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Abstract

This thesis develops theoretical aspects of stretching single polymer molecules using
an Atomic Force Microscope. Particular emphasis is placed on the difference between
controlled force and controlled position modes of the experiment, corresponding to
the Gibbs and Helmholtz ensembles in statistical mechanics.

Initially, an analytic model for conformational transitions in thermodynamic equi-
librium is developed and applied to Dextran. The observed force response is fitted,
resulting in the two dominant conformers for Dextran, allowing a prediction of the
proper thermal equation of state as well as a direct calculation of the observed thermal
fluctuations.

A second part of the thesis deals with the fast stretching of polymer molecules.
The results of Transfer Matrix calculations are used in a Master Equation approach
to predict fast non-equilibrium effects in polymer stretching. The time scale is fixed
by an expansion of the Master Equation, which can be fitted to relaxation time
measurements on DNA. The predicted response of a molecule to fast stretching is
qualitatively similar to the equilibrium force-extension curve, but occurs at much
higher forces. This result is linked to memory effects in the thermal fluctuations of
the molecule-cantilever system is much more pronounced in the Helmholtz (constant
pulling velocity) regime. A calculation of non-equilibrium molecular relaxation is also
presented in this work.

Following the discussions of polymers stretched in and out of thermodynamic
equilibrium, the thesis considers the ultimate non-equilibrium process - breaking a
single molecule. It is shown how the survival rate of a bond under the application
of stress depends on the applied force. Moreover, the potential barrier is calculated
analytically for the case of a Morse potential and is used to fit spectra obtained from
breaking an ensemble of Terpyridine-Ru?*-Terpyridine complexes. The theory allows
the determination of three microscopic parameters: the depth V4 of the unperturbed
potential, the attempt frequency A and the width of the unperturbed potential ~.
Finally, the necessity of using data at many different loading rates is discussed and
it is shown that these loading rates need to vary at least two orders of magnitude to
enable quantitative fitting.

xiil
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Chapter 1

Introduction

In the 1920s it was discovered that certain materials consist of many chemically
identical covalently bonded subunits. Ever since then macromolecules (or polymers)
have been the subject of intense experimental and theoretical investigation in physics,
chemistry, and biology. This thesis deals with the statistical mechanics of single
polymers, whose equivalent subunits are adequately termed monomers. In particular,
the theory of a special subclass of non-branched macromolecules is considered, in
which each monomer is part of a central backbone. Important examples in this class

include DNA, many starches, and most polyelectrolytes.

One of the theoretical challenges is that macromolecules have changing dominant
characteristics depending the length scale considered. The primary structure of a
polymer is the atomic arrangement on an Angstrom to nanometer scale. There are,
generally, several possible local minima in a monomer’s energy landscape, called con-
formers. A simple example is rotational isomerism in alkanes. The geometric and
energetic details of this energy landscape can be investigated in great detail using

Density Functional Theory (DFT) or ab initio methods.

A macromolecule contains a large number of monomers, typically of the order of
10*~%. An immediate consequence is the availability of a huge number of possible
molecular configurations: for N¢ possible conformers one obtains around (102-*)Ne
possible arrangements, typically more than 10'2. This necessitates the use of con-
figurational statistics for modeling the secondary structure of a coiled molecule. An
added difficulty is that solvents often play an important role, as polymer-solvent in-
teractions affect the conformational energy landscape. Moreover, a polymer chain
cannot fold back onto itself. A lot of modeling is thus done using the concept of

phantom chains, which have no excluded volume or solvent interactions.

There are solvents in which polymer chains behave exactly as if they were phantom

chains at some well-defined temperature. Various analytic theories that attempt to

1
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move away from ideal conditions (or #-conditions) were developed several decades
ago [1,2]. These are based on simple chain models but include volume interactions.
Part of the author’s MSc work [3] dealt with modeling these excluded volume effects
using a numeric mean-field theory, with the conclusion that an analytic theory for the
accurate modeling of conformational statistics as well as the introduction of excluded

volume interactions is not computationally feasible at present [3].

It remains to be noted that hydrogen and other bonds that involve monomers far
apart along the backbone give rise to the tertiary structure which accounts for a lot of
the observations in molecular biology. In particular, the three-dimensional structure
and function of proteins is a result of the tertiary structure of these molecules. The
explanation of protein functionality from first principles forms one of the current and
future challenges in theoretical biological physics. Good introductions of polymer
theory at different length scales are given by de Gennes [1], Doi and Edwards [2],
Flory [4], and Grosberg and Khoklov [5].

Despite the deceptively simple concept of a single polymer chain, very few theories
actually start from the fundamental principle of statistical mechanics: A statistical
system in thermodynamic equilibrium will sample all of its micro states with a prob-
ability of exp(—BEsiate). As discussed above, accounting for the large number of
available micro states even for one single molecule, is a daunting task that either
requires extremely good methodology or extremely powerful computers. The Trans-
fer Matrix (TM) method, developed recently by Prof. Kreuzer’s group at Dalhousie
University [3,6-10] provides such a methodology, where the only approximation is
that long-range volume effects (i.e. interactions that are more than two monomers
apart) have to be neglected. However, this approximation is quite useful as soon as

a force is applied between the two ends of a molecule.

An important aspect of the current work is to further develop the TM scheme
as a universal tool, in particular to take it beyond its original use to obtain equi-
librium properties of single molecules. This development is continued from previous
advancements that explored the modeling of polymers in external potentials. Exam-
ples include potential tubes that mimic other molecules in a polymer brush [11,12],

or the modeling of an attractive surface via a Morse potential and the explanation of
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polymer desorption experiments using equilibrium statistical mechanics [10]. A third
application using a simple external potential that has not yet been implemented is
a TM-based model for the movement of bacteria, which is generally thought to be
due to the polymerization of Actine networks [13-15]. A short outline of the TM
method is provided in Section 2.4. Detailed descriptions of the method are avail-
able in previously published theses at Dalhousie University [3,6], as well as in the
literature [7-9,11].

The first application, presented in Chapter 2, revolves around the intricate inter-
play of a purely analytic theory of conformational transitions in polymer stretching
with its TM method equivalent. Each of the two methods has its distinct advantages,
and a complete understanding of relevant experiments can only be acquired with the
use of both. The following three Chapters deal with polymers out of equilibrium.
The possibility of calculating a thermodynamic partition function, as is being done
using the TM method, is everything but a direct invitation to develop a Master equa-
tion approach to the out-of-equilibrium properties of polymer stretching, presented
in Chapters 3 and 4. Most physically reasonable transition rates require the use of
partition functions to obey detailed balance and allow for the proper approach to
equilibrium. Finally, the concept of non-equilibrium polymer stretching is taken to

the ultimate limit, with the development of a theory of molecular bond breaking.

1.1 Single Molecule Stretching: Experiment

The invention of the Atomic Force Microscope (AFM) in 1986 [16] enabled the mea-
surement of the mechanical material properties extremely small length scales for the
first time. The force applied to a micrometer-sized cantilever is measured by using the
deflection of a laser off the cantilever tip (see Fig. 1.1(a)) and is essentially governed
by Newton’s and Hooke’s Laws. Ideally, the cantilever tip is only a few nanometers
in diameter and can be placed on a sample with Angstrom precision [17]. The AFM
was originally used to investigate insulating surfaces as an alternative to Scanning
Tunneling Microscopy [16], but a whole new field of physics called force spectroscopy
has since been developed. While the underlying mechanical force laws are primarily

classical in nature, AFM cantilevers are small enough to be susceptible to thermal
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Figure 1.1: Comparison of the two most commonly used polymer stretching setups:
(a) The Atomic Force Microscope (AFM) is based on stretching a molecule via a
chemically attached cantilever whose extension is measured via laser deflection. (b)
Two optical tweezers use one or two microscopic beads that are controlled via radia-
tion pressure resulting from focused lasers. The force is measured from positions of
the beads with respect to the centre of the laser.

fluctuations. In fact the careful measurement of thermal motion forms one of the most

accurate methods to determine the all-important cantilever spring constant [18].

The AFM was first used for the stretching of single molecules in the 1990s [19,20].
The basic setup in this type of experiment is as follows: polymer molecules are
chemically modified such that they will bond to a surface. An AFM tip is pushed
into the surface such that the polymer can also bond to the tip, then it is retracted.
A molecule attached to both the cantilever and the surface will be stretched as shown
schematically in Fig. 1.1(a). The measured mechanical response is called the force-
extension relation. Atomic Force microscopy has a vertical resolution of about 1 nm,

while the force resolution is approximately 10 pN [21].

There are three main modes of AFM operation that are applicable to measuring
single polymer molecules. The simplest and most common mode is to move the can-
tilever at a constant speed once the molecule is attached between AFM and substrate.
If done sufficiently slowly, this type of experiment can be modeled using equilibrium
statistical mechanics in the Helmholtz ensemble. A second possibility is to stretch
the molecule with a controlled force, be it fixed (force-clamp spectroscopy) or linear

in time (force-ramp spectroscopy). This would suggest using equilibrium theories in
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the Gibbs or constant-force ensemble. However, recent measurements of the fluctua-
tions in a force-ramp experiment have shown that this type of experiment cannot be
done in thermodynamic equilibrium due to the update speed of the necessary feed-
back electronics [22]. Nevertheless, there can be important differences between the
observed responses of all three experimental modes [23].

An alternative way of stretching single polymer molecules is based on using laser
traps to manipulate small beads [24]. These optical tweezers can be used to stretch
polymers if one end of the molecule is attached to the microscopic bead. The same
experiment also allows insight into the dynamics of single molecules, in particular
the relaxation behaviour of DNA molecules in solution [25,26]. In the last few years
the technique has been modified to use two separate lasers, each trapping one latex
particle (see Fig. 1.1(b)). This most recent incarnation of optical tweezers was used
for very accurate measurements of the relaxation behaviour of DNA via the position

correlation of the two beads [27].

1.2 Single Molecule Stretching: Equilibrium Theory

Polymer molecules generally consist of a few hundreds to tens of thousands of mon-
omers. Thus single macromolecules are small systems in the statistical mechanics
sense which means that relative fluctuations of observables which scale with the in-
verse number of monomers cannot be neglected. The theory of fluctuations has been
well known for decades,! but it was not applied to polymers until recently [32-34],
when experimental advances such as the AFM described in the last Section allowed
these theories to be tested. In the constant-speed AFM experiment, the fluctuations
are dominated by the cantilever in the low-force regime, but are well suited for the ex-
traction of microscopic data at higher forces [22]. On the other hand, the fluctuations
are entirely governed by the molecule in constant force-loading rate experiments [32].
Some of the first direct numerical calculations of fluctuations are presented in Chap-
ters 2 and 3.

The original models for polymer stretching were developed in the 1950’s by Flory

1See Callen [28], Hill {29, 30], or Landau and Lifshitz [31] for introductions from various view

points.
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and coworkers [4, 35] using entropic elasticity. Flory’s starting point was a phantom
chain of randomly oriented rigid rods, termed the Freely Joined Chain (FJC). The
Gibbs partition function for this system can be calculated exactly for any applied

force and leads to the analytic force-extension response [4]:

Lrsc(f) = Nb [coth (é—bf) - f“;j—bT] . (1.1)

This expression gives the molecular length L for a model chain with N monomers
of length b with an applied force f. With the advent of the experiments described
in the last Section, models such as the Freely Joined Chain became more than a
purely academic exercise and were used to fit experimental data [19,20]. Numerous
extensions of Flory’s work were proposed to improve on the purely entropic response
of the Langevin equation (1.1), see for example Abu-Lail and Camesano [36].

While Flory’s model is based on discrete monomers, a path-integral calculation
using as input only the bending stiffness of an otherwise continuous chain is also
possible. This model is called the Worm-Like Chain and has also been used extensively
to explain features and consequences of entropic elasticity [5,37-39]. Unfortunately,
it has so far been impossible to evaluate the path integral analytically and one has

been restricted to use various analytic approximations [40].

Quite a number of investigated systems show a pronounced force-plateau in the
response to stretching, which is the sign of a conformational transition, where one
possible configuration of a monomer is forced to switch into a longer conformer that
has a higher energy (see for example Bustamante et al. [41] for DNA experiments).
Two simple extensions to Flory’s FJC model were introduced in order to account for
this behaviour. The monomer length in Eqn. (1.1) was calculated as a linear combi-
nation of a long and a short conformer that are separated by some force-dependent
free energy difference AG(f) = AGo — f(biong — bshort) [42], leading to a polymer
version of the two-state model. The second equally important change to the original
FJC concerns the molecular behaviour at high forces, where the Langevin relation
(1.1) converges to a finite contour length. Experimental data shows that the molecu-
lar behaviour at these forces is spring-like, which was also incorporated into the FJC

model by simply adding an additional extension that is linear in the force via the



monomer elasticity Kg [42],

bshort blong
Ly =N (1—|—exp[AG(f)/(kBT)] +1+exp[—AG(f)/(kBT)])
() 2

The length Ly is the Kuhn length for the molecule in question. Equation (1.2) has
often been used to model stretching data, first for polyethylene glycol (PEG) [42] and
then for various polysaccharides [19,21,22,43-49).

In order to make polymer models more realistic, the next obvious step is to restrict
the bond angle v between two monomers to one fixed value. The resulting model is
the Freely Rotating Chain (FRC), for which only a few quantities can be calculated
analytically [4]. The scaling estimate of its high-force limiting response as well as the
numerical integration of its exact partition function was only carried out recently using
Transfer Matrix (TM) techniques [6,7]. An extended FRC theory termed QMFRC
(for Quantum Mechanical Freely Rotating Chain), was developed a year ago using
the FRC high-force response as well as a force and conformer dependent monomer
length that was obtained from Density Functional calculations [50,51].

While the FJC and FRC models were derived directly using statistical mechanics,
the extensions to these models were obtained in a very non-rigorous fashion. The
results are ad hoc fit-formulas and expressions that result in well-educated guesses of
the physics behind single molecule stretching, but that could not be used in a complete
statistical theory. One of the fundamental problems with both the two-state model
and the QMFRC is that the monomer length depends only on the overall average of
- the applied force. The actual force acting on a single monomer is actually a projection
of the overall force, which can be significantly smaller than the applied force. The
result is a major theoretical inconsistency, particularly in the low-force regime, where
entropic effects are the dominant contributions to the molecular response.

A second problem with these models is that the only predictable information is in
fact the force-extension relation. In order to develop a self-consistent thermodynamic
formalism it is necessary to construct appropriate free energies and a plausible thermal
equation of state. This procedure is necessary to model experiments in the controlled

position ensemble properly. Callen [28] outlines such a construction a postulated
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equation of state. This procedure is straight forward, but highly non-trivial in the
case of the FJC based two-state model and has not yet been attempted for the
QMFRC.

Chapter 2 develops for the first time a rigorous analytic statistical mechanics
model of an adapted version of the two-state model. The starting point is the original
FJC model, but with a complete monomer-length dependent energy landscape and
an additional integration over all monomer lengths. This procedure leads directly
to a partition function in the Gibbs ensemble and is theoretically rigorous from the
outset. There is also no necessity to add on a monomer extensibility as done in Eqn.
1.2, because the monomer extension comes for free with the use of an appropriate

underlying potential.

Moreover, Chapter 2 discusses the possibility of measuring thermal effects, which
turn out to be small but which should be experimentally accessible within a few years.
This Chapter also provides a direct connection between the analytic theory and the
Transfer Matrix method. The original formulation in the Gibbs ensemble can easily
be used for fitting the experimental force response (i.e. the mechanical equation of

state), but it can not be used directly to predict the observed molecular fluctuations.

In principle, it should be possible to obtain a Legendre Transform of the analytic
Gibbs free energy in order to obtain Helmholtz free energy. Unfortunately, this pro-
cedure leads to numerous integrals that are intractable analytically and practically
impossible to evaluate numerically with any reasonable accuracy. Transfer Matrix
calculations are used at this point to overcome the issue. They require considerably
more numerical effort, which makes the original fitting prohibitive, but they are very

useful for the direct numerical imitation of actual experiments, as outlined in Section
2.4.

1.3 Polymers out of Equilibrium

For slow AFM pulling rates, the theories and developments described in the last
Section and in Chapter 2 will eventually lead to a reasonably complete description of

single molecule stretching. Slow in this context refers to the time scale for polymer



relaxation Tmolecule, Which has to be small on the experimental time scale,

Tmolecule K Texperiment- (13)

The question of establishing thermodynamic equilibrium now reduces to a comparison
of the relevant AFM pulling speeds and force-loading rates to molecular relaxation
times.

Traditionally, the measurement of polymer extension has been done by first ex-
tending a molecule at some given loading rate and then retracting the AFM tip at the
same rate. The observation of identical force responses was taken to be a sign of ther-
modynamic equilibrium [19,42]. This procedure was questioned recently by the mea-
surement of the length fluctuations in a constant force-loading rate experiment [22].
Despite perfect agreement of the measured force-extension traces in the extension
and contraction experiments, the observed length fluctuations did not match the the
expected value, (0?) = kgT/(0f/0 (L) |r), which suggest that the understanding of
this experiment requires more than just equilibrium statistical mechanics. Moreover,
there also existed significant force fluctuations, which can not be explained with a
Gibbs ensemble framework.

The first model of polymer dynamics, proposed by Rouse in 1953 [52], solves
the Newtonian equations of motion for a connected set of springs, each having zero
equilibrium length. The springs play the role of monomers in this model. Owing to
its simplicity, the Rouse model is often used as a testing ground for new theories,
see for example Speck and Seifert [53]. A slightly more realistic model of a polymer
molecule in solution was developed by Zimm? and includes the hydrodynamic effects
of beads interacting with each other. These beads are still connected by springs with
zero equilibrium length. The Zimm model cannot be integrated analytically, but
it is specifically suitable for molecular dynamics calculations, as it is easy to write
down the forces acting on each monomer and use molecular dynamics or Monte Carlo
calculations [54-61].

A second way to approach fast polymer stretching is to analyze the tension prop-

agating along the backbone of a polymer. In this case, one has to carefully account

2see de Gennes [1], Doi and Edwards [2], or Grosberg and Khoklov [5] for introductions to the

Rouse and Zimm models
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for the local structure of the polymer molecule, which is an unsolved problem at the
present time. Scaling arguments and some simulations are possible only for semi-
flexible molecules [62—-66]. These are characterized by a contour length that is of
the order of the correlation length and form an intermediate but important regime
between the rigid rods and fully flexible molecules.

One of the classic approaches to non-equilibrium physics, the description of poly-
mer stretching in terms of a Markov process, has not yet been implemented for the
fast stretching of polymers. The approach presented in Chapters 3 and 4 uses molec-
ular length L as a stochastic variable and is capable of obtaining the non-equilibrium
length distribution functions P(L,t) from very simple assumptions. This is done via
a Master equation [67,68], which reads

dP(L,1)

& / dL'[W(L, L')P(L") — W(L', L) P(L)] (1.4)

Equation (1.4) has a very simple and intuitive interpretation: for the calculation
of the rate of change of a probability distribution P(L,t) one needs to take all the
probabilities that increase P at length L and time ¢ (this is the first term in the
integral in equation (1.4)), and then subtract all those that decrease P (second term
in (1.4)).

The main problem with using a Master equation is a good choice of the transi-
tion rates W (L', L). While this choice is not exactly unique, there is a fundamental
requirement on the transition rates: to avoid the possibility of perpetual motion,
the rates into and out of a given length L have to cancel exactly in thermodynamic
equilibrium,

W(L, L") Peqm(L') = W(L', L) Poqm(L). (1.5)

The equilibrium probability distributions in the detailed balance equation (1.5) are
best written in terms of partition functions, which is the primary result of Transfer
Matrix calculations.

Chapters 3 and 4 develop such a Master Equation approach to the dynamics of
polymer stretching. In addition to detailed balance, the simplest reasonable form
for the dynamics of the molecule is used to obtain the stretching response out of

equilibrium. Just as for the equilibrium considerations, it is necessary to distinguish
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between the different stretching ensembles for the modeling of AFM experiments.
Chapter 3 considers the constant force-loading and the constant velocity regimes.?
The stretching response of a quickly stretched molecule is notably different in the
Helmholtz and Gibbs regimes, in contrast to the equilibrium case where the difference
occurs primarily in the fluctuations. Chapter 4 takes up the question of relaxation
times, which was used as a criterion for the usefulness of equilibrium modeling in
equation (1.3) at the beginning of this Section. This calculation in effect encompasses

the force-clamp mode of AFM experimentation in detail.

Three different statistical mechanics regimes are considered, which are non equi-
librium extensions of the Gibbs and Helmholtz ensembles. The constant force-loading
(or force-ramp) and constant speed calculations are presented in Chapter 3, while the
relaxation of molecules under the sudden application of stress is discussed in Chapter
4. The basis of the Master equation is to start from the fully developed equilibrium
theory provided by the Transfer Matrix method and use reasonable rates for the tran-
sition between two extended states of a molecule. This allows the numerical solution
of an integro-differential equation, leading to the stretching and relaxation response

of a molecule close to equilibrium.

At present, the master equation approach neglects any long-range hydrodynamic
interaction. Janovjak et al. [69] have shown that the drag due to the moving AFM
support becomes important at pulling speeds of about 20pm/s and higher. This speed
is well into the non-equilibrium regime for large macromolecules as predicted by the
approach in this thesis, which means that the current theory should be applicable up
to those pulling speeds.

Note that Seifert and Braun [70] developed a Master equation based model for
polymer stretching concurrently to the one presented in this work. However, they look
at the unfolding of globular polymer domains that are individually approximated by
Worm-Like chains in the coil state, leading to a complicated two-state model where

a molecular Section can either be in the coil state or in the globular state.

3Note the change in terminology: an ensemble requires thermodynamic equilibrium.
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1.4 Breaking Molecular Bonds

In the preceding Sections, the ideas and experiments related to single molecule stretch-
ing with an AFM were reviewed. The ultimate end of such a single-molecule exper-
iment is generally the rupture or unbinding of the polymer or some of its parts.
Experimentally it is now possible to break a number of chemical complexes with an
AFM by attaching polymer spacers such that the bond in question is the weakest
link [71,72]). Dynamic Force Spectroscopy (DFS) generally consists of repeating a
breaking experiment many times over, preferably at different loading rates. The re-
sult is a spectrum of different breaking forces from which one hopes to be able to
extract detailed information about the system under consideration [73-78].

Again, the availability of experimental data has spawned a lot of theoretical activ-
ity in this area and there is an ongoing debate as to what can actually be measured
with DFS. [79-96]. The generally accepted starting point for the interpretation of
such data is Kramer’s rate theory (see the review by Hanggi et al. [97]). At zero
force the bond is in a state near the free energy minimum, from which it could escape
across some potential barrier via thermal excitation. The escape is facilitated by the
application of an external force (hence the AFM), which leads to a lowering of the
barrier. It is the detailed form of the free energy surface and the potential barrier
that one seeks to measure with Dynamic Force Spectroscopy.

This procedure has been adopted for single bonds by Bell [80] and later by Evans
and Ritchie [86], who were the first to point out the advantage of doing DFS using
widely varying loading rates. The Evans-Ritchie model is based on an escape rate
kig exp(—BfAx), which is increased upon the application of an external force f. The
width of the potential barrier is taken to be Az such that the free energy gained by
crossing the barrier is fAz. The Kramer’s rate equation for the probability P that a
bond is intact at time ¢ is

c_i_f_’Lt)

= kipexp(=BfAz)P(1). (1.6)

Its integration is possible analytically for the case of a fixed force or a constant force-
loading rate and can easily be done numerically for other external conditions [86,89].

In recent years however, there has been an emerging consensus that this model is
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incomplete and that much more can be done with the available data. Many groups
agree that the underlying assumptions used in the Evans-Ritchie model (1.6) is much
too simple to resemble realistic situations. Several avenues have been pursued to add
physical realism to the situation. Rather than having a constant potential barrier
somewhere in space, cubic reaction paths offer a much better interpolation of the un-
derlying energy landscape [84]. Some authors include the effects of multiple reaction

paths [79,83] or the rebinding of molecular complexes [83,94]. |

The theory is well developed and generally thought to be valid for several phe-
nomena, such as the breaking of single bonds or the unfolding of proteins and DNA.
However, recent investigations using force-clamp spectroscopy showed that at least
the latter problem might be intractable with the conventional methods, as there are
signs of a glassy transition that have yet to be predicted theoretically [73].

In the case of single bonds, there is some agreement that it is possible to mea-
sure three important physical parameters using DFS [85,98]: the energy of thermal
activation (or barrier height), the attempt frequency to cross this barrier, and the
position of the transition state. Chapter 5 develops the theoretical framework to do
these calculations from available data with the help of a simple spread sheet. This
Chapter shows that a large spread of experimental loading rates is required in order
to obtain meaningful results and discusses the uniqueness of fitting observed spectra.

The currently available literature takes little note of the important differences that
are introduced with the varying modes of AFM operation, especially when polymer
spacers are used to separate the complex under investigation and the substrate. The
resulting difficulties in modeling experiments done at constant velocity are pointed

out in Chapter 5.



Chapter 2

Conformational Transitions in Single Polymer Molecules
Modeled with a Complete Energy Landscape: Continuous
Two-state Model

This chapter has been submitted for publications to the European Journal of Physics
E on Oct. 20, 2006. The authors are Felix Hanke and Hans Jiirgen Kreuzer. The
contribution of Felix Hanke consists of the idea to the approach, all numerical and

analytic calculations and the manuscript and figure preparation.

Abstract

An extension of the two-state Freely Joined Chain model for the mechanical extension
of polymer molecules is presented in which the discrete energies of the two conformers
are replaced by continuous functions of the conformer length. The statistical mechan-
ics is initially developed in the Gibbs ensemble and leads to a conformational multi-
state model. This is used to fit the equilibrium force-extension curve for Dextran.
The continuous model also allows the use of Transfer Matrix methods to calculate all
statistical properties in the Helmholtz ensemble, including thermal fluctuations. The

latter are obtained with near perfect agreement to experiment.

2.1 Introduction

Stretching a single polymer molecule in an atomic force microscope (AFM) or optical
tweezer experiment allows one to measure the force-extension curve or the mechanical
equation of state. For long polymer chains the low-force region is dominated by
entropy, while bond angle and bond length deformations of only the longest conformer
are important in the high-force regime. When the energy spectrum of the polymer, i.e.
the conformational energy vs. length dependence is smooth, the force extension curve
rises with a monotonically increasing slope. Simple descriptions of such situations

are given by Freely Joined Chains, Freely Rotating Chains or the Worm Like Chain

14
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model [4,5]. An example of such a system is poly (ethylene-glycol) stretched in
hexadecane [99]. On the other hand, if there are large steps in the energy landscape
in the sense that the extended conformers are much higher in energy, one observes
clear signs of a conformational transition in the force extension curve. Examples of
such systems are poly(ethylene-glycol) stretched in water [99] and a large catalog
of polysaccharides [19,21,22,43-49]. The first AFM measurements on Dextran were
carried out by Rief et al. [19] and showed signs of one conformational transition, which
was later connected with a-linkages in the glucose rings [100]. A system with two of
these transitions was also found by Marszalek et al. [45] in the stretching response of

pectin.

Steered molecular dynamics calculations used with ab initio calculations have
shown that the conformational change in polysaccharides is probably due to a chair-
boat transition [101], although there exist claims that it might be a chair-inverted
chair transition as well [102]. Recently, the careful analysis of force fluctuations
suggested that there may be a third intermediate state between the chair and boat

conformations in Dextran [22].

There are fitting formulas that are used to explain the experimental data. The
most widely used one is a simple two state model [42,99,103], based on the Freely
Joined Chain (FJC). A second more microscopic approach was developed recently
based on a Freely Rotating Chain (FRC) frame work in conjunction with ab initio
calculations [50,51]. These models use either the analytically known force-extension
relations of the FJC, or the high-force limit of the FRC model [7], but include a

conformer and force dependent contour length.

In the FJC-based two-state model one assumes that a transition region the force-
extension curve is dominated by just two conformers. These differ substantially not
only in length but also in energy with a difference in the Gibbs free energy at zero
force AG = Glong — Gshort > 0. The ratio of the monomer occupation probabilities
at any given force f is then given by Pshort/Piong = €xp[B(AG — fAL)], where Af
is the difference in the conformer length. The average conformer length is given by

Leont = Pshortlshort + Plongliong- This information is used in a Langevin function with
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an added spring-like term to account for high-force extensibility:

<L(f)> = Ngconf(.ﬂ AG) (COSh(ﬂfLK) - 1/(/8fLK)) + Nf/KS (21)

Here, N is the monomer number, K is the segment extensibility, and Ly the Kuhn
length. As long as one treats AG as a constant, the force-extension curve can not
be regarded as the mechanical equation of state because its proper temperature de-
pendence is lacking. The latter could of course be obtained by further measurements
and fitting at different temperatures. A different aspect of this lack of knowledge was
pointed out by Walther et al. [22], who were unable to reconcile the original two state
model with the observed fluctuations in their measurements.

In this work, an extension of the FJC-based two-state model is presented that is
complete and consistent with all thermodynamic requirements. This is achieved by
setting up the proper statistical mechanics in the Gibbs ensemble, from which the
correct mechanical and thermal equations of state and fluctuations follow directly.
The new feature of the model is the replacement of the two conformer states with
conformational potential energy curves. It will be demonstrated that this continuous
two-state FJC model is especially useful for an easy specification of the statistically
relevant conformers in a conformational transition. The next section presents the
derivation of the extended FJC model, followed by an extensive example using data

on Dextran.
2.2 Model

To set up the continuous multi-state FJC model, one starts from the Freely Joined
Chain (FJC) model for a polymer with N monomers with a fixed length b that are
joined together without restricting the bond angle. In the Gibbs Ensemble, the force
f is fixed along the Z direction in a coordinate system. The Gibbs partition function

" for a single monomer reads

1
Pesc(£,7) = - [ & 3(1l ~ b exp(B 1), 2.2)
0
The reference volume vy is required to ensure the proper dimensionality of the parti-

tion function, while 8 = 1/(kgT) contains the temperature dependence. From (2.2)
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Figure 2.1: The Freely Joined Chain model with an external potential: Given the
position of one monomer with length b, the following monomer can exist at some
distance &’ and a random angle @ with respect to the previous bond. Each distance
b' is Boltzmann-weighed, where the darker regions in the figure correspond to lower
potential.

one easily obtains the Langevin force-extension relation of a FJC chain, see for ex-

ample Livadaru et al. [7] for details.

In the continuous two-state FJC model we replace the d-function (ensuring a fixed
bond length) in Eqn. (2.2) with the Boltzmann factor of some arbitrary potential
V() of the bond length b.

PUT, VO] = — [ db exp[8(E-b - V(b)) (2.3)

Vo

27 b
= o | @ g7 {exp BB = V)

—exp [-B(fo+ V(0))]} (2.4)

The second step is the result of integrating out the angular degrees of freedom and
making use of the fact that f-b = fbcosd in a cylindrical polar coordinate system.
Notice the functional dependence of the partition function on the potential V'(b),
which demonstrates that Eqn. (2.4) is valid for any monomer potential. Fig. 2.1

gives a schematic view of the FJC model with a continuous potential V (b).

For a polymer molecule with N non-interacting freely joined monomers, each of
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which can be in any one of N conformers, the total Gibbs partition function reads

Toorat(£T) = [Cmonomer(f> T)]™

{i L(f,T, [V(i) (b)])] . (2.5)

I

Here V®(b) is the stretch potential of the i** conformer which could, in principle,
be different for each of the N monomers that make up the polymer. Restricting the
number of different monomer potentials to two or three results in the continuous two-
state or three-state FJC models respectively. From this partition function we obtain
the Gibbs free energy G(f,T) = —NkgT InT ' onomer(f, 1), from which the mechanical

equation of state follows as

_ @_ . N al—‘monomer
af T,N IBPmonomer 8f T.N .

L(f,T) = (2.6)

Any other statistical properties such as the relative occupations of the conformers,

entropy and fluctuations can also be obtained from Eqn. (2.5).

One possible way to proceed is to calculate the partition function (2.4) numerically
for some given monomer potential V' (b). The latter can be obtained from quantum
mechanical calculations as shown elsewhere [99,104]. On the other hand, if we ap-
proximate this potential by a harmonic oscillator, i.e. expanding the potential to

second order in the bond length
V(b) = g(b — b0)2 -+ Vb =+ O(b - b0)3; bmin < b < bmaxa (27)

it is straight forward albeit cumbersome to evaluate the partition function in Eqn.
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(2.4):

exp(—FVs) [exp (—%—k(bmin - bo)z) sinh (8 fbuin)

27 T

— exp (—%E(bmax - b0)2> sinh(ﬁfbmax)] + W ZBE

X ((bo + %) exp(S£bo) {erf [ %—lﬁ <bmax — by — %)]

—erf [ _,82_]13 (bmin — b() - —']]2'):| } — (bo — —£—) exp(—ﬁfbo)

x {erf [\/_%E (bmax — by + {2) —~ erf [ % <bmin —bo + %)} }) . (2.8)

For a given conformer, one can interpret the quantity & in Eqn. (2.7) as the conformer

stiffness, while by is the equilibrium length at zero force and Vj is the conformer
internal energy above some reference point. The approximation introduced with this
potential is valid for relatively small extensions and compressions and agrees well with
ab initio and density functional theory calculations for several systems [102,104].
Equation (2.8) provides a tool to calculate all statistical properties of a single
conformer in the Gibbs ensemble. A lot of single molecule conformational statistics
can actually be modeled with a very small number of conformers. As an example,
the mechanical response of poly (ethylene glycol) is well described with only a few
appropriate potentials corresponding to an all-helical, one all-trans conformer as well
as a few that exhibit gauche defects [99]. In fact, many systems exhibit conformational
transitions which can be traced to the transition between two well-defined conformers
[19,42,47,101]. In the present case, summing Eqn. (2.8) for different conformers will
adequately describe this situation: Once the partition function is calculated, it is

trivial to do the remaining thermodynamics in the present formalism.

2.3 Application to the Stretching Response of Dextran

In contrast to models based on a modified form of the Langevin formula, the descrip-
tions of polymer statistics in terms of Eqn. (2.5) allows one to integrate the energy

landscape of a monomer directly. In this section we will use the parabolic form of
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Figure 2.2: AFM data for Dextran [22] (x) and the force-extension curve for a hypo-
thetical molecule which only contains the longer conformer.

the potential (2.7) to fit the force response of a specific polysaccharide, Dextran, for

which a conformational transition is generally linked to a chair-boat transition [22].

Experimental data and the fitting procedure for the continuous two-state model
are shown in Fig. 2.2. In the high-force regime, all monomers are in the most ex-
tended conformer. It is generally assumed to be a boat configuration with a length
of bgjong =5.70A [44]. The mechanical response for the highest forces is thus due to
over-stretching of the molecule, i.e. bond angle deformations and bond stretching.
This region can be described asymptotically by Hooke’s law, f = Kiong(L—Nbg iong) /N
in the parabolic potential approximation (2.7). The stiffness of the high energy con-
former kjong can be obtained from a linear fit to the high force data, as shown in Fig.
2.2.

There are three parameters remaining in the continuous two-state model, the
length and stiffness of the short conformer as well as the potential energy difference
between short and long conformer. All three can be determined by a constrained
fit to the experimental data. Armed with the knowledge of k; and by(;), one can
imagine a molecule that consists only of the longest conformer. Its force response
can be derived from Eqn. (2.5) with N¢ = 1. The result is the bottom curve in
Fig. 2.2. Most importantly, the area between this hypothetical force-extension curve

and the measured data is exactly equal to the difference in the Gibbs free energy
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Figure 2.3: Results for Dextran with parameters bggpory = 0.442 & 0.12 nm, bg jong =
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Kiong = 8.29 £0.04 x 10° pN/nm. (a) force extension relation, (b) relative occupation

probabilities of the two conformers, (¢) monomer potential, and (d) length fluctuations
in the Gibbs ensemble.

AGihort—1long (f) between the short and long conformers at zero force.

AC;short——)long(o) = Aw[llong( ) Xp(f)]df
[Grong (00) — Glong (0)] — [Gexp(00) — Gexp(0)]
= Gisnort(0) — Giong(0). (2.9)

The last step is possible because the molecule is entirely in the short conformer at
zero force, leading t0 Gexp(0) = Genors(0). Moreover, the extended configuration is
prevalent for very large forces, hence one has Gexp(00) = Giong(00). For the purpose
of fitting the missing microscopic parameters, equation (2.9) forms a constraint that
reduces the number of free parameters by one. Fig. 2.3 shows the results calculated
for the data from Ref. [22], i.e. the force-extension curve, the probability of finding
any monomer within a given conformer, and the underlying monomer potentials.
From the partition function (2.5) one can also calculate the length fluctuations

in the Gibbs ensemble via ((§L)?)¢ = —ksT(0?G/df?|r), see Fig. 2.3(d). Such
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fluctuations were discussed quite some time ago by Kreuzer and co-workers [32, 33]
and by Keller et al. [34] but the corresponding experiments have only been done
recently. The data presented in Fig. 2.3(&) shows a peak right at the transition
region around f = 950pN, which is due to the additional entropy of having both
conformers accessible simultaneously. The extended fluctuations of a completely free
molecule at zero force are the reason for the low-force peak, whose magnitude is of

the order of the mean-square radius of gyration.

Walther et al. [22] use a simple fluctuation model in the Helmholtz ensemble to
show that the original two state model [42,103] for Dextran fails to describe the peak
in fluctuation data in the transition regime of a Helmholtz ensemble experiment. This
failure is due in part to the fact that the original two-state model, Eqn. (2.1), is not
a proper mechanical equation of state in the thermodynamic equation of state, since

it it was developed purely as a fit function.

Next, a discussion of thermal expansion is necessary. The thermal equation of state
has received little if no attention to date, although there are some polymer systems
for which it is very important [105]. The continuous two-state model allows one to
determine this thermal equation of state. A measurable quantity is, in principle,
the thermal expansion coefficient o = (1/L)(0L/0T|;), which follows directly from
Eqn. (2.6). Fig. 2.4 presents results for the force-dependence of o at three different
temperatures. Shown in the lower panel is the change in monomer length with respect

to room temperature.

In order to compare the Dextran results to the thermal expansion properties of
a purely entropic system, the Langevin equation was used to calculate o at 293 K.
A negative thermal expansion coefficient is one of the important signs of entropic
elasticity, which makes it easy to link the negative peak in the top panel of Fig. 2.4
to the high entropy in the transition region. To accurately measure the effects of
thermal expansion, it will be necessary to detect thermal changes in the molecular
length of about 1%, As can be seen from the bottom panel in Fig. 2.4. The original
two-state model allows for the calculation of limiting cases of the thermal expansion
coefficient. These are given by the different possible forms of the free energy difference

AG(0) in Eqn. (2.1): one is a purely entropic version, AG = —TAS while the other
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Figure 2.4: The thermal expansion coefficient for Dextran at three different temper-
atures (top), and the fractional length changes per monomer with respect to room

temperature (bottom).
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one us purely energetic, AG = AU. The result derived from the continuous two-state

model is in between these two extreme cases.

2.4 Modeling of Position-Controlled AFM Experiments: Transfer Matrix
Calculations

Up to this point the continuous multi-state model has been developed entirely in the
Gibbs ensemble, where the force f is the controlled (or fixed) variable and the molec-
ular length L is allowed to fluctuate. For the proper explanation of AFM experiments
in which the position of a cantilever is controlled rather than the applied force, one
has to calculate the molecular partition functions in the Helmholtz ensemble which
can be done numerically with Transfer Matrix methods [7,8,11].

These calculations use the Green function formalism [2,5], where the independent
variable is chosen to be the distance L above the substrate. The Green function

Gn(L,0) of some monomer n is calculated with the Chapman Kolmogoroff equation
G.(L,0) = / dL'T(L, L')Gn1(L', 0), (2.10)

The transfer operator T specifies the possible position of a monomer n, given the

state of monomer n — 1. For this model, T is given by
Ne  r1 bk
TL,L)=> / 1dcos0 /b G §(L — L' —bcos) exp[-AVO(B)],  (2.11)
=1V~ min
with the same conventions as used for the monomer partition function (2.5) in the
preceding sections. Notice that the transfer operator (2.11) is written for general
monomer potentials. The continuous two-state model of the last sections is obtained
by choosing N¢ = 2 with parabolic conformer potentials V(®(b). A molecule con-
sisting of N monomers, is described by a Green function Gy (L,0) that specifies the
probability of finding the end of the molecule at a distance L above the substrate.
For the proper evaluation of observable properties such as length and force fluc-
tuations, one still has to couple the polymer Green function Gy to one describing
the AFM cantilever, treating the latter as a small statistical system. The conjugated
Green function G*(L,, L) for a cantilever of length L. and spring constant k. is given

by

G*(Le, L) = exp [— ”B;%(Lc - L)Z] , (2.12)



25

from which we can calculate the probability density of finding the end of the molecule

at some length L as

_ G*(L¢, LYGN (L, 0)
[dL'G*(Le, L')Gn(L',0)

Any quantity that is observable with the AFM can be calculated from the moments

of this probability density, (L") = [dL L"P(L). In particular the average molecu-

P(L)

(2.13)

lar length (L) is the first moment of (2.13), giving the force-extension curve in the
Helmholtz ensemble as (f)({L)) = k.(L.— (L)) for each value of the cantilever position
L..

Notice that an infinitely stiff cantilever has G*(L., L) = §(L. — L), with the conse-
quence that the Green function Gy is exactly equal to the Helmholtz partition function
of an isolated molecule with a corresponding free energy F(L) = —kgT InGn(L,0);
see Kreuzer et al. [32]. On the other hand, all of the Gibbs ensemble results of
the previous sections can be obtained within this formalism if one observes that
the conjugated Green function for the system eziernal force reservoir is equal to
G*(f,L) = exp(BfL). This property was used successfully to test the numerical
method against the previous analytical calculations.

The calculation of the force extension curve in the Helmholtz ensemble yields the
same result as presented in the previous section. In this formalism, the observed
length fluctuations can be calculated directly as shown in Fig. 2.5. Note that the
molecular parameters used for calculating these fluctuations are exactly those ob-
tained by fitting the force extension curve of Fig. 2.3. The only additional informa-
tion needed is the spring constant of the AFM cantilever used, k. = 50pN/nm [22].
The near-perfect agreement of calculated and observed fluctuations at and around
the transition region validates the continuous two-state model.

However, the data in Fig. 2.5 warrants further discussion as there are two more
important regimes. The constant fluctuations in the region between 35 and 60nm are
entirely governed by the AFM cantilever. They are given by the variance one would
predict from Eqn. (2.12) for a simple cantilever, (62) = kgT'/k. = 0.08nm?. For short
length scales below about 35nm theory and experiment do not match. This is due
to the influence of excluded volume and polymer-surface interactions, which limit the

possible fluctuations.
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Figure 2.5: Length fluctuations for the data presented in Fig. 2.3. The predictions in
the Helmholtz ensemble (solid line) are TM calculations using the parameters given
earlier with the experimental cantilever spring constant k. = 50pN/nm. Also shown
to scale are the fluctuations predicted by the analytic theory in the Gibbs ensemble
(dashed line).

One could model the interaction between polymer and substrate directly via an
effective position-dependent external potential Vj, in the Transfer operator [10] by
adding a factor exp[—BVL(L)] to the integral in Eqn. (2.11). Unfortunately, the
nature of these surface interactions is too unspecific in most cases to yield reliable
and reproducable results. The only case where this type of analysis is fruitful is for

the pure desorption of molecules adsorbed on a substrate [10].

2.5 Discussion

This paper develops the exact statistical mechanics of an analytically integrable poly-
mer model with a continuous energy landscape. This continuous multi-state model is
applicable to the analysis of conformational properties of single polymer molecules.
Since entropic elasticity is taken into account exactly as well as the underlying molec-
ular energy landscape, the model will work particularly well for systems that have
conformational transitions in the crossover regime between purely entropic and en-
thalpic stretching, which is generally around 300pN.

The stretching response of Dextran is studied extensively as an example. The

parameters resulting from the force-extension fit are used to exactly reproduce the
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thermal fluctuations observed experimentally. For this procedure to work, it is nec-
essary to use the Transfer Matrix method, which is capable of exactly accounting for
the coupling to an AFM cantilever in the Helmholtz ensemble.

The term controlled position (or Helmholtz) ensemble is used somewhat mislead-
ingly in polymer physics and warrants further discussion. Generally, it describes
systems with fixed length where the force is fluctuating. This is certainly the case
for a coupled polymer-cantilever system in which the distance between cantilever and
substrate is fixed. As discussed in the previous section, commonly used cantilevers
are rather soft and show significant fluctuations themselves. Therefore one can not
regard the polymer molecule itself to be in the Helmholtz ensemble, as it fluctuated
in both the length and the force. From the definition of the fluctuations and Eqn.
(2.13) it is easy to show that force and length fluctuations are related by the cantilever
spring constant, (o7(L.)) = k2(0% (L)), as discussed in detail by Kreuzer et al. [32].

Nevertheless, experiments in the so-called force-ramp mode of the AFM show
fluctuations which can not be explained by equilibrium statistical mechanics [22],
which is due to the fact that the AFM response time is much slower than the molecular
relaxation times. The availability of a partition function such as (2.8) will enable one
to model this situation rigorously in a non-equilibrium theory based on the Master
Equation [106], where the response of the force-ramp AFM itself can be included
exactly.

Finally, it is worth noting that the description of a molecule in terms of a parti-
tion function automatically generates the proper thermodynamics, not only for the
mechanical equation of state (as shown here) but also for the thermal equation of

state.
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Non-Equilibrium Theory of Polymer Stretching Based on the
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Abstract

We present a model for fast polymer-stretching experiments. We use the master
equation and argue that the end-to-end extension of a polymer molecule can be used
as a stochastic variable after appropriate coarse-graining. The main effect of increas-
ing pulling speed or force loading rate is a marked hysteresis in the force-extension
curve as well as an overall shift of the curve to higher forces when compared to the
equilibrium curve. This can be understood in terms of the moments of the transition
probability in the master equation. An analysis of the fluctuations and relaxation

times is also given in the framework of our theory.

3.1 Introduction

A microscopic understanding of the mechanical properties of individual natural or
synthetic polymer strands is required to model and predict their function in biological
or technical processes, e.g. DNA replication, muscle contraction, or the rheological
properties of polymers. Experimentally, single molecule force spectroscopy with the
Atomic Force Microscope or with optical tweezers offers a versatile and powerful
experimental tool to measure the extension of a single molecule as a function of

applied force in different environments. The method allows to observe the binding

28
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forces between different receptor-ligand systems [107,108] and the unfolding of protein
domains [19,23], or to measure the elastic properties of individual macromolecules
[20, 42]. Likewise, the scanning force microscope, optical tweezers and near-field
magnetic tweezers have been used to measure the elastic response of chromosomes
[109], to study formation of DNA loops by an enzyme [110], and to investigate DNA-
binding molecular motors (RNA polymerase, DNA polymerase, etc.) [111], to reveal
the dynamics of these molecules during translocation, as well as the effect of external

force loads on their performance.

The ultimate aim of polymer science must be the explanation of the macroscopic
properties of a long repetitive chain molecule in terms of the structural properties
of its subunits. To proceed from the microscopic details of the quantum chemistry
of these subunits to a comprehensive description of the long chain a series of well-
defined approximations must be invoked that at any stage can be subjected to rigorous
scrutiny. Such a program of simplifications has been in place in polymer science for
many years [4], but only recently has it become practical to implement this procedure
from first principles [50,99,112].

Macroscopic properties of immediate interest are the force-extension curve and the
corresponding fluctuations of force and length of the polymer molecule. To ensure
that a measurement of the force-extension relation of a polymer molecule yields the
equilibrium equation of state the rate of change of the external force must be slow on
the time scale of the internal relaxation of the polymer chain, which is readily checked
by a sufficient variation of this rate. If the rate of increase of the external force is such
that equilibrium cannot be maintained internally, non-equilibrium effects are accessed
which can be used to study the kinetics and, ultimately, the dynamics of the polymer
chain. As long as one stays close to equilibrium relaxation effects can be studied.
These same dynamics will then also manifest themselves far from equilibrium in the

form of hysteresis and nonlinearities.

A simple approach to the dynamics of polymer chains is given by the Rouse model
[1,5], in which one derives a diffusion equation for the molecular motion to model
the dynamics in terms of separate relaxation modes, e.g. of a linear chain of coupled

harmonic oscillators. This model is appealingly simple, but it is incapable of taking
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into account the hydrodynamic interactions between monomers. A first solution to
this problem is provided by calculating hydrodynamic corrections to the Rouse modes
within the framework of the Zimm model [5]. Monte Carlo methods and Molecular

Dynamics Simulations provide another approach to the problem [60,113,114].

On the experimental side, the dynamics of polymer molecules have received a lot
of attention in recent years [115]. DNA molecules in particular are long enough to
be observed under flow stress via fluorescent labels [25,116]. Quake and coworkers
have developed a way of manipulating single DNA molecules with pairs of optical
tweezers [26,27]. These experiments provide a good way to study the relaxation
dynamics of biopolymers under external forces. The process of molecular relaxation
is an important issue in this work, because it is one of the few ways to access molecular
relaxation times [27]. The latter are important in the interpretation of virtually all

polymer experiments.

There are several different approaches to measure the mechanical properties of
polymers in an AFM experiment. One is to control the spatial position and velocity
of the cantilever, which suggests doing the analysis in the canonical ensemble for
the equilibrium aspects. Alternatively, it is possible to control the force, f, and the
force loading rate, df/d¢, by implementing an additional feed-back algorithm into
the AFM control, which adjusts the position in such a way that only the force is
controlled. Equilibrium situations of this type should be analyzed using the Gibbs
ensemble. A third possibility is to use the same control to implement a force step,
where f starts from a low value and is suddenly increased to some high value. All
of these experiments have been done and have been shown to lead to spectacular
differences, for example when looking at the unfolding of single titin domains [23].
The equilibrium theory of polymer stretching in the Gibbs and Helmholtz ensembles
has been worked out by Kreuzer et al. [32,33].

A first principles theory of non-equilibrium processes in polymer science would
invariably have to start from the molecular energy landscape. Using the assumption
that molecular stretching can be modeled as a Markov process, one can then derive
a master equation. This approach has been pursued for short proteins and molecular

clusters [117-119]. The energy landscape in those studies is obtained from quantum
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chemical calculations. Following the work of Jarzynski [120,121] it has recently be-
come possible to measure the molecular free energy surface directly by averaging over

finite sets of non-equilibrium data [122].

In this paper we will use a different approach to study the non-equilibrium dy-
namics of polymers. We will model conformational conversion in the stretching of
a polymer as a Markov process. This presupposes that the dynamical time scale
of conversion itself is fast compared with the macroscopic kinetics of the stretching
process. We will show that the model can be simplified further by taking the molec-
ular length itself as the stochastic variable. In the resulting master equation we will
argue phenomenologically for a simple form of the transition probabilities that repro-
duces experimental equilibrium relaxation times. Because the transition rates in the
master equation must satisfy detailed balance they will contain information about
the equilibrium properties of the chain. For the calculation of the latter we will use
two simple models, namely the Freely Jointed Chain (FJC) and the Freely Rotating
Chain (FRC) models, although the generalization to more detailed polymer models

is straightforward, albeit numerically more involved.

By using only the molecular length as our stochastic variable, we neglect some of
the enthalpic effects observed for highly stretched and overstretched polymers. These
effects have received a lot of attention in the recent literature [19,23, 46, 50,103] and
can generally be explained with a two-state model that contains one type of short and
long conformer. In this work, we will have a detailed look at the entropic regime and
show some of the non-equilibrium effects one should expect to see there. We use the
transfer matrix or Green function method [6,7,11] to obtain the equilibrium properties
of these models. Our theory is presented explicitly in both the Gibbs and Helmholtz
regimes. This will enable us to describe realistically the experimental situations of
(i) constant force loading and (é4) constant velocity of the AFM cantilevers. The
situations of instant stretching and release could in principle also be treated with our
theory. However, this has already been done by several groups using scaling arguments
for flexible and semiflexible chains [62,66,123-125]. A detailed comparison between

the two approaches will be given elsewhere.

The paper is organized as follows: in the next section we derive the specific form
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Figure 3.1: The partition functions Z (L) for four representative chains with N = 100
monomers are shown on a log scale: FJC (solid line), and FRC with bond angles
v = 30°,45°,60° (dashed, dot-dashed and dotted lines respectively). Notice the
almost Gaussian dependence of the FJC partition function.

of the transition rates in the master equation and briefly comment on the numerical
solution of the latter. We present a derivation of the macroscopic equations of motion

that couple the time dependence of the average length of the polymer to the non-

equilibrium evolution of the fluctuations. We then describe how to calculate the

relaxation times and compare these to measured values for DNA molecules. This will
enable us to estimate force loading rates and pulling velocities required to observe
non-equilibrium effects. A discussion of the resulting force-extension curves as well

as the fluctuations is given in section 3.3. An outline of a non-coarse-grained theory
is given in appendix 3.5.

3.2 Theory

3.2.1 Equilibrium Polymer Properties

In order to discuss non-equilibrium polymer stretching, we first have to outline our
approach to the equilibrium physics. As input for the theory in this paper, we will
require the canonical partition function Z(L, N, T), which depends on the length L,

the number of monomers NV, and the temperature 7. This can be calculated exactly
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from the Transfer Matrix method developed by our group [6,7,11]. We will use the
freely jointed chain (FJC) and freely rotating chain (FRC) models, which are good
approximations for flexible and semi-flexible polymers, respectively.

We would like to work in the large N limit, which means that the number of
monomers must be much larger than the characteristic ratio: N > Cy. This ensures
that the molecule consists of many Kuhn lengths, a, so that there are no directional

correlations between the two ends. The FRC characteristic ratio is given by [4]

14+cosy 2cosy 1—cos™ vy
1 —cosy N (1 —cosv)?

CrronN = (3.1)

while for the Freely Jointed Chain we have Crjc = 1. The characteristic ratio for
~v = 30°, appropriate for n-alkanes and N = 100 is about 13.

Fig. 3.1 shows the partition functions Z(N, L, T') for some representative chains.
For the FJC, our calculations can go up to N = 150 while N = 100 is the limit for
the FRC. This means that our FRC modeling has to be restricted to the bond angle
v = 60°.

3.2.2 Master Equation

3.2.2.1 Gibbs Regime

Our study of non-equilibrium effects treats the stretching behavior of single polymer
molecules as a Markov process that is represented with a master equation. If we take
the index enumerating the conformers as the stochastic variable then the Markov
process is defined by a function P;(f,t) that gives the probability that under a force
f the i conformer (of end-to-end length L;) is realized at time . We then need as
many equations of motion as there are conformers for the particular polymer. Such
an approach is only feasible for short polymers and will be outlined in some detail
in the appendix. Here, we present a more coarse-grained approach in which we treat
the end-to-end length itself as the stochastic variable.

In this approach, the force can be controlled externally; in equilibrium this corre-
sponds to using the Gibbs ensemble (see ref. [32] for a detailed discussion). We will
refer to this mode as the Gibbs regime away from equilibrium.

We now introduce a function P(L,f,t) that gives the probability that at time ¢
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the end-to-end length L is realized under a force f. Its value in equilibrium is given

by
Z(N,L,T) exp(ff - L)

exp[—ﬂg(T, f)]
g(T, ) is the free energy in the Gibbs ensemble. Away from equilibrium we postulate

Py (L, £) = (3.2)

a master equation

%P(L,f, 0= / EL WL, L5 6P, 1) — WL, L H)PL,£,1)].  (3.3)

The transition element W (L', L;f) gives the probability per unit time that the
length of the polymer changes from L to L’ under a force f; the monomer length b
being required for normalization purposes. These transition rates can in principle be
calculated from the microscopic dynamics of the coupled polymer-solute system; this
will be done elsewhere. Here we follow a phenomenological approach and postulate
their form based on simple ideas. We argue that a small change in the force will result

in, at most, a small length change over a time interval d¢ and write
A
W(L',L; f) ~ wpexp l—'@——(L' - L)2} : (3.4)
The parameter A controls the width of effective transitions. The prefactor

wy = vexp(—Q/ksT) (3.5)

consists of an attempt frequency v and an energy barrier () between two conformers.
This will be discussed in detail at the end of this section. The quantity SBA/b? is
typically of the order of a few inverse b? so that the Gaussian dependence of the
transition probability W on |L' — L| makes sure that the end of the molecule has to
remain close to the starting point of a given jump. This also justifies to ignore any
further dependence on |L' — L| in Q. For longer distances, several transitions should
be required.

We still need to ensure that detailed balance is satisfied for the master equation
(3.3). Thermodynamic equilibrium not only requires that dP/dt = 0, but that all the

terms on the right-hand side of equation (3.3) vanish individually, i.e.

W (L, L5 £) Py (L, £) — W (L, L; £) Pog (L, £) = 0, (3.6)
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or
W(L,L;f) = W(L’,L;f)-g:((%%
A Z(N,L,T
= wpexp {ﬂf (L-L') - 'Bb—z(L' - L)Q] Z(LN’—IT’—T—))- (3.7)

To ensure that the transitions L — L’ and L' — L are symmetric we choose a form

Z(L',N,T)

/ . . IB / ! 2
W(L',L; f) = wy exp [2f (L'-L) B (L' - L) ZO.NT) (3.8)
The non-equilibrium force-extension relation is given by
- 1
Lmﬂzﬁ/Q%LmLﬁn (3.9)
and its equation of motion is obtained from (3.3)
dL
5 = (a(L). (3.10)

We define the mean-square fluctuations of the molecular end-to-end distance as a

second rank tensor
(o7) = (LL) — (L)(L). (3.11)

In a coordinate system where the force points along the z-axis, this tensor is diagonal.

In this case, the equation of motion for an element is

d{c2)

13

dt

= (ovis) + 2(Lons) — 2(Ls) (o). (3.12)

For equations (3.10) and (3.12) we have defined the n'® moment of the transition
probabilities,
1
%MLﬂ:5/¥U@LLmemn (3.13)

as a tensor of rank n.

To solve the master equation one discretizes the space accessible to a given molecule
into a manageable number of points so that the master equation (3.3) becomes a set, of
coupled differential equations, one per mesh point. Since this would lead to a rather

large and intractable system in three dimensions, we will present numerical results
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only for the polymer distribution along the force axis. This reduces the problem to

one dimension and the transition probabilities have the form

f

W(L', L; f) = wyexp 5“(LI“L)——(L'~L)2] Z(N,L',T)

ZNLT (3.14)

2

This corresponds to the approximation that the additional two integrations in equa-
tion (3.3) have roughly the same effect for all times. We show in section 3.2.4 that
this approximation corresponds to the limit of small length fluctuations o2, < L2 ..

We now discuss the origin and meaning of the attempt frequency v in the prefactor
(3.5). The internal excitation modes that trigger the length changes are sound waves
that travel along the backbone of the polymer chain. For the longest wave spanning
the length of the molecule we can write v = ¢;/Liax. As an example, these modes are
calculated in the Rouse model by assuming that the molecule is a chain of coupled
harmonic oscillators. To get more realistic estimates we have used the vibrational
spectrum previously calculated with density functional theory for short chains of
(methoxy-terminated) ethylene glycol monomers, EG (O-CH,-CH,-) [104]. For (EG)3
the frequencies of longitudinal vibrations along the backbone for the helical and planar
conformers are 82 and 640 cm™!, respectively, with a wavelength of 10.5A (the contour
length between the outermost O atoms). For helical (EG), this frequency is 72 cm™,
not quite down by a factor of 3/4 from the (EG); value because of the presence of the
two end-groups. Likewise, for transverse vibrations we find frequencies in the range
from 18 to 30 wavenumbers for both conformers. Attaching several water molecules
to (EG)3 in order to mimic the presence of the solvent, we find that the longitudinal
frequencies increase by 15 to 20 %.

For (EG)3, we get for the speed of sound, ¢; = v, about 2,000 m/s and 16,000
m/s for the helical and all-trans conformers, respectively. The reason why the speed,
and thus the force constant, is so much larger for the all-trans conformer is the fact
that for the helical conformer the vibration involves the deformation of the dihedral
angle whereas for the all-trans conformer it is the harder deformation of the C-C and
C-O bond angles. Similarly we get for a short alkane chain ¢; ~ 4,500 m/s. This
leads us to identify the attempt frequency as v = ¢;/L,,. The same first principle cal-

culations for (EG); also produced the energy landscape, i.e. potential energy curves,
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depicted in Fig. 3.2. It shows explicitly how much the force constants differ between
different conformers. In addition we get an estimate of the activation energies, () in
equation (3.5), for conformational conversion, namely up to 0.3 eV, particularly for
the solvated polymer. One can also identify a very weak dependence on the length

L. Needless to say that these energy landscapes include hydrodynamic effects.

So far we have only considered longitudinal sound waves along the polymer back-
bone as contributing in the stretching of the molecule. However, relaxation perpen-
dicular to the direction of the force is also of importance and can be measured. This

is triggered by transverse sound waves which can be accounted for by writing

wo = (c-f) exp[~BQ/ Linax (3.15)

where ¢ = (¢,,¢y1,c.) and f is a unit vector in the direction of the force. For com-
pleteness, we have also included an accommodation coefficient v to account for the
probability that not all attempts lead to a length change. It also incorporates hydro-

dynamic effects; this will be elaborated on in future work.

3.2.2.2 The Helmholtz Regime

The discussion above treats in detail the case of controlling the force on a molecule
and changing it as a known function of time. However, AFM experiments are gener-
ally done by controlling the position of the cantilever D and measuring its resulting
deflection, which gives the force on the molecule as well as its stretching length. Fig.
3.3(a) shows the schematic setup of the situation.

This approach corresponds to doing the equilibrium statistical mechanics in the
Helmholtz regime. In order to do this properly, we need to take into account the
exact effects of the cantilever. The approach is the same as in the Gibbs regime: we
will use a master equation with the length as the stochastic variable. This problem
will be solved entirely in one dimension, since the AFM experiments generally pull
polymers vertically away from some surface. We will comment on the equivalence of
the one and three dimensional cases in the section 3.2.4.

The transition probabilities still have the form W (L', L) ~ exp(—BA(L'—L)?/b?),
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Figure 3.2: The calculated energy landscape for the ten energetically different con-
formers of (EG)3 in vacuum and in water. These conformers are indexed by the state
of the C-C bond, which can be either gauche-plus (g*) gauche-minus (g~) or trans

(t).

From left to right in plot (a) the minima belong to the conformers (g*g™t),

(8¥g™87), (g7g71), (87g™t), (g7g"g"), (g¥tg™), (g7tg™), (tg™t), (ttg™), and (ttt).
When dissolved in water, the order of the minima is the same but for (g*g*g™") and
(g*g*t), which change their relative positions [99,104]. Most minima are within kg7
of each other at room temperature. These curves reproduce PEG stretching both in

vacuum and in water [8]
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Figure 3.3: (a) The basic setup of an AFM experiment, where the position D of
the cantilever is controlled and the actual length of the polymer L as well as the
displacement of the cantilever Lo fluctuate. (b) The end-to-end distance distribution
of polymer and cantilever for D = 0 calculated for a FJC (IV = 150) and different
spring constants. The solid line has no spring attached (for comparison) and the
other lines have k.a?/kpt = 0.1(dashed), 1(long dashed), 10(dot-dashed), 100(dotted
line).
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but now the equilibrium distribution for the system depends on both, L and D as [32]

 Z(L)e P12
Palls D) = T4 7 (Eje PP (3.16)

This probability density function for different values of the cantilever spring constant
k. is shown in Fig. 3.3(b). For simplicity, we chose D = 0 for those plots. One
can see that the effect of a stiff cantilever is to narrow the axial end-to-end distance
probability distribution of the polymer. We will discuss this point in detail below.
The introduction of a spring changes the overall transition probabilities consider-

ably. By requiring detailed balance and with W (L', L) symmetric, we find

W(L,,L; D) = Wy exp (__ﬁ_z}_(l}ﬁ;ylz_ + ﬁfc [(D — L)2 _ (D — L’)Z]) ’2—((12—1))
(3.17)

We can use this form to integrate the master equation (3.3) directly. The can-
tilevers used in the experiments by Gaub et al. [42,72] and other groups have spring
constants around k. ~ 102 —10%kgT’/b*. When substituting these into the equilibrium
distribution (3.16) or the transition probabilities and hence the master equation, we
find that the Gaussian dependences are almost d-functions. Taking the formal limit

k. — oo we have, as in reference [32]
P(L, D) ~ §(D — L). (3.18)

This is to be expected, as stiff cantilevers do not deform significantly over distances
comparable to the molecular contour length. The same happens in the master equa-

tion where we find for some time-dependent cantilever position D(t)

1d BA | fhe Z(D)

Pt = - (52 + 50 - 1) | APy

+ ;ZC(S(D — L) /dL’ exp ((-_ﬁbTA + ﬂfc)(D . L/)2) %P(L'). (3.19)

For a cantilever with a finite but large spring constant, the only appreciable ther-
modynamic fluctuations are in the force, with almost no length fluctuations at all.

The subsequent lack in spatial spread of the probability distribution makes it rather
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difficult to integrate the Master equation numerically. One tends to be constrained
to spring constants less or equal to those used experimentally, i.e. k. < 102kgT'/b%.
We now address the question of equilibrium in a pulling experiment with a stiff
cantilever. For finite k. we must consider the fluctuations in both force and length.
Equilibrium is attained if the system can sample all its microstates over the time
scale of the experiment. In particular this means that it has time to go through all
of its fluctuations. Consider what happens when we pull the molecule so fast that
the equilibrium position, after a system’s relaxation time, is beyond the reach of the
initial fluctuations. The system could not have got there by a quasi-static process
and must be out of equilibrium. Next we take into account that in the limit k., — oo

the (equilibrium) length fluctuations are very small; in fact they can be described

by [32
y [32] @_(D/z_l)‘s_f
L f

We should expect that a necessary (but not sufficient) condition for a quasi-static

(3.20)

process is

(vr)? S 0%, (3.21)

where 7 is the relaxation time of the whole system (molecule and cantilever) and o2
is the mean square length fluctuation.
Similar to the Gibbs regime, we can define the moments of the transition proba-

bilities in the Helmholtz regime as

¢o(L, D) = % / dr’ (L' — Ly"W (L', L; D) (3.22)

Notice that we are now dealing with one-dimensional quantities so that there is no
longer a tensor character. Analogous to the analysis in the Gibbs regime, we can then
write the non-equilibrium force-extension relation as

dL

= = (G(r, D). (3.23)

The spatial fluctuations are calculated from

0 = (GlL, D)) +2((LG: (L, D)) ~ (LHG(L, D). (3.24)
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Once we have obtained the spatial fluctuations of the molecular end, either from the
complete time-dependent probability density function or the equation above, we can

work out the mean square force fluctuations 8? via [32]
o = ko>, (3.25)

As we saw above the fluctuations in the length are almost negligible, but those in
the force remain finite. In the pure Helmholtz regime the force is, in fact, the only

quantity that can fluctuate.

3.2.3 Macroscopic Equations of Motion

To simplify the non-equilibrium force-extension relation we assume that the fluctua-
tions and higher moments of the probability density are small. We can then expand

the 7™ component of the vector &} as

1~ o?
(i(L, ) = an(L, f) + Ezafj ——au(L,f)| , (3.26)
=1 8LJ c
with
2

o =12-1L;. (3.27)

A similar expansion is possible for the components of (&7). The macroscopic equa-

tions of motion for the average length (3.10) and the fluctuations (3.12) now read

dE 1 3 82011i
= o+ = Z<02"> — (3.28)
dt 2 ‘= 3 L;
d(0'2> 2 8ali 1 9 820[2“‘ —82a1i
L = 0{”+2 T; — + — O, — +2Lz-—__— . 3.29

All the moments and their derivatives in (3.28) and (3.29) are evaluated at the average
non-equilibrium length L and the applied force f.

We note that the first moment of the transition probability & is zero along the
equilibrium force-extension curve. This can be shown by expanding the integral (3.13)
in terms of small (f — f,,). The second derivatives of its components also turn out
to be zero along the equilibrium force-extension curve, so that the right hand side of

(3.28) is identically zero for equilibrium.
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Knowing the equilibrium fluctuations at zero extension, one can integrate the
system (3.28) and (3.29) directly. However, this approach is only valid close to equi-
librium and the computational effort in calculating the moments & and &3 is similar
to that in the direct integration of the full master equation. We will show later that
the moments presented here yield a nice graphic interpretation of non-equilibrium
stretching nevertheless.

The same analysis can be done for the Helmholtz regime, by expanding the aver-
age moments ((3(L, D)) and ((2(L, D)) as defined in equation (3.22). The resulting
equations of motion are of course the one dimensional equivalents of (3.28) and (3.29),

with all the «; replaced by (;:

dL 1—0%C;

- = g2 2

o G+ 50 o (3.30)
d0'2 — 182<2 8{1

- = 2 |22 >2 2

P Go+o [2 = +2BZ] : (3.31)

3.2.4 Relaxation Times

The relaxation time 7 for a system close to equilibrium can be extracted from the
Gibbs equation of motion (3.28) by setting L = Leq + 6L and expanding around Leg
with &} (Leg, f) = 0 so that

dgL_, . 8a1¢ (Leq7 f)
dt OL; s
—1?5"L— (3.32)

T

oL,

This defines two relaxation times 7)) and 7, in the directions parallel and perpendicular
to the applied force. To evaluate the moments of the transition rates analytically we

introduce r = L’ — L and write

e BA 1 Z(N,L+r,T)
W(r,L;f) = wpexp [ =t r+ 2ﬁf r Z(NL.T) (3.33)
The partition function can be expanded as
2
Z(N,L+r,T)=Z(N,L,T) [1 +r- —VZ—Z + %r-erZ + ] . (3.34)
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Statistical mechanics dictates that the various derivatives of the partition function
are related to the equilibrium force fo; = —kgTVZ/Z. Using these results, we find

to leading order and for a uniaxial force f = f2

Fr0fea o 1 BB iae o).
—4——(,—)fexp 12 r r+2,3(f feq) r” (335)

For long chains fe, only depends on ¢ = L/Lp,,. Note that fe is not equal to the

Wi(r,L;f) ~wy [1-0

external force f.
We can use the expression (3.35) to calculate the molecular relaxation time from
the derivative of the first moment of W (see equation (3.32)). To leading order, we

get the inverse transverse and longitudinal relaxation times as

1 of

;|; = 5”52 (3.36)
1 fof

o S T a0 (3.37)

In our theory, the longitudinal and transverse friction parameters have the explicit

form

3
T2 Coll/t —pg_ b
Se=—Tz ¢ 7 B (3.38)

Notice that we need to differentiate between longitudinal and transverse pulse

velocities due to the different nature of the two relaxation modes. Thus our master
equation approach has recovered the well known result that the relaxation time is
proportional to the square of the number of monomers. We also find rightly that
the longitudinal relaxation time is inversely proportional to the derivative of the
force-extension relation with the overall factor of proportionality given in terms of
the phenomenological parameters in the transition rates. The transverse relaxation
depends on the normalized force-extension relation f(£) as well as its derivative.
Hatfield and Quake [114] postulated a different form for this dependence, but they
did not take into account that f(¢) is non-linear for large extensions. Indeed, the
substitution f(¢) = k£ into equation (3.37) recovers their result. By keeping further
terms in the expansion (3.35) we can easily calculate the corrections needed as one
studies relaxation further away from equilibrium.

We still have to discuss the conditions under which we are justified to reduce the

master equation to one dimension only. We see from equation (3.35) that the effects
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of the transverse spread in the probability functions are mainly contained within the
Gaussian dependence of the transition rates. Higher order effects are smaller by at
least one additional power of 1/Lpyax. Thus for small fluctuations (¢2,) < L2 ..,
all the important phenomena happen on short length scales and higher order effects
can be neglected. The difference between a full three-dimensional model and a one-
dimensional equivalent is now a constant factor that stems from the integration of the
master equation over the two transverse dimensions. We obtain a “one-dimensional”

longitudinal relaxation time
s
b & FR 30 (3.39)

The two formulations should be equivalent if 7 ;p and 7),3sp are approximately equal.This
leads to the fact that A is about wkgT or of that order.

3.3 Results

3.3.1 The Relaxation Times

The free parameters in our theory are wg and A. Although we gave estimates of their
magnitude, we can use experimental relaxation times to determine their values for
specific systems. These relaxation times have been measured for the case of A-DNA
by Meiners and Quake [27]. We need to use equations (3.36) and (3.37) as well as the
knowledge of the partition function (and hence the force-extension relation) in order
to extract the phenomenological friction coefficients (3.38) Once we have obtained a
values for (||, it is simple to calculate the input value for wy as well as the size of the
barrier (). One can also make estimates about the differences between ¢, and ¢, |
for a given model.

We have fitted the FJC model (N = 150), as well as several FRC polymers with
100 monomers, to the data given in reference [27]. Equally good fits were obtained
for the freely jointed chain and the freely rotating chain with a bond angle v = 60°.
These two models will hence be used for the rest of our analysis. Fig. 3.4 shows the
fits to the DNA data obtained from the FJC model. The FRC fits are very similar
and not shown here.

From our fitting, we obtain the parameters 5“_ ! = 103 ms and 61 ms as well as

EII = 522 ms and 301 ms for the FJC and FRC chains respectively. As we can see
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Figure 3.4: The FJC fits to experimental values of the longitudinal and transverse
relaxation time of A-DNA measured by Meiners and Quake [27]. In these fits, we used
the Langevin relation to determine the force-extension relation and its derivatives.
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from equation (3.38) the only real difference is in the parallel and perpendicular pulse
velocities, which leads to the conclusion that they have to differ by a factor of about
five. From the fitted data, we can obtain the values of wy to be used in the input of
our theory. This will then be the basic unit of frequency for a given molecule. Along
with the knowledge of the Kuhn length a (which takes the place of the monomer
length b) and the thermal energy kgT we then have a complete specification of the
magnitude of all relevant quantities in our calculation. Using SA = , the contour
length Ly, = 16 pm and a Kuhn length of ¢ = 52 nm [114], we find wg ryjc = 3.8x10*

1

s™ and Wo,FRC — 6.3 x 10* s7!

. We can also use our order of magnitude estimate
for the longitudinal pulse velocity from section 3.2.2 to obtain an estimate for the
transition barrier, () =~ 0.2 eV.

Notice that these results are only for DNA, where relaxation time data is readily
available. However, the knowledge of the relevant parameters in equation (3.38) or
some other phenomenological estimate of the £ will enable the analysis for other
polymers as well. In fact, for a rough estimate, one can simply apply the results

presented here and scale wy using the appropriate contour and Kuhn lengths.

3.3.2 Non-Equilibrium Force-Extension Curves: Gibbs Regime

In its discrete form the master equation (3.3) is a system of coupled first order differ-
ential equations. In Fig. 3.5 we show non-equilibrium force-extension curves for the
FJC and FRC models, varying the rate r of increase of the force. Starting at zero,
we increase the force linearly in time up to fb/kgT = 20 and then decrease back
to zero at the same rate. The force loading rate r, given here in units of wokgT'/b
is varied exponentially. For small r, we find results very close to the equilibrium
force-extension relation for a given model, which can be calculated directly from the
partition functions. As we increase r, the internal molecular relaxations are too slow
to keep up with the increasing force, which means that the whole non-equilibrium
force-extension relation is shifted upward.

When the force is decreased, the molecule remains at larger lengths than the
equilibrium value for a given force f. In fact, for very fast force loading rates, the

molecular length increases further despite the decreasing force. This results in an
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Figure 3.5: The non-equilibrium force-extension relations calculated from the master
equation (3.3) (a) for the FJC model with 150 monomers and (b) for the FRC model
with 100 monomers and a bond angle of 60°. The rates r are given in dimension-
less units (see text) and are used as labels for the curves. Additional (unlabeled)
curves that almost coincide with the equilibrium force-extension relations are for
7 =107%,107° in plot (a) and for r = 107* in plot (b). The force-loading rates r are
given in units of weksT'/b.



49

overall hysteresis that is larger for a larger rate of increase of the force and which is

the obvious signature of non-equilibrium.

More information is available about the non-equilibrium relaxation curves in Fig.
3.5 when we plot the relative length fluctuations 02/L2,, = (L? — fg) /L2 ... These

are also available from the solution of the master equation. They also serve as a check

for our theory, because the one-dimensional approximation to the three dimensional

2

theory requires o2/L2,

to be small. Fig. 3.6 shows some representative traces of the

fluctuations that correspond to the non-equilibrium force-extension curves.

First of all a note on the relative fluctuations in general is necessary. While the
FJC polymer is almost purely Gaussian for small extensions, i.e. it can be modeled
successfully with a classical random walk, the FRC is much stiffer which leads to
larger fluctuations. This difference is observable in both the equilibrium properties
as well as the hysteresis. Not surprisingly, the hysteresis in these higher moments
of the molecular probability density function is much more pronounced than for the
force-extension curves themselves. As indicated above, in order to be in equilibrium
the fluctuations have to be the same for increasing as for decreasing forces. Fig. 3.6
shows that this is a much more restrictive criterion. In fact, when we look at the
r = 107 trace of the FRC model, we see that the force-extension relation practically
coincides with the equilibrium relation. However, the fluctuations still show rather
large deviations from equilibrium. Unfortunately, our numeric method does not allow
calculations below this value for r; numerical precision plays a major role when inte-
grating the master equation with P(L) ~ 0. For that type of calculation, one simply

has to use the equilibrium transfer matrix approach by itself.

Next we will discuss the rates r that have been used in these calculations. The
time variable used in the solution of the master equation (3.3) is dimensionless and
has the form 7 = wgt. We have also renormalized the force f = fb/kgT for the
purpose of our numerical analysis. We can use the quantities derived in section 3.3.1

to shed some light on the meaning of those transition rates. In terms of the variable
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extension curves in Fig. 3.5 for representative traces of both (a) the FJC model and
(b) the FRC chains. Note that the 7 = 1072 and r = 1 curves in plot (a) practically
overlap.
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r shown on the plots in Fig. 3.5, the force loading rates for the two models are

% = 3rnN/s for the FJC model, (3.40)
% = 5r nN/s for the FRC model. (3.41)

When comparing the dimensionless force loading rates between Figs. 3.5(a) and
3.5(b), one finds that the model dynamics of the FJC are roughly one order of mag-
nitude faster than those of the FRC. This can be seen in the displacement of a given
curve from its equilibrium value. However, the same order of magnitude can be found
in the fits to the relaxation time of both models, as shown in equations (3.40) and
(3.41). This enables us to work out a consistent picture of DNA stretching and deter-
mines when one should be using an explicitly non-equilibrium model to understand
experiments. To within an order of magnitude in r, Fig. 3.5 and 3.6 show that non-
equilibrium effects become important when r > 1073, Using those values and the
results from the last paragraph, this corresponds to a force loading rate of about 3-5
pN/s for DNA. We see that both models predict roughly the same magnitude of the
non-equilibrium effects for a given force loading rate. This adds to the confidence in
our results.

An interesting observation from Fig. 3.5 is that the curves resemble their equi-
librium counterparts above a certain critical force, f., if one shifts the force axis
appropriately. This can be explained quite well on the basis of the growth of fluctua-
tions in the non-equilibrium stretching. As pointed out above, equilibrium conditions
require that the AFM cantilever moves slow enough that it samples the molecular
fluctuations available to it. When doing experiments and theory in the Gibbs regime,
these spatial fluctuations are quite large, because (at least in theory) the cantilever
has to respond to all of the molecular motions. As soon as one upsets this fluctuation
envelope, one obtains a new kind of dynamic state where the fluctuations about the
mean position are skewed. In order to establish this state, one needs to pull fast and
at comparatively large forces. However, once this state is established at the end of
the molecule, the system is governed by roughly the same entropic properties as in
the equilibrium case.

Experimentally, the force and position origins are generally chosen by looking for
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the point where the cantilever stops pushing on the surface. The shoulders observed
in Fig. 3.5 look quite similar and we question this practice for high force-loading rates.
While this effect is not very pronounced in the Helmholtz regime, our current results
have a major impact on the interpretation of the low-force regime of the data acquired
by Fernandez et al. [46]. These experiments were done with polysaccharide, rather
than DNA | which means that the absolute force loading rates should be different.
However, the soft shoulder that we calculated for the non-equilibrium curves is well
visible. The force-loading rates in their experiments are between 1 and 3 nN/s, which

is about the onset of the non-equilibrium regime in our theory.

3.3.3 Non-Equilibrium Force-Extension Curves: Helmholtz Regime

Next we have to discuss the Helmholtz regime, where we control the cantilever position
rather than the force directly. Our calculations will proceed as follows. Initially, we
increase the cantilever position D with a speed v, (in units of bwy), starting from zero.
Once some specified maximum position is reached, we decrease it again with the same
speed back to zero. If we encounter a negative force on the way, the calculation is

stopped.

Unfortunately, we cannot calculate the molecular properties when a realistically
stiff cantilever is used, because in this case the exponentials in the transition prob-
ability (3.17) become unacceptably large. We also attempted the integration of the
master equation (3.19) in the k. — oo limit, but that also did not yield any useful re-
sults because the probability distribution P(L) was much too sharp for our purposes.
To avoid these numerical difficulties one can follow the approach outlined by Kreuzer
et al. [32,99] and describe the effects of the cantilever entirely with an effective force
f = k(D — L). The numerical analysis now has to be done in the Gibbs regime.
This amounts to a mean-field theory and would allow us to model systems with much
higher spring constants than in the exact approach. Our calculations show that fix-
ing the force in such a manner leads to unacceptably large length fluctuations (c.f.
Fig. 3.3(b)). The comparison between mean-field and exact calculations is not too

promising.
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Fig. 3.7 shows the results obtained from the calculations with small spring con-
stants. The natural units of velocity are given by wgb; we have these for DNA via our
relaxation time fits. For the FJC model with N = 150, we find wq rijcb = 2 mm/s,
while the FRC fits result in wqrrcb = 3.3 mm/s. This gives fairly consistent results
when we compare with the plots in Fig. 3.7: One should expect to see conformational
non-equilibrium effects when DNA molecules are pulled at speeds above v, = 0.1 or
v =~ 200 — 300 pm/s.

The comparison of Fig. 3.7 to experiments is again not quite straight forward,
because we need to estimate the time scales for each experiment separately. This is
based on the values of b, L., a number for the transition barrier (), as well as the

backbone pulse velocity c;.

For the simple polymer poly(ethylene-glycol) (PEG) these are known quite well
(see Fig. 3.2), so we will use it as an example. In their original work, Oesterhelt
et al. [42] used PEG with a contour length of around 400 nm and a Kuhn length of
a = 7A. The barrier between a helical and a trans conformer is about Q = 50meV
and ¢; = 4500m/s [8,104]. In the framework of our theory, this leads to wy =
1.6 x 105~ L. The onset of the non-equilibrium effects at v, = 0.1 in Fig. 3.7 would
then correspond to a pulling velocity of v =~ 0.1m/s. This is well within the range
of the experimental values. If one were to do experiments in the Gibbs regime,
force-loading rates corresponding to 7 = 1072 are about 10uN/s. Both of these are
well above the current limits of AFM spectroscopy, which means that it is a safe
assumption to treat PEG molecules as equilibrium systems, as has been done in

experiments by Kudera et al. [72].

A rather nice demonstration of the difference between the Helmholtz and Gibbs
regime is the plot of the force fluctuations (Fig. 3.8) corresponding to the force-
extension curves presented above. These are the important fluctuations in the Helmholtz
regime. Since our theory has the length as stochastic variable, we have to calculate
the force fluctuations from equation (3.25). The qualitative difference to the Gibbs
regime fluctuations in Fig. 3.6 is striking. First of all note that there is hardly any
hysteresis and that the curves almost completely superimpose. The plateau for the

low-extension region is due to the cantilever, which limits the overall fluctuations of
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the system. In this regime, the term exp(—Bk.(D — L)?/2) dominates not only the
equilibrium probability density (3.16), but also the transition rates (3.17) and hence
the whole master equation. In fact, one can show that the classical fluctuations of
a single cantilever that is maintained at some finite extension /. is always equal to
(07) = kcksT [30]. The high-extension regime of the fluctuations is controlled by the

polymer, which provides the limiting factor in the system in this region.

By controlling the force in the calculation for the Gibbs regime, this effect is not
present at all. The effects of the polymer on the overall fluctuations of the system only
come into play once the molecule is stretched far enough such that its fluctuations
become the limiting factor. From the equilibrium trace in Fig. 3.6 we can tell that this
becomes the case around L/Ly.x = 0.8 — 0.9, which is indeed where the fluctuations

in the Gibbs and Helmholtz regimes are the same.

We would also like to point out the slight increase of Zf_} at the beginning of some
curves. This corresponds to the high velocity (topmost) traces in Fig. 3.7. This effect
naturally appears when the molecule is taken far out of equilibrium and it can not
reach all its natural equilibrium fluctuations fast enough. The fluctuation envelope
lags behind and this leads to a broadening of the instantaneous molecular probability
distribution P(L, ).

In order to shed light on the properties of stiffer cantilevers we can solve the master
equation for short times only and investigate what happens at short extensions. Fig.
3.9 shows such results for the FJC chains only. These traces have been calculated
for a velocity v = bwy, because that way the probability density functions change
quickly so that the numerical algorithm does not quite break down for the short
times considered here. The conclusion from these calculations is quite obvious. The
effect of a stiffer cantilever is a more extreme increase of the force at short length
scales. This is very interesting as the cantilevers considered here are still much softer

than those used for typical experiments.

To conclude this section, we want to discuss the feasibility of observing non-
equilibrium effects. The force loading rates currently achieved in single protein pulling
experiments are about 3 nN/s [46], which is well into the non-equilibrium range for

DNA, but not necessarily for other systems. Theory suggests that pulling speeds of



56

:—-A
[\
H

[y
T

> b/, T

2

f
e

o
[l

e
o
OIIITI|III]|IIII
N PR

o
N

o

Force fluctuations <o

T s s
Length L/L

Figure 3.8: The force fluctuations that correspond to all of the force-extension curves
in the Helmholtz regime given in Fig. 3.7. There is hardly any hysteresis in these
curves, because they are almost completely dominated by the properties of the can-
tilever, which has a spring constant of k., = kg7T'/b%.

the order of 10 mm /s should be possible. This figure is based on a cantilever resonance
frequency of tens of kHz and a z range of a few microns. Anything faster would be

prevented by the cantilever resonance.

3.3.4 The Moments of the Transition Probabilities

In this section, we will discuss the moments of the transition probabilities as they
occur in the macroscopic equations of motion, Eqns. (3.28) to (3.31), for the one-
dimensional version of our model. In Figs. 3.10 and 3.11 we show the first and second
moments, as a function of relative extension, for our FJC and FRC models.

From equations (3.28) and (3.30) we see that the first moment in each regime
essentially corresponds to a velocity. In fact, this velocity term is the greatest influ-
ence in the region near equilibrium where ay and (; are constant. The contours of
the canonical moments of the transition probabilities correspond almost exactly to
the non equilibrium force-extension curves presented above, since the velocity is the

controlling parameter in the corresponding calculations. In this case, the fluctuations
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Figure 3.9: The initial stages of constant velocity FJC (N = 150) force-extension
traces for stiffer cantilevers. The pulling velocity in all cases was v, = 1. The spring
constants k. are in the natural units of kg7'/b%. For comparison, cantilevers that are
typically used in experiments start at around k., ~ 100kgT'/b? at room temperature.

and corrections from the gradients of (; only have a small effect. This becomes es-
pecially clear when we remember that the magnitude of the fluctuations is controlled
by the cantilever (see last section).

Notice that the {’s contain the key to the rapid force increase in some of the plots
in Fig. 3.9. The key is in the approximate relation v ~ (1. If we regard a pulling
experiment as moving through the f(£) plane in Fig. 3.10, the molecule has to reach
a given (; contour as fast as possible. The fastest way to do so from the origin is to
move vertically upward, that is at constant L = 0. Once the curve has been reached,
it can be traced throughout the rest of the experiment and we see exactly what has
been shown in the previous section.

The situation changes for the Gibbs regime. There is no longer a one-to-one
correspondence between the force-extension curves and the contours in Fig. 3.11,
although equations (3.28) and (3.29) can still be solved if we know o4(L, f) and
as(L, f). In the Gibbs regime we control the applied force with some force-loading

rate r. At each point in time, some cantilever velocity v, is required to maintain the
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required force profile. This velocity v, roughly corresponds to the instantaneous value
of a1, while again the fluctuations and a5 only play a minor role in this approximation.

One can now solve the approximate equations (3.28) to (3.31) directly. This
approach works for small extensions and very close to equilibrium. However, as
one moves further away from equilibrium, the higher moments ;-5 and (;>o become
more important. In this light, it is much simpler to solve the master equation directly,
although the results presented in this section provide a good intuitive understanding

of the situation.

3.4 Discussion

In this work we have developed a theory of non-equilibrium polymer stretching in
the entropic regime. We use a master equation approach with the length as our
stochastic variable. We derived the transition probabilities in both the Gibbs and
Helmholtz regimes and showed how they can be obtained from relaxation time mea-
surements. We then calculated force extension curves in and out of equilibrium for
two model polymers, a FJC molecule with 150 monomers and an FRC molecule with
100 monomers.

Our calculations show that one should expect non-equilibrium effects to appear
when pulling at velocities of the order 0.1bwg or greater. Alternatively, force loading
rates of about 10™2wqkpT /b will generate similar effects. For comparison with actual
systems, the Kuhn length a effectively replaces the monomer length b. We also
need the transition frequency wg, which can be estimated from equation (3.15), wy =
¢ exp(—BQ)/Lmax. We have shown in section 3.3 that wy can vary over several orders
of magnitude, from 10*s~! for \-DNA to 10%s~! for PEG.

We find that the entropic dynamics of shorter polymer chains are much too fast for
current AFM experiments to register non-equilibrium effects. However, this changes
with long proteins that have contour lengths of the order of many microns. In those
cases, equilibrium theories can no longer be applied with force loading rates and
pulling velocities of about 5pN/s and 30um/s respectively. The difference in the two
cases is already manifest in the empirical dependence of the relaxation time on the

monomer number, 7 ~ N2, One should in fact expect that the longer molecule has
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much slower dynamics.

A final point has to be made on the fluctuations, particularly in the analysis of
the Gibbs regime. Our whole theory is based on the fact that a cantilever can follow
the molecular fluctuations on a similar time scale. This should practically cancel
the effect of the cantilever itself. As shown by Kreuzer et al. [32], one can achieve
these conditions much more easily with a very soft cantilever. Still, the question
remains whether or not it is possible in practice to follow these fluctuations one by
one. Once again, the relevant quantity here is the frequency wy. One should only
be able to follow the fluctuations if the cantilever position can be monitored with
a frequency wy ~ 10* — 10% s7! for A-DNA. If this can be achieved, one should be
able to do measurements on polymers in the Gibbs regime in order to verify some of
the results presented here. Again, it might be easier to do this at low temperature.
Notice that the force fluctuations that correspond to the stiff cantilever actually have
been observed for some systems, see for example Ref. [126], and have been shown to
yield additional interesting information about the elastic properties of polymers [10].
Current work in progress is the microscopic derivation of the transition probabilities
including solvent effects. We are also looking at the derivation of the Fokker-Planck

equation.

3.5 Appendix: Theory from the Conformers

In this appendix we briefly outline the approach to non-equilibrium phenomena in
the stretching of a polymer starting from the level of probability functions for the
conformers themselves. Let P;(T, L,f,t) give the probability that under a force f the
i" conformer (of end-to-end length L) is realized at time ¢. Conformers are local
minima in the electronic energy surface of the polymer molecule in a space spanned
by 3™V coordinates of its atoms where NV is the number of monomers and n is the
number of atoms per monomer. This energy surface can be mapped for short polymers
(invoking a number of criteria) using first principles calculations based, for instance,
on density functional theory as recently demonstrated for poly(ethylene glycol). The
result is a set of energy curves, F;(L), for the it \conformer stretched to a length

L around its minimum at L; and also all the vibrational and rotational frequencies.
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Likewise, transition states can be identified that lead from one conformer to another.

In equilibrium the conformer probability function is given by

Pieq(T, L, f) — exp[_ﬂEi(L)] exp[ﬁf ) L] (3.42)

exp[—fg(T, f)]

To study non-equilibrium effects we again assume that the stretching the molecule

can be described by a homogeneous Markov process satisfying a master equation

(%B-(T,L,f; ty = [W (L5, L f) P(T, L, £;8) — W (5,154, L; £) B(T, L, £;1)]..
Y
(3.43)
One acceptable form of the transition probabilities is given by transition state theory
2L, L)
z(L)

where z;(L) and zﬁ(L’ ,L) are the partition functions accounting for the internal

WL, i) = exp[-BEH(L, L) — Bi(L) + 558+ (L'~ L)), (3.44)

vibrations and rotations of the polymer around the minimum of the i-th conformer
and at the transition state of energy E;; to the j'® conformer. Some of these numbers
have been calculated for short chains, for instance n-alkanes and oligo-ethylene.

It should be obvious that all this information needed to specify the transition
probabilities (3.44) can at best be obtained for short chains [99,112] as done very
successfully in recent years in the study of proteins [117-119].

To make the connection with the approach presented in this paper we must invoke
simplifying assumptions. In particular, if the conformational conversion for a given

length and conformer is fast on the time scale of stretching we can write
P;(L, ;1) = exp[—BE;(L)] P(L, f; 1) (3.45)

and the master equation simplifies to
SPL 1) = 32 W (50 PIU,£50) — W (L5 L6 PL,E1)], (346
L/
where

W (i, L; 5, L/ ) exp[-BE; (L'
W) = S (347

is the transition probability specified phenomenologically at the beginning of this

work.



Chapter 4

Non-equilibrium Dynamics of Single Polymer Molecules:
Relaxation Close To and Far From Equilibrium

This chapter has been published in the International Journal of Quantum Chemistry
(vol. 116, 2953-2959, 2006) as an article with the same title. The authors are
Felix Hanke and Hans-Jiirgen Kreuzer, Felix Hanke’s contribution to this work is
the idea for the approach, all numerical and analytic calculations and about 85%
of the manuscript preparation. Permission to use this work has been granted by
the International Journal of Quantum Chemistry, a copy of the permission letter is
attached to this thesis.

Abstract

A master equation approach is used to study the relaxation of single polymer molecules.
For relaxation close to equilibrium a Fokker-Planck equation is derived via a Kramers-
Moyal expansion. Far from equilibrium two scenarios are studied: (1) an initial force
that stretched the molecule to a certain length is suddenly released and the time
evolution to the final force-free equilibrium is followed. (2) A force of a certain mag-
nitude is suddenly applied to a molecule and the time evolution to the final equilibrium
stretching at that force is followed. Initial transients, dominated by many time scales,
are followed by a roughly exponential decay. Final approach to equilibrium is again

exponential but on a time scale many orders of magnitude slower.

4.1 Introduction

A microscopic understanding of the mechanical properties of individual natural or
synthetic polymer strands is required to model and predict their function in biological
or technical processes, e.g. DNA replication, muscle contraction, or the rheological
properties of polymers. Experimentally, single molecule force spectroscopy with the

Atomic Force Microscope or with optical tweezers offers a versatile and powerful

63
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experimental tool to measure the extension of a single molecule as a function of
applied force in different environments. The method allows to observe the binding
forces between different receptor-ligand systems [107,108] and the unfolding of protein
domains [19,23], or to measure the elastic properties of individual macromolecules
[20,42]. Likewise, the scanning force microscope, optical tweezers and near-field
magnetic tweezers have been used to measure the elastic response of chromosomes
[109], to study formation of DNA loops by an enzyme [110], and to investigate DNA-
binding molecular motors (RNA polymerase, DNA polymerase, etc.) [111], to reveal
the dynamics of these molecules during translocation, as well as the effect of external

force loads on their performance.

The ultimate aim of polymer science must be the explanation of the macroscopic
properties of a long repetitive chain molecule in terms of the structural properties
of its subunits. To proceed from the microscopic details of the quantum chemistry
of these subunits to a comprehensive description of the long chain a series of well-
defined approximations must be invoked that at any stage can be subjected to rigorous
scrutiny. Such a program of simplifications has been in place in polymer science for
many years [4], but only recently has it become practical to implement this procedure
from first principles [50,99,112].

Macroscopic properties of immediate interest are the force-extension curve and the
corresponding fluctuations of force and length of the polymer molecule. To ensure
that a measurement of the force-extension relation of a polymer molecule yields the
equilibrium equation of state the rate of change of the external force must be slow on
the time scale of the internal relaxation of the polymer chain, which is readily checked
by a sufficient variation of this rate. If the rate of increase of the external force is such
that equilibrium cannot be maintained internally, non-equilibrium effects are accessed
which can be used to study the kinetics and, ultimately, the dynamics of the polymer
chain. As long as one stays close to equilibrium relaxation effects can be studied.
These same dynamics will then also manifest themselves far from equilibrium in the

form of hysteresis and nonlinearities.

Going beyond simple approaches to the dynamics of polymer chains such as the

Rouse and Zimm models [1, 5], a mesoscopic theory has recently been developed
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which treats conformational changes in the polymer as a Markov process. Taking
the end-to-end length as the stochastic variable, one sets up a master equation for
which a phenomenological form of the transition probabilities is assumed that re-
produces experimental equilibrium relaxation times. Because the transition rates
in the master equation must satisfy detailed balance they will contain information
about the equilibrium properties of the chain. For the calculation of the latter we
will use the Rotationally Isomeric State (RIS) model; in the previous paper two sim-
ple models, namely the Freely Jointed Chain (FJC) and the Freely Rotating Chain
(FRC) models, were used and the generalisation to more detailed polymer models
is straightforward, albeit numerically more involved. The RIS model allows for the
chain segments to assume only a discrete set of torsional angles (three in most cases
for the trans, gauche(+) and gauche(-) conformers), while bond lengths and angles
are fixed. In addition one introduces nearest neighbour interactions of which we only
keep the pentane interaction for a gauche defect.

We use a Green function method [6,7,11] to obtain the equilibrium properties
of these models in the Gibbs ensemble. This method is based on the Chapman-

Kolmogoroff equation for a monomer’s Green function G(7, ')
G(i +1;T) = / dr' T(T, TG (i, T") (4.1)

which relates monomer 7+ 1 to monomer 7 via a transfer operator 7 in configuration
space {I'}. The integration of the final Green function over all states gives the par-
tition function Z(L,T, N). In Figure 4.1 we show, for future reference, the partition
function for an alkane chain with 300 monomers.

The paper is organised as follows: in the next section we summarise the pertinent
features of the master equation approach specifying the specific form of the transition
rates in the master equation and derive the macroscopic equations of motion that cou-
ple the time dependence of the average length of the polymer to the non-equilibrium
evolution of the fluctuations. We then describe how to calculate the relaxation times
close to equilibrium and give a derivation of the Fokker-Planck equation starting from
the Kramers-Moyal expansion. Section 4 presents results for relaxation far from equi-
librium treating the cases of sudden release of a stretched molecule and of sudden

stretching from the force-free situation. We conclude with an outlook to future work.
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Figure 4.1: The partition functions for RIS chains with 300 monomers and different
temperatures as a function of length as calculated from the Transfer Matrix method.

4.2 Master Equation

To set the stage for the study of fast relaxation phenomena in single polymer molecules
we summarise the pertinent features of the mesoscopic approach of our previous paper.
In a coarse-grained approach one takes the end-to-end length of the polymer as the
stochastic variable and treats the stretching behaviour of single polymer molecules
as a Markov process that is represented with a master equation. One introduces a
function P(L,f,t) that gives the probability that at time ¢ the end-to-end length L
is realised under a force f. Its value in equilibrium is given by
Z(N,L,T)exp(ff - L)
exp[—Bg(T, f)]

g(T,f) is the free energy in the Gibbs ensemble. Away from equilibrium we postulate

Peo(L,f) =

(4.2)

a master equation

%mhﬁ@=%/&ymamwwwwﬁ_wmuﬁwmmm. (4.3)

The transition element W (L', L;f) gives the probability per unit time that the
length of the polymer changes from L to L' under a force f. The length of a single
monomer is b. These transition rates can in principle be calculated from the micro-
scopic dynamics of the coupled polymer-solute system. However, in the recent paper

a phenomenological approach was pursued in which their form is postulated based on
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simple ideas, to be

ﬂ ﬂA 2 Z(LlaNa T)
rT. _ e (T _ =T
W(L',L; f) = woexp [2f (L' - L) 7 (L' - L) Z@L.N.T) (4.4)
This can also be written as
LI
WL L £) = w exp [g-f (L —L) - %A(L' _L2 4 g / £(L") - dL”] . (45)
L

The main requirement for the transition probabilities is that they satisfy detailed
balance. The parameter A controls the width of effective transitions. The dynamical
trigger of the length changes, contained in wq, are transverse and longitudinal sound

waves that travel along the backbone of the polymer chain; one finds that

wp = y(c - f') exp[—BQ]/ Limax (4.6)

where ¢ = (¢, c1,c1) contains longitudinal and transverse sound velocities and fis
a unit vector in the direction of the force, and v is an accommodation coefficient
to account for the probability that not all attempts lead to a length change and
also incorporates hydrodynamic effects. The energetic barrier between two different
conformers is denoted by ). The Gaussian dependence of the transition probability
on |L' — L| makes sure that the end of the molecule cannot jump over long distances.

The non-equilibrium force-extension relation is given by

— 1
Lt 1) = 5 / &L LP(L, £,1) (@7)
and its equation of motion is obtained from (4.3)
dL
L (e, (48)

We define the mean-square fluctuations of the molecular end-to-end distance as a
second rank tensor

(%) = (L) - wyw). (4.9)

In a coordinate system where the force points along the z-axis, this tensor is diagonal.

In this case, the equation of motion for an element is
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For equations (4.8) and (4.10) we have defined the n'® moment of the transition
probabilities,
& (L, f) = 613 / &L (LU - Ly"W (L, L; f) (4.11)
as a tensor of rank n.
If one only considers the polymer distribution along the force axis, the problem
reduces to one dimension and the transition probabilities have the form

Z(N,L',T)

ZNLT) (4.12)

W(L',L; f) = wp exp [ﬁg(L’ - L)——(L' - L)2]
This corresponds to the approximation that the additional two integrations in equa-
tion (4.3) have roughly the same effect for all times. We have shown that this ap-

proximation corresponds to the limit of small length fluctuations o2, < L2,,..
4.3 Relaxation Close to Equilibrium

We first use the master equation approach to study relaxation close to equilibrium.
In our previous paper we extracted longitudinal and transverse relaxation times from
the equation of motion (4.8) by setting L = Le, + 6L and expanding around Le, with
& (Leg, f) = 0 so that

dgtLi aa”a(z_jq’ f) fE (4.13)

= —1'5“L_ (4.14)

T;

This defines two relaxation times 7 and 7 in the directions parallel and perpendicular
to the applied force. To evaluate the moments of the transition rates analytically we

introduce r = L' — L and rewrite expression (4.12) as
A r
W (r,L; f) = wo exp [—%—2—1“2 + —g— (fr — / feq(r' + L)d'r’)] . (4.15)
0
It is now fairly straight forward to approximate ay(L; f) via the method of steepest
descent. Inserted into equation (4.14), this yields the inverse transverse and longitu-

dinal relaxation times as

1 of
o §||§ (4.16)
Lo /Lo (4.17)
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In our theory, the longitudinal and transverse friction parameters have the explicit

form

3

TGl pg_ b
4 Liax (BA)3

Notice that we need to differentiate between longitudinal and transverse pulse veloc-

g/ = (4.18)

ities due to the different nature of the two relaxation modes.
Next we consider the derivation of the Fokker-Planck equation. To this end we

employ the Kramer’s Moyal expansion, truncated to second order,

P(L,1) :Z n! dLn [P(L)an(L, f)]zm(%/-[P(L)al(L, f)]—l—%%[P(L)%(L:f)]

n=1
(4.19)
Using the expansion (4.19) one finds straightforwardly
OP /T wob® 0°P ﬁ wob oP
Bt~ 1 (ayrarr T4 gaprY T3 (4.20)

Note that this Fokker-Planck equation describes correctly the relaxation close to

equilibrium and also gives the correct equilibrium distribution.

4.4 Relaxation far from Equilibrium

In this section we look at two situations, one in which the external force that has
stretched the polymer to a given length is suddenly released and the other situa-
tion where the force is suddenly applied to a polymer; sudden means fast on the
timescale of the internal relaxation of the molecule. For both situations we solve the
master equation starting from initial conditions of equilibrium in which the molecule
is stretched under a given force (which may be zero) with the transition probabili-
ties calculated at a different, final force to which the molecule is relaxing. If initial
and final forces are substantially different then all eigenvalues, or time scales, of the
transition matrix will contribute in the time evolution. The aim of this study is to
identify initial transients, possible regimes dominated by a single time scale leading
to intermittent exponential behaviour, and approach to the final equilibrium. All the
calculations have been done using the RIS model with 300 monomers. In order to

estimate the attempt frequency, we used a transition barrier of 0.1 eV and a velocity
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Figure 4.2: The RIS relaxation data (N = 300) for several different temperatures is
shown on a logarithmic scale. Each set of curves contains curves for the forces f =
10, 30, 60, 100,and 150 pN (bottom to top within each set for a given temperature).

of sound of about 4500 m/s. The bond length b = 1.54A was chosen appropriately
for alkanes as were bond angles and conformer energies. See reference [9] for details.

As a first case we looked at the situation where initial and final forces were close
so that relaxation is near equilibrium. What we find, not surprisingly, is that the
numerical solution of the master equation is dominated by a single time scale, i.e.
an exponential approach to the final equilibrium, with a relaxation time that agrees
numerically with our simple analytical results (4.16) obtained by an expansion of the

transition probabilities.

4.4.1 Sudden Release

We first discuss the situation of a sudden release of the molecule from a given force f,
see in figure 4.2. The initial time evolution shows over exponential transients where
many relaxation modes contribute. This is followed by a long, almost pure exponential
decay. A fit to this regime yields the non-equilibrium relaxation time for the molecule.
Note however, that this does not correspond to the equilibrium relaxation mode.
This is most obviously demonstrated when we look at the length fluctuations. As
indicated in previous work [32,33,106], the fluctuations are extremely important
when one wants to understand stretching processes completely. In the situation of
sudden release, the molecule retains its narrower length distribution throughout the

release process, which means that the fluctuations are controlled by the previous
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the release shown in panel (a).

history of the release process. This is demonstrated in figure 4.3 (a), which shows
that the non-equilibrium fluctuations are always less than those in equilibrium. We
also show some intermediate probability distributions in figure 4.3(b) from which one
can see that the probability distribution of the molecule retains a roughly Gaussian
shape. Deviations from this form are important but only start to occur in the wings of
the distribution several orders of magnitude below its maximum. To understand this
remarkable feature a calculation of the eigenvalue spectrum of the transition matrix
is needed from which the density of states can be extracted and also the distribution
of weights of the individual exponential terms.

This can be done quite easily by rewriting equation (4.3) as

B(t) = W - P(1). (4.21)

Here P contains the probability density function for the whole molecule, while the
operator W is obtained from the original transition probabilities as

1

W (L', L)=w(' L) -6 - L) / dL"W(L", L) (4.22)

We now have the Master Equation as a simple first-order differential equation, which
is solved by diagonalisation for a given value of a force. The relaxation time for a

given eigenmode corresponds to the inverse eigenvalue of the operator (4.22). From
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the left and right eigenvectors of W one can subsequently obtain the weights of the
individual exponential terms in the time evolution.

Final approach to equilibrium is again exponential but on a time scale that is
many orders of magnitude slower in agreement with relaxation close to equilibrium.

Note that the initial force has virtually no influence on the relaxation behaviour.

4.4.2 Sudden Stretching

Next is the situation where the molecule is initial unstretched, ¢.e. where no force is
present, and the force is suddenly raised to values from 10 to 150 pN. Figure 4.4(a)
shows the result for three different forces, each at four different temperatures. In
each case, the molecule relaxes to some equilibrium length Le,, starting from zero
extension. Not quite unexpectedly, the higher forces reach their equilibrium much
faster. The same goes for higher temperatures. In order to gain some insight into the

non-equilibrium relaxation times involved in this process, we replot the data in the

t=rn (1 - LL(Z)) . (4.23)

form

The slope of such a plot corresponds to the relaxation time 7 at a given extension
L(t). Some of these results are shown in figure 4.4(b) for a force f = 10 pN. One can
clearly see when the molecule approaches equilibrium (corresponding to 7 = 0), at
times longer than 35 us depending on the temperature.

Once again we see that there is no single relaxation time, but a superposition
of quite a number of relaxation modes. The striking feature of all the data is how-
ever, that there is one dominant relaxation mode that does not correspond to the
equilibrium relaxation time 7.,. We hope to gain more insight into this feature by

calculating the relaxation modes directly from our Master Equation.

4.5 OQOutlook

In this paper we have used a master equation approach to study the relaxation of
a polymer molecule far from equilibrium for two situations, namely when a force

is suddenly reduced to zero or increased from zero. Not surprisingly, the complete



[y
LN

°

—_

LT
-

5 -
A -
3 -

vt
Lt

-
-

o
in

Length per monomer [A]

RIS, N=300]

) 6 B
Time [us]

Time [ps]

80

N
(=)

IS
<

73

(=]
(=

F RIS, N=300

[ f=10pN

- — T=300K
- -- T=350K
- T=400K
F -+ T=450K

———— -]
-

5 10
In[1-LUYE, ]

Figure 4.4: (a) The relaxation data for a RIS model with an instantly applied force f.
There are three sets of data for f = {10pN, 60pN, 150pN}, each for the temperatures
indicated in the legend. (b) The data for f = 10pN has been replotted to facilitate
the extraction of the relaxation times.

eigenvalue spectrum of the matrix of transition probabilities contributes, in partic-

ular in the initial regime of transients but there is also a long intermediate regime

dominated by a single time scale. To go further we intend to calculate the eigenvalue

spectrum of the transition matrix and extract the density of states. Together with

the distribution of weights of the individual exponential terms this will hopefully lead

the way to find simple approximation schemes.



Chapter 5

Breaking Bonds in the Atomic Force Microscope: Extracting
Information

This chapter has been published in Biointerphases (vol. 1, pages 11-17 ; 2006) as an
article with the same title. The authors are Felix Hanke and Hans-Jiirgen Kreuzer.
Felix Hanke’s contribution to this work consists of all calculations, the details of
the Gibbs and Helmholtz approaches as well as 75% of the manuscript preparation.
Permission to use this work has been granted by the editor of Biointerphases, a copy

of the permission letter is attached to this thesis.

Abstract

A theoretical framework is developed to analyze molecular bond breaking in dynamic
force spectroscopy using Atomic Force Microscopy (AFM). An analytic expression of
the observed bond breaking probability as a function of force is obtained in terms
of the relevant physical parameters. Three different experimental realizations are
discussed, in which (i) the force is increased linearly in time, and (i7) the AFM
cantilever is moved at constant speed, and (i) the force is held constant. We find
that unique fitting of the bond parameters such as the potential depth and its width
is possible only when data from rather different force-loading rates is used. The
complications in the analysis of using the constant velocity mode arising from the

intermediate polymer spacer are discussed at length.

5.1 Introduction

The molecular interactions between small molecular aggregates can be manipulated
in nanoarchitectures to construct a molecular switch with bond forming and bond
breaking providing the on/off states of a switch, respectively. For a molecular bond
with a binding energy E extending over a distance d the force needed is of the order

of E/d. Thus controlled bond breaking can be achieved at temperatures T' < E/kp
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provided the applied force is controlled to better than kgT'/d. For a covalent bond we
have E ~ eV and d ~ A so that the force is of the order of nN and must be controlled
at the level of pN.

Bond breaking implies the separation of the two molecular fragments along their
reaction coordinate. For a diatomic molecule AB the reaction coordinate is the
A — B distance and the energy surface is the intra molecular potential as a function
of that distance. For a molecular switch such as the bis-terpyridine moiety TP-Ru-
TP separating into TP-Ru and TP fragments [72] their separation involves rotations
relative to each other and changes in their internal structures so that the reaction
coordinate is to be understood as the minimum energy pathway in a multidimensional
coordinate space in which the center of mass separation with local adjustments in
relative orientation is the dominant one. Excitations in the rotational and internal
vibrational degrees of freedom extend the reaction coordinate into a multidimensional
valley in the free energy surface. The latter can and has been calculated for many
systems by first principles methods of quantum mechanics. For a simple molecular
bond the free energy curve along the reaction coordinate has just one minimum of
depth F and width d [81]. For more complex bonds that may entail several unfolding

steps before breakage further minima at larger separations appear [23].

Experimentally controlled bond breakage has been achieved with laser tweezers
and with the atomic force microscope (AFM). A typical experiment using single-
molecule force microscopy is the recent study of the TP-Ru-TP system [72] in which
the TP moieties were first linked to a poly(ethylene glycol) spacer which in turn was
attached to the AFM cantilever. Similarly the spacer of a mono-complexed TP-Ru3+*
was attached to a suitably prepared surface. In the course of the AFM experiment, the
non-complexed moieties on the tip were brought in contact with the mono-complexed
units on the surface resulting in the formation of a bonded bis-terpyridine moiety, TP-
Ru?*-TP, in which the Ru atom is reduced. Withdrawing the tip first stretched the
spacers and eventually lead to the breaking of one of the Ru-TP bonds. In a typical
experiment the cantilever speed was around 120 nm/s which lead to average bond
breaking forces of the order of 100pN and a statistical width of the force distribution
of the order of 50 pN. At this pulling speed, the cantilever forces the system away
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from equilibrium so that the distribution of bond-breaking forces depends strongly
on the velocity used.

Several studies have been published that model dynamic force spectroscopy as
described in the last paragraph. An initial molecular dynamics study of bond breaking
in proteins [90] suggested that it might be possible to model the reaction paths exactly
for extremely fast loading rates or pulling speeds. The most widely cited approach
to model this type of experiment was put forward by Evans and Ritchie [86], who
used a simplified form of the bond potential in order to calculate the loading-rate
dependent breaking probability. Various authors have since extended this model
taking into account rebinding [82], multiple strands [96], specific force profiles [91],
and to describe experiments with a constant force loading rate [88,127]. A lot of data
has been analyzed recently with the help of Monte Carlo simulations [89].

A problem that has not received enough attention concerns the uniqueness of
modeling any data for the purpose of extracting underlying microscopic parameters.
This will be done in this paper by setting up an analytic theory, based on previous
work [127], that can explain breaking force distributions and can be used to extract
the relevant physical parameters, such as activation energies, attempt frequencies and
bond lengths, from experimental data. We will delineate a set of criteria to ensure
uniqueness of such a procedure. Concentrating on bond breaking with the AFM
we examine the different experimental modes including the constant velocity [72], the

constant force-loading rate, or force ramp [46], set ups, and the force-clamp mode [23].
5.2 Theory

We treat bond breaking by an external force as a thermally activated process for
which we write down an Arrhenius rate equation for the probability, P(t), that the

molecule is still intact at time ¢ [127]

% = —Aexp[-BAV(f)]P. (5.1)

Here AV(f) is the activation energy or energy difference between the free energy
minimum of the bond and the barrier to be overcome in bond breaking under the

influence of an applied force, see Fig. 5.1. The prefactor A contains information
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Figure 5.1: The bond potential under an external force (solid line) is the linear
combination of the unperturbed Morse potential (curved dashed line) and an external
force Vipree = —f(x — ) (straight dashed line). The resulting force-dependent barrier
is shown as AV.

about the changes in entropy due to the breakup of the molecule and also about the
internal energy re-distribution into the bond that eventually breaks. According to
transition state theory it is given by A = kvq*/q where v is the attempt frequency,
the accommodation coefficient and ¢*/q the ratio of the internal partition functions
of the activation complex to that of the molecule in the initial state. In the simplest
scenario v can be interpreted as the attempt frequency to break the bond i.e. roughly
that of the oscillations around the minimum of the bond potential, which in vacuo is
given by

_ 1 2vy?
S or u

v

(5.2)

where p is the reduced mass of the two fragments and V4 the maximum depth of the
potential. The frequency v is typically around 10*2s~! but it is drastically reduced in
a liquid mostly due to solvation effects. In addition, the accommodation coefficient
is typically much smaller than unity for a reaction in a liquid and the ratio of the

partition functions is significantly smaller than unity so that one expects A < v.
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What is usually measured in an experiment is not the probability of the bond still
being intact at time ¢ but the probability that the bond is broken at time t, Py(t) =
1 — P(¢).

In the force ramp mode, the force f is increased linearly in time with a force

loading rate «

f=fo+at (5.3)

Eliminating ¢ in favor of f we rewrite the Arrhenius rate equation (5.1) as

dP A
i =g exp[~BAV(f)]P, (5.4)
which can be solved analytically to give
A f ! !
PU) =exw |5 [ ewt-pavirir| 55)
or t
P(t) = exp [——A/ exp[—BAV (fo + at’)]dt’] : (5.6)
0

We obtain the distribution of bond breaking forces by taking the derivative of
Py(f) = 1— P(f). Its maximum gives the most probable bond breaking force, and is
obtained by equating the second derivative of (5.5) to zero, which yields

dBAV
df

= -2 expl-BAV ()] 6.7

Io

Likewise, we calculate the width of the breaking force distribution by setting the third
derivative equal to zero.

To go further analytically we need to specify the bond potential V'(z) to obtain
AV(f). For a simple bond the Morse potential is known to capture its essential
features including the all important dissociative state at large separation (which a
harmonic potential obviously does not). In the presence of an external potential it

reads
V(z) = Vo{exp[-2v(z — z0)] — 2 exp[—y(z — 0)]} — f(z — 20) (5.8)

Here y~! is the range of the potential, —V; its depth and z, the position of its

minimum. From the force-dependent local minimum and maximum of the potential
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(5.8) we can calculate the dissociation barrier
AV(f) = Viax — Vinin
= —flzg —z-) + Vo {exp[-27(z4 — zo)] — exp[-2y(z- — 20)]
—2exp[—(zs — 20)] + 2 expl—y(a— — z0)]} (5.9)
The exponential argument is given by

Y(zy —x9) =In2 —1In [1 Fq/l- %} (5.10)

Note that the barrier is not dependent on zg. fmax = YVo/2 is the maximum force at
which the barrier goes to zero, which however can only be reached by applying the

force adiabatically at zero temperature. Explicitly we get for the barrier

AV/Vy=1/1—f — ftanh ™ 4/1— f, (5.11)

where f-—- f/ fmax- One can show that this function can be approximated to within

a few percent over its complete range 0 < f< 1 by
AV ~ V(1 - f)% (5.12)

It turns out that the approximation (5.12) is remarkably good for a variety of possible
bond potentials, as long as one chooses V; to be the depth of the unperturbed potential
and defines the dimensionless force in terms of the maximally possible force for a given

potential. For example in the case of a Lennard-Jones potential

V(z) = 4e [(w_‘_’%)m— (w_‘_’xo)(s} (5.13)

we would have Vy = ¢ and fuax = (7/26)7/%(144¢/130). A cut-off harmonic potential

as it is used in the Ritchie-Evans model satisfies equation (5.12) exactly, as we show

in Appendix 5.8.
The form (5.12) allows us to do the integral in our force distribution (5.5) explicitly
to find

P(f) ~ exp [—i\/ﬁi:ofmax {erf(\/ﬁ_v;) — erf[\/BVo(1 — f)]}] : (5.14)

2a
The most probable breaking force f; is calculated from from the equation
A
oo A v — 20y, (5.15)

YWo  4Ba
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Figure 5.2: (a) Breaking force distribution dP(f)/df for three potential depths
(as shown by the colours) and for three force loading rates & = a/(yAVp) =
10719,107°,10! (left to right within each group). Notice that the peak for & = 101
would be so low that all systems essentially dissociate at zero force, see plot (b). (b)
Most probable breaking force and width of the force distribution as a function of force
load rate for three potential depths (all in dimensionless form).

5.3 Results: Force Ramp

The rates dPy(f)/df = —dP(f)/df, or the breaking force distributions, are shown
in Fig. 5.2(a) for three potentials and three values of &@ = a/(yAVy) =1, 1075, 10710
and vy = Vu/kgT = 20, 40, 60. The shapes of these curves are certainly in qualitative

agreement with the experimental results, including their slight asymmetry.

To get a quantitative understanding we plot in Fig. 5.2(b) the most probable
breaking force and the width of the force distribution as a function of &. From (5.15)
we see that as & — oo the most probable breaking force ﬁ, goes to 1. This occurs
either if the loading rate « is very large or if the attempt frequency A is very low.
But note that in this case one does not obtain the experimentally observed breaking

force distributions.

A fit of our theory to the experimental results of the TP-Ru-TP complex [72] is
shown in Fig. 5.3 with best parameters & = 2 x 1075 and vy = 14. This implies that
Vo = 0.35¢V and 7V, ~ 0.5¢V/A = 0.7nN. From & we obtain A = 6 x 105%™, Also

shown in Fig. 5.3 are our predictions of multiple bond breaking for the situations
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Figure 5.3: Theoretical predictions of the breaking force distribution for single, double
and triple strands (left to right) for TP-Ru-TP. Same parameters for all curves, see
text.

where the AFM tip has picked up two and three complexes. Following the experi-
mental paper [72] we assume that by the time the first bond breaks the force is so
high that the other bonds break instantaneously. This implies that in (5.14) we need
to replace f by f/2 and f/3, respectively, shifting the original peak from 103pN to
185pN and 255pN, This procedure also widens the peaks asymmetrically, in excellent
agreement with experiment.

Next, we would like to make the connection with the Ritchie-Evans version of
Bell’s model [80,86] employed in numerous experimental papers for the data analysis,

for which the rate equation (5.1) reads

& = —Kirexp[fAz,lP, (5.16)

where Az, is interpreted as the maximum elongation of the molecule in quasi-equilib-
rium before breaking. Note that Az, is not a constant (as frequently assumed) but a
function of f (as it is in our theory). We obtain this simplified model from the present
theory if we assume that the breaking force is much smaller that the maximum, i.e.

f < vV,/2, which is generally applicable for small loading rates. In this case we can
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expand the Arrhenius rate equation (5.4) using our harmonic approximation (5.12)

and obtain the rate expression (5.16) with Az, = 4/ and
Kip = Aexp|—BVs]. (5.17)

Recall that the prefactor in equation (5.1) has a simple physical meaning: it is an
attempt frequency weighted by entropic factors as discusses in section 5.1. On the
other hand, ks includes a Boltzmann weight involving the potential depth V5. Thus
it is a hybrid that appears to defy physical interpretation if Vj is not explicitly known.

The expressions for Az, and k}; above enable direct comparison with the TP-Ru-
TP data by Kudera et al. [72], where we can use our values for A, V; and «y to get
Az, = 2A, and k¥; = 0.5s7", agreeing with their values of 3.3A and 0.05s™! to within
an order of magnitude. The reason for these discrepancies in the two parameters £k}
and Az, is the approximate nature of the Ritchie-Evans model: the data extend over
an interval f, £ Af/2, and do not satisfy the condition f < ~V,/2 for the top 20%
of this range.

In concluding this discussion we note that the Ritchie-Evans model lacks an im-
portant physical parameter, namely the strength of the bond. It thus appears to be
limited to forces with f < V,/2, a restriction not imposed in our general model.
We will show in sections 5.4 below, that it is advisable to use force loading rates
as large as technically possible. This would hopefully enable observations close to
the maximally possible force fi.x and should facilitate the extraction of microscopic

parameters.

5.4 Data Analysis: Force Ramp

Our theory of bond breaking has three independent parameters A, V; and -y in terms

of which the probability of finding and intact bond (5.14) reads

P(f) = exp [—%m MVBQT {erf (VValhaT) — exf (\/W(l .y 3% )> }}
(5.18)

To extract these parameters from experimental data one has several options: ()

measure the force distribution for several force loading rates a and fit them with the
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theoretical curve; and (éi) to measure the breaking force distributions when several
strands are attached. A third option, namely to determine the maximum and width
of the breaking force distribution for several force loading rates a is also possible

provided data with good statistics are available.

We have first checked option (i) and found that a unique fit is obtained if we
take three o that span two orders of magnitude. Our experimental data were force
distributions calculated from (5.14). The extracted fit parameters agree with the orig-
inal input data to arbitrary precision. The uniqueness of the extracted parameters is
quickly lost if the force loading rates differ by less than two orders of magnitude. Sim-
ilarly, option (it), i.e. measuring the force distributions for several attached strands
(for 1, 2 and 3 attached strands) also leads to a unique and perfect fit if two force
loading rates are used that differ by one order of magnitude. Notice that we have
used input data which was directly derived from equation (5.5), without consider-
ing any noise - this is to highlight the difficulty in extracting physically meaningful

parameters.

To demonstrate the pitfalls of insufficient data, we have analyzed the force dis-
tributions for one, two, and three strands for a single force loading rate . As Fig.
5.4(a) shows we can easily produce a good fit; however, the parameters extracted via
least-square fitting can be different from the input and strongly depend on the initial
guesses in the fitting procedure, i.e. the fit is not unique. This is shown in Fig. 5.4(a)
where the input data (triangles) were calculated for Vy/kp = 4200K, A = 10°s7!,
and v = 1.4A-1. The fit shown yielded, instead, V3/kz = 6200K, A = 10%~!, and
v = 1.5A1. However, it is easy to demonstrate that this is wrong by using the same
fit parameters for the three curves at a higher a. Fig. 5.4(b) shows that the latter fit

is unacceptable.

What we have concluded so far about the analysis of data to extract the under-
lying physical parameters controlling bond breakage was based on perfect theoretical
breaking force distributions. Noise in experimental data and limited statistics com-
plicate the fitting procedure significantly. thus one can only expect that the data
analysis yields a unique set of parameters if lots of data with good statistics are

available, in particular spanning a wide range of force loading rates.
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Figure 5.4: A numerical fit to generated data (Vp/kp = 4200K; A = 10%s~ 1 v =
1.4A71; see text) that utilized only the input data shown in (a). The same fit can be
corrected only by taking into account data for a higher force loading rate, as done in

panel (b).
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Figure 5.5: The unfolding forces for ubiquitin, as measured by Schlierf et al. [78] and
fitted with our theory. All parameters are given in Table 5.1
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Table 5.1: The parameters Vp, v, and A for the ubiquitin experiment, the correspond-
ing k% from the Ritchie-Evans model, and the maximum force fm.x = YV /2 for each
Morse potential.

VoleVI [y [A7Y]| A sa 5] | Aze [A] | fnex [PN]
0236 | 1.76 | 1.06x 10° | 9.78 x 107° | 2.27 334
0.273 | 2.09 |8.02x10%|1.75x 1072 | 191 457
0.319 | 229 |6.58x10%[228x1072| 1.75 585
0.371 | 241 |578x10*|2.65x 1072 | 1.66 717
0.403 | 2.47 |221x10° | 2.82x107%| 1.62 799
0427 | 251 |581x10°]293x102| 1.60 857

A second, even more striking example is the analysis of unfolding of ubiquitin
data, which was recently measured by Schlierf, Li, and Fernandez [78]. The Ritchie-
Evans model gives a perfect fit to their data, if the (physically questionable) quantity
Az, is used as a fitting parameter. We have done the analysis for their data using
the model outlined in the previous section. As indicated above the resulting fit is
not unique. In fact, Fig. 5.5 shows six different numerically equivalent fits. We
compare the obtained fit parameters in Table 5.1 and calculate the corresponding
values of k)¢ -and Az, in the Ritchie-Evans model as outlined above. The latter
are remarkably constant and match those obtained by Schlierf et al. in the original
reference [78]. The last column in our table shows why the Ritchie-Evans model
is such a good approximation for this experiment - all data remains in the limit
f <€ fmax- Apparently, the information provided by using a single force loading
rate is insufficient to determine the actual physical parameters of the system. We
point out that a simultaneous analysis including the same information for a different
force-loading rate should result in unique values of the bond parameters.

The main numerical difficulties with fitting experimental data with the theoretical
breaking force distribution arise from the fact that three parameters must be fitted
simultaneously. This can be circumvented with an alternative fitting procedure: (a)
integrate the experimental breaking force distribution dP,(f)/df to obtain Py(f). (b)
Plot

14BN
1n[1_Pb(f) 17| =mA-BAV(H) (5.19)
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as a function of f. At the lowest possible force this function approaches [In A — fV{]
and as the force approaches its maximum it yields In A. Next fit [In A — SV,(1 —
f/ fmax)?] (which should be possible numerically in the small force regime) and get
fmax = YVo/2 and thus v. This way one obtains first estimates for the three parame-

ters which can then be used for the curve fitting described above.

5.5 Data Analysis: Pulling at Constant Cantilever Speed

Pulling at constant cantilever speed is the (experimentally) simpler mode of breaking
a molecular bond in that a feedback loop to control the force loading rate is not
required. However, it adds considerable difficulties in the interpretation of the data.
A detailed knowledge of the elastic response of the polymer spacer itself is required.
The rate equation (5.1) now contains an additional integration over all accessible

forces

Lol — Pl x [ 4 PAS DAY (520

Here, Py is the probability of having a force f at time ¢. As before, the formal solution

to this simple differential equation is given by

Piigact (t) = exp [/Ot d¢ /df’ Pr(f',t") Aexp[—BA(f)] (5.21)

For the force ramp mode we simply have P;(f,t) = §(f — ot). In general, the
controlled position scenario has finite force fluctuations [32,33]. These become partic-
ularly important when the polymer spacer is pulled very fast and equilibrium theories
become inapplicable. In such a scenario, one might consider an approach as outlined
elsewhere [106]. Restricting ourselves to slow pulling such that the spacer molecule

is always in equilibrium, we find [33]

Bt ko N,T) exp(—B12/(2K)
P00 = 37 26— 7k N.T) exp(—B I/ 2R) (22

Equation (5.22) requires the canonical partition function of the polymer spacer Z,

the pulling velocity v and the cantilever spring constant k.. Using stiff cantilevers
in this case has the advantage that one does not need to care about the fluctuations

in the polymer-spacer systems and one can approximate P(f,t) = 6(f — feqm(vt)),
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Figure 5.6: (a) the f(¢) traces for a constant force loading rate @ = 2nN/s (solid
line) compared with constant velocity traces for v = 118 nm/s with polymer spacers
of length N = 100 (dashed), 150 (dot-dashed), and 200 (dotted) monomers. These
correspond roughly to the spacers used in reference [72] (b) the calculated breaking
spectra for the same traces as in (a) are done for the parameters A = 4 x 10%s71,
v=1A"1 and V; = 0.52 eV.

which we will use in the following analysis. One then needs the force-extension re-
lation, feqm(Lyp), where L, = vt is the time-dependent length of the polymer spacer.
This information is available from experimental data or detailed theories of polymer
stretching [9,42,99] For a proof of principle, we use the simple freely joined chain
(FJC) model with N monomers of length b whose length L is given in terms of the

force f by the Langevin function
L(f) = Nbcoth(Bfb) — 1/(Bfb)]. (5.23)

Fig. 5.6(a) shows the time dependence of the applied force when the cantilever
position is changed at constant force-loading rate and contrasts it with that of a
constant velocity experiment. The nonlinearity will effect the breaking force distri-
butions considerably as shown in Fig. 5.6(b). An additional difficulty arises from
the fact that the exact monomer length of the spacer is hard to control and in any
given experiment will have some distribution over which (5.22) must be averaged. We
show traces for N = {100, 150,200} monomers to demonstrate the effect of a finite
distribution monomer numbers.

There are claims that a Gaussian length distribution leads to no noticeable change
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Figure 5.7: Most probable breaking force (solid lines) and the width of the dP/df
distribution (dashed lines) is shown for the case of constant velocities with A =
4 % 10%~! and v = 1A~1. The potential depths are (from top to bottom, in units of

ksT) 10, 15, 20.

in the overall breaking spectra [89]. However, we would like to point out that even
a well characterized and narrow length distribution will introduce additional uncer-
tainties in the fitting procedure since it adds two additional parameters, namely the
average number of monomers and the distribution width. As pointed out in the last
section, one needs very good data for a meaningful interpretation of dynamic force
spectroscopy. The finite distribution width of different polymer spacers leads to a
slight smearing of the observed distributions, which results in extreme difficulty in
the fitting of data. This and other complications related to the use of constant velocity

experiments would be completely circumvented by using the force-clamp technique.

5.6 Force-Clamp Mode

The force-clamp mode [23] is similar to that with the constant force-loading rate, but
here the force is raised rapidly to some value f and held constant. The Arrhenius

rate equation (5.1) then has a very simple solution that shows an exponential decay
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Figure 5.8: Force clamp spectra for different temperatures, the parameters are A =
108571, Vp = 0.35¢V, and v = 1.4A~1. These plots were generated using the barrier
AV (f) for a Morse potential as given in equation (5.11).

with a constant decay rate

P(t) = exp(-—rt)
r = Aexp[—-BAV(f)] (5.24)

In this setup one would have to measure the bond decay time (over several orders of
magnitude) many times for each force, which can be used to extract the decay rate r.
If we now plot the logarithm of the rate r vs. the force f, we find a spectrum such as
given in figure 5.8 for four different temperatures. The further analysis then proceeds

as discussed around equation (5.19).
5.7 Summary

We have shown in this paper that a simple analytical theory can be adapted for
an analysis of bond breaking in the atomic force microscope. Since the probabilities
distribution of bond breaking forces have rather simple shapes and not much structure

apart from some asymmetry a large set of data must be available to obtain the



90

underlying physical parameters such as bond strength, bond width and Arrhenius
prefactor uniquely. Extracting the actual shape of the energy surface requires much
additional work. A large set of data means data obtained under different experimental
conditions such as vastly different force loading rates. Fig. 5.2 shows that increasing
the pulling rate will eventually lead to the direct measurement of the maximum bond
breaking force. We emphasize that three independent parameters are necessary for a
complete microscopic explanation of this situation, compared to two in models derived

from Ritchie and Evans’ work.
5.8 Appendix: Cut-Off Harmonic Bond Potential

In this appendix we show that the simplest of bond potentials namely a cut-off har-
monic oscillator, confirms our conclusion that the Evans-Ritchie model is only valid
for forces small compared to the maximum forces allowed for a given bond potential.

We assume that the unperturbed bond potential is given by a harmonic potential

as V(z) = =V + k(z — Zpin)?/2 so that in the presence of an external force we have
1
Vizg)=-Vo+ 5lc(:z; — ZTin)20(V/2Vo/k — 3) — fx (5.25)

For purposes of comparison, we choose the force constant to be the same as that
for small oscillations in a Morse potential i.e. k = 2Vyy?. Following the procedure

outlined in section 5.2 we calculate the force-dependent activation energy as

AV = Vmax" Vmin

B AT

= Vo4 gl

_ f f

RIS T (5:26)

where the maximum sustainable force (for which AV =0) is fmax = 2V4y. Again we
find that kX; = Aexp[—SVs]. Dropping the quadratic term for forces f < frax we
again obtain the Evans-Ritchie model with an activation energy linear in the force
and, not surprisingly, no dependence on the depth of the potential. We finally observe
that the barrier (5.26) in this calculation has the form AV/V, = (1 — f/ fmax)?, which

is exactly the approximation made in equation (5.12).



Chapter 6

Discussion and Summary

The questions considered in this thesis revolve around conformational statistics and
dynamics of single polymer molecules. Many analytical methods are used in con-
junction with extensive numerical calculations to explain a variety of phenomena.
However, the fundamental approach to the different problems is the same in all cases.
The starting point is a reasonable assumption about the underlying energy landscape
in a given system, which is followed by an exact statistical mechanical analysis that di-
rectly leads to experimentally observable results. The Transfer Matrix (TM) method
provides a very useful vehicle for the equilibrium partition and Green functions from
which many of the remaining results are derived. To summarize this thesis, the energy
functions and surfaces used in all projects will be reviewed together with the primary

results.

The theory of conformational transitions in polymer stretching starts with an ar-
bitrary potential of the conformer length V (), which can be integrated analytically
using a parabolic expansion about the conformer’s potential minimum at length b;.
The resulting partition function I'(f), Eqn. (2.8), contains the full description of a
single conformer in a parabolic potential under the application of an external force.
An attempt to calculate further closed-form results is futile, but the analytically avail-
able partition function can easily be processed by numerical differentiation to obtain
physically observable quantities in the Gibbs ensemble. These results are shown in
Fig. 2.3. In fact, all of the calculations and data fitting procedures in the Gibbs
ensemble can be done with a spreadsheet. Unfortunately the pure Gibbs ensemble is
insufficient to model all of the available data, which is where TM calculations become
extremely useful. The work presented goes well beyond previous theories that use
non rigorous variations on the Langevin formula to model the force response during
conformational transitions. Combining the use of analytical fitting procedures with

sophisticated numerical methods to obtain further information is shown to be an
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excellent way to approach single polymer stretching experiments.

Chapters 3 and 4 make use of the simplest of all energy surfaces, a constant. The
description of polymer stretching in terms of a Markov process is a definition that
brings an approximation of the transition rates W (L, L'), equations (3.8) or (3.17),
along with it. It is important to note, however, that these rates were picked as the
simplest, obvious choice that satisfies detailed balance. The numerical integration of
the Master equation (3.3) in the two regimes yields the force-extension curves that one
would expect for molecules that are stretched very quickly. The results are presented
in Figs. 3.5 and 3.7.

Interestingly enough, the length fluctuations in the controlled force regime change
significantly when a molecule is stretched out of equilibrium, whereas there is little
to no change in the controlled position regime, see Figs. 3.6 and 3.8. It remains to
be noted that there is a graphical interpretation for the theory when it is applied to
experiments barely out of thermodynamic equilibrium. A truncation of the Kramer’s-
Moyal expansion of the Master Equation [67,68,128], yields approximate equations of
motion, Eqns. (3.28) and (3.29), that can be represented graphically via contour plots
(Figs. 3.10 and 3.11). For given pulling speed or loading rate, the force-extension
curve is almost exactly given by the contour lines of the first moment of the transition

rates.

Incidentally, the same expansion also leads to the Fokker-Planck equation (4.20)
of the fast stretching problem, which is one of the important results in chapter 4. The
same chapter also presents a theory of the relaxation behaviour of single molecules
far from equilibrium, which is governed by a continuous spectrum of relaxation times,
as shown in Figs. 4.2, 4.3, and 4.4. These calculations form the first comprehensive
analytical theory of polymer stretching out of equilibrium, which is again based on
the availability of an exact partition function via the Transfer Matrix method. Pre-
vious models were only possible with Monte Carlo studies [60,61] or for semiflexible
molecules [64, 66)].

Another energy surface, used to model the breaking of molecular bonds in chapter
5, is based on the Morse potential (see Fig. 5.1). It is easy to show numerically that

most reasonable potentials for this problem lead to similar results for the barrier
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height as a function of force, if they are appropriately scaled. Again, this theory is
purely analytic when it is evaluated for an experiment that includes a controlled force.
The probability of finding a single molecular bond intact is given by Eqn. 5.5 for the
case of a force-ramp experiment and by Eqn. 5.24 for the force-clamp calculation.
The primary results of the theory are fits for three important parameters that can be
used to uniquely specify the process; these are the depth of the potential well V4, the
attempt frequency of escaping the well A, and the potential width .

As indicated in Chapter 5, experiments generally use a long polymer spacer that
is very important for two reasons. First, it serves to physically separate the molecule
to be broken and the substrate. Second, it provides an easily recognizable signature
of the breaking event that allows one to extract the exact conditions under which
the molecule breaks. The work presented here gives a way to interpret and fit the
observed spectra, given that they are measured with a constant force-loading rate. In
this context, one has to be very careful with making the distinction between constant
speed and constant force-loading rate experiments. As current theories are primarily
concerned with the physics of the breaking bond itself, the importance of properly
accounting for the effect of a polymer spacer is largely overlooked. A look at any
spacer force-extension curve should convince one that the approximation f = kvt
(where k is an effective spring constant, and v is the pulling velocity) commonly used
to model the force in a constant-speed experiment (see for example Dudko et al. [85]

or Hummer and Szabo [92]) is insufficient.

Monte Carlo methods were used by Friedsam et al. to partially solve the spacer
problem [89]. It was found that there are almost no measurable effects of polydisper-
sity and the non-constancy of the force-loading rate. Unfortunately, their model is
based only on the Ritchie-Evans framework, which does not lead to unique results in
the first place, see Fig. 5.5. Moreover, the results presented in Fig. 5.6 show that the
variable spacer length leads to vastly different breaking spectra. These effects should
be investigated in much more detail before attempting to model constant-speed ex-

periments rigorously.

The primary reason for the easy analytic evaluation of the force-ramp model in

Chapter 5 is that the applied force is the fundamental variable of the bond breaking
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physics. If one starts to do the calculation for fixed-velocity regimes where the length
is controlled, the theory instantly becomes more complicated as the force is now a
fluctuating quantity that is only described by a probability density function P(f, 1),
given by Eqn. (5.22). It is still possible to integrate the differential equation of the
problem numerically, but there are many more factors that have to be considered
and, to the author’s knowledge, a complete solution at constant velocity is not yet

available.

A procedure to successfully model breaking experiments that include a polymer
spacer and are done at constant speed would be as follows. For each single AFM
trial it will be necessary to obtain a reasonable fit to the spacer’s force-extension
response. This can be done for example via the theory and fitting procedure presented
in chapter 2, by using a Worm-like Chain model or by any other method of choice.
It is important to know how the extension trace would have continued if the spacer
would not have been disconnected. For each of these trials, the differential equation
describing the molecular breaking probability (i.e. Eqn. (5.1)) should be integrated
as a function of some model parameters. One can then obtain a statistical measure,
based on Student’s ¢-test, that gives a probability Py v, , that all of the different trials
come from the same input quantities A, V4, and . To calculate a fitting result, this
probability has to be maximised with respect to the input parameters. While this
proposed procedure is numerically rather involved, it is the only possible choice that
retains experimental realism as well as statistical rigour. Moreover, it would make
use of all the available data, i.e. the force-extension traces and the observed breaking

forces; this is theoretically satisfying as well.

In principle, the theories presented in chapters 2 and 5 could be used without
regard to fitting, by way of obtaining the energy landscape directly from ab initio
calculations. As a first attempt at such a theory, preliminary Density Functional
theory (DFT) calculations were done using Gaussian 03 [129] to determine the prop-
erties of a-D-glucopyranose, which is the monomer of Dextran. The energy landscape
obtained by these calculations, shown in figure 6.1, is very similar to that available
in the literature [102]. The bond breaking theory in chapter 2 is easily adopted for

a numerically specified bond potential. Based on the numerical evaluation of the



600x"’l"”l\”"'l"'xl'l""l""l'[‘_
Ly o | {0
.y [ r ]
3 SO0 % T
] ; i
é [ a 4\ \‘\“ Y ‘l’ *:"‘l ]
>~ 400 Y 4 A
BSE %2 6 b
b \ \0 3 A ,“// 1
5 [ b A& Q[ 28 h
§aof A Vo oo Ted 8
g8 A PR “-& & °‘°°;:f°' £ ]
£ 200F N N W ]
Le \\ A " ‘o -
= . Y \‘\‘ X ays f o f
G 1oof chair w, b ok 8 .
_ . oboat  tewwtt, SR ()]
: : ) PRV RSP DVRFIFIE B ST SN i s
: L : 335 4 45 5 35 6
:mf Conformer length L [A]

Figure 6.1: (a) schematic drawing of a chair configuration in a D-glucopyranose
molecule used as starting point for DF'T calculations. This is the fundamental build-
ing block of Dextran. DFT calculations were done at the B3LYP/6-31g level using
Gaussian 03 [129]. (b) DFT stretching results for a variety of chair and boat conform-
ers. The conformer length L is defined in panel (a). The lowest conformer energy is
used as reference.

integral in the partition function (2.4) it is possible to obtain all the statistical results
presented in that chapter.

Unfortunately, it is already obvious from figure 6.1(b) that the prediction for
the force extension curve in this model can not show a conformational transition as
observed in the experimental results. As discussed in Chapter 2, one requirement
for the observation of an obvious conformational transition is an energetic step with
energy differences much larger than the thermal energy kg7, as shown in Fig. 2.3 for
the fits of experimental data to the Dextran response. An important question to be
answered is why these DFT calculations fail to produce a monomer energy landscape
that correctly predicts the observed force-extension curve.

There are two possible explanations, which may form the basis of future work on
this topic. First, the present analysis is done in vacuum, without taking into account
the solvent. Extensive DFT calculations by Momany et al. [130] show that there are
several hydration shells around a single glucopyranose molecule, let alone around an
n-mer. These shells have thus far only been calculated for unperturbed molecules
and it remains to be seen whether it would be possible to use ab initio simulations

for the analysis of molecular stretching. It is to be expected that there are large
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energetic effects due to solvents that have not been captured in the preliminary DFT
calculations. The second possibility for the failure of current calculations is that the
DFT calculations need to be done for more than one monomer. Steric interactions
between neighbouring monomers could prevent certain configurations included in Fig.
6.1 to be possible in long molecules. A single monomer calculation will not be able

to take these effects into account.

The latter procedure is a daunting task that has not yet been attempted for any
polysaccharide, but it has worked previously on poly(ethylene-glycol) using extensive
three-monomer calculations [99,104]. For the proper modeling of such a system, it is
suggested to do ab initio calculations for polysaccharides (such as Dextran) containing
several monomers as well some of the solvent molecules. To give decent results, it
would be necessary to go well beyond the static calculations such as the one presented

in Fig. 6.1, due to the thermal effects of the solvent.

The final comment of this work regards the modeling of polymer fluctuations in a
non-equilibrium experimental environment. Due to the availability of exact equilib-
rium statistics, the Master equation approach in conjunction with the use of the TM
method forms a valuable tool for the analysis of fast stretching experiments. It can
also be used to model experiments that are reversible but where conventional equi-
librium theories fail such as the recent measurement of length and force fluctuations
in force-ramp AFM spectroscopy [22]. The experiment uses a feedback that regularly
update of the cantilever position to keep the average force-loading rate (o) = d (f) /dt
constant. The Master equation formulation in the Helmholtz regime, Eqn. (3.17),
can be modified in such a way that this update process is mimicked numerically. This
calculation should yield an exact numerical replication of the experimental conditions,

which would provide an explanation for the unusual fluctuations.

In conclusion, this thesis develops several applications to explain a wide variety of
phenomena in the field of polymer stretching. Analytic approaches are used wherever
possible, and are supplemented with appropriate numerical techniques when neces-
sary. The Transfer Matrix technique was further developed into a versatile tool that,
due to its many advantages, stands equal among a host of other theoretical methods.

The systems modeled in this work correspond to well-defined experiments using the



97

Atomic Force microscope. The exact experimental conditions and the mode of oper-
ation of the AFM are important factors in the proper interpretation of experiments.

This thesis shows how to account for these conditions properly.
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