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Abstract

We use density matrix theory to calculate decay rates of lowest-lying eigenstates in

rotationally symmetric quantum dots (QDs). Specifically, we investigate relaxation

and decoherence times in single-electron and three-electron systems, where in the

latter Coulomb interaction is included. Both systems are studied with and without

Rashba and Dresselhaus spin-orbit (SO) effects. Two SO strengths are investigated:

A small strength which is more typical of GaAs QDs and a larger strength to better

reveal the influence of SO on decay rates. In the single-electron case we consider three

different types of electron-phonon interactions as a source of decay: The deformation

potential by longitudinal acoustic phonons (LA-DP), and the piezoelectric effect by

both longitudinal acoustic phonons (LA-PZ) and transverse acoustic phonons (TA-

PZ). When SO is not included the system is a simple 2-level system, independent

of spin. Decay times are studied as a function of both confinement frequency (ω0)

and magnetic field (B). Depending on system parameters, either LA-DP or TA-PZ

can be the dominant source of decay. When SO is included in the model, the system

becomes a four-level system and additional decay channels open due to the additional

number of levels in the subspace. In the strong-SO regime the relaxation rates of the

single-electron case are reduced by as much as 0.5 ns−1 and the decoherence rates

by as much as 1 ns−1. In the three-electron QD decay rates are investigated as a

function of B. The TA-PZ interaction is primarily investigated as it is found to

be the main source of decay for the majority of the B field investigated. Correlation

effects on decay rates are isolated from energy effects, revealing that Coulomb-induced

correlations between electrons play a significant role in reducing decay rates. We find

that for the parameters investigated in this dissertation, SO does not, on average,

reduce the peak relaxation rates in the three-electron system, rather it shifts them

towards higher magnetic fields.
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â, b̂ Bose annihilation operators
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Chapter 1

Introduction

This dissertation investigates the existence of long-lived quantum states in semicon-

ductor quantum dot (QD) systems. We study the lifetimes of both correlated charge

states and correlated spin states and compare them against the lifetimes of uncorre-

lated single-particle states. The correlated charge states investigated in this work are

the two lowest energy eigenstates of an interacting three-electron QD system. The

correlated spin states investigated in this work are topological states called merons

and can be found in both single-electron and multielectron QDs. The QD system is

coupled to a phonon reservoir and the evolution of the system is examined. We expect

a correlated QD state to be more robust against system perturbations and therefore

longer-lived than an uncorrelated QD state. Such a state could be exploited for use

in a quantum computing scheme. A brief literature review of QDs and QD quantum

computing is given in Section 1.1. An introduction to topological spin states is given

in Section 1.2.

1.1 Semiconductor Quantum Dots and Quantum Computing

The miniaturization of standard computer CPUs will ultimately be limited by the

emergence of quantum effects in the system. This impediment can be taken advantage

of to develop a new type of computing scheme, namely quantum computing. A

significant advantage of quantum computers over their classical counterparts is the

expected speed-up in problem-solving times of up to exponential order for difficult

problems such as the factoring of large numbers [1].

Semiconductor QDs are a potential platform for quantum computing due to their

scalability [2–4] and the already existing infrastructure for fabricating semiconductor

materials. A QD can be thought of as an artificial atom [5] housed in a semiconductor

material which can capture a controllable number of electrons [6]. The QD can serve

as a transistor in the quantum computer [7,8]. QD states used for this implementation

1
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must be long lived relative to the time-scales required to execute quantum algorithms,

and remain coherent against system perturbations. A natural logical quantum bit,

or qubit, in the QD transistor can be formed from either the spin or the charge of

the electron. Both have their advantages and disadvantages. Spin is an intrinsic

property of electrons and can exist in a superposition of different states, that is the

electron can be in both a spin-up state and a spin-down state at the same time.

Spin states of electrons confined in semiconductor QDs are an appealing platform in

quantum computing due to their long dephasing times and controllability [9–12]. The

use of pump-probe laser spectroscopy for state set-up and measurement allows for the

manipulation of spin qubits on picosecond and femtosecond timescales [13–16]. Spin

states are not impervious to noise. They can couple to the nuclear spins of the host

semiconductor material, impurities in the semiconductor, or local magnetic fields, all

of which can affect the lifetimes of the states. Electrons are also characterized by

another intrinsic property, charge. Charge-based qubits can be readily manipulated

by electrical pulses on electrodes placed near to the QD. The lifetimes of charge qubits

are usually limited by the fast relaxation and decoherence rates of electronic charge

states and can present a bottleneck for their use in quantum computing algorithms,

though there are new techniques using shaped electrical pulses for controlling charge

qubits on a picosecond scale [17]. For both spin states and charge states, those states

with high degrees of correlation, such as those in a multielectron QD, have been shown

to have longer lifetimes than states in a single-electron QD [18–20].

In this dissertation the theory developed is based on a semiconductor lateral QD

platform. Lateral QDs are electrostatically defined QDs in semiconductor heterostruc-

tures. They are created using electron beam lithography, a process whereby a pattern

of metal electrodes, or gates, with a resolution of tens of nanometers is formed on

the surface of a semiconductor crystal. This semiconductor material is first deposited

onto another different semiconductor material; excess electrons are confined between

the two crystals by the difference in the conduction band energies of the two semicon-

ductor materials [21]. These confined electrons form a two-dimensional electron gas

(2DEG) between the two semiconductor materials. Voltages applied to the surface

gates produce an electric field that is felt by the 2DEG below, forming a potential well

that traps electrons from the 2DEG current into the QD. Electrical pulses applied to
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these gates can be used to manipulate the states of the electrons in the QD.

To meet the criteria for scalable quantum computing, qubit states must be well-

defined, reliably prepared, and readily measured [1]. Charge qubits are advanta-

geous in that the difference in energies between the ground state system (where the

qubit is defined) and the remaining electron states can be relatively large, leaving

the qubit states well decoupled from the remainder of the states. With respect to

control, the number of electrons trapped in the lateral QD, and the electromagnetic

landscape experienced by the electrons therein, is precisely controlled by tuning the

voltages across the metal gates [22–24]. States can be differentiated in a QD using

experimental techniques such as photoluminescence excitation spectroscopy [25] and

magnetoconductance measurements [26]. Another important criterion is that qubit

states must be able to undergo coherent evolution for the application of quantum

logic operations. This requirement imposes a lower limit on the coherent lifetime of

the states; they must be much longer than the time required to perform quantum

logic operations. Unfortunately, the electron charge is more susceptible to couple to

sources of noise found in the semiconductor environment, such as phonons and elec-

trical noise, which shortens the lifetimes of the states. At low temperature (T≈100

mK or less) the relaxation process of QD states with energy scales on the order of

millielectronvolts has been experimentally shown to be dominated by spontaneous

emission of acoustic phonons [18, 27, 28], with single-electron relaxation rates on the

order of a few nanoseconds [18, 29, 30]. However, highly correlated states may have

reduced decay rates. Numerical works indicate that the lifetimes of electronic states

can be improved by as much as an order of magnitude in multielectron systems where

Coulomb interactions increase the degree of spatial correlation of the states [19, 20].

Creating qubits out of spin states in a QD presents an alternative to charge qubits.

There is a collection of advantages which make using a spin-based lateral QD plat-

form viable for quantum computing. Spin qubits do not couple as readily to the

environment as charge qubits, making them more resilient to noise. Coupling be-

tween spin qubits in adjacent QDs can be controlled by the same electrostatic metal

gates which define the lateral QDs. The individual spin of an electron in a lateral

QD can be coherently controlled. Also, the relaxation and decoherence times of the

spin states are continually being improved. Presently, the lifetime of a spin state in a
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QD system is on the order of nanoseconds to microseconds [29, 31–33]. By applying

electric field pulses to electrons in QDs, the electron spins can be coherently manip-

ulated on a nanosecond timescale [34,35]. Using ultrafast optical pulses, single qubit

operation times have been further reduced to the picosecond and even femtosecond

timescales [13–16]. Petta et al. (2005) (Ref. [32]) have demonstrated a 180 ps two-

qubit exchange gate between two electron spins in a double quantum dot. With qubit

operation times on the order of a hundred picoseconds, a decoherence time on the

order of a microsecond would allow for about 104 operations to be performed within

the coherent lifetime of the spin qubit.

Amasha et al. (Ref. [36]) have shown that through the manipulation of the gate

voltages the spin relaxation rate of a single trapped electron can be controlled, en-

abling one to vary the relaxation rate by over an order of magnitude. In this same

work, the spin relaxation time at low magnetic field (near 1 T) has been measured to

be greater than 1 s. In addition to having long relaxation lifetimes, the evolution of

the spin state must be coherently controlled and the final state must be measurable

in order to perform meaningful quantum algorithms. Koppens et al. (Ref. [34]) have

demonstrated the coherent manipulation of the spin state of a single electron in a dou-

ble lateral quantum dot for a timescale of 1 μs by exposing the spin to short bursts

of an oscillating magnetic field. The final state is read-out by measuring the current

(or lack-there-of) through the QD. Press et al. (Ref. [33]) have also investigated the

coherence of the spin of an electron in a single QD. Using an all-optical spin-echo

technique, they reversed the dephasing of the electron spin due to the hyperfine in-

teraction of the surrounding bath of nuclear spins. They pushed the decoherence time

of the spin qubit to as long as several microseconds. Information that is stored in the

spin qubit lasts for the entire decoherence time of the qubit. In theory, a coherent

lifetime on the order of microseconds is just long enough to perform some large-scale

quantum algorithms [1].

Despite the above mentioned breakthroughs, the lifetime of a state in a semicon-

ductor QD can be impeded by many things including vibrations in the semiconductor

material, the hyper-fine interaction with the nuclear spin of atoms in the semicon-

ductor, and electromagnetic fluctuations in the local environment. A longer-lived,

more robust state is therefore desirable for implementing quantum algorithms. We



5

expect that correlated states will fill this role. In general the effect of Coulomb in-

teraction between the electrons in a QD has been shown to increase the relaxation

time of the QD system, making the excited state longer lived than that of a non-

interacting QD system [19, 20]. Coulomb interaction affects the system in two ways:

It increases the degree of spatial correlation in the electronic states, and it changes

the energy levels of the system. It is not clear what impact the correlations alone

have on improving the relaxation times in a fully-interacting QD system. In Ref. [20]

Climente et al. calculate the rate of relaxation between the first excited state and

the ground state in fully-interacting QD systems containing between two and five

electrons. They find that the fully-interacting systems have longer lifetimes than the

uncorrelated single-electron system, and attribute this finding to both the change in

transition energies between the fully-interacting states and the Coulomb-induced cor-

relation within the fully-interacting states. They do not isolate the Coulomb-induced

correlation effects from the Coulomb-induced energy effects on the relaxation rates

in the fully-interacting system.

In Ref. [19] Bertoni et al. investigate the effects of Coulomb-induced correlations

on relaxation rates in the following ways. They first consider a fully interacting two-

electron system and compare the relaxation rate from the first excited state of the

system to the ground state by artificially fixing the transition energy between the

states to be the single-electron transition energy. In this case they find no signif-

icant change in the relaxation rate from when the true (interacting) state energies

are used in the rate calculation. Then, for systems containing between two and six

fully-interacting electrons, they compare the relaxation between any two of the first

20 lowest-energy eigenstates with the relaxation between the first excited state and

the ground state in a single-electron system where the transition energy in the single-

electron case is either the usual single-electron transition energy, or fixed to represent

the energy difference between the same orbitals in the fully-interacting case. Gen-

erally speaking they find a reduction in the relaxation rates of the many-electron

systems when compared to the single-electron cases, however by comparing the re-

laxation rates of a many-electron system with those for a single-electron system the

correlation effect within each many-electron system are not strictly separated from

the overall effects of Coulomb interaction. In this dissertation we disentangle the
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effect of state correlation from the effect of the transition energy on the relaxation

rates of a QD system with Coulomb interaction without artificially fixing any of the

the parameters of the system. Furthermore, we wish to compare this effect within a

system where the number of electrons stays the same, instead of comparing it only

to the relaxation rates of a single-electron system. This is because the addition of

electrons to the QD changes the orbital configuration of the state and, even in the

non-interacting (uncorrelated) limit, can introduce new relaxation channels between

the orbitals which may not exist in the single-electron system. We will show that

correlations alone play a significant role in reducing the relaxation rates in a many-

electron QD system.

Another type of correlated state is a topological qubit state. This state is advan-

tageous in that it should be resilient to local disturbances in the system that might

otherwise shorten the lifetime of the state. A promising candidate for the topological

qubit in a lateral QD is the meron spin texture, and is described in the proceeding

section.

1.2 Topological Spin Textures in Quantum Dots

In general, a topological state is defined by having properties which remain unchanged

under a continuous deformation of the system. Topological states are promising can-

didates for quantum computing in that they are expected to have long decoherence

times due to their global correlations, and should be robust against local perturba-

tions [37]. A meron is a topological spin texture characterized by a centralized “up”

or “down” spin which smoothly transitions into an in-plane winding away from the

central spin. Four orthogonal meron states are illustrated in Fig. 1.1.

Vortices, skyrmions, and merons are examples of topological spin textures that

are predicted to form in 2DEG systems [38–40]. (Note these spin textures also form

in bosonic systems, but this dissertation will be restricted to discussions in fermionic

systems.) Vortices can appear inside a QD when an external magnetic field is applied

perpendicular to the plane of the QD [41–43]. The external field causes the electrons

in the QD to orbit. As the magnetic field is increased beyond the formation of the

spin-polarized maximum density droplet (MDD)1 in the system, vortices begin to

1The maximum density droplet occurs at finite magnetic field when all of the spins in the system
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Figure 1.1: Cartoon of four orthogonal meron configurations.

appear, one by one, in the QD. These vortices are manifested as charge currents

circulating about voids in the particle density.

Saarikoski et al. (Ref. [41]) have studied a two-dimensional (2D) parabolic QD in

strong magnetic fields (B ∼ 5 T to B ∼ 22 T) which contained as few as 6 and as

many as 24 electrons using mean-field density functional theory (DFT) and exact di-

agonalization (ED) with the lowest Landau level (LLL) approximation. The strengths

of the magnetic field used were such that the filling factor ν (the ratio of electrons

to magnetic flux quanta) ranged from ν = 1 to ν = 1
3
. As the magnetic field was

increased, the orbital angular momentum of the ground state increased in a step-wise

manner; the start of each plateau in the orbital angular momentum was associated

with the materialization of an additional vortex to the system. These vortices are

detectable as zeros in the electron wave function, or as depressions in plots of the

electron densities, as determined using ED and DFT, respectively. Their interpreta-

tion of the DFT solution was that the external magnetic field penetrates the electron

density at these vortices, inducing current to rotate around them. Saarikoski and

Harju (Ref. [42]) further developed a theory by which to experimentally test vortex

formation in a QD. Specifically, the emergence of vortices beyond the MDD regime

should appear as peaks in the chemical potential of the QD as a function of increasing

magnetic field.

Skyrmions are spin textures that are characterized by a central spin perpendicular

to the 2D plane which transitions smoothly into a spin arrangement along its bound-

ary that is antiparallel to the central spin. Skyrmion quasiparticle excitations in bulk

systems have been predicted in the ν = 1 quantum Hall regime [39, 40, 45], and can

condense into the ground state away from ν = 1 [46]. In addition to the theoretical

predictions, experimental evidence supports the existence of skyrmion spin textures

are parallel and individually occupy the lowest-lying angular momentum states. It corresponds to a
filling factor of ν = 1, and is the densest spin-polarized state in the system [44].
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in GaAs/AlGaAs quantum wells at ν = 1 [47–50]. Specifically, NMR measurements

and spin polarization measurements of GaAs/AlGaAs quantum wells at low temper-

atures (between 0 and 5 K) have yielded evidence for skyrmionic excitations above

the ground state. The emergence of a skyrmion lattice has also been detected in the

chiral magnet MnSi using neutron scattering [51]. To date there has been no exper-

imental detection of skyrmions in QDs, however spin pair-correlation calculations of

DFT electron wave functions in graphene quantum dots have revealed skyrmion-like

magnetic textures [52].

A meron can be described as half a skyrmion since its spin arrangement transi-

tions from a central spin-up or spin-down to an in-plane configuration instead of an

antiparallel arrangement at its boundary. Recent literature predicts the formation

of merons in confined systems such as QDs in high-magnetic field regimes which can

nucleate in the ground state [53–55]. Petković and Milovanović (Ref. [54]) investi-

gated the existence of merons in the lowest-lying states of a few-particle QD (N=4

and N=6). They used ED and the LLL approximation to describe the states of the

system. A mapping between the 2D QD system and a one-dimensional spin-chain was

used to examine the meron formation in the QD. They found that as the magnetic

field was increased from the MDD state, a vortex appeared at the center of the QD.

Two-point spin correlations were used to resolve spin-windings in the QD. In each

of the four-electron and the six-electron systems, an antiferromagnetic winding was

observed along the edge of the QD. Milovanović et al. continued their investigation

in larger system sizes of 20 and 100 particles (Ref. [55]). The states of these large-

particle regimes cannot be efficiently obtained from ED techniques. Instead they

used the LLL approximation and derived an expression for the meron wave function

confined to a QD from a mean-field ansatz description of a skyrmion in bulk systems.

For small systems the meron states were found to be the ground states of the system,

however when the particle number exceeded ∼100 this was no longer true.

The above cited works regarding meron formation in quantum dots use either

lowest Landau level approximations, Hartree-Fock approximations, or semiclassical

interpretations. In this work we use exact diagonalization to obtain the states of the

fully interacting QD system. The spin expectation values of these exact states are

measured to provide evidence for the formation of merons and other spin textures in
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the ground state of the QD system.

1.3 Overview

This dissertation is organized in the following manner: Our model for the QD sys-

tem is presented in Chapter 2. The states under consideration include eigenstates of

the QD system which can be characterized by conserved quantities such as spin and

orbital angular momentum, henceforth referred to in this document as the “base”

eigenstates, as well as topological meron states. Evidence for the existence of four

distinct meron states in the lowest energy subspace of a QD is presented in Chap-

ter 3 of this dissertation. Furthermore, we will discuss a method by which these

states can be predictably generated and individually distinguished according to their

energy. The decay rates of the QD system are calculated in consideration of the

electron-phonon interaction. We calculate the relaxation and decoherence rates of

the system using density matrix theory. This is detailed in Chapter 4. Relaxation

and decoherence rates of a single-electron state are studied in Chapter 5. The effects

of including spin-orbit as a perturbation to the system are examined and the decay

rates of the induced meron eigenstates are compared to the decay rates of the base

QD eigenstates in the absence of spin-orbit. Relaxation and decoherence rates of

three-electron states, in both the absence of spin-orbit interaction and the presence

of spin-orbit interaction, are studied in Chapter 6. Here we present a novel way to

isolate the effect of Coulomb-induced correlations from the effect of the transition en-

ergies, which are also affected by Coulomb interaction, on the lifetime of the system.

Finally, Chapter 7 concludes with a summary of our findings, their implications in

the field, and suggestions for further investigations.



Chapter 2

The Quantum Dot

Our model is based on a lateral QD embedded in a GaAs quantum well. A GaAs

quantum well is formed when a layer of GaAs is grown between two layers of a

semiconductor material with a larger band gap, such as AlGaAs. The quantum

well that forms within the conduction band of the GaAs layer traps conduction band

electrons. In this quantum well the electrons are free to move in the lateral (xy) plane,

but are confined in the growth direction (z), thus forming a 2DEG. We model this

quantum well in the z direction as a finite square well, as discussed in the next section.

The electrons are further confined in the lateral plane by applying a negative voltage

to the metal gates on the surface of the semiconductor. Following the literature, we

model this electrostatic confinement as a two-dimensional harmonic oscillator [56–59].

The details of this model are presented in Sec. 2.2.

2.1 Quantum Well Model

The quantum well in the z direction is approximated as a finite square well, as il-

lustrated in Fig. 2.1. Here ΔEC is the conduction band offset between the outer

semiconductor cladding and the inner GaAs layer. The well width �z is the width

of the GaAs layer in the growth direction, z. We choose �z=10 nm, which is a typ-

ical thickness for a quantum well heterostructure [60] and ΔEC=243 meV, which is

consistent with a GaAs/Al0.3Ga0.7As quantum well heterostructure [61]. The ground

state of the well is a symmetric function with a single node, and is of the form

ξ(z) = CeQz, z < −�z/2,

ξ(z) = A cos(Kz), −�z/2 � z � �z/2,

ξ(z) = Ce−Qz, z > �z/2,

(2.1)

where A = 0.39 and C = 2.97 are derived from normalization and boundary condi-

tions, and K and Q are related to the bound state energy E and particle mass, in

10
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Figure 2.1: (a) Cartoon of an AlGaAs/GaAs/AlGaAs quantum well with growth
direction along the z-axis. (b) The band edge diagram of the above quantum well. �z is
the thickness of the quantum well, typically around 20-100 Å [60]. ΔEC and ΔEV are
the differences in conduction band energies and valence band energies, respectively,
of AlGaAs and GaAs at the interface. Eg is the energy of the band gap, typically
around 1.43 eV for GaAs at room temperature [62].

this case the effective mass of a conduction band electron in GaAs, m∗. Specifically,

K =
√
2m∗E/� and Q =

√
2m∗(ΔEC − E)/�, where � is Planck’s constant. The

ground state of this quantum well has energy E = 32.5 meV from the bottom of the

well and is separated from the next excited state by almost 100 meV.

2.2 Quantum Dot Model

The QD system consists of N interacting electrons of charge −e, bound to a 2D plane

and laterally confined by an electrostatic potential. The 2D Hamiltonian used to
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describe this system is

ĤQD =
N∑
i

ĥi +
1

2

N∑
i �=j

e2

ε|r̂i − r̂j| + ĤSO +
1

2
gμBBσ̂z, (2.2a)

where ĥ is the single-particle (SP) Hamiltonian describing harmonic confinement in

a perpendicular magnetic field, the second term describes the Coulomb interaction

between electrons in the QD (ε is the dielectric constant of the semiconductor mate-

rial), the third term is the spin-orbit interaction, and the fourth term represents the

Zeeman effect. The spin-orbit interaction is applied perturbatively to our model, and

is described in further detail in Sec. 3.5. In the Zeeman term, g is the characteristic

g-factor for the semiconductor material, μB is the Bohr magneton, B is an external

magnetic field pointing along the growth direction (z), and σ̂z is the z component of

the Pauli spin matrix. Finally, the SP harmonic confinement is described as follows:

ĥ =
1

2m∗ P̂
2
+

1

2
m∗ω2

0 r̂
2. (2.2b)

Here P̂ = p̂ + e
c
A (r̂) is the canonical momentum, r̂ = (x̂, ŷ) the position operator,

and ω0 the parabolic confinement frequency. A (r̂) is taken to be in the symmetric

gauge, A (r̂) = B
2
(−ŷ, x̂, 0).

In all that follows, the material parameters in Eq. (2.2) are fixed as follows: m∗ =

0.067me (me is the mass of an electron), ε = 12.4, and g = −0.44. These parameters

are standard values for GaAs [63–65]. Due to the relatively small g-factor for GaAs,

the Zeeman spin-splitting is very small in the cases investigated in this dissertation,

on the order of 0.1 meV in the single-electron system, and on the order of 0.01 meV

when Coulomb interaction is considered in the three-electron system. We do include

the Zeeman energy in all of our calculations, but in the interacting system use it as

a measure of precision in the state energies. The degree of Zeeman splitting in the

lowest-lying states of the three-electron system for a fixed confinement potential of

�ω0 = 1 meV can be seen in Fig. 2.2.

The eigenstates of the SP Hamiltonian, Eq. (2.2b), are characterized by two

harmonic-oscillator quantum numbers, n,m = 0, 1, 2, . . . [21]. These eigenstates, also

known as “Fock-Darwin” states after Refs. [66, 67], are the “atomic orbitals” of the

QD, and are given by

|nm〉 = 1√
n!m!

(a†)n(b†)m |00〉 , (2.3)
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Figure 2.2: Zeeman splitting in the lowest lying states of the fully-interacting three-
electron QD system (Eq. (2.2a)) with �ω0 = 1 meV. Lz and S quantum numbers
are displayed for each state. Spin-up states are shown with solid lines and spin-down
states are shown with dashed lines. At B∗ the four |Lz, Sz〉 states
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〉
are degenerate to within less than 0.005 meV. In general we consider the states to be
spin-degenerate.

where, a† and b† are the usual Bose creation operators (see Eq. (B.3)), and |00〉 is the
SP ground state. These orbitals have energy εnm given by

εnm = �Ω+(n+ 1
2
) + �Ω−(m+ 1

2
), (2.4)

where Ω± = (
√

4ω2
0 + ω2

c ± ωc)/2, and ωc = eB/(m∗c) is the cyclotron frequency.

This energy reduces to �ω0(n+m+ 1) in the absence of a magnetic field.

The SP Hamiltonian, the z-component of the orbital angular momentum, L̂z, and

a component of the spin operator—which is taken to be the z-component Ŝz—form

a set of commuting observables which is used to classify the QD states: L̂z|nms〉 =
�(n−m)|nms〉, Ŝz|nms〉 = �s|nms〉, ĥ|nms〉 = εnm|nms〉.

In our calculations we require the position-space representation of the orbitals.
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These are given by [68]

φnm(r, θ) = (−1)nr
1√
2πl0

√
nr!

(nr + |m′|)!

× eim
′θe−r2/(4l20)

(
r√
2l0

)|m′|
L|m′|
nr

(
r2

2l20

)
, (2.5)

where r and θ are the polar coordinates in the lateral plane, l0 =
√

�/(2m∗ω) is the

effective length with ω =
√
4ω2

0 + ω2
c/2, n

′ = n+m, m′ = n−m, nr = (n′ − |m′|)/2,
and L

(α)
n (x) is the generalized Laguerre polynomial. [69]

Neglecting for now the spin-orbit interaction, the eigenstates of the interacting

system are determined by exact diagonalization of Eq. (2.2a). This procedure be-

gins by determining many-particle basis states (Slater determinants), eigenstates

of Eq. (2.2b), that are composed of antisymmetrized products of the SP states in

Eq. (2.3). As many as 288 SP states, and as many as 25,000 many-particle basis

states are used in the diagonalization routine1. Block-diagonalization is performed

for a given set of parameters. These include system parameters (B, ω0, m
∗, ε) and

the conserved quantities N , Lz, Sz, S
2. The Coulomb matrix elements are evaluated

using the convenient closed-form expression derived in Ref. [24]. These eigenstates,

which are characterized by the aforementioned commuting observables, are referred

to in this document as the “base” eigenstates. This is to differentiate them from

the meron states. The meron states are superpositions of these “base” eigenstates,

however they cannot be characterized by L̂z and Ŝz quantum numbers. The meron

states are discussed in detail in Chap. 3.

Once the eigenstates are determined, position-dependent spin expectation values

are calculated to reveal meron textures in the QD (see Chap. 3). In addition, decay

times for these states are calculated for the single-electron system in Chap. 5 and for

the three-electron system in Chap. 6.

1In the fully interacting three-particle system, state and energy convergence is achieved with
approximately 500 many-particle basis states.



Chapter 3

Merons

In this chapter we discuss the conditions under which merons, topological spin struc-

tures, form in the QD system. We begin with an introduction to the spin-density

operator, used to calculate the spin-textures in the meron states. Next is the analytic

development of chirality, a topological characteristic that partially defines the meron

state. Merons are characterized by a winding spin vector field which smoothly trans-

forms into a central spin that is perpendicular to the plane in which the spin winds.

This is followed by an example demonstrating how merons form in a three-particle

QD at low magnetic field. Spin-orbit interaction, a common QD perturbation which

can induce the formation of some of these meron states, is also discussed. The chapter

concludes with an analysis on predicting when merons form in the QD ground state.1

3.1 Spin Expectation Values

In order to reveal the spin texture in a meron state, the spin-expectation value must

be calculated in position-space for each spatial direction, x, y, and z. In general, the

spin-density operator is expressed as

Ŝ(r) =
�

2

∑
σ,σ′

Ψ̂†
σ(r)σ̂σσ′Ψ̂σ′(r), (3.1)

where Ψ̂†
σ(r) (Ψ̂σ(r)) is the field operator creating (annihilating) a fermion with spin

±�/2 at position r, and σ̂ is the vector of Pauli matrices. The field operators are

specifically given by

Ψ̂†
σ(r) =

∑
nm

φ∗
nm(r) ĉ

†
nmσ, (3.2a)

Ψ̂σ(r) =
∑
nm

φnm(r) ĉnmσ, (3.2b)

1The results presented in this chapter have been published in Ref. [70].

15
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where φnm(r) is the 2D position-space representation of the SP [nm] orbital in the

QD (see Eq. (2.5)), and ĉ†nmσ (ĉnmσ) is a second quantization Fermi operator which

creates (annihilates) an electron of spin σ (as projected onto the z-axis) in the [nm]

orbital.

The individual components of Ŝ(r) can be expressed in canonical form in the Sz

basis as:

Ŝx(r) =
�

2

∑
i j σ

φ∗
i (r)φj(r)ĉ

†
iσ ĉjσ̄, (3.3a)

Ŝy(r) =
i�

2

∑
i j σ

σφ∗
i (r)φj(r)ĉ

†
iσ ĉjσ̄, (3.3b)

Ŝz(r) =
�

2

∑
i j σ

σφ∗
i (r)φj(r)ĉ

†
iσ ĉjσ, (3.3c)

where σ = ±1 and σ̄ has the opposite spin of σ. The composite indexes i and j each

represent a set of orbital quantum numbers n and m.

3.2 Chirality

The chirality Cn(C) of a vector field v(s), over a closed curve C in the direction of the

unit vector n can be defined as

Cn(C) =
∮
C
ds

n · (v(s)× ∂sv(s))

|v⊥(s)|2
, (3.4)

where v⊥(s) ≡ n × v(s) is a vector perpendicular to the direction n and serves as

a normalization factor; it is the global chiral character of the vector field which is of

primary interest.

The system is a two-dimensional, rotationally-symmetric QD centred at the origin,

with the curve C a circle about the origin with radius r. Furthermore, the direction

of n is taken to be perpendicular to the plane of the QD. The vector field in question

is the spin density S(r) ≡ 〈Ŝ(r, θ)〉. Taking the QD to lie in the x-y plane, Eq. (3.4)

takes the form

Cz(r) =
1

2π

∫ 2π

0

dθ
z · (S(r, θ)× ∂θS(r, θ))

|S⊥(r, θ)|2
, (3.5)

where S⊥(r, θ) = z × S(r, θ).
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In general we are concerned with a correlated many-body fermionic system. The

spin-density operator is defined in Eq. (3.1), and with this the chirality takes the form

of a chiral spin current

Cz(r) =
1

2π

∫ 2π

0

dθ jspin(r, θ), (3.6a)

with the chiral spin current density given by

jspin(r, θ) =
i

2 |S+|2
(
S+∂θS

∗
+ − S∗

+∂θS+

)
, (3.6b)

where S+ = 〈ψ̂†
↑ (r) ψ̂↓ (r)〉. (A full derivation this result can be found in Ap-

pendix A.1.) Windings occur for states composed of different angular momenta and

spin. This is further discussed in the proceeding section.

Cz, which shall be shorten to C from now on, is an integer winding number whose

magnitude indicates the number of full 2π rotations along a closed curve C about

the QD origin, and whose sign indicates the sense of rotation. The meron states

discussed in this dissertation are characterized by their winding number. In the next

section we discuss the conditions under which meron states can occur. In Sec. 3.4

we demonstrate how these meron states can occur in parabolic QDs containing three

strongly-interacting electrons. In Sec. 3.5 it is further shown that some of these

winding states are eigenstates of the QD system when perturbed by the spin-orbit

interaction, whose degeneracy may be split into four spectroscopically distinct meron

states |QC〉, where Q represents the topological charge of the meron. The topological

charge can be defined using the Pontryagian index [40]. We define it in terms of the

orientation of the (x-y) planar component of the spin density field. That is to say,

states which have the same chirality but different topological charge differ from each

other by a complete spin flip of the entire in-plane component of the spin density field

in real space.

3.3 Predicting Merons

Windings occur only for specific combinations of “base” QD eigenstates, that is states

that are a superposition of eigenstates with certain Lz and Sz quantum numbers.

Consider a state of the form |ψ〉 = (|Lz Sz〉+γ|L′
z S

′
z〉)/

√
2, where |Lz Sz〉 and |L ′

z S
′
z〉

are either SP eigenstates of the QD or fully interacting N -particle eigenstates. For
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these particular states |ψ〉, Eq. (3.6) yields

C = (L′
z − Lz)(Sz − S ′

z)δ|Sz−S′
z |, 1, (3.7)

where δij is the Kronecker delta. (Please refer to Appendix A.2 for details.) Equa-

tion (3.7) predicts that superpositions of states of different orbital and spin angular

momentum contain winding spin textures. This superposition can be induced by spin-

orbit interaction (see Sec. 3.5). Furthermore, the magnitude of the winding number

associated with the winding state is equal to the difference between the orbital angu-

lar momentum of the degenerate states. For example, if we had four orthogonal QD

eigenstates, the state |ψ〉 above can be generalized to

|QC〉 = 1− c

2
√
2
(|Lz, Sz〉+ γq |L′

z, S
′
z〉)

+
1 + c

2
√
2
(|Lz, S

′
z〉+ γ′q |L′

z, Sz〉),
(3.8)

where Lz 
= L′
z, |Sz − S ′

z| = 1, c ≡ C/|C|, q ≡ Q/|Q|, and γ(′) is a general coefficient.

According to Eq. (3.7), states of this form are winding states (see Appendix A.3 for

details).

The condition stated in Eq. (3.7) is necessary but not sufficient to predict merons

specifically. It will predict winding states in general. Merons are winding states,

but they are further distinguished by their central spin-up or spin-down. In the QD

system, this can arise from mixing states with Lz quantum numbers that are different

in magnitude: States of differing orbital angular momentum have different amounts

of particle density accumulated throughout the QD in position space, including about

the origin. Note that points of four-fold degeneracy in the three-electron and five-

electron QD spectra contain only |Lz, S, Sz〉 states with S = 1/2. By the condition

|Sz − S ′
z| = 1 outlined in Eq. (3.7), the winding states at these four-fold degeneracy

points will contain states with opposite Sz quantum numbers (namely Sz = ±1/2).

Therefore, the winding states in Eq. (3.8) with Lz quantum numbers exactly equal

in magnitude will have exactly zero Sz density at the origin and throughout the QD,

while winding states with Lz quantum numbers that differ in magnitude will have

some finite Sz density at the origin. The |Lz, S, Sz〉 states with Lz quantum numbers

equal in magnitude are degenerate only at zero magnetic field; as the magnetic field is
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increased, degenerate points in the ground state form between states with Lz values

that are different in magnitude.

To summarize, for merons to be present around four-fold degenerate points in the

QD spectra, the condition stated in Eq. (3.7) must be satisfied. Furthermore, the

degenerate states must have Lz values that are different in magnitude, which occurs

for magnetic field strengths above zero.

3.4 Merons in a QD

The simplest interacting system exhibiting meron textures occurs for N = 3 confined

electrons. The low-lying spectra as a function of magnetic field are shown in Fig. 2.2

for �ω0 = 1 meV. For the system parameters given in Chapt. 2, a ground state

degeneracy exists at a field of B∗ = 0.365 T. This degenerate manifold is spanned by

the four spin-1/2 states |Lz, Sz〉 = |−1,±1/2〉 , |−2,±1/2〉.
This degenerate subspace at B∗ contains merons. An explicit form of Eq. (3.8) in

this subspace is

|QC〉 = 1− C

2
√
2

(∣∣−1, 1
2

〉− iQ
∣∣−2,−1

2

〉)
+

1 + C

2
√
2

(∣∣−1,−1
2

〉
+Q

∣∣−2, 1
2

〉)
.

(3.9)

These four states have a chirality C = ±1 and a topological charge Q = ±1 and are

orthogonal. They display the spin textures 〈Ŝ(r)〉 shown in Fig. 3.1. These windings

can come about even in the case of single electron states as long as the spin and

angular moment numbers are different (see Eq. (3.7)). They are independent of the

Coulomb interaction between the electrons. Previous work [53–55] has focused on

lowest-Landau-level physics or on semiclassical approximations. The present numer-

ically exact results show that merons can exist far beyond the semiclassical regime;

right down to the extreme quantum limit of very few confined particles where corre-

lations are strongest. In particular, the three-particle ground states shown in Fig. 3.1

are not spin-polarized states, nor do they correspond to the ν = 1 maximum density

droplet. The states in Fig. 3.1 correspond to a filling factor of 2 > ν > 1. (The angular

momentum of the N -particle maximum density droplet is Lz = −N(N − 1)/2 [71].)

In order to produce these meron states, we consider next the perturbing effect of

spin-orbit in the QD system.
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Figure 3.1: Two of the four meron textures for the three-particle states given in
Eq. (3.9). 〈Sx(r)〉 and 〈Sy(r)〉 are represented by the vector field, while 〈Sz(r)〉 is
represented by the colour bar. The remaining two configurations are obtained from
these by a local in-plane spin rotation of π. The textures shown were obtained at the
four-fold degeneracy point B = B∗ (see Fig. 2.2).

3.5 Spin-Orbit Interaction

Spin-orbit (SO) interaction occurs when a charged particle with an intrinsic spin

magnetic moment μ moves through an electric field, E [72]. This effect occurs in

atoms. For example, consider a hydrogen-like atom with a single valence electron

and an atomic core of inner-shell electrons and a charged nucleus. The atomic core

has a central electrostatic potential of V (r) and therefore emits an electric field E =

−∇V (r) as felt by the valence electron. In the rest frame of the electron, the orbit

of the atomic core produces an effective magnetic field,

Beff = −
(v
c

)
× E, (3.10)

where v is the velocity of the orbiting atomic core. This effective magnetic field

couples with the magnetic moment of the electron, μ = eS/(mec), i.e. the spin S of

the electron, to produce the SO interaction,

ĤSO =
1

2m2
ec

2

1

r

dV

dr
L̂ · Ŝ. (3.11)

Because this interaction involves magnetic fields and moving charges, the SO in-

teraction is in fact a relativistic effect. The full quantum-mechanical derivation of

Eq. (3.11) can be found in Ref. [73]. The energy of this interaction perturbatively

changes the kinetic energy of the electron.



21

Ec
2DEG
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Figure 3.2: The confinement potential of the quantum well may be asymmetric.

The SO interaction is also a common perturbation in semiconductor heterostruc-

tures [74–79]. Two types of SO interaction are commonly investigated in these 2DEG

systems: The Rashba SO interaction which arises from the structural inversion asym-

metry of the heterostructure, and the Dresselhaus SO interaction which arises from

the bulk inversion asymmetry of the semiconductor medium.

We model the potential of the 2DEG quantum well as a finite square well, but

the shape of the potential well can in fact be skewed (see Fig. 3.2). This asymme-

try can be affected by the doping concentrations of the semiconductors forming the

heterostructure [60, 80, 81], or by an applied electric field, e.g. by changing the gate

voltages on the surface electrodes of a semiconductor heterostructure [82–85], thus

making the strength of the Rashba SO interaction tunable. The gradient of the con-

finement potential in the quantum well creates an electric field E along the growth

direction, z. Writing L̂ = r̂ × P̂, and taking E = Eẑ, we can write the Rashba SO

Hamiltonian in a form analogous to the atomic SO equation in Eq. (3.11):

ĤR =
αR

�

(
σ̂xP̂y − σ̂yP̂x

)
, (3.12)

where σ̂x and σ̂y are the x and y components of the Pauli spin matrix and αR is the

Rashba SO coupling constant. The Rashba SO constant is material-dependent and

proportional to the applied electric field.

Bulk zinc blende semiconductors such as GaAs lack inversion symmetry, giving

rise to the Dresselhaus SO effect [86]. Specifically, in bulk GaAs there is a polar bond

between the gallium and the arsenic atoms which creates an electric field [87]. This
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intrinsic electric field results in the Dresselhaus SO interaction. In a two-dimensional

system, the Dresselhaus SO Hamiltonian reduces to a term that is linear in the

electron momentum and a term that is cubic in the electron momentum:

ĤD = −βD

�

(
σ̂xP̂x − σ̂yP̂y

)
+

γ

�

(
σ̂xP̂xP̂

2

y − σ̂yP̂yP̂
2

x

)
, (3.13)

where γ is the bulk Dresselhaus coefficient which characterizes the strength of the

polar bond, βD = γ〈P2
z〉, and 〈P2

z〉 is the expectation value of P̂
2

z with respect to the

ground state wave function of the quantum well in the growth direction, z [79,88,89].

In this dissertation we do not consider the cubic term since for a narrow quantum

well (i.e. strong electron confinement) its contribution can be neglected with respect

to the linear Dresselhaus term [89,90]. We therefore consider the total SO interaction

to be the sum of the Rashba SO Hamiltonian in Eq. (3.12) and the linear part of the

Dresselhaus SO Hamiltonian in Eq. (3.13) [58, 86, 91–95]:

ĤSO =
αR

�

(
σ̂xP̂y − σ̂yP̂x

)
− βD

�

(
σ̂xP̂x − σ̂yP̂y

)
. (3.14)

We treat the SO interaction perturbatively and diagonalize the total SO Hamil-

tonian in Eq. (3.14) in the degenerate subspace of the four lowest-lying |Lz, Sz〉 QD

states, henceforth referred to as the ground state subspace. The form of the four |QC〉
states in Eq. (3.9) are special because they are eigenstates of the SO-perturbed QD

system at B∗. It may also be that, to linear order, the Dresselhaus and Rashba SO

interactions can split their degeneracy at B∗. In general, the linear SO interaction can

only mix QD states which contain orbital angular momentum states with Lz values

that differ by 1 only, and spin angular momentum states with Sz values that differ

by 1 only (refer to App. B.1 for details). We restrict ourselves to subspaces which

contain only spin-half states, that is states with Sz = ±1/2. This is because the

ground state manifolds in both the one-electron and three-electron system are com-

prised of spin-half states for the parameter values investigated in this dissertation.

Meron states in these spin-half subspaces can be generalized as

|QC〉 = 1− C

2
√
2

(∣∣Lz,
1
2

〉− iQ
∣∣Lz − 1,−1

2

〉)
+

1 + C

2
√
2

(∣∣Lz,−1
2

〉
+Q

∣∣Lz − 1, 1
2

〉)
,

(3.15)

where the chirality of the meron state is C = ±1 and the topological charge is Q = ±1.
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(βD > αR > 0)

2βDE− 2αRE+

ĤQD ĤSO

E0 = E−1,−1

E1 = E−1,1

E2 = E1,1

E3 = E1,−1

Figure 3.3: Spin-orbit interaction is expected to lift the four-fold degeneracy of the
states

∣∣Lz − 1,±1
2

〉
,
∣∣Lz,±1

2

〉
in the ground state manifold.

Within the ground state subspace, the SO-induced energy splittings EQC associ-

ated with each of the above |QC〉 state are determined to be

EQC =
Q

2

(
αRE+(1 + C) + βDE−(1− C)

)
, (3.16)

where

E± ≡ λ
〈
Lz − 1,±1

2

∣∣ σ̂±
(
â
(
1 + 1

ν

)− b̂†
(
1− 1

ν

)) ∣∣Lz,∓1
2

〉
, (3.17)

with λ = 1/(2
√
2�0) and ν =

√
1 + 4ω2

0/ω
2
c . (Please refer to App. B.1 for details.)

Figure 3.3 illustrates this energy splitting. In Eq. (3.17), â and b̂† independently lower

the orbital angular momentum of the |Lz, Sz〉 states, while σ̂± raises or lowers the

spin. Note that if either αR or βD are zero, or if αR = βD, the energy splitting of

the states is two-fold degenerate. If αR 
= βD, and if neither αR nor βD are zero, the

energy is split into four distinct levels. We find that the Rashba term couples only to

merons with positive chirality, whereas the Dresselhaus term couples only to merons

with negative chirality. Since the Rashba term is to some extent tunable through

externally-applied gate voltages, Eq. (3.16) demonstrates a measure of experimental

control over the merons.

3.6 Finding Merons

The existence criteria for merons is expected to occur throughout the phase space of

the QD. We do not investigate two-electron systems because their degenerate ground

state manifolds involve more than four QD states which is beyond the scope of the
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winding state model developed in this dissertation. Some of the degenerate ground

state manifolds in four-electron systems are four-fold degenerate, however the de-

generate QD states do not fit the mould of the four generalized winding states in

Eq. (3.8). We therefore restrict our exploration to three-electron systems and five-

electron systems.

N = 3

The next four-fold degeneracy point in the N = 3 (�ω0 = 1 meV) ground state

spectrum occurs at a magnetic field of B∗ = 1.07 T between the |Lz, S, Sz〉 eigenstates
of | − 4, 1/2, ±1/2〉 and | − 5, 1/2, ±1/2〉, as indicated in Fig. 3.4. (There is a level-

crossing in the ground state at a lower magnetic of B=0.94 T, however it is six-fold

degenerate and involves states with spin 3/2. The meron model developed in this

thesis is restricted to four spin-half states and so meron formation is not explored at

this point.) Based on the arguments made in Sec. 3.3, winding states should occur

around the degeneracy point of these particular states. Furthermore, because the

degenerate states have Lz quantum numbers that are different in magnitude, these

winding states should be meron states. In the form of Eq. (3.8) the four states can

be written as

|QC〉 = 1− c

2
√
2

(|−4, 1/2〉 − iq |−5,−1/2〉)
+

1 + c

2
√
2

(|−4,−1/2〉+ q |−5, 1/2〉). (3.18)

Note that at B∗ these states are eigenstates of the SO-perturbed system. The spin

expectation values for each spin component 〈Sx(r)〉, 〈Sy(r)〉, and 〈Sz(r)〉 are plotted

in Fig. 3.5 for two of these states. Indeed these states have windings, and the central

spin that is polarized perpendicular to the plane of winding indicates that these spin

textures are merons. Furthermore, they have a winding number of one, commensurate

with the prediction in Eq. (3.7).

N = 5

We next look to the five-electron system. Figure 3.6 shows the ground state and

some of the lowest-lying states for five interacting electrons as a function of magnetic
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Figure 3.4: A second four-fold degeneracy point in the spectra for N = 3 interacting
particles (�ω0 = 1 meV). The quantum numbers Lz and S of selected levels are shown.
The field B∗ at which this degeneracy occurs is marked.

field. The four-fold degeneracy at B∗ = 0.16 T occurs between the states |Lz, Sz〉 =
| −1, 1/2, ±1/2〉 and | −4, 1/2, ±1/2〉.

Based on the existence criteria discussed in Sec 3.3, four orthogonal meron states

are expected to exist around this degeneracy point. From Eq. (3.8), these four N = 5

meron states are

|QC〉 = 1− c

2
√
2
(|−1, 1/2〉 − iq |−4,−1/2〉)

+
1 + c

2
√
2
(|−1,−1/2〉+ q |−4, 1/2〉) . (3.19)

Since the difference in Lz quantum numbers between the degenerate states is ±3, the

merons which exist here are expected to have a winding of three. The expectation

value of the individual spin components are plotted in Fig. 3.7 for two of these four

meron states. Indeed it is clear from the plots of the spin expectation values in

Fig. 3.7 that these states have a winding number of 3. Figure 3.8 shows the 〈Sz(r)〉
dependence on radius for the merons with C = −3. The large, off-centre peak in the
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Figure 3.5: More meron spin textures in the three-particle system at the degeneracy
point B∗ = 1.07 T (Fig. 3.4). The state on the left has Q,C = 1,−1 while the state
on the right has Q,C = −1, 1. The remaining two configurations are obtained from
these by a local in-plane spin rotation of π.

〈Sz(r)〉 distribution is due to the increased Coulomb interaction strength relative to

the three-particle system.

Unlike the two examples discusses in the three-electron case, these meron states

are not eigenstates of the SO-perturbed system since they contain orbital angular

momentum states with Lz values that differ by more than 1.

We have shown above cases where merons exist in the four-fold degenerate man-

ifold of states with different Lz and Sz quantum numbers. These merons form in

accordance with the predictions made in Sec. 3.3. If the meron states are composed

of “base” QD eigenstates which differ in their Lz and Sz values by 1, their existence

will be induced in the system by the perturbing effects of the SO interaction. Fur-

thermore, it may be possible that the SO interaction will lift their degeneracy. To

determine if these meron states are long-lived, their relaxation and decoherence times

must be determined. In the next chapter we develop the theory used to calculate

these decay times. In Chapters 5 and 6 we calculate the decay rates of single- and

three-electron states, with and without spin-orbit interaction, in the presence of a

phonon bath.
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Figure 3.7: Meron textures in the five-particle system at the degeneracy point B∗

(Fig. 3.6). For the state on the left C = 3, while the state on the right has C = −3.
The remaining two configurations are obtained from these by a local in-plane spin
rotation of π.
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Chapter 4

The Theory of Relaxation and Decoherence

To calculate relaxation and decoherence rates we use the formalism of density matrix

theory. In order for our system to evolve from an initial nonequilibrium state to

a final state of equilibrium, it must interact with an external system, or reservoir.

As mentioned in Chap. 1, electron scattering with phonons are a common source of

dissipation in QDs. At low temperature (T) only acoustic phonons are relevant in

this process since scattering by higher energy optical phonons freezes out [63,96]. In

this chapter we develop the framework for the evolution of our QD system in the

presence of an acoustic phonon reservoir in the T→ 0 limit.

4.1 Generalized Master Equation for a Dissipative Quantum System

In this section we develop the mathematical framework for considering relaxation

processes in a general quantum system. Our framework follows closely that of Blum in

ref. [97]. Consider a quantum system S interacting with a reservoir R. This quantum

system will be our QD system whose Hamiltonian is described in Eq. (2.2), but for

now we will keep the system general. The total Hamiltonian is H = HS +HR + V ,

where V describes the interaction between S and R. (Please note the hat notation Ô

to denote an operator has been dropped for brevity.)

To determine how the system changes in time, we calculate the time evolution

of the density matrix of the quantum system, ρ(t)S. Specifically, we evaluate the

Liouville equation in the interaction picture,

i�
∂ρ(t)I
∂t

=
[
V (t)I , ρ(t)I

]
, (4.1)

where ρ(t)I = eiH0t/�ρ(t)e−iH0t/� is the density operator of the total system in the

interaction picture, H0 = HS + HR, and V (t)I is the interaction operator in the

interaction picture. Formal integration of Eq. (4.1) yields

ρ(t)I = ρ(t0)I − i

�

∫ t

t0

[
V (t′)I , ρ(t′)I

]
dt′. (4.2)

29
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Using the notation ∂ρ(t)I/∂t ≡ ρ̇(t)I and inserting Eq. (4.2) into Eq. (4.1) yields

ρ̇(t)I = − i

�

[
V (t)I , ρ(t)I

]
= − i

�

(
V (t)Iρ(t)I − ρ(t)IV (t)I

)
= − i

�

(
V (t)I

(
ρ(t0)I − i

�

∫ t

t0

[
V (t′)I , ρ(t′)I

]
dt′
)

−
(
ρ(t0)I − i

�

∫ t

t0

[
V (t′)I , ρ(t′)I

]
dt′
)
V (t)I

)
= − i

�

[
V (t)I , ρ(t0)I

]
− 1

�2

∫ t

t0

[
V (t)I ,

[
V (t′)I , ρ(t′)I

]]
dt′.

(4.3)

We are only interested in the time evolution of the quantum system, therefore we

trace out the elements of the reservoir: ρ(t)SI = trR{ρ(t)I}. Then Eq. (4.3) becomes

ρ̇(t)SI = − i

�
trR

[
V (t)I , ρ(t0)I

]
− 1

�2

∫ t

t0

trR

[
V (t)I ,

[
V (t′)I , ρ(t′)I

]]
dt′. (4.4)

We assume that S is uncorrelated with R before time t0. The density matrix

for the total system at this initial time can be written as a product state, ρ(t0)I =

ρ(t0)SI ρ(t0)RI .

A key assumption we make about the interaction between S and R is that, while

R affects S, S has no effect on R; R remains indefinitely in thermal equilibrium at a

constant temperature and is independent of time, ρ(t)RI = ρ(t0)RI = ρR. Therefore,

energy dissipated by S into R cannot be returned to S at a later time. This is known

as the condition of irreversibility. The density matrix of the total system can then be

written as

ρ(t)I = ρ(t)SI ρR, (4.5)

where ρR = (e−βHR)/Z, β = 1/kBT , kB is Boltzmann’s constant, T is tempera-

ture, and Z = tr
(
e−βHR

)
is the reservoir partition function. Inserting Eq. (4.5) into

Eq. (4.4), we get

ρ̇(t)SI = − i

�
trR

[
V (t)I , ρ(t0)SI ρR

]
− 1

�2

∫ t

t0

trR

[
V (t)I ,

[
V (t′)I , ρ(t′)SI ρR

]]
dt′. (4.6)

This equation of motion is valid to second order in the interaction. Higher order

interaction terms are eliminated under the condition of irreversibility.
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Another key assumption we use is that ρ̇(t)SI depends only on ρ(t)SI , its value at

the present time t. In a manner of speaking, S has no memory. We refer to this as

the Markov approximation. Then ρ(t′)SI → ρ(t)SI and Eq. (4.6) becomes

ρ̇(t)SI = − i

�
trR

[
V (t)I , ρ(t0)SI ρR

]
− 1

�2

∫ t

t0

trR

[
V (t)I ,

[
V (t′)I , ρ(t)SI ρR

]]
dt′. (4.7)

Regarding the interaction operator V , it is written as a product of S and R

operators, V =
∑

i FiQi, where Fi are reservoir operators and Qi are operators that

act only on the quantum system. In the interaction picture, the interaction operator

is

V (t)I = ei(HS+HR)t/�V e−i(HS+HR)t/�

=
∑
i

F (t)iQ(t)i,
(4.8)

where F (t)i = eiHRt/�Fie
−iHRt/� and Q(t)i = eiHSt/�Qie

−iHSt/�.

Consider the first term in Eq. (4.7). Since system operators commute with reser-

voir operators, and taking advantage of the fact that the trace allows for cyclic per-

mutations, the first term becomes

trR

{∑
i

F (t)iQ(t)iρ(t0)SI ρR − ρ(t0)SI ρR
∑
i

F (t)iQ(t)i

}
=
∑
i

(
Q(t)iρ(t0)SItrR

{
F (t)iρR

}− ρ(t0)SIQ(t)itrR
{
ρRF (t)i

})
=
∑
i

[
Q(t)i, ρ(t0)SI

]
trR
{
F (t)iρR

}
.

Now, ρR is diagonal in the basis of the eigenstates of the reservoir. Taking the eigen-

states to be |N〉, the trace above becomes trR
{
F (t)iρR

}
=
∑

N 〈N |F (t)i |N〉 〈N | ρR |N〉.
The operator F (t)i is part of the interaction and is assumed to have no diagonal el-

ements in this basis. Consequently, the trace trR
{
F (t)iρR

}
= 0, and therefore the

first term in Eq. (4.7) is zero, as well. The second term in Eq. (4.7) can be rewritten

in a manner similar to the first term such that Eq. (4.7) becomes

ρ̇(t)SI = − 1

�2

∑
ij

∫ t

t0

([
Q(t)i, Q(t′)j ρ(t)SI

]
trR
{
F (t)i F (t′)j ρR

}
−
[
Q(t)i, ρ(t)SI Q(t′)j

]
trR
{
F (t′)j F (t)i ρR

})
dt′. (4.9)
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Consider the trace trR
{
F (t)i F (t′)j ρR

}
in the equation above:

trR
{
F (t)i F (t′)j ρR

}
= trR

{
eiHRt/� Fi e

−iHRt/� eiHRt′/� Fj e
−iHRt′/� ρR

}
= trR

{
eiHR(t−t′)/� Fi e

−iHR(t−t′)/� FjρR
}

= trR
{
F (t−t′)i Fj ρR

}
= 〈F (t−t′)i Fj〉.

Similarly, trR
{
F (t′)j F (t)i ρR

}
= 〈Fj F (t− t′)i〉. These expectation values are time

correlation functions. They measure the correlation between the reservoir as it exists

at time t and as it exists at time t′. Due to the previously mentioned assumptions

about the reservoir, it is expected that these correlation functions tend to zero for

values of (t − t′) that are much longer than the inherent correlation time of the

reservoir, τ . This means that the result of Eq. (4.9) is nonzero only for time intervals

(t − t′) � τ . For small values of τ this implies that ˙ρ(t)SI depends only on ρ(t′) for

values of t′ that lie within this time interval, i.e. t′ values that are close to the present

time, t. This is in keeping with the Markov approximation made above, where we

have assumed that any changes in the system depend only on the present state of

the system. This method neglects some details about the transient behaviour of the

system on shorter time scales, however we are only interested in the behaviour of the

system over long time scales ((t− t′) > τ).

We now consider the matrix elements of ρ̇(t)SI in the basis of system eigenstates,

|m〉. Note that

〈m|Q(t)i |n〉 = eiωmnt 〈m|Q |n〉 , (4.10)

where

ωmn = (Em − En)/�. (4.11)
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Then the matrix elements of ρ(t)SI become,

ρ̇(t)m′m=− 1

�2

∑
ij

{∑
kn′n

∫ t

t0

eiωm′kt〈m′|Qi|k〉eiωkn′ t′〈k|Qj|n′〉〈n′|ρ(t)|n〉δmn〈F (t−t′)iFj〉dt′

−
∑
n′n

∫ t

t0

eiωm′n′ t′〈m′|Qj|n′〉〈n′|ρ(t)|n〉eiωnmt〈n|Qi|m〉〈F (t−t′)iFj〉dt′

−
∑
n′n

∫ t

t0

eiωm′n′ t〈m′|Qi|n′〉〈n′|ρ(t)|n〉eiωnmt′〈n|Qj|m〉〈FjF (t−t′)i〉dt′

+
∑
kn′n

∫ t

t0

〈n′|ρ(t)|n〉eiωnkt
′〈n|Qj|k〉eiωkmt〈k|Qi|m〉δm′n′〈FjF (t−t′)i〉dt′

}
(4.12)

which reduces to

ρ̇(t)m′m =
∑
n′n

ρ(t)n′n e
i(ωnm+ωm′n′ )t

×
{
Γ+(t)nmm′n′ + Γ−(t)nmm′n′ −

∑
k

(
δmnΓ

+(t)m′kkn′ + δm′n′Γ−(t)nkkm
)}

=
∑
n′n

ρ(t)n′n e
i(ωnm+ωm′n′ )t Rm′mn′n(t),

(4.13)

where

Γ+(t)abcd =
1

�2

∑
ij

〈a|Qi|b〉〈c|Qj|d〉
∫ t

t0

e−iωcd(t−t′)〈F (t−t′)iFj〉dt′, (4.14a)

Γ−(t)abcd =
1

�2

∑
ij

〈a|Qj|b〉〈c|Qi|d〉
∫ t

t0

e−iωab(t−t′)〈FjF (t−t′)i〉dt′, (4.14b)

where (Γ−(t)abcd)∗ = Γ+(t)dcba
1, and Rm′mn′n(t) are elements of the Redfield tensor.

Note that in evaluating the matrix elements of ρ(t)SI above we have dropped the

subscript SI. From this point onward the density matrix for the system in the

interaction picture will be shortened to ρ(t).

Recall that the correlation functions tend to zero as (t − t′) � τ . Therefore,

under the Markov approximation, we can extend the upper limit of the integrals in

Eq. (4.14) to infinity. Also, we assume the reservoir and system have always been in

1Upon evaluating these elements in our system, Γ+(t)abcd and Γ−(t)abcd are in fact real, so that
Γ−(t)abcd = Γ+(t)dcba. This is not generally true.



34

contact, and take the lower limit of the above integrals to be negative infinity. With

the change of variables t′′ = (t− t′), the functions in Eq. (4.14) become

Γ+
abcd =

1

�2

∑
ij

〈a|Qi|b〉〈c|Qj|d〉
∫ ∞

−∞
e−iωcdt

′′〈F (t′′)iFj〉dt′′, (4.15a)

Γ−
abcd =

1

�2

∑
ij

〈a|Qj|b〉〈c|Qi|d〉
∫ ∞

−∞
e−iωabt

′′〈FjF (t′′)i〉dt′′, (4.15b)

and they, along with the elements of the Redfield tensor, are no longer time-dependent.

Our final form of ρ̇(t)m′m is

ρ̇(t)m′m =
∑
n′n

ρ(t)n′n e
i(ωnm+ωm′n′ )t Rm′mn′n, (4.16a)

where

Rm′mn′n= Γ+
nmm′n′ + Γ−

nmm′n′ −
∑
k

(
δmnΓ

+
m′kkn′ + δm′n′Γ−

nkkm

)
. (4.16b)

It is worth noting that we do not make the secular approximation, as discussed by

Blum in Ref. [97]. The secular approximation assumes that the energy levels of the

system are far apart such that, except in the case where Em′ = Em and En′ = En,

or where Em = En and Em′ = En′ , the exponential term in Eq. (4.16a) oscillates

rapidly and averages to zero over the time-scale investigated. In this dissertation we

examine situations where the energy levels of the system are close to each other, such

as near a degeneracy point. We therefore do not apply the secular approximation to

our model.

In Eq. (4.16) we have developed a general expression for evaluating the time-

evolution of a general quantum system in dissipative contact with a general vast

reservoir. This expression is our generalized Master equation, where it assumes the

reservoir does not change in time despite interacting with the system, and we have

taken the Markov approximation where any change in the system depends only on

its current state.

We are specifically interested in how the QD system as described in Chap. 2

evolves in time when coupled to a phonon reservoir. In the next section we introduce

the electron-phonon interaction as our interaction operator V and specify the types

of electron-phonon interactions expected to contribute to the evolution of the QD

system. In Sec. 4.3 we tailor our generalized Master equation to the QD system

coupled with the phonon reservoir.
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4.2 Electron-Phonon Interaction

As mentioned previously, we consider interactions with acoustic phonons only. Specif-

ically we consider long-wavelength (small wave-vector q) acoustic phonons. In this

regard the acoustic phonon dispersion curve is approximated as linear, with ωq = cνq

where cν is the speed of sound in the semiconductor.

We examine two different mechanisms for electron-phonon couplings: Coupling

induced by the deformation potential and coupling induced by the piezoelectric effect.

Both types of electron-acoustic phonon interactions have been shown, experimentally

and theoretically, to play a role in electron relaxation processes in a QD [28,98–101].

Deformation potentials arise from the deformation of the crystal lattice, where

the atoms of the semiconductor are displaced from their equilibrium positions due to

their interactions with charge carriers. It is treated as a perturbation of the electronic

energies due to the lattice vibration [63]. In GaAs, the conduction band minimum is

at the Γ-point (k=0) and is nondegenerate2 (spin degeneracy aside). Therefore, for

long wavelength phonons, only longitudinal phonons are significant [103].

GaAs is a weakly piezoelectric semiconductor, where a stress in the crystal lattice

induces a global electric field that is proportional to the stress [63,103]. The induced

electric field points in the direction of the phonon. This is known as the piezoelectric

effect. The piezoelectric electron-phonon interaction is anisotropic, and depends on

the polarization (longitudinal or transverse) of the acoustic phonon. We therefore

look at both cases.

In general the electron-phonon interaction can be expressed as

V =
∑
ij

c†icj
∑
q

(
γij
q bq + (γji

q )
∗b†q
)

(4.17)

where c†i and ci are the same second quantized Fermi operators introduced in Chap. 3

which create or annihilate an electron in state i, and b†q and bq are second quan-

tized Bose operators which create or annihilate a phonon with wave vector q. The

coefficients γij
q and (γji

q )
∗ depend on the explicit electron-phonon interaction. This

interaction conserves the spin of the electron. Note that V is Hermitian. In contrast

2The conduction band in GaAs can be made degenerate if it is strongly n-doped (e.g. n ≈ 1019

cm−3), which raises the Fermi energy to or above the conduction band energy [102]. In our system
we assume the doping of the GaAs layer of the quantum well to be intrinsic or very weak.
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with the general expression V =
∑

i FiQi, we see that

Fij =
∑
q

(
γij
q bq + (γji

q )
∗b†q
)
, (4.18)

and

Qij = c†icj (4.19)

and the sum is taken over two indices.

The coefficients γij
q ((γji

q )
∗) can be expressed as follows:

γij, ν
q ≡ Mν(q) (i| eiq·r |j)

= Mν(q)

∫
ψ∗
i (r)ψj(r)e

iq·rd3r,
(4.20)

where the index ν is used to denote a specific type of electron-phonon interaction.

Here |i) is a single-electron state, ψi(r) is the three-dimensional position-space repre-

sentation of the electron state, andMν(q) is the matrix element of the electron-phonon

interaction. We examine the same electron-phonon interactions studied by Climente

et al. in references [20,100,101]. Specifically, we look at the deformation potential by

longitudinal acoustic phonons (ν = LA-DP), the piezoelectric effect by longitudinal

acoustic phonons (ν = LA-PZ), and the piezoelectric effect by transverse acoustic

phonons (ν = TA-PZ). In each case, the matrix element Mν(q) takes on the following

values:

|MLA−DP (q)|2 = �D2

2 d cLAV
|q|, (4.21)

|MLA−PZ(q)|2 = 32π2
�e2h2

14

ε2 d cLAV

(3qxqyqz)
2

|q|7 , (4.22)

|MTA−PZ(q)|2 = 32π2
�e2h2

14

ε2 d cTAV
×
∣∣∣∣q2xq2y + q2yq

2
z + q2zq

2
x

|q|5 − (3qxqyqz)
2

|q|7
∣∣∣∣ , (4.23)

where cLA is the sound velocity of the longitudinal acoustic phonon mode in the

semiconductor, cTA is the sound velocity of the transverse acoustic phonon mode, D

is the deformation constant for the semiconductor, d is the semiconductor density, V

is the semiconductor volume, and h14 is the piezoelectric constant for semiconductors

with zinc-blende structure. As before, e is the magnitude of the electron charge, and

ε is the semiconductor dielectric constant. Note the matrix element in Eq. (4.23)

takes into consideration the two transverse phonon modes [104]. A derivation of
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the deformation potential electron-acoustic phonon interaction is given by Mahan in

ref. [103], and a derivation of the piezoelectric electron-acoustic phonon interaction

is given by Zook in ref. [104]. We use the following GaAs parameters: D = 8.6 eV,

d = 5310 kg/m3, and h14 = 1.41 × 109 V/m. With the growth of the QD in the z

(<100> type) direction, we take the acoustic phonon speeds to be cLA = 4.72 × 103

m/s and cTA = 3.34× 103 m/s [20, 100,101].

4.3 Electron Relaxation and Decoherence in a Quantum Dot

In this section we apply our generalized Master equation in Eq. (4.16) to our QD

model in consideration of the electron-phonon interactions discussed above. Consider

first the reservoir correlation functions, 〈F (t−t′)ij Fmn〉 and 〈Fmn F (t−t′)ij〉, where the
reservoir operator Fij is defined in Eq. (4.18). The reservoir is a bath of noninteracting

bosons (acoustic phonons) with Hamiltonian

HR =
∑
k

εk b
†
kbk. (4.24)

The sum in the above equation runs over a continuous number of k-states in the

reservoir. For a linear dispersion, the energy eigenvalues are taken to be

εk = �ωk = �cνk, (4.25)

We assume the particle number of the reservoir is not fixed. The complete set of

reservoir states can be expressed as

∑
n1

∑
n2

∑
n3

· · · |n1k1 n2k2 n3k3 · · ·〉

≡
∑
{nλ}

|�n〉 ,
(4.26)

where {nλ} is the set of occupation numbers which specifies the reservoir eigenstate:

Each single-particle state ki can have ni bosons, where ni can range from 0 to infinity.

The reservoir operators HR, b
†
k, and bk act in the following ways on the reservoir
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eigenstates:

HR |n1k1 n2k2 · · ·〉 = (n1εk1 + n2εk2 + · · ·) |n1k1 n2k2 · · ·〉
≡ E�n |�n〉 (4.27)

b†k |n1k1 n2k2 · · ·〉 =
∑
α

δkkα
√
nα + 1 |· · · (nα + 1)kα · · ·〉 (4.28)

bk |n1k1 n2k2 · · ·〉 =
∑
α

δkkα
√
nα |· · · (nα − 1)kα · · ·〉 (4.29)

The partition function Z of this reservoir can be expressed as

Z = Πi Zi =
∑
{nλ}

e−βE�n , (4.30)

where for bosons,

Zi =
∞∑

ni=0

e−βniεi =
1

1− e−βεi
. (4.31)

We now evaluate the correlation function 〈F (t−t′)ij Fmn〉. For a general electron-

phonon interaction, and in the interaction picture,

F (t)ij Fmn = eiHRt/� Fij e
−iHRt/� Fmn

=
∑
qq′

eiHRt/�
(
γij
q bq + (γji

q )
∗b†q
)
e−iHRt/�

(
γmn
q′ bq′ + (γnm

q′ )∗b†q′

)
.

We keep only particle-conserving terms since, upon taking the trace over the reservoir

states when evaluating the expectation value in the next step, non-particle conserving

terms (∝ bq bq′ , b
†
q b

†
q′) will give zero. The correlation function becomes

〈F (t)ij Fmn〉 = trR

{
e−βHR

Z
∑
qq′

eiHRt/�
[
(γji

q )
∗γmn

q′ b†qe
−iHRt/�bq′

+ γij
q (γ

nm
q′ )∗bqe

−iHRt/�b†q′

]}
. (4.32)

Consider the first term. The trace is

1

Z
∑
{nλ}

∑
qq′

(γji
q )

∗γmn
q′ 〈�n| e−βHReiHRt/�b†qe

−iHRt/�bq′ |�n〉 . (4.33)
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Using Eqs. (4.27), (4.28) and (4.29) this becomes

1

Z
∑
{nλ}

∑
qq′

(γji
q )

∗γmn
q′ e−βE�neiE�nt/�

∑
αα′

δqkαδq′kα′
√
nα

√
nα′e−i(E�n−εkα′ )t/�

× 〈· · · (nα − 1)kα · · ·|· · ·(nα′ − 1)kα′ · · ·〉
=

1

Z
∑
{nλ}

∑
qq′

(γji
q )

∗γmn
q′ e−βE�neiE�nt/�

∑
αα′

δqkαδq′kα′
√
nα

√
nα′e−i(E�n−εkα′ )t/�δαα′

=
1

Z
∑
{nλ}

∑
qq′

(γji
q )

∗γmn
q′ e−βE�neiE�nt/�

∑
αα′

δqkαδq′kα′
√
nα

√
nα′e−i(E�n−εkα′ )t/�δαα′

=
1

Z
∑
{nλ}

∑
qq′

(γji
q )

∗γmn
q′ e−βE�n

∑
α

δqkαδq′kαnαe
iεkα t/�

=
1

Z
∑
{nλ}

∑
q

(γji
q )

∗γmn
q e−βE�n nq e

iεqt/�.

(4.34)

Note that nq e
−βE�n = − 1

β
∂
∂εq

e−βE�n . Then the last line in Eq. (4.34) becomes

1

Z
∑
q

(γji
q )

∗γmn
q eiεqt/�

(
− 1

β

)
∂

∂εq

∑
{nλ}

e−βE�n

=
1

Z
∑
q

(γji
q )

∗γmn
q eiεqt/�

(
− 1

β

)
∂

∂εq
Z

=
1

Z
∑
q

(γji
q )

∗γmn
q eiεqt/�

(
− 1

β

)(
− βe−βεq

1− e−βεq
Z
)

=
∑
q

(γji
q )

∗γmn
q eiεqt/�

(
1

eβεq − 1

)
,

(4.35)

where 1/(eβεq −1) is the Bose-Einstein distribution for the phonon state q (the chem-

ical potential μ = 0).

In a similar manner, the second term in Eq. (4.32) reduces to∑
q

γij
q (γ

nm
q )∗e−iεqt/�

(
1

1− e−βεq

)
. (4.36)

Then the correlation functions become

〈F (t)ij Fmn〉 =
∑
q

{
(γji

q )
∗γmn

q

(
eiεqt/�

eβεq − 1

)
+ γij

q (γ
nm
q )∗

(
e−iεqt/�

1− e−βεq

)}
(4.37a)

〈Fmn F (t)ij〉 =
∑
q

{
γij
q (γ

nm
q )∗

(
e−iεqt/�

eβεq − 1

)
+ (γji

q )
∗γmn

q

(
eiεqt/�

1− e−βεq

)}
. (4.37b)
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At this point we apply the zero-temperature limit. As T → 0 (β → ∞), only the

second terms in Eqs. (4.37a) and (4.37b) are retained, since

lim
β→∞

1

eβεq − 1
= 0

lim
β→∞

1

1− e−βεq
= 1.

This indicates that, as T→ 0, phonons cannot be emitted by the reservoir; they can

only be absorbed. The correlation functions reduce to

〈F (t)ij Fmn〉 =
∑
q

γij
q (γ

nm
q )∗e−iεqt/� (4.38a)

〈Fmn F (t)ij〉 =
∑
q

(γji
q )

∗γmn
q eiεqt/�. (4.38b)

We now reconsider the expressions Γ+
nmm′n′ and Γ−

nmm′n′ from our generalized Mas-

ter equation (see Eqs. (4.15) and (4.16)). Using Eq. (4.38) above, Γ+
nmm′n′ becomes

Γ+
nmm′n′ =

1

�2

∑
ijkl

〈n|Qij|m〉〈m′|Qkl|n′〉
∫ ∞

−∞
e−iωm′n′ t〈F (t)ijFkl〉dt

=
1

�2

∑
ijkl

〈n|Qij|m〉〈m′|Qkl|n′〉
∑
q

γij
q (γ

lk
q )

∗
∫ ∞

−∞
e−iωm′n′ te−iεqt/�dt

=
2π

�2cν

∑
ijkl

〈n|Qij|m〉〈m′|Qkl|n′〉
∑
q

γij
q (γ

lk
q )

∗δ(q−qn′m′,ν),

(4.39)

where we have defined the quantity

qnm,ν ≡ ωnm

cν
=

En − Em

�cν
, (4.40)

and used the identity for the Dirac delta function δ(x) = 1
2π

∫∞
−∞ eixkdk.

Similarly, Γ−
nmm′n′ becomes

Γ−
nmm′n′ =

2π

�2cν

∑
ijkl

〈n|Qkl|m〉〈m′|Qij|n′〉
∑
q

(γji
q )

∗γkl
q δ(q−qnm,ν). (4.41)

Consider next the sum over q. For a d-dimensional system, we can convert a sum

to an integral in the following manner [105]:∑
k

→ V

(2π)d

∫
ddk, (4.42)
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where V is the volume of the system, and V/(2π)d is the density of states in k-space.

From Eq. (4.20), let

γij, ν
q ≡ Mν(q)γ̃

ij
q . (4.43)

Furthermore, from Eqs. (4.21), (4.22), and (4.23), let

|Mν(q)|2 ≡ 1

V
|M̃ν(q)|2. (4.44)

Then γij, ν
q (γlk, ν

q )∗ = 1
V
|M̃ν(q)|2γ̃ij

q (γ̃
lk
q )

∗. The elements Γ+
nmm′n′ and Γ−

nmm′n′ can be

written in terms of an integral over q,

Γ+
nmm′n′ =

1

(2π�)2cν

∑
ijkl

〈n|Qij|m〉〈m′|Qkl|n′〉
∫

d3q|M̃ν(q)|2γ̃ij
q (γ̃

lk
q )

∗δ(q−qn′m′,ν),

(4.45a)

Γ−
nmm′n′ =

1

(2π�)2cν

∑
ijkl

〈n|Qkl|m〉〈m′|Qij|n′〉
∫

d3q|M̃ν(q)|2(γ̃ji
q )

∗γ̃kl
q δ(q−qnm,ν),

(4.45b)

for the specific electron-phonon interaction ν. To evaluate the q integral, we write

the phonon momentum using spherical coordinates,

q = q(cos θq sinφq, sin θq sinφq, cosφq), (4.46)

where
∫
d3q → ∫∞

0
dq
∫ 2π

0
dθq
∫ π

0
dφq q

2 sinφq.

At this point we consider the expansion of the coefficients γ̃ij
q and (γ̃lk

q )
∗. From

Eqs. (4.20) and (4.43),

γ̃ij
q =

∫
ψ∗
i (r)ψj(r)e

iq·rd3r =

∫ ∞

0

dr

∫ π

−π

dθ

∫ ∞

−∞
dz r φ∗

i (r, θ)φj(r, θ)ξ(z)
2eiq·r. (4.47)

The three-dimensional position-space representation of the electron in the QD, is

ψi(r) = φi(r, θ)ξ(z) (4.48)

where φi(r, θ) is the position-space representation of the QD orbitals (see Eq. (2.5))

and ξ(z) is the ground state of the quantum square well in the z-direction (see

Eq. (2.1)). (The azimuthal direction in position space, θ, is not to be confused
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with the azimuthal direction in momentum space, θq.) Note that the indices i and

j in Eq. (4.47) each represent a different set of orbital quantum, n and m. As such,

the sum
∑

ijkl in the Redfield tensor elements is in fact a sum over eight different

indices (four sets of n and m). The integration over θ involves the angular part of

the QD orbital wave function, eim
′θ, and the position-space azimuthal angle of eiq·r

in Eq. (4.47), and can be done analytically. Eq. (4.47) becomes

γ̃ij
q = 2πe−im̃ij(θq−π/2)

∫ ∞

0

dr rRnimi
(r)Rnjmj

(r)Jm̃ij
(qr sinφq)

∫ ∞

−∞
dz ξ(z)2eiqz cosφq

= 2πe−im̃ij(θq−π/2)
I
ij
r (q, φq)Iz(q, φq),

(4.49)

where m̃ij = m′
i − m′

j (m′ = n − m, see Eq. (2.5)), Rnimi
(r) = (−1)nri√

2πl0

√
nri !

(nri+|m′
i|)! ×

e−r2/(4l20)
(

r√
2l0

)|m′
i|L|m′

i|
nri

(
r2

2l20

)
is the radial part of the QD orbital, and Jn(x) is the Bessel

function of the first kind. In the second line of Eq. (4.49), Iijr (q, φq) represents the

integration over r; it returns a function of q and φq. Similarly, Iz(q, φq) represents the

integration over z, which also returns a function of q and φq. The decoupling of the

vertical, or growth-direction (z), component of γ̃ij
q from the lateral (x, y) component

is a reflection of our assumption that the vertical and lateral degrees of freedom of

the electron wave function are decoupled [61,98,101].

We now return to the integration over q. The integration over θq can be done

analytically, and depends on the interaction type, ν = {LA-DP, LA-PZ, TA-PZ}.
The matrix elements |M̃ν(q)|2 (see Eqs. (4.21), (4.22), and (4.23)) can be expressed

in terms of the spherical coordinates in Eq. (4.46):

|M̃LA−DP (q)|2 = �D2

2 d cLA
|qLA| (4.50)

|M̃LA−PZ(q)|2 = 32π2
�e2h2

14

ε2 d cLA

(
9 cos2 θq sin

2 θq sin
4 φq cos

2 φq

|qLA|
)
, (4.51)

|M̃TA−PZ(q)|2 = 32π2
�e2h2

14

ε2 d cTA

(
cos2 θq sin

2 θq sin
4 φq(1− 9 cos2 φq) + sin2 φq cos

2 φq

|qTA|
)
.

(4.52)

The entire integration over q can be defined as

I
nm,ν
ijkl ≡ 1

(2π�)2cν

∫
d3q|M̃ν(q)|2γ̃ij

q (γ̃
lk
q )

∗δ(q−qnm,ν)

=

∫ π

0

dφq sinφq I
ν
θq(φq) I

ij
r (φq) I

lk
r′ (φq) Iz(φq) I

∗
z′(φq),

(4.53)
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where,

I
ν
θq(φq) ≡

q2nm,ν

�2cν

∫ 2π

0

dθq e
−i(m̃ij−m̃lk)(θq−π/2)|M̃ν(θq, φq)|2, (4.54)

and we have used the delta function to evaluate the integration over q (q → qnm,ν).

For each of ν = {LA-DP, LA-PZ, TA-PZ}, the I
ν
θq
(φq) integral evaluates to

I
LA-DP
θq (φq) ≡ πD2|qnm,LA|3

� d c2LA
δm̃ijm̃lk

, (4.55)

I
LA-PZ
θq (φq) ≡ 72π3e2h2

14|qnm,LA|
� ε2 d c2LA

sin4 φq cos
2 φqδm̃ijm̃lk

, (4.56)

I
TA-PZ
θq (φq) ≡ 8π3e2h2

14|qnm,TA|
� ε2 d c2TA

(8 sin2 φq cos
2 φq+sin4 φq(1−9 cos2 φq))δm̃ijm̃lk

. (4.57)

The remaining five integrals (over r, r′, z, z′, and φq) are performed numerically (see

App. C).

4.4 Relaxation, Decoherence, and Dephasing

We are interested in how the QD system changes in time when coupled with an

acoustic phonon reservoir. To quantitatively evaluate this evolution, we calculate the

relaxation time and the decoherence time of the QD system.

Decoherence of a state can arise in one of two ways; from interactions with the

bath in which, due to the exchange of energy, it evolves into another state, or from

loss of phase coherence between the basis states in the superposition which makes

up the eigenstate. In the former case, decoherence is due to relaxation, while in the

latter case decoherence is due to dephasing. In general, decoherence can be due to

both. We define the relaxation time, T1, to be the time constant used for describing

how quickly the energy of an excited system eigenstate is lost to the reservoir when it

decays to a system eigenstate of lesser energy. We define the decoherence time, T2, to

be the time constant used for describing how quickly the coherence of the eigenstate

is destroyed.

The relationship between these two time constants is given by [106–110]

1

T2

=
1

2T1

+
1

Tφ

, (4.58)

where Tφ is the dephasing time constant. This imposes an upper bound on T2,

T2 � 2T1. In a “pure” dephasing process there is no energy dissipation in the system,
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and T2 = Tφ. That is to say that only elastic processes contribute to the decoherence

of the state, and the state populations do not change. In general, elastic and inelastic

processes contribute to decoherence.

Let us now consider the solution to the differential equation for the density matrix

in Eq. (4.16a). It is convenient to express ρ(t)m′m as

ρ̃(t)m′m ≡ e−iωm′mtρ(t)m′m. (4.59)

Equation (4.16a) becomes

˙̃ρ(t)m′m =
∑
n′n

(−iωn′nδn′m′δnm +Rm′mn′n
)
ρ̃(t)n′n

=
∑
n′n

R̃m′mn′nρ̃(t)n′n,
(4.60)

where

R̃m′mn′n ≡ (−iωn′nδn′m′δnm +Rm′mn′n
)
. (4.61)

In analogy with the vector equation

ṙ(t) = A r(t) (4.62)

where A is a matrix of constant coefficients, we can treat the set of elements of ρ̃(t)

as a vector and the elements of R̃ as a matrix. The solution to the homogeneous

linear system in Eq. (4.62) with the substitution of ρ̃(t) for r(t) and R̃ for A is

ρ̃(t) =
∑
i

cie
λitui, (4.63)

where ui are the eigenvectors of R̃ and λi the corresponding eigenvalues [111]. The

coefficients ci are determined by initial conditions.

The relaxation time constant T1 is related to the eigenvalues in the solutions for

the diagonal elements of ρ̃(t)m′m (m′ = m), while the decoherence time constant T2

is related to the eigenvalues in the solutions for the off-diagonal elements of ρ̃(t)m′m

(m′ 
= m). The details of the expressions for T1, T2, and Tφ will be evaluated for the

single-electron system, with and without SO, in Chap. 5, and for the three-electron

interacting system, with and without SO, in Chap. 6.



Chapter 5

Phonon-Induced Decay of a Single-Electron State

In this chapter we examine the relaxation and decoherence rates of single-electron

states in the QD system due to the phonon interactions introduced in Chap. 4. Sec-

tion 5.1 examines the decay rates when the SO interaction is excluded from the model.

Specifically, Sec. 5.1.1 explores the relaxation rates of the first excited state to the

ground state as a function of confinement frequency ω0, while Sec. 5.1.2 explores

the relaxation rates of the first excited state to the ground state as a function of a

magnetic field applied perpendicular to the plane of the QD, B ≡ Bz. In Sec. 5.2

we examine the decay rates when the SO interaction is included in the model as a

perturbation to the QD system. To explain the results observed in our model, we

analyze the decay rates obtained under the secular approximation in Sec. 5.2.1. Two

different SO interaction strengths are considered. In Sec. 5.2.2 and Sec. 5.2.3 the

relaxation rates and decoherence rates, respectively, are analyzed as a function of ω0

when the SO effect is small. In Sec. 5.2.4 and Sec. 5.2.5 the relaxation rates and

decoherence rates, respectively, are analyzed as a function of ω0 when the SO effect

is increased.

5.1 Decay of Single-Electron States in Absence of Spin-Orbit

Interaction

For all cases investigated in this section the initial state of the system is the first

excited state of the single-electron QD, the Lz = −1 p-shell, and the final state of

the system is the ground state, the Lz = 0 s-shell. The electron-phonon interaction

does not change the spin of the electron, therefore the results are independent of the

electron-spin of the states used. Note that in the absence of an applied magnetic field

the p-shell is actually doubly degenerate, one state with orbital angular momentum

Lz = −1 and the other with orbital angular momentum Lz = 1. The orbital configu-

ration of these states in the absence of an applied magnetic field is shown in Fig. 5.1.

45
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Figure 5.1: Orbital configuration of the ground state (left) and doubly degenerate
first excited state (right) in the N=1 QD in the absence of an applied magnetic field.
Each orbital is labeled by its orbital quantum numbers, n and m.

The decay rates for both shell states at B = 0 are identical [98]. This degeneracy

is lifted as B is increased, leaving the Lz = −1 state as the sole first excited state.

Therefore only the Lz = −1 initial state is considered in the results shown below.

The decay from the excited state to the ground state is a two-level system. The

density matrix of a two-level system is, in general,

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
(5.1)

where ρ01 and ρ10 are complex conjugates of each other. From Sec. 4.4, we wish to

write the elements of our density matrix as a vector,

ρ̃(t) →

⎛⎜⎜⎜⎜⎜⎝
ρ̃(t)0

ρ̃(t)1

ρ̃(t)2

ρ̃(t)3

⎞⎟⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎜⎝
ρ̃(t)00

ρ̃(t)01

ρ̃(t)10

ρ̃(t)11

⎞⎟⎟⎟⎟⎟⎠ , (5.2)

where each single index on the elements in the left column vector is in fact a double

index representing an element of the density matrix ρ̃(t) (see Eq. (4.59)). In a similar

way, the elements of the Redfield tensor can be expressed in matrix form as

R̃ →

⎛⎜⎜⎜⎜⎜⎝
R̃00 R̃01 R̃02 R̃03

R̃10 R̃11 R̃12 R̃13

R̃20 R̃21 R̃22 R̃23

R̃30 R̃31 R̃32 R̃33

⎞⎟⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎜⎝
R̃0000 R̃0001 R̃0010 R̃0011

R̃0100 R̃0101 R̃0110 R̃0111

R̃1000 R̃1001 R̃1010 R̃1011

R̃1100 R̃1101 R̃1110 R̃1111

⎞⎟⎟⎟⎟⎟⎠ , (5.3)

where, like above, each pair of indices in the left matrix represents the four indices

required to specify a Redfield tensor element.
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For the two-level systems investigated in this dissertation, we have found that R̃

has the general form

R̃ =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 2Γ+

1001

0 −Γ+
1001 + iω10 0 0

0 0 −Γ+
1001 − iω10 0

0 0 0 −2Γ+
1001

⎞⎟⎟⎟⎟⎟⎠ , (5.4)

where Γ+
nmm′n′ is defined in Eqs. (4.15a), (4.39), and (4.45a). In the above matrix

ω10 = (E1 − E0)/�, where E0 and E1 are the energy eigenvalues of the ground state

and the first excited state, respectively. The matrix in Eq. (5.4) can be diagonalized

to obtain the following eigenvectors and eigenvalues:

λ0 = 0, u0 = [1, 0, 0, 0]T, (5.5a)

λ1 =
(−Γ+

1001 + iω10

)
, u1 = [0, 1, 0, 0]T, (5.5b)

λ2 =
(−Γ+

1001 − iω10

)
, u2 = [0, 0, 1, 0]T, (5.5c)

λ3 = −2Γ+
1001, u3 =

1√
2
[−1, 0, 0, 1]T. (5.5d)

From Eqs. (4.59), (4.63), and (5.5) the elements of ρ(t), the density matrix for the

QD system in the interaction picture, for this two-level system are:

ρ00(t) = 1 + c̃1e
−2Γ+

1001t, (5.6a)

ρ01(t) = c̃2e
−Γ+

1001t, (5.6b)

ρ10(t) = ρ01(t)
∗, (5.6c)

ρ11(t) = −c̃1e
−2Γ+

1001t, (5.6d)

where the coefficients c̃i are fixed by initial conditions.

The transition between the excited state and the ground state of the QD is de-

scribed by the evolution of the diagonal elements of ρ(t). Each diagonal element

undergoes exponential decay, where the constant in the exponential term of each el-

ement is the relaxation rate. In this two-level system, the characteristic relaxation

time is

T1 = 1/(2Γ+
1001). (5.7)
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The evolution of the off-diagonal elements describes the loss of coherence of the

two-level system. In this case the decoherence time is

T2 = 1/Γ+
1001. (5.8)

Since T2 = 2T1, we have from Eq. (4.58) that the dephasing rate is zero, meaning that

the decoherence in the system is due exclusively to the relaxation from the excited

state to the ground state. The decoherence rates would be affected by electron-phonon

scattering, however this is not included in our model. The Master equation developed

in Sec. 4.1 is valid only to second order in the interaction V . Higher order terms in

the Liouville expansion of Eq. (4.4) are necessary to account for scattering events.

5.1.1 Decay Rates as a Function of Confinement Frequency

Here we present a study of the decay rates, the inverse of the characteristic decay

times described above, of the single-electron state as a function of ω0 at constant B.

Since the decoherence rate is simply half of the relaxation rate, we show results only

for the relaxation rate in this section. We examine the system at B = 0, B = 1 T,

B = 5 T, and B = 10 T.

In the absence of an applied magnetic field, the energies of the single-electron

states are directly proportional to ω0 (see Eq. (2.4)). The energy spectrum of the

lowest lying states for the single-electron QD system at B = 0 is shown in Fig. 5.2. As

mentioned previously, the s-shell is non-degenerate (excluding spin) with an orbital

angular moment of Lz = 0. The p-shell is the first excited state, and is doubly

degenerate with two states of orbital angular momentum Lz = ±1. The degeneracy

of each subsequent shell in the single-electron QD at zero magnetic field increases by

one. (As B increases from zero this degeneracy lifts.)

Figure 5.3 shows the relaxation rate (1/T1) from the initial Lz = −1 excited

state to the final Lz = 0 ground state. These results are very similar to those

derived numerically in Refs. [100, 101], and at their peak are of the same order of

magnitude of the relaxation rates found experimentally in Refs. [18,29,30]. For small

values of ω0 (ω0 < 0.4 meV/�), the relaxation rate is dominated by the piezoelectric

effect. As ω0 increases, the influence of the piezoelectric effect on the relaxation

rate diminishes, and the relaxation rate is due almost exclusively to the deformation
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Figure 5.2: Energy spectrum of the lowest-lying single-electron states a function
of confinement frequency �ω0 at zero magnetic field. Note the degeneracy of each
subsequent shell from the s-shell increases by one.

potential. This can be explained in the following manner: The relaxation rate varies

with the square of the electron-phonon matrix element for each interaction, |Mν(q)|2.
For the deformation potential, the square of the matrix element is proportional to |q|
(see Eq. (4.21)), whereas for the piezoelectric effect, it is proportional to 1/|q| (see
Eqs. (4.22) and (4.23)). When B = 0 the magnitude of |q| is directly proportional

to ω0 since the energy of the emitted phonon (Eph = �ωq = �cνq) is equal to the

energy difference between the excited state and the ground state in the QD (ΔE =

�ω0). This means that the deformation potential will be the governing scattering

mechanism when the phonons emitted by the QD system are greater in energy, and

the piezoelectric effect will be the governing scattering mechanism when the emitted

phonons are lower in energy. Since the energy scale of the QD grows with ω0, the

relaxation rate is dominated by the piezoelectric effect at lower values of ω0 and by

the deformation potential at higher values of ω0. In all cases studied in this chapter,

the relaxation rate due to the TA-PZ interaction has a larger peak than that of the

LA-PZ interaction. This result has been reported in the literature [100].

For both interaction mechanisms the relaxation rates tend to zero as ω0 tends to

zero, due to the depletion of the density of phonon states as the energy of the emitted
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Figure 5.3: Relaxation rates in a single-electron QD system from the initial Lz = −1
state to the final Lz = 0 state as a function of confinement frequency ω0 at zero
magnetic field. The relaxation rate via emission of (i) a LA-DP phonon is shown in
red, (ii) a LA-PZ phonon is shown in green, and (iii) a TA-PZ phonon is shown in
blue. The right-hand graph shows the data in the left-hand graph as plotted on a log
scale, revealing well-defined minima in the relaxation time.

phonon approaches zero. The relaxation rates for both interaction mechanisms ap-

proach zero as ω0 becomes large, as well. As pointed out in Sec. 4.3, the vertical and

lateral contributions to the electron-phonon interaction decouple. As the magnitude

of the phonon momentum grows with increasing ω0, the vertical contribution decays

rapidly to zero. This coincides with the phonon-wavelength being less than �z, the

width of the quantum well, in this case the smallest confinement length of the electron

wave function. This result points out that the electron-phonon interaction is weak

when the phonon wavelength is small compared to that of the electron wave function

along a certain direction [98].

Another feature present in the relaxation rate is its oscillatory nature, made clear

in the log plot of Fig. 5.3 (b). At certain values of ω0 phonon emission from the

QD is greatly suppressed. The peaks correspond to when the wave function of the

emitted phonon provides a maximum overlap between the (orthogonal) initial and

final states of the electron in the QD. As the energy, and hence the wavelength, of the

emitted phonon is varied with ω0, the phonon wave function changes and allows for

alternating minimum and maximum overlap between the electron states [61,100,101].

The maxima and minima occur at different values of ω0 depending on the polarization

mode of the emitted phonon (LA or TA). This is because the sound velocity is different
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Figure 5.4: Relaxation rates from the initial Lz = −1 state to the final Lz = 0 state
as a function of confinement frequency �ω0 at a constant magnetic field of B = 1 T
(panels (a) and (b)), B = 5 T (panels (c) and (d)), and B = 10 T (panels (e) and (f)).
The upper x-axis in each plot shows the energy difference between the first excited
state and the ground state for the single-electron QD.

for each mode, and corresponds to different phonon wavelengths for the same value of

ω0. These maxima and minima correspond to the maxima and minima in the vertical

contribution function.
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Figure 5.5: Wavelength dependence on confinement frequency ω0 at a constant mag-
netic field B = 0 (a), B = 1 T (b), and B = 10 T (c). The lateral effective length
of the electron wave function, l0, (shown in red) decreases with increasing ω0 and in-
creasing B. As B increases, the phonon wavelength for each polarization mode, λLA

(shown in green) and λTA (shown in blue), becomes greater than l0 for an increasing
range of ω0. However, for large enough values of ω0 the phonon wavelengths become
smaller than the width of the quantum well, �z (shown in black).

We next look at the relaxation rates as B grows to 1 T, 5 T and 10 T. These results

are shown in Fig. 5.4. In general, as B increases, the energy difference between

the ground state and first excited state decreases. This means that the energy of

the emitted phonon gets smaller, and therefore the contribution to the relaxation

rate by the PZ interaction grows. In addition, as B increases, the electron wave

functions become more localized. While l0, the lateral effective length of the electron

wave function, shrinks, the phonon wavelength λq grows for both phonon modes.

Furthermore, λq becomes greater than l0 for an increasing range of ω0 with increasing

B. This behaviour is shown in Fig. 5.5. In keeping with the above statement that

the electron-phonon interaction is weak when the phonon wavelength is smaller than

that of the electron wave function, the relaxation rate increases as λq becomes greater

than l0. Despite growing with B, λq still shrinks with increasing ω0 as before. For

each increasing value of B shown, the relaxation rate is suppressed at a greater value

of ω0, when λq finally becomes smaller than �z, the width of the quantum well.

Another consequence of increasing B is that the width of the peaks broaden over

a greater range of ω0. This is due to the initially slower rate of energy change between

the electron states as a function of ω0 for increasing B, as displayed in Fig. 5.6. Note

that, as the energy of the emitted phonon shifts with ω0, so do the peak locations

for each interaction in the relaxation rates, coinciding approximately with the same
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cited state in the QD as a function of ω0 for constant magnetic fields of B = 0, B = 1
T, B = 5 T, and B = 10 T.

phonon energy for each value of B. The oscillations observed at B = 0 (see Fig. 5.3

(b)) are still present at large ω0 for the finite fields investigated here, as seen in

Figs. 5.4 (b), (d), and (f). The results displayed in Fig. 5.4 are consistent with those

published in Ref. [100].

5.1.2 Decay Rates as a Function of Magnetic Field

We next examine the relaxation rates as a function of B at constant ω0. Specifically

we look at when ω0 = 1 meV/�, 2 meV/�, and 3 meV/�. These results are shown

in Fig. 5.7. As mentioned in the previous section, as B increases the energy differ-

ence between the ground state and the first excited state in the QD decreases, as is

displayed on the top axes of the plots in Fig. 5.7. Consequently, the PZ interaction

dominates the relaxation rate for the majority of the B-field range examined for each

value of ω0. Consistent with the results shown in Fig. 5.4 is the fact that, in general,

the peaks in the relaxation rates grow in magnitude and shift to larger values of B

with increasing ω0 to accommodate the changes in energy of the emitted phonon.

The limiting behaviour of the relaxation rate as a function of B is reversed from

that as a function of ω0. In this case, since the energy of the emitted phonon decreases

as B increases, the phonon density of states is depleted with increasing B, and phonon
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Figure 5.7: Relaxation rates from the initial Lz = −1 state to the final Lz = 0 state
as a function of magnetic field B at a constant confinement frequency ω0 = 1 meV/�
(a), ω0 = 2 meV/� (b), and ω0 = 3 meV/� (c). The upper x-axis in each plot shows
the energy difference between the first excited state and the ground state for the
single-electron QD.

emission becomes suppressed. On the other end, as B approaches zero, the relaxation

rates do not necessarily go to zero; it depends on the value of ω0. When ω0 is small

(� 2 meV/�), λq for one or both types of polarization modes is greater than the

smallest confinement length of the electron wave function at small B (see Fig. 5.8),

in this case �z, and so the electron-phonon interaction is still effectual. However, as

ω0 increases, λq becomes less than �z and the electron-phonon interaction weakens at

small B, as is seen in Fig. 5.7 (c) when ω0 = 3 meV/�.

Unlike in the previously examined cases of varying ω0 at constant B, oscillations

in the relaxation rate are not always seen as B is varied at constant ω0. As previously

mentioned, the oscillations coincide with those present in the vertical component of

the electron-phonon interaction. The minima occur only for values of λq that are

smaller than �z. When ω0 < 2 meV/�, λq � �z for all values of B � 0, and therefore

no oscillations are present in the relaxation rate. When ω0 = 2 meV/� a sharp

minimum appears in the TA-PZ relaxation rate at B = 0, and when ω0 = 3 meV/�

a sharp minimum appears in the LA relaxation rates at B = 0 and in the TA-PZ

relaxation rate at B = 1.1 T (not shown). Generally speaking, since λq increases

with increasing B, the oscillatory behaviour appears before the main peaks in the

relaxation rate (when B is small, provided λq < �z) and should not occur after the

main relaxation rate peaks (when B is large). These results are consistent with those

published in Ref. [100].
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Clearly the relaxation rate of the electron in a QD can be tuned via both the

confinement frequency and an applied external magnetic field. By using key values

for each ω0 and B the lifetime of the QD state can be increased by a few orders of

magnitude.
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Figure 5.8: Wavelength dependence on magnetic field B at a constant confinement
frequency ω0 = 1 meV/� (a), ω0 = 2 meV/� (b), and ω0 = 3 meV/� (c). In general,
the wavelength of an emitted increases with increasing magnetic field, but decreases
with increasing confinement frequency of the QD due to the phonon’s increasing
energy. When ω0 = 3 meV/�, λq for both phonon modes is less than �z for small B.

5.2 Decay of Single-Electron States in Presence of Spin-Orbit

Interaction

We next examine the effects on relaxation and decoherence rates when the SO in-

teraction is considered in the single-electron QD. The spin of the electron becomes

relevant in this case since the SO interaction mixes spin states. Since we are inter-

ested in SO effects in the lowest-lying QD states, we restrict ourselves to truncated

subspaces which contain only four states for the majority of the system parameters

investigated. To this extent, our model weakens as both B and ω0 approach zero,

where multiple degeneracies can occur in the ground state and first excited state of

the SP spectrum.

In this section we investigate the relaxation and decoherence rates as a function

of ω0 for a constant magnetic field of B = 1 T. We use the following four HQD

eigenstates in our truncated subspace as they make up the four lowest-lying states in
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the SP spectrum for the majority of the B and ω0 values investigated:

|0〉 ≡ |Lz=0, Sz=1/2〉 ≡ |0 0 ↑〉 ,
|1〉 ≡ |Lz=0, Sz=−1/2〉 ≡ |0 0 ↓〉 ,
|2〉 ≡ |Lz=−1, Sz=1/2〉 ≡ |0 1 ↑〉 ,
|3〉 ≡ |Lz=−1, Sz=−1/2〉 ≡ |0 1 ↓〉 ,

(5.9)

where the rightmost states in the above equation are expressed using the SP orbital

numbers, |n,m, s〉. Note that this particular subspace contains the proper criteria for

creating the four orthogonal meron states described in Sec. 3.3, namely that each of

the four meron states will be a superposition of two of the above QD states where

|Lz| 
= |L′
z| and |Sz − S ′

z| = 1. Some of the lowest-lying energies in the SP QD

are shown as a function of ω0 in Fig. 5.9 for B = 1 T. Note that the four states

listed in Eq. (5.9) do not make up the four lowest-lying states until ω0 > 0.3 meV/�.

Those states which make up the four lowest-lying states for ω0 less than the stated

threshold value do not satisfy the necessary conditions to create the four orthogonal

meron states discussed above. In our model we retain the four states in Eq. (5.9) for

all calculations and present results for values of ω0 that are greater than this threshold

value of ω0.

The total Hamiltonian is H = HQD +HSO, where HQD is described in Eq. (2.2a)

and HSO is described in Eq. (3.14). We diagonalize H in the subspace containing the

four states in Eq. (5.9). Details of this calculation can be found in App. B.2. The

energy eigenvalues of the resulting states, henceforth referred to as SO states, are

E0 =
1

2

(
e0 + e3 −

√
(e0 − e3)2 + 4β2

D E2−

)
, (5.10a)

E1 =
1

2

(
e1 + e2 −

√
(e1 − e2)2 + 4α2

R E2
+

)
, (5.10b)

E2 =
1

2

(
e1 + e2 +

√
(e1 − e2)2 + 4α2

R E2
+

)
, (5.10c)

E3 =
1

2

(
e0 + e3 +

√
(e0 − e3)2 + 4β2

D E2−

)
, (5.10d)

where ei is the energy of the HQD eigenstate |i〉, and E± are defined in Eq. (3.17) by
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Figure 5.9: Lowest-lying energy spectra in the single-electron QD as a function of
confinement frequency ω0 at a constant magnetic field of B = 1. The states are
labelled by their SP orbital numbers. The level crossings at smaller values of ω0 are
due to Zeeman splitting.

taking Lz = 0. The corresponding SO states are

|ψ0〉 = a |0〉 − ib |3〉, (5.11a)

|ψ1〉 = c |1〉 − d |2〉, (5.11b)

|ψ2〉 = d |1〉+ c |2〉, (5.11c)

|ψ3〉 = b |0〉+ ia |3〉, (5.11d)

where

a ≡ −(E0 − e3)√
β2
D E2− + (E0 − e3)2

, (5.12a)

b ≡ βD E−√
β2
D E2− + (E0 − e3)2

, (5.12b)

c ≡ −(E1 − e2)√
α2
R E2

+ + (E1 − e2)2
, (5.12c)

d ≡ αR E+√
α2
R E2

+ + (E1 − e2)2
. (5.12d)

Note that in the event of a four-fold degeneracy between the HQD eigenstates in

Eq. (5.9), the four SO states in Eq. (5.11) reduce exactly to the meron states described

in Eq. (3.8)1.

1Eq. (3.8) describes a general winding state, but with |Lz| 
= |L′
z| it describes a meron state.
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Figure 5.10: Energy spectrum of the four SO states (see Eq. (5.10)) as a function of
ω0 with (a) αR = 1 meV·nm and βD = 3 meV·nm at B = 1 T, and (b) αR = 10
meV·nm and βD = 30 meV·nm at B = 1 T. The grey and black lines are the energy
eigenvalues of the four HQD states in Eq. (5.9), where the dashed lines are the two
spin-up states (e0 and e2) and the solid lines are the two spin-down states (e1 and
e3). The degeneracy between E1 and E2 at ω0 = 0.3 meV/� is lifted as the strength
of the SO interaction is increased.

In the following calculations we consider two sets of values for the SO parameters

αR and βD. The first set is close to expected values for GaAs and the second set

is made to be an order of magnitude larger to further illustrate the trends induced

by including SO interaction in the QD. Specifically, in Sec. 5.2.2 and Sec. 5.2.3 we

calculate the relaxation and decoherence rates, respectively, for αR = 1 meV·nm [58,

76, 91, 112] and βD = 3 meV·nm [79, 88, 113–115], then repeat the calculations in

Sec. 5.2.4 and Sec. 5.2.5 for αR = 10 meV·nm and βD = 30 meV·nm. By taking

βD > αR, the SO energy eigenvalues are ordered by increasing magnitude as E0 <

E1 < E2 < E3 (see Fig. 3.3).

The SO energies are plotted in Fig. 5.10 as a function of ω0 for both sets of αR and

βD at B = 1 T, while the modulus-squared of coefficients of the SO states are plotted

in Fig. 5.11. For small SO interaction (αR = 1 meV·nm, βD = 3 meV·nm), the four

SO energies are nearly degenerate with the four HQD state energies (indicated by

the black and grey lines) for the entire range of ω0 investigated. This is because, for

this small SO strength, the SO states in Eq. (5.11) are almost exclusively (to within

99%) made up of only one HQD state. Specifically, when ω0 > 0.3 meV/�, |ψ0〉 ≈ |0〉,
|ψ1〉 ≈ |1〉, |ψ2〉 ≈ |2〉, and |ψ3〉 ≈ |3〉. This is shown in Fig. 5.11 (a), where, except

near the threshold value of ω0 = 0.3 meV/�, the coefficients b and d are zero. As
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meV·nm and βD = 30 meV·nm (b). The degree of basis state mixing in the SO states
increases with the strength of the SO interaction.

ω0 approaches 0.3 meV/�, the states |ψ1〉 and |ψ2〉 become an equal superposition of

|1〉 and |2〉. This transition coincides with the level crossing between the energies of

states |1〉 and |2〉 as seen in Fig. 5.9. The states |ψ1〉 and |ψ2〉 become degenerate at

this threshold value of ω0.

When the SO interaction strength is increased to αR = 10 meV·nm and βD = 30

meV·nm the degree of mixing between the HQD states increases. This is manifested

in Fig. 5.10 (b), where the SO energies diverge from the HQD energies. The SO states

are still dominated by a single HQD basis state as when the SO strength was small,

however for |ψ1〉 and |ψ2〉 the non-dominant basis state makes up as much as ∼ 3% of

the eigenstate when ω0 > 0.3 meV/�, and for |ψ0〉 and |ψ3〉 the non-dominant basis

state makes up as much as ∼ 10% of the eigenstate. This can be seen in Fig. 5.11 (b),

where the modulus-squared of each coefficient is plotted as a function of ω0. For the

larger SO strength, the degeneracy between states |ψ1〉 and |ψ2〉 near the threshold

value of ω0 is lifted, as seen in Fig. 5.10 (b). Additionally, the energies E0 and E3

split further from their unperturbed energies than do E1 and E2. This is due to the

fact that E0 and E3 scale with βD while E1 and E2 scale with αR (see Eq. (5.10)),

and we have taken βD to be greater than αR.

In the following sections we examine both the relaxation and decoherence rates of

the SO states for the two different SO interaction strengths discussed above. As in the

non-SO case, these decay rates are obtained by diagonalizing the Redfield tensor. In
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this four-level system the Redfield tensor is represented by a 16 x 16 matrix. As such

the 16 eigenvalues are obtained numerically using the Eigen C++ library [116]. The

relaxation rates correspond to the evolution of the diagonal elements of ρ. Therefore

they are the eigenvalues of the Redfield tensor whose imaginary components are zero,

since ρ is Hermitian. There are four diagonal elements of ρ in this model. One of the

corresponding eigenvalues is exactly zero, however three are not. There must therefore

be three different relaxation rates in the SO system, and not simply one as found in

the non-SO system. In the non-SO system there can only be relaxation from the single

excited state; in the SO system there are three excited states from which the system

can relax. The decoherence rates are the real parts of the remaining eigenvalues of the

Redfield tensor. The imaginary parts of these eigenvalues are non-zero and represent

oscillatory behaviour. Because the off-diagonal elements of ρ are complex conjugates

of each other, there should be a total of six unique decoherence rates in the four-level

SO system. Due to the fact that, for both sets of SO parameters investigated, the SO

states are predominantly of a single HQD state like those investigated in Sec. 5.1, we

expect the decay rates to remain primarily the same as those shown when SO is not

included in the model.

5.2.1 Relaxation Rates under the Secular Approximation

In analyzing the relaxation rates of the system, it is useful to first examine the an-

alytically derived relaxation rates obtained under the secular approximation. In the

secular approximation the diagonal elements of ρ can be obtained from the Pauli

Master Equation (see Ref. [97] for details). In this case, they are found to be

ρ00(t) = c̃0 + c̃1e
−(W03+W13+W23)t + c̃2e

−(W02+W12)t + c̃3e
−(W01)t, (5.13a)

ρ11(t) = c̃4e
−(W03+W13+W23)t + c̃5e

−(W02+W12)t + c̃6e
−(W01)t, (5.13b)

ρ22(t) = c̃7e
−(W03+W13+W23)t + c̃8e

−(W02+W12)t, (5.13c)

ρ33(t) = c̃9e
−(W03+W13+W23)t, (5.13d)

where Wmn is the transition rate from the SO state |ψn〉 to the SO state |ψm〉 as

obtained using Fermi’s Golden Rule.

In our model the transition rates W02 and W13 are equal to each other for the

following two reasons: The change in orbital configuration from state |ψ2〉 to state
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|ψ0〉 as described by W02 is identical to the change in orbital configuration from state

|ψ3〉 to state |ψ1〉 as described by W13, and the difference in energies between the

corresponding states involved in each transition are equal to each other. W02 and

W13 are expected to closely resemble the relaxation rate in the non-SO case as they

each describe the transition between initial and final SO states that are predominantly

the same as the initial and final states in the non-SO case. Since these initial and

final SO states are also predominantly the same spin-species (recall that the electron-

phonon interaction does not flip spins), the transition rates W02 and W13 will be

the largest of the six found in Eq. (5.13). The remaining four transition rates, W01,

W03, W12, and W23 involve transitions between states that are primarily composed

of opposite spin species. These transition rates will be smaller than W02 and W13 as

these decay channels are less likely to be used since the electron-phonon interaction

conserves spin. Just as we expect W02 and W13 to adhere to the behaviour seen

in the relaxation rates in the non-SO case, W03 and W12 are expected to vary in a

similar manner, albeit with a much smaller rate. This is because, like for W02 and

W13, the states involved in the respective transitions are predominantly of different

orbital configurations, just like those in the non-SO case. On the other hand the

rates W01 and W23, which are also equal to each other for the same reasons as why

W02 = W13, should not vary much as a function of ω0 since the SO states involved in

the respective transitions primarily share the same orbital configuration and remain

largely unchanged as ω0 is varied.

In the secular approximation there are three different relaxation rates,

τ1 =W01, (5.14a)

τ2 =(W02 +W12), (5.14b)

τ3 =(W03 +W13 +W23), (5.14c)

where τ1 describes the relaxation from |ψ1〉 to the lower-lying states (in this case only

|ψ0〉), τ2 describes the relaxation from |ψ2〉 to the lower-lying states, and τ3 describes

the relaxation from |ψ3〉 to the lower-lying states (see Eq. (5.11)). We expect that

τ3 should be dominated by W13 while τ2 should be dominated by W02. τ1 should be

small due to the difference in predominant spin of states |ψ0〉 and |ψ1〉.
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Figure 5.12: (a) Relaxation rates of the SO states with αR = 1 meV·nm and βD = 3
meV·nm as a function of ω0 at B = 1 T. Individual relaxation rates for the (b) LA-DP
interaction, (c) LA-PZ interaction, and (d) TA-PZ interaction.

5.2.2 Relaxation Rates with Small Spin-Orbit Effect

In this section we examine the relaxation rates in the system as a function of ω0 for

small SO interaction strength. The relaxation rates with αR = 1 meV·nm and βD = 3

meV·nm are shown in Fig. 5.12. The relaxation rates are plotted on a linear scale in

panel (a), and appear to be identical to the relaxation rates of the non-SO case as

depicted in panel (a) of Fig. 5.4. The log scale plots for each interaction (panels (b),

(c), and (d) of Fig. 5.12) reveal some subtle differences. The oscillatory relaxation

rates observed in the non-SO case are present for each interaction when SO is included,

and are labeled as λB for each interaction in panels (b), (c), and (d). As expected,

there are two additional relaxation rates due to the inclusion of the SO effect. For the

LA-DP interaction in panel (b), one of the additional rates, labeled as λC , appears to

be degenerate with the previously observed oscillatory branch. The other additional
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rate, labeled as λA, is a smaller, “flat” branch. Each of the PZ interactions also has a

“flat” branch, also labeled as λA in their respective panels. For each PZ interaction,

the rate λC transitions from the greatest peak (near ω0 = 0.5 meV/�) to a flat curve

as ω0 increases. In fact, for each interaction, λC is equivalent to the sum of λA and

λB.

Using the results of the secular approximation as a guide, the “flat” branch labeled

λA in the LA-DP interaction (Fig. 5.12 (b)) is determined to be τ1 since the transition

rate W01 is expected to be very small. Furthermore, λA undergoes the least amount

of change as ω0 is varied, just as one would expect for W01. The oscillatory branches,

λB and λC , are each either τ2 or τ3. Next consider the PZ interactions in panels

(c) and (d). As mentioned above, λC appears to be degenerate with λB for smaller

values of ω0, but then transitions to a degeneracy with λA for larger values of ω0. λB

is therefore τ2 and λC is τ3: τ2 is expected to be dominated by W02 for the entire

range of ω0 since the contribution of both W02 and W12 is expected to be qualitatively

similar with W02 > W12. τ3 would be dominated by W13 for smaller values of ω0, just

as τ2 is dominated by W02, but dominated by W23 for larger values of ω0, since W23,

like W01, is expected to vary very little with increasing ω0.

The inclusion of SO at this small strength opens up new relaxation channels in

the system. For the most part it does not change the original, non-SO channels

except in the case of the PZ interaction at larger values of omega: When SO was

neglected there were key values of ω0 where the lifetime of an excited state could

be increased by orders of magnitude as indicated by the minima in the oscillating

relaxation channels. When SO is included, new relaxation channels allow for faster

relaxation in the PZ interaction at these key ω0 values. At these larger values of ω0,

all of the relaxation channels due to the PZ interaction are still very small compared

to the original, oscillating LA-DP relaxation channel, except at the minima in the LA-

DP channel, where some of the PZ rates are approximately the same. Therefore, in

the single particle system for this set of parameters, where all three electron-phonon

interactions are present, the SO interaction produces no measurable change in the

relaxation rates.



64

5.2.3 Decoherence Rates with Small Spin-Orbit Effect

We next examine the remaining, complex, eigenvalues of the Redfield tensor, which

contain information about the decoherence times of the system, when αR = 1 meV·nm
and βD = 3 meV·nm. As expected there are six different decoherence rates in the four-

level system. These are plotted in Fig. 5.13. The panels on the left-hand side of the

figure display the real parts of the eigenvalues, i.e. the decoherence rates, associated

with each interaction, while the panels on the right-hand side of the figure display

the magnitudes of the imaginary components of each corresponding eigenvalue. We

examine the imaginary parts first. The magnitudes of the imaginary components are

identical for each interaction. Two sets of them are degenerate, namely |λa,i| and |λb,i|,
and |λc,i| and |λf,i|. Each of these imaginary components is proportional to the energy

difference between the SO states. Specifically, |λa,i| and |λb,i| are proportional to the

energy difference between states |ψ0〉 and |ψ1〉, and states |ψ2〉 and |ψ3〉 (ΔE01 =

ΔE23), |λc,i| and |λf,i| are proportional to the energy difference between states |ψ0〉
and |ψ2〉, and states |ψ1〉 and |ψ3〉 (ΔE02 = ΔE13), |λd,i| is proportional to the energy

difference between states |ψ0〉 and |ψ3〉, and finally |λe,i| is proportional to the energy

difference between states |ψ1〉 and |ψ2〉.
As in the non-SO case the decoherence rates generally subscribe to being half of

the relaxation rates. By comparing combinations of the relaxation rates in Fig. 5.12

to the decoherence rates in Fig. 5.13, we find for each interaction that the decoherence

rates are as follows:

λa,r =
1
2
(λB + λC) ≡ 1

2
(τ2 + τ3)

λb,r =
1
2
λA ≡ 1

2
τ1

λc,r =
1
2
λB ≡ 1

2
τ2

λd,r =
1
2
λC ≡ 1

2
τ3

λe,r =
1
2
(λA + λB) ≡ 1

2
(τ1 + τ2)

λf,r =
1
2
(λA + λC) ≡ 1

2
(τ1 + τ3)

(5.15)

Under the secular approximation the eigenvalues of the Redfield tensor can be

complex, with the real parts representing decay and the imaginary parts representing

oscillations. We use the secular approximation again to explain the above findings.

We begin with λb: Recall that the imaginary component of λb is the associated with
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Figure 5.13: Decoherence rates of the SO states with αR = 1 meV·nm and βD = 3
meV·nm as a function of ω0 at B = 1 T. Panels (a), (c), and (e) display for each
interaction the real parts of the complex eigenvalues of the Redfield tensor which
represent the decoherence rates, while panels (b), (d), and (f) display the magnitudes
of the corresponding imaginary components of each eigenvalue.

the energy difference between either |ψ0〉 and |ψ1〉, or |ψ2〉 and |ψ3〉. Since the real

component of λb is equal to half of the relaxation rate τ1 = W01, it is reasonable that

|λb,i| be identified with the energy difference between states |ψ0〉 and |ψ1〉. This leaves
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|λa,i| to be the energy difference between states |ψ2〉 and |ψ3〉, which is consistent

with λa,r = (τ2 + τ3) /2 since τ3 contains W23. In the same manner, the imaginary

component of λc is proportional to the energy difference between states |ψ0〉 and

|ψ2〉, while the imaginary component of λf is proportional to the energy difference

between states |ψ1〉 and |ψ3〉. Finally, λd,r and λe,r in the left panels of Fig. 5.13 can be

distinguished using their respective imaginary components: Since |λd,i| is proportional
to ΔE03 λd,r therefore must be τ3/2 which contains W03, while the fact that |λe,i| is
proportional to ΔE12 means that λe,r is equal to (τ1 + τ2) /2, which contains W12.

λd,r and λe,r appear to be the same in the left panels of Fig. 5.13 for the following

reasons: At small ω0, τ1 (λA) is much smaller than τ2 (λB) so λe,r ≈ 1
2
τ2. Also τ3

(λC) and τ2 are approximately the same, so λd,r ≈ λe,r. At large ω0, τ2 becomes much

smaller than τ1 so now λe,r ≈ 1
2
τ1. Since τ3 and τ1 are now approximately the same,

we again have λd,r ≈ λe,r.

We next turn to the effect of increasing the strength of the SO interaction to

αR = 10 meV·nm and βD = 30 meV·nm while keeping the magnetic field at B = 1

T.

5.2.4 Relaxation Rates with Large Spin-Orbit Effect

The relaxation rates for in the system as a function of ω0 with αR = 10 meV·nm
and βD = 30 meV·nm are plotted in Fig. 5.14. The relaxation rates found in this

case are qualitatively similar to those found when αR = 1 meV·nm and βD = 3

meV·nm for each interaction, however there are some differences which stand out.

One of these changes is a shift toward smaller ω0 values for peak positions. This

can be attributed to the increase in the energy difference between all of the states

when the SO interaction strength is increased. The relation between peak position

and energy difference was first observed in Secs. 5.1.1 and 5.1.2, where the relaxation

peaks shifted due to the changes in the energy difference between the QD states as ω0

and B were varied. We found that the peaks coincided approximately with the same

phonon energy, i.e. state energy difference, in all cases. Here, as the SO strength, and

hence the energy differences between the SO states, is increased, the energy of the

emitted phonon which coincides with the relaxation peaks occurs at smaller values of

ω0.
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Figure 5.14: (a) Relaxation rates of the SO states with αR = 10 meV·nm and βD = 30
meV·nm as a function of ω0 at B = 1 T. Individual relaxation rates for the (b) LA-DP
interaction, (c) LA-PZ interaction, and (d) TA-PZ interaction. The relaxation rates
when αR = 1 meV·nm and βD = 3 meV·nm are plotted in grey on each panel for
comparison.

Other obvious, and perhaps more interesting, changes include the following: There

is a general reduction in the height of the greatest peak for each interaction, which

is most clear in panel (a). This shows that, with respect to these particular peaks,

the relaxation time in the system increases with increasing SO strength. Another

change is the significant increase of the relaxation rate λA for all interactions. Both

of these changes can once again be explained in terms of the transition rates Wij. As

discussed previously, and as illustrated in Fig. 5.11, the balance of basis states in the

SO states shifts towards a more equal distribution as the SO strength increases. This

has a significant impact on the transition rates. Consider for example the transition

between states |ψ1〉 = c |0 0 ↓〉 − d |0 1 ↑〉 and |ψ3〉 = b |0 0 ↑〉 + ia |0 1 ↓〉: As the SO

strength increased, these states went from being almost exclusively spin-down states
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to states which contained a mix of spin-up and spin-down. For almost all values of

ω0 examined, the weight on each spin-up (spin-down) basis state in each SO state

is different. This mismatch obstructs somewhat the transitions between these two

states. For example, at larger values of ω0 (ω0 > 1 meV/�), |ψ3〉 has about 10%

of its weight on a spin-up state. |ψ1〉 is still almost exclusively spin-down, which is

largely unchanged from when the SO strength was smaller. Since the electron-phonon

interaction conserves spin, the weight on the spin-down state in |ψ3〉 can transition

completely to the spin-down state in |ψ1〉, however the weight on the spin-up state

in |ψ3〉 has very little spin-up state in |ψ1〉 to transition to. This reduces the decay

channel between these two SO states from when the two states were both almost

exclusively spin-up. In other words, as αR increases from 1 meV·nm to 10 meV·nm
and βD increases from 3 meV·nm to 30 meV·nm, the transition rate W13 decreases.

The exception occurs near ω0 = 0.43 meV/�, where |a|2 = |c|2 and |b|2 = |d|2. At

this point the weight on each spin-species in each SO state is the same, and so the

transition is unobstructed. The same can be said for W02. The remaining transition

rates, W01, W03, W12, and W23, increase as SO strength increases due to the change

in coefficients, since transitions between states which were primarily obstructed due

to spin differences now have a greater degree of spin in common. W01 and W23 will

be affected more so than W03 and W12 at large values of ω0, where the coefficients

|c|2 → 1 and |d|2 → 0.

These changes explain the increase in λA, which was attributed to τ1 = W01 in

the αR = 1 meV·nm, βD = 3 meV·nm case. They also explain the reduction in peak

height for λB and λC . λB was attributed to τ2 = W02 +W12 and W02 is expected to

decrease in this case. Similarly, λC was attributed to τ3 = W03 +W13 +W23, and the

reduction in W13 reduces the height of the largest peak at the smaller end of the ω0

scale. At large ω0 W23, which is expected to increase yet remain largely unchanged

as a function of ω0, dominates τ3 when W13 becomes very small.

Another note of interest is that the apparent degeneracy between λB and λC

observed for smaller values of ω0 when the SO strength was small is lifted for this

stronger SO interaction, by approximately 1 ns−1, with λC having the slightly greater

relaxation rate. This can be explained by the fact that W02 and W13, which are equal

to each other, decrease by the same amount, while W01 and W23, which are also equal
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to each other, increase by the same amount. Since τ3 contains W23 while τ2 does not

contain either W01 or W23, it is reasonable that λC should be slightly greater than

λB.

5.2.5 Decoherence Rates with Large Spin-Orbit Effect

The decoherence rates for αR = 10 meV·nm and βD = 30 meV·nm undergo the

same trends as seen in the relaxation rates. These are displayed in Fig. 5.15. Panels

(a), (b), and (c) show the decoherence rates for each interaction, LA-DP, LA-PZ, and

TA-PZ, respectively. Panel (d) shows the imaginary components of the corresponding

eigenvalues. As in the case when the SO-interaction was small, these imaginary parts

correspond to the changes in energy between all of the SO states, and are identical for

each type of interaction. Furthermore, the decoherence rates are equal to the same

superposition of relaxation rates as described in Eq. (5.15).

Just as seen for the relaxation rates, the ω0 values at which peak heights occur

shift slightly to smaller values. Also, the height of the largest peak shifts slightly

downward from their values when SO was small for most of the decoherence rates,

with the exception of λb,r, which increases significantly for all values of ω0. λb,r was

identified earlier with the secular rate τ1 = W01. Its change is consistent with that

observed for the relaxation rate λA, which is speculated to be due to the increase in the

transition rate W01. λc,r was associated with τ2 = W02+W12 and undergoes the least

change, which is also consistent with the relaxation rate λB in this case. The largest

degree of change for the remaining four decoherence rates occurs at large values of

ω0 (ω0 > 3.5 meV/� for LA-DP, and ω0 > 1 meV/� for PZ). Here λa,r, λd,r, λe,r, and

λf,r all increase significantly from when the SO strength was small. Each of these

decoherence rates can be linked to either (or both) W01 or W23, which as discussed

above, are expected to be greatly impacted with the increase in SO strength.

A final note of interest regarding the decoherence rates is that, when the SO

strength was small, λc,r, λd,r, λe,r, and λf,r appeared to be degenerate for smaller

values of ω0 (and for all values of ω0 in case of the LA-DP interaction). With the

increase in SO strength, this degeneracy breaks very slightly, on the order of ∼ 0.1

ns−1, with λf,r having the largest peak, followed by λd,r, λe,r, then λc,r. This is similar

to what happens between the relaxation rates λB and λC . λf,r contains both W01 and
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Figure 5.15: Decoherence rates of the SO states with αR = 10 meV·nm and βD = 30
meV·nm as a function of ω0 at B = 1 T. Panels (a), (b), and (c) display for each
interaction the real parts of the complex eigenvalues which represent the decoherence
rates, while panel (d) displays the magnitudes of the corresponding imaginary com-
ponents of each eigenvalue. (The imaginary components are identical for all three
interactions.)

W23, which are expected to have the greatest increase with increasing SO strength.

λd,r contains W23 while λe,r contains W01, both of which should increase identically

with increasing SO strength. Also, λd,r contains W13 while λe,r contains W02, both of

which should decrease identically with increasing SO strength. However, they each

contain an additional transition rate, with W03 in λd,r and W12 in λe,r. Since βD > αR

in our model, the SO state coefficients a and b have a greater change than c and d

(see Eqs (5.11) and (5.12) and Fig. 5.11), allowing for a larger transition rate between

SO states |ψ0〉 and |ψ3〉 versus SO states |ψ1〉 and |ψ2〉 with increasing SO strength.

In other words, W03 should be greater than W12, and so λd,r should be greater than

λe,r, accordingly. Finally, λc,r contains neither W01 nor W23, and so it is reasonable
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that λf,r > λd,r > λe,r > λc,r.

We have shown that when ω0 is small (less than approximately 3.5 meV/� for LA-

DP and 1 meV/� for PZ) the increase in SO strength reduces slightly the relaxation

and decoherence rates in the system, making the states longer-lived. However, as ω0

increases, the stronger SO interaction introduces relaxation and decoherence channels

which were relatively inconsequential in the weaker case and nonexistent when SO was

absent. Favourable values of ω0 which corresponded with minima in the relaxation

and decoherence rates become obsolete due to the rise of these new decay channels.

In the next chapter we examine the effects of Coulomb interaction on the decay

rates of the system when SO is both neglected and considered.



Chapter 6

Phonon-Induced Decay of a Three-Electron State

We now turn to the effects of correlations as induced by Coulomb interaction on the

relaxation and decoherence rates of the system. In general a correlated state is a state

which cannot be expressed as a single state in any basis; it can only be written as

a superposition of basis states with clear phase relations between them. In this dis-

sertation we describe the degree of correlation in terms of the number of basis states

required to define a state such that probability is conserved (〈ψ|ψ〉 = 1). Specifi-

cally, we fix our basis to antisymmetrized products of Fock-Darwin states, Eq. (2.3).

The degree of correlation is defined as the minimal number of such product-states

required to achieve 〈ψ|ψ〉 > 0.99. For example, in an uncorrelated state probability

is conserved when the state is expressed using a single Slater determinant, however

the description of a highly correlated state requires many Slater determinants to con-

serve probability. In this chapter we present a method for disentangling the effects

of Coulomb-induced correlations in the system from the effects of Coulomb-induced

energy changes on these decay rates. To our knowledge this has not been seen in the

literature before.

We study a three-electron QD system where long-range Coulomb interactions

exist between the electrons. The three-electron system is chosen because, as stated

previously, it is the simplest interacting system which contains the meron spin textures

as defined in Sec. 3.3. The relaxation and decoherence rates of the system are first

calculated in the absence of the SO interaction in Sec 6.1. The exclusive impact of

the Coulomb-induced electronic correlations on the system relaxation rates is studied

in Sec. 6.1.1.

The effect of including the SO interaction as a perturbation in the system is

examined in Sec. 6.2. We consider the same SO interaction strengths as studied in the

previous chapter. The relaxation and decoherence rates for the large SO interaction

strength are calculated in Sec. 6.2.2 and Sec. 6.2.2, respectively. The relaxation and

72
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decoherence rates for a SO interaction strength more conventionally accepted for

GaAs are calculated in Sec. 6.2.3 and Sec. 6.2.4, respectively.

6.1 Decay of Three-Electron States in Absence of Spin-Orbit Interaction

In this section we examine the influence of Coulomb interaction on the relaxation rate

between the first excited state and the ground state of the three-electron (N=3) system

due to phonon-emission. The Coulomb interaction between the three electrons in the

QD bring about two major changes from the single-electron (N=1) system discussed

in Chap. 5, namely it changes the energy level spacings between the QD eigenstates,

and introduces electronic correlations within each eigenstate. Both of these changes

will have an impact on the decay rates of the system. As seen in the previous chapter,

the energy level difference between the states involved in the transition is equal to

the energy of the emitted phonon. The phonon energy has a direct effect on the

relaxation rates, albeit in different ways depending on the type of interaction (DP or

PZ). The electron correlations within each the initial and final states also affect the

decay rates, as can be seen in Eq. (4.12), for example, where the states |k〉, ∣∣m(′)
〉
,

and
∣∣n(′)
〉
are the correlated eigenstates of the interacting system. In addition to

calculating the relaxation rates in the N=3 system, we wish to isolate the effect of

both correlation and energy on these rates.

Despite the introduction of Coulomb interaction between electrons in the QD, the

relaxation from the initial to final state is still a two-level system in the absence of

SO. The density matrix has the same general form as presented at the beginning of

Sec. 5.1. The relaxation and decoherence rates in the N=3 system investigated here

are the same as those in the N=1 system (Eq. (5.7), and Eq. (5.8), respectively).

Because the decoherence rate is equal to half of the relaxation rate, we show results

only for the relaxation rate in this section. Just as in the N=1 case, the electron-

phonon interaction does not change the spin of the electron. The results presented in

this section are independent of the projection of the electron-spin of the states used.

The application of an external magnetic field to the interacting many-electron

QD induces energy level crossings in the ground state of the system (see Fig. 2.2 for

example). Such a phenomenon is not seen in the absence of interaction (e.g. the N=1

case investigated in Chap. 5). It is near these degeneracy points where merons may
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occur (see Sec. 3.3). In the case of the N=3 system, the first degeneracy point in the

ground state occurs between states which have the necessary quantum numbers to

create meron states. In the results presented in this chapter, we keep the confinement

frequency fixed and vary the magnetic field about the first degenerate point in the

ground state while determining the relaxation rates.

In order to evaluate the effects of electron correlations on the relaxation rates, we

vary the strength of the Coulomb interaction in our Hamiltonian (see Eq. (2.2)). We

introduce here the parameter α, which scales the dielectric constant of the system.

Specifically, ε in Eq. (2.2) is ε = εGaAs/α, and εGaAs is the dielectric constant for

GaAs. The Coulomb interaction term scales directly with α, such that when α = 0

the system is non-interacting, and when α = 1 the Coulomb interaction is at full

strength in GaAs. This method of varying the degree of Coulomb interaction has

been done in Ref. [117].

In the N=3 system, the ground state and first excited state involved in the first

level crossing are defined by the quantum numbers Lz = −1, S = 1/2, and Lz = −2,

S = 1/2. For the results presented in this chapter we keep the confinement frequency

constant at ω0 = 3 meV/�. Fig. 6.1 shows the energy spectrum of the lowest-lying

eigenstates in the QD in the absence of Coulomb interaction between the electrons

(α = 0) and in the fully interacting GaAs system (α = 1). In the non-interacting

limit convergence between sets of states occurs as B → ∞. As α increases, B∗ is

reduced; when α = 1, B∗ = 1.63 T. We vary α between 0 and 1, and calculate the

relaxation rate between the first excited state and the ground state as B approaches

B∗. At B∗, due to the degeneracy between the states, 1/T1 = 0.

We first examine the relaxation rates for the fully-interacting case, where α = 1.

These rates are shown in Fig. 6.2 for each type of electron-phonon interaction as a

function of B. Trends that were observed in the N=1 system in Sec. 5.1 are seen here

in the N=3 system. In the N=1 case without SO we found that when the relaxation

rate is examined as a function of magnetic field, the TA-PZ interaction peaks at larger

magnetic field values than the rates for both the LA-DP and LA-PZ interactions.

(Refer to Fig. 5.7 for the N=1 relaxation rates as a function of B.) This is consistent

with the fact that, as discussed in Sec. 5.1, the PZ interaction becomes dominant over

the DP interaction as the energy of the emitted phonon decreases. In the N=3 case,
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used in this dissertation are labelled by their Lz and S quantum numbers.

the phonon energy decreases as B approaches B∗ due to the approaching degeneracy

of the ground state and the first excited state. As a consequence, the relaxation rate

due to the TA-PZ interaction dominates over the rates due to both the LA-DP and the

LA-PZ interactions as B → B∗. This finding is observed in all N=3 cases examined

in this dissertation and is independent of the strength of Coulomb interaction. For

all three interaction types the relaxation rates decrease to zero at B∗ due to the zero

phonon density of states at this degeneracy point. In comparing the N=3 relaxation

rates in Fig. 6.2 with those for N=1 at the same confinement frequency of ω0 = 3

meV/� (Fig. 5.7 (c)), we find that the relaxation rates decrease in the N=3 case

by almost two orders of magnitude. (Though not shown in Fig. 5.7 (c), the TA-PZ

relaxation rate for N=1 at ω0 = 3 meV/� peaks at a value of 34 ns−1 near B = 12 T.)

Climente et al. [20] explain the reduction in relaxation rates in terms of the additional

single-electron transitions that come about with increasing the number of particles in

the system. In ref [20], transitions between the lowest-lying single-electron orbitals,

namely the s-shell, p-shell, and d-shell orbitals, are fixed such that their transition

energies are all equal. The relaxation rates between individual single-electron orbitals

are then compared. They find that the p → s transition is the fastest, and so when

additional particles are added to the QD, the additionally required relaxation channels

via the higher occupied orbitals slow the overall relaxation rate.
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Figure 6.2: Relaxation rates for each electron-phonon interaction between the Lz =
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detail how the relaxation rates tend to zero as B → B∗.

In general we have found that, although the relaxation rates for all three inter-

actions tend to zero as B → B∗, the relaxation rate due to the TA-PZ interaction

is the dominant rate around B∗ in all cases examined. For this reason we consider

only the TA-PZ relaxation rate for the remaining cases examined in this dissertation.

Additionally, the relaxation rates are observed to be approximately symmetric about

B∗ for a small range of B about B∗. Since rate calculations at B > B∗ reveal no

further insight into the behaviour of the relaxation rates around B∗, we restrict our

calculations to values B < B∗.

Here we introduce the reduced magnetic field, Bred = ΔB/B∗, where ΔB =

(B − B∗). We next compare the relaxation rates for cases with different interaction

strengths (different values of α) as a function of Bred. As previously mentioned, B∗

occurs at different magnetic fields for different interaction strengths. Additionally,

B∗ increases with decreasing interaction strength. Consequently, the rate of change

of level spacing between the ground state and the first excited state is much slower as

B → B∗ when α is small. A small step in B from B∗ in a weakly interacting system

does not have the same impact as a small step in B from B∗ in a strongly interacting

system. For example, when α = 0.2, the peak of the TA-PZ relaxation rate occurs

when ΔB ∼ −1.5 T, however when α = 1, the peak of the relaxation rate occurs

when ΔB ∼ −0.5 T. By using Bred, B
∗ occurs when Bred = 0 for all α, and the peak

relaxation rate for each interaction strength examined approximately coincide with
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each other.

Fig. 6.3 shows the TA-PZ relaxation rates for three different interaction strengths,

α = 0.2, α = 0.7, and α = 1. When α is increased from 0.2 to 0.7, the peak of the

relaxation rate decreases by ∼ 2.5 ns−1. When α is increased from 0.7 to 1, the peak

of the relaxation rate decreases further by another ∼ 0.5 ns−1. Again, this reduction

in the relaxation rate can be explained in terms of the single-electron relaxation rates,

despite the fact that the number of electrons in the system is constant: The increase

in interaction strength increases the degree of correlation in the state, reducing the

dominance of the p → s transition as additional relaxation channels open between

orbitals with slower relaxation rates. The overall transition rate is therefore slowed.

This increase in the degree of correlation can be seen in both the ground state and the

excited state in Fig. 6.4 for α = 0.2, α = 0.7, and α = 1 when Bred = −0.3 (coinciding

approximately with the peaks in the relaxation rates for each value of α). These

histograms display the magnitude of the coefficients associated with each basis state.

The basis states are ordered by decreasing weight. For both states and all interaction

strengths shown, the combined weight of the first 15 basis states makes up 98.5% or

more of the weight of the entire eigenstate. (The eigenstates are normalized such that∑
i |ci|2 = 1.) The first three basis states in the ground state for each α are the same,

and the first five basis states in the excited state for each α are the same. The order
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of the weighting of the remaining basis states varies with α. The grey box inside each

panel (a) and (b) illustrates the orbital configuration of the first three basis states

for each the ground state and the first excited state, respectively. In the case of the

ground state, the first basis state represents the orbital configuration of the eigenstate

in the non-interacting limit. As the interaction strength increases, the weight on this

basis state decreases as it spreads across all other possible N=3 configurations with

the same quantum numbers. In the case of the excited state, the non-interacting limit

is a correlated state between the first two basis states. This correlation is not induced

by Coulomb interaction, rather it is due to the degeneracy of the Lz = −2 state in

the non-interacting limit. For this state, as the interaction strength increases, the

weights on these first two basis states decrease while the weights on all other possible

N=3 configurations with the same quantum numbers increase. The increase in basis

state mixing with increasing α serves to increase the number of different transitions

between orbitals. These additional relaxation channels replace to some degree the

main p → s channel between the excited state and the ground state and reduce the

overall relaxation rate.
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6.1.1 Disentangling Correlation Effects from Energy Effects on

Relaxation Rates

We have shown above that increasing the Coulomb interaction strength increases

the degree of correlation in the states, and reduces the overall relaxation rates in

the system. However, increasing the interaction strength also changes the energy

levels in the system as well, and so it is not clear if the degree of correlation has a

significant effect on the change in rates compared to the effects the change in energy

levels could have. For example, in Fig. 6.3, consider the difference in relaxation

rates between α = 0.2 and α = 0.7 when Bred ∼ −0.2 and Bred ∼ −0.14. When

Bred ∼ −0.2 the relaxation rate for α = 0.2 is faster than that for α = 0.7, although

they are close (within 0.2 ns−1 of each other). At this point, the transition energies

for each α are very close together (between ∼ 0.01 meV and ∼ 0.02 meV), however

ΔEα=0.7 > ΔEα=0.2 > ΔEα=1. (In fact, ΔEα=0.7 > ΔEα=0.2 for Bred > -0.29.) As Bred

approaches zero, the transition energies become even smaller. When Bred ∼ −0.14,

the relaxation rate for α = 0.2 actually becomes lower than that for α = 0.7, despite

the greater degree of correlation in the α = 0.7 case. (The difference in transition

energies between α = 0.7 and α = 0.2 are still between ∼ 0.01 meV and ∼ 0.02

meV here.) As expected, both correlations and transition energies play a role in

the relaxation rate. In Ref. [19] Bertoni et al. isolate correlation effects from energy

effects on the relaxation rate of an interacting two-electron system by artificially fixing

the transition energy to the non-interacting value. In this section, we disentangle the

effect of Coulomb-induced electronic correlations from the effect that the natural

change in energy-level spacing has on the relaxation rates without artificially setting

the transition energies.

In order to isolate the effects of correlation on the relaxation rates, we compare the

relaxation rates for two different interaction strengths where their transition energies

ΔE are equal for the same Bred. Fig. 6.5 displays the transition energies for α = 0.1

to α = 1 as a function of Bred. All transition energies become zero at the degeneracy

point, when Bred = 0, however the rate at which they do so depends on the interaction

strength. The transition energies for two different values of α are equal for the same

Bred where their curves intersect. We calculate and compare the relaxation rates

between these particular pairs of α.
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Figure 6.5: Transition energies (ΔE) for various α as a function of Bred.

Fig. 6.6 shows the relaxation rates for pairs of α which have the same transition

energy at the same Bred. These calculations are done for parameter values where the

transition energies are naturally equal and not fixed in any way. In each case, as

the Coulomb interaction strength increases, the relaxation rate decreases. Since elec-

tronic correlations within the states are greater with stronger Coulomb interaction,

these results show that correlations, independent of energy changes, act to reduce

the relaxation time of the system. Note that the amount of change in the relaxation

rates depends on the value of Bred. Generally speaking, the relaxation rates drop

to zero as Bred → 0 (B → B∗) and as Bred → −1 (B → 0) (see Figs. 6.2 and 6.3).

Although the relaxation rates do not necessarily peak at the exact same value of Bred,

they all tend to peak near Bred ∼ −0.3. The transition energy degeneracies do not

necessarily occur near peak values in their relaxation curves as a function of Bred, and

can align when the relaxation rates are small. For example, in the case of α = 0.2

vs α = 0.7 in Fig. 6.6, the transition energies for each α are equal near their peaks,

where the difference in their respective transition rates are approximately at a max-

imum. In contrast, for α = 0.3 vs α = 0.6, their transition energies are equal away

from their peaks, where the relaxation rates for both are small relative to their peak
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rates. Therefore, the difference in relaxation rates between different pairs of degener-

ate α cannot always be directly compared. There are two cases where the transition

energies are degenerate near the peak values: Between α = 0.2 and α = 0.7, as men-

tioned, and also between α = 0.3 and α = 0.5. Note that the difference between the

relaxation rates is greater in the case of α = 0.2 vs α = 0.7 than it is for α = 0.3

vs α = 0.5. In the former case the degree of correlation has the greatest amount of

change. In general, for each pair investigated, the relaxation rates always decrease as

the degree of correlation in the states is increased.

6.2 Decay of Three-Electron States in Presence of Spin-Orbit

Interaction

In this section the effects of the SO interaction on the relaxation and decoherence

rates of the three-electron QD system are considered. As in the previous section we

examine the decay rates as a function of B for a constant confinement frequency of

ω0 = 3 meV/�. The Coulomb interaction strength is taken to be at full strength for
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GaAs (α = 1) for all results discussed in this section.

The SO interaction mixes states with different spin and so to accommodate this

the ground state subspace must be expanded from that presented in the previous

section. As in the N=1 system, this subspace in the absence of SO contains four

states for the parameters investigated. For the N=3 system these states are:

|0〉 ≡ |Lz=−1, S=1/2, Sz=1/2〉 ,
|1〉 ≡ |Lz=−1, S=1/2, Sz=−1/2〉 ,
|2〉 ≡ |Lz=−2, S=1/2, Sz=1/2〉 ,
|3〉 ≡ |Lz=−2, S=1/2, Sz=−1/2〉 .

(6.1)

This subspace adheres to the requirements for meron formation, and these four states

become degenerate to within the Zeeman splitting (0.02 meV) at B∗ = 1.63 T (see

Fig. 6.1 (b)). As in Sec. 5.2, when the SO interaction is included the total Hamiltonian

is H = HQD +HSO. H is diagonalized in the subspace of the four states in Eq. (6.1).

The form of the energy eigenvalues and eigenstates, or SO states, are identical to those

expressed in Eqs. (5.10), (5.11), and (5.12), with the exception that the basis states

|0〉, |1〉, |2〉, and |3〉 (see Eq. (6.1)) are each no longer a single Slater determinant as

in the non-interacting case, but rather a large superposition of Slater determinants

due to the Coulomb-induced correlations. As in the previous section, we calculate the

decay rates for B < B∗. In this case, the general form of the eigenstate coefficients are

identical to those expressed in Eq. (5.12). (See App. B.2 for details.) Upon calculating

the SO states we make an approximation to our three-electron basis states listed in

Eq. (6.1): To expedite the calculation times of the decay rates for the SO states, the

basis states are truncated to a weight of 99.9% of the original state with no significant

loss of fidelity. See App. B.3 for details.

We consider the same two sets of SO parameters introduced in Sec. 5.2 in the

proceeding calculations, namely a small SO effect, αR = 1 meV·nm, βD = 3 meV·nm,

and a large SO effect, αR = 10 meV·nm, βD = 30 meV·nm. The energy spectrums

of the SO states for each SO parameter set are displayed in Fig. 6.7, along with the

lowest-lying energies of the N=3 system in the absence of SO for reference. The

energies of the basis states in Eq. (6.1) are the four lowest-lying non-SO energies in

Fig. 6.7 between ∼ 0.5 T < B <∼ 1.8 T. Note that, despite expectations, the SO

effect does not lift the degeneracy of the four SO states at B∗. The SO energies are
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Figure 6.7: Energy spectrum of the four SO states in the N=3 interacting system as
a function of B (presented in colour) with αR = 1 meV·nm, βD = 3 meV·nm (a), and
αR = 10 meV·nm, βD = 30 meV·nm (b). The grey lines are the lowest-lying energies
of the N=3 system in the absence of SO. B∗ is labelled on each plot by the vertical
dashed line.

scaled by E2
± (see Eqs. (3.17) and (5.10)). Analytically, as B → B∗ the SO energies

become

E0 → e− βDE−, (6.2a)

E1 → e− αRE+, (6.2b)

E2 → e+ αRE+, (6.2c)

E3 → e+ βDE−, (6.2d)

where e is the degenerate energy of the four basis states in Eq. (6.1) at B∗. However,

as indicated in Fig. 6.8, E± approaches zero as B → B∗, and therefore, regardless of

the strength of the SO interaction, the degeneracy is not lifted in this case. Generally

speaking, the linear SO Hamiltonian can only mix unperturbed QD eigenstates which

differ in both Lz and Sz by only one quantum. It is reasonable that SO states which are

a superposition of such QD states transition smoothly through B* without breaking

the underlying degeneracy of the unperturbed system. On the other hand, other

degeneracy points in the unperturbed QD spectrum which involve states with Lz and

Sz values which differ by more than one quantum cannot be mixed by the linear SO

effect, and so these degeneracy points might transform into anti-crossings when SO

is included as a perturbation.

When the SO interaction strength is small the SO energies do not vary significantly
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from those of the basis states. Just as in the N=1 case (Sec. 5.1.1), the SO states are

almost exclusively composed of a single HQD state for the entire range of magnetic

field investigated except within ∼ 0.05 T of B∗. For B < B∗ |ψ0〉 ≈ |0〉, |ψ1〉 ≈ |1〉,
|ψ2〉 ≈ |2〉, and |ψ3〉 ≈ |3〉; for B > B∗ |ψ0〉 ≈ |3〉, |ψ1〉 ≈ |2〉, |ψ2〉 ≈ |1〉, and
|ψ3〉 ≈ |0〉. The degree of mixing increases as B approaches B∗ because the magnitude

of the coefficients in the SO states become equal.

For the stronger SO effect the degree of mixing between the HQD states increases

and the energies of the SO states differ from the energies of the basis states for the

majority of the range of magnetic field investigated except near the degeneracy point,

where the behaviour is the same as in the case of the small SO effect. For the majority

of the magnetic field range investigated the non-dominant basis state makes up ∼ 4%

of the eigenstates |ψ1〉 and |ψ2〉 and ∼ 18% of the eigenstates |ψ0〉 and |ψ3〉. This is

an increase in the weights of the non-dominant states over those found for the N=1

system. Just as in the N=1 case, the difference in the amount of mixing between the

SO states is because βD mixes the basis states |0〉 and |3〉 while αR mixes the basis

states |1〉 and |2〉 (see Eqs. (5.11) and (5.12)), and we have taken βD > αR.

In the next two sections we examine the effects of the larger SO interaction on

the relaxation and decoherence rates in the fully interacting (α = 1) three-electron
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system. This is done for clarity because the effects are more pronounced when the

SO strength is large. The chapter then concludes with results for the smaller SO

interaction which is more conventional for a GaAs QD.

6.2.1 Relaxation Rates with Large Spin-Orbit Effect

In this section we examine the relaxation rates of the interacting three-electron system

as a function of B when the SO interaction strength is large. The results displayed in

this section are for a constant confinement frequency of ω0 = 3 meV/�. The relaxation

rates are plotted in Fig. 6.9. For comparison the relaxation rate for the non-SO case

is also displayed in this figure. As seen in the single-electron QD system there are

three relaxation rates in the three-electron system when SO is included: τ1, τ2, and

τ3 (see Eq. (5.14)). One relaxation rate, τ1, is very small. The other two rates, τ2

and τ3, are of similar magnitude to the relaxation rate in the non-SO three-electron

system, however, in comparing them to the non-SO case, there is a shift in where

their peaks occur as a function of B.

We consider first the peak heights of each τ1, τ2, and τ3. The smallest rate,

τ1, describes the relaxation between the SO states |ψ1〉 and |ψ0〉. These states are
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primarily composed of opposite spin-species (see Eqs. (5.11), and (6.1)). Since the

electron-phonon interaction conserves spin, the relaxation rate between these states

should be very small. The two larger rates, τ2 and τ3, describe the relaxation from the

two highest-energy states, |ψ2〉 and |ψ3〉, respectively, to the lower-lying states. These

rates are similar to those in the non-SO case because their main relaxation channels

(W02 and W13, respectively), involve transitions between states that are similar to

those in the non-SO case, namely a transition from the Lz = −2 state to the Lz = −1

state with the same Sz. In the strong SO regime the peak of τ2 drops by ∼ 0.05 ns−1

in comparison to the non-SO case. This reduction in τ2 occurred in the N=1 system

when the SO strength was increased. The relaxation rate τ2 takes into account the

transition rates from the SO state |ψ2〉 to the SO states |ψ0〉 and |ψ1〉 (W02 and W12,

respectively). The state |ψ0〉 is primarily composed of the same spin as the state

|ψ2〉, while the state |ψ1〉 is primarily composed of the opposite spin. Therefore W02

is greater than W12 for the spin-conserving electron-phonon interaction. In this case

W02 decreases due to the reduced overlap between SO states |ψ0〉 and |ψ2〉, just as

in the N=1 case (see Sec. 5.2.4). Though W12 increases, the overlap induced by the

increased SO strength between states |ψ1〉 and |ψ2〉 is still small enough that it does

not increase the overall relaxation rate.

Unlike what was observed in the N=1 system, the peak of τ3 actually increases

slightly, by ∼ 0.02 ns−1. Recall τ3 = W03 +W13 +W23 (Eq. (5.14)). As discussed in

the N=1 case when SO strength was increased (Sec. 5.2.4), W13 is reduced exactly

like W02, while W01, W03, W12, and W23 all increase. In the strong SO regime, since

the weight of the non-dominant basis state is greater in the N=3 system than it is in

the N=1 system, these transition rates have a greater increase. Except near B∗, due

to the change in the SO state coefficients with increasing SO strength, the overlap

between |ψ0〉 and |ψ3〉 has the greatest increase. The overlap between |ψ0〉 and |ψ1〉
is the same as the overlap between |ψ2〉 and |ψ3〉, and has the next greatest increase.

The overlap between |ψ1〉 and |ψ2〉 has the smallest increase. Since τ3 contains W03

and W23 it is logical that the peak in τ3 be greater than the peak in τ2.

We now consider the shift in the peak locations of τ2 and τ3 as a function of B

when compared to the non-SO case. Recall that τ1, τ2, and τ3 correspond to relaxation

from SO states |ψ1〉, |ψ2〉, and |ψ3〉, respectively. As the SO strength increases so does
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Figure 6.10: TA-PZ decoherence rates of the N=3 SO states with αR = 10 meV·nm
and βD = 30 meV·nm as a function of B at ω = 3 meV/�.

the energy difference between the SO states as a function of B. Recall from Sec. 5.1

that for the non-SO N=1 case the peaks of the relaxation rates coincided with the

same SO state energy change, i.e. the same emitted phonon energy, as ω0 and B were

varied. Here, as the SO strength increases, the phonon energies shift to larger values

of B to stay the same, and so the peaks in τ2 and τ3 shift accordingly. Since relaxation

from |ψ3〉 produces a phonon with an average energy greater than that emitted via

relaxation from |ψ2〉, it is logical that τ3 peaks at a larger value of B than τ2.

6.2.2 Decoherence Rates with Large Spin-Orbit Effect

We next look at the decoherence rates for the three-electron system in the strong SO

regime. These rates are shown in Fig. 6.10. Just as in the N=1 SO case there are

six decoherence rates observed for this case. Using the same analysis as described in
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Sec. 5.2.3, the decoherence rates are found to be

λa,r =
1
2
(τ2 + τ3)

λb,r =
1
2
τ1

λc,r =
1
2
τ2

λd,r =
1
2
τ3

λe,r =
1
2
(τ1 + τ2)

λf,r =
1
2
(τ1 + τ3) .

(6.3)

These decoherence rates are in fact the same as those identified in the single-electron

SO system (see Eq. 5.15).

In this case we see that λc,r ≈ λe,r, and λd,r ≈ λf,r. This is because the relaxation

rate τ1 is much smaller than the relaxation rates τ2 and τ3 (see Fig. 6.9). This

effectively makes λe,r ≈ 1
2
τ2 = λc,r and λf,r ≈ 1

2
τ3 = λd,r.

We now investigate the effect of decreasing the SO strength on the relaxation and

decoherence rates to values more acceptable for a GaAs QD. As above the confinement

frequency is kept at ω0 = 3 meV/� while the magnetic field is varied.

6.2.3 Relaxation Rates with Small Spin-Orbit Effect

Figure 6.11 displays the relaxation rates for the N=3 system when αR = 1 meV·nm,

βD = 3 meV·nm. Just as when the SO interaction strength is large, we see that one

relaxation rate, τ1, is very small. The other two relaxation rates, τ2 and τ3, are almost

the same as the relaxation rate in the non-SO three electron system (also displayed

in Fig. 6.11).

In comparing τ1 here to the case when the SO interaction was large, it has

decreased by several orders of magnitude (not shown). When the SO interaction

strength is small the energy levels of the states involved in the transition, |ψ0〉 and

|ψ1〉, are nearly identical (see Fig. 6.7 (a)), depleting the phonon density of states.

Furthermore, the smaller SO strength does not induce as much mixing between the

basis states in each SO state, and so |ψ0〉 and |ψ1〉 are almost exclusively composed

of opposite spin-species. For these two reasons the relaxation rate due to the spin-

conserving electron-phonon interaction between these states is much smaller than

when the SO interaction strength is large.



89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7
B (T)

1

2

3

1/
T
1

( ns−
1
)

B∗

Figure 6.11: TA-PZ relaxation rates of the N=3 SO states with αR = 1 meV·nm and
βD = 3 meV·nm as a function of B at ω = 3 meV/�. The relaxation rate of the N=3
system in the absence of SO is plotted in grey for reference.

Next we consider the two larger rates, τ2 and τ3. Recall τ2 = (W02 + W12) and

describes the relaxation from the excited state |ψ2〉 while τ3 = (W03 + W13 + W23)

and describes the relaxation from the excited state |ψ3〉 (see Eq. (5.14)). As in the

N=1 case, W02 and W13 are identical to each other. Since τ3 otherwise contains an

additional transition rate, it is reasonable that τ3 be slightly larger than τ2, just as it

is in the large SO case discussed in Sec. 6.2.2. Additionally, since the small SO effect

does not cause the energies of the SO states |ψ2〉 and |ψ3〉 to deviate significantly

from the energy level of the excited state in the non-SO N=3 case, nor induce a

significant amount of basis state mixing in the SO states for the majority of the B

range investigated, it is expected that their relaxation rates be nearly identical to

that in the non-SO N=3 case. Unlike when the SO interaction strength was large,

the peak locations of each τ2 and τ3 do not shift to a higher magnetic field. For this

small SO interaction strength the transition energies of the main relaxation channels

for the states |ψ2〉 and |ψ3〉 (W02 and W13, respectively) are each nearly identical to

the transition energy between the excited state and the ground state in the non-SO

case. Relaxation from either SO state |ψ2〉 or SO state |ψ3〉 emits a phonon with

approximately the same energy since the SO energy levels for |ψ2〉 and |ψ3〉 are nearly
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Figure 6.12: TA-PZ decoherence rates of the N=3 SO states with αR = 1 meV·nm
and βD = 3 meV·nm as a function of B at ω = 3 meV/�.

degenerate, as are the energy levels for |ψ0〉 and |ψ1〉. Therefore the peaks of both

τ2 and τ3 coincide at the same value of B. Increasing the SO strength lifts this

degeneracy1, and so the peaks not only shift to higher values of B, they additionally

do not occur at the same value of B.

6.2.4 Decoherence Rates with Small Spin-Orbit Effect

We finally turn to the decoherence rates in the N=3 system when the SO interaction

strength is small. Figure 6.12 displays the decoherence rates as a function of B for

αR = 1 meV·nm and βD = 3 meV·nm. These decoherence rates are the same as those

found when the SO interaction was large (see Eq. (6.3)). Here we see that λc,r ≈
λd,r ≈ λe,r ≈ λf,r. The relaxation rate τ1 is much smaller than the relaxation rates τ2

and τ3, on the order of 10−10 ns−1 or smaller, and is effectively zero (see Fig. 6.11).

Just as when the SO interaction strength was large, this makes λe,r ≈ 1
2
τ2 = λc,r

and λf,r ≈ 1
2
τ3 = λd,r. In this case it is also true that τ2 ≈ τ3, and so these four

decoherence rates appear to be the same in Fig. 6.12.

In comparing the decoherence rates for each SO strength the following observations

1The degeneracy is not lifted at B∗.
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can be made. λb,r increases by several orders of magnitude when the SO strength is

increased; this is a direct reflection of the increase in the relaxation rate τ1. Despite

the increase this decoherence rate is still very small relative to the other five rates.

The peaks in the remaining decoherence rates shift to larger values of B when the SO

strength is large, consistent with the shift in the relaxation rates. The peak height

of λa,r remains approximately the same for both SO regimes. Recall that for strong

SO the relaxation rate τ3 increased slightly while τ2 decreased slightly; λa,r is an

average of these two rates and so remains effectively unchanged with the change in

SO parameters. For both λc,r and λe,r the peaks shrink with increasing SO strength.

This is a direct reflection of the reduction experienced by τ2. Finally, the peaks in

λd,r and λf,r undergo a very slight increase with increasing SO strength, due to the

change in τ3.

Overall, the SO interaction affects the transition rates between each SO state

differently. Depending on the value of the SO parameters, the overlap between dif-

ferent SO states is either increased or decreased, which impacts the relaxation and

decoherence channels accordingly. It is reasonable that there exists a material whose

intrinsic SO parameters reduce the dominant decay channels while still keeping the

other decay channels suppressed enough such that the SO interaction acts to increase

the lifetime and coherence times of the system.



Chapter 7

Conclusion

Using density matrix theory, we developed a foundation for determining relaxation

and decoherence rates in a general quantum system without applying the secular

approximation. The exclusion of this approximation permits the application of this

framework to calculating decay rates between system energy levels that may be close

together, such as near a degeneracy point. This framework, our generalized Mas-

ter equation, was then tailored to fit a parabolic QD system. The system-reservoir

interaction considered to trigger relaxation and decoherence in the QD system was

the electron-phonon interaction, specifically the deformation potential by longitudinal

acoustic phonons (LA-DP), and the piezoelectric effect by both longitudinal acoustic

phonons (LA-PZ) and transverse acoustic phonons (TA-PZ).

We examined the relaxation and decoherence rates in one-electron and three-

electron QDs, both in the absence of and in the presence of the linear spin-orbit

(SO) interaction. When the SO effect is neglected, both the one-electron and three-

electron QD systems are described as a two-level system. The energy levels are

doubly degenerate where the two states in each level differ by their spin. Because

the electron-phonon interaction conserves spin, the decay rates are independent of

the spin of the states (provided that both initial and final states have the same spin).

In the one-electron system, the decay rates between these states were calculated as a

function of both confinement frequency ω0 and applied magnetic field B. Depending

on value of these parameters, either the LA-DP interaction or the TA-PZ interaction

was found to dominate the decay of the QD system eigenstates, depending on the

energy of the emitted phonon. Consistent with the literature, we found that when

the phonon energy is small (the phonon wavelength long), the PZ interaction governs

the relaxation and decoherence rates. When the phonon energy is large (the phonon

wavelength short), the DP interaction governs the rates. Additionally, for particular

values of ω0 and B we found oscillations in the relaxation and decoherence rates,
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also consistent with the literature. The parameters ω0 and B affect both the electron

wave function and the phonon wave function. The maxima and minima of these

oscillations, which can be orders of magnitude apart, correspond to when the overlap

between the electron wave function and the phonon wave function is maximized or

minimized. It is therefore possible to dampen the decay rates in the QD system by

tuning ω0 and/or B to particular values.

In the three-electron non-SO system the decay rates between the ground state and

first excited state were calculated as a function of B near the lowest-lying degeneracy

point B∗ in the spectrum. Relaxation rates were found to peak before B∗, where they

went to zero due to the degeneracy of the eigenstates. In the fully-interacting case

(for GaAs) the relaxation rates were found to decrease by approximately two orders

of magnitude over those of the single-electron case. We then examined the impact

of the Coulomb interaction on the relaxation rates in the three-electron system in

more detail, specifically with respect to the role of the Coulomb-induced correlations

in the eigenstates. Coulomb interaction affects both the energy level spacings of the

eigenstates as well as their degree of correlation. Coulomb interaction between the

electrons reduces the relaxation rate in the system, however it is not clear if the

Coulomb-induced correlations play a significant role in this rate reduction or if this

is due primarily to energy effects. Bertoni et al. examine the effect of Coulomb-

induced correlations within a two-electron system by forcing the transition energies

to be the same as in the single-electron case [19]. In this project we have developed a

unique method for decoupling these two properties without having to artificially hold

either of them constant. To our knowledge this is the first demonstration of such

a technique. By isolating the effects of correlations from the energy changes in the

three-electron system, we have shown that correlations alone can play a significant

role in reducing the relaxation rates of the system.

When the SO effect is included in the QD model, the number of levels in both the

one-electron and three-electron QD systems doubles to four. This is because the SO

effect lifts the degeneracy of the levels in the unperturbed system and mixes states of

different spin. Spin must be considered to distinguish the states in the manifold. Near

the degeneracy point in the three-electron system, the eigenstates of the system with

the SO perturbation are meron states. The SO-induced four-level system contains
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two additional relaxation rates over the non-SO two-level system to account for decay

from the two additional excited states. Two SO interaction strengths were examined,

a smaller one to take into account the SO effect in GaAs, and a larger one to emphasize

the SO effect on decay rates in general.

In both the one-electron and three-electron system, when the SO effect was small,

the resulting states were still almost identical to the system states in the absence

of SO. Consequently, the dominant relaxation rates were found to be nearly identi-

cal to those in the non-SO system. Furthermore, the relaxation rates from the two

higher-excited states were found to be nearly identical to each other about the dom-

inant peak. This was due to the lack of any significant degeneracy breaking between

both the two higher energy states and the two lower energy states by the small SO

strength. When the SO strength was increased, the degeneracy between the two

larger relaxation rates was broken. For the set of SO parameters investigated, these

relaxation rates saw a slight decrease in the single-electron system, indicating that

the SO perturbation in the single-electron system can work to increase the lifetime of

the states. In the three-electron system, while one of the dominant relaxation rates

decreased with increasing SO strength, the other showed a slight increase. For both

SO strengths in both the single-electron and three-electron systems, six different de-

coherence rates were found, each of which was proportional to a specific single or pair

of relaxation rates, independent of the electron-phonon interaction examined. These

findings are commensurate with those in the non-SO case, where the decoherence rate

was also found to be proportional to the relaxation rate of the system.

Despite our expectations, the meron states induced by the SO parameters inves-

tigated in this dissertation did not, on average, significantly reduce relaxation rates

in the three-electron system. It is possible that by increasing the number of electrons

in the system the lifetimes of the meron states could be increased. The electron-

phonon interaction involves the transition of a single electron. A topological state

with a greater number of electrons may be better insulated from the effects of a

single-electron interaction. In addition, the SO interaction did not seem to break the

degeneracy of these meron states at B∗, though it did break the two-fold degeneracy

of the upper two and lower two states in the ground state subspace away from B∗

when the SO parameters were large enough. In general, it may be possible to find
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a material with the right balance of the SO parameters αR and βD such that the

main relaxation channels are significantly reduced while the other channels are not

greatly increased, resulting in an overall increased system lifetime. We have already

demonstrated the impact of correlations alone in reducing relaxation rates.

Note that in this dissertation we examined each electron-phonon interaction (LA-

DP, LA-PZ, and TA-PZ) separately, and did not consider the effect of the total

electron-phonon interaction, that is, how the concurrent impact of all three inter-

actions on the system propagate through time. Our aims were to disentangle the

effects of correlations from energy on the lifetime of a dissipative QD system, as well

as investigate the role of SO in such a system. To study the effects of all three in-

teractions at the same time would not have revealed additional insight into these

findings. Furthermore, for the majority of the parameters investigated, especially in

the three-electron system near the degeneracy point, there was a single dominant

electron-phonon interaction. For materials or system parameters where there is more

than one prevalent electron-phonon interaction, the total interaction can be evaluated

by summing over each individual interaction, V (t)ν . The interaction operator V (t)

in the Liouville equation at the beginning of Chap. 4 can then be expressed as

V (t) =
∑
ν

V (t)ν

=
∑
ν

∑
i

F (t)νiQ(t)i,
(7.1)

where, as in this dissertation, the different interactions are manifest in the reservoir

operators (Fi ≡
∑

ν F
ν
i ). Cross-terms between the different types of interactions ν

must then be considered in the time correlation functions 〈F (t)i Fj〉.
The studies conducted in this dissertation were performed for various QD param-

eters. Further explorations into the effects of global correlations on the lifetime of the

QD system will require the development of a complete analytical framework. Such a

framework would allow for the optimization of various QD parameters including B,

ω0, αR, and βD. This in turn would aid in selecting a desirable material in which

to create the QD system where relaxation and decoherence times in the system are

favourable for applications such as quantum computing.



Appendix A

Chirality

A.1 Chiral Spin Current

In this section we derive the expression for the chiral spin current of the spin density

vector field in a QD. We begin with the definition of the chirality of a vector field

where the QD is taken to lie in the x-y plane. This is expressed in Eq. (3.5), and is

written again here for convenience:

Cz(r) =
1

2π

∫ 2π

0

dθ
z · (S(r, θ)× ∂θS(r, θ))

|S⊥(r, θ)|2
, (A.1)

where S⊥(r, θ) = z × S(r, θ). Consider first S(r, θ). Using the definition of Ŝ(r) in

Eq. (3.1), we have

S(r, θ) ≡ 〈Ŝ(r, θ)〉

=
�

2

∑
ss′

σ̂ss′〈Ψ̂†
s(r, θ)Ψ̂s′(r, θ)〉,

(A.2)

where Ψ̂†
σ(r) (Ψ̂σ(r)) is the field operator creating (annihilating) a fermion with spin

±�/2 at position r (see Eq. (3.2)) and σ̂ is the vector of Pauli matrices. Then,

S(r, θ)× ∂θS(r, θ) =
�
2

4

∑
s1s2s3s4

σ̂s1s2〈Ψ̂†
s1
(r, θ)Ψ̂s2(r, θ)〉× ∂θσ̂s3s4〈Ψ̂†

s3
(r, θ)Ψ̂s4(r, θ)〉

=
�
2

4

∑
s1s2s3s4

σ̂s1s2×σ̂s3s4〈Ψ̂†
s1
(r, θ)Ψ̂s2(r, θ)〉 ∂θ〈Ψ̂†

s3
(r, θ)Ψ̂s4(r, θ)〉

(A.3)

Consider now the cross product of the Pauli matrices. In the Sz basis, the x and

y components of the Pauli matrices are

σ̂x =

(
0 1

1 0

)
, (A.4a)

σ̂y =

(
0 −i

i 0

)
. (A.4b)
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We express their components as

σ̂x
ss′ = 1− δss′ , (A.5a)

σ̂y
ss′ = i(1− δss′)s

′, (A.5b)

where s(
′) = ±1 represents the projection of the spin along the z axis. The z-

component of the cross-product of the Pauli matrices is then

z · σ̂s1s2×σ̂s3s4 =
(
σ̂x
s1s2

σ̂y
s3s4

− σ̂y
s1s2

σ̂x
s3s4

)
= i (s4(1− δs1s2)(1− δs3s4)− s2(1− δs1s2)(1− δs3s4))

= i(1− δs1s2)(1− δs3s4)(s4 − s2)

= 2is4(1− δs1s2)(1− δs3s4)(1− δs4s2),

(A.6)

where in the last line we use the fact that (s4 − s2) = 2s4(1− δs4s2). From Eqs. (A.3)

and (A.6) the numerator of the integrand in Eq. (A.1) becomes

z · (S(r, θ)× ∂θS(r, θ)) =
i�2

2

∑
s

s〈Ψ̂†
s(r, θ)Ψ̂s̄(r, θ)〉 ∂θ〈Ψ̂†

s̄(r, θ)Ψ̂s(r, θ)〉

=
i�2

2

∑
s

sSs∂θS
∗
s

=
i�2

2

(
S+∂θS

∗
+ − S−∂θS∗

−
)

=
i�2

2

(
S+∂θS

∗
+ − S∗

+∂θS+

)
,

(A.7)

where s̄ = −s, Ss ≡ 〈Ψ̂†
s(r, θ)Ψ̂s̄(r, θ)〉, and Ss̄ ≡ 〈Ψ̂†

s̄(r, θ)Ψ̂s(r, θ)〉 = S∗
s .

Consider next the denominator of the integrand in Eq. (A.1). With

Sx(r, θ) ≡ 〈Ŝx(r, θ)〉 = �

2

∑
ss′

σ̂x
ss′〈Ψ̂†

s(r, θ)Ψ̂s′(r, θ)〉, (A.8a)

Sy(r, θ) ≡ 〈Ŝy(r, θ)〉 = �

2

∑
ss′

σ̂y
ss′〈Ψ̂†

s(r, θ)Ψ̂s′(r, θ)〉, (A.8b)



98

and using Eq. (A.5), the denominator in the integrand is

|S⊥(r, θ)|2 = |z × S(r, θ)|2

= Sx(r, θ)
2 + Sy(r, θ)

2

=
�
2

4

∑
s1s2s3s4

(1−δs1s2)(1−δs3s4)〈Ψ̂†
s1
(r, θ)Ψ̂s2(r, θ)〉〈Ψ̂†

s3
(r, θ)Ψ̂s4(r, θ)〉

− �
2

4

∑
s1s2s3s4

s2s4(1−δs1s2)(1−δs3s4)〈Ψ̂†
s1
(r, θ)Ψ̂s2(r, θ)〉〈Ψ̂†

s3
(r, θ)Ψ̂s4(r, θ)〉

=
�
2

4

∑
s1...s4

(1−δs1s2)(1−δs3s4)(1−s2s4)〈Ψ̂†
s1
(r, θ)Ψ̂s2(r, θ)〉〈Ψ̂†

s3
(r, θ)Ψ̂s4(r, θ)〉

=
�
2

2

∑
s1...s4

(1−δs1s2)(1−δs3s4)(1−δs2s4)〈Ψ̂†
s1
(r, θ)Ψ̂s2(r, θ)〉〈Ψ̂†

s3
(r, θ)Ψ̂s4(r, θ)〉

=
�
2

2

∑
s

〈Ψ̂†
s(r, θ)Ψ̂s̄(r, θ)〉〈Ψ̂†

s̄(r, θ)Ψ̂s(r, θ)〉

=
�
2

2

∑
s

SsSs̄

=
�
2

2
(S+S− + S−S+)

= �
2 |S+|2

(A.9)

where we have used the fact that (1−s2s4) = 2(1− δs2s4), and in the last step bore in

mind that S− = S∗
+ and S± are not operators, they are expectation values.

Now, with both Eq. (A.7) and Eq. (A.9), the chirality in Eq. (A.1) becomes

Cz(r) =
i

4π

∫ 2π

0

dθ

(
S+∂θS

∗
+ − S∗

+∂θS+

)
|S+|2

=
1

2π

∫ 2π

0

dθ jspin(r, θ),

(A.10)

where

jspin(r, θ) =
i

2 |S+|2
(
S+∂θS

∗
+ − S∗

+∂θS+

)
(A.11)

takes the form of a current and is called the chiral spin current density.
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A.2 Chirality in a QD

In this section we evaluate the chirality (Eq. (3.6)) of a state of the form

|ψ〉 = 1√
2
(|Lz Sz〉+ γ|L′

z S
′
z〉), (A.12)

where |Lz Sz〉 and |L ′
z S

′
z〉 can be either SP eigenstates of the QD or fully interacting

N -particle eigenstates.

The chirality is written here for reference:

Cz(r) =
i

4π

∫ 2π

0

dθ
S+∂θS

∗
+ − S∗

+∂θS+

|S+|2
(A.13)

Consider the first term S+∂θS
∗
+ in the numerator of the integrand above. Using

the definitions of the field operators Ψ̂
(†)
σ (r, θ) in Eq. (3.2), and the definition of the

single-particle orbital wave function in position space in Eq. (2.5), we have

S+∂θS
∗
+ ≡ 〈Ψ̂†

↑(r, θ)Ψ̂↓(r, θ)〉∂θ〈Ψ̂†
↓(r, θ)Ψ̂↑(r, θ)〉

=
∑

n1m1n2m2

φ∗
n1m1

(r, θ)φn2m2(r, θ) 〈ĉ†n1m1↑ĉn2m2↓〉

× ∂θ
∑

n3m3n4m4

φ∗
n3m3

(r, θ)φn4m4(r, θ) 〈ĉ†n3m3↓ĉn4m4↑〉

=
∑

n1m1n2m2
n3m3n4m4

φ∗
n1m1

(r, θ)φn2m2(r, θ) ∂θ
(
φ∗
n3m3

(r, θ)φn4m4(r, θ)
)

× 〈ĉ†n1m1↑ĉn2m2↓〉〈ĉ†n3m3↓ĉn4m4↑〉

= i
∑

n1m1...
...n4m4

((n4−m4)−(n3−m3))φ
∗
n1m1

(r, θ)φn2m2(r, θ)φ
∗
n3m3

(r, θ)φn4m4(r, θ)

× 〈ĉ†n1m1↑ĉn2m2↓〉〈ĉ†n3m3↓ĉn4m4↑〉.

(A.14)
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Similarly, the second term S∗
+∂θS+ in the numerator of the integrand in Eq. (A.13) is

S∗
+∂θS+ = i

∑
n1m1...
...n4m4

((n4−m4)−(n3−m3))φ
∗
n1m1

(r, θ)φn2m2(r, θ)φ
∗
n3m3

(r, θ)φn4m4(r, θ)

× 〈ĉ†n1m1↓ĉn2m2↑〉〈ĉ†n3m3↑ĉn4m4↓〉

= i
∑

n1m1...
...n4m4

((n2−m2)−(n1−m1))φ
∗
n1m1

(r, θ)φn2m2(r, θ)φ
∗
n3m3

(r, θ)φn4m4(r, θ)

× 〈ĉ†n1m1↑ĉn2m2↓〉〈ĉ†n3m3↓ĉn4m4↑〉,

(A.15)

where in the last line above we have made a change of indices in the sum. Then

S+∂θS
∗
+ − S∗

+∂θS+ = i
∑

n1m1...
...n4m4

((n4−m4)−(n3−m3)−(n2−m2)+(n1−m1))

× φ∗
n1m1

(r, θ)φn2m2(r, θ)φ
∗
n3m3

(r, θ)φn4m4(r, θ) 〈ĉ†n1m1↑ĉn2m2↓〉〈ĉ†n3m3↓ĉn4m4↑〉.
(A.16)

For the state in Eq. (A.12),

〈ĉ†nm↑ĉn′m′↓〉 = 1

2

(
〈Lz Sz|+ γ∗〈L′

z S
′
z|) ĉ†nm↑ĉn′m′↓ |Lz Sz〉+ γ|L′

z S
′
z〉
)

=
1

2

(
〈Lz Sz|ĉ†nm↑ĉn′m′↓ |Lz Sz〉+ γ〈Lz Sz| ĉ†nm↑ĉn′m′↓ |L′

z S
′
z〉

+ γ∗〈L′
z S

′
z| ĉ†nm↑ĉn′m′↓ |Lz Sz〉+ |γ|2〈L′

z S
′
z| ĉ†nm↑ĉn′m′↓ |L′

z S
′
z〉
)
.

(A.17)

We can generally define the QD eigenstate |Lz Sz〉 as

|Lz Sz〉 =
∑
i

αi|l s〉i, (A.18)

where |l s〉 is an antisymmetric N -particle state. Furthermore, the quantum numbers

Lz and Sz of the QD eigenstate are preserved in this superposition. (This superpo-

sition of antisymmetric N -particle states is due to either the Coulomb interaction

between the particles in the QD, or any spin correlations which can arise by requiring

that the total spin S of the QD eigenstate be a good quantum number (see Ref. [117]),
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either of which conserves Lz and Sz.) Therefore, we have

l = Lz, (A.19a)

s = Sz. (A.19b)

When acting on this state, the operator ĉnmσ removes a particle of spin σ from the

[nm] orbital while maintaining the antisymmetry of the state. This lowers the orbital

angular momentum of the state |l s〉 by a value of (n −m) and also lowers the spin

angular momentum by a value of σ. Effectively,

ĉnmσ|l s〉i =
∑
j

aij |l−(n−m), s−σ〉j, (A.20)

where the states in the sum over j are (N − 1)-particle states. Similarly,

i〈l s|ĉ†nmσ =
∑
j

(aij)
∗
j〈l−(n−m), s−σ|. (A.21)

The first term and the last term in the final line of Eq. (A.17) are each zero

because ĉ†nm↑ĉn′m′↓ does not conserve spin. The first non-zero term is

〈Lz Sz| ĉ†nm↑ĉn′m′↓ |L′
z S

′
z〉 =

∑
ij

α∗
iαj i〈l s|ĉ†nm↑ĉn′m′↓|l′ s′〉j

=
∑
ijkl

α∗
iαj(a

i
k)

∗ajl k〈l−(n−m), s− 1
2
|l′−(n′−m′), s′+ 1

2
〉l

=
∑
ijkl

α∗
iαj(a

i
k)

∗ajl δl−(n−m),l′−(n′−m′)δs−1
2
,s′+1

2
δk,l

=
∑
ijk

α∗
iαj(a

i
k)

∗ajk δl−l′,(n−m)−(n′−m′)δs−s′,1

(A.22)

Similarly, the second non-zero term is

〈L′
z S

′
z| ĉ†nm↑ĉn′m′↓ |Lz Sz〉 =

∑
ijk

β∗
i βj(b

i
k)

∗bjk δl′−l,(n−m)−(n′−m′)δs′−s,1 (A.23)

Eq. (A.17) becomes

〈ĉ†nm↑ĉn′m′↓〉 = 1

2

∑
ijk

(
γα∗

iαj(a
i
k)

∗ajk δl−l′,(n−m)−(n′−m′)δs−s′,1

+ γ∗ β∗
i βj(b

i
k)

∗bjk δl′−l,(n−m)−(n′−m′)δs′−s,1
)
.

(A.24)
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Similarly,

〈ĉ†nm↓ĉn′m′↑〉 = 1

2

∑
ijk

(
γα∗

iαj(a
i
k)

∗ajk δl−l′,(n−m)−(n′−m′)δs′−s,1

+ γ∗ β∗
i βj(b

i
k)

∗bjk δl′−l,(n−m)−(n′−m′)δs−s′,1
)
.

(A.25)

Then

〈ĉ†n1m1↑ĉn2m2↓〉〈ĉ†n3m3↓ĉn4m4↑〉 =
1

4

∑
ijkpqr

(
γα∗

iαj(a
i
k)

∗ajk δl−l′,(n1−m1)−(n2−m2)δs−s′,1

+ γ∗ β∗
i βj(b

i
k)

∗bjk δl′−l,(n1−m1)−(n2−m2)δs′−s,1
)

× (γα∗
pαq(a

p
r)

∗aqr δl−l′,(n3−m3)−(n4−m4)δs′−s,1

+ γ∗ β∗
pβq(b

p
r)

∗bqr δl′−l,(n3−m3)−(n4−m4)δs−s′,1
)

=
|γ|2
4

∑
ijkpqr

(
α∗
iαj(a

i
k)

∗ajkβ
∗
pβq(b

p
r)

∗bqr

× δl−l′,(n1−m1)−(n2−m2)δl′−l,(n3−m3)−(n4−m4)δs−s′,1

+ α∗
pαq(a

p
r)

∗aqrβ
∗
i βj(b

i
k)

∗bjk

× δl′−l,(n1−m1)−(n2−m2)δl−l′,(n3−m3)−(n4−m4)δs′−s,1
)

=
|γ|2
4

∑
ijkpqr

α∗
iαj(a

i
k)

∗ajkβ
∗
pβq(b

p
r)

∗bqr

× (δl−l′,(n1−m1)−(n2−m2)δl′−l,(n3−m3)−(n4−m4)δs−s′,1

+ δl′−l,(n1−m1)−(n2−m2)δl−l′,(n3−m3)−(n4−m4)δs′−s,1
)

=
|γ|2
4

∑
ijkpqr

Aijkpqrδ(n1−m1)−(n2−m2),(n4−m4)−(n3−m3)

× (δl−l′,(n1−m1)−(n2−m2)δs−s′,1 + δl′−l,(n1−m1)−(n2−m2)δs′−s,1
)

(A.26)

where in the second line two of the four terms in the product are zero by the spin-

conserving Kronecker deltas, in the second-to-last line we have made a change of

indices in the second term of the sum, and finally Aijkpqr ≡ α∗
iαj(a

i
k)

∗ajkβ
∗
pβq(b

p
r)

∗bqr.
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Inserting Eq. (A.26) into Eq. (A.16) gives

S+∂θS
∗
+ − S∗

+∂θS+ =
i|γ|2
4

∑
ijkpqr

Aijkpqr

∑
n1m1...
...n4m4

((n4−m4)−(n3−m3)−(n2−m2)+(n1−m1))

× φ∗
n1m1

(r, θ)φn2m2(r, θ)φ
∗
n3m3

(r, θ)φn4m4(r, θ) δ(n1−m1)−(n2−m2),(n4−m4)−(n3−m3)

× (δl−l′,(n1−m1)−(n2−m2)δs−s′,1 + δl′−l,(n1−m1)−(n2−m2)δs′−s,1
)

=
i|γ|2
2

∑
ijkpqr

Aijkpqr

∑
n1m1...
...n4m4

((n1−m1)−(n2−m2))

× φ∗
n1m1

(r, θ)φn2m2(r, θ)φ
∗
n3m3

(r, θ)φn4m4(r, θ) δ(n1−m1)−(n2−m2),(n4−m4)−(n3−m3)

× (δl−l′,(n1−m1)−(n2−m2)δs−s′,1 + δl′−l,(n1−m1)−(n2−m2)δs′−s,1
)
,

(A.27)

where in the last line we have taken advantage of δ(n1−m1)−(n2−m2),(n4−m4)−(n3−m3).

Now consider the denominator of the integrand in Eq. (A.13). Using Eq. (A.26),

we have

|S+|2 =
∑

n1m1...
...n4m4

φ∗
n1m1

(r, θ)φn2m2(r, θ)φ
∗
n3m3

(r, θ)φn4m4(r, θ) 〈ĉ†n1m1↑ĉn2m2↓〉〈ĉ†n3m3↓ĉn4m4↑〉

=
|γ|2
4

∑
ijkpqr

Aijkpqr

∑
n1m1...
...n4m4

δ(n1−m1)−(n2−m2),(n4−m4)−(n3−m3)φ
∗
n1m1

(r, θ)φn2m2(r, θ)

× φ∗
n3m3

(r, θ)φn4m4(r, θ)
(
δl−l′,(n1−m1)−(n2−m2)δs−s′,1 + δl′−l,(n1−m1)−(n2−m2)δs′−s,1

)
.

(A.28)

To evaluate the integrand in Eq. (A.13) we must consider the cases of the spins

of the states (s and s′). If s − s′ = 1, then by the Kronecker delta δl−l′,(n1−m1)−(n2−m2)

we have ((n1−m1)−(n2−m2)) = l − l′ (the term with δs′−s,1 in both Eq. (A.27) and

Eq. (A.28) is zero in this case), and the integrand reduces to

S+∂θS
∗
+ − S∗

+∂θS+

|S+|2 = 2i(l − l′). (A.29)

If s′ − s = 1 (i.e. s− s′ = −1), then we have ((n1−m1)−(n2−m2)) = l′ − l, and the

integrand reduces to

S+∂θS
∗
+ − S∗

+∂θS+

|S+|2 = 2i(l′ − l)

= −2i(l − l′).
(A.30)
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We can account for each case by expressing the integrand as

S+∂θS
∗
+ − S∗

+∂θS+

|S+|2 = 2i(l − l′)(s− s′)δ|s−s′|,1. (A.31)

In evaluating the integral in Eq. (A.13), the chirality takes the form

Cz(r) =
i

4π

∫ 2π

0

dθ
S+∂θS

∗
+ − S∗

+∂θS+

|S+|2

= − 1

2π

∫ 2π

0

dθ (l − l′)(s− s′)δ|s−s′|,1

= (l′ − l)(s− s′)δ|s−s′|,1

= (L′
z − Lz)(Sz − S ′

z)δ|Sz−S′
z |,1,

(A.32)

where in the last line we have used Eq. (A.19). Note that the chirality is independent

of the phase γ between the two ‘base’ QD eigenstates in Eq. (A.12). Additionally,

this expression is also independent of r, and so we can write the chirality of a state

of the form given in Eq. (A.12) as

Cz = (L′
z − Lz)(Sz − S ′

z)δ|Sz−S′
z |,1, (A.33)

which agrees with Eq. (3.7) in this disseration.

A.3 General Winding State

The winding state in Eq. (A.12) can be generalized to

|QC〉 = 1− c

2
√
2
(|Lz, Sz〉+ γq |L′

z, S
′
z〉)

+
1 + c

2
√
2
(|Lz, S

′
z〉+ γ′q |L′

z, Sz〉),
(A.34)

where Lz 
= L′
z, |Sz − S ′

z| = 1, c ≡ C/|C|, q ≡ Q/|Q|, and γ(′) is a general coefficient.

This state takes into account four different types of winding states. For example, if

the winding of the spin density field in position space is counter-clockwise along a

closed curve about the centre of the QD, then C is defined to be some positive integer

(the magnitude of which depends on the difference in orbital angular momentum of

the states, L′
z − Lz). Magnitude aside, let us write C as + to denote the counter-

clockwise winding. For a counter-clockwise winding, we have that c = C/|C| = 1.
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Furthermore, if the topological charge is 1, then q = Q/|Q| = 1, and we write Q as

+. In this case, Eq. (A.34) becomes

|QC〉 → |++〉 = 1− 1

2
√
2
(|Lz, Sz〉+ γ |L′

z, S
′
z〉)

+
1 + 1

2
√
2
(|Lz, S

′
z〉+ γ′ |L′

z, Sz〉)

=
1√
2
(|Lz, S

′
z〉+ γ′ |L′

z, Sz〉).

(A.35)

This state is of the same form as that in Eq. (A.12), and thus its chirality can be

defined using Eq. (A.33) to be

Cz = (L′
z − Lz)(S

′
z − Sz)δ|Sz−S′

z |,1. (A.36)

Similarly, in the case of a winding state with a clockwise winding of the spin

density field along the same closed curve and an opposite topological charge to the

previous example, we have C → − and Q → −1. Then c = −1 and q = −1, and

Eq. (A.34) becomes

|QC〉 → | − −〉 = 1− (−1)

2
√
2

(|Lz, Sz〉 − γ |L′
z, S

′
z〉)

+
1 + (−1)

2
√
2

(|Lz, S
′
z〉 − γ′ |L′

z, Sz〉)

=
1√
2
(|Lz, Sz〉 − γ |L′

z, S
′
z〉).

(A.37)

Since the chirality in Eq. (A.33) is independent of the phase (−γ) its chirality is

Cz = (L′
z − Lz)(Sz − S ′

z)δ|Sz−S′
z |,1. (A.38)

Note that in comparing Eq. (A.36) and Eq. (A.38) it is clear that these two states

defined in Eq. (A.35) and Eq. (A.37) have opposite chirality. (The expression for

chirality in Eq. (A.33) does not distinguish the topological charge of each state.)

The remaining two cases are C → + and Q → −1 with c = 1 and q = −1, and

C → − and Q → 1 with c = −1 and q = 1. Then the state

|QC〉 → | −+〉 = 1√
2
(|Lz, S

′
z〉 − γ′ |L′

z, Sz〉) (A.39)

has a chirality of

Cz = (L′
z − Lz)(S

′
z − Sz)δ|Sz−S′

z |,1, (A.40)
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just like state |++〉. The state

|QC〉 → |+−〉 = 1√
2
(|Lz, Sz〉+ γ |L′

z, S
′
z〉) (A.41)

has a chirality of

Cz = (L′
z − Lz)(Sz − S ′

z)δ|Sz−S′
z |,1, (A.42)

just like state | − −〉. Note the four states | + +〉, | − −〉, | − +〉, and | + −〉 are all

orthogonal to each other.



Appendix B

Diagonalization of the Spin-Orbit Hamiltonian

B.1 Diagonalization of HSO

The SO Hamiltonian is the sum of the Rashba SO Hamiltonian in Eq. (3.12) and

the linear part of the Dresselhaus SO Hamiltonian in Eq. (3.13), and is written here

again for reference:

ĤSO =
αR

�

(
σ̂xP̂y − σ̂yP̂x

)
− βD

�

(
σ̂xP̂x − σ̂yP̂y

)
. (B.1)

It is treated perturbatively and is diagonalized in the subspace of the four lowest-

lying states where merons can form. Eq. (B.1) can be expressed in a more convenient

form,

ĤSO = λ
(
σ̂+

[(
1 + 1

ν

) (
αRâ− iβDâ

†)+ (1− 1
ν

) (−αRb̂
† + iβDb̂

)]
+ σ̂−

[(
1 + 1

ν

) (
αRâ

† + iβDâ
)
+
(
1− 1

ν

) (−αRb̂− iβDb̂
†
)])

.
(B.2)

Note ĤSO = Ĥ†
SO. To obtain this form we express the Pauli spin matrices in terms

of spin raising and lowering operators, σ̂x = (σ̂+ + σ̂−)/2, σ̂y = i(σ̂− − σ̂+)/2. With

P̂x = p̂x − (eB)/(2c)ŷ and P̂y = p̂y + (eB)/(2c)x̂, we can rewrite the canonical

momentum in terms of the Bose annihilation and creation operators, a, b, a†, b† using

the following:

x̂ = l0(a
† + a+ b† + b)/

√
2, (B.3a)

ŷ = −i l0(a
† − a− b† + b)/

√
2, (B.3b)

p̂x = iλ(a† − a+ b† − b), (B.3c)

p̂y = λ(a† + a− b† − b), (B.3d)

where λ = 1/(2
√
2l0) and ν =

√
1 + 4ω2

0/ω
2
c .

Note that the linear SO interaction contains orbital and spin raising and lowering

operators to linear order only. Therefore it can only be diagonalized in a subspace

107
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of states which contain orbital angular momentum states with Lz values that differ

by 1 only, and spin angular momentum states with Sz values that differ by 1 only.

(This condition on the difference in spin is compliant with the winding criteria in

Eq. (3.7)). The SO interaction should, in principle, break the degeneracy of meron

states in some of the four-fold degenerate subspaces found in the N = 1 and N = 3

systems, where |Lz − L′
z| = 1 and Sz values are limited to ±1/2. Using the form of

the general winding states in Eq. (3.8), these meron states can be expressed as

(B.4)

where C = ±1 and Q = ±1.

Eq. (B.1) is diagonalized in the subspace of the four lowest-lying ĤQD eigenstates,

which in cases studied in this dissertation can be generalized to

|0〉 ≡ ∣∣Lz, Sz =
1
2

〉
,

|1〉 ≡ ∣∣Lz, Sz = −1
2

〉
,

|2〉 ≡ ∣∣Lz − 1, Sz =
1
2

〉
,

|3〉 ≡ ∣∣Lz − 1, Sz = −1
2

〉
.

(B.5)

In this basis, the matrix form of ĤSO becomes

ĤSO =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 H03

0 0 H12 0

0 H21 0 0

H30 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , (B.6)

where

H03 = −iβDλ
〈
Lz,

1
2

∣∣ σ̂+

(
â†
(
1 + 1

ν

)− b̂
(
1− 1

ν

)) ∣∣Lz − 1,−1
2

〉
(B.7a)

H12 = αRλ
〈
Lz,−1

2

∣∣ σ̂−
(
â†
(
1 + 1

ν

)− b̂
(
1− 1

ν

)) ∣∣Lz − 1, 1
2

〉
(B.7b)

H21 = αRλ
〈
Lz − 1, 1

2

∣∣ σ̂+

(
â
(
1 + 1

ν

)− b̂†
(
1− 1

ν

)) ∣∣Lz,−1
2

〉
(B.7c)

H30 = iβDλ
〈
Lz − 1,−1

2

∣∣ σ̂−
(
â
(
1 + 1

ν

)− b̂†
(
1− 1

ν

)) ∣∣Lz,
1
2

〉
(B.7d)

Since ĤSO is Hermitian, it must be that H03 = H∗
30 and H12 = H∗

21. The coefficients

of the ĤQD eigenstates in Eq. (B.5) are real, as are αR, βD, λ, and ν, and so we can

express the matrix form of ĤSO more succinctly by defining
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E+ ≡ λ
〈
Lz − 1, 1

2

∣∣ σ̂+

(
â
(
1 + 1

ν

)− b̂†
(
1− 1

ν

)) ∣∣Lz,−1
2

〉
= λ

〈
Lz,−1

2

∣∣ σ̂−
(
â†
(
1 + 1

ν

)− b̂
(
1− 1

ν

)) ∣∣Lz − 1, 1
2

〉 (B.8a)

E− ≡ λ
〈
Lz − 1,−1

2

∣∣ σ̂−
(
â
(
1 + 1

ν

)− b̂†
(
1− 1

ν

)) ∣∣Lz,
1
2

〉
= λ

〈
Lz,

1
2

∣∣ σ̂+

(
â†
(
1 + 1

ν

)− b̂
(
1− 1

ν

)) ∣∣Lz − 1,−1
2

〉
,

(B.8b)

or more compactly,

E± ≡ λ
〈
Lz − 1,±1

2

∣∣ σ̂±
(
â
(
1 + 1

ν

)− b̂†
(
1− 1

ν

)) ∣∣Lz,∓1
2

〉
. (B.9)

Then the matrix form of ĤSO becomes

ĤSO =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 −iβDE−
0 0 αRE+ 0

0 αRE+ 0 0

iβDE− 0 0 0

⎞⎟⎟⎟⎟⎟⎠ (B.10)

The effect of the SO interaction on the meron states in Eq. (B.4) can be determined

by taking the expectation value of ĤSO with these states, 〈QC| ĤSO |QC〉, which

results in the four unique perturbation energies

EQC =
Q

2

(
αRE+(1 + C) + βDE−(1− C)

)
. (B.11)

B.2 Diagonalization of Effective Hamiltonian H = HQD +HSO

When the SO interaction is included in the model the total Hamiltonian becomes

Ĥ = ĤQD + ĤSO, where ĤQD is described in Eq. (2.2a) and ĤSO is described in

Eq. (B.1). As in the previous section, Ĥ is diagonalized in the subspace containing

the four ĤQD eigenstates listed in Eq. (B.5). The matrix form of Ĥ becomes

Ĥ =

⎛⎜⎜⎜⎜⎜⎝
e0 0 0 −iβDE−
0 e1 αRE+ 0

0 αRE+ e2 0

iβDE− 0 0 e3

⎞⎟⎟⎟⎟⎟⎠ , (B.12)
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where ei are the energies of the HQD eigenstates |i〉, and E± is defined in Eq. (B.9)

above. The energy eigenvalues of Ĥ are

E0 =
1

2

(
e0 + e3 −

√
(e0 − e3)2 + 4β2

D E2−

)
, (B.13a)

E1 =
1

2

(
e1 + e2 −

√
(e1 − e2)2 + 4α2

R E2
+

)
, (B.13b)

E2 =
1

2

(
e1 + e2 +

√
(e1 − e2)2 + 4α2

R E2
+

)
, (B.13c)

E3 =
1

2

(
e0 + e3 +

√
(e0 − e3)2 + 4β2

D E2−

)
. (B.13d)

The eigenstates corresponding to the eigenvalues in Eq. (B.18) are:

|ψ0〉 = a |0〉 − ib |3〉, (B.14a)

|ψ1〉 = c |1〉 − d |2〉, (B.14b)

|ψ2〉 = d |1〉+ c |2〉, (B.14c)

|ψ3〉 = b |0〉+ ia |3〉, (B.14d)

where, for B < B∗,

a ≡ −(E0 − e3)√
β2
D E2− + (E0 − e3)2

, (B.15a)

b ≡ βD E−√
β2
D E2− + (E0 − e3)2

, (B.15b)

c ≡ −(E1 − e2)√
α2
R E2

+ + (E1 − e2)2
, (B.15c)

d ≡ αR E+√
α2
R E2

+ + (E1 − e2)2
. (B.15d)

Note that in the single-electron system the degeneracy point B∗ = ∞ and therefore

the coefficients described above are correct for all values of B. In the three-electron

system B∗ is finite. In the cases investigated in this dissertation, the ĤQD energies ei

of the Lz states are smaller than those of the Lz −1 states when B < B∗, however for

B > B∗ the energies of the Lz states become larger than those of the Lz − 1 states.
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If B > B∗ the coefficients must be expressed as

a ≡ βD E−√
β2
D E2− + (E0 − e0)2

, (B.16a)

b ≡ −(E0 − e0)√
β2
D E2− + (E0 − e0)2

, (B.16b)

c ≡ αR E+√
α2
R E2

+ + (E1 − e1)2
, (B.16c)

d ≡ −(E1 − e1)√
α2
R E2

+ + (E1 − e1)2
. (B.16d)

In the absence of SO, i.e. in the limit that both αR → 0 and βD → 0, when

B < B∗ the eigenstates |ψ0〉, |ψ1〉, |ψ2〉, and |ψ3〉 reduce to |0〉, |1〉, |2〉, and |3〉,
respectively, to within an overall phase. When B > B∗ the eigenstates |ψ0〉, |ψ1〉,
|ψ2〉, and |ψ3〉 reduce to |3〉, |2〉, |1〉, and |0〉, respectively, to within an overall phase.

The energy eigenvalues reduce correspondingly.

In the limit that B → B∗ the eigenstates reduce to the meron states described in

Eq. (B.4). Specifically,

|ψ0〉 → 1√
2
(|0〉 − i |3〉) ≡ |Q=1, C=−1〉 , (B.17a)

|ψ1〉 → 1√
2
(|1〉 − |2〉) ≡ |Q=−1, C=1〉 , (B.17b)

|ψ2〉 → 1√
2
(|1〉+ |2〉) ≡ |Q=1, C=1〉 , (B.17c)

|ψ3〉 → 1√
2
(|0〉+ i |3〉) ≡ |Q=−1, C=−1〉 . (B.17d)

In this degenerate1 subspace where e0 = e2 ≈ e1 = e3 ≡ e, the energy eigenvalues of

Ĥ become

E0 → e− βDE−, (B.18a)

E1 → e− αRE+, (B.18b)

E2 → e+ αRE+, (B.18c)

E3 → e+ βDE−, (B.18d)

as expected according to Eq. (B.11).

1At B∗ the Lz and Lz − 1 states with the same spin are exactly degenerate. All four states are
degenerate to within the Zeeman splitting energy.
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B.3 Truncation of N=3 HQD Eigenstates

The eigenstates of the interacting N = 3 QD system are expressed as a linear combi-

nation of all possible orbital configurations which conserve the quantum numbers of

the state (N , Lz, Sz, S
2):

|Ψ〉 =
∑
i

ci |S, Sz, Lz, i〉 (B.19)

We use up to 500 three-particle basis states (Slater determinants which are con-

structed from the single-particle QD states) to diagonalize ĤQD (Eq. (2.2a)), the

unperturbed QD. These states are used to calculate the relaxation and decoherence

rates when the SO interaction is not included in the model (see Sec. 6.1).

Due to the large superposition of Slater determinants, calculating the relaxation

rates in the interacting case is already computationally expensive, however when SO

is included as a perturbation it becomes significantly more laborious. In the absence

of SO the Redfield tensor contains 16 elements. Expressed as a matrix, it can be

diagonalized analytically to obtain the relaxation rate (see Sec. 5.1). This relaxation

rate requires the evaluation of a single Γ+
nmm′n′ element (see Eq. (5.7), and Eq. (4.45a)).

The states |n〉, |m〉, |m′〉, and |n′〉 used in Γ+
nmm′n′ are the interacting QD eigenstates,

each containing up to ∼ 500 basis states.

When SO is included, the number of elements in the Redfield tensor increases to

256. Expressed as a matrix, it is diagonalized numerically to obtain the relaxation

rates. In this case the relaxation rate is not determined analytically. For phonon

emission only, 96 Γ+
nmm′n′ elements must be evaluated in order to diagonalize the

Redfield tensor. Furthermore, the states |n〉, |m〉, |m′〉, and |n′〉 used in Γ+
nmm′n′ are

now the SO states, which are each a superposition of two QD eigenstates.

Most of the basis states which make up the interacting QD eigenstates have a

weight that is almost zero. To calculate the relaxation and decoherence rates of the

SO states in the three-electron system (Sec. 6.2), we remove these low-weight basis

states such that the QD eigenstates retain a probability of 99.9% or more. They are

then renormalized for calculating the relaxation and decoherence rates. By truncating

the QD eigenstates to within 0.1% of their original weight the basis size is reduced

to between approximately 80 and 100 basis states. In other words, almost all of the

weight of the eigenstate is found on the first 80 to 100 basis states; the remaining 300
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Figure B.1: Cumulative probability of a typical interacting three-electron QD eigen-
state (in this case, the Lz = −1 ground state) when ĤQD is diagonalized with 500
three-particle basis states (Slater determinants). The majority of the weight of the
state (to 0.999 probability) is held within the first 100 basis states.

to 400 basis states contain less than 0.1% of the weight of the state (see Fig. B.1).

By truncating the states the numerical processing times required for determining the

decay rates are reduced by approximately an order of magnitude. Note that, when

using the truncated states, the time required to determine the relaxation and decoher-

ence times for a single QD parameter set in the ĤQD + ĤSO system is approximately

25 to 30 hrs on a 2.7 GHz Intel Core i7 Macbook Pro with 16 GB RAM.

As an example, Fig. B.2 displays the absolute difference in the relaxation rates

between the original, “full” states and the truncated states for full interaction strength

(α = 1) in the non-SO system due to the TA-PZ electron-phonon interaction. For

each compared point the absolute difference in 1/T1 is between 0.002 and 0.01 ns−1.

The relative change is between 0.5 and 2%, except at B = 1.4 T where it is 3.3%.

(Note that the relaxation rate at B = 1.4 T is small relative to the peak value.)

The quantitative differences in the relaxation and decoherence rates of the QD

system with the full eigenstates versus the truncated eigenstates are small. Qual-

itatively the trends remain the same. Trunctating the HQD eigenstates to within

0.01% of their original weight significantly reduces the basis size and therefore the

computation time required to obtain the decay rates. We believe this approximation
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Figure B.2: Difference of relaxation rates between the QD system with full HQD

eigenstates and the QD system where the HQD eigenstates have been truncated to
within 0.01 % of the original weight for the TA-PZ electron-phonon interaction.

is justified in calculating the decay rates of the interacting QD system.



Appendix C

Numerical Integration

The integrals over r, r′, z, z′, and φq in the expression

I
nm,ν
ijkl =

∫ π

0

dφq sinφq I
ν
θq(φq) I

ij
r (φq) I

lk
r′ (φq) Iz(φq) I

∗
z′(φq), (C.1)

(see Eq. (4.53) and surrounding text in Sec. 4.3 for details), were performed using

Maple(TM) 14.00 for each interaction type, ν = {LA-DP, LA-PZ, TA-PZ}. The order
of integration is irrelevant since the integrals are all independent of each other with

the exception of their dependence on the variable φq. The integral over φq is therefore

performed last.

In all cases, Maple(TM) numerically evaluates the integrals in the following default

manner1: The integration is first passed to a one-dimensional NAG (Numerical Algo-

rithms Group) integration routine, either nag 1d quad gen (d01ajc), nag 1d quad osc

(d01akc), or nag 1d quad inf (d01amc). The first routine, d01ajc, is a general pur-

pose integrator limited to a finite integration interval and can be used to evaluate

integrands which contain singularities. The second routine, d01akc, is also evaluated

over a finite interval. It can accommodate integrands with oscillatory behaviour. The

third routine, d01amc, evaluates integrals over a semi-infinite or infinite interval. Fur-

ther details of these routines can be found at www.nag.com. In Maple(TM), these

NAG routines are compiled in a C library.

The above NAG routines are limited in their precision to 15 or fewer digits. In the

event that greater precision is required, native Maple routines are employed as follows:

The Clenshaw-Curtis quadrature method (CCquad) is applied first. This method

is based on expanding the integrand into Chebyshev polynomials, which are then

integrated term-by-term [118]. If the integrand contains singularities in or near the

interval of integration, the interval is subdivided and an adaptive double-exponential

quadrature method (Dexp) is called.

1Maple(TM) 14.00 Help ( c© Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario)
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