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Abstract

Text is composed of words and phrases. In bag-of-word model (BoW), phrases in texts

are split into words that might lose the inner semantics of the phrases, can give inconsis-

tent relatedness score between two texts. Our objective is to apply phrase relatedness in

conjunction with word relatedness on the text relatedness task to improve the result. To

measure the phrase relatedness we propose an unsupervised function, f using Sum-Ratio

(SR) technique. The experimental result from f exemplifies the improvement over exist-

ing phrase relatedness methods on two standard datasets of 216 phrase-pairs. We compare

our text relatedness approach (henceforth, TrWP ) against two unsupervised text related-

ness methods which are Latent semantic analysis (LSA) and Google tri-gram based model

(henceforth, GTM); and on seven datasets out of eleven, the results from our approach are

statistically significant with them at 0.05 level. In addition, those results are comparable

to the results of the top ranked supervised text relatedness systems of SemEval-2012 and

SemEval-2013.
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Chapter 1

Introduction

Generally, a phrase is an ordered sequence of multiple words [60] that all together refer to a

particular meaning. Phrases are treated as more informative feature terms [18] than words

within documents. Phrase relatedness quantifies how two phrases relate to each other. It

plays an important role in different Natural Language Processing (NLP) tasks; for instance,

document similarity 1, classification, clustering are performed on the documents composed

of phrases. Several document clustering methods [5, 18, 27, 28, 45, 50] used phrase

similarity to determine the similarity between documents so as to improve the clustering

result. SpamED [46] used the bi-gram and tri-gram phrase similarity between an incoming

e-mail message and a previously marked spam, in order to enhance the accuracy of spam

detection.

Most works on text relatedness can be abstracted as a function of word relatedness [31].

To the best of our knowledge, there is no explicit evaluation of text relatedness using phrase

relatedness. This motivates us to investigate whether using phrase relatedness together with

word relatedness on text relatedness task may improve the result. The high level overview

of the classical BoW text relatedness approaches (e.g., GTM [36] and LSA [37]) and our

proposed approach (TrWP ) is shown in Figure 1.1.

The classical BoW text relatedness methods split phrases into words; then compute

relatedness between two texts by word-pair relatedness. TrWP considers text as Bag-

of-Word-and-Phrase (BoWP) comprising both words and phrases. It considers a (word,

bi-gram) or (bi-gram, bi-gram) pair as a phrase-pair 2 and computes relatedness between

texts using both word and phrase relatedness.

Some methods [30, 42] to compute phrase relatedness adopt compositional distribu-

tional semantics (CDS) [7], some use syntactic structure [4] of the phrases in CDS, some

1We use ‘relatedness’ and ‘similarity’ interchangeably in our thesis, albeit ‘similarity’ is a special case or

a subset of ‘relatedness’.
2We consider the bi-grams in texts as phrases. A word is also considered as a phrase [60] when relatedness

is computed between word and bi-gram.

1
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Word relatedness
(word, word)

Text rel. method
Text, A

Text, B

Rel. score

(a) Classical approach

Word relatedness
(word, word)

+

Phrase relatedness
(word, bi-gram)

(bi-gram, bi-gram)

Text rel. method
Text, A

Text, B

Rel. score

(b) Proposed approach

Figure 1.1: High level overview of the classical and our proposed text relatedness approach

(TrWP ).

use different tools and knowledge-based resources [29, 53] and some [13, 19, 40, 49, 51, 54]

use the co-occurrence statistics (count) from the web corpus. Our method computes relat-

edness strength between two phrases by applying simple Sum-Ratio (SR) technique on the

counts of Google-(n=3,4)-grams [15] that contain two target phrases and overlapping bi-

gram contexts. The relatedness strength is normalized by the normalization technique used

in the Normalized Google Distance (NGD) [19].

Splitting phrases into words ignores the word order that might change the meaning [55]

of phrases leading to inconsistent phrase relatedness score. For example, if we split the

phrases “boat house” and “house boat” into words, we get the relatedness score one,

nonetheless, as a whole unit, these two phrases do not refer to exactly the same mean-

ing [55]. “boat house” means a house for sheltering boats whereas “house boat” means a

boat that serves as a house. To the best of our knowledge, there is no state-of-the-art phrase

relatedness measure that considers the whole phrase as a single unit. Therefore, we propose

a phrase relatedness function f , that computes relatedness strength between two phrases by

considering them as a single unit.
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The relatedness measures such as Jaccard [49], Simpson [13], Dice [39, 51], PMI [54]

and NGD [19] can be applied on the phrase relatedness task using the web corpus where

the phrases are considered as single units. We treat these measures as web-based phrase

relatedness methods. Nonetheless these web-based methods are infeasible to use because

we need a locally computable and efficient relatedness method that is suitable for using in

the inner loop of our text relatedness system, without any limitations in terms of number

of queries to a search engine or network communication overhead. In addition, the co-

occurrence based Jaccard, Simpson, Dice, PMI and NGD using the Google-n-gram corpus

are not useful because the co-occurrences (e.g., “large number and vast amount”) of two

phrases (e.g., “large number”, “vast amount”) in the Google-n-gram corpus are too rare to

be usable.

The reason for using the Google-n-gram [15] corpus is that it covers all the topics,

words and phrases with their statistics (counts) that are used in the real world. Moreover,

to generate n-grams (e.g., 3-grams, 4-grams, 5-grams) and their corresponding frequencies

from a corpus is computationally expensive.

We summarize our contributions as follows:

• We propose an unsupervised function f to compute relatedness strength between two

phrases where each of them may be a single word or a word bi-gram. f uses the Sum-

Ratio technique which is very simple and easy to implement. It is independent of the

syntactic structure of the phrases. It requires neither any human annotated resource

(e.g., WordNet) nor external NLP tools (e.g., lemmatizer, POS tagger).

• We show that using phrase relatedness along with word relatedness improves the text

relatedness result.

The rest of the thesis is organized as follows: a brief overview of the related work is pre-

sented in Chapter 2. The proposed approach for computing text relatedness is described in

Chapter 3. Evaluation and experimental results of phrase and text relatedness are discussed

in Chapter 4. We summarize contributions and future related work in Chapter 5.



Chapter 2

Related work

We discuss the related works into two aspects: phrase relatedness and text relatedness.

2.1 Related work on Phrase relatedness

Most of the phrase relatedness tasks [4, 8, 9, 10, 20, 30, 42, 47, 58] use compositional dis-

tributional semantic (CDS) models [7] where the phrases are split into words and each word

is represented as a vector in Vector Space Model (VSM), constituted by the co-occurrences

of the word with different contexts (attributes) [7]. The phrase meaning is obtained by

combining the vectors of its individual words using different composition functions (e.g.,

additive, multiplicative) that produces a resultant vector (y1, y2...yj...ym), depicted in Fig-

ure. 2.1. For each word, wi of phrase P , there is a vector of the co-occurrence counts

denoted by xi1, xi2...xij...xim where i = 1...n, j = 1...m. n is the number of words of

phrase P and m is the maximum number among the number of attributes of each word

wi. The similarity between two phrases is computed by the cosine similarity between their

corresponding resultant vectors. The value of each yj of a resultant vector is calculated by

applying a composition function on the corresponding jth values of each xij .

Consider the phrases “horses run” and “car race”; the statistics of the co-occurred con-

text words (e.g., field, legs) with individual phrase-word (e.g., horses) are shown in Ta-

ble 2.1 and Table 2.2 respectively. The results after applying different composition func-

tions (e.g., additive, multiplicative) on the vector of each phrase-word are given in the last

two rows of each table. If we consider the resultant vectors from additive composition

function for these two phrases, the similarity (e.g., cosine similarity) between them is 0.22.

Albeit the basic principle of CDS is simple, the word order [55] within the phrases does

not persist that may lead to inappropriate similarity score between the phrases.

Mitchell and Lapata [42] represented a two-word phrase by two vectors with attributes

selected from the BNC corpus using two different techniques: semantic space [41] and

4
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Figure 2.1: Basic overview of the compositional distributional semantics (CDS).

w1, w2...wi...wn are the words of the phrase P . xi1, xi2...xij...xim are the co-occurrence

counts of the context words (attributes) with a phrase-word wi. y1, y2...yj...ym is the resul-

tant vector of P .

Individual Context words

phrase-words field legs wild gasoline

horses 3 7 12 0

run 5 4 10 5

↓
Composition function Resultant vector

horses + run 8 11 22 5

horses × run 15 28 120 0

Table 2.1: The co-occurrence counts of the context words (attributes) with individual

phrase-words and the results of different composition functions, for the phrase “horses

run”.

LDA topic model [11]. Attributes selected by the above methods were optimized by word-

based semantic similarity [16] and correlation on WordSim353 dataset [21], respectively.

Several composition functions (e.g., additive, multiplicative) were applied on the two vec-

tors for a particular phrase in order to produce a resultant vector; then the similarity between

two phrases was computed using the two resultant vectors by widely used cosine measure.

Hartung and Frank [30] also represented phrases by vectors to compute similarity between

them. They applied Controlled LDA [30] to select the attributes of a word within a phrase.
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Individual Context words

phrase-words field wheel games gasoline

car 10 3 15 13

race 9 0 18 4

↓
Composition function Resultant vector

car + race 19 3 33 17

car × race 90 0 270 52

Table 2.2: The co-occurrence counts of the context words (attributes) with individual

phrase-words and the results of different composition functions, for the phrase “car race”.

Both Mitchell and Lapata [42] as well as Hartung and Frank [30] need to train LDA topic

model in order to extract attributes which is more computationally expensive and time con-

suming than a generic unsupervised approach.

Annesi et al. [4] considered each of the given phrases has same syntactic structure, for

instance, first and second word of each phrase are adjective and noun respectively e.g.,

phrase1=adjective1-noun1, phrase2=adjective2-noun2. The similarity between two

phrases is calculated by aggregating the similarity between adjective1 and adjective2, and

the similarity between noun1 and noun2. Annesi et al. [4] used a POS tagger to acquire

the prior knowledge about the word types within the phrases. Since they used the syntactic

equivalent word similarity (e.g., adjective with adjective, noun with noun), their method is

unable to compute similarity between the phrases having different number of words.

UMBC [29] and OMIOTIS [53] have phrase relatedness web services built on human

annotated knowledge base (e.g., WordNet). They use word-pair relatedness from WordNet

to compute the phrase-pair relatedness irrespective of the word order within phrases. The

UMBC and OMIOTIS do not perform well for the named entities since proper nouns are not

well captured in WordNet whereas the proposed phrase relatedness method can compute

relatedness scores for the named entities which are in the Google-n-gram corpus. Consider

two named entities “Barack Obama” and “George Bush”; the proposed method produces

relatedness score 0.65 for this pair, while UMBC gives zero.

The web-based phrase relatedness methods [35]: Jaccard [49], Simpson [13], Dice [39,

51], PMI [54] and NGD [19] use the co-occurrence counts of two phrases P1 and P2

from the web corpus, defined in Eq. 2.1, Eq. 2.2, Eq. 2.3, Eq. 2.4 and Eq. 2.5 respec-

tively. The co-occurrence is measured based on the number of web documents in which
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P1 and P2 appear together denoted by D(P1, P2). D(P1, P2) is normalized with respect

to the independent occurrences of P1 and P2 represented as D(P1) and D(P2) respec-

tively. D(P1) = number of web documents that contain P1. D(P2) is computed simi-

larly. We submit the queries: “P1”, “P2” and “P1” and “P2” to the web Search Engine

(https://www.google.com/) in order to obtain the number of independent occur-

rences and co-occurrences of the phrases P1 and P2 respectively. T is the total number of

web documents. The value of NGD is unbounded, ranging from 0 to ∞. Therefore, the

value is bounded in between 0 and 1 using the variation of NGD defined in [24].

Jaccard(P1, P2) =
D(P1, P2)

D(P1) +D(P2)−D(P1, P2)
(2.1)

Simpson(P1, P2) =
D(P1, P2)

min(D(P1), D(P2))
(2.2)

Dice(P1, P2) =
2×D(P1, P2)

D(P1) +D(P2)
(2.3)

PMI(P1, P2) = log2

(

D(P1,P2)
T

D(P1)
T

D(P2)
T

)

(2.4)

NGD(P1, P2) = e
−2×

max(log D(P1),log D(P2))−log D(P1,P2)
log T−min(log D(P1),log D(P2)) (2.5)

A dynamic programming based algorithm [56] measured phrase similarity through in-

tegrating both edit distance between the parse trees of the phrases and word-pair similar-

ity. IRIT [17] computed similarity between the phrases using the longest common n-gram

based similarity in conjunction with concept similarity [44].

2.2 Related work on Text relatedness

Existing work on determining text relatedness is broadly categorized into three major

groups: corpus-based (e.g., [36, 37]), knowledge-based (e.g., [52]) and hybrid measure

(e.g., [25]). A detailed survey of text relatedness can be found in [23].

In general, BoW methods fall into corpus-based category. GTM uses the Google tri-

gram [15] to compute word-pair relatedness of representative words from each text to

ultimately compute text-pair relatedness as described in [36] and available on the GTM

Web site (http://ares.research.cs.dal.ca/gtm/texttextform.html).

To compute word-pair relatedness, the frequencies of the Google tri-grams that start and
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end with the given pair and the uni-gram frequencies of the pair are taken into account. The

text relatedness method first separates common words between the texts before computing

the word relatedness. The count of the separated words and the relatedness scores between

the representative words from two texts are then normalized using the texts’ lengths 1.

LSA [37] computes the text-pair similarity by using word-pair similarity. The word-pair

similarity is computed based on the assumption that words that are similar to each other

appear in the similar contexts (e.g., paragraphs, sentences) inside a corpus. At first, the

text is represented as a matrix where the rows refer to individual words of the text and the

columns stand for the contexts. Each cell contains the frequency of a word within a partic-

ular context. Then a matrix decomposition technique called Singular Value Decomposition

(SVD) is applied on the large word-by-context matrix to reduce the number of columns,

but still high, typically 50-500 dimensional semantic space. The similarity between two

words is measured by the cosine similarity between their corresponding row vectors. The

semantic space is a mathematical representation of a large corpus of text and every term,

text, or novel combination of terms having a high dimensional vector representation. The

goal of creating a semantic space for a specific domain is to use a representative set of texts

as input so that LSA can make semantic similarity judgements comparable to human [59].

In our experiment section, we have used the general knowledge space (college level) for

the LSA semantic space, available on the web site (http://lsa.colorado.edu/).

In [34], a corpus-based semantic text similarity (STS) measure is proposed as a function

of string similarity, word similarity, and common-word-order (CWO) similarity. To com-

pute string similarity between two words, they adopt the Normalized Longest Common

Subsequence (NLCS) [3] measure. To determine word similarity, they focus on corpus-

based measures. CWO similarity [34] is calculated based on the similarity of the orders of

common words (e.g., common words appear in the same order, or almost the same order,

or very different order) in two texts.

In [52], the text-pair relatedness is computed using both the lexical similarity and se-

mantic relatedness between the words of two texts. For each word-pair, the semantic re-

latedness is measured using the semantic links between individual words from WordNet.

However, there may be some proper nouns within the texts that do not exist in the Word-

Net. This is because, they also compute the lexical similarity for the word-pairs using the

1 length(text) = number of words within the text.
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estimation of the words importance weights determined by the standard tf.idf weighting

scheme [48]. Then, for each word in the first text, the most relevant word from the second

text is selected subject to maximizing the product of the lexical similarity and semantic

relatedness between them. After that, the sum of the products for the word-pairs is normal-

ized by the number of words in the first text. The same process is followed for each word

in the second text. Finally the text-pair relatedness is computed by averaging the two sums.

Another WordNet based text relatedness method [31] follows almost the same approach

as in [34]. The principal difference between them is that, [31] adopts knowledge-based

(WordNet) measure instead of corpus-based to compute word-pair relatedness. The intu-

ition behind using knowledge-based method is that corpus-based methods are closer to the

syntactic representation than to semantic representation since they use the statistical infor-

mation (e.g., how many times two words co-occur within a corpus). They use WorNet not

only to compute word-pair relatedness but also to assign the most suitable sense to a poly-

semous word through applying Word Sense Disambiguation (WSD). Polysemous word is

a word that has multiple meanings. WSD is the task of determining the sense of a poly-

semous word within a specific context [57]. In order to disambiguate the sense of a word

in the first text, they choose a word from the second text having the highest relatedness

between them.

In [25], a hybrid measure using three dictionaries (e.g., WordNet, OntoNotes, and Wik-

tionary) along with the Brown corpus is proposed. The intuition of using multiple dictio-

naries is that two definitions in different dictionaries referring to the same concept should

be assigned large similarity. Another hybrid measure [26] combines the corpus-based and

knowledge-based information from the Brown Corpus and WordNet respectively to com-

pute the relatedness between sentences. They tune their model using the training dataset

and evaluate the model on the test dataset.

Most methods in SemEval-2012 [1] and SemEval-2013 [2] shared task on semantic

textual similarity (STS) are hybrid where different tools and resources have been used.

UKP [6], the top-ranked system for SemEval STS 2012 task [1], uses a trained log-linear

regression model and combines multiple text similarity methods based on lexical-semantic

resources. UMBC [29] is the top-ranked system for SemEval STS 2013 core task [2],

uses term alignment algorithm augmented with penalty terms. Term alignment [29] is the

mapping of a term of a sentence to a the counterpart of another sentence. The mapping can
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be obtained in different ways, for instance exact matching of two terms, finding that one

term is the acronym of the other term, and matching two consecutive terms in a sentence

with a single term in the other sentence (e.g. “long term” and “long-term”). If two terms are

aligned, the term alignment score is one otherwise zero. UMBC also uses a word similarity

feature that combines LSA word similarity and WordNet. The tools and resources used

by this system are monolingual corpora, WordNet, KB Similarity, lemmatizer, POS tagger,

and time and date resolution [2].

The above mentioned text relatedness approaches do not consider the word order of

the phrases in texts. That is why the relatedness scores computed by these methods are

inconsistent for the text pairs when any of the text within the pair contains phrases.



Chapter 3

Proposed approach for text relatedness

In this chapter we delineate the proposed text relatedness approach. At first we discuss

how the word relatedness is computed. Then the terminologies used in measuring phrase

relatedness are depicted. After that we outline the phrase detection mechanism. Later on

the detailed phrase relatedness method has been described. Finally we combine the word

and phrase relatedness to compute the relatedness between two texts.

3.1 Computing word relatedness

In order to compute the relatedness between two words, w1 and w2, TrWP adopts the

word relatedness measure mentioned in GTM [36], a corpus-based approach using Google

tri-gram. The reason of adopting this measure is that TrWP needs to compute word re-

latedness and to the best of our knowledge this is the state-of-the-art unsupervised word

relatedness method; moreover both TrWP and GTM use the same Google-n-gram corpus.

The steps of computing word relatedness are given in Fig. 3.1. The main idea of the tri-

gram relatedness model is to consider all the tri-grams that start and end with the given pair

of words and then normalize their mean frequency using uni-gram frequency of each of the

words as well as the most frequent uni-gram in the corpus used.

3.1.1 Extracting Google tri-grams

We extract two sets of Google tri-grams beginning and ending with any of the words w1

and w2 following the orders (w1, wi, w2) and (w2, wi, w1) respectively where wi is a co-

occurrence context representing an association between them.

3.1.2 Summing the frequencies of Google tri-grams

For each set of extracted Google tri-grams, we sum their frequencies. After that we add

the two sums obtained from these two sets, defined in Eq. 3.1 where M12 and M21 are

11
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w1 w2

Extracting Google tri-grams following
the orders (w1, wi, w2) and (w2, wi, w1)

Summing the frequencies of
tri-grams for each order

Normalizing the mean of
two sums

Relatedness score [0:1]

Figure 3.1: Steps of computing word relatedness [36].

the number of Google tri-grams in each set respectively. C(w1wiw2) is the frequency of a

Google tri-gram.

u(w1, w2) =
M12
∑

C(w1wiw2) +
M21
∑

C(w2wiw1) (3.1)

3.1.3 Normalizing the mean of two sums

The mean of the two sums is computed by dividing u(w1, w2) by 2. Then it is normalized

with respect to the frequency of the words denoted by C(w1) and C(w2) along with the

frequency of the most frequent Google uni-gram (Cmax), designated in Eq. 3.2 [36]. The

outcome of this normalization is the relatedness score [0:1] between the words, w1 and w2.

RT (w1, w2) =



























log
(u(w1,w2)/2)Cmax

2

C(w1)C(w2)min(C(w1),C(w2))

−2×log
min(C(w1),C(P2))

Cmax

if
(u(w1,w2)/2)Cmax

2

C(w1)C(w2)min(C(w1),C(w2))
> 1

log1.01

−2×log
min(C(w1),C(w2))

Cmax

if
(u(w1,w2)/2)Cmax

2

C(w1)C(w2)min(C(w1),C(w2))
≤ 1

0 if u(w1, w2) = 0

(3.2)

3.2 Terminology used in phrase relatedness

The terminologies used in measuring phrase relatedness are described below:



13

Definition 1 (Phrase) Phrase P is a word n-gram, (w1, w2, ...wn) with a particular mean-

ing.

Definition 2 (Bi-gram context) Bi-gram context of a phrase P is a bi-gram (z1, z2) such

that either of the following augmented n-grams

(w1, w2...wn, z1, z2) = (P, z1, z2)

(z1, w1, w2...wn, z2) = (z1, P, z2)

(z1, z2, w1, w2...wn) = (z1, z2, P )

exist in the Google-n-gram corpus. Since the Google-n-gram corpus is limited to n=5,

that is why we limit the phrases we consider to uni-grams and bi-grams and therefore our

augmented n-grams are limited to three to four grams.

The intuition of considering bi-gram context is that if we consider tri-gram context, then

the number of contexts in the Google-n-gram corpus becomes small and the uni-gram con-

text does not bear semantics as bi-gram context. Iosif and Potamianos [33] extracted left

and right contexts of two words each from the web documents to measure similarity be-

tween them. Sample bi-gram contexts for the uni-gram phrase “bachelor” and bi-gram

phrase “large number” are extracted by placing them in the left most, middle and right po-

sition within the Google tri-grams and Google-4-grams respectively as shown in Table 3.1

Table 3.2.

Phrase position Uni-gram phrase in Google tri-gram Bi-gram context

Left most bachelor lives alone lives alone

Middle nice bachelor person nice..person

Right most good looking bachelor good looking

Table 3.1: Positions of the uni-gram phrase (bachelor) in Google tri-grams and correspond-

ing bi-gram contexts marked bold.

Phrase position Bi-gram phrase in Google-4-gram Bi-gram context

Left most large number of files of files

Middle very large number generator very..generator

Right most multiply a large number multiply a

Table 3.2: Positions of the bi-gram phrase (large number) in Google-4-grams and corre-

sponding bi-gram contexts marked bold.
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Definition 3 (Overlapping bi-gram context) Given two phrases P1 and P2, we extract

two sets of Google-(n=3,4)-grams for them denoted by S1 and S2 respectively such that

any Google-(n=3,4)-gram in S1 can be either of the form of (P1, z1, z2), (z3, P1, z4) and

(z5, z6, P1) and any Google-(n=3,4)-gram in S2 can be either of the form of (P2, z7, z8),

(z9, P2, z10) and (z11, z12, P2) where each of {(z1, z2), (z3, z4), (z5, z6)} and {(z7, z8),

(z9, z10), (z11, z12)} represents a single bi-gram context of P1 and P2 respectively which

are obtained by placing the phrases P1 and P2 in the left most, middle and right most

positions correspondingly within a single Google-(n=3,4)-gram.

Any two bi-gram contexts of P1 and P2 are overlapped if either of the following patterns

is satisfied with respect to the position of P1 and P2 within their corresponding Google-

(n=3,4)-grams as defined in the following.

Phrase position Google-(n=3,4)-gram Google-(n=3,4)-gram Overlapping pattern

containing P1 and containing P2 and

bi-gram context bi-gram context

Left most (P1, z1, z2) (P2, z7, z8) (z1 = z7, z2 = z8)

Middle (z3, P1, z4) (z9, P2, z10) (z3 = z9, z4 = z10)

Right most (z5, z6, P1) (z11, z12, P2) (z5 = z11, z6 = z12)

Consider the Google-4-grams “large number of data” and “vast amount of data” where

“large number” and “vast amount” are the target phrases and “of data” is the overlapping

bi-gram context.

Definition 4 (Non-overlapping bi-gram context) Any two bi-gram contexts of P1 and P2

are non-overlapped if either of the following patterns is satisfied with respect to the position

of P1 and P2 within their corresponding Google-(n=3,4)-grams as defined in the following.

Phrase position Google-(n=3,4)-gram Google-(n=3,4)-gram Non-overlapping

containing P1 and containing P2 and pattern

bi-gram context bi-gram context

Left most (P1, z1, z2) (P2, z7, z8) z1 6= z7 or z2 6= z8 or both

Middle (z3, P1, z4) (z9, P2, z10) z3 6= z9 or z4 6= z10 or both

Right most (z5, z6, P1) (z11, z12, P2) z5 6= z11 or z6 6= z12 or both
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Definition 5 (All bi-gram context) All Bi-gram context of a phrase includes both the over-

lapping and non-overlapping bi-gram contexts that are extracted from the Google-(n=3,4)-

grams where the target phrase appears.

Definition 6 (Sum-Ratio (SR)) Sum-Ratio refers to the product of the sum and ratio be-

tween the minimum (min) and maximum (max) of two numbers. Given two numbers a and

b, the Sum-Ratio of a and b is defined as follows.

Sum(a, b) = a+ b Total strength

Ratio(a, b) = min(a, b)/max(a, b) Relative strength

Sum-Ratio(a, b) = Sum×Ratio Quantified Total strength

The Sum-Ratio of two numbers indicates the strength between them. The objective of

Sum-Ratio is to maximize the sum of two numbers with respect to their ratio. For instance,

the strength between 1 and 1000 is (1 + 1000) × (min(1, 1000)/max(1, 1000)) = 1.001

and between 500 and 501 is (500 + 501) × (500/501) = 999.002. The sum of the first

and second two numbers is same (e.g., 1001), but the strengths are different due to having

different ratios (1/1000) = 0.001 and (500/501) = 0.998, respectively.

Definition 7 (Relatedness strength) Relatedness strength is the strength between two phrases

P1 and P2 which is computed using the strength (Sum-Ratio value) between the counts of

two Google-(n=3,4)-grams that contain P1 and P2 respectively and a overlapping bi-gram

context.

Given a pair of phrases P1 and P2, any n-gram pair of the form (tri-gram, 4-gram) or

(4-gram, 4-gram) that contains P1 and P2 and a overlapping bi-gram context, represents

an association between P1 and P2. In order to measure the degree of association between

two phrases, we use the counts of Google-(n=3,4)-grams in which they appear. To mea-

sure the strength between two counts, the proposed phrase relatedness method uses simple

Sum-Ratio technique. Consider the counts 200 and 300 for two Google-(n=3,4)-grams,

“bachelor marry woman” and “unmarried man marry woman” respectively where the target

phrases are “bachelor” and ‘unmarried man”. The SR value is (200 + 300)× (200/300) =

333.33, representing the relatedness strength between these two Google-(n=3,4)-grams

which is used to compute relatedness between the phrases “bachelor” and ‘unmarried man”.
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Definition 8 (Phrase relatedness function (f )) Phrase relatedness function (f ) is a func-

tion that takes two phrases P1 and P2 as input and computes the relatedness strength

between them by applying Sum-Ratio technique on the overlapping bi-gram contexts in

conjunction with the cosine similarity computed from all bi-gram contexts.

3.3 Phrase detection

We elicit the bi-grams from texts as phrases using the frequencies of the Google bi-grams.

The elicited bi-grams are not the actual phrases but more likely to be considered as phrases

if they are highly frequent, asserted in the Google-Book-Ngram-Viewer (https://books.

google.com/ngrams/info). A bi-gram contains two words, hence it can be consid-

ered as a multi-word term. Frantzi et al. [22] proposed a domain-independent method for

the automatic extraction of multi-word terms from machine-readable special language cor-

pora. Bonin et al. [14] presented a novel approach to multi-word terminology extraction

combining automatic term recognition approach with contrastive ranking technique.

We adopt a very naive approach to detect the bi-gram phrases from texts using the mean

(ubg) and standard deviation (sdbg) of all Google bi-gram frequencies (counts) which are

computed once. To detect the bi-gram phrases, the whole text is split by stop-words that

produces a list of c-grams 1. For each c-gram having length 2 greater than or equal to two,

the unsupervised phrase detection algorithm (UPD) 1 is called. There are mainly two cases

in terms of the length of c-gram, that UPD 1 deals with.

Case 1: If the c-gram is a bi-gram and its frequency is greater than ubg + sdbg, then we

add it to the list of bi-gram phrases.

Case 2: If the length of c-gram is greater than two, we generate an array of bi-grams

from the c-gram and find the most frequent bi-gram (mbg) among them; then we check

whether the frequency of the mbg is greater than ubg + sdbg. If the condition is true, then

we add the mbg to the list of bi-gram phrases and split the c-gram into two parts (e.g., left,

right) by mbg. After splitting, the part of the c-gram situated to the left and right of mbg

are denoted as lng and rng respectively. Then for each of the lng and rng, we examine the

two cases: Case 1 and Case 2 recursively.

1c-gram: A chunk of uni-grams where no uni-gram is a stop-word.
2length(c-gram) = number of uni-grams within the c-gram.
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Algorithm 1 Unsupervised Phrase Detection

Input: • c-gram = A chunk of uni-grams where no uni-gram is a stop-word

• ubg = Mean of all Google bi-gram frequencies

• sdbg = Standard deviation of all Google bi-gram frequencies

Output: List of bi-gram phrases

1: function UPD(c-gram)

2: if length(c-gram) < 2 then . length(c-gram) = number of uni-grams

3: Return

4: else if length(c-gram) = 2 then

5: if freq(c-gram) > (ubg + sdbg) then . Frequency of Google-(c=2)-gram

6: Include the c-gram in the list of bi-gram phrases

7: end if

8: else if length(c-gram) > 2 then

9: Find mbg = the most frequent bi-gram from c-gram

10: if freq(mbg) > (ubg + sdbg) then

11: Include the mbg in the list of bi-gram phrases

12: lng = LeftNG(c-gram,mbg) . lng= Part of c-gram, left to mbg

13: rng = RightNG(c-gram,mbg) . rng= Part of c-gram, right to mbg

14: UPD(lng)

15: UPD(rng)

16: end if

17: end if

18: end function
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Time complexity of the phrase detection algorithm is analyzed in section C.1 of Com-

plexity analysis C.

3.4 Computing Phrase Relatedness

The proposed text relatedness approach uses phrase relatedness to compute the related-

ness between two texts. In order to compute phrase relatedness we propose a function f

that computes relatedness strength between two phrases P1 and P2 using the Google-n-

gram corpus [15]. Then the strength is normalized in between 0 and 1 using NGD [19] in

conjunction with NGD´ [24]. The steps of computing phrase relatedness are depicted in

Fig. 3.2.

P1 P2

Extracting bi-gram contexts

Lexical pruning on bi-gram contexts

Finding overlapping bi-gram contexts

Statistical pruning on overlapping
bi-gram contexts

Computing relatedness strength

Normalizing relatedness strength

Relatedness score [0:1]

Figure 3.2: Steps of computing phrase relatedness.

3.4.1 Extracting bi-gram contexts

The relatedness between two phrases is computed based on the bi-gram contexts extracted

from Google-(n=3,4)-grams. Therefore f needs to extract all possible bi-gram contexts
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from Google-(n=3,4)-grams in which the target phrases appear. Since it uses Google tri-

grams and 4-grams for uni-gram and bi-gram phrases respectively, it can extract bi-gram

contexts in three possible ways as shown in Table 3.1 and Table 3.2. Sample extracted (non)

overlapping bi-gram contexts for the phrases P1=“large number” and P2=“vast amount” are

given in Table 3.3. Also the frequency (count) of each Google-4-gram and the phrases are

shown here.

large number, count=1000 vast amount, count=2000 Bi-gram context

Google-4-gram Count Google-4-gram Count Overlap Non-overlap

large number of death 100 vast amount of death 200 of death

consider the large number 300 consider the vast amount 400 consider the

very large number generator 150 very vast amount generator 300 very..generator

large number of data 200 vast amount of data 300 of data

large number of items 100 vast amount of land 200 of items, of land

Table 3.3: Sample (non) Overlapping Google-4-grams for phrases “large number” and

“vast amount”.

3.4.2 Lexical pruning on the bi-gram contexts

Some phrases along with their bi-gram contexts do not convey meaningful insight due to the

improper positioning of the stop-words within the bi-gram contexts. Therefore we perform

lexical pruning 3 based on the position of the stop-words inside the bi-gram contexts. When

the target phrase is placed at the left most position within a Google-(n=3,4)-gram followed

by a bi-gram context, then the Google-(n=3,4)-gram is pruned if the right most word of

that bi-gram context is a stop-word. When the phrase is in the middle surrounding two

context words within a Google-(n=3,4)-gram, then the Google-(n=3,4)-gram is pruned if

both the surrounding context words are the stop-words. When the phrase is situated at

the right most position within a Google-(n=3,4)-gram preceded by a bi-gram context, then

the Google-(n=3,4)-gram is pruned if the left most word of the bi-gram context is a stop-

word. After performing the lexical pruning, we have a set of non-pruned Google-(n=3,4)-

grams containing the bi-gram contexts for a particular phrase. The pruning conditions with

examples are given in Table 3.4.

Consider the phrase “large number” and the container Google-4-gram “large number

3Performing pruning on the bi-gram contexts implies to the pruning of the Google-(n=3,4)-grams from

which those contexts are extracted.
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Phrase Phrase Sample bi-gram contexts Pruning conditions

position Meaningful (Kept) Meaningless (Pruned) on bi-gram contexts

Left most large number large number of death large number of the Right most uni-gram

is a stop-word

Middle different kind facing different kind

problem

in different kind to Both uni-grams are

stop-words

Right

most

certain cir-

cumstance

state under certain

circumstance

of under certain cir-

cumstance

Left most uni-gram

is a stop-word

Table 3.4: Conditions for the lexical pruning on bi-gram contexts.

of death” given in Table 3.4. The phrase “large number” and the bi-gram context “of

death” all together refer to the amount of death. Hence “of death” is kept. In contrast,

the phrase “large number” and the bi-gram context “of the” all together do not express any

significant meaning as “large number of death”, therefore “of the” has been pruned. The

Google-4-gram “facing different kind problem” states with regard to the types of problems

that are being faced where “different kind” is a phrase and “facing..problem” is a bi-gram

context. The bi-gram context “state under” precedes the phrase “certain circumstance” in

the Google-4-gram “state under certain circumstance” represents a situation of the state.

3.4.3 Finding overlapping bi-gram contexts

In this step, we find the overlapping bi-gram contexts between the two sets of non-pruned

Google-(n=3,4)-grams extracted for two phrases. The Google-(n=3,4)-grams having over-

lapping contexts are being separated from the non-overlapping Google-(n=3,4)-grams in

order to determine the relatedness strength between them to ultimately compute the related-

ness strength between the phrases. The set of overlapping bi-gram contexts for the phrases

“large number” and “vast amount” is {“of death”, “consider the”, “very..generator”, “of

data”} as shown in Table 3.3.

3.4.4 Statistical pruning on the overlapping bi-gram contexts

Each Google-(n=3,4)-gram pair with overlapping bi-gram context possesses a relatedness

strength. We presume that if most of the Google-(n=3,4)-gram pairs have higher relatedness

strengths, the relatedness score between two phrases tends to be higher and vice versa.
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However some strengths do not lay within the group of maximum strengths 4. The strengths

that are not within the group of maximum strengths are designated as outliers and because

of the outliers, the relatedness score between two phrases becomes inconsistent. That is

why we apply statistical pruning on the relatedness strengths to prune the Google-(n=3,4)-

gram pairs having outliers.

Since our aim is to find the group of maximum strengths and prune the outliers, there-

fore we adopt the Normal Distribution [12] for statistical pruning. In Normal Distribution,

most of the samples tend to be around their center (mean) and from the center they spread

out to the left and right directions. In order to characterize the distribution of the samples,

Normal Distribution uses two statistical properties which are the mean and standard devia-

tion of those samples. It has been shown that in Normal Distribution most of the samples

exist within the mean ± standard deviation.

In order to perform statistical pruning, we divide each Google-(n=3,4)-gram count

(frequency) within a pair by the count of its corresponding (n=1,2)-gram phrase, result-

ing in a normalized count. A single Google-(n=3,4)-gram pair has two Google-(n=3,4)-

grams, so there are two normalized counts for a pair. The minimum and maximum among

the two normalized counts are determined. After that we calculate the ratio (e.g., min-

imum/maximum) between them. Following that for each Google-(n=3,4)-gram pair, we

multiply the ratio with the sum of the two Google-(n=3,4)-gram counts that produces a re-

sultant product (e.g., strength). Later on we compute the mean (usr) and standard deviation

(sdsr) from the strengths of the Google-(n=3,4)-gram pairs. If the strength is within the

usr ± sdsr, it has been kept otherwise pruned.

How statistical pruning is performed, is illustrated using the counts of the bi-gram

phrases and Google-4-grams from Table 3.3. Consider the Google-4-gram pair (“large

number of data”, “vast amount of data”) where the target phrases are “large number”

and “vast amount” respectively. The counts of the phrases “large number” and “vast

amount” are 1000 and 2000 correspondingly; and the counts of the 4-grams “large num-

ber of data” and “vast amount of data” are 200 and 300 respectively. The normalized

counts of the 4-grams “large number of data” and “vast amount of data” are 200/1000 =

0.2 and 300/2000 = 0.15 respectively and the ratio between them is min(0.2, 0.15) ÷

4Group of maximum strength: The group in which most of the strengths are close to each other with

respect to their standard deviation. Example: Among the strengths {1, 20, 25, 30, 70}, the group of maximum

strength is {20, 25, 30} and 1 and 70 are the outliers.
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max(0.2, 0.15) = 0.15/0.2 = 0.75 which is multiplied with the sum of these 4-gram

counts (e.g., 200+300 = 500) produces the resultant product (e.g., strength) 500× 0.75 =

375. The strengths for other Google-(n=3,4)-gram pairs (e.g., 300, 466.67, 450) are calcu-

lated similarly. The usr and sdsr from these strengths are 397.92 and 76.49 respectively.

The usr+sdsr = 474.41 and usr−sdsr = 321.43 are used to identify the group of maximum

strengths; in order to find that the strengths which are in between the usr±sdsr are kept and

others are pruned. Therefore the strengths 375, 450 and 466.67 along with their Google-

4-gram pairs are kept and the strength 300 along with the 4-gram pair (“large number of

death”,“vast amount of death”) is pruned.

3.4.5 Computing relatedness strength

We compute the relatedness strength between two phrases P1 and P2 using the overlapping

and all bi-gram contexts.

Using overlapping bi-gram contexts

For each non-pruned Google-(n=3,4)-gram pair having overlapping bi-gram context, the

relatedness strength is calculated following the Sum-Ratio technique. We sum the two

Google-(n=3,4)-gram counts and find the minimum and maximum among them. After that

we calculate the ratio (e.g., minimum/maximum) between them. Then the Sum-Ratio value

is calculated by multiplying the sum with ratio which signifies the relatedness strength for

a Google-(n=3,4)-gram pair. By summing up the relatedness strength of each Google-

(n=3,4)-gram pair, we get the relatedness strength between the phrases P1 and P2 denoted

by RSOB(P1, P2) and defined in Eq. 3.3. GP1 and GP2 are the Google-(n=3,4)-grams that

contain P1 and P2, respectively and a overlapping bi-gram context. C(GP1) and C(GP2)

are the counts of GP1 and GP2 respectively. C(P ) is the count of phrase P where P is a

Google-(n=1,2)-gram. k is the number of non-pruned Google-(n=3,4)-gram pairs.

RSOB(P1, P2) =
k
∑ min(C(GP1), C(GP2))

max(C(GP1), C(GP2))
× sum(C(GP1), C(GP2)) (3.3)

In this step, the Google-(n=3,4)-gram count is not normalized with respect to its cor-

responding (n=1,2)-gram phrase count because the sum of the relatedness strengths from

all non-pruned Google-(n=3,4)-gram pairs is normalized with respect to the counts of the

phrases in the formula of Normalized Google Distance [19].
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Using all bi-gram contexts

All bi-gram contexts of a phrase P1 include both the non-pruned overlapping and non-

overlapping bi-gram contexts that are extracted from the Google-(n=3,4)-grams where P1

appears. Two vectors V1 and V2 in Vector Space Model are constructed for the phrases

P1=“large number” and P2=“vast amount”, respectively using their corresponding all bi-

gram Contexts from Table 3.3, as shown in Table 3.5. The values of V1 and V2 are the

presence or absence of a bi-gram context belonging to the phrases P1 and P2, correspond-

ingly. The relatedness strength between P1 and P2 using all bi-gram contexts is designated

as cosSim(V1, V2), and computed by the cosine similarity between the vectors V1 and V2,

defined in Eq. 3.4. The similarity score refers to the number of commonalities between the

vectors in terms of the bi-gram contexts of P1 and P2, respectively.

consider the very..generator of data of items of land

V1 1 1 1 1 0

V2 1 1 1 0 1

Table 3.5: Vectors V1 and V2 from non-pruned (non) overlapping bi-gram contexts of the

phrases “large number” and “vast amount”, respectively.

cosSim(V1, V2) =
V1.V2

||V1|| ||V2||
(3.4)

Computing overall relatedness strength

The overall relatedness strength f(P1, P2) between the phrases P1 and P2 is computed by

quantifying the relatedness strength obtained from non-pruned overlapping bi-gram con-

texts, RSOB(P1, P2) with respect to the relatedness strength obtained from all bi-gram

contexts, cosSim(V1, V2), as defined in Eq. 3.5. In order to quantify, RSOB(P1, P2) is

multiplied with cosSim(V1, V2). To illustrate the reason, why we multiply RSOB(P1, P2)

with cosSim(V1, V2), let us consider the Google-4-grams shown in Table 3.3. The RSOB

(P1, P2) and cosSim(V1, V2) between the phrases “large number” and “vast amount” are

1083.33 and 0.75, respectively. After multiplying them by Eq. 3.5, we get the f(P1, P2) =

812.49 which is less than 1083.33 because cosSim(V1, V2) = 0.75. If all the bi-gram con-

texts of two phrases are overlapped, then we get the maximum value from f(P1, P2) since

cosSim(V1, V2) is 1, and vice versa.

f(P1, P2) = RSOB(P1, P2)× cosSim(V1, V2) (3.5)
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3.4.6 Normalizing overall relatedness strength

The overall relatedness strength f(P1, P2) between the phrases P1 and P2 is normalized by

the normalization approach used in NGD [19], as defined in Eq. 3.6. N is the total number

of web documents used in the Google-n-gram corpus. The value of NGD is unbounded,

ranging from 0 to∞. Therefore NGDf adopts the variation of NGD (e.g., NGD´ [24]) in

order to bound the normalized value in between 0 and 1 which is the ultimate relatedness

score between the phrases P1 and P2.

NGDf(P1, P2) = e
−2×

max(log C(P1),log C(P2))−log f(P1,P2)
log N−min(log C(P1),log C(P2)) (3.6)

Time complexity of computing relatedness between two phrases is investigated in sec-

tion C.3 of Complexity analysis C.

3.5 Computing Text Relatedness

We represent the text as BoWP model that includes both words and phrases. At first, the

punctuations are removed from text. The phrases are extracted from text using the phrase

detection algorithm described in section 3.3. Other than phrases the rest of the text is split

into non stop-words.

The relatedness between two texts is calculated by the phrase-pair relatedness together

with word-pair relatedness following the notion of text relatedness in GTM [36]. The dif-

ference between GTM and our approach is that we incorporate phrase relatedness to show

that the combination of word and phrase relatedness improves the text relatedness result.

The word-pair relatedness is computed by the GTM word relatedness module, defined in

Eq. 3.2. We consider a (word, bi-gram) or (bi-gram, bi-gram) pair generated from two texts

as a phrase-pair and to compute phrase-pair relatedness, we use the Eq. 3.6. The steps of

computing text relatedness are given below.

Step 1: We assume that the two texts A = {a1, a2, a3, ..., ap} and B = {b1, b2, b3, ..., bq}

have p and q tokens respectively, and p ≤ q. Otherwise we switch A and B. Each token

can be word or bi-gram phrase.

Step 2: We count the number of common tokens (δ) in both A and B where δ ≤ p. The

common tokens are removed [31, 34, 36] from A and B. So, A = {a1, a2, a3, ..., ap−δ} and

B = {b1, b2, b3, ..., bq−δ}. If all tokens match e.g., p− δ = 0, go to step Step 5. The reason
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for removing common tokens is that if they are not removed, they dominate the SAvg score

in Step 4 since the relatedness scores between common tokens are always 1 and as a result

other non-common content-bearing tokens become obscured, leading to a inconsistent text

relatedness score.

Step 3: We construct a (p − δ) × (q − δ) ‘semantic relatedness matrix’ (Say, M =

(αij)(p−δ)×(q−δ)) using the following process. We set αij ← relatedness(ai, bj) × w2

where i = 1...p − δ, j = 1...q − δ, w = weighting factor to boost the relatedness score.

The value of w is the average number of words within a word or phrase-pair. The reason

for boosting is that same relatedness score of a phrase-pair is more weighted than that of

a word-pair. If (ai, bj) is a word-pair, relatedness(ai, bj) = GTM word-pair relatedness;

otherwise relatedness(ai, bj) = phrase-pair relatedness obtained from Eq. 3.6.

M =



























α1,1 α1,2 · · · α1,j · · · α1,q−δ

α2,1 α2,2 · · · α2,j · · · α2,q−δ

...
...

. . .
...

. . .
...

αi,1 αi,2 · · · αi,j · · · αi,q−δ

...
...

. . .
...

. . .
...

αp−δ,1 αp−δ,2 · · · αp−δ,j · · · αp−δ,q−δ



























Step 4: For each row we compute the mean (u) and standard deviation (sd) of the

relatedness scores and select the scores which are larger than u + sd. The idea is to find

more related tokens among (q − δ), for each (p − δ) tokens. The average of the selected

scores is computed for a row and for (p − δ) rows we get (p − δ) averages. We sum the

(p− δ) average values denoted by SAvg.

Step 5: In order to compute relatedness between the texts A and B, we use the GTM [36]

normalization with minor modification, given in Eq. 3.7.

rel.(A,B) =
(2|δ|+ SAvg)× (2|A|+ 2|B|)

2 · 2|A| · 2|B|
(3.7)

Number of words in A, B and δ are denoted by |A|, |B|, |δ| respectively. Since we multiply

the weighting factor w with relatedness score while constructing the semantic relatedness

matrix M , hence |A|, |B|, |δ| are multiplied by 2. Let us illustrate an example, why we

multiply by 2. Consider two texts A =“certain circumstance” and B =“particular case”
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where “certain circumstance” and “particular case” are the phrases. The maximum relat-

edness score between them can be 1 which is multiplied by the weighting factor w. The

average number of words of the phrase-pair, (“certain circumstance”,“particular case”) is 2;

so the weighting factor w = 2. The maximum value of SAvg = 1 · 2 · 2 = 4. If we use the

Eq. 3.7, then the maximum relatedness score between the texts, A and B is
4×(2·2+2·2)
2×2·2×2·2

= 1.

Time complexity of computing relatedness between two texts is discussed in section

C.4 of Complexity analysis C.



Chapter 4

Evaluation

The proposed phrase and text relatedness approach have been evaluated to determine i)

how phrase relatedness compares with existing methods and ii) whether text relatedness

has been improved by incorporating phrase relatedness with word relatedness.

4.1 Evaluation of phrase relatedness

To evaluate the relatedness scores computed by the proposed phrase relatedness method

NGDf , the adjective-noun (AdjN) and noun-noun (NN) section from Mitchell and Lap-

ata’s [42] dataset have been used. Each section contains 108 phrase-pairs. Hartung and

Frank [30] and Reddy et al. [47] evaluated their phrase relatedness methods using AdjN

and NN phrase-pairs from Mitchell and Lapata’s [42] dataset, respectively.

We evaluate the relatedness scores generated by NGDf against the scores obtained

from different phrase relatedness methods1 using Pearson correlation2 r. NGDf outper-

forms all the other measures by achieving the highest Pearson’s r for combined 216 phrase-

pairs, shown in Table 4.1.

To find whether the difference between two correlations is statistically significant, we

use the procedure mentioned in [61]. For 108 AdjN phrase-pairs, the correlation differences

between NGDf and the rest except cosSim are statistically significant at 0.05 level. For

108 NN phrase-pairs, the correlation differences between NGDf and the rest except An-

nesi et al. [4] are statistically significant at 0.05 level. For combined 216 phrase-pairs, the

correlation differences between NGDf and the rest except Annesi et al. [4] are statistically

significant at 0.05 level.

OMIOTIS [53] and UMBC [29] have phrase relatedness services where they split the

1Pearson’s r is not computed using Mitchell and Lapata’s [42] system due to the unavailability of their in-

dividual phrase-pair score. Moreover, in an attempt to reproduce Mitchell and Lapata’s [42] method, Hartung

and Frank [30] get Spearman’s ρ = 0.34 instead of ρ = 0.46 on 108 adjective-noun pairs.
2We prefer Pearson’s r to Spearman’s ρ because Agirre et al. [2] stated that Pearson’s r is more informative

than Spearman’s ρ. Spearman’s ρ considers the rank differences while Pearson’s r takes into account the value

differences. Moreover, SemEval-2012 [1] and SemEval-2013 [2] used Pearson’s r for evaluation task.

27
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Method type Phrase rel. method AdjN NN Combined

Knowledge based OMIOTIS [53] 0.491∗ 0.352∗ 0.399∗

UMBC [29] 0.550∗ 0.357∗ 0.436∗

Computational Distributional

Semantics (CDS) [7]

Hartung and Frank [30] 0.502∗ × ×

Syntactic structure in CDS Annesi et al. [4] 0.602∗ 0.703 0.639

Web-based Jaccard [49] 0.324∗ 0.007∗ 0.163∗

Simpson [13] 0.360∗ −0.003∗ 0.184∗

Dice [39, 51] 0.332∗ 0.031∗ 0.169∗

PMI [54] 0.223∗ 0.252∗ 0.186∗

NGD [19] 0.247∗ 0.176∗ 0.160∗

Google-n-gram based cosSim 0.722 0.536∗ 0.589∗

NGDf 0.743 0.636 0.656

Table 4.1: Pearson’s r on 108 AdjN, 108 NN and 216 combined phrase-pairs. For a specific

dataset, the highest correlation (r) is marked bold. The correlation (r) of proposed phrase

relatedness approach NGDf is statistically significant at 0.05 level with respect to the

correlation (r) marked by (∗).

phrases into words and use word-pair relatedness obtained from WordNet to calculate the

phrase-pair relatedness. Due to the lack of entry in WordNet, we get more zero (or near

to zero) relatedness scores by OMIOTIS and UMBC than other methods. For example,

UMBC gives zero relatedness score for 29 phrase-pairs among 216. This reduces the over-

all performance of OMIOTIS and UMBC.

Annesi et al. [4] follows the syntactic structure of the phrases; because of this, the

correlation r on NN phrase-pairs is higher than that of AdjN pairs. Consider the syntactic

structures of two AdjN phrases, phrase1=adj1-noun1, phrase2=adj2-noun2. rel(phrase1,

phrase2) = rel(adj1, adj2) (× or +) rel(noun1, noun2) where rel refers to the relatedness

function. Since they multiply or add two relatedness scores generated from two different

types of word-pairs e.g., (adj1, adj2) and (noun1, noun2), therefore the correlation r for

AdjN phrase-pairs is less than that of NN pairs. For NN pairs any operation (× or +) is

performed on the relatedness scores, obtained from the same type of word-pairs.

The web-based methods [35]: Jaccard [49], Simpson [13], Dice [39, 51], PMI [54] and

NGD [19] use the co-occurrence counts of two phrases from the web documents. Their

results vary due to normalizing the co-occurrence count by different relatedness measures.
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We consider cosSim(V1, V2) as a baseline method that uses simple Cosine similar-

ity to compute the similarity between two phrases where the vectors V1 and V2 are con-

structed for the phrases P1 and P2 respectively, using the bi-gram contexts extracted from

Google-(n=3,4)-grams in which the phrases appear. For combined 216 phrase-pairs the

correlation r from cosSim(V1, V2) is lower than that of proposed method NGDf since

cosSim(V1, V2) does not take into account the relatedness strengths between the counts of

the Google-(n=3,4)-grams having overlapping bi-gram contexts.

4.2 Evaluation of text relatedness

To evaluate the proposed unsupervised text relatedness method TrWP , eleven datasets

have been used. Five datasets from Semeval-2012 [1]: SMTnews12, SMTeur12, MSR-

par12, MSRvid12, OnWN12; Four from Semeval-2013 [2]: FNWN13, OnWN13, HDL13,

SMT13; other two from STS131 [43] and ABC1225 [38]. Different properties of these

datasets for instance Min/Max (Minimum/Maximum), Avg (Average) and STD (Standard

Deviation) of the average number of words of each text pair before and after the stop-word

removal are shown in Table 4.2.

Text rel. dataset #Text Before stop-word removal After stop-word removal

pairs Min/Max Avg STD Min/Max Avg STD

Short text SMTNews12 399 3/23 11.59 4.28 1/11 5.14 2.44

SMTeur12 459 1/18 10.39 4.55 1/8 4.08 1.93

MSRpar12 750 7/31 17.17 4.86 2/19 8.71 2.93

MSRvid12 750 3/13 6.41 1.53 1/6 3.16 0.77

OnWN12 750 2/27 7.36 3.19 1/14 3.30 1.60

FNWN13 189 6/39 20.14 8.03 2/17 8.34 3.31

OnWN13 561 5/17 6.97 1.82 1/8 2.54 1.25

HDL13 750 3/20 6.91 1.58 2/9 5.06 1.05

SMT13 750 1/87 24.51 11.09 1/40 10.9 5.40

STS131 131 7/27 13.52 3.24 1/11 4.92 1.57

Long text ABC1225 1225 48/124 80.66 12.34 24/62 41.94 6.54

Table 4.2: Properties of the datasets used.

We categorize these eleven datasets into two major groups which are short text and long

text. All the datasets except ABC-1225 are treated as short text since the average of the

average number of words of each text pair (before and after the stop-word removal) in those

datasets are relatively smaller than that of ABC-1225. The maximum Avg, before and after
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the stop-word removal among these ten short text datasets are 24.516 and 10.9 respectively

whereas in ABC-1225 the Avg, before and after the stop-word removal are 80.66 and 41.94

respectively.

4.2.1 Comparing TrWP with Unsupervised text relatedness method

We compare the results of the proposed TrWP with the results obtained from classical

BoW text relatedness methods (e.g., GTM [36] and LSA [37]). Experimental results show

that TrWP performs better than GTM and LSA by achieving higher weighted mean [1] of

Pearson r than of GTM and LSA respectively, given in Table 4.3.

Text rel. dataset Unsupervised Text rel. method

TrWP (r) GTM [36] (r) LSA [37]) (r)

Short text SMTNews12 0.431 0.406∗ 0.379

SMTeur12 0.518 0.479∗ 0.326∗

MSRpar12 0.457 0.442 0.178∗

MSRvid12 0.798 0.774∗ 0.557∗

OnWN12 0.673 0.628∗ 0.632∗

FNWN13 0.469 0.470 0.348∗

OnWN13 0.811 0.798∗ 0.224∗

HDL13 0.704 0.689∗ 0.482∗

SMT13 0.327 0.349 0.303

STS131 0.781 0.761 0.759

Long text ABC1225 0.545 0.469∗ 0.537

Weighted mean 0.587 0.559 0.426

Table 4.3: Pearson’s r on the eleven datasets obtained from the unsupervised text related-

ness methods. Weighted mean [1] of Pearson’s r for these three text relatedness methods

is calculated. For a specific dataset, the highest correlation (r) is marked bold. The corre-

lation (r) of proposed text relatedness approach TrWP is statistically significant at 0.05

level with respect to the correlation (r) marked by (∗).

For significance testing, we use the procedure described in [61]. For the datasets: SMT-

News12, SMTeur12, MSRvid12, OnWN12, OnWN13, HDL13 and ABC1225, the corre-

lation differences between TrWP and GTM [36] are statistically significant at 0.05 level.

For the datasets: SMTeur12, MSRpar12, MSRvid12, OnWN12, FNWN13, OnWN13 and

HDL13, the correlation differences between TrWP and LSA [37] are statistically signifi-

cant at 0.05 level.
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4.2.2 Comparing TrWP with Supervised text relatedness method

We compare the result of TrWP with the result of the top ranked SemEval-2012 [1] and

SemEval-2013 [2] text relatedness systems which are UKP [6] and UMBC [29] respec-

tively. The correlation (r) from TrWP and UKP [6] on SemEval-2012 [1] datasets, their

weighted means and rankings are shown in Table 4.4. The correlation (r) from TrWP and

UMBC [29] on SemEval-2013 [2] datasets, their weighted means and rankings are shown

in Table 4.5.

Text rel. dataset Unsupervised Supervised

TrWP (r) UKP [6] (r)

Short text SMTNews12 0.431 0.493

SMTeur12 0.518 0.528

MSRpar12 0.457 0.683

MSRvid12 0.798 0.873

OnWN12 0.673 0.664

Weighted mean 0.597 0.677

Ranking out of 89 systems 24 1

Table 4.4: Pearson’s r from TrWP and UKP on SemEval-2012 [1] datasets. Weighted

mean [1] of Pearson’s r and the rankings of TrWP and UKP are given. For a specific

dataset, the highest correlation (r) is marked bold.

Text rel. dataset Unsupervised Supervised

TrWP (r) UMBC [29] (r)

Short text FNWN13 0.469 0.581

OnWN13 0.811 0.752

HDL13 0.704 0.764

SMT13 0.327 0.380

Weighted mean 0.585 0.618

Ranking out of 90 systems 3 1

Table 4.5: Pearson’s r from TrWP and UMBC on SemEval-2013 [2] datasets. Weighted

mean [1] of Pearson’s r and rankings of TrWP and UMBC are given. For a specific

dataset, the highest correlation (r) is marked bold.

On the dataset OnWN12 and OnWN13, the correlation (r) of TrWP is higher than

that of UKP and UMBC correspondingly. However the weighted mean (r) of TrWP are

lower than that of UKP and UMBC respectively. TrWP does not perform better on the

SemEval-2012 datasets and its ranking is 24 among 89 text relatedness systems. However

on the SemEval-2013 datasets, it stands third among 90 text relatedness systems. TrWP

is totally unsupervised and independent of the datasets used. On the other hand, both UKP
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and UMBC are supervised and trained on a particular training dataset. UKP combines

different types of text relatedness measures (e.g., string-based, WordNet-based) and UMBC

uses different tools and resources such as monolingual corpora, WordNet, KB Similarity,

lemmatizer, POS tagger, and time and date resolution [2].

4.2.3 Discussion on short text dataset

The datasets from Semeval-2012 [1], Semeval-2013 [2] and STS131 [43] are taken into

account as short text datasets. Several properties of these datasets are shown in Table 4.2.

Among them STD of a dataset stands for the standard deviation of the average number

of words of each text pair. Higher STD of a dataset implies that a significant number

of text pairs contain more words and a significant number of text pairs have few words.

Text pairs having more words, more likely to contain both words and phrases, therefore

the relatedness scores for these text pairs are generated by aggregating both the word and

phrase-pair relatedness. In contrast, there is a less possibility of having phrases for the

text pairs that consists of few words, hence the relatedness scores for these text pairs are

computed using only word-pair relatedness.

Computing text relatedness using both word and phrase-pair relatedness is different

from computing text relatedness using only word-pair relatedness because when we com-

bine both word and phrase-pair relatedness, we use the weighting factor (e.g., w) to boost

the phrase relatedness score. For a particular dataset, when a significant number of text re-

latedness scores are computed in two different ways, and combined to find the correlation

with ground truth, then the correlation degrades.

After removing the stop-words, the STD of FNWN-13 and SMT-13 are 3.31 and 5.40

respectively which are higher than the STD of other short text datasets. Hence in these two

datasets, a significant number of text pairs have both words and phrases, and a significant

number of text pairs contain only words. As a result a significant number of text relatedness

scores are generated from the proposed text relatedness method TrWP , by combining both

word and phrase-pair relatedness as well as by word-pair relatedness. Since a significant

number of text relatedness scores are computed in two different ways and combined, that

is why TrWP does not perform better than GTM on these two datasets.
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4.2.4 Discussion on long text dataset

We consider ABC-1225 as long text dataset and discuss the reasons why the proposed

text relatedness method TrWP performs better than GTM on this dataset. i) Although

the STD of ABC-1225 is higher than that of other ten short text datasets, each text pair

has a significant number of words which increases the possibility of having more phrases,

implying that most of the relatedness scores are generated from one system (e.g., TrWP ).

ii) Since long text contains more phrases, so by treating a phrase as a single unit preserves

the semantics of the whole text more accurately.



Chapter 5

Conclusion and Future Work

The proposed text relatedness method TrWP using word and phrase relatedness performs

better than the classical BoW text relatedness methods GTM and LSA. Moreover the re-

sults of TrWP are comparable to the results of the top ranked supervised text relatedness

systems of SemEval-2012 and SemEval-2013. To compute phrase relatedness, we propose

a function f based on the Sum-Ratio technique along with the statistical pruning. f is

unsupervised, does not require any knowledge base and independent of the syntactic struc-

ture of the phrases. Unlike other phrase relatedness methods based on word relatedness, f

considers the whole phrase as a single unit without losing inner semantic meaning within a

phrase.

In the future, we plan to examine f on a new dataset of phrase-pairs of two to three

words. We also plan to apply the statistical pruning on the GTM word relatedness module

to eliminate the useless Google tri-grams to enhance the word relatedness scores which will

be used in the proposed text relatedness method so as to improve the text relatedness result.

In addition, we will investigate the text classification and clustering using the proposed text

relatedness method.
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Appendix A

Augmenting Google tri-gram and 4-gram files

To compute phrase relatedness, we extract bi-gram context by placing the phrase at the

middle and right most position in a Google-(n=3,4)-gram, in addition to the usual left most

position. Therefore the default orders (g1, g2, g3) and (g1, g2, g3, g4) of tri-gram and 4-gram

files respectively are augmented. (g1, g2, g3) is augmented with two extra different orders

which are (g2, g1, g3) and (g3, g1, g2) where g1, g2 and g3 are the first, second and third

uni-grams of the original tri-gram files respectively. The augmented order of the 4-gram

files are (g2, g3, g1, g4) and (g3, g4, g1, g2), where g1, g2, g3 and g4 are the first, second, third

and fourth uni-grams of the original 4-gram files respectively. These are done once and it

reduces the look up time for contexts in Google-(n=3,4)-gram files.
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Appendix B

Splitting the Google-n-gram files

We use the Google tri-gram and 4-gram files to extract the bi-gram contexts for uni-gram

and bi-gram phrases respectively. Both the augmented and original files are in the same

size, having 209.66 MB in an average. We split the augmented and original Google-

(n=1,2,3,4)-gram files into smaller files (e.g., average file size is 38.65 KB) so that we

can compute the relatedness between two phrases within reasonable amount of time. How-

ever this amount of time is not optimized since the average computation time for each

phrase-pair is about one second.

Both the Google-1-gram and 3-gram files are split using the first two to four characters

of the first uni-gram in each Google-(n=1,3)-gram. Hence the Google-1-gram as well as

3-gram files can be split into maximum 264 = 456976 and 3 × 264 = 1370928 files

respectively.

The Google-2-gram and 4-gram files are split using the first two characters of each first

and second uni-gram of each Google-(n=2,4)-gram. Therefore the Google-2-gram and 4-

gram files can be split into maximum 26(2+2) = 456976 and 3 × 26(2+2) = 1370928 files

respectively. 3 = one original order + two augmented orders of the Google-(n=3,4)-gram

files. 4 = number of splitting characters. 26 = number of English alphabets. How the

splitting of Google-(n=1,3)-gram and Google-(n=2,4)-gram are performed, are illustrated

in Algorithm 2 and 3 respectively. The basic idea of Algorithm 2 is to generate a file name

based on the first two to four characters of the first uni-gram within a Google-(n=1,3)-

gram and store the Google-(n=1,3)-gram in that file. Similarly the Algorithm 3 is used to

generate a file name based on the first two characters of the first and second uni-gram of a

Google-(n=2,4)-gram and store the Google-(n=2,4)-gram in that file.

The time complexities for splitting Google-(n=1,3)-gram and Google-(n=2,4)-gram

files are analyzed in section C.5 and C.6 respectively.

42



43

Algorithm 2 Splitting Google-(n=1,3)-gram files

Input: List of Google-1-gram files; or List of Google-3-gram files in a particular order (e.g.,

(g1, g2, g3), (g2, g1, g3) and (g3, g1, g2) where g1, g2 and g3 are the first, second and third uni-

grams of the original Google-3-gram files respectively), min2 = 2 and max4 = 4, minimum

and maximum number of splitting characters respectively, roDir = root output directory (e.g.,

.../1g/ or .../3g/ to store the split Google-1-gram or 3-gram files correspondingly), SOrder =

split file name order (e.g., 1 for the Google-1-gram files and 123, 213, 312 for the Google-3-

gram files in three different orders)

Output: Maximum 456976 split files

1: for each file fl in the list of files do

2: for each line li in fl do

3: ug1 = First uni-gram of Google-(n=1,3)-gram in li

4: lug1 = Number of characters in ug1

5: if lug1 ≥ min2 then

6: minL = Find the minimum between lug1 and max4

7: osDir, output sub directory for a (n=1,3)-gram

8: tF ile, temporary file name for a (n=1,3)-gram

9: for i = 1 to minL do

10: osDir = concat(osDir, ug1[i],′ /′) . concat multiple strings

11: tF ile = concat(tF ile, ug1[i])

12: end for

13: oF ile, Final output file name for a Google-(n=1,3)-gram

14: SOrder = 1, if fl is a Google-1-gram file

15: SOrder = 123, if fl is a Google-3-gram file in the order of (g1, g2, g3)

16: SOrder = 213, if fl is a Google-3-gram file in the order of (g2, g1, g3)

17: SOrder = 312, if fl is a Google-3-gram file in the order of (g3, g1, g2)

18: oF ile = concat(roDir, osDir, tF ile, SOrder)

19: Append li in the file oF ile

20: end if

21: end for

22: end for
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Algorithm 3 Splitting Google-(n=2,4)-gram files

Input: List of Google-2-gram files; or List of Google-4-gram files in a particular order (e.g.,

(g1, g2, g3, g4), (g2, g3, g1, g4) and (g3, g4, g1, g2), where g1, g2, g3 and g4 are the first, sec-

ond, third and fourth uni-grams of the original Google-4-gram files respectively), min2 = 2,

minimum number of splitting characters, roDir = root output directory (e.g., .../2g/ or .../4g/

to store the split Google-2-gram or 4-gram files correspondingly), SOrder = split file name

order (e.g., 12 for the Google-2-gram files and 1234, 2314, 3412 for the Google-4-gram files in

three different orders)

Output: Maximum 456976 split files

1: for each file fl in the list of files do

2: for each line li in fl do

3: ug1 = First uni-gram of Google-(n=2,4)-gram in li

4: ug2 = Second uni-gram of Google-(n=2,4)-gram in li

5: lug1 = Number of characters in ug1

6: lug2 = Number of characters in ug2

7: if lug1 ≥ min2 and lug2 ≥ min2 then

8: osDir, output sub directory for a (n=2,4)-gram

9: tF ile, temporary file name for a (n=2,4)-gram

10: for i = 1 to min2 do

11: osDir = concat(osDir, ug1[i],′ /′) . concat multiple strings

12: tF ile = concat(tF ile, ug1[i])

13: end for

14: for i = 1 to min2 do

15: osDir = concat(osDir, ug2[i],′ /′)

16: tF ile = concat(tF ile, ug2[i])

17: end for

18: oF ile, Final output file name for a Google-(n=2,4)-gram

19: SOrder = 12, if fl is a Google-2-gram file

20: SOrder = 1234, if fl is a Google-4-gram file in the order of (g1, g2, g3, g4)

21: SOrder = 2314, if fl is a Google-4-gram file in the order of (g2, g3, g1, g4)

22: SOrder = 3412, if fl is a Google-4-gram file in the order of (g3, g4, g1, g2)

23: oF ile = concat(roDir, osDir, tF ile, SOrder)

24: Append li in the file oF ile

25: end if

26: end for

27: end for



Appendix C

Complexity analysis

In this section, we analyze the time complexity of different modules used in our system

which are phrase detection, computing word and phrase relatedness, and computing text

relatedness by combining the word and phrase relatedness. In addition we show the time

complexity to split the Google-(n=1,3)-gram and Google-(n=2,4)-gram files respectively.

C.1 Time complexity of phrase detection algorithm

The input of the proposed phrase detection algorithm (UPD) 1 is a n-gram and the output

is the list of bi-gram phrases detected from the n-gram.

In order to detect the phrases, UPD finds the most frequent bi-gram (mbg) from the

list of bi-grams generated from a n-gram. mbg is used to split the n-gram into left and

right parts denoted as lng and rng respectively. Then for each lng and rng, UPD is called

recursively.

Hence we can treat UPD as a binary splitting algorithm resembling to the Quick-

Sort [32]. For simplicity we consider each mbg as a bi-gram phrase. Lets us consider

that the n-gram has n uni-grams and mbg is the most frequent bi-gram phrase among n

uni-grams that splits the n uni-grams into two parts v and n − v, representing the number

of uni-grams to the left and right of mbg respectively. Notice that UPD needs to find mbg

within the v and n − v uni-grams. So the time complexity to detect all mbg within a n-

gram is given in Eq. C.1. Before splitting n uni-grams we linearly traverse all the bi-grams

within the n uni-grams that requires approximately nα time where α is a constant.

T (n) = T (v) + T (n− v) + nα (C.1)

We assume that in every step of splitting, both left and right part of n-gram contain equal

number of uni-grams, so v = n/2. After substituting v = n/2 in Eq. C.1, we get the
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following recurrence.

T (n) = T (n/2) + T (n− n/2) + nα

= T (n/2) + T (n/2) + nα

= 2T (n/2) + nα

= 21T (n/21) + nα After 1st level of split

= 2[T (n/4) + T (n/2− n/4) + (n/2)α] + nα

= 2[2T (n/4) + (n/2)α] + nα

= 4T (n/4) + 2nα

= 22T (n/22) + 2nα After 2nd level of split

= 4[T (n/8) + T (n/8) + (n/4)α] + 2nα

= 4[2T (n/8) + (n/4)α] + 2nα

= 8T (n/8) + 3nα

= 23T (n/23) + 3nα After 3rd level of split

= ............

= 2vT (n/2v) + vnα Continuing likewise till vth level of split

(C.2)

Notice that this recurrence continues until v = log(n) (e.g., n = 2v). Thus, by putting

v = log(n) and n = 2v in Eq. C.2, the time complexity to detect all bi-gram phrases from

n-gram is shown in Eq. C.3.

T (n) = nT (1) + nlog(n) + log(n)nα

≈ O(nlog(n))
(C.3)

C.2 Time complexity of computing word relatedness

In order to compute the word relatedness, we extract the count of each word (e.g., w1,

w2) from the Google uni-gram corpus that contains N = 107 uni-grams. To find the co-

occurrences of two words in two different orders (e.g., (w1..w2), (w2..w1)), we scan through

two Google tri-gram files where each of them consists of N = 107 tri-grams. So the total

time complexity to computing word relatedness is 2×O(N) + 2×O(N) ≈ O(N).
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C.3 Time complexity of computing phrase relatedness

The time complexity to compute relatedness between two phrases P1 and P2 is calculated

by aggregating the time complexity of each step as shown in Table C.1.

No. Steps of computing phrase relatedness Time complexity

1 Extracting bi-gram contexts C1 = O(S) +O(S)

2 Lexical pruning on bi-gram contexts C2 = O(S) +O(S)

3 Finding overlapping bi-gram contexts C3 = O(S × S)

4 Statistical pruning on overlapping bi-gram contexts C4 = O(S) +O(S)

5 Computing relatedness strength C5 = O(S) +O(S × S)

6 Extracting the phrase count C6 = O(S) +O(S)

7 Normalizing the relatedness strength β

Total time complexity = C1 + C2 + C3 + C4 + C5 + C6 + β
≈ O(S × S) = O(S2)

Table C.1: Time complexity of each step in phrase relatedness computation. Steps are

numbered at the left column. S is the average number of Google-n-grams in a file after

splitting the original Google-n-gram files. O(S) = Time complexity to scan through a file.

β is a constant. Time complexity of each step is denoted by C1, C2, C3, C4, C5 and C6
respectively.

S is the average number of Google-n-grams in a file after splitting, which is equal to

184.34 ≈ 185 and O(S) is the time complexity to scan through that file. For simplicity,

we assume that we extract two sets of bi-gram contexts for the phrases P1 and P2 from two

files. So the time complexity in step 1, is the sum of time complexity for extracting bi-gram

contexts from each file, denoted as C1 = O(S) +O(S).

In step 2, lexical pruning is performed on the same set of bi-gram contexts; therefore

time complexity of step 2 is same as step 1.

In step 3, we find the overlapping bi-gram contexts by comparing each bi-gram context

of a particular set with the bi-gram contexts of another set. Hence, the time complexity in

step 3 is quadratic designated as C3 = O(S × S).

Once we have the set of overlapping bi-gram contexts, we perform statistical pruning

in step 4 by following two sub-steps. At first, we calculate the mean and standard devia-

tion by scanning through the counts of the overlapping contexts. After that we prune the

overlapping bi-gram contexts through comparing their counts with the mean and standard

deviation. The time complexity of each sub-step is linear, so the time complexity in step 4

is C4 = O(S) +O(S).
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In step 5 the relatedness strength between P1 and P2 is computed from the relatedness

strengths of the overlapping bi-gram contexts, that requires to scan through the bi-gram

contexts only once referring to the linear time complexity. Moreover we calculate the

cosine similarity by matching each bi-gram context extracted for P1 with the bi-gram con-

texts extracted for P2. So, the complexity for computing cosine similarity is quadratic (e.g.,

O(S × S)). The total time complexity in step 5 is C5 = O(S) +O(S × S).

In step 6, individual phrase count is obtained by looking up the bi-gram counts from a

file, that entails the time complexity O(S). For two phrases, the total time complexity in

this step is C6 = O(S) +O(S).

The final step 7 requires a constant time β to normalize the relatedness strength using

the formula of NGD [19].

By summing up the time complexities of these seven steps, we get a polynomial func-

tion of degree 2 as shown in Table C.1. Therefore the time complexity for computing phrase

relatedness is O(S2).

C.4 Time complexity of computing text relatedness

Time complexity to compute relatedness between two texts A and B is the aggregation of

the time complexity for detecting phrases and the time complexity for combining word and

phrase relatedness. For the sake of simplicity, we ignore the time to pre-process the texts

(e.g., removing stop-words and punctuation). At first the n-gram tokens are elicited from

the texts. A n-gram token is a sequence of uni-grams (words). The minimum length of a

token is one and maximum length can be the length of the text. The length of the n-gram

token and text is measured based on the number of uni-grams within them. The maximum

length of a text that we find among the text-relatedness datasets is 127.

After pre-processing we get two sets of n-gram tokens for the texts A and B. The

number of n-gram tokens in text A and B are denoted as ta and tb correspondingly. For each

n-gram token of text A, the phrase detection algorithm is called. So the time complexity

to extract all bi-gram phrases from text A, is ta × nlog(n) where n is the number of uni-

grams within a n-gram token and nlog(n) is the time complexity to extract all bi-gram

phrases from it. Similarly, the time complexity to find all bi-gram phrases from text B is

tb × nlog(n).

Now we construct a ’semantic relatedness matrix’, M having ta rows and tb columns.
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Each cell of the matrix contains the relatedness score between a word or bi-gram phrase of

text A and a word or bi-gram phrase of text B. So each matrix cell contains the related-

ness score of a (word, word) or (word, bi-gram) or (bi-gram, bi-gram) pair. We take into

account the (word, bi-gram) and (bi-gram, bi-gram) as a phrase-pair. Therefore a matrix

cell contains the relatedness score either for a word-pair or for a phrase-pair. This is be-

cause the time complexity to compute relatedness score inside a matrix cell is the sum of

time complexity for computing both word and phrase relatedness (e.g., O(N) + O(S2)).

There are ta × tb cells in M . So the total time complexity to construct the matrix M is

ta × tb × (O(N) +O(S2)).

The texts A and B may have some common words or bi-gram phrases and the relat-

edness scores between them are always one. The time complexity to compute related-

ness between the common words or bi-gram phrases of A and B is O(min(ta, tb)) where

min(ta, tb) is the maximum common words or bi-gram phrases among two texts. Finally

we aggregate the relatedness score obtained from the matrix M and from common words

or phrases. Then normalize the aggregated score that entails a constant time γ.

By summing up the above time complexities, we get the time complexity to compute

relatedness between the texts A and B, which is (ta × nlog(n) + tb × nlog(n)) + ta ×

tb × (O(N) + O(S2)) + O(min(ta, tb)) + γ. The number of n-gram tokens ta and tb

are small, and in fact the maximum value of ta and tb can be 127. Ignoring ta, tb and

the constant γ the total complexity to compute relatedness between the texts A and B is

2× nlog(n) +O(N) +O(S2) ≈ nlog(n) +O(N) +O(S2).

C.5 Time complexity of splitting Google-(n=1,3)-gram files

We split each original Google-(n=1,3)-gram files into smaller files. There is one original

Google-1-gram file and 97 original Google-3-gram files. We augment the Google-3-gram

files into two additional orders that produces extra 97× 2 = 194 Google-3-gram files. So,

we have total 1 + 97 + 194 = 292 files.

In each file there are N = 107 Google-(n=1,3)-grams where each of them is placed in

a single line. The time complexity to process N = 107 Google-(n=1,3)-grams is O(N).

For each Google-(n=1,3)-gram we extract maximum first 4 characters from the first

uni-gram to create a name for the smaller file. Therefore the time complexity to process a

single Google-(n=1,3)-gram is (4 + λ) where λ is a constant time for other computations
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(e.g., string concatenation).

Therefore the total time complexity of splitting 292 Google-(n=1,3)-gram files is 292×

O(N)× (4 + λ) ≈ O(N).

C.6 Time complexity of splitting Google-(n=2,4)-gram files

Computing time complexity for splitting Google-(n=2,4)-gram files is same as computing

time complexity for splitting Google-(n=1,3)-gram files. There are total 424 files including

both original and augmented ones. In each file there are N = 107 Google-(n=2,4)-grams.

For each Google-(n=2,4)-gram we extract first two characters from the first two uni-grams

to create a name for the smaller file.

Therefore the total time complexity of splitting 424 Google-(n=2,4)-gram files is 424×

O(N)× (4 + λ) ≈ O(N).
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