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Scaling solution, radion stabilization, and initial condition for brane-world cosmology
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We propose a self-consistent and dynamical scenario which gives rise to well-defined initial conditions for
five-dimensional brane-world cosmologies with radion stabilization. At high energies, the five-dimensional
effective theory is assumed to have a scale invariance so that it admits an expanding scaling solution as a future
attractor. The system automatically approaches the scaling solution and, hence, the initial condition for the
subsequent low-energy brane cosmology is set by the scaling solution. At low energies, the scale invariance is
broken and a radion stabilization mechanism drives the dynamics of the brane-world system. We present an
exact, analytic scaling solution for a class of scale-invariant effective theories of five-dimensional brane-world
models which includes the five-dimensional reduction of the Horava-Witten theory, and provide convincing
evidence that the scaling solution is a future attractor.
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I. INTRODUCTION

Phenomenological models in which our Universe is
four-dimensional~4D! hypersurface, or a 3-brane, embedd
in a higher-dimensional spacetime is currently of great in
est. In the brane-world scenario, ordinary matter fields
confined to the brane, while the gravitational field can pro
gate in the extra dimensions~i.e., in the ‘‘bulk’’! @1–5#. In
particular, Randall and Sundrum~RS2! proposed a self-
consistent brane-world scenario with 5D anti–de Sit
~AdS! bulk spacetime and showed that 4D gravity is a
localized on the brane if the brane tension is positive a
fine-tuned@5#. Many aspects of the Randall-Sundrum sc
narios have been investigated, including weak gravity@6–8#,
the effective Einstein equation@9,10#, cosmology@11–18#,
black holes@19–23# and so on.

In the brane-world scenario, the evolution of our Univer
can be considered in two ways. On the one hand, it is
expansion of the induced geometry on our brane. Note
ordinary matter fields are assumed to be confined on
brane and, thus, propagate in the induced geometry.
picture is not very different from what we are accustomed
in the standard 4D cosmology. Indeed, the generalized Fr
mann equation for the homogeneous, isotropic brane
verse in the RS2 scenario reduces to the standard Friedm
equation at low energy with corrections@11–15#. In this pic-
ture the bulk geometry also evolves,1 corresponding to the
expansion of our Universe. On the other hand, the same
lution of our universe can be seen in a different way a
brane motion in a higher-dimensional spacetime. In this p
ture the generalized Friedmann equation is understood a
equation of motion for the brane moving in the bulk spa
time. In the RS2 scenario this picture is remarkably sim
for the homogeneous, isotropic brane universe. Indeed,

1Here the bulk geometry is supposed to be seen in the Gaus
normal coordinate based on the world-volume of our brane.
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bulk spacetime is always locally the AdS-Schwarzsch
spacetime, irrespective of the brane motion@16–18#. In other
words, the brane motion does not generate waves in the b
Unfortunately, in the more realistic scenarios which we sh
consider in this paper this remarkable property is not sa
fied. Nonetheless, it is still useful to keep in mind that the
are two different ways to describe the same evolution of
brane-world cosmology: the expansion of the induced geo
etry and the brane motion in the bulk.

Prior to the RS2 scenario, Randall-Sundrum had propo
a similar but different scenario called the RS1 scenario@4#.
This scenario involves two branes with fine-tuned tensio
one positive and another negative, and aims to solve
gauge hierarchy problem. In order to obtain an appropr
hierarchy between the Planck scale and the electrow
scale, the distance between the two branes must be s
about 50 times the bulk curvature scale. This itself is no
severe fine-tuning nor a problem at all, but it would be mo
satisfactory if this value could be dynamically realized.
the RS1 scenario, unfortunately, from the 4D brane vie
point the interbrane distance represents a massless scala
gree of freedom and, thus, is arbitrary. Moreover, the ex
tence of this massless scalar mode, called theradion, causes
a more serious problem: the low energy 4D gravity on o
brane is not general relativity but a Brans-Dicke type the
with a too small Brans-Dicke parameter to be consistent w
gravitational experiments@6#. Here, the radion plays the rol
of the Brans-Dicke scalar.

The problem of too large a deviation from the Einste
theory can be fixed if the radion obtains a nonzero ma
With a nonvanishing radion mass, the radion is not exci
and becomes irrelevant at energies much lower than the
dion mass, so that the 4D Einstein gravity is restored at
energy. This is calledradion stabilization. Goldberger and
Wise proposed a mechanism to stabilize the radion by in
ducing a scalar field in the bulk@24#. This scalar field has a
potential in the bulk~bulk potential! and couples to brane
via its potentials localized on the branes~brane potentials!.
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The introduction of scalar field~s! in the bulk is, of course,
favorable from the viewpoint of string theory since a co
pactification from 10 or 11 dimensions down to 5 dimensio
in general introduces many 5D scalar fields. In this sense
generalized RS1 scenarios with radion stabilization se
more realistic than the RS2 model. With the Goldberg
Wise mechanism, 4D Einstein gravity is indeed shown to
recovered on our brane@25–29#.2 The radion stabilization
also helps recovery of the standard Friedmann equatio
low energy@31,32#.

The introduction of the bulk scalar complicates the bra
world scenario in~at least! two different ways. First, the
gauge hierarchy problem is now entangled with the cosm
logical constant problem. The essential reason for this is
both the 4D cosmological constant and the stabilized va
of the interbrane distance depend on the bulk potential
the brane potentials of the scalar field in a nontrivial way

Second, the dynamics of the system becomes much m
complicated. The bulk geometry is no longer simple if
brane is moving; i.e., if our 4D universe is expanding.
general brane motion generates waves of the bulk scalar
and makes the bulk geometry very complicated. This ma
it extremely difficult to analyze the general dynamics
brane-world cosmology analytically. Recent developmen
BRANECODE @33# has made it possible to analyze the dyna
ics numerically, but there remains the problem of initial co
ditions. Namely, the system is so rich that it is nota priori
trivial to choose physically relevant initial conditions for th
numerical study.

The purpose of this paper is to shed light on this sec
point in a particular way. In the rest of this paper, our ma
concern will be the dynamics of the brane-world system w
radion stabilization. In particular, we shall propose a n
dynamical scenario to give an initial condition for the bran
world cosmology with radion stabilization.

II. PHYSICAL SCENARIO

Suppose that the 5D theory has an approximate scale
variance at relatively high energy~but still much lower than
the Planck scale! so that the 5D effective action allows
scaling solution. For example, we might imagine that
bulk potentialV(f) and the brane potentialsl6(f6) have
the form

V~f!5V0e22ak5f, l6~f6!5l0
6@e2ak5f61eb6k5f6#,

~1!

wheref6 is the pullback off on each brane anda1b6

Þ0. We assume that2(a1b6)k5f6@1 initially so that
the termeb6k5f6 can be neglected and the system has
scaling invariance.

It is worth mentioning here that potentials of the form~1!
arise in many theories of the fundamental interactions.

2For an apparent conflict with the picture in Ref.@30#, and its
resolution, see Ref.@28#.
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example, compactification of higher-dimensional theori
including superstring theories, gives rise to exponen
terms in the effective potential. Terms with different exp
nents come from different physical effects, e.g., high
dimensional cosmological constant, curvature of comp
manifold, antisymmetric field flux, Casimir effects, etc. W
shall provide more motivations for exponential potentials
Sec. IV A.

Since the interbrane distance has the dimension of len
we expect that it should be proportional to time and, th
expanding for the scaling solution. In this paper, we sh
find such a scaling solution and present convincing evide
that it is a future attractor. For the moment, we just assu
that the scaling solution is a future attractor. In this case,
system should approach it dynamically. Subsequently, s
the Hubble expansion rate decays as 1/t and the size of the
extra dimension increases ast for the scaling solution, the
system should enter a lower and lower energy regim
Hence, the scale invariance is no more than an approxim
symmetry. In the above example~1!, when 2(a
1b6)k5f6 becomes of order unity, the termeb6k5f6 in the
brane potentials cannot be neglected any more and the
proximate scaling invariance will be broken.

Depending on the form of the effective action relevant
the lower energy regime, the interbrane distance, called
radion, may play the role of an inflaton. Hence, we will ha
a 4D inflation on our brane driven by the radion. When t
radion-induced inflation ends, the radion is stabilized and
fields confined on our brane can be reheated due to the
cillatory behavior of the system around the stabilized co
figuration. Subsequently, the conventional standard cosm
ogy is realized. Since the radion is eventually stabiliz
Einstein weak gravity is restored at low energy@25,27–29#.

Hence, in this hypothetical scenario, the role of the sc
ing solution is to provide the initial condition for the radion
induced inflation and the subsequent evolution. To o
knowledge there has been no well-defined scenario to
vide an initial condition for the brane-world cosmology, e
cept perhaps for the creation-from-nothing scenario@34,35#.
If the scaling solution is a future attractor then the classi
dynamics will automatically drive the system to the we
defined initial condition for the following evolution of the
brane-world cosmology.

In the remainder of this paper we shall find an exa
analytic scaling solution and present convincing evidence
its attractor behavior.

III. BASIC EQUATIONS

In this section we present the basic equations for gen
potentials. In the following sections we apply these equati
to a specific model with exponential potentials, motivated
string-inspired phenomenology.

In the 5D bulk we consider Einstein gravity and a sca
field:
9-2
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I 55E dx5A2gF R

2k5
2

2
1

2
]Mf]Mf2V~f!G . ~2!

Hence, the 5D Einstein equation is

GMN5k2TMN ,

TMN5]Mf]Nf2F1

2
]Lf]Lf1V~f!GgMN . ~3!

The field equation forf,

¹2f2V8~f!50, ~4!

where¹ is the covariant derivative compatible with the me
ric gMN , follows automatically from the Einstein equatio
because of the Bianch identity¹mGmn50.

We assume that the extra dimension has the topolog
Z2 /S1 and consider two end-of-the-world branes on the t
fixed points. The tensionl6 of each brane in general de
pends on the pullbackf6 of the scalar fieldf. Hence, the
brane action is of the form

I 452E dx2
4 A2q2l2~f2!2E dx1

4 A2q1l1~f1!,

~5!

wherex6 represents 4D coordinates on each brane andq6 is
the determinant of the induced metric.

Note that we need to add the Gibbons-Hawking bound
term to the action, depending on the precise definition ofI 5.
If I 5 includes the integration over the thin layers correspo
ing to the branes then the Gibbons-Hawking term must
be added since it appears automatically as we integrate
Einstein-Hilbert term over the thin layers@36#. On the other
hand, if I 5 does not include the integration over the th
layers then the Gibbons-Hawking boundary term must
added. In all cases, including the variation of the metric,
position of the hypersurface and the scalar field, the va
tional principle gives the correct set of equations of motio
the Einstein equation and the field equation of the scalar fi
off the branes, Israel’s junction condition and the match
condition for the scalar field@36#.

A. Bulk equation

For simplicity we assume that the geometry on each br
is everywhere and for all times described by the 4D flat FR
universe and that the two branes are parallel to each othe
this case, it is natural to expect that the 5D bulk spacet
between the two branes also has the same symmetry. He
we assume that the metric and the scalar field have the
lowing forms:
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ds252n~ t,y!2dt21a~ t,y!2d i j dxidxj1b~ t,y!2dy2,

f5f~ t,y!, ~6!

where i 51,2,3; y represents the extra dimension; and t
world-volume of each brane is expressed as

y5Y6~ t ! @Y2~ t !,Y1~ t !#. ~7!

For this ansatz, we obtain

Gtt

n2
5

3

n2 F S ȧ

a
D 2

1
ȧ

a

ḃ

b
G1

3

b2 F2
a9

a
2S a8

a D 2

1
a8

a

b8

b G ,
Gty53F2

ȧ8

a
1

ȧ

a

n8

n
1

a8

a

ḃ

b
G ,

Gyy

b2
5

3

n2 F2
ä

a
2S ȧ

a
D 2

1
ȧ

a

ṅ

n
G1

3

b2 F S a8

a D 2

1
a8

a

n8

n G ,
Gi j

a2
5

d i j

n2 F22
ä

a
2S ȧ

a
D 2

12
ȧ

a

ṅ

n
22

ȧ

a

ḃ

b
1

ḃ

b

ṅ

n
2

b̈

b
G

1
d i j

b2 F2
a9

a
1S a8

a D 2

12
a8

a

n8

n
22

a8

a

b8

b
2

b8

b

n8

n
1

n9

n G ,
Gti5Gyi50, ~8!

and

Ttt

n2
5

1

2
S ḟ

n
D 2

1
1

2 S f8

b D 2

1V,

Tty5ḟf8,

Tyy

b2
5

1

2
S ḟ

n
D 2

1
1

2 S f8

b D 2

2V,

Ti j

a2
5

1

2
S ḟ

n
D 2

2
1

2 S f8

b D 2

2V,

Tti5Tyi50, ~9!

where a dot and a prime denote derivatives with respectt
andy, respectively.

B. Boundary condition

On each brane aty5Y6(t), the induced metricq6mn , the
extrinsic curvatureK6mn and the pullbackf6 of the scalar
field play important roles. They are given by
9-3
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q6tt52@n22b2Ẏ6
2 #,

q6 i j 5a2d i j ,

K6[K6t
t 5F12S bẎ6

n
D 2G23/2FbŸ6

n2
2S bẎ6

n
D 3

ḃ

bn

1S b8

b2
2

2n8

bn D S bẎ6

n
D 2

1S 2ḃ

bn
2

ṅ

n2D bẎ6

n
1

n8

bnG ,

K̄6d j
i [K6 j

i 5d j
i F12S bẎ6

n
D 2G2 1/2F a8

ab
1

ȧ

an

bẎ6

n
G ,

f65f~ t,Y6!,

]'f6[nm]mfuy5Y6(t)5F12S bẎ6

n
D 2G21/2FbẎ6

n

ḟ

n

1
f8

b
G .

~10!

Having theZ2 symmetry, the Israel junction condition an
the scalar field matching condition are written as

K656
k5

2

6
l6~f6!,

K̄656
k5

2

6
l6~f6!,

]'f657
1

2
]f6

l6~f6!. ~11!

When Y6(t) are constantsy6 , these conditions reduce t
the following simple conditions

n8

bnU
y5y6

5
a8

baU
y5y6

56
k5

2

6
l6~f6!, ~12!

f8

b U
y5y6

57
1

2
]f6

l6~f6!. ~13!

IV. SCALING SOLUTION

In this section we shall seek a scaling solution for a s
cific model with exponential potentials. For a special cho
of parameters, the model reduces to the 5D reduction of
Horava-Witten theory@37#. On the other hand, the solutio
we shall find does not appear to reduce to the known
FRW solution in the Horava-Witten theory@38#. ~For closed
and open FRW solutions in Horava-Witten theory, see R
@39#.!
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A. Action

Exponential potentials of the form

V5V0e22akf ~14!

for ~dilaton coupling! constanta, arise in many theories o
the fundamental interactions including superstring a
higher-dimensional theories. Typically, ‘‘realistic’’ supe
gravity theories predict steep exponential potentials@40#
~i.e., 2a2.1). The effective action of the Horava-Witte
theory hasa252 ~see below!. A smallereffectivea can arise
in assisted theories which contain more than one scalar
@41#. In addition, for many compactifications of highe
dimensional theories there is a consistent truncation t
single scalar fieldf and positive potentials of this form
which arises via generation by nonzero flux of antisymme
tensor fields~the T7 compactification of 11D supergravit
with nonvanishing 4-form field strength yields an expone
tial potential witha5A7; in general, flux compactification
seem to yielda>A3 @42#!, and hyperbolic compactification
in the context of string/M theory@43,44# ~the compactifica-
tion of 11D supergravity on a 7D compact hyperbolic spa
hasa53/A7; in general, hyperbolic compactifications see
to lead to 1,a,A3 @45#!. A comprehensive qualitative
analysis of scalar field cosmological models with an exp
nential potential has been presented@46,47#.

In this paper we consider a brane-world analogue of s
models with exponential potentials. To motivate our mod
with exponential potentials, let us briefly review the 5D r
duction of the Horava-Witten theory. The 5D effective acti
for the Horava-Witten theory is@37#

I HW5
1

2k5
2E dx5A2gFR2

]MF]MF

2F2
2

ã2

3F2G
1

A2

k5
2 E dx2

4 A2q2

ã

F2
2

A2

k5
2 E dx1

4 A2q1

ã

F1
,

~15!

where F6 is the pullback of the bulk scalar fieldF onto
each brane. If we introduce a canonically normalized sca
field f by

A2k5f[ lnS F

A2ãk5
2/3D , ~16!

this action is reduces to

I HW5E dx5A2gF 1

2k5
2

R2
1

2
]Mf]Mf2

e22A2k5f

12k5
10/3 G

1E dx2
4 A2q2

e2A2k5f2

k5
8/3

2E dx1
4 A2q1

e2A2k5f1

k5
8/3

, ~17!
9-4
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wheref6 is the pullback of the scalar fieldf on each brane
The model we shall consider is

I 5E dx5A2gF 1

2k5
2

R2
1

2
]Mf]Mf2V0e22ak5fG

2E dx2
4 A2q2l0

2e2ak5f22E dx1
4 A2q1l0

1e2ak5f1,

~18!

wherea, V0 andl0
6 are constants. This action includes t

5D effective action of the Horava-Witten theory as a spec
case (a5A2).

B. Ansatz

We would like to seek a special solution which corr
sponds to an ‘‘equilibrium state,’’ which represents a futu
attractor for the model. In a general situation where bra
move arbitrarily, the motion of branes produces waves of
scalar fieldf in the bulk. The waves in the bulk interact wit
both branes in the sense that they can come and go bet
two end-of-the-world branes. Hence, the general situatio
very complicated, and nonlocal from the viewpoint of a 4
observer on a brane@48#. On the other hand, we would lik
to seek a special solution in which waves emitted from o
brane and those from another brane are in equilibrium so
there is effectively no scalar wave in the bulk. Hence, w
we would like to seek is a very special situation in which t
nonlocal effects due to scalar waves are completely s
pressed.

In this kind of ‘‘equilibrium’’ situation without waves in
the bulk, nothing should propagate from one brane to ano
and, thus, we expect that all physically meaningful functio
of t and y should be a product of a function oft and a
function of y. In particular, in this case the time dependen
of n can be removed by a coordinate choice. Moreover, fr
our experience in 4D scalar field cosmology with an exp
nential potential, we expect that the ‘‘equilibrium’’ situatio
should correspond to a power-law expansion on each br
a(t,y6)}tp @46#. Actually, in 4D cosmology with an expo
nential potential, a power-law expansion is an attractor of
system. One of the essential physical reasons for this is
all physically relevant, dimensionful quantities scale in ta
dem, according to dimensionality. For example,H2}k4

2V
}k4

2rkin}1/t2, whereH is the Hubble expansion rate,k4 is
the 4D gravitational coupling,V is the exponential potentia
and rkin is the kinetic energy of the scalar field. In ou
model, besides the Hubble expansion rate on each brane
interbrane distance is another physically relevant, dimens
ful quantity. Since it has the dimension of length, we exp
it should also be proportional tot in the ‘‘equilibrium’’ situ-
ation. Thus, not only the 4D universes on branes but also
interbrane distance should be expanding.

For the reasons explained above, we consider the foll
ing ansatz:
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ds25n~y!2~2dt21t2pd i j dxidxj1t2dy2!,

k5
2uV0ue22ak5f5

e22c(y)

l 2t2
,

Y6~ t !5y6 , ~19!

where n(y) and c(y) are functions ofy, and p, l and y6

(y2,y1) are constants. Note thatt, y andxi are dimension-
less and thatn(y) and l have the dimension of length.

C. Equations

With this ansatz, the Einstein equation in the bulk redu
to

3a2p2150,

~ ln n2pc!850,

~c8!2216
6a4

l 2~423a2!
n2e22c50, ~20!

where the plus and minus signs correspond toV0.0 and
V0,0, respectively. Hence, we obtain

p5
1

3a2
,

n5n0epc, ~21!

wheren0 is an arbitrary constant andc is a solution to the
following equation:

~c8!2216e2(p21)c50, ~22!

where we have set

l 5A 6

u423a2u
a2n0 , ~23!

and the plus and minus signs correspond to (423a2)V0
.0 and (423a2)V0,0, respectively, and we have assum
that a2Þ4/3.

The Israel junction condition~12! is written as

e2(p21)cc8uy5y6
56g6 ,

g6[
a2k5l0

6n0

2AuV0u l
5

k5l0
6

2AuV0u
Au423a2u

6
.

~24!

The scalar field matching condition~13! is actually the same
as the above junction condition and, thus, does not prov
any independent boundary conditions.

The physically relevant quantities are the power indexp
51/3a2 of the expansion of the branes, the warp factorW
[n(y1)/n(y2), and the ratiov6 of the interbrane distance
9-5
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L5t*y2

y1n(y)dy to the proper timet65n(y6)t on each

brane aty5y6 . These are given by

W[
n~y1!

n~y2!
5

t1

t2
5ep[c(y1)2c(y2)] ,

v6[
L

t6
5e2pc(y6)E

y2

y1

epc(y)dy. ~25!

D. Solutions

For (423a2)V0,0, the solution to the bulk equation i

e2(p21)c5H sinh@ up21u~y2y0!# ~ for y0,y!

sinh@ up21u~y02y!# ~ for y,y0!,
~26!

where y0 is a constant. Note thatc8 diverges aty5y0.
Hence,y0 must not be between the two branes. For t
solution, the junction condition reduces to

cosh@~p21!~y62y0!#57g6 ~ for y0,y2,y1!

cosh@~p21!~y62y0!#56g6 ~ for y2,y1,y0!.
~27!

Hence, if and only if 1,g2,2g1 or 1,g1,2g2 , the
junction condition uniquely determinesy62y0. The physi-
cally relevant quantitiesW andv6 are given by

W5S g2
2 21

g1
2 21

D p/2(p21)

,

v65~g6
2 21!p/2(p21)E

y2

y1 dy

@sinhu~p21!~y2y0!u#p/(p21)
.

~28!

Not only W but alsov6 are uniquely determined byp ~or
equivalentlyuau) andg6 . For example, whenp52,

Av1v25ug1uAg2
2 211ug2uAg1

2 21. ~29!

For (423a2)V0.0, the solution to the bulk equation is

e2(p21)c5cosh@~p21!~y2y0!#, ~30!

wherey0 is a constant. For this solution, the junction con
tion reduces to

sinh@~p21!~y62y0!#57g6 . ~31!

Hence, if and only ifg21g1,0 then the junction condition
uniquely determinesy62y0. The physically relevant quan
tities W andv6 are given by

W5S g2
2 11

g1
2 11

D p/2(p21)

,

06402
s

v65~g6
2 11!p/2(p21)E

y2

y1 dy

@coshu~p21!~y2y0!u#p/(p21)
.

~32!

Again, not onlyW but alsov6 are uniquely determined byp
~or equivalentlyuau) andg6 . For example, whenp52,

Av1v252g1Ag2
2 112g2Ag1

2 11. ~33!

V. STABILITY AGAINST LINEAR PERTURBATIONS

Now let us argue that the expanding scaling solution i
future attractor. For this purpose we investigate linear per
bations around the scaling solution and show stability. T
linear perturbations analyzed in this section include all i
portant physical effects such as boundary conditions on
branes, fluctuations of brane positions and scalar wave
the bulk. The bulk scalar waves generated by fluctuation
brane positions threaten to destabilize the expanding sca
solution, but we shall explicitly see that this is not the ca
and that the scaling solution is stable. In the following, f
simplicity we consider the case wherec8(y)Þ0 for y2<y
<y1 .

Let us consider linear perturbations around the sca
solution found in the preceding section:

ds252n~ t,y!2dt21a~ t,y!2d i j dxidxj1b~ t,y!2dy2

12e~htydtdy1htidtdxi1hyidydxi !,

n~ t,y!5n0epc(y)@11edn~ t,y!#,

a~ t,y!5tpn0epc(y)@11eda~ t,y!#,

b~ t,y!5tn0epc(y)@11edb~ t,y!#,

ak5f~ t,y!5 ln@k5AuV0u l t #1c~y!1edc~ t,y!, ~34!

wherep andc(y) are given in the preceding section. Fro
the symmetry, we set

hty5hti5hyi50. ~35!

By introducing a new time coordinate

t[ ln t ~2`,t,`!, ~36!

it is shown that all coefficients in all relevant equations~i.e.,
the Einstein equation, the Israel junction condition and
scalar field matching condition! linearized with respect toe
are independent oft. Thus, it is convenient to Fourier ex
pand the perturbations as

dn~ t,y!5dn̄~y!e2 ivt,

da~ t,y!5dā~y!e2 ivt,

db~ t,y!5db̄~y!e2 ivt,

dc~ t,y!5dc̄~y!e2 ivt. ~37!
9-6
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A. Gauge conditions

The set of variables (hty,t i ,yi , dn, da, db, dc) includes
not only physical degrees of freedom but also gauge deg
of freedom. The infinitesimal gauge transformation is

dgmn→dgmn2e¹mjn2e¹njm ,

df→df2ejm¹mf (0), ~38!

where ¹ is the covariant derivative compatible with th
background metric,f (0) is the background off andejm is
an infinitesimal vector representing the gauge degrees
freedom. Hence, each component transforms as

dn̄→dn̄1
1

n0
2 @~12 iv!j̄ t~y!2pc8~y!j̄y~y!#,

dā→dā1
1

n0
2 @pj̄ t~y!2pc8~y!j̄y~y!2 j̄ i~y!#,

db̄→db̄1
1

n0
2 @ j̄ t~y!2pc8~y!j̄y~y!2 j̄y8~y!#,

hty→hty1te2pc(y)@ ivj̄y~y!2 j̄ t8~y!#,

hti→hti1 ivt2p21e2pc(y)j̄ i~y!d i j ~xj2x0
j !,

hyi→hyi2t2pe2pc(y)j̄ i8~y!d i j ~xj2x0
j !,

dc̄→dc̄1
1

n0
2 @ j̄ t~y!2c8~y!j̄y~y!#, ~39!

where we have Fourier expandedjm as

j t5te2pc(y)j̄ t~y!e2 ivt,

jy5t2e2pc(y)j̄y~y!e2 ivt, ~40!

j i5t2pe2pc(y)j̄ i~y!e2 ivtd i j ~xj2x0
j !.

Here,x0
j ( j 51,2,3) are constants. The symmetry assumpt

hty5hti5hyi50 is consistent with the gauge transformati
if and only if

ivj̄y~y!2 j̄ t8~y!5vj̄ i~y!5 j̄ i8~y!50. ~41!

By using the gauge freedom, we can set

dc̄50. ~42!

However, this condition does not fix the gauge freedom co
pletely. So, let us investigate the residual gauge freedom

~i! For vÞ0 and 2 ivÞp21, the residual gauge free
dom is
06402
es

of

n

-

dn̄→dn̄2
iv1p21

n0
2

j̄~y!,

dā→dā,

db̄→db̄2
iv1p21

@n0c8#2
j̄~y!, ~43!

wherej̄ (5 j̄ t) is an arbitrary solution of

c8j̄85 ivj̄. ~44!

Here, we have used the background equation~22! and its
derivative.

~ii ! For vÞ0 and2 iv5p21, there is no residual gaug
freedom.

~iii ! For v50 andpÞ1, the residual gauge freedom is

dn̄→dn̄1dn̄0 ,

dā→dā1dā0 ,

db̄→db̄1
dn̄0

@c8~y!#2
~45!

wheredn0 andda0 are constants.
~iv! For v50 andp51, the residual gauge freedom is

dā→dā1dā0 , ~46!

whereda0 is a constant.

B. Linearized equations

By using t as a time coordinate, the Einstein equati
linearized with respect toe becomes relatively simple in th
sense that there is no explicitt dependence in any coeffi
cients. The Israel junction condition and the scalar fie
matching condition also share this property. This is the r
son why we have Fourier-expanded the linear quanti
(dn, da, db, dc) with respect tot. Hence, what we have is
just an eigenvalue problem in one dimension.

The ~1D! bulk equations are

c8dn̄852
v21~p21!iv

p
dā1~p21!~c8!2db̄

1@ iv2~p21!#dn̄,

c8dā852 ivdā1p~c8!2db̄2pdn̄,

c8db̄852
v21~p21!iv

p
dā1@ iv12~p21!

2~4p21!~c8!2#db̄1~2p11!dn̄, ~47!

where the plus and minus signs correspond to (4p21)V0
.0 and (4p21)V0,0, respectively.
9-7
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Since the gauge freedom has been fixed only up to
residual gauge freedom, the brane position is not aty5y6

any more. Hence, we need to consider the perturbed pos
of the brane:

y5Y6~t![y61ed ȳ6e2 ivt. ~48!

For the fluctuating position of the brane, the formulas~12!
and ~13! cannot be used. As explained in the Appendix,
general boundary condition~11! gives the following bound-
ary condition for perturbations:

dn̄85 ivc8db̄,

dā850,

~p211 iv!d ȳ652c8db̄. ~49!

Note that these boundary conditions are imposed ony5y6

@not Y6(y)].

1. Second-order equation fordā

From the set of equations~47! and the background equa
tion ~22!, we can show thatdā satisfies the following
second-order ordinary differential equation:

dā913pc8dā81v~v13ip !dā50. ~50!

Now let us show thatIv,0 unlessdā[0. By using Eq.
~50! with the boundary conditiondā850 at y5y6 , it is
easy to show that

v~v13ip !E
y2

y1

dye3pcudāu25E
y2

y1

dye3pcudā8u2.

~51!

Hence,v(v13ip) is real and non-negative unlessdā[0.
The eigenvaluev(v13ip) can vanish only if dā850.
Thus,

23p<Iv,0, ~52!

or

v50, dā850. ~53!

In the latter case,dā can be set to zero by using the residu
gauge freedom~45! or ~46!. Therefore, we have shown tha
23p<Iv,0 or dā[0.

2. Solution with dāÄ0

Whendā50, the set of first-order equations~47! reduces
to
06402
e

on

e

l

c8dn̄85 ivdn̄,

~c8!2db̄5dn̄. ~54!

For 2 ivÞp21, the boundary condition~49! is automati-
cally satisfied, but any solutions to~54! with dā50 is pure
gauge because of the residual gauge freedom~43! or ~45!.
On the other hand, for2 iv5p21, there is no residua
gauge freedom, but the third boundary condition in~49! be-
comesdb̄50 at y5y6 and, thus,~54! implies thatdb̄5dn̄
50. Therefore, we have shown that there is no nonvanish
physical solution withdā50.

3. Stability

In summary, we have found that there is no unstable m
with dāÞ0 and that there is no physical mode withdā
50. Thus, the scaling solution is stable against linear per
bations.

VI. TOWARDS A NONLINEAR STABILITY ANALYSIS

Following the linear perturbation stability analysis, w
need to establish the stability at the nonlinear level. In g
eral this is very complicated. However, we can investig
some of the nonlinear effects by considering a subclass
models with a particular ansatz. This will give us an indic
tion of the qualitative features of the nonlinear dynamics.
shall perform a more comprehensive analysis at a later ti

The ansatz we consider is

ds25n0
2e2pc(y)@2N~ t !2dt2

1A~ t !2d i j dxidxj1B~ t !2dy2#,

ãk5f5Q~ t !1c~y!, ~55!

where n0 is a constant with the dimension of length. Th
scaling solution is, of course, included within this ansa
The ~ty! component of Einstein equation leads to

Q~ t !5 ln@B~ t !#1Q0 , ~56!

whereQ0 is an arbitrary constant. SinceQ0 can be absorbed
by a redefinition ofc(y), for convenience we can chooseQ0
as

e2Q05
2k5

2n0
2uV0u

3pu4p21u
, ~57!

whence the field equation reduces to
9-8
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~112p!
Ä

A
22~p21!

Ȧ2

A2

2F ~4p21!
Ḃ

B
1~2p11!

Ṅ

N
G Ȧ

A
13p2

Ḃ2

B2
50,

~112p!
B̈

B
13p

Ḃ2

B2

1F3~2p21!
Ȧ

A
2~2p11!

Ṅ

N
G Ḃ

B
26

Ȧ2

A2
50,

~c8!26e2(p21)c

2
1

p~2p11!N2 F2
Ȧ2B2

A2
12

ȦBḂ

A
2pḂ2G 50,

~58!

where the plus and minus signs in the last equation are
(4p21)V0.0 and (4p21)V0,0, respectively. Hence, th
model isseparable.

Hereafter, we setN(t) to a constant by choice of tim
coordinate. Defining

a5
Ȧ

A
, b5

Ḃ

B
, ~59!

the last equation in~58! becomes

c0
2B2252a212ab2pb2, ~60!

wherec0
2 is effectively the rescaled separation constant, a

the evolution equations are then

~112p!ȧ523a21~4p21!ab23p2b2, ~61!

~112p!ḃ56a223~2p21!ab2~115p!b2.
~62!

Differentiating Eq.~60! and using Eqs.~61! and~62! we get
an expression which is satisfied identically, so that~60! is a
constraint~that propagates along the solution curves!.

We first note that since the system~61!, ~62! is homoge-
neous, we can define

x5a/b, b̄5 ln b, ~63!

and the system reduces to a single ordinary differential eq
tion:

dx

db̄
5

6(x2p)Fx1
1

2
(11A112p)GFx1

1

2
~12A112p!G

~115p!13~2p21!x26x2
,

~64!

which can be integrated to obtain
06402
or
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a-

b5b0
2~x2p!ãFx1

1

2
~11A112p!G b̃

3Fx1
1

2
~12A112p!G g̃

, ~65!

whereb0
2 is an integration constant and

ã[
1

3p
,

b̃[
23p211A2p11

6p

52
~3A2p1111!~A2p1121!

12p

5211
~3A2p1115!~A2p1121!

12p
, ~66!

g̃[
23p212A2p11

6p

52
~3A2p1121!~A2p1111!

12p

5211
~3A2p1125!~A2p1111!

12p
.

Note that

ã1b̃1g̃521,

ã.0, 21,b̃,0, g̃,0 ~67!

for any positivep51/(3a2), andg̃.21 if p.8/9.
We can analyze the asymptotic form of~65!, but perhaps

a better way to show the late-time stability of the scali
solution is as follows. We rewrite Eq.~60! as

12
~2p11!b2

4S a1
1

2
bD 2 5

c0
2B22

2S a1
1

2
bD 2 . ~68!

Defining

z5
bA112p

2a1b
5

A112p

112x
, ~69!

we see thatz is bounded; 12z2>0. Using ~65!, the evolu-
tion equations~61! and ~62! then become a single ordinar
differential equation forz:

ż5
3b0

2

22b̃A112p
~12A112pz!ã11~11z!b̃11~12z!g̃11.

~70!
9-9
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Since z2<1, this constitutes a one-dimensional nonline
dynamical system.

The exponent (ã11) is positive definite, so that

zs5
1

A112p
~71!

~where 0,zs,1), is always an equilibrium point of~70!.
Depending on the signs of the exponents (b̃11) and (g̃
11), z6561 are also equilibrium points (z2 is always an
equilibrium point, whilez1 is an equilibrium point forp
.8/9).

The solution of~70! close tozs is given by

z5zs2z0
2~ t1t0!21/ã, ~72!

so thatz→zs as t→` sinceã.0. Hence,zs is a local sink.
Sincez is bounded,zs is a global attractor in the physica
phase space. Indeed, sinceb̃,0 and g̃,0, z6 act as local
sources and all physical solutions evolve from one ofz1 and
z2 to zs .

From Eqs.~69! and ~71!, the global attractor has

a

b
~5x!5p ~73!

so that Eq.~60! yields

Ḃ25
c0

2

p~2p11!
5const ~74!

and hence after a time translation

B5B0t, A5A0tp, ~75!

so that the global attractor is the scaling solution.
To connect with earlier work, the approximate solution

~61! and~62! at late times@i.e., the linearized solution aroun
the attractor~75!# is (N[1)

A5A0tp@113pc1t211c2t23p#,

B5B0tF12
c1

p
t212

c2

p
t23pG , ~76!

where theci are arbitrary constants@and the constants ar
subject to the constraint~60!; e.g.,c0

25p(112p)B0
2]. From

this we immediately see the decaying modes and the l
stability of the attractor.

Consequently, we have an approximate bulk~5D! solution
at late times. The 5D Ricci tensor is given by its attrac
values of orderO(t21) and O(t23p) ~leading to rkin
;t22), and the 5D conformal tensor~which is zero for the
exact attractor solution! can be evaluated to leading orde
We can therefore calculate the irreducible decompositionU,
Qm , andPmn of the projected bulk Weyl tensorEmn @9,10#,
from which we find that

Qm50, Pmn50 ~77!
06402
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and

U;@O~ t23p!1O~ t22!#rkin!rkin . ~78!

VII. DISCUSSION

We have investigated a class of scale-invariant effec
theories of 5D brane-world cosmology with a bulk sca
between two end-of-the-world branes. As a special case,
class includes the 5D reduction of Horava-Witten theory.
have found an exact, analytic scaling solution in which t
scale factor of our 4D universe and the interbrane dista
expand astp (p.0) andt, respectively~seeNote added!. It
is perhaps worth mentioning that the scaling solution w
p.1 corresponds to a power-law inflation on our brane. T
scaling solution corresponds to an equilibrium state in wh
the motion of the branes does not produce any scalar wa
in the bulk. Because of this remarkable physical property,
scaling solution is expected to be a future attractor of
system. Indeed, we have presented convincing evidence
the attractor behavior: the stability of the scaling soluti
against general linear perturbations with the 4D FRW sy
metry and stability within a class of nonlinear perturbation

Based on the attractor behavior of the scaling solution
Sec. II we proposed a self-consistent and dynamical scen
in the early brane-world universe. First, since the scal
solution is a future attractor, the system is automatica
driven towards it as far as the effective action at high ene
is of the scale invariant form. Second, as the energy s
becomes sufficiently low according to the evolution alo
the scaling solution, the scale invariance of the effective
tion should be broken at some point. After that, the bra
world system deviates from the scaling behavior and start
be driven by the radion stabilization. The radion stabilizati
guarantees that 4D gravity on our brane is described by E
stein theory and the standard cosmology is realized at
energy.

In this scenario, the scaling solution plays a central ro
the attractor behavior of the scaling solution makes it p
sible to give well-defined initial conditions both in the bu
and on the brane for the evolution after the breaking of sc
invariance. It is also the scaling solution that brings the s
tem from high energy to low energy both in the bulk and
the brane and, thus, triggers the breaking of the scaling
variance.

Having a well-defined initial condition given by the sca
ing solution, a natural question arises: ‘‘What kind of evol
tion can we expect subsequently?’’ One interesting poss
ity is an epoch of inflation driven by the radion~i.e., the
interbrane distance!. As stated above, after the scale inva
ance of the effective theory is broken at some point,
radion stabilization mechanism takes over and starts driv
the brane-world system. Indeed, we have suggested a si
illustrative action in which the transition from the scale i
variance to the radion stabilization is smooth. During t
transition, the dynamics of the bulk scalar field and the
dion can drive the evolution of our 4D Universe. Of cours
even without the scaling behavior at high energy, the b
scalar and the radion can drive the system. A big differen
9-10
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however, is that one cannot expect a well-defined, pred
able initial condition in the case without the high-ener
scaling behavior since the evolution from an arbitrary state
the radion stabilization should be a very violent process
should involve fully nonlinear~scalar and gravitational!
waves in the bulk. Our scenario based on the high-ene
scaling behavior makes the evolution towards the radion
bilization much smoother and, more importantly, predictab
In particular, in our scenario, there may be an inflation in
transition epoch. This possibility is certainly an interesti
subject for the future work.

Another question that might naturally be asked is: ‘‘Wh
is the beginning of the brane world before the scaling beh
ior?’’ Actually, since the attractor behavior of the scalin
solution would make the low-energy evolution of the bra
cosmology almost insensitive to the beginning, this ques
might be irrelevant for our scenario. Nonetheless, it may
still interesting to think about this kind of question. As a
ready explained, for the scaling solution both the scale fa
of our universe and the interbrane distance expand. This
plies that both our 4D Universe and the extra dimens
were extremely small at an early epoch. This is a comple
trivial statement in our scenario, but it would not be so triv
if we did not have the high-energy scaling behavior. Witho
the high-energy scaling behavior, the initial value of t
inter-brane distance for the evolution towards the sta
value can be either small or large. On the other hand, in
scenario the initial value of the interbrane distance sho
start from a small value. Is this favorable from the viewpo
of quantum gravity? Can we consider the smallness of
initial inter-brane distance as an indication of a brane co
sion or brane scattering?3 The last two questions are ev
dently outside the scope of this paper but will be interest
future projects.

It is perhaps worthwhile asking whether we can exp
similar scenarios to work in more general situations and
theories. When the dynamical effects of fields are negligi
~e.g., the bulk waves!, then we might expect the same qua
tative behavior and hence the scenario to work. For exam
we expect predictable, smooth evolution towards the rad
stabilization to be valid in more general situations whene
a symmetry at high energy exists, leading to attractor beh
ior, which is subsequently broken by radion stabilization
low energy.

As already stressed many times, we have presented
vincing evidence that the scaling solution is a future attr
tor. Since the attractor behavior is so essential in our s
nario, in future work we shall further investigate the fu
nonlinear dynamics both analytically and numerically. W
shall also include other matter fields on the brane. Since
scale invariant theory is motivated by compactification
higher-dimensional theories~see Secs. II and IV A!, it is also
worth investigating higher-dimensional interpretations of

3It is perhaps interesting to note that the expanding scaling s
tion we found is a conformally Kasner geometry and that Kasn
like geometries were found to be generic collapsing solutions
brane collisions@33#.
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scaling solution. In particular, it is interesting to generali
the scaling behavior to higher dimension~greater than 5! and
study the resulting physical consequences.

Note added. Recently, the authors were informed of Re
@49#, in which a closely related solution had been found.
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APPENDIX: BOUNDARY CONDITION FOR LINEAR
PERTURBATIONS

In this appendix we explain the derivation of the boun
ary condition~49! for linear perturbations. For a more gen
eral prescription, see Ref.@50#. For general trajectories o
branes the boundary condition is given by~11! at y
5Y6(t). For

n~ t,y!5n0epc(y)@11edn̄~y!e2 ivt#,

a~ t,y!5tpn0epc(y)@11edā~y!e2 ivt#,

b~ t,y!5tn0epc(y)@11edb̄~y!e2 ivt#,

ak5f~ t,y!5 ln@k5AuV0u l t #1c~y!,

Y6~t!5y61ed ȳ6e2 ivt, ~A1!

the extrinsic curvature componentsK andK̄, and the normal
derivative]'f6 of the scalar field are expanded as

K65K 6
(0)1eK 6

(1)1O~e2!,

K̄65K̄6
(0)1eK̄6

(1)e2 ivt1O~e2!,

]'f65]'f6
(0)1e]'f6

(1)e2 ivt1O~e2!,
~A2!

where

K 6
(0)5K̄6

(0)5
pc8e2pc

n0t
,

]'f6
(0)5

c8e2pc

ak5n0t
, ~A3!

and

u-
r-
n
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K 6
(1)5

e2pc

n0t
@2~ iv1v2!d ȳ61dn̄82pc8db̄#,

K̄6
(1)5

e2pc

n0t
@2 ipvd ȳ61dā82pc8db̄#,

]'f6
(1)5

e2pc

ak5n0t
@2 ivd ȳ62c8db̄#. ~A4!

What is important here is that the boundary condition
the form ~11! must be imposed on the perturbed positiony
5Y6(t) of the brane. On the other hand, it is mathematica
convenient to impose a boundary condition on a fixed po
tion in the coordinatey. Hence, let us convert the bounda
condition ~11! at y5Y6(t) to a boundary condition aty
5y6 . The result up to the linear order ine is
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~]'f6
(0)!8d ȳ61]'f6
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This form of the boundary condition must be imposed ay

5y6 . Substituting the above expressions forK6
( i ) , K̄6

( i ) and
]'f6

( i ) and simplifying the expressions by using the bac
ground equations, we obtain the boundary condition~49!.
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