar to those obtained for the simple laminar regime case. The strength
of each effect was found to depend on the applied hydraulic gradient, and the point in

time and space.

i) Local Acceleration Effect

The local acceleration effect was investigated using H; and V. The regular
perturbation solutions for H and V that included viscous, inertial and local acceleration
term, were obtained using H = Hy + €¢H; and V = V + ¢V,. Figure4.43 and 4.44 show the
spatial and temporal variation in H;. From Figure 4.43 shows that H; takes on negative
values for small t. As shown for the case of the laminar regime, the effect of local
acceleration on H can be positive or negative. The Figure 4.44 shows that H; becomes
close to zero as time increases. The absolute value of the minimum H; is larger than that
of the maximum H; at any given location. The overall effect of H; on H can be obtained
by multiplying € and H;. Figures 4.45 and 4.46 show the spatial and temporal variation
of V. The profiles of V; are similar to those in laminar regime case. Figure 4.45 shows
that V, takes on some positive and some negative values at any given time depending on
X. Figure 4.46 shows that the magnitude of V| is large at small times and becomes close
to zero as time increases. Positive values of V at small time and space can be related to

the characteristics of the evolving-wave equation.

(>i1) Convective Acceleration Effect
The convective acceleration effect was investigated using H, and V,. The regular
perturbation solutions for H and V that included viscous, inertial, local acceleration, and
convective acceleration term, was obtained using H=Hp + eéH; + 8H; and V = V + €V,
+ dV,. Figures 4.47 and 4.48 show the spatial and temporal variation of H,. Figure 4.47
shows all positive values of Hs at any stated times. Figure 4.48 shows that H; is large at
small time and space and it approaches to zero as time increases. The overall effect of H,
on H can be obtained by multiplying 6 and H,. Figures 4.49 and 4.50 show the spatial

and temporal variation of V,. V; shows some positive and some negative values at all
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Figure 4.43 Spatial variation of H; (local acceleration effect, i = 10).
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Figure 4.44 Temporal variation of H; (local acceleration effect, i = 10).
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Figure 4.46 Temporal variation of V| (local acceleration effect, i = 10).
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Figure 4.47 Spatial variation of H, (convective acceleration effect, i = 10).
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Figure 4.48 Temporal variation of H, (convective acceleration effect, i = 10).
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Figure 4.49 Spatial variation of V, (convective acceleration effect, i = 10).
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Figure 4.50 Temporal variation of V, (convective acceleration effect, i = 10).
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three stated times. V; increases with respect to X but the maximum value of V;
decreases as time increases. Figure 4.50 shows that V; is maximized at small t and

becomes close to zero as time increases.

(iii))  Advective Acceleration Effect

The effects of the advective acceleration was investigated using Hs and V3. The
regular perturbation solutions for H and V that included viscous, inertial, local
acceleration, convective acceleration and advective acceleration term, were obtained
using H=Hp + eH; + 6H,+ yH3 and V = Vo + €V + 8V, + YV3. 4.43 Figures 4.51 and
4.52 show spatial and temporal variation in Hs. The results are similar to those obtained
for the laminar regime. The overall effect of Hy on H can be obtained by multiplying y
and Hj. Figures 4.53 and 4.54 show spatial and temporal variation in V3. These results
are similar to those obtained for the laminar regime case. However, the time and space
required to reach a given shape of curve is different from that of laminar regime case.
This shows that the general effect of each term is similar but that the time and space

needed to achieve a given pattern depends on the applied hydraulic gradient.

(iv)  Elevation Head Effect

The effects of elevation head were investigated using the terms Hs and V4. The
regular perturbation solutions for H and V that included viscous, inertial, local
acceleration, convective acceleration, advective acceleration and elevation head effects
were obtained using H=Hy + ¢H; + 6Hy+ yH3; + EHsand V=V + eV + V2 + yVi +
EV4. Figures 4.55 and 4.56 show the spatial and temporal variation in Hys. The spatial
and temporal profile in Hy4 show results that are similar to those obtained for the laminar
regime case. The overall effect of Hy on H was obtained by multiplying & and Ha.
Figures 4.57 and 4.58 show the spatial and temporal variation in V4. The results are also

similar to those obtained for the laminar regime.
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Figure 4.51 Spatial variation of Hz (advective acceleration effect, i = 10).
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Figure 4.52 Temporal variation of H3 (advective acceleration effect, i = 10).
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Figure 4.53 Spatial variation of V3 (advective acceleration effect, i = 10).

Figure 4.54 Temporal variation of V3 (advective acceleration effect, i = 10).
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Figure 4.55 Spatial variation of Hy (elevation head effect, i = 10).
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4.3. Application of Matched Asymptotic Expansions

4.3.1. Inner and Outer Expansions

In this chapter, inner and outer expansions of the momentum and continuity
equation are mathematically developed for the laminar, PDT, and FDT regimes. For the
inner expansion of each regime, various forms of evolving-wave equations were
investigated. The upper limit of the applicability of the inner-zone solution, both in time
and in space, was determined using numerical solutions and compared for all three

regimes.

4.3.1.1. Laminar Regime

The laminar regime is considered to be in effect if Res, < 1, where Rey is the
Reynold number associated with equilibrium conditions (t = ). As shown in the
previous chapters, for the laminar regime, it may be expected that viscous effects will

dominate, being larger than inertial, local acceleration and convective acceleration

effects.

(i) Outer Expansion

The original momentum and continuity equation were stated as:

Hx+—(-:iVVx+&V+&V2+£"’—VT =0 [3-62]
Cl Cl 1 Cl
H +V +S5vH, +S2v =0 [3-63]
C6 C6

The outer forms of these equations can be obtained by investigating the magnitudes of the
dimensionless groups in the above equations. Table 4.3 shows the magnitudes of these

various groups at specified hydraulic gradients.
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Table 4.3 Magnitudes of dimensionless groups for outer laminar case.

1 [m/m] Co/C, Cs/C, CJ/C, Ce/Cy Cs/Cs 1677653
0.01 2.1E-08 1.00 0.0016 0.003 6.7E-06 -6.7E-04
0.1 2.1E-07 1.00 0.016 0.003 6.7E-05 -6.7E-04

It can be seen that all the sets of parameters are much smaller than unity except C, /C,,

which is of order 1, O(1). The momentum equation can therefore be reduced to Darcy’s
Law, and the continuity equation can be reduced to its simplest form, having only elastic
effects and no convective acceleration effect and no elevation head effect. The outer

form of the momentum equation therefore becomes:

C
H +=2V=0 [4-63]
1
and the outer form of the continuity equation becomes:
H +V =0 [4-64]
The outer expansions for H and V can be readily obtained by combining eqns [4-63] and

[4-64]. The outer expansion of H is:
[4-65]
and for V is:

A% [4-66]

(ii) Inner Expansion
In order to be able to see velocity and head variation in the sharp change region,
compound scaling is needed. This can be accomplished by rescaling to small space and
time in order to magnify this small region. Rescaling X, T and V as:
X

z-X
a

[4-67a]
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Al
I

[4-67b]

<
Il
o |< o |Aa

[4-67c]

where a<< 1,b<< 1,and ¢ >> 1 or ¢ = O(1). In the inner zone, the inner variables, X ,

%, and V will be used in the governing PDE’s. Substituting rescaled X, t and V (eqn [4-
67]) into eqn [3-63] yields:

VH

Al

x T

+
|0
<
Eadl
+
elfe
oo

(=%

C— V=0 [4-68]
C

o |-

If we assume that the continuity equation is invariant in the inner zone, we can get an
identical form of continuity equation for an outer zone by defining:

a=bc [4-69]

Since a<< 1,b << 1, and c>>1 or c = O(1), bec << 1. If we divide all the terms in eqn [4-

68] by 1/b (=c/a):

aVv =0 [4-70]

et
>

_I..
00

<h

an

[=,)

Al

oo

(=]

Similarly, if we substitute the rescaled X, t and V variables into eqn [3-62]:

lu, +C—C—VV cSw.Caogr Scg o [4-71]
a C,6 a C, C, C/ b

In order to better investigate the sharp-change region, the unsteady acceleration part may

be emphasized by defining:

o |-
OlO

o ¢ [4-72]
a

1

The scaling parameter c is then:
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where ¢c>>1.

In order to better investigate viscous effects, we may define:

1
—=C
a

[4-73]

[4-74]

Using eqns [4-69] and [4-74], expressions for the scaling parameters a and b can also be

obtained:
a= |Ss
C,
and
b=C6
C

[4-75]

[4-76]

Using the above definitions for a, b and c, the new variables of interest for the inner zone

became:

Table 4.4 shows the magnitude of the scaling factors at two hydraulic gradients.
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Table 4.4 Magnitude of scaling factors.

1 [m/m] a b c
0.01 0.056 0.0032 17.73
0.1 0.056 0.0032 17.73

Equations [4-70] and [4-71] can be re-arranged using the relationships between a, b and

C:
H.+V, +&\7Hi LS V) [4-78]
6 C1C6
C. ~~ ~ ~ o~
H, +=2V 2+&V+ S Vi+V, =0 [4-79]
C6 1 C1C6

A comparison of the magnitude of various parameter-sets from eqns [4-78] and [4-79] are
shown in the Table 4.5.

Table 4.5 Comparison of rescaled parameter-sets for laminar case.

0.01 6.66E-06 -3.76E-05 1.00 0.029 6.66E-06
0.1 6.66E-05 -3.76E-05 1.00 0.29 6.66E-05

In light of the above relative magnitude parameter-sets, the following first-order

equations can be obtained:

=0 [4-80]

[4-81]

An inner expansion of H can be obtained by combining the momentum and continuity

equations:

e

[4-82]

il
0 |
Al

Al

-l
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If eqns [4-80] and [4-81] are combined for V,

@)

Vixz

=2V, + V., [4-83]
C,

then in the laminar regime with % =1, the equations become:

+H;, [4-84]

%X % T% [4-85]

The inner expansions of H and V have the form of an evolving wave. The behaviour of

these waves will be presented in the section 4.3.2.

(1ii)  Inner Expression of Outer Expansion
In order to show the difference in behaviour between inner and outer, inner
expression of outer is compared with inner in the inner coordinate. If we substitute inner

variables in outer expansion, eqn [4-65] becomes:

C
i = 2 Hy [4-86]
and for V eqn [4-66] becomes:
~ C, ~
V.. =22V, 4-87
XX Cl T [ ]

43.1.2. PDT Regime

The PDT regime was obtained by applying intermediate hydraulic gradients, such
that 1 < Re_ <100. As seen for the PDT outcomes presented in previous chapters, it was

expected that the viscous and the inertial effects would be large compared to both the

local and convective acceleration terms.

(1) Outer Expansion
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The outer form for the PDT case can be obtained by comparing the magnitude of

the various dimensionless groups present within eqns [3-62] and [3-63]. Table 4.6 states

the relative magnitudes of these groups at two different hydraulic gradients.

Table 4.6 Magnitude of dimensionless groups for outer PDT case.

1 [m/m] Cz/C1 C3/C1 C4/C1 C(,/Cl CS/C(, C7/C5
1.0 1.6E-06 0.87 0.13 0.002 6.7E-04 -6.7E-04
10.0 6.0E-06 0.53 0.47 0.0009 6.7E-03 -6.7E-04

All the stated ratios are much smaller than 1 except the coefficients of C,/C, and

C,/C,. This means that the momentum equation can be reduced to the Ergun form and

the continuity equation can be reduced to its basic form, but with the elastic effect

retained. The outer form of the momentum is then:

H, +%V+&V2 =0

1 1

and the outer continuity equation becomes:

H.+V, =0

Because Hy is negative, -|[Hx | = Hx. Therefore:

Gy Cy -H,
C, C(

=0

or

C,V*+C,;V-CH,[=0

Neglecting roots involving negative V, it can be shown that:

g G JC,* +4C,C,H,
2C,
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[4-89]

[4-90]

[4-91]
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Differentiating eqn [4-88] with respect to X gives:

}gx+%?vx+%%2vvxzo

By substituting eqns [4-89] and [4-92] in eqn [4-93]:

or

By re-arrangement:

Hm=%VQ%4QQmJL
1

Equation [4-95b] can be re-arranged into the fast diffusion equation form:

Hy, _G
aCC,H,| C
+t—
C3
, 4C,C,H,| _
If we define ¢ =1+ ————, ¢4 is:
3
4C,C H,
¢X = _?
and ¢, is:
4C1C4HXI
¢-: = 2
C3

By substituting Hxx and H; in eqns [4-97] and [4-98] into eqn [4-96]:
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[4-93]

[4-94]

[4-95a]

[4-95b]

[4-96]

[4-97]

[4-98]



2 2
_ Gy 4 :&(_ G }bt [4-99]
4CC, o) C/ 4CC,
After re-arrangement:

1 C
—by | = — ¢, [4-100]
(‘/E ]x G

General fast diffusion problem can be defined with eqn [4-101]:

u, = V- (mu™'vu) [4-101]
where m <1.
If m=0.5, eqn [4-_101] becomes an identical form of eqn [4-100]. The problem has

become a fast diffusion problem in ¢.
(ii) Inner Expansion

Using the same scaling factors a, b and ¢ as were used to handle the laminar

regime, the values of these factors for the PDT regime are shown in Table 4.7.

Table 4.7 Magnitude of scaling factors.

1 [m/m] a B c
1 0.049 0.0024 20.284
10 0.03 0.0009 33.289

Table 7.5 shows that higher hydraulic gradients cause space and time scale factors to
decrease. The magnitude of the various dimensionless groups and scaling parameters can
be compared by substituting a, b and ¢ into eqns [4-70] and [4-71]. The resulting

numerical magnitudes of these groups are presented in the Table 4.8.
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Table 4.8 Comparison of magnitude of rescaled sets of parameters for PDT regime.

i [m/m] Cs/Cs C,/yC/Cq Gi/Cy C,/{C/Cq Cy/Cs
1 6.66E-04 -3.28E-05 0.874 2.554 6.66E-04
10 6.66E-03 -2.00E-05 0.533 15.559 6.66E-03

In light of these magnitudes, the first-order momentum and continuity equation can be re-

stated:
C3 WV, 4 72
Hy +—=V+—=cV " +V. =0 [4-102]
1 1
H,+V,=0 [4-103]
The equation for H can be obtained by combining eqns [4-102] and [4-103]:
Hyg, = (3 2C, CVJH? +H;, =0 [4-104]
1 1
The eqn for V is then:
- - 2 ~
A\ =&V? + <, cV;+V.. =0 [4-105]
C C t

(ii1)  Inner Expression of Outer Zone
By substituting inner variables into eqn [4-95a], inner expression of outer zone

can be expressed with:

H :3\/1+4C‘C“ [H ¢ |H, [4-106]

2
C,a

43.1.3. FDT Regime

Physically, the FDT regime can be obtained by applying very high hydraulic

gradients, resulting in Re_ >100. As shown in the previous chapters, for the FDT
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regime, it may be also expected that the inertial effect will be dominant in this regime, as

compared to viscous, local accelerative and convective accelerative effects.

(i) Outer Expansion
In a manner similar way to the laminar case, the outer form may be obtained by
comparing the relative magnitudes of the dimensionless groups implied by egns [3-62]

and [3-63]. Table 4.9 states these relative magnitudes:

Table 4.9 Magnitude of dimensionless groups for outer FDT case.

i [m/m] Cz/Cl C3/C1 C4/C1 C6/C1 C5/C6 C7/C6
350 1.13E-05 0.123 0.877 4.84E-05 0.233 -6.7E-04
400 1.14E-05 0.116 0.884 4.27E-05 0.266 -6.7E-04

All the ratios are much smaller than 1 except the coefficient C,/C,. Considering these

relative magnitudes, the momentum equation may be reduced to eqn [4-107], with only
the inertial term retained. The outer-zone momentum equation is then:

H, Loy =0

1

[4-107]

Correspondingly, the continuity equation may be reduced to its basic form, but with the

elastic effect term retained. The outer continuity equation is then:

H +V =0 [4-108]
Because Hx is negative, -|Hx | = Hx. Outer momentum equation becomes:
V= /&ij [4-109]
C,
Differentiating eqn [4-107] with respect to X gives:
C,
Hyy +C—2VVX =0 [4-110]

1
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Using eqn [4-108] and [4-109] in eqn [4-110], it becomes:

C,H
H, :& “MH: [4-111]
C, C,
or
Hyy =2 ——C“’H"'H
xx = . [4-112]

If we define ¢ =|H,|=-H,, ¢y =—Hyy and ¢, =-Hy,, Another fast-diffusion

1 C
—— by :2\/:4,T [4-113]
[\/a; Jx C,

equation is obtained:

(i1) Inner Expansion
If it is assumed that the continuity equation (eqn [4-78]) is invariant in the inner
coordinate system, we can get an identical form of continuity equation for the outer zone
by defining:
a=bc [4-114]

In order to better investigate the sharp-change region, the unsteady acceleration part can

be emphasized by defining:

2
1_Gec [4-115]
a C, a
Then we can get ‘c’:
c= = [4-116]
Cs

where c>>1.

In order to investigate inertial effects, we may define:

Lo [4-117]
a
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Using eqns [4-114] and [4-115], ‘a’ and ‘b’ can be obtained:

and

[4-118]

[4-119]

[4-120a]

[4-120b]

[4-120c]

Table 4.10 gives the magnitude of scaling factors ‘a’, ‘b’, and ‘c’ at two hydraulic

gradients.
Table 4.10 Magnitude of scaling factors.
i [m/m] a b c
350 0.000048 3.36E-07 143.8
400 0.000043 2.79E-07 153.1

Using the new inner variables, eqn [3-62] and [3-63] become:

C,1~ C,

C ~ ~ -~
Hy +=2c*VV, + 2=V + =2V’ +V,. =0

C, C c C,
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CS

~ ~ C, ~
H? +V)~( +C_VHX +C—7aV=0

6 6

Table 4.11 gives magnitudes of the various dimensionless parameter ratios.

[4-122]

Table 4.11 Comparison of magnitude of re-scaled sets of parameters for FDT case.

i [m/m] Cs/Cs Cy/Ci*a Gi/Ci/c CJC, Co/Cs
350 0.233 -1.56E-12 0.00086 0.877 0.233
400 0.266 -1.21E-12 0.00076 0.884 0.266
The governing equations can be reduced to
Hy +—=2V*+V, =0 [4-123]
1
H.+V, = [4-124]
in light of the relative numeric magnitudes in Table 7.9.
Combining the momentum and continuity equation gives:
2 ~
Heo + <, VH. +H;; =0 [4-125]
C
1
and
Vig + ot TV, 4V = [4-126]
Cl

(1)  Inner Expression for Outer Zone

If we substitute the inner variables into the expression for the outer expansion, eqn [4-

112] becomes:
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4.3.2. Numerical Solutions
The inner and outer expansion expressions were solved using various numerical
methods. The method of characteristics was used to solve the inner expansion (evolving-
wave equation) and the implicit FDM used to solve the outer expansion expression
(diffusion equation). The method of characteristics has advantages in solving evolving-
wave equations in terms of stability, compared with most explicit finite difference
methods. A disadvantage of this method is that it cannot solve diffusion equation that has

no V, term in it. Thus, the outer expansion was solved using an implicit finite difference

method.

4.3.2.1. Laminar Regime

(i) Outer Solutions
‘Outer’ equations are diffusion equations. Outer solutions were obtained using an
implicit finite difference method (FDM) together with successive over-relaxation (SOR)
scheme. The implicit finite difference form used herein for solving the outer expansion

for the laminar regime case can be written:

K+l _ k k+1 _ }(+1 _k+1
H; - H; =%(H1+1 25&2 "‘Hl-x] [4-128]
3
Setting A :El— ATZ ,
C, AX
H& = A (Hk++11 +H.k_+11)+——1—Hf [4-129]
Yo 1+2A T 142A

For the implicit scheme, each time step was iterated until there was no change in the
results. To accelerate the convergence SOR was used. SOR can be defined with eqn [4-

130], with the over-relaxation factor wy being lies generally in the range from 1 to 2:

H"*" = w, (iteration equation) + (1 - w, )H™ [4-130]
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H™ is the n™ iteration of the relaxation calculation. After the H’s for one time step were

obtained, the Vs for the same time step were obtained from the outer momentum
equation. The finite difference form is of the outer momentum equation is:

H}<+1 k!
v o G By Hy [4-131]
C,| 24X

(i) Inner Solutions
The procedure used to get H and V was similar to the numerical solution
described in Appendix III. First, the following zeroed coefficients are put into the full
problem.

C,=C,=C,=0 [4-132]

Second, the characteristic must be re-defined using the inner coordinate. The integration
should follow the new inner characteristic:

AX

G,

C,

AT =

- AT=AX [4-133]

H, can then be calculated using:

~

Hp =05 [Hi—l +H, + ({IH -V )— AX(VH -V, )] [4-134]

i+l

After calculating H P s the value of VPi can be obtained using:

~

A =[—Hpi +H, —AXVi_1]+Vi_1 [4-135]

or using:

~ o~

v, = [HR ~H,, -AXV,, ]+ \%

i+]

[4-136]

The value of V at the upstream end of the problem can be calculated using eqn [4-136],

and its value at its downstream end can be calculated using eqn [4-135].
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(iii)  Solutions for Inner Expression of Outer Zone

We can get the solution to inner expression of the outer-zone expression

: : . C, AT
following the same method used for the outer solution. If we set A, = C—lAXTZ , then:
3
e _Ar (e ), L g [4-137]
1+24A, 1+2A,
The value of V may then be obtained from the momentum equation:
: k+1 k+1
Vit = G u [4-138]
C, 2AX

(iv)  Comparison of Results: Inner Coordinate Zone
In order to limit the flow to the laminar regime, a hydraulic gradient of 0.1 was applied”.
The solutions for the inner case were obtained using the method of characteristics; the
solutions for the outer-zone case were obtained using an implicit finite difference method
with SOR. The spatial and temporal development of head are presented in Figures 4.59
and 4.60. Solutions to both the inner and outer expansions are compared in Figure 4.59.

Because of the evolving wave property, the inner expansion shows a sudden drop of head

at around X = T. On the other hand, the solution to the outer expansion shows a gradual
decrease of head, i.e. following a diffusive behaviour. As time and space increase, the
magnitude of the drop using the inner-expansion solution decreases. In Figure 4.60,
temporal development of head using both inner and outer-expansion solutions is
compared, at various locations. It is observed that at very small time-space positions, the

head development is governed not by diffusion but by a shock wave. Figure 4.61 shows
a spatial profile of V at various times, which is similar to the trend of H. If the outer-

expansion solution is used in the inner zone, the profile of V is smooth compared to the

profile obtained using inner-expansion solution. The maximum difference between the

inner and outer solutions occurs at around X = T. It can also be seen that the V ’s based

° only realized through the sample at t = co.
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on the inner expansion are larger than the V ’s based on the outer expansion if X is
smaller than . After passing this location (X = %), V ’s from the inner expansion are
smaller than the V ’s of outer expansion. In other words, if the outer expansion is used

to estimate the velocities near the boundary at the very beginning of the experiment, V

will be underestimated until X becomes equal to T. After that location is passed, \%

may be overestimated. As can be seen in the very small time-and-space region, both the

order of the error can be close to 1. In Figure 4.62, the temporal profile of V using both

inner and outer expansions solutions are compared. The outer expansion overestimates

V when T is smaller than X , but can underestimate V when T becomes larger than

>
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Figure 4.59 Comparison of spatial head development using inner and outer expansions,
at various times.

2.0
T

Figure 4.60 Comparison of temporal head development using inner and outer
expansions, at various distances.
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e

Figure 4.61 Comparison of spatial velocity development using inner and outer

expansions, at various times.
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Figure 4.62 Comparison of temporal velocity development using inner and outer

expansions, at various distances.
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4.3.2.2. PDT Regime

(1) Outer Solutions
The implicit finite difference form used herein for solving the outer expansion for

the PDT regime case can be written:

H™-Hf C, 1 H -2H +H (4-139]
At C3 1+ 4C,C, H::l _'HEI AX?
C; 2AX
Re-arrangement gives:
. I C, 1 At . .
H =WC—IIAXZ HS +HSHY +HE [4-140]
1+ B Wb 3
C, AX* A
where
kel _ pykel
A= 1+ 4C‘2C“ Ho ~Hi, . [4-141]
C; 2AX
The term V can simply be calculated using Hx.
HFH _ H¥c+1
-c3+ch+4cg§—£L——ﬂ—
Ve = 24X [4-142]

2C,

(i1) Inner Solutions
The procedure used to get H and V was similar to the numerical solution
described in Appendix III. First, the following zeroed coefficients are put into the full

problem:

C,=C,=0 [4-143]

and the ratio cC4/C; 1s substituted for C4/C;.
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Second, the characteristic must be re-defined using inner coordinate. The integration

should follow the inner characteristic:

At = AxX
C
Cs

H, can then be calculated using:

- AT=AX [4-144]

HPi = O-SI:HH + Hi+1 + (vi—l - i71+1)__A}‘2(V‘ - vm)

)} [4-145]

- 2R (T[] V

i+l
1

After calculating H, , the value of V,, can be obtained using:

~ C. ~ C. ~n i~ -
V, =|-H, +H_ - =2AXV_, ———“cAXVHlVi_I‘ +V., [4-146]
| | C, C,
or using:
~ C, oo Ci zo 1o 1l
VR = HPi -H,., _C_AXVi+1 _C—CAXVM | Vi 1]+ Vi [4-147]
1 1

The value of V at the upstream end of the problem can be calculated using eqn [4-147],

and its value at its downstream end can be calculated using eqn [4-146].

(i111))  Solutions for Inner Expression of Outer Zone
We can get the solution to inner expression of the outer-zone expression following the

same method used for the outer solution.

HE = — ;N 1 S L AT (e HS) +H [4-148]
1 G2ar 1 C, A, AX
C, AX* A,
k+1 k+l
where A, = |1+ 4C12C4 He E_I“‘ :
Cia 2AX
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The value of V may then be obtained from momentum equation:

k+1 k+1
H -H7

~C, +./C.2 +4C,C o2
3 \/3 1~4 2AX

Vit = [4-149]

2C,c

(iv)  Comparison of Results: Inner Coordinate Zone
In order to achieve PDT flow in the regime, a hydraulic gradient of 10 was

applied. The same numerical methods used for the laminar regime were applied to obtain
the solutions for this regime. The spatial and temporal profiles of head are presented for
the PDT case in Figures 4.63 and 4.64,. The spatial development of head using the
various numerical solutions to the inner and outer expansion is compared in Figure 4.63
(for various times). The results are similar to those obtained for the laminar regime.
However, if scaling factors of time and space are considered, the evolving wave
properties disappear in smaller time-space than those of the laminar regime. The relative
size of the space scaling-factor, ‘a’ is:

a =06la,,,

i=10ppy

and for time scaling factor ‘b’ this is:

b1 ot 0.37b,, A

In Figure 4.64 temporal profiles of head, using solutions to the inner and outer
expansions, are compared at various locations. It is observed that in very small time-

space, the head approaches any given point of interest in the form of a shock wave.

Figure 4.65 is a spatial profile of V at various times, for the PDT case. Trend similar to

that of the laminar case are evident, and again the maximum difference between the inner
and outer solutions occurs at around X = T. It is also shown that the V ’s based on the

inner expansion are smaller than the V ’s using the outer expansion at most locations,
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except a small zone up to but near X = T. As time increases, this small region increases.

It is expected that in large time and space, we get the same results as laminar regime

where V of inner expansion was larger than V of outer expansion when X is smaller
than T. As can be seen for the small time-space zone, the order of the error (the
difference in V between the inner and outer expansions) is close to 1. In Figure 4.66 the
temporal profile of V based on solutions of the inner and outer expansions is compared.
The V from outer expansion starts to increase from T = +0, onward, but the V from

~

inner solution starts to increase near X =T.
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Figure 4.63 Comparison of spatial head development using inner and outer expansions,
at various times.
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Figure 4.64 Comparison of temporal head development using inner and outer
expansions, at various distances.
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Figure 4.65 Comparison of spatial velocity development using inner and outer
expansions, at various times.
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Figure 4.66 Comparison of temporal velocity development using inner and outer
expansions, at various distances.
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4.3.2.3. FDT Regime

(1) Outer Solutions
The implicit finite difference form used herein for solving the outer expansion for

the FDT regime case can be written:

HEHE 1 HE omeeHy
- _ [4-150]
& cmg-oHy X
C, 24X

In case Hx = 0, the denominator becomes zero. In order to eliminate this problem, the

k+l1

. instead of

objective function was defined to find out the optimum value of H

rearranging the equation for H*'. The objective function can be expressed as:

Hk+l _ H-k+1 Hk+l _ Hk k+l 2 .k+1 H¥(+l
\/& i-1 i i _H HI + i1 =O [4_151]

i+l i+l

C, 2AX At AX®
To solve the above objective function for H{"' , MATLAB function ‘fzero’ was used.
The V can be obtained using:

k+l k+1
Vik+l = El_ Hi+1 Hi—l [4_152]
C, 24X

(i1) Inner Solutions
The procedure used to get H and V was similar to the numerical solution
described in laminar and PDT cases. First, the following zeroed coefficients are put into
the full problem.
C,=C,;=C, =0 [4-153]

Second, the characteristic must be re-defined using inner coordinate. The integration

should follow the new inner characteristic:

192



At=—— — AT=AX [4-154]

0|0

H, can then be expressed as:

Ha = O'S{Hi—l + Hi+1 + \/%(\7;—1 - vm )‘ %:‘ Ai(vi—l WH' - vm

Vi+1

)J [4-155]

After calculating H,, , the value of V, can be obtained using:

V, = =1 ~H, +H_, —&Af(fli_,l\?i_l[ +V., [4-156]
{ Ce : C1 |

or using:

~ C, C, |

Vp = C*[Hpi -H,, _E_AXVM Ivi+1 I +V, [4-157]

i
6 1 _

The value of V at the upstream end of the problem can be calculated using eqn [4-157]

and its value at its downstream end can be calculated using eqn [4-156].

(iii)  Solutions for Inner Expression of Outer Zone
The implicit finite difference form for inner expression of the outer zone can be

expressed as:

HUCH L HE2HAHG [4-158]
AT C4 H::l _H::l AX?
C, 24X

In case Hx = 0, the denominator becomes zero. In order to eliminate this problem, the

objective function was defined to find out the optimum value of H*"' instead of

rearranging the equation for H"' . The objective function can be expressed as:
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k+tl _ yrk+l k+l _ 171k k+l !(H !(+1
_Ci Hi+1 E_Ii—l Hi — Hi _ Hi+l 21_:5 - + H1—1 — 0 [4_159]
C, 2AX AT AX
The V can then be calculated using:
- C H!(+1 _ H<k+1 -
Vik+1 - \/C—IW , [4-160]
4

(iv)  Comparison of Results: Inner Coordinate Zone

In order to achieve the FDT regime a hydraulic gradient of 400 was applied. The
same numerical methods were used that were applied for laminar and PDT cases. In
Figures 4.67 and 4.68 the spatial and temporal profiles of head are presented. The spatial
development of head using the inner and outer expansion is depicted in Figure 4.67, at
various snapshots in time. The results show profiles that are similar to those for the
laminar and PDT regimes. Because the definition of scaling factors for the FDT regime
was different from those of the laminar and PDT regimes, the evolving wave properties
disappear in much smaller time-space than those of the laminar and PDT regimes. The

relative size of the space scaling-factor ‘a’ is:

2,00, =0.00142, ,

and for the time scaling factor ‘b’ this is:

Binigo,, =0:0003b,

In Figure 4.68 temporal development of head using the inner and outer-expansion
solutions 1s compared at various locations. It is observed that in very small time and

space, the head development of the inner expansion shows a sharper rate of increase than
the outer expression solution. Figure 4.69 shows the spatial profile of V at various
times. It can be seen that H and V behave in a similar manner. The maximum
difference between inner and outer solutions again occurs at around X =%. As was

observed for the PDT case, the ¥V s using the inner expansion are smaller than V ’s using
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the outer expansion when % =0.5. When T =1.0and T =2.0, the V ’s for the inner

solution case are smaller than those of the outer case except for a small range near
X — %. In the small time-space region, the order of error can be close to 1. The
temporal profile of V using both the inner and outer-expansion solutions are presented in

Figure 4.70. The outer expansion overestimates V when T is smaller than X .
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Figure 4.67 Comparison of spatial head development using inner and outer expansions,
at various times.

A

Figure 4.68 Comparison of temporal head development using inner and outer
expansions, at various distances.
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Figure 4.69 Comparison of spatial velocity development using inner and outer
expansions, at various times.
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Figure 4.70 Comparison of temporal velocity development using inner and outer

expansions, at various distances.
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4.3.3. Matching

The outcomes for H and V using inner and outer expansions were matched using
numerical methods. Large differences in the inner, intermediate differences in an
overlap zone, and small differences in the outer zone were expected between the results
of inner and outer expansions. The results for the inner expansion versus the inner
expression of the outer case/zone were compared using contour maps. The H and V
solutions from the inner expansion versus the solutions via the inner expression of outer

expansion and the inner expression of the complete momentum and continuity equation

were also compared by following 1 = %—X characteristic. The solutions for inner
V L

expansion were obtained using method of characteristics, and the solutions of outer
expansion were obtained using implicit finite difference numerical solutions, and for all

three regimes.

4.3.3.1. Laminar Regime

Inner and outer-expansion solutions were compared using a relatively wide range
of time-space positions. Figures 4.71 and 4.72 are contour maps of the differences in H
between inner and outer expansion in the laminar regime for an applied hydraulic
gradient of 0.1. As shown in section 4.3.2 on numerical solutions, the differences are
large in the inner region but become small close to outer region. Figure 4.71 shows large
differences in the inner region. Because the differences in the inner and outer regions
have different order, the differences in the outside of the inner region are presented
separately (Figure 4.72). From the momentum equations for the inner and the outer
expansions, it is evident the differences between inner and outer must be caused by the

local acceleration term, (C, /C,)V.. Thus, in the outer region we may predict the order

of error to be O(C6/C1). For an applied hydraulic gradient of 0.1, the order of the error
is O(0.003). Figure 4.72 shows that the error is distributed homogeneously, with the

order of the error being 3(0.003) in the outer region.
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Figure 4.71 Differences of H between inner and outer expansions.
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Figure 4.72 Differences of H between inner and outer expansions in outside inner.
199



Similar results were obtained for velocity, as compared to head. Figure 4.73 7.15 and
4.74 are contour maps showing the differences in V between the inner and outer

expansions. Figure 4.73 shows large differences in the inner zone. Considering the

magnitude of X and t on the horizontal and vertical axes, it is observed that contour lines

exist, and follow 1 = %X ,or t=+0.03X. Figure 4.74 shows differences in V

1
between the inner and outer expansion on the outside of the inner region. A
homogeneous error distribution is evident in this region.

As shown in the comparison of the spatial and temporal development of H and V,

the inner expansion produces sudden changes in H and V when t = }%X . Because of
1

: - : C
the evolving wave characteristics, large differences are expected along the ©=_|—=2X

1

characteristic or T = X in the inner. In Figure 4.75, the H from inner-expansion solution,

the inner expression of the outer expansion, and the inner expression of the complete

. . Cs -
momentum and continuity equation were compared along the t=_[—X characteristic.
1

The solutions for the inner expansion and the complete equation were obtained using the
method of characteristics; the solutions for outer expansion were obtained using the
implicit finite difference method. The results as a contour map are similar. For the inner
expansion, the initial head of 1 around X = O decreases slowly compared with the outer
expansion. This shows the wave property in the evolving wave equation. Figure 4.76
compares the velocity development for inner expansion only, the inner expression of the

outer expansion, and the inner expression of the complete momentum and continuity

. fC ..
equation along T = _|—>X . Because the momentum equation in the outer zone follows
1

Darcy’s Law, the hydraulic gradient becomes extremely large as X tends to zero. As a

result, the velocity can increase to unrealistic values, i.e. V >1.
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Figure 4.73 Differences of V between inner and outer expansions.
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Figure 4.74 Differences of V between inner and outer expansions in outside inner.




outer

overlap

oL,

mner

D6 A
0.5

=

0o

0001

Figure 4.75 Head development along t

outer

overlap

Inner

0.01

0001

Figure 4.76 Velocity development along t

202



4.3.3.2. PDT Regime

In order to investigate the PDT regime, a hydraulic gradient of 10 was applied.
Figure 4.77 and 4.78 show the differences in H between the inner and outer expansions
for this regime. As with the laminar regime, the differences are large in the inner region
but become small close to the outer region. Figure 4.77 clearly shows the large
differences of H in the inner region. In Figure 4.78, the differences in inner and outer-
expansion solutions are seen at the outside of the inner region. As with the laminar
regime, the differences between the inner and outer solutions are caused by the local

acceleration term, (C,/C, )V, in the momentum equation. Thus, the order of error in the

outer region is O(C6/C1). For an applied hydraulic gradient of 10, the order of the error
in the outer region is O(0.001). It can be seen in Figure 4.78 that the efrors are
distributed homogeneously, with the order of the error being O(0.001) in the outer
region. When we compare the results for PDT regime with those of laminar regime, the
relative scales of time and space must not be forgotten. The PDT figures cover X up to
about 0.35 and 7 up to 0.01. These are smaller than X up to 1 and t up to 0.055 plotted

for the laminar regime.
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For velocity, results to those seen for head are evident. Figure 4.79 and 4.80 are the

contour maps showing differences in V between inner and outer-expansion solutions. In

Figure 4.81, contour lines are present along t = %X ,or T=+/0.001X. Figure 4.82
1

shows differences in V between inner and outer-expansion solutions at the outside of the
inner region. A relatively uniform distribution of error is seen in the outer region. In
Figure 4.81, the H from the inner expansion, from the inner expression of outer

expansion, and from the inner expression of the complete solution of the momentum and

continuity equations are compared along the t = C—6X characteristic. Similar results
1

are evident on the contour map. Figure 4.82 compares the velocity from the same three
solution methods. Because the momentum equation for the outer zone follows the Ergun
equation with the inertial term retained, we can see as X tends to zero, the hydraulic

gradient becomes extremely large and as a result, the velocity becomes unrealistic (i.e.

V >1). For both H and V the inner region and the overlap region are smaller in time and
space than for the laminar regime. Also, even though the magnitude of maximum V in
the PDT regime is similar to the laminar regime, very different dimensionless V’s result
because of the scaling factor for V. For an applied hydraulic gradient of 10, the scaling

factor for V is about twice as large than that of the laminar regime with an applied

hydraulic gradient of 0.1.
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43.33. FDT Regime

For FDT regime, a hydraulic gradient of 400 was applied. Figures 4.83 and 4.84
show the differences in H between the inner and outer expansions for the FDT regime.
As shown for the laminar and PDT regimes, the differences are large in the inner region
but become small close to the outer region. Figure 4.83 clearly shows the large
differences in H in the inner region. Differences between inner and outer-expansion
solutions are shown in the outside of the inner region in Figure 4.84. As with the,
laminar and PDT regime cases, the differences between the inner and outer were caused

by the local acceleration term, (C, /C,)V,, in the momentum equation. Thus, the order

of error will be O(C6/C1) in the outer region. For an applied hydraulic gradient of 400,
the order of the error is O(0.0004). The figures for FDT contours cover X up to about
0.005 and < up to 0.00003, which are much smallér than X and t in the laminar and PDT
regimes.

Velocity results are similar to those for head. Figures 4.85 and 4.86 are contour

maps showing differences in V between inner and outer expansions. In Figure 4.85, the

contour lines develop along t = %X ,or T=+/0.0004X. Figure 4.86 shows

1
differences in V between inner and outer expansion in the outside of the inner region. A
relatively uniform distribution of error can be seen in the outer region. In Figure 4.87,
the H from the inner expansion, from the inner expression of outer expansion, and from

the inner expression of the complete solution of the momentum and continuity equations

’C TSR . .
are compared along t= | =X characteristic. Similar results are evident in the contour
1

map. Figure 4.88 compares the velocity from the same three solution methods. For both
H and V, it can be seen that the inner region and the overlap region are smaller in time

and space than for the laminar and PDT regimes.
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Also, even though the magnitude of maximum inner velocity, V, in the FDT regime is
similar to that of the laminar and PDT regimes, we may get very different dimensionless
outer V’s because of the inner variable scaling-factor for V. For an applied hydraulic
gradient of 400, the scaling factor for V is about 4.6 times larger than that of the PDT
regime with an applied hydraulic gradient of 10, and about 8.6 times larger than that of

laminar regime with an applied hydraulic gradient of 0.1.

43.4. Summary

43.4.1. Inner and Outer Expansions in LAM, PDT and FDT Regime

A simple diffusion equation governs laminar flow in the outer zone. Within this
zone, describable by this outer expansion, it is evident that H can be obtained using only
its boundary and initial conditions, without even considering V. It is also evident that a
fast diffusion equation governs PDT and FDT flows in the outer zone. In the zone
describable by the inner expansion, the governing equation is an evolving-wave for all
three regimes. However, each such evolving wave equation has its own form. In the
laminar regime, H can be obtained without considering V. Further, ¥V can be calculated
without considering H, as long as proper boundary and initial conditions can be defined
for V. In the PDT and FDT regimes, V is involved in the equation for H. Because H
cannot be obtained without considering V simultaneous calculation of H and V is
required. The momentum equation for the PDT regime includes both viscous and inertial
terms. However, the inner and outer expansions describing unsteady PDT flow can be
changed to forms identical to those of either the laminar or the FDT regimes if the
conditions for these regimes are carefully defined. From the inner expansion expression

for the PDT case, if the inertial term, 2cC, /C, , is negligible, the expression reduces to
the inner expansion of the laminar case because C,/C, =1 in the laminar regime.
Similarly, if the viscous term, C,/C,, is negligible, the expression reduces to the inner
expansion for FDT flow. Whether the factor ‘c’ should be included in the inertial term or

not depends on the scaling factors. For the outer expansion, if the inertial term, C, /C,,
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is negligiblé, the expression for the PDT regime reverts to the outer expansion of the

laminar regime. Similarly, if the C, /C,, viscous term is negligible, the expression for

the PDT regime reverts to the outer expansion for the FDT regime.

43.4.2. Compound Scale

Figure 4.89 presents the scaling that were used for the laminar, PDT and FDT
regimes. The size or extent of the inner zone in time and space decreased as the
equilibrium flow became more turbulent (laminar to PDT and FDT). In other words, if a
larger hydraulic gradient was applied, the equilibrium velocity increased and the extent of
inner zone decreased. Notably, the dimensionless groups which defined or limited the

extent of the inner zone were C; and Cs, and for all three regimes.
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Figure 4.89 Illustration of how inner zone (hatched area) decreased with higher applied
hydraulic gradient (not to scale).

Figure 4.90 shows space-scaling factor ‘a’ for various applied hydraulic gradients.
As shown in Figure 4.90, ‘a’ decreased with increasing applied hydraulic gradient.
Because of the linear relationship between velocity and hydraulic gradient, ‘a’ is in
general, constant in laminar regime. Because the definition of scaling factors for the FDT
regime were different from those of the laminar and PDT regimes, very small ‘a’ can be
seen in the FDT regime. Similar results are shown for time-.scaling factor ‘b’ in Figure
4.91. If we compare the magnitude of ‘a’ and ‘b’, it can be seen that the time-scaling

factor, is much smaller than the space-scaling factor, which is due to the fact that
214



1=,/C,/C,X. Figure 4.92 shows the velocity-scaling factor ‘c’ as a function of the

applied hydraulic gradients. The range of ‘c’ is from about 18 to about 170. This does

not mean that the inner velocity for the FDT regime is 10 times larger than that of the

laminar regime. Rather, it implies that the ratio of inner and outer velocity for the FDT is

10 times larger than the associated ratio for the laminar regime.

<
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i [m/m]

as a function of applied hydraulic gradient.
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Figure 4.90 Space-scaling factor ‘a’
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Figure 4.91 Time-scaling factor ‘b’ as a function of applied hydraulic gradient.
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4.4. Dimensional Analysis

Many dimensionless numbers exist in fluid mechanics. However, only a limited
number of them can be applicable for the porous media flow. For example, the Froude
number plays a dominant role in free-surface flows but is usually negligible for
unconfined flow through saturated porous media. Another example is the Weber number,
which is the ratio of the effects of pressure to the effects of surface tension.
_pLV?

- Y

We

[4-161]

where:

p = density of fluid,

Y = weight density of fluid,
L = sample length,

V = velocity of flow.

The Weber number is important only when the amount of curvature in the free surface is
comparable to the depth. A typical boundary-value problem governing fluid transients in
a rigid pipe involves two dimensionless numbers, the Reynolds number (Re) and the
Mach number (Ma). Especially, the Reynolds number is one of the most important
parameters in the study of flow through porous media (Ergun 1953, Mccourqudals 1978).
For ordinary flow conditions, Re is large and Ma is small. For high-speed flow, if the
speed of flow is comparable to the speed of sound in the fluid in question, density
changes can become significant and the Mach number becomes relevant. If the pressure
drops low enough to cause vapour formation (cavitation) in the liquid, the Euler number
(Eu) should be considered. Euler number is a measure of the relative effects of pressure
and inertia. For oscillatory flow conditions, Keulegan-Carpenter (KC) number can also
be considered.

KC =ali
d

[4-162]

where Vp, is the maximum velocity, T; is the period of the oscillatory flow and d is the

diameter of media. The Peclet number (Pe) is an index of the relative importance of
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diffusive effects compared to advective effects. It is normally used to address questions
involving heat or chemical transfer. However, the concept of the Peclet number might be
applied for head or pressure propagation in porous media flow study. In this chapter,
various dimensionless ratios are investigated. The magnitude of each such ratio and the
ratio of groups (ratios) are considered. Relationships between existing dimensionless
numbers and ratios of dimensionless numbers are presented. These relationships can be
used to show how the ratio of dimensionless groups can be used as criteria to indicate
regime change, the relative importance of inertial effects, the state of the flow
(compressible or incompressible), and the dominant mechanism governing the changes in

head and velocity (diffusion or advection).

4.4.1. Dimensionless Groups

The momentum equation and continuity equations can be re-arranged to a form

that is similar to the standard groundwater flow equation. The momentum equation

becomes:
H, =—&V—&V2—&VT—2VVx [3-62]
C, C, C, C,
The continuity equation becomes:
Vy=- T—&VHx —&V [3-63]
C6 C6

Seven dimensionless groups (C; through C;) were defined. These dimensionless groups
show the relative importance of each term in the momentum and continuity equation.

The C,; group is related to the relative importance of head gradient in porous media flow:

C, = g“\l;iL [4-163]
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The C; and Cs groups are identical. Therefore, C, shows the contribution of convection
in the momentum equation and of advection in the continuity equation. The C, group is

proportional to the equilibrium velocity:

C,=—= [4-164]

The Cs group is related to viscous effects and, when coupled with head gradient, can be

used to obtain Darcy’s Law:

_ gnSLr

C
} T

[4-165]

The C,4 group is related with inertial effect on flow through porous media. When this

term combined with head gradient and viscous term, the Ergun equation can be obtained.

c, = &5LsVe [4-166]
T
The C¢ group shows the relative importance of local acceleration:
c,"V,SL
§ = [4-167]
gnh, T
The C; group is related with the effect of elevation head:
2 .
C, = V.SL"sin6 [4-168]
h,T

The ratios of dimensionless groups can represent the relative effects of each term. The
ratio between C; and C; is:
C, V

—=—1 4-169
C, h [ :

For the laminar case, using h, =rV, and C,/C, =1, the ratio between C4 and C, is:
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AL B [4-170]

For the FDT case, using h, = sV.,> and C ./ C, =1, the ratio between Cg and C; is:

2
< =[CPV“°] [4-171]

=6
CI gnha

If the physical experimental set-up is fixed, changing boundary conditions i.e. applying

various hydraulic gradients, does not make any difference to c,. The ratio C,/C, can

show the changes in V, with various applied hydraulic gradients. The ratio between C,

and C; is:

=2 -l [4-172a]

C — mePZ
Z2_92 7 [4-172b]
Cl mgha

The ratio C, /C, can be considered as the ratio of kinetic energy remaining at the
downstream end to the potential energy applied at the upstream end. For porous media
flow, this ratio will be very small number because most of the energy used up by friction
loss. The ratio between Cs and Cg is:

C; gnh

=5 a [4-173]
C, sz
The ratio between C; and Cg is:
& _golsind [4-174a]
Cs c



If we use Lsin6 = z (elevation head), we can get:
G gz
-T2

C ¢,

[4-174b]

4.4.2. Relevant Dimensionless Numbers

Some well-known dimensionless numbers in fluid mechanics are directly
applicable to the momentum and continuity equation and can be related to combinations
of defined dimensionless groups. Even though some of them are not directly relevant to
this study, their underlying concepts might be used to give a physical explanation of each

dimensionless group or a combination of groups.

1) Reynolds Number
Reynolds number is the ratio of the effects of inertia and viscosity.

inertia Vm
Re = =

- — = [4-175]
viscosity v

where m is the characteristic length.

Using the momentum equation, relative effects of inertia and viscosity can be studied. If

r is substituted to eqn [4-165]:

S 1 L%
C,=—— 4-176
> Te,m? [ ]
If s is substituted to eqn [4-166]:
2
C, =_S_LL_£ [4-177]
Tc, mn 2

If we calculate the ratio of dimensionless groups related with inertia term (V%) and

viscous term (V):

C, ¢ mV,

C, - 2c, nv
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If pore velocity is used instead of bulk velocity:

Ci_ 6 mVp ' [4-179]
C, 2, v

We may define the equilibrium Reynolds number which can be obtained from the

terminal velocity with given applied hydraulic gradient:

mV
Re_ = i [4-180]
Y
The ratio between C,4 and C; becomes:
Ci_ G pe, [4-181]
C, 2c,

If Forchheimer type equation (including viscous and inertial term) is used, dimensionless
number, Be, can be used to show the ratio of inertial effect and viscous effect.

Forchheimer equation for 1-D horizontal case is:

%?%v—psgvz +pg [4-182]

Belhaj (2003) shoed Be number as:

Be = PR KY [4-183]
i)

Joseph (1966) had shown that using Forchheimer equation when the deviation from the
Darcian flow becomes 5 %, Be was 0.0526. Belhaj (2003) estimated Be as 0.0756, using
his numerical simulations. These values of Be, like Re, indicate departure from laminar
flow behaviour. If we use Re = 1, we may get similar values of Be by simply using the

ratio, C,/C;. In order to get C,/C, from eqn [4-181], we need to use proper values for
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¢; and ¢;. From Carman (1937, 1939), ¢; = 0.24 and from Burke-Plummer, ¢, = 0.174
can be used. Using ¢y, c; and Re =1 in eqn [4-181]:
% =0.070 (laminar to PDT) [4-184]

3

The calculated value is in between the values predicted by Joseph (1966) and Belhaj
(2003). We can also see that this ratio is independent of applied boundary condition if Re
is given. As a result, this ratio can therefore also be used to indicate the transition in
regime, for flow through porous media. It must be pointed out however, that unlike
ordinary flow in pipes, a sharp and clear transition from the laminar regime to the
partially-developed turbulent regime simply does not exist - the change is gradual,
progressive, and without discontinuities. Another mathematical significance of the ratio
given by eqn [4-181] is that if we consider the orders-of-magnitude for the parameters in
the momentum equation: C4 has a different order when Cj is around Re, = 1. In such
cases C4 cannot be negligible at around Re,, = 1. If we extend this ratio to the case when

Rey = 100 (transition from PDT to FDT) we can get:

% =7.0012 (PDT to FDT) [4-185]

3

It is observed that C, starts to dominate the effect on flow through porous media and the
order of Cy starts to be different from C;. Figure 4.93 shows the variation of Re, for
various applied hydraulic heads. If we are using the length of pipe = 10m, about 4000m
of head is needed to get fully developed turbulent flow.
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Figure 4.93 Re. as a function of applied hydraulic head (L = 10 m).

(i)  Mach Number Analogy -

Mach number is applied for compressible flow. Even for pipe flow, it is difficult
to obtain such flow in liquids because pressure needed to generate sonic velocities is very
high (about 1000 atm). However, using dimensionless groups in the momentum equation
and continuity equation, Ma can be expressed using combinations of other dimensionless
groups. Even though the magnitude of Ma is very small in the general of study on flow
through porous media, it is possible to check whether we need more equations than just
the momentum and continuity equations to explain the flow. If Ma is larger than 0.3 the
flow is no longer incompressible and the density change cannot be ignored. If the density
change is not negligible, it is necessary to use an equation of state, or an equation of state
and the energy equation. In the most complicated cases, it is necessary to solve four
equations simultaneously with four different variables, pressure, density, temperature,
and velocity of flow. Using the computed Ma, the validity of using two equations (the
momentum and continuity equation) can be proved. The Mach number is defined as:

Ma = \\;ﬂﬁ [4-186]

sound
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If we use equilibrium pore velocity for View and ¢, for Vsoung in eqn [4-196], Ma, can be

defined by:

Ma =2 [4-187]

From the ratio of dimensionless groups (C; and Cs) of hydraulic gradient and local

\/
gH,
- [4-188]

acceleration term:

As shown in the above ratio of dimensionless groups, the numerator is the ratio C, /C,,

and the denominator is the Mach number (Ma ).

Using eqns [4-172a] and [4-187], eqn [4-188] becomes:

2
C
Co Lo - [4-189]
Cl Maco
If we re-arrange for Ma..:
Ma, = G, [4-190]
GG

The Mach number can be obtained using the combination of dimensionless groups.
Figure 4.94 shows the Ma,, variation with applied hydraulic head. It is shown that Ma is
less than 0.002, even for the FDT regime.
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Figure 4.94 Ma,, as a function of applied hydraulic head (L = 10 m).

(iii)  Euler Number Analogy

The Euler number is a measure of the relative effects of pressure and inertia.

Fu = A\f’z [4-191]
p

where Ap = pressure difference.

In the momentum equation, there is a term for hydraulic gradient and a term for inertial
effects. If we consider the effect of hydraulic head instead of pressure difference, we can
get a dimensionless number that is similar to the Euler number. We may define an Eu,,
using the ratio of previously-defined dimensionless groups as:

head gradient _ C, 1 h,
inertial effect C, sV_®

[4-192]

Figure 4.95 shows how this Eu., depends on the applied hydraulic head. As hydraulic
head increases, C; and C, increase. In the laminar regime, the inertial effect is negligible
compared to the applied hydraulic head but it becomes significant in the PDT and FDT

regimes.
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Figure 4.95 Eu., as a function of applied hydraulic head (L = 10 m).

(iv)  Peclet Number Analogy

The concept behind of the Peclet Number can be used to show the relative effects

of the diffusion of hydraulic head versus the advection of that head. In general, the

advection of head is neglected in studies of flow through porous media. Advection-

dominated flow disappears at short times and very near the upstream boundary. For the

physical layout (hypothetical experiment) considered herein, when the gate is suddenly

opened, head can simply be ‘pushed out’ at the beginning, but is soon governed by a

diffusion phenomena. How far and how long this advection propagates depend on the

characteristics of porous media, the fluid and the boundary conditions. Using matched

asymptotic expansions, it was found that the length of the closed conduit should be

divided into two regions, an ‘inner’ and an ‘outer’ region or zone. The inner zone is

governed by an evolving-wave equation and the outer zone is governed by diffusion
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equation. For the laminar regime, if we consider only the viscous and local acceleration
terms (which are negligible in the outer zone), the momentum equation becomes:
C C
H +=2V+=2V =0 [4-193]
C

1 1

If eqn [4-193] is combined with the continuity equation:

H, =Sn +Sop, [4-104]
C, C,
——

() (ii)

If we neglect part (i), eqn [4-194] becomes a wave equation. On the other hand, if we

neglect part (ii), it becomes a diffusion equation. It may therefore be said that C,/C, is a
diffusion coefficient and that C, /C, is a wave or advection coefficient. A Peclet

Number analogy can then be used to indicate the relative effects or importance of
diffusion versus advection. In the outer coordinate zone, the Peclet Number for the

laminar regime may be defined as:

_ advection coeff. B

slislielie

e, = = 4-195
b diffusion coeff. [ ]
1
In laminar regime, C; = C, so:
C
Pe, =—% 4-196
Lam C1 [ ]

If we apply a hydraulic gradient of 0.1, Pep.n = 0.003. The advection effect is therefore
only about 0.3 % of the size of the diffusion effect. Because of this small effect, head
advection can be neglected for ordinary groundwater flow. However, different results
may arise if the inner variables, defined in the matched asymptotic expansion, are used.

The momentum equation for the inner zone is:

H,+V+V.=0 [4-197a]
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Equation [4-197a] can be expressed with a general form:
H +C,V+C,V,=0 [4-197b]
where:

Cg4v = the inner diffusion coefficient due to viscous effect.

C, = the inner advection coefficient.

The Peclet number for the inner zone can then be defined as:

Pe,, " = <, [4-198]

dv

In light of eqn [4-197a], it can bee seen that the ratio, Pe!” , of the coefficient on the
diffusion term to that on the advection term is 1. Therefore, the advection effect cannot
be ignored within the inner zone. Large Pe” may be expected to be associated with more
advection-dominated cases.

If only the inertial and local acceleration terms are considered in the FDT regime,
the momentum equation becomes:
H, gtV + 25V, =0 [4-199]

X
1 1

Using the ratio of the diffusion effect to the advection effect in the outer coordinate
system, the Peclet Number for FDT regime may be defined as:
C6
advection coeff. ET
diffusion coeff. C_4
c

[4-200]

Peryr =

In the FDT regime, Cs = Cy, so:

Pe, = % [4-201]

1

If we apply a hydraulic gradient of 400, Pegpr becomes 0.00005, in which case the

advection effect is about 0.005 % of the diffusion effect. The relative effect of advection
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in the FDT regime is therefore much smaller than in the laminar regime. If we use the

inner variables in eqn [4-199], the momentum equation for the inner expansion becomes:

H,+V?+V.=0 [4-202a]

Equation [4-202a] can be expressed with a general form:
H, +C,V?*+C,V. =0 [4-202b]
* where:

Cg4 = the inner diffusion coefficient due to inertial effect.

The Peclet number for the inner zone can then be defined as:

Pe,,," = g [4-203]
.

Again, in light of eqn [4-202a], the ratio of advection and diffusion effect becomes 1. As
with the laminar regime, advection effect now cannot be ignored.
For the PDT regime, neither viscous nor inertial effects can be ignored. The
momentum equation, including the local acceleration term, becomes:
H, +&V+&V2+—(—31Vt =0 [4-204]

1 Cl 1

It may be expected that Peppr is in between Pey.n and Perpr. By adding the coefficient of
viscous term and inertial term, we may get the total effect of diffusion. For the PDT

regime, it is suggested that a head-based Peppr be defined by:

Cs
advection coeff. C
Pepyr = = L 4-205
T diffusion coeff. C;+C, [ ]
C1

but because in the PDT regime g—ic—i ~ 1, this Peppr becomes:
1
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@)

=6 4-206
C. [4-206]

Peppr =
For an applied hydraulic gradient of 10, Peppris 0.001, so the advection effect is about
0.1 % of the diffusion effect. The range of Peppr is observed in between Pey .y, and Pegpr.

If we substitute the inner variables into eqn [4-204], we can get the momentum equation

for the inner expansion:

+ S5 5,8 +V. =0 [4-207a]
1 1

H

X

Equation [4-207a] can be expressed with a general form:

H,+C,V+C,V*+C,V. =0 [4-207b]

The Peclet number for the inner zone can then be defined as:

PePDT. = [4-208]

In light of eqn {4-207a], the Pe for the inner may not become 1 rather, it depends on the
velocity scaling factor c. For example, based on the scaling-factors used herein, Peppr®
is about 0.06 for an applied hydraulic gradient of 10, thus, the advection effect is about 6
% of the diffusion effect.

Even though Pe., was always small compared with Pe,,”, Pe,, can be used to the
variations of the advective effect under various hydraulic gradients. Figure 4.96 shows
Pe, as a function of the applied hydraulic gradient. In laminar regime, Pe., is relatively
constant but in the PDT regime, Pe, declines dramatically. This dramatic decrease in Pe.,
in the PDT regime is supported by the results obtained using the matched asymptotic
expansion. Using these expansions, it was shown that increased hydraulic gradient made
the inner region smaller in time and space. In the FDT regime the Pe., becomes very

small_ and almost constant.
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Figure 4.96 Pe, as a function of applied hydraulic gradient.

In the outer coordinate realm, Pe, in laminar, PDT and FDT regimes are all much smaller

than unity. However, in the inner coordinate realm (inner zone), Pe® can readily be

made 1 by choosing proper scaling factors. When Pe'” = O(1) the contributions from
diffusion and advection are equal. As Pe' decreases below 1, diffusion becomes
dominant, and as Pe® exceeds unity, advection becomes dominant. Table 4.12 shows

ranges Pe®” and the effect of the mechanism.

Table 4.12 Ranges of inner Peclet number and the associated mechanism.

Pe’=0 | 0<pPe”<1 Pe? = 1 1 <Pe? Pe”) - 0
diffusion (%) 100 larger than 50 50 less than 50 0
advection (%) 0 less than 50 50 larger than 50 100
governing diffusion evolving-wave wave
equation
region outer inner origin
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v) Viscous Resistance and Inertial Resistance
If the flow reaches equilibrium, the pressure driving flow is equals to the sum of
viscous resistance and inertial resistance. Barr (2001) used the Pouiseuille equation and
the length adjustment from Carman’s observations (1937) to state the following eqn:

F,=F, +F [4-200]

where F, is the pressure force, F, is the viscous resistant force, and F; is the inertial
resistant force.
If we divide both sides by Fp:

1=B+E [4-210]
where B and E are dimensionless numbers. B represents the ratio of viscous force to
pressure force and E represents the inertial-force to pressure-force ratio.
Similarly, from the momentum equation and using the coefficients of head gradient,

viscous effect, and inertial effect, it can be shown that:

C,=C, +C, [4-211]
or.:
25,6 [4-212]
¢ ¢

Using the definitions of dimensionless groups in section 4.4.1:

2
1=£r+v“0 s - [4-213]
h h

a a

Using the definitions of r and s:

V, 1 Lvli V1 L 1

l=—2— c

" h,c,m’ng h, c,mn’2g

a

[4-214]

In all three regimes, the total of C,/C, and C,/C, is always close or equal to unity (see
Tables 4.3, 4.6 and 4.9). In the laminar regime, C, /C, is much larger than C,/C,. In

the PDT regime, as an applied hydraulic gradient increases, C, /C, decreases but C, /C,
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increases. In the FDT regime, C, /C, becomes very small compared with C, /C,.

4.4.3. Effects of Dimensional Parameters on Dimensionless Groups

The relative importance of the various components of the physical problem was
investigated using dimensionless groups. Table 4.13 shows the ranges of the parameters,
appearing in the literature. The largest numeric ranges for physical quantities are for
hydraulic conductivity and transmissivity. The range for the compressibility of porous
media and porosity was also not small. Changes in compressibility result in changes in
celerity, which was found to be an important parameter in investigating the evolving-
wave property. Figure 4.97 shows celerity as a function of the compressibility of porous
media. As the compressibility of the porous media increases, celerity decreases. If sand
is the media, the celerity will be in the range of 60 to 600 m/s. Figure 4.98 shows celerity
as a function of the porosity. It can be seen that the celerity increases linearly as porosity
increases. Table 4.14 shows the ranges in the magnitudes of the dimensionless groups
used herein, with various sets of dimensional parameters, for an applied hydraulic
gradient of 0.1. This table does not cover all possible cases but does give useful

information about the effects of each dimensional parameter on the various dimensionless

groups.
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Table 4.13 Ranges of values for physical parameters, appearing in the literature.

No. | Symbols Parameters/constants Tl}llﬁiitcsal Max. Min. Max/Min
1 K hydraulic conductivity' m/s 0.01 1.00E-06 10000.0
2 n porosity’ - 0.5 0.25 2.0
3 a compressibility’ 1/Pa | 1.00E-07 | 1.0E-09 100.0
4 B compressibility of water 1/Pa 4 40E-10 4 4E-10 1.0
5 E Young's modulus for steel Pa 2.10E+11 1.9E+11 1.1
6 Ss specific storage2 1/m 9.83E-04 1.1E-05 90.3
7 T transmissivity' m?/s 0.001 1E-07 10000.0
8 S storativity® - 9.83E-05 | 1.09E-06 90.3

! for porous media consisting of cohesionless granular material, such as a sand.

%S, =y(a+np) [1/L],
confined S = DS, [dimensionless], D = pipe diameter in this case.
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Figure 4.97 Variation in celerity with compressibility (L = 10 m).
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Figure 4.98 Variation of celerity with porosity (L = 10 m).
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Table 4.14 Ranges of dimensionless groups with various parameters.

Case 1 Case2 | Case3 Case 4 Case 5 Case6 | Case7 | Case8
o 1.0E-07 | 1.0E-07 | 1.0E-07 | 1.0E-09 | 1.0E-09 | 1.0E-09 | 1.0E-09 | 1.0E-09
B | 44E-10 | 44E-10 | 44E-10 | 4.4E-10 | 44E-10 | 44E-10 | 44E-10 | 44E-10
E 2.1E+11 | 1.9E+11 | 2.1E+11 | 1.9E+11 | 2.1E+11 | 1.9E+11 | 2.1E+11 | 2.1E+11
n 0.250 0.375 0.500 0.250 0.375 0.500 0.250 0.500
e 0.333 0.600 1.000 0.333 0.600 1.000 0.333 1.000
m | 5.6E-05 | 1.0E-04 | 1.7E-04 | 5.6E-05 | 1.0E-04 | 1.7E-04 | 5.6E-05 | 1.7E-04
r | 5.5E+03 | 1.L1E+03 | 3.1E+02 | 5.5E+03 | 1.1E+03 | 3.1E+02 | 5.5E+03 | 3.1E+02
s 85676.1 | 211749 | 7139.7 85676.1 211749 | 7139.7 | 85676.1 | 7139.7
Vo | 1.8E-04 | 8.7E-04 | 3.1E-03 | 1.8E-04 | 8.7E-04 | 3.1E-03 | 1.8E-04 | 3.1E-03
S 9.8E-05 | 9.8E-05 | 9.8E-05 | 1.1E-06 | 1.1E-06 | 1.2E-06 | 1.1E-06 | 1.2E-06
T | 1.8E-04 | 8.8E-04 | 3.3E-03 | 1.8E-04 | 8.8E-04 | 3.3E-03 | 1.8E-04 | 3.3E-03
8" | 79E-01 | 7.9E-01 | 79E-01 | 7.9E-01 | 7.9E-01 | 7.9E-01 | 7.9E-01 | 7.9E-01
¢, | 5.8E+01 | 7.7E+01 | 9.9E+01 | 4.7E+02 | 5.7E+02 | 6.3E+02 | 4.8E+02 | 6.5E+02
C, | 731858 | 47217 483.1 811.5 54.9 5.9 811.5 5.9
C, | 9.8E-04 | 9.7E-04 | 9.2E-04 | 1.1E-05 | 1.1E-05 | 1.1E-05 | 1.1E-05 | 1.1E-05
Cs | 72980.2 | 4646.4 451.0 809.2 54.0 55 809.2 5.5
Cs 205.6 75.2 32.1 2.3 0.9 0.4 2.3 0.4
Cs 1.32 1.56 1.85 0.99 1.00 0.91 1.01 0.95
C; | 69E-03 | 6.8E-03 | 6.5E-03 | 7.7E-05 | 7.9E-05 | 7.9E-05 | 7.7E-05 | 7.9E-05
" 45° upslope

The largest variations are in C; and C;. These large variations show that these groups are

sensitive to the magnitude of various sets of dimensional parameters. Even though the

variations in magnitude of most of the dimensionless groups were not small, and thus

they are sensitive to the relevant dimensional parameters, this did not necessarily result in

behaviours high sensitive to the viscous, inertial, local accelerative or convective

accelerative terms. Rather, the sensitivity of these terms depends on the ratios of these

dimensionless groups. Table 4.15 shows the variation in the ratios of the dimensionless

groups for the stated cases.
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Table 4.15 Ranges of ratios of dimensionless groups.

Casel | Case2 | Case3 Case 4 Case 5 Case 6 Case 7 Case 8
C,/C, | 1.3E-08 | 2E-07 | 1.9E-06 | 1.3E-08 | 2.0E-07 | 1.9E-06 | 1.3E-08 | 1.9E-06
GCy/Ci | 0.997 0.984 0.934 0.997 0.984 0.934 0.997 0.934
CJ/Cy| 0.003 0.016 0.066 0.003 0.016 0.066 0.003 0.066
C¢/C; | 0.00002 | 0.0003 0.004 0.001 0.018 0.155 0.001 0.162
Cs/Ce | 74E-04 | 6E-04 | 5.0E-04 | 1.1E-05 | 1.1E-05 | 1.2E-05 | 1.1E-05 | 1.2E-05
C:+/Ce | 52E-03 | 4E-03 | 3.5E-03 | 7.8E-05 | 8.0E-05 | 8.6E-05 | 7.6E-05 | 8.3E-05

It may be noted that the local acceleration term is not necessarily negligible if the

minimum a and the maximum porosity are used, as in Case 8.

In order to see the elevation-head effect, the dimensionless group C; was varied

using various slopes in Table 4.17. The parameters used in this investigation are listed in

Table 4.16. A slope of 90° and a slope of 270° correspond to a vertical upslope and a

vertical downslope, respectively. The magnitude of the absolute value of C; did not show

significant changes for these extreme slopes.

Table 4.16 Applied values of parameters.

o B E N d m L
unit (1/Pa] [1/Pa] [Pa] (] [m] [m] [m]
values | 1.0E-08 | 44E-10 | 2E+11 0.375 1.0E-03 | 1.0E-04 10

For a slope of 90°, C; has a positive value; for a slope of 270°, C; is negative but has the
same magnitude as that of the slope of 90°. The same amount of effect is therefore
expected, but with an opposite direction, depending on whether an upslope or a

downslope is in effect.
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Table 4.17 Effects of slope on dimensionless group C;.

slope 1 slope 2 slope 3 slope 4 slope 5 slope 6
0 [degree]” 0 30 45 60 90 270
& 0.0E+00 4.9E-04 6.9E-04 8.5E-04 9.8E-04 -9.8E-04

* angle from horizontal line to upslope, see Figure 1.1.

Table 4.18 shows the effect of the length of the pipe on the dimensionless group C, for a
45° upslope. As can be seen in the definition of C5, the total length has a significant
effect on C;. The magnitude of C; can be 1 around L = 380 m. From the C; values for
length 4, 5, and 6 in Table 4.18, it is evident that we may not neglect the elevation-head

effect if we use a pipe length of longer than 1 km.

Table 4.18 Effects of length on dimensionless group C;.

length 1 length 2 length 3 length 4 length 5 length 6
L 1 10 100 1000 10000 100000
G, 6.9E-06 6.9E-04 6.9E-02 6.9E+00 6.9E+02 6.9E+04

239



5. Conclusions and Recommendations

51 Conclusions

This body of mathematical and numerical work described herein was performed
under the constraints implied by a relatively simple hypothetical experiment, i.e. the
sudden introduction of a fixed head (a Dirichlet boundary condition) at the upstream end
of an elastic conduit filled with a saturated porous medium. With respect to its elastic
and hydraulic behaviour, the latter was treated as if it were a homogeneous medium or
substance, as 1S commonly assumed, the primary interest being the temporal and spatial
variation in hydraulic head and bulk velocity. Said applied head was given a range of
temporally-invariant possible values, values which would result (in a physical
experiment) in the equilibrium flow condition at t = c being either laminar, partially-
developed turbulent (PDT), or fully-developed turbulent (FDT) flow.

It was found that the resulting highly unsteady flow exhibited fundamentally
different behaviours, some of which departed dramatically from behaviours predicted by
widely-accepted and commonly-presented PDE’s. For example, for unsteady laminar
flow “far’ away' from the source of the unsteadiness, a de-dimensionalized form of the

communis opinio can be expressed by (cf. Laminar-Outer-Diffusion upper entry in Table
5.1):

Q
|2

’H _C,
oxX> C,

[3-67]

the solution to which allows bulk velocities to be determined via Darcy’s Law.

It was found that the PDE (eqn [3-67]) would not adequately describe the
variation in bulk velocity near the face of the suddenly-opened valve (Figure 1-1) at very
small times. Also, using the regular perturbation method, it was found that the complete
problem can depend on the small parameters in a “singular” way. The matched

asymptotic expansion was used to solve these singular problems near the upstream

' It is not necessary to be very far away, see results of analyses presented in chapters 3.5.7, 4.3.2.
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boundary at very small times. The development of a very complete form of the
momentum equation and a doubly-rescaled continuity equation gave rise to an evolving-
wave behaviour near the face of the valve or gate at very small times. The PDE for this
laminar but evolving-wave condition was successfully solved both analytically'' and
numerically, with the numerical efforts including a comparison of the Method of
Characteristic and finite difference methods.

Further systematic consideration of PDT and FDT regimes resulted in the
confirmation that evolving-waves also existed in a ‘inner’ zone (near the valve face), but
that fast diffusion occurred in an ‘outer’ zone at longer times (greater distances from the
valve face). Thus, a new taxonomy for highly unsteady one-dimensional multi-regime
flow through porous media was discovered (see Table 5.1). The application of regular
perturbation and matched asymptotic theory provided a systematic way to assess the
relative importance of sub-phenomenon and quantitatively establish regions (validity for
the PDE’s and their associated solutions. The ‘combined forms’ in Table 5.1 represent
the combinations of the momentum and continuity equations. In laminar regime, if the
boundary and initial conditions of H are known, equation of H can be solved regardless
of V, similarly, equation of V can be solved regardless of H if the boundary and initial
conditions of V are given. However, in PDT and FDT regimes, H and V cannot be
independent on each other thus H and V interact in the solutions.

The single-most general equations in Table 5.1 are perhaps12 those for the
evolving wave PDT case, which may also be written:

2 2
oH_15 5% a—If+af;I [4-104]
x> |c, “c,  |&t o7

From the above equation, it was found that H cannot be obtained without considering V.
However, in the outer expansions, H was found to be independent of V.

Further conclusions and findings are as follows:

1 apparently.

12 «“perhaps” because the low-gradient low-velocity (low Re) end of steady PDT eqn’s only give fair
estimates of laminar behaviour, just as the high Re end of such eqn’s only give fair approximations of
steady FDT behaviour.
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(1) Using the momentum and continuity equations, it has been shown that the
functional dependence in the problem with respect to the various dimensional
parameters 1s not unique. Dimensional analysis was therefore used to reduce the
complexity of the problem. Dimensionless forms of the momentum and
continuity equations were derived and seven dimensionless groups resulted.
These groups gave direct indication of the relative significance or contribution of
each effect whether viscosity, inertia, local acceleration, convective acceleration
or elevation.

(2) The comparison of the solutions of various models could not give information
about the individual effect of terms consisting the momentum and continuity
equations, i.e. viscosity, inertia, local acceleration, convective acceleration, and
elevation. The regular perturbation method gave information whether these terms
can be safely neglected, how small these terms are, and the variations of these
terms in time and space.

(3) Using the regular perturbation method, even though some of the terms were
multiplied by parameters having very small magnitudes, it was found that the
presence of these terms cannot be simply neglected because the problem can
depend on these small parameters in a “singular” way. The matched asymptotic
expansion was used to solve these singular problems near the upstream boundary
at very small times. The inner and outer expansions were developed for the
laminar, PDT and FDT flow regimes. It was presented that the extent of the inner
zone varied depending on the applied hydraulic gradient. It was also shown that
the local acceleration which is negligibly small in the outer expansion plays an

important role in the inner expansion.
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Table 5.1 Inner and outer formula for Laminar, PDT, and FDT regimes.

Regime Equation Inner Outer
~ C
Momentum H, +&V+V? =0 Hy+=2V=0
equation . C,
Continuity H,+V, =0 V, +H, =
equation X
Laminar [--------------- R e RRODEEEEO LS
H,, = = H
— XX Nt
Combined Hgpy =H: +Hy C,
f ~-.. = ~.. N....., C
orm Vg = Vi + Vi Vi =_3Vt
C,
Type Evolving-wave Diffusion
~ ~ C
Momentum H)~(+&V+ £V 4V, = Hy + 2 V4 22V =0
equation C, . C, C
Continpity H.+V. =0 V, +H, =
equation X
PDT C
Coir:nbmed 1 1 H =—\/C32 +4C,C,H, H,
orm - C, . o - C,
33 == Vit cV. + V..
1 1
Type Evolving-wave Fast Diffusion
Momentum Ho 424549, = Hy+=Vi=
equation )
1
Contln.ulty H.+V. =0 V, +H, =
equation N X
T | | 2C """"""""""""""""""""""""""""
. H~~+C4VH?+H??=O ]
A\ LVV. +V.. =0 !
% C i i
1
Type Evolving-wave Fast Diffusion
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5.2 Recommendations

The question of how to design an experiment which might be used to verify (or
negate) the theoretical outcomes might be raised. An apparatus not unlike that shown in
Figure 1.1 could be fabricated. A very high head at the source would be needed (many
10° of meters), perhaps using a steel conduit that extends to the top of a tall building.
The valve at the upstream end would need to be opened as instantly as possible, perhaps
using a powerful solenoid (electromagnetically-operated actuator). A series of wall-
mounted highly sensitive pressure-transducers would be needed, closely spaced near the
upstream valve, and less closely-spaced further away from the valve. A data-acquisition
system, connected to the valve-actuator and to all the transducers, would be needed and
would require the use of an extremely high rate of data acquisition (At = 10” seconds).
An alternative source of upstream head might be a pressure vessel that contains a gas
which has been compressed to an extreme level.

It would be of interest to use the mathematical and numerical methods described
herein with more general and/or more complicated energy-loss equations’?, such as those
expressed with a form using power law, a polynomial, or combined forms. Such a study
might lead not only to the new solutions to the problem but also yield new information
about the solutions which could help reveal the mechanisms behind the phenomena of
highly unsteady non-Darcy flow through porous media.

The approaches described herein could be readily applied to fracture flow. Using
a suitable energy-loss equation for a fracture network, similar numerical methods and
mathematical theories could be applied to solve and analyze fracture flow problems.

The approaches described herein could also be applied to problems with other,
very different boundary conditions. For example if a pump is introduced somewhere in
the problem, the temporal and spatial variations in head and velocity very near the pump

could be obtained using matched asymptotic methods.

'3 most of these are not yet well accepted.
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7. APPENDIX

I Analytical Solution of Groundwater Flow Model

Combining Darcy’s law and the reduced form of the continuity equation results in

typical groundwater flow equation for Laminar flow condition.

H, =JH [I-1]
where J = &
C3
Boundary conditions are:
H=1atX=0 [I-2a]
H=0atX=1 [1-2b]

Initial condition can be given as a general function of X:

H=f(X)whent=0 [I-2c]

The analytical solution can be obtained by separating the problem into a problem of
steady head with stated boundary conditions (H;) and an unsteady diffusion problem with
fixed zero boundary head (H,).

H=H, +H, [I-3]

H; is a function of X and H; is a function of X and t. H; satisfies:

0’H,
=0 0<X<l1 I-4
o ( ) (1-4]
Boundary conditions of H; can be:
H=1atX=0 [I-5a]
H=0atX=1 [1-5b]

H, satisfies:
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oH, oO*H
=] 2 0<X<l I-6
> X7 ( ) [1-6]
Boundary conditions and initial condition of H; can be:
Hy=0atX=0 [1-7a]
H;=0atX=1 [I-7b]
H2 = f(X) -H, whent=0 [I-7C]

From eqn [I-4], H; is a linear function of X and using boundary condition, H; can be
expressed with eqn [I-5].
H =1+(0-DX=1-X [I-8]

In order to get H,, we need to separate variables.

H,(X,1) = 6(X)=(1) [1-9]

If H; is substituted in eqn [1-4]:

JOLE=0E, [I-10]
~Re-arrangement gives:
® =
J— == I-11
® = -t

® is a function of X and E is a function of t. In order to get equality for both sides they
should be constant. If the constant is larger than or equal to zero the only solution is

H,(X,t) =0. For the negative constant we get:

T’“‘: L= O [12]
We can re-write eqn [I-9] with two differential equations.
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Ou +120 =0 (I-10]
E.+IMVE=0 [I-11]

The general solutions for ® and = can be expressed with eqns [I-12] and [I-13],
respectively.

©®=A cosA,X+B, sinA,X [1-12]

E=Ce [1-13]

By substitution of egns [I-12] and [I-13] into eqn [I-6],
H, =Ce™"(A, cosA,X +B, sin},X) [I-14]

The unknown constants, A;, By, and C'1 can be decided from boundary conditions and

initial condition. Using H, =0 at X =0,

H,=ACe™ =0 [1-15]

If C, =0, £ becomes zero thus A; = 0. UsingH,=0at X =1,

H, =B,Cie™* sinA, =0 [1-16]

Because By and C, cannot be zero, A, = n'n. Considering particular solutions of H,

H, =B,C,e ™ sind, X=0 [1-17]

n n

Ifweset B, C, . =D,,

H, =D, e sini, X =0 [1-18]

n

The general solution is the sum of the particular solutions,

H, =Y H,, (X,0)= > )D,e™ " sinfn'nX) =0 [1-19]
n'=l

n'=l
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From initial condition, we can get D ..

H,(X,0) = iDn. sin(n'nX) =f (X) - H,

n'=l

Using Fourier sine series and f(X) = 0,

D,=2 £— H, sin(n'nX )dX

Substitution of D, into eqn [I-20] gives:

H, = Zi e i sin(n'nX)ﬂ— H, sin(n'nX)dX = 0
n'=l

Summation of H; and H, gives:

H=1-X- 2i ™" sin(n' X)) J: (1-X)sin(n'nX)dX = 0
n'=l

The integral part in eqn [I-23] becomes:

[ a-X)sin(n'nX)dx =

Substitution of eqn [I-24] into eqn [I-23] gives:

H=1-X —EZe-J"‘Z"" o
T =
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(n'nX)

n

=0

(1-20]

[I-21]

[I-22]

[1-23]

[1-24]

[1-25]



II. Solution Using Lax-Wendroff Scheme

The Lax-Wendroff scheme (Lax and Wendroff 1960) for the continuity and
momentum equations can be directly obtained from a Taylor series expansion in time.

The expansion of H in time can be expressed as:

k 2 k 2
H =H:‘+(%{j Ar+(%§lj (A;) [11-1]

i

The expansion of V in time can be expressed as:

k- 2 k 2
VE SV (a_v) A2 Y (&7) [1-2]
ot o) 2

i

Finite difference approximations are then substituted for the derivatives of H and V with
respect to X. The resulting scheme can be simplified and is equivalent to a two-step
method in which the Lax diffusive scheme is used in the first half of the time step
((k+1/2)A7) and then the leapfrog method is applied in the second half of the time step
(kA1) (Richtmyer 1963 and Sturm 2001). V can be obtained from the momentum

equation and H from the continuity equation. For the first step, V and H are found using:

Vk%:l(Vik +V'k)_&£ H:(+1_H;( _&E Vil:-l+Vik Vi]-:-l_vik
w20 co 2 AX C, 2 2 AX

_Ei_Ai Vi§1+vik _&éﬁ Vilil+vik i [11_3]
C, 2\ 2 c, 2 2

k| yk )_&ﬂ H - Hf, G A VEHVE V-V
= 20 T2 AX C, 2 2 AX

C, At[VE+VE) C, Ac[VE+VEY
C, 2

11-4
Co 2l 2 2 ] -4
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Hk+é :_1_( X

! +H-k>—&é£ Vilil_‘_vik H:(+1+H!( _E Vil-(o-l_Vik
w20 0 C 2 2 AX 2

AX

C, At Vi +V
o A Vin TV [11-5]
Cs 2 2
k+l

H 2=1(HF+HF )_&.A_T Vik'*'vi]il H:('*'Hi(-l _E Vik_Vilil
A S 2

AX 2| Ax
k k
_&E[—Vi +Vi—1] [11-6]
C, 2\ 2

For the second step, V and H are obtained using leapfrog scheme:

k+l k 1 k+l k+— k+= k+=
H. IZ_H 12 V12+V 12 V.I Vl
Vi = vk _ S "2 =) Gy At "2 2 "3 i
‘ 'C, AX C, 2 AX
kol gk L - 2
V 2+V 2 V 2+V 2
C i+—= i C i+— j——
-3 A2 2 £ TS A 2 - [11-7]
C, 2 C,
+l k+l k+l k+l k+— k+—
\ 12+V_ 12 H. 12"H. 12 V_ 12_V.1
H}”l _ H:( _&AT 1+3 : 1—5 1+5AX 1—5 _Ac H-EAX 1—2
6
k+l k 1
V 2+V ;2
_S A 2 [11-8]
C, 2

Figure 4.5 illustrates the two steps of the Lax-Wendroff scheme:
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Figure 7.1 (a) first step (Lax diffusive scheme) (b) second step (leapfrog scheme).
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III.  Solution Using Method of Characteristics

In order to use method of characteristics, the momentum equation is set to L, and

continuity equation is set to L;.

L,=V, TL&Hx +&va WL&V+&V2 =0 [1I-1]
6 C6 C6 6
L, =H, +£5—VHx +V, +&V =0 [I11-2]
C6 C6

The equations for L; and L; can be combined using an unknown multiplieras L =L1L; +

leI
L= a_H &V.{_&)\" +_aE +}\" a_V &V.}.l +8_V
oX\ Cq Cq ot X\ Cq Al ot
+k’[&V+&V2J+&V=O [1II-3]
Cs Cs 6
If £=§1V +&X' and g=&V+L,the terms in the first brackets become total
dt C; Cs dt C; Al

derivatives, dH/dt. The terms in the second brackets also become total derivatives,
dV/dt. From the relationships for dX/dt with V and A’: |

Sy, S-Syl [I11-4]
c, c,  C, A

The unknown A’ can be found as:

0

A== | =5 (III-5]

c,

If A’ is substituted,

dH, Cedv | G Gy, S vilo e
dt C, dt

C+



=—=V+ |— (III-6b]
dt p Cs
WGV I S Sy S vioo (e
dt C, dt C,Cq 6 C.GC C
g:&V— —C—l [1II-6d]
dt P 6
Because &V << &, =t E— From the grid, AT = — aX
C C, dr Cs C1

Cs

Multiplying eqn [III-6a] by dt and integrating along the C* characteristic yields:

H, -H_ + /—C—‘s(VP—Vi_l)+ S0 5 axv, +Seaxv v =0 7
- c, " C, C,.C, G

Multiplying eqn [III-6¢] by dt and integrating along the C" characteristic yields:

@)

Cs G G Coux ]
S (Ve = Viu )+ ( c* cC ]AXV < AXV, |V, |=0  [HI-8]

Adding eqn [III-7] and [III-8] results in:

=0 ,:H * I-Il+1 + C (V1—1 - Vi+l )_ &AX(Vi—l - Vi"'l)
\c, C

1

C1 Cs (V + Vx+1) (Vi—l lVi—l| - Vi+1 |Vi+1 ')} [1II-9]

262



AX

k+1

k
At Hisi
Vi+l

i-1 i i+

Figure 7.2 Nodal definitions and characteristic lines for MoC calculations.

After obtaining Hp; Vp; can be calculated using eqn [II1-7] or [III-8] as:

%{_ H, +H,, - (Ez_ .G JAxVH - %AXVH V., [} +V,, [MI-10]

V, =
, 6 Cl C1C6 1

C c, C C
V, = /—1 H, —H,, +| -—=* +—2— |AXV,,, ——~AXV,, |V, ||+ V., [II-11
g Cs[ S [ C, «fCITJ e | I|J 1 ]

The boundary conditions of H are given at the upstream and downstream ends. At the
upstream end, the C* characteristic can give an equation for V at the boundary and the C

characteristic provides an equation for V at the downstream end.
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IV.  Analytical Solution of Evolving-wave Equation

The evolving-wave equation for V can be expressed as:

Vi =V, . +V,

The initial condition and the boundary conditions are:

V=V =0 att=0
V, =-3(1) atX =0
VX = 0 at X = 1
V can be transformed to:
V=e2G(X,1)

If we differentiate with t:

Using eqns [IV-4] and [IV-5]:

Substituting eqns [IV-3] and [TV-6] into eqn [IV-1] gives:

G
Gxx = G'r'r —z

The initial condition and the boundary conditions for G are:
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[IV-1]

[IV-2a]

[IV-2b]

[IV-2c]

(IV-3]

[IV-4]

f[IV-3]

[IV-6]

[(IV-7]



Laplace transform of eqn [IV-7] is:

The boundary conditions for G are:

G, =-1
Gy =0
If we define:
1
T2 =g2 =
b4
The term S becomes:
-~ 1
S =,[s; ——
4
Using the boundary conditions:
-5X (X-2)§
= +
G= e~ e-zs
s(1—e™)
If we define pole set 1 from 1-e™* =0
1-e> =0
Re-arrangement gives:
e—2§ = e2n‘1|:i
s can be obtained from eqn [IV-15]:
§.=-n'm

att=0
atX=0

atX =1

atX=0

atX =1

[IV-8a]
[IV-8b]

[IV-8c]

[IV-9]

[IV-10a]

[IV-10b]

[IV-11]

[IV-12]

[IV-13]

[IV-14]

[IV-15]

[IV-16]



Using eqn [IV-12], §,. becomes:

1
Sn2 - = _n|2 7[2
4
The term s, can be obtained:
1
s, =+ [~-n"n’
4

Because n'>1:
1
s, =i, /n? n’ ——
4

In order to calculate residue from pole set 1, we will define P(s):

-3X (X-2)%
P(s,) = e +~e
S
We will define Q(sy):
Q(SL) =1-e¢*
Then we get G using P(sy) and Q(s):
G- P(s;)
Q(sy)
The residue is:
R, = Py
Q'(sy,)

266

[IV-17]

[IV-18]

[IV-19]

[IV-20]

[IV-21]

[IV-22]

[IV-23]

[IV-24]



The derivative of Q(sp) is:

Substituting Q(s; )’ in eqn [IV-24] gives:

e te

¢ 2s,

(2-X)%

R

Evaluating R; at s; and § gives:

(e—n'm‘X +e—(2—X)n'7ti) /n n? _1 —n 1:1X —(2 X)n' m

= €

G 1 /
2i n’znz—z —2i.n*n*-=

(e—n'm'X + e—(Z—X)n‘m') i ’nzn —lr e mX —(2 X)n" m

= c

¢ 1 /
2i.n"?n? -~ -2 n*nt—=
4
Re-arrangement gives:

ﬁe-—n X —(2 X)n' m
Rs = sm n' i’ ——r
1fl'l TC -

If we define pole set 2 from §=0:

—iJa?nt-Ls
| 4

1
—iyn" TL' -—T
d 4

[IV-25]

[IV-26]

[IV-27]

(IV-28]

[IV-29]

[IV-30]

[IV-31]



S, :E and s, =——

In order to calculate residue from pole set 2, we will define P(s):

P(s, )= ¥ +eX*?F

We will define Q(sy):
Qs ) =5(1-¢)

Then we get G using P(s.) and Q(sp):

a‘ - P(SL)
Q(sp)
The residue is:
P(s,)
R- = n
° Q'sy)

The derivative of Q(sr) is:

Q@) = (1 —e B +25e7" )?L

Substituting Q(s; )’ in eqn [IV-36] gives:

e§X +e(2—X)§
(1+ @25 -De )

= S
S

R

G

As § — 0, the denominator becomes:

e‘zg(—(2§'—1)+2)=4

fim (1+ (25 - e )_ i

—0 S 50 1
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[IV-32]

[IV-33]

[IV-34]

[IV-35]

[IV-36]

[IV-37]

[IV-38]

[IV-39]



1 ~
In order to evaluate R at s, =+— and §=0:

[\

Contour integral is:

J'+A0 +B, +C, +D, = > _residuefrom poles
S

Using two sets of poles:

J‘+A0 + BO + CO + DO = Rapolel + RapolCZ
3

So we can get the integral of G from

| =R + Ry — (Ao +B, +C, +D,)
3

Gpole2

To get the integral of B, z can be expressed with:

Using the definition of § :

or
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[IV-40]

[IV-41]

[IV-42]

[IV-43]

(IV-44]

[IV--45]

[IV-46]

[IV-47]
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Figure 7.3 Residue theorem for inverse Laplace transform.

or

or

For the integral of Cy:

Using the definition of s :

or

1 —in
Sp == =12,€
L 0
2
~ _ —-in
S =4z, " y1-2,
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[IV-48]

(IV-49]

[IV-50]

[IV-51]



For the integral of Ay:

Following the same procedure for getting integral of By:

S =4/Zo1—2, )i

For the integral of Dy:

Following the same procedure used to get the integral of Cy:

§=—yz,(l-2,)

The sum of integrals of By and Cy can be expressed with:

J_ e—sX+e(X—2)s .

= ds
S1-e7¥) -

By+Cq

Substituting s;, and S gives integral of By as:

~iyzg{l-2¢)X + ei(X—Z),[zo (1-zy)

€
B, = . —€
| iz (= 2g) (1= e P2

Substituting s;, and S gives integral of Cy as:
e-i./zo(l—zo)x +ei(x-2),/z0(1—z0)

By AT Y

(%—zo )t

CO = ("dzo)

Defining:
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[IV-52]

[IV-53]

[IV-53]

[IV-54]

[IV-55]

[IV-56]

[IV-57]

[IV-58]



a, =iz(l-z) [IV-59]

Using Bo, Co, and a,:

-3X + (X-2)% -aX + (X-2)a; (1_20)1 ea'lx + —(X~2)a, (l—z )
J‘yres,_r L:.Ee' € 2 dz 'E ' € , CZOdZO
B, S1—e7) a,(l1-e™) a,(1-e™)
[IV-60]
Re-érrangement gives:
-3X (X-2)F -aX 23X 1
1 ! (=—zg)7
J- L-Fe_r__eerdsL — 'Ee : 1 __ e : 2 )dZO+
s =25 -2a 2a,
By+Co S(l_e ) a, 1-e 1-¢
a,X -23,X 1
e 1 e (-20)7
[= - 74y, [IV-61]
a[ 1_e2a, l_e—Za,
It can be simplified as:
SX |, _(X-2)F (520) —aX )X X —aX
+
[ s, = [ | - v - iy iv62)
gyic, S—e™) a; (1-e™ 1-e®™ 1-e™ l-e™
The sum of integrals of Ag and Dy can be expressed as:
-3X (X-2)%
+
[ s, [IV-63]
Ag+Dy s(l-e™)
Substituting sp and § gives integral of Ao:
~iyzg(—2g)X HX-24zo(1-2g) 1
e +e (5291
A, = , e? (-dz,) [IV-64]
-~ 2o (=2,)(1- 0 °

Substituting s, and S gives integral of Co as:
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D, =

e—i,/zo(l—z0 X ei(x—z),/zou-zo) 1

(=—2z9)1

ey

2 (=dz,)

Following same procedure for By + Co:

J

Ag+Dy

e X t+e

(X-2)§
——¢%ds; =0
S(1-e) -

Using residues from the poles and Ag+Bo+Co+Do we can get G:

G(X,1) =

an

2cos(a'nX) sin[1 n?n? - l‘tJ + 2sinh(£j
1 4 2

2
T

From the relationship between V and G:

V(X,1) =

12

2

4
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T

2

Msin Jn'z 7’ —lr +2sinh(£j e 2
1 4 2

[IV-65]

[IV-66]

[IV-67]

[IV-68]



