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We propose a self-consistent and dynamical scenario which gives rise to well-defined initial conditions for
five-dimensional brane-world cosmologies with radion stabilization. At high energies, the five-dimensional
effective theory is assumed to have a scale invariance so that it admits an expanding scaling solution as a future
attractor. The system automatically approaches the scaling solution and, hence, the initial condition for the
subsequent low-energy brane cosmology is set by the scaling solution. At low energies, the scale invariance is
broken and a radion stabilization mechanism drives the dynamics of the brane-world system. We present an
exact, analytic scaling solution for a class of scale-invariant effective theories of five-dimensional brane-world
models which includes the five-dimensional reduction of the Horava-Witten theory, and provide convincing
evidence that the scaling solution is a future attractor.
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[. INTRODUCTION bulk spacetime is always locally the AdS-Schwarzschild
spacetime, irrespective of the brane motit6—18. In other
Phenomenological models in which our Universe is awords, the brane motion does not generate waves in the bulk.
four-dimensional4D) hypersurface, or a 3-brane, embeddedUnfortunately, in the more realistic scenarios which we shall
in a higher-dimensional spacetime is currently of great interconsider in this paper this remarkable property is not satis-
est. In the brane-world scenario, ordinary matter fields ardied. Nonetheless, it is still useful to keep in mind that there
confined to the brane, while the gravitational field can propaare two different ways to describe the same evolution of the
gate in the extra dimensiorige., in the “bulk”) [1-5]. In  brane-world cosmology: the expansion of the induced geom-
particular, Randall and SundrufRS2 proposed a self- etry and the brane motion in the bulk.
consistent brane-world scenario with 5D anti—de Sitter Prior to the RS2 scenario, Randall-Sundrum had proposed
(AdS) bulk spacetime and showed that 4D gravity is alsoa similar but different scenario called the RS1 scenptio
localized on the brane if the brane tension is positive andhis scenario involves two branes with fine-tuned tensions,
fine-tuned[5]. Many aspects of the Randall-Sundrum sce-one positive and another negative, and aims to solve the
narios have been investigated, including weak gra\dty8], gauge hierarchy problem. In order to obtain an appropriate
the effective Einstein equatiof®,10], cosmology[11-18,  hierarchy between the Planck scale and the electroweak
black holed19-23 and so on. scale, the distance between the two branes must be set to
In the brane-world scenario, the evolution of our Universeabout 50 times the bulk curvature scale. This itself is not a
can be considered in two ways. On the one hand, it is theevere fine-tuning nor a problem at all, but it would be more
expansion of the induced geometry on our brane. Note thagatisfactory if this value could be dynamically realized. In
ordinary matter fields are assumed to be confined on ththe RS1 scenario, unfortunately, from the 4D brane view-
brane and, thus, propagate in the induced geometry. Thigoint the interbrane distance represents a massless scalar de-
picture is not very different from what we are accustomed togree of freedom and, thus, is arbitrary. Moreover, the exis-
in the standard 4D cosmology. Indeed, the generalized Friedence of this massless scalar mode, calledrditkon, causes
mann equation for the homogeneous, isotropic brane unia more serious problem: the low energy 4D gravity on our
verse in the RS2 scenario reduces to the standard Friedmabrane is not general relativity but a Brans-Dicke type theory
equation at low energy with correctiofsl—15. In this pic-  with a too small Brans-Dicke parameter to be consistent with
ture the bulk geometry also evolvesorresponding to the gravitational experiment$]. Here, the radion plays the role
expansion of our Universe. On the other hand, the same evaf the Brans-Dicke scalar.
lution of our universe can be seen in a different way as a The problem of too large a deviation from the Einstein
brane motion in a higher-dimensional spacetime. In this pictheory can be fixed if the radion obtains a nonzero mass.
ture the generalized Friedmann equation is understood as thegith a nonvanishing radion mass, the radion is not excited
equation of motion for the brane moving in the bulk space-and becomes irrelevant at energies much lower than the ra-
time. In the RS2 scenario this picture is remarkably simpledion mass, so that the 4D Einstein gravity is restored at low
for the homogeneous, isotropic brane universe. Indeed, thenergy. This is calledadion stabilization Goldberger and
Wise proposed a mechanism to stabilize the radion by intro-
ducing a scalar field in the bullk4]. This scalar field has a
!Here the bulk geometry is supposed to be seen in the Gaussigrotential in the bulk(bulk potential and couples to branes
normal coordinate based on the world-volume of our brane. via its potentials localized on the bran@wane potentials
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The introduction of scalar fie(d) in the bulk is, of course, example, compactification of higher-dimensional theories,
favorable from the viewpoint of string theory since a com-including superstring theories, gives rise to exponential
pactification from 10 or 11 dimensions down to 5 dimensionsterms in the effective potential. Terms with different expo-
in general introduces many 5D scalar fields. In this sense, thgents come from different physical effects, e.g., higher-
generalized RS1 scenarios with radion stabilization seemimensional cosmological constant, curvature of compact
more realistic than the RS2 model. With the Goldbergermanifold, antisymmetric field flux, Casimir effects, etc. We
Wise mechanism, 4D Einstein gravity is indeed shown to b&hal| provide more motivations for exponential potentials in
recovered on our brang25-29.% The radion stabilization Sec. IV A.

also helps recovery of the standard Friedmann equation at gjnce the interbrane distance has the dimension of length,

Iovx_/rﬁne_rgy[jl,sg. f the bulk | i he b we expect that it should be proportional to time and, thus,
€ introduction of the bulk scalar complicates the rane'e-xpanding for the scaling solution. In this paper, we shall

world scenario in(at Ieas)_ two different ways. First, the find such a scaling solution and present convincing evidence
gauge hierarchy problem is now entangled with the cosmao;

logical constant problem. The essential reason for this is th tpat Itis a fgture attr_acto_r. For the moment, we Jl.JSt assume
both the 4D cosmological constant and the stabilized valu at the scaling solution is a future. attractor. In this case,.the
of the interbrane distance depend on the bulk potential angystem should approach it dynamically. Subsequently, since

the brane potentials of the scalar field in a nontrivial way. the Hubble expansion rate decays asalid the size of the
Second, the dynamics of the system becomes much mofXtra dimension increases agor the scaling solution, the
complicated. The bulk geometry is no longer simple if aSystem should enter a lower and lower energy regime.
brane is moving; i.e., if our 4D universe is expanding. AHence, the scale invariance is no more than an approximate
general brane motion generates waves of the bulk scalar fiegymmetry. In the above examplgl), when —(«
and makes the bulk geometry very complicated. This makes ) ks¢. becomes of order unity, the tereff=*5¢+ in the
it extremely difficult to analyze the general dynamics ofbrane potentials cannot be neglected any more and the ap-
brane-world cosmology analytically. Recent development ofproximate scaling invariance will be broken.
BRANECODE([33] has made it possible to analyze the dynam- Depending on the form of the effective action relevant to
ics numerically, but there remains the problem of initial con-the lower energy regime, the interbrane distance, called the
ditions. Namely, the system is so rich that it is @opriori  radion, may play the role of an inflaton. Hence, we will have
trivial to choose physically relevant initial conditions for the g 4D inflation on our brane driven by the radion. When the
numerical study. . . . radion-induced inflation ends, the radion is stabilized and the
The purpose of this paper is to shed light on this secongie|ds confined on our brane can be reheated due to the os-
point in a particular way. In the rest of this paper, our maingijjatory behavior of the system around the stabilized con-

concern will be the dynamics of the brane-world system withig ration. Subsequently, the conventional standard cosmol-
radion stabilization. In particular, we shall propose a new

q ical 0 10 ai initial dition for the b ogy is realized. Since the radion is eventually stabilized,
ynamical scenario 1o give an initial condition for the brane-gi,qiain \weak gravity is restored at low enef@p,27-29.
world cosmology with radion stabilization.

Hence, in this hypothetical scenario, the role of the scal-
ing solution is to provide the initial condition for the radion-
induced inflation and the subsequent evolution. To our
knowledge there has been no well-defined scenario to pro-

Suppose that the 5D theory has an approximate scale irvide an initial condition for the brane-world cosmology, ex-
variance at relatively high enerdput still much lower than  cept perhaps for the creation-from-nothing scengi,35.
the Planck scajeso that the 5D effective action allows a |f the scaling solution is a future attractor then the classical
scaling solution. For example, we might imagine that thedynamics will automatically drive the system to the well-
bulk potentialV(¢) and the brane potentials. (¢.) have  defined initial condition for the following evolution of the
the form brane-world cosmology.

In the remainder of this paper we shall find an exact,
analytic scaling solution and present convincing evidence for
its attractor behavior.

II. PHYSICAL SCENARIO

V(¢):V0e*2“’<5¢, )\i((ﬁi):)\g[e*ast’t_{_eﬁ:st’i],
1

where ¢ is the pullback of¢ on each brane and+ B
#0. We assume that (a+ B+)ks¢->1 initially so that

the termef=*5¢= can be neglected and the system has the 1. BASIC EQUATIONS
scaling invariance.
It is worth mentioning here that potentials of the fo¢in In this section we present the basic equations for general

arise in many theories of the fundamental interactions. Fopotentials. In the following sections we apply these equations
to a specific model with exponential potentials, motivated by
string-inspired phenomenology.
2For an apparent conflict with the picture in RERO0], and its In the 5D bulk we consider Einstein gravity and a scalar
resolution, see Ref28]. field:
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ds?=—n(t,y)%dt?+a(t,y)25;dxdx +b(t,y)?dy?,

ls—fdxw_———a%am vie)|. @

¢=d(Ly), (6)

Hence, the 5D Einstein equation is wherei=1,2,3; y represents the extra dimension; and the

world-volume of each brane is expressed as

_ .2
Gun=KTun,

y=Y.(t) [Y_(O<Y. (D] 0
1, For this ansatz, we obtain
Tun=dm@Ing—| 59" PdLd+V(¢) |Gun- 3
Gy 3 (éz éb+3 a" [a' 2+a’b’}
The field equation fowp, n2 n?l\a/ ab] p?[ a \a b’
2 0\ a’ an’ a'b
V2h-V'(¢)=0, @ G, -3 S2,an, el
an ab/
whereV is the covariant derivative compatible with the met- . X
ric gun, follows automatically from the Einstein equationGyy 3| a (a)" an) 3//fa’ N a'n’
because of the Bianch identity“G,,=0. b2 n?| a \a an] p?|\a anj

We assume that the extra dlmensmn has the topology of
Z,/S! and consider two end-of-the-world branes on the two
fixed points. The tensiom . of each brane in general de- ﬂ Jj
pends on the pullback. of the scalar fieldp. Hence, the g2 2
brane action is of the form

5” a// al a/ nl a/ b/ b/ ’ n”
+—=2—+|—] +2———2——— — — +—,
b2 a a n ab bn n
—J dx‘w—qu<¢,>—J dxi V=g, N (o),
(5  Gy=Gy=0, ®
wherex.. represents 4D coordinates on each branecanis and
the determinant of the induced metric. o
Note that we need to add the Gibbons-Hawking boundary Ty 1[¢ 1(¢"\?
term to the action, depending on the precise definitiohsof F: 2\n 2\ b +V,
If 15 includes the integration over the thin layers correspond-
ing to the branes then the Gibbons-Hawking term must not .
be added since it appears automatically as we integrate the Ty=¢9¢’,
Einstein-Hilbert term over the thin layef86]. On the other
hand, if I; does not include the integration over the thin T 1 ¢ 2 9 b'\2
layers then the Gibbons-Hawking boundary term must be DD +2 —) -V,
added. In all cases, including the variation of the metric, the b> 2\n 2\ b
position of the hypersurface and the scalar field, the varia-
tional_ prinpiple giv_es the corrept set of eguations of motic_)n: T, 1[¢ 2 9 b'\2
the Einstein equation and the field equation of the scalar field = 5\ f(?) -V,
off the branes, Israel’s junction condition and the matching a n
condition for the scalar fieli36].
Ti=T,=0, 9

A. Bulk equation

For simplicity we assume that the geometry on each brangndy, respectively.
is everywhere and for all times described by the 4D flat FRW
universe and that the two branes are parallel to each other. In
this case, it is natural to expect that the 5D bulk spacetime
between the two branes also has the same symmetry. Hence, On each brane at=Y . (t), the induced metrig-. ,,, the
we assume that the metric and the scalar field have the fokxtrinsic curvatureK.. ,, and the pullbacks.. of the scalar
lowing forms: field play important roles. They are given by

B. Boundary condition
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Q:tt:_[nz_sz?:],
q“'lj az5ija
R bY.\%] ¥ by. (bY.\%®b
=oEr n n2 n | bn
b’ 2n'\[bY.\* [2b n\bY. n’
152" on )\ ) Tlbn 2/ 0 Thbn|
o bY.\*]"Y9a" a by.
K.+8=K/! =6|1- ,
! = n ab an n
b=(t,Y.),
b'Yt 21-1/2 in ¢
dyp=n"d,Ply—y_n=|1- n .
¢
bl
(10)

Having theZ, symmetry, the Israel junction condition and

the scalar field matching condition are written as

PHYSICAL REVIEW D 69, 064029 (2004

A. Action
Exponential potentials of the form

V=V, e 2ex¢ (14)

for (dilaton coupling constanta, arise in many theories of
the fundamental interactions including superstring and
higher-dimensional theories. Typically, “realistic” super-
gravity theories predict steep exponential potentia§]
(i.e., 2a°>1). The effective action of the Horava-Witten
theory hasx®=2 (see below. A smallereffectivea can arise
in assisted theories which contain more than one scalar field
[41]. In addition, for many compactifications of higher-
dimensional theories there is a consistent truncation to a
single scalar field¢ and positive potentials of this form
which arises via generation by nonzero flux of antisymmetric
tensor fields(the T’ compactification of 11D supergravity
with nonvanishing 4-form field strength yields an exponen-
tial potential witha=\7; in general, flux compactifications
seem to yielch= /3 [42]), and hyperbolic compactifications
in the context of string/M theory43,44] (the compactifica-
tion of 11D supergravity on a 7D compact hyperbolic space
hasa=3/\/7; in general, hyperbolic compactifications seem
to lead to K a<\3 [45]). A comprehensive qualitative
analysis of scalar field cosmological models with an expo-
nential potential has been preseniéé,47.

In this paper we consider a brane-world analogue of such
models with exponential potentials. To motivate our model

KE with exponential potentials, let us briefly review the 5D re-

Ki= tg)\:(qb:), duction of the Horava-Witten theory. The 5D effective action
for the Horava-Witten theory ig37]
2 ~

= Ks 1 MDoyd  a?
Ki=%t—N:(d=), | :—J’ dx®\/— R——M——

6 MW 52 J 202 302

_1 J2 a
ai¢i:+§(9¢t)\i(¢i)- 11 +— dx® - ———j dXJr q+

When Y. (t) are constanty. , these conditions reduce to

the following simple conditions

(15

where ®@ .. is the pullback of the bulk scalar field onto

n’ a’ g each brane. If we introduce a canonically normalized scalar
on i ba = F)‘ (), (12)  field ¢ by
¢, _1 \/_K5¢—In( \/—~ 2/3)1 (16)
o =+§a¢t)\i(¢i)- (13
Y this action is reduces to
IV. SCALING SOLUTION 5 M e 2\V2ksé
| f dxy— —R— = 1%
In this section we shall seek a scaling solution for a spe- HW™ T bome- 12Ké0/3
cific model with exponential potentials. For a special choice
of parameters, the model reduces to the 5D reduction of the e x5
Horava-Witten theon|37]. On the other hand, the solution dx! =g —g5— pEE
we shall find does not appear to reduce to the known flat
FRW solution in the Horava-Witten theof[®8]. (For closed e V2Kksd
and open FRW solutions in Horava-Witten theory, see Ref. —f dxi N —5 (17
[39]) Ks
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wheredg .. is the pullback of the scalar field on each brane. ds?=n(y)?( —dt2+t295ijdxidxj +t2dy?),
The model we shall consider is
e~ 29(y)
KkE|Vo|e™2xs¢ = 2
|=f de—_g{izR—Ea“"(/)aM(/)—voe—Zwb}
2K 2 Yo(t)=y-, (19

— |l dx*J=a_ _)\—ewwp,_f dxt =g\ e @xsb wheren(y) and ¢(y) are functions ofy, andp, | andy-
f X d-%o XN T Ao (y_<y,) are constants. Note thaty andx' are dimension-

(18) less and thah(y) andl have the dimension of length.

C. Equations
wherea, Vo and\, are constants. This action includes the

. . . 3 With this ansatz, the Einstein equation in the bulk reduces
5D effective action of the Horava-Witten theory as a speuak a

0
case @=2).
3a’p—1=0,
B. Ansatz (Inn—py)' =0,
We would like to seek a special solution which corre-
sponds to an “equilibrium state,” which represents a future N2 6a* > 2y
attractor for the model. In a general situation where branes (") _l—|2(4_3a2) ne =0, (20)

move arbitrarily, the motion of branes produces waves of the
scalar f|e|d¢ in the bulk. The waves in the bulk interact with where the p|us and minus Signs Correspond\/po and
both branes in the sense that they can come and go betweg<(, respectively. Hence, we obtain
two end-of-the-world branes. Hence, the general situation is
very complicated, and nonlocal from the viewpoint of a 4D 1
observer on a branel8]. On the other hand, we would like p=—7,
to seek a special solution in which waves emitted from one
brane and those from another brane are in equilibrium so that
there is effectively no scalar wave in the bulk. Hence, what
we would like to seek is a very special situation in which the
nonlocal effects due to scalar waves are completely su
pressed.

In this kind of “equilibrium” situation without waves in (')2—1+e2(P~Dd=(, (22)
the bulk, nothing should propagate from one brane to another
and, thus, we expect that all physically meaningful functionsyhere we have set
of t andy should be a product of a function afand a
function ofy. In particular, in this case the time dependence / 6
of n can be removed by a coordinate choice. Moreover, from I=\/———a?n,, (23
our experience in 4D scalar field cosmology with an expo- |4—3a?|
nential potential, we expect that the “equilibrium” situation ) ) )
should correspond to a power-law expansion on each bran@nd the plus %”d minus signs correspond  te-B4&) Vo
a(t,y.)otP [46]. Actually, in 4D cosmology with an expo- >0 ar;d (4-3a®)Vy<0, respectively, and we have assumed
nential potential, a power-law expansion is an attractor of thdhat a”#4/3. . . . . ,
system. One of the essential physical reasons for this is that 1€ Israel junction conditiofl2) is written as
all physically relevant, dimensionful quantities scale in tan- e (=D .
dem, according to dimensionality. For exampHa?ocKﬁV Vly=y.==7=,
ocxﬁpkmoclltz, whereH is the Hubble expansion rate, is

n=nqeP?, (21)

wheren, is an arbitrary constant angl is a solution to the
pfollowing equation:

the 4D gravitational couplingy is the exponential potential _ “2"5)\3“0 _ K5)\§ /|4_3a2|
and py;, is the kinetic energy of the scalar field. In our V== 2JVo[l 24V 6
model, besides the Hubble expansion rate on each brane, the (24)

interbrane distance is another physically relevant, dimension-

ful quantity. Since it has the dimension of length, we expecfThe scalar field matching conditiqi3) is actually the same

it should also be proportional toin the “equilibrium” situ-  as the above junction condition and, thus, does not provide

ation. Thus, not only the 4D universes on branes but also thany independent boundary conditions.

interbrane distance should be expanding. The physically relevant quantities are the power ingex
For the reasons explained above, we consider the follow=1/3a of the expansion of the branes, the warp fadtér

ing ansatz: =n(y.)/n(y_), and the ratiaw- of the interbrane distance
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L=tf§jn(y)dy to the proper timer.=n(y.)t on each

brane aty=y. . These are given by
N0 T bty -y
nty-) - ’
L y
V= 7-_ = p‘ﬂ(Yi)j +eplﬂ(y)dy_ (25)

D. Solutions
For (4—3a?)V,y<0, the solution to the bulk equation is

sinf|p—1|(y—yo)] (for yo<y)

. 26
sin[p—1[(yo—y)] (for y<yy), (28

e_(p_l)‘ﬂ: |

where y, is a constant. Note tha#/’ diverges aty=yj.

PHYSICAL REVIEW D 69, 064029 (2004

Y+ dy

~[cosH(p—1)(y—yp)|IP/P~Y"
(32

vi=(yi+1)p’2<p*1>f
Yy

Again, not onlyW but alsov .. are uniquely determined hy
(or equivalently|a|) andy.. . For example, whep=2,

\/v+v,=—‘y+\/72,+l—'y, yi-i—l.

V. STABILITY AGAINST LINEAR PERTURBATIONS

(33

Now let us argue that the expanding scaling solution is a
future attractor. For this purpose we investigate linear pertur-
bations around the scaling solution and show stability. The
linear perturbations analyzed in this section include all im-
portant physical effects such as boundary conditions on the
branes, fluctuations of brane positions and scalar waves in
the bulk. The bulk scalar waves generated by fluctuations of

Hence,y, must not be between the two branes. For thisbrane positions threaten to destabilize the expanding scaling

solution, the junction condition reduces to

coshi(p—1)(y+—Yo)]=+ v«
cosh(p—1)(y+—Yo) ==y~

(for yo<y_<y.,)

for y_<y, .
(for y_<y <yo)(27)

Hence, if and only if Ky_<—1y, or 1<y, <-1vy_, the
junction condition uniquely determings. —y,. The physi-
cally relevant quantitieV andv . are given by

2 _q\ P21
WSS
yi—1
Y+ dy
R .
y_ [sinh(p—1)(y—yo)|]P?P~ 1

(28)

Not only W but alsov .. are uniquely determined by (or
equivalently|«|) and y.. . For example, whep=2,

Vorvo =y VY2 =1+ |y_[Vyi - 1.

For (4—3a?)V,>0, the solution to the bulk equation is

(29

e (P~ V¥=cosh (p—1)(y—yo)], (30
wherey, is a constant. For this solution, the junction condi-
tion reduces to

sinf(p—1)(y+—Yo)|=F 7= . (31
Hence, if and only ify_ + y, <0 then the junction condition
uniquely determiney. —Yy,. The physically relevant quan-
tities W andv .. are given by

72,4'1 p/2(p—1)

Yi+l

solution, but we shall explicitly see that this is not the case
and that the scaling solution is stable. In the following, for
simplicity we consider the case whegé(y)#0 fory_<y

SyL+e;t us consider linear perturbations around the scaling
solution found in the preceding section:
ds?=—n(t,y)2dt?+a(t,y)?8;;dx'dx +b(t,y)?dy?
+2e(hydtdy+h,dtdX + hydydx),
n(t,y)=neeP’M[ 1+ edn(t,y)],
a(t,y)=tPnyeP’™[1+ esa(t,y)],
b(t,y)=tneeP’®[ 1+ edb(t,y)],

arsp(t,y)=IN[ks\[Vo| 111+ y(y)+edy(t,y),

wherep and (y) are given in the preceding section. From
the symmetry, we set

(34)

By introducing a new time coordinate
=Int (—w<r<®), (36)

it is shown that all coefficients in all relevant equatidhs.,

the Einstein equation, the Israel junction condition and the
scalar field matching conditigrinearized with respect te

are independent of. Thus, it is convenient to Fourier ex-
pand the perturbations as

sn(t,y)=én(y)e ",
sa(t,y)=da(y)e ",
sb(t,y)=sb(y)e ",

Sy(t,y)=y(y)e . (37)
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A. Gauge conditions
The set of variableshgy ;i yi, on, éa, b, ) includes

not only physical degrees of freedom but also gauge degrees

of freedom. The infinitesimal gauge transformation is

5g,uv_) 5g,uv_ EV,ugv_ evyé:,u )

5p— 6~ €&V, %, (39)

where V is the covariant derivative compatible with the

background metricg®) is the background o and €&, is

PHYSICAL REVIEW D69, 064029 (2004

p 1

s = 2 ——&(y),
0
Sa— oa,
5o sb— P 1?( ), (43)
[ noy' 12

Whereg(=gt) is an arbitrary solution of

an infinitesimal vector representing the gauge degrees of ¢/?:iwg (44)

freedom. Hence, each component transforms as

_ _ 1 _ _
Sn— én+ §[(1—iw)§t(y)— Py’ (Y)€y(Y)],
0

_ 1 _ _
6a—>5a+F[pft(y)—pt/f’(y)éy(y)—gu(y)],

0
_ 1 _ _
Sb— b+ ﬁ[ft(y)— Py (Y)E,(Y)—&(W)],
0
hyy— hyy+ PO wé ()~ (y)],

hyj—hy+i 0t 1e20g (y) 5 (X = x}),

hyi‘> hyi - t2pe2pz,//(y)ai (y) é\ij (Xj - X{)),

I _
Op— S+ ?[ft(y)— P (Y)Ey(Y)], (39
0
where we have Fourier expandégd as
£=1eP Vg (y)eier,
&=t g (y)e ™7, (40

=100 g (y)e 175 (X — xp).

Here, we have used the background equaf@?) and its
derivative.

(i) Foro#0 and—iw=p—1, there is no residual gauge
freedom.

(iii) For o=0 andp# 1, the residual gauge freedom is

Sn— dn+ ény,

Sa— da+ da,

Sb— b+ _ Mo _ (45)
[¢'(y)]?

where éngy and da, are constants.
(iv) For =0 andp=1, the residual gauge freedom is

Sa— da+ dap, (46)

where da, is a constant.

B. Linearized equations

By using 7 as a time coordinate, the Einstein equation
linearized with respect te becomes relatively simple in the
sense that there is no explicit dependence in any coeffi-
cients. The Israel junction condition and the scalar field
matching condition also share this property. This is the rea-
son why we have Fourier-expanded the linear quantities
(6n, Sa, &b, 6y) with respect tor. Hence, what we have is
just an eigenvalue problem in one dimension.

The (1D) bulk equations are

Here, x (j=1,2,3) are constants. The symmetry assumption _ w’+(p—1)i

hyy= htI hy;=0 is consistent with the gauge transformation

if and only if

iwéy(y)— & (Y)=wé(y)=§ (y)=0. (42)

By using the gauge freedom, we can set

low — _
' on' =— Téa%—(p—l)(w’)zéb
+[io—(p—1)]6n,

y'da' = —iwda+p(y')2sb—pon,

— ) w2+ ( p— 1)' o0 —
Sy=0. (42) ' ob Z—fﬁaJr[lerZ(p—l)
However, this condition does not fix the gauge freedom com- —(4p—1)(¢")?]6b+(2p+1)6n, (47)

pletely. So, let us investigate the residual gauge freedom.

(i) For o#0 and —iw#p—1, the residual gauge free- where the plus and minus signs correspond tp-{4)V,

dom is

>0 and (4$€—1)V,<0, respectively.
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Since the gauge freedom has been fixed only up to the

residual gauge freedom, the brane position is not=at/ .

PHYSICAL REVIEW D 69, 064029 (2004

@' on’ =iwan,

any more. Hence, we need to consider the perturbed position

of the brane:

y=Y.(7)=y.+edy. e 7. (48)

For the fluctuating position of the brane, the formu(ag)

(¢')28b=on. (54)

For —iw#p—1, the boundary conditiomg)ls automati-

cally satisfied, but any solutions t64) with sa=0 is pure
gauge because of the residual gauge freed48 or (45).

and (13) cannot be useq._ As explained in the Appendix, theOn the other hand, for-iw=p—1, there is no residual
general boundary conditiofil) gives the following bound- gauge f@edom, but the third boundary conditior(4_9) b‘i

ary condition for perturbations:

sn'=iwy’ db,
da’ =0,
(p—1+iw)dy.=—y'ob. (49)

Note that these boundary conditions are imposeq oty
[not Y..(y)].

1. Second-order equation foba

From the set of equationg7) End the background equa-
tion (22), we can show thatSa satisfies the following

second-order ordinary differential equation:

sa’'+3py’ a’ + w(w+3ip)da=0. (50

Now let us show thaBiw<0 unlesssa=0. By using Eq.

(500 with the boundary conditiorfa’=0 aty=y., it is
easy to show that

Y+ — y _
w(w+3ip)J dye3r’<’f|5a|2=f “dyePY| sa’|2.
y- y_
(51)

Hence,w(w+ 3ip) is real and non-negative unlesa=0.

The eigenvaluew(w+3ip) can vanish only ifsa’ =0.
Thus,

—3p<Jw<0, (52)

or

w=0, da'=0. (53

In the latter caseda can be set to zero by using the residual
gauge freedonﬁ45)_or (46). Therefore, we have shown that

—3p=Jw<0 or sa=0.

2. Solution with sa=0

When sa=0, the set of first-order equatios?) reduces

to

comessb=0 aty=y. and, thus(54) implies thatéb= én
=0. Therefore, we have shown that there is no nonvanishing

physical solution withda=0.

3. Stability

In summary, we have found that there is no unstable mode
with da#0 and that there is no physical mode wifia
=0. Thus, the scaling solution is stable against linear pertur-
bations.

VI. TOWARDS A NONLINEAR STABILITY ANALYSIS

Following the linear perturbation stability analysis, we
need to establish the stability at the nonlinear level. In gen-
eral this is very complicated. However, we can investigate
some of the nonlinear effects by considering a subclass of
models with a particular ansatz. This will give us an indica-
tion of the qualitative features of the nonlinear dynamics. We
shall perform a more comprehensive analysis at a later time.

The ansatz we consider is

ds?=n3e?PO[ — N(t)2dt?
+A(1)25,;dx dx +B(t)2dy?],
aksp=0(t)+ y(y), (55)

where ng is a constant with the dimension of length. The
scaling solution is, of course, included within this ansatz.
The (ty) component of Einstein equation leads to

O(t)=In[B(1)]+ Oy, (56)

where®,, is an arbitrary constant. Siné®, can be absorbed
by a redefinition ofi)(y), for convenience we can choo®g

2600 2k2ng|Vol

- 5
3plap—1] 57

whence the field equation reduces to

064029-8



SCALING SOLUTION, RADION STABILIZATION, AND . . .

1+2 A 2 lAZ
( D)K— (p— )E

n2

A+32 0
AP '

4p—1 B 2p+1 N =
- ( P— )E+( p+ )N )

1+2 —B+3 —BZ
(1+2p)5+3p

AZ

A N|B
+ 3(2p—1)x—(2p+1)ﬁ E_GEZO,

((ﬂ,)zi eZ(p—l)z//

A?B2  ABB
+2 -

A2 A

1

- B?| =0,
p(2p+1)N? P

(58)

where the plus and minus signs in the last equation are for

(4p—1)Vy,>0 and (49— 1)Vy<0, respectively. Hence, the
model isseparable

Hereafter, we seN(t) to a constant by choice of time
coordinate. Defining

= A b= i 59
a K, = E, ( )

the last equation ii58) becomes
c2B~2=2a’+2ab—pb?, (60)

PHYSICAL REVIEW D69, 064029 (2004

wherec% is effectively the rescaled separation constant, and

the evolution equations are then

(1+2p)a=—3a%+(4p—1)ab—3p?b? (61)
(1+2p)b=6a?—3(2p—1)ab—(1+5p)b?.
(62)

Differentiating Eq.(60) and using Eqs(61) and (62) we get
an expression which is satisfied identically, so @) is a
constraint(that propagates along the solution cupves

We first note that since the systdi@il), (62) is homoge-
neous, we can define

x=al/b, b=Inb, (63

and the system reduces to a single ordinary differential equa-

tion:

1
X+ 5(1_ V1+2p)

(14+5p)+3(2p—1)x—6x?

1
dx 6(X—p)| X+ §(1+ V1+2p)

db

’

(64)

which can be integrated to obtain

- 1 B
b=b3(x—p)“ X+ §(1+ V1+2p)
1 y
X x+§(1—\/1+2p) , (65)
whereb? is an integration constant and
~ 1
a=$,
~ —3p—1+y2p+1
= 6p
B (3V2p+1+1)(y2p+1-1)
=— 2
(3V2p+1+5)(y2p+1-1)
=1+ . (66)
12p
~ —3p—1-y2p+1
Y= 6p
(3v2p+1-1)(\2p+1+1)
=— 2
. (3vy2p+1-5)(y2p+1+1)
B 12p '
Note that
a+pB+y=-1,
a>0, —1<B<0, <0 (67)

for any positivep=1/(3¢?), andy>—1 if p>8/9.

We can analyze the asymptotic form @), but perhaps
a better way to show the late-time stability of the scaling
solution is as follows. We rewrite E¢60) as

(2p+1)b? c2B2
1- v 0 Tz (68)
4| a+ Eb) 2| a+ Eb

Defining

_by1+2p J1+2p
~ 2a+tb  1+2x’

(69

we see that is bounded; +2z?=0. Using(65), the evolu-
tion equationg61) and (62) then become a single ordinary

differential equation foz

: 3b3 - - -
7= ————-(1—J1+2p2)* Y1+ 2)f (1 —2)7" L,
225\/1+—2p( pP2)*"( )T )

(70)
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Since z°<1, this constitutes a one-dimensional nonlinearand

dynamical system.
The exponent ¢+ 1) is positive definite, so that

1

V1+2p

(where 0<zs<1), is always an equilibrium point of70).
Depending on the signs of the exponenf+1) and {y
+1), z.==*1 are also equilibrium pointsz( is always an
equilibrium point, whilez, is an equilibrium point forp
>8/9).

The solution of(70) close tozg is given by

zZ= (71

7=7,— zg(t+to)‘1/;‘, (72)

so thatz— z, ast— o sincea>0. Hencegz; is a local sink.

Sincez is boundedz is a global attractor in the physical

phase space. Indeed, singe<0 andy<0, z. act as local
sources and all physical solutions evolve from one ofand
zZ_ t0zs.

From Egs.(69) and(71), the global attractor has

a
p(=0=p (73
so that Eq.(60) yields
2
2= ﬁ =const (74)
and hence after a time translation
B=Bot, A=At (75

so that the global attractor is the scaling solution.

U~[O(t3P) +O(t ™) 1 pkin<< Piin - (79)

VII. DISCUSSION

We have investigated a class of scale-invariant effective
theories of 5D brane-world cosmology with a bulk scalar
between two end-of-the-world branes. As a special case, this
class includes the 5D reduction of Horava-Witten theory. We
have found an exact, analytic scaling solution in which the
scale factor of our 4D universe and the interbrane distance
expand agP (p>0) andt, respectively(seeNote added It
is perhaps worth mentioning that the scaling solution with
p>1 corresponds to a power-law inflation on our brane. The
scaling solution corresponds to an equilibrium state in which
the motion of the branes does not produce any scalar waves
in the bulk. Because of this remarkable physical property, the
scaling solution is expected to be a future attractor of the
system. Indeed, we have presented convincing evidence for
the attractor behavior: the stability of the scaling solution
against general linear perturbations with the 4D FRW sym-
metry and stability within a class of nonlinear perturbations.

Based on the attractor behavior of the scaling solution, in
Sec. Il we proposed a self-consistent and dynamical scenario
in the early brane-world universe. First, since the scaling
solution is a future attractor, the system is automatically
driven towards it as far as the effective action at high energy
is of the scale invariant form. Second, as the energy scale
becomes sufficiently low according to the evolution along
the scaling solution, the scale invariance of the effective ac-
tion should be broken at some point. After that, the brane-
world system deviates from the scaling behavior and starts to
be driven by the radion stabilization. The radion stabilization
guarantees that 4D gravity on our brane is described by Ein-
stein theory and the standard cosmology is realized at low

To connect with earlier work, the approximate solution of €Nergy.

(61) and(62) at late timegi.e., the linearized solution around

the attractor(75)] is (N=1)

A=AgtP[1+3pcyt T+ ¢t 3P,

C C
B =Byt l_Flrl_ Z-3p|, (76)

p

where thec; are arbitrary constanfsand the constants are

subject to the constrairi60); e.g.,c3=p(1+2p)BZ]. From

In this scenario, the scaling solution plays a central role:
the attractor behavior of the scaling solution makes it pos-
sible to give well-defined initial conditions both in the bulk
and on the brane for the evolution after the breaking of scale
invariance. It is also the scaling solution that brings the sys-
tem from high energy to low energy both in the bulk and on
the brane and, thus, triggers the breaking of the scaling in-
variance.

Having a well-defined initial condition given by the scal-
ing solution, a natural question arises: “What kind of evolu-

this we immediately see the decaying modes and the locdion can we expect subsequently?” One interesting possibil-

stability of the attractor.
Consequently, we have an approximate bi3lR) solution

ity is an epoch of inflation driven by the radidne., the
interbrane distangeAs stated above, after the scale invari-

at late times. The 5D Ricci tensor is given by its attractorance of the effective theory is broken at some point, the

values of orderO(t™1) and O(t 3P) (leading to pyin
~172), and the 5D conformal tenséwhich is zero for the

exact attractor solutioncan be evaluated to leading order.
We can therefore calculate the irreducible decompositigns

Q,, andP,, of the projected bulk Weyl tensdf,,, [9,10],
from which we find that

9,=0, P,,=0 77

radion stabilization mechanism takes over and starts driving
the brane-world system. Indeed, we have suggested a simple
illustrative action in which the transition from the scale in-
variance to the radion stabilization is smooth. During the
transition, the dynamics of the bulk scalar field and the ra-
dion can drive the evolution of our 4D Universe. Of course,
even without the scaling behavior at high energy, the bulk
scalar and the radion can drive the system. A big difference,

064029-10



SCALING SOLUTION, RADION STABILIZATION, AND . . . PHYSICAL REVIEW D69, 064029 (2004

however, is that one cannot expect a well-defined, predictscaling solution. In particular, it is interesting to generalize
able initial condition in the case without the high-energythe scaling behavior to higher dimensi@reater than pand
scaling behavior since the evolution from an arbitrary state tetudy the resulting physical consequences.

the radion stabilization should be a very violent process and Note addedRecently, the authors were informed of Ref.
should involve fully nonlinear(scalar and gravitational [49], in which a closely related solution had been found.
waves in the bulk. Our scenario based on the high-energy

scaling behavior makes the evolution towards the radion sta- ACKNOWLEDGMENTS

bilization much smoother and, more importantly, predictable. The authors would like to thank Paolo Creminelli, Andrei

In particular, in our scenario, there may be an inflation in theFroIov Lev Kofman, and Toby Wiseman for their useful
transition epoch. This possibility is certainly an interesting ., ments. S.M. would like to acknowledge the kind hospi-

subject for the future work. o tality of Dalhousie University where this work was initiated
Another question that might naturally be asked is: “Whatring his visit. Part of this work was done during S.M.’s

is the beginning of the brane world before the scaling behavyits™to University of Toronto, University of Victoria and

ior?"_ActuaIIy, since the attractor behavior_ of the scaling University of Alberta. He would be grateful to Lev Kofman,
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cosmology almost insensitive to the beginning, this question,,q gimylating discussions during the visits. S.M.’s research
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still interesting to think about this kind of question. As al- .ocaarch was funded by the Natural Sciences and Engineer-
ready explained, for the scaling solution both the scale factO(ng Research Council of Canada.

of our universe and the interbrane distance expand. This im-
plies that both our 4D Universe and the extra dimension
were extremely small at an early epoch. This is a completely
trivial statement in our scenario, but it would not be so trivial
if we did not have the high-energy scaling behavior. Without  |n this appendix we explain the derivation of the bound-
the high-energy scaling behavior, the initial value of theary condition(49) for linear perturbations. For a more gen-
inter-brane distance for the evolution towards the stableral prescription, see Ref50]. For general trajectories of
value can be either small or large. On the other hand, in oupranes the boundary condition is given H{1) at y
scenario the initial value of the interbrane distance should=y | (t). For

start from a small value. Is this favorable from the viewpoint

APPENDIX: BOUNDARY CONDITION FOR LINEAR
PERTURBATIONS

of quantum gravity? Can we consider the smallness of the n(t,y)=neeP’M[1+ esn(y)e 7],
initial inter-brane distance as an indication of a brane colli-
sion or brane scatteringThe last two questions are evi- a(t y):tpnoep¢(y)[l+Eég(y)efiwr]

dently outside the scope of this paper but will be interesting
future projects.

It is perhaps worthwhile asking whether we can expect
similar scenarios to work in more general situations and/or
theories. When the dynamical effects of fields are negligible
(e.g., the bulk wavesthen we might expect the same quali-
tative behavior and hence the scenario to work. For example,
we expect predictable, smooth evolution towards the radion o —
stabilization to be valid in more general situations whenevefh€ extrinsic curvature componeritsandk, and the normal
a symmetry at high energy exists, leading to attractor behaderivatived, ¢.. of the scalar field are expanded as
:g\r/;/ vg/sgcrg;s subsequently broken by radion stabilization at ICi=IC(f)+elC(i1)+O(62),

As already stressed many times, we have presented con- N — — .
vincing evidence that the scaling solution is a future attrac- K.=KQ+ekPe 7+ 0(e?),
tor. Since the attractor behavior is so essential in our sce- )
nario, in future work we shall further investigate the full 9, .=, 60+ ed, pPe 0 +0(€?),
nonlinear dynamics both analytically and numerically. We (A2)
shall also include other matter fields on the brane. Since the
scale invariant theory is motivated by compactification of Vere
higher-dimensional theoridsee Secs. Il and IV Ait is also - WP
worth investigating higher-dimensional interpretations of the ’C(to):’C(:O)Z DT
0

b(t,y) =tn0ep¢(y)[l+ Eég(y)e—iwr],
arsd(ty) =In[xs\[Vol 1t]+ (),

Yt(T)ZYi"'Eé‘Vie_in, (A1)

¢/e—pw

aKSnot '

%It is perhaps interesting to note that the expanding scaling solu-
tion we found is a conformally Kasner geometry and that Kasner-
like geometries were found to be generic collapsing solutions in
brane collisiong33]. and

9, o= (A3)
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e_p(’b . — — —_ ;) — Ksg —
KD =T [=(iotw?)dy.ton'—py ob], KO 8y, + KD =2 (35 X)W Y.

_ e7p¢ _ _ N
K= ——[—i .+ d8a’—py' ob], ) — L K —
T gt LT IPedYe oAt pyob] KO sy + k0= (5, X )0 3y

e7p¢’

3, pP= [—iwdy.— ' sb]. (Ad)

el (0, 89) 0y + . 8O=F (% N2y By

What is important here is that the boundary condition in aks TF (A5)
the form (11) must be imposed on the perturbed position

=Y. (t) of the brane. On the other hand, it is mathematically__ . )

convenient to impose a boundary condition on a fixed posi Nis form of the boundary condition must be imposed at
tion in the coordinate. Hence, let us convert the boundary =Y . Substituting the above expressions k', KU and
condition (11) at y=Y.(t) to a boundary condition ay 4, 1) and simplifying the expressions by using the back-
=y. . The result up to the linear order inis ground equations, we obtain the boundary condifi¢®).
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