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Maximally fast coarsening algorithms
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We present maximally fast numerical algorithms for conserved coarsening systems that are stable and

accurate with a growing natural time step Ar=Af;

2/3

. We compare the scaling structure obtained from our

maximally fast conserved systems directly against the standard fixed time-step Euler algorithm, and find that
the error scales as VA—so arbitrary accuracy can be achieved. For nonconserved systems, only effectively
finite time steps are accessible for similar unconditionally stable algorithms.
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Phase-ordering kinetics studies the evolution of structure
after a quench from a disordered phase into an ordered
phase. The later stages of most phase-ordering processes
show universal scaling behavior described by a single grow-
ing length scale which increases as a power law in time,
L(1) ~t*, where 0<a <1 [1]. For the scalar order-parameter
systems considered in this paper, «=1/2 and 1/3 for non-
conserved and conserved dynamics, respectively [1]. While
these growth exponents and their universality can be under-
stood in terms of interfacial motion leading to domain coars-
ening [2], the time-independent scaled structure that results
is less well understood.

Computer simulation is an effective technique to system-
atically study these nonlinear, nonequilibrium coarsening
systems. To maintain accuracy, the discretized dynamics
must move interfaces at most a small fraction of the interfa-
cial width, ¢, in a single time step At. This determines a
maximal or natural time step of coarsening systems, Af,,
~ &/ (dL/dt)~t'~, that grows in time. Unfortunately, com-
mon time discretizations are unstable for time steps above a
fixed threshold determined by the lattice spacing Ax [3]. Any
such fixed time-step algorithm is increasingly inefficient at
late times compared to the natural time step. Various algo-
rithms have been proposed to make simulations more effi-
cient, including the cell-dynamical scheme [4] and Fourier
spectral methods [5]. However, these approaches still require
a fixed time step for numerical stability.

There is a newly developed class of unconditionally stable
semi-implicit algorithms [6,7] that impose no stability con-
straints on the time step Af, which then must be determined
by accuracy considerations. Since we generally expect larger
At to lead to larger errors, there is a tradeoff between speed
and accuracy. This tradeoff is best resolved by picking
growth rates for Az that induce an error in the correlations
that is approximately constant in magnitude throughout the
scaling regime, where the magnitude can be chosen to be
comparable to other systematic sources of error such as ini-
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tial transients or finite-size effects. While an analysis of the
errors of single growing time steps indicated that simple
maximally fast algorithms have large local errors [7,8], this
begs the question of how much those single-step errors ac-
cumulate in correlations at late times after the quench. Some
types of single-step errors may be benign, allowing us to
exceed the bounds given by the single-step analysis [7,8].
For example, small amounts of random thermal noise are
irrelevant to the scaled structure [1].

In this paper, we compare the scaled correlations of un-
conditionally stable “Eyre” dynamics driven with a growing
time step At to the correlations evolved with an explicit Eu-
ler update. The latter, while slow, provides an arbitrarily ac-
curate reference at late times. For conserved Cahn—Hilliard
dynamics [9], we obtain accurate correlations when the Eyre
algorithms are driven at the natural or maximal time step,

Ar= Aty = AP, (1)

for conserved dynamics. Here we introduce a “structural
time” 7, to track the structural evolution of the system
through the decreasing system energy [see Eq. (7) below].
We find that the correlation error scales as VA for small A,
and so can be made arbitrarily small. With a similar class of
unconditionally stable algorithms for nonconserved dynam-
ics [7], we find that only a fixed factor speedup is possible
compared to the Euler algorithm as measured by the struc-
tural time #,. We explain the accurate maximally fast con-
served dynamics and the effectively slow nonconserved dy-
namics with a novel Fourier-space analysis of the accelerated
dynamics.

Cahn-Hilliard dynamics of a conserved scalar field ¢(r,1)
are

Aplat=V>6F15p=—V*(p+ V- ), (2)

where F= [dx{(V$)*+(¢p>—1)?/4] is the free energy in d
spatial dimensions with a double-well potential correspond-
ing to two distinct ordered phases at ¢==+1. These dynamics
can be semi-implicitly discretized in time by

(ZHAz + (1 - al)AtVZ(ZHAz + (1 - a2)AtV4($r+Az

= ¢, - AtVz(al(ﬁ, + a2V2¢t - ¢t3)’ (3)
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plicitly defines the updated field, ¢,,4,,» and can be directly
solved in Fourier space to give an Euler-like update,

Bt + A1) = gy (1) + At (k) &1 4)
where the k-dependent effective time step is
At k) = At/(1 - AtK), (5)

Ay is the Fourier-transformed Laplacian (A, =—k? in the con-
tinuum limit), and

K= (a; = )\ + (ar — DA (6)

We note that K<<0 for unconditionally stable algorithms.

Our numerical work is done in two dimensions (2D), with
systems of linear size L,,=256 (at least 200 samples) and
L.,=512 (at least 20 samples). We use a lattice spacing Ax
=1 and periodic boundary conditions. For Euler discretiza-
tions of the conserved dynamics, Eq. (3) with a;=a,=1, we
use Ar=0.03, while for unconditionally stable discretizations
we use a;=3 and a,=0.

The k-dependent effective time step in the Fourier dynam-
ics leads us to investigate the effective evolution of the sys-
tem after one algorithmic time step Az. What time interval in
the exact dynamics, Eq. (2), best compares with the result of
the discretized dynamics, Eq. (3)? Since arbitrarily large Az
in Eq. (3) should lead to large discretization errors, the an-
swer is not always Az. We exploit the power-law decay of the
free-energy density, e=F/V, in the late-time scaling regime,
e=(t/B)~*~1/L [2], to introduce the “structural” time

t,=Be', (7)

where a=1/3 or 1/2 for conserved or nonconserved coars-
ening, respectively. We numerically determine B such that
the structural time step is identical to the algorithmic time
step for small enough At such that discretization errors are
negligible. We find (data not shown) B=0.286 for conserved
dynamics and B=0.105 for nonconserved dynamics. In gen-
eral we find that At, <At (see Figs. 2 and 3 below) for maxi-
mally fast time steps given by Eq. (1), with equality only as
A—0. Structural time allows us to measure the effective
speedup of our coarsening algorithms, is used to determine
the time step, and also provides important insight into errors
of the scaled structure.

We find that using the natural time step, Eq. (1), leads to
accurate correlations in the scaling regime—as compared to
systems evolved with a simple Euler time discretization. We
measure S(k,1)=(¢;P_;), where the angle brackets indicate
an average over orientations and initial conditions. We obtain

the scaling form using the energy density, €, so that S(x)
= e’S(xe) is a scaling function of x=k/e. In Fig. 1 we plot

S (x) versus x to illustrate the excellent overlap between Euler
(circles) and Eyre (“+”) dynamics with At:Atf/3 and A
=0.01. To quantify the error we take the absolute value of the
maximal value of the difference between the scaled struc-
tures (shown for general k/ e with triangles). We find that this
maximum difference is approximately constant in magnitude
throughout the scaling regime.
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FIG. 1. The average scaled structure S(x)=€S(xe) vs x=kl/ e
for L,,=512 system at 7,=1024, with the Euler update (circles) with
Ar=0.03 and the Eyre update (“+”) with Ar=Ar">, where A=0.01.
Triangles indicate the absolute difference between Eyre and Euler

Ag(x)\.

updates,

We average this absolute error over the scaling regime, as
determined by the scaling collapse of the scaled structure.
We observe a small A-dependent difference between the Eu-
ler algorithm and the naturally driven Eyre algorithm, as
shown in Fig. 2. By repeating the measurement for different
system sizes, both L,,=256 (open circles, averaged over 4
times in 7, € [60,190]) and L,,=512 (open squares, averaged
over 9 times in 7, € [60,1500]), we confirm that finite-size
effects are not significant. We have enough independent Eu-
ler samples that no baseline errors due to residual stochastic
effects are seen—the errors shown are the systematic error
due to A. We observe an approximately VA dependence on
the average error. This implies that arbitrarily accurate mea-
surements of the scaled structure can be made with maxi-
mally driven Eyre algorithms.

From the effective time step, Eq. (5), we can see qualita-
tively why the natural time step, Eq. (1), is accurate for con-
served updates. Since Fourier modes k=<1/L~ '3 corre-
spond to the domain structure, then for the natural time step
with very small A the effective timestep is only k-dependent
deep in the Porod tail where kL > 1. However, the Porod tail
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FIG. 2. The Eyre structural error vs A for Eyre algorithms
driven at the natural time step At:Atf/ 3. The error is the maximum
absolute difference between the Eyre and the Euler correlations.
Shown is data for L,=256 (open squares) and L..=512 (open
circles). Also shown as filled symbols are the asymptotic values of
1—At,/ At for various A. Both errors exhibit VA behavior, as dis-

cussed in the text.
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[1] is simply the reflection of the amount of interface in the
system at kL~ 1. Systematic errors will arise as A gets larger
and the k dependence of A, becomes more significant at
kL=1.

Previous real-space single-step error analysis [7] indicated
that the natural time step would not be accurate for direct
Eyre algorithms such as Eq. (3), because of growing local
errors close to interfaces [8]. We have examined interfacial
profiles of naturally driven algorithms, as probed by the k
~ & tail of the unscaled structure, and found quantitative
agreement with the Euler algorithm (see large x data in Fig.
1). Single-step errors must then correspond to errors in the
interfacial motion, which can be probed by considering the
difference between the algorithmic time step At and the re-
sulting structural time step Az, We find that Az,/Ar<<1 in
general, which indicates reduced interfacial motion. In Fig. 2
we show with filled symbols that 1—Ar,/At scales as VA for
small A. We can recover this asymptotic result using an en-
ergy scaling argument [1,2] in general spatial dimension d.

From Eq. (7), with a=1/3 for conserved dynamics, we
have E:Bmt;“3 so that

At;=—-3B""Aer?. (8)

On the other hand, we can integrate the energy dissipated in
one time step for each Fourier component [2],

Ae = f dkI(2m) N (SFI 5h) Ay 9)

=— f d'kI2m) kAt (kAN T,, (10)

where the second line uses the time derivative ¢_ =
—k*SF | 8¢y from Eq. (2), Agy=At,s¢b; from Eq. (4), and the
time-derivative scaling function

T = ($pb_y = LPLT?h(kL), (11)

where the scaling form is shown. T is expected to have a
Porod-like 7(x) ~x'~¢ tail for x>1 [2], and this has been
observed in d=2 (data not shown). With these asymptotics
and Az, from Eq. (5), the A€ integral converges and hence

becomes time independent as the UV cutoff O(L/ &) becomes
23

large. For Ar=At," we obtain
At /At o f dxx®3h(x)/(1 +A'x?), (12)
0

where A’ =A(a;—1)/L3 and L=Lyt" in the scaling regime.
For small A, the leading contribution is O(JVA’) from the
large x regime. Since At,/Ar=1 in the limit of Ar— 0 when
A=0% we have

1 - At /At VA + O(A"). (13)

This behavior is observed, as shown by the filled points in
Fig. 2.

What is the connection, if any, between the time-step error
1—At,/At and the structural error, both of which exhibit VA
dependence at small A for natural time steps? As discussed
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before, 1—-At,/At~VA>0 indicates an error of (reduced)
interfacial motion. It is reasonable that this error shows up in
the correlations at the same order, O(VA). It is interesting
that this error accumulates into a constant contribution to the
scaled correlations within the scaling regime.

We now consider nonconserved Allen—-Cahn coarsening
dynamics, which are governed by

d=—0FI5p=dp+V*hp— . (14)

These dynamics can be semi-implicitly discretized in time by

J’H—At + (al - I)AIJ’HM + (Clz - I)Atvzg’nm
=+ Mla ¢, + V= &), (15)

where the discretized dynamics are unconditionally stable for
any Ar>0 when a;>2 and a,<0.5 [7]. In the same spirit as
conserved dynamics, we obtain an effective time step

At ik, Af) = At/(1 - AtN), (16)

where N=(1-a;)+(1-a,)\, and N<O for stable algo-
rithms with @, >2 and a,<0.5 [7]. This directly implies that
At,;p<1/(1-a;) even when Ar— o, so that this class of un-
conditionally stable nonconserved algorithms effectively
cannot be accelerated. We confirm this by calculating and
measuring At, when Ar=co.

We adapt the development in Egs. (8)—(12) for noncon-

served dynamics. We have e=B?r-'"? so that

At,=—-2B,*Aer’”. (17)

Integrating the energy dissipated in one time step,
Ae=— f d*k(2m) At (k, AD T, (18)

where we use ¢_,=—0F/S8¢,. Using Eq. (16) and Eq. (11)
with L=L0t;/2 and N\ =—k> we can solve for At, when At

:30’
LoL (Y% 41p(x)d
Ar, = Oﬁf x 2 (x)zx (19)
4m\B,.Jo (aj—1L +x(1-ay)
tan‘1< \/—1 —alzé)
a —
=¢ ‘ (20)

\f'(a1 - —az) ’

where we take the late-time L— <0 limit in the second line
and have used ,,.(x) ~x'~ for x> 1 [1,2], without which Az,
is not time independent. The overall ¢ factor on the second
line comes from imposing A¢,=At for small Az to determine
B,., before the Ar— oo limit is taken. We find a constant At
that depends only on a; and a,, as well as the inverse UV
cutoff & In Fig. 3, for d=2, we plot the measured asymptotic
Ar,=At,\(a,-1)(1-a,) (averaged over the time-
independent scaling regime with variances shown) versus @
=./(1-a,)/(a;—1). We observe data collapse for a variety
of a; and a,, as suggested by Eq. (20). However, we only
agree with the calculated functional form for small a—the
solid line indicates best fit by eye with §=0.85. The discrep-
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FIG. 3. For nonconserved update driven with Ar=%, we plot
A~tSE Atg\(a;=1)(1-ay) vs @=+(1—ay)/(a; 1) showing the pre-
diction (solid line with £€=0.85) of Eq. (20).

ancy appears to be due to a dependence of the time-
derivative correlations (data not shown), indicating signifi-
cant systematic errors when Af—o despite the finite
effective time step.

In summary, for conserved dynamics we obtain accurate
scaled correlations for maximally fast algorithms with Az
=Ar". The structural error behaves as VA for small A. For
these maximally fast algorithms the relative speedup with
respect to a fixed time step is of the order (L../Ax)?, where
L../Ax is the discretized linear system size. Maximally fast
algorithms provide the most efficient means to reach the
scaling limit for large systems.
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Surprisingly, a similar class of algorithms does not lead to
acceleration of nonconserved dynamics. Only a constant
time step is observed, as measured by the structural time,
even when the unconditionally stable algorithm is driven
with Ar— oo, To explain these novel results, we have intro-
duced the effective or structural time step Az, which is cali-
brated to the decreasing energy of the system in the scaling
regime when e~ 1/¢% These results are consistent with pre-
vious real-space single-step error analysis [7] away from in-
terfacial regions. With a Fourier-space analysis of the effec-
tive dynamics, we have shown that the large local errors
found in a single-step real-space analysis of the dynamics [7]
correspond to errors in domain-wall motion that accumulate
into finite and controllable errors in the scaled correlations.

We expect that these unconditionally stable semi-implicit
algorithms find a broader application. In the systems inves-
tigated so far, the regime of unconditional stability coincides
with the easily determined regime of linear stability. For
coarsening systems that exhibit a growing natural time step,
large accelerations are possible with growing A¢. While the
nonconserved dynamics cautions us that effective accelera-
tion is not always achievable, it also illustrates the diagnostic
value of the effective structural time step Af,. Indeed, 1
—At,/ At appears to provide a good proxy for systematic
structural errors in the scaling regime.

We thank the Natural Science and Engineering Research
Council of Canada and the Canadian Foundation for Innova-
tion for support. We thank Ben Vollmayr-Lee for valuable
ongoing discussions.

[1] A. J. Bray, Adv. Phys. 43, 357 (1994).

[2] A. J. Bray and A. D. Rutenberg, Phys. Rev. E 49, R27 (1994);
A. D. Rutenberg and A. J. Bray, ibid. 51, 5499 (1995).

[3] T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. B 37,
9638 (1988).

[4] Y. Oono and S. Puri, Phys. Rev. A 38, 434 (1988).

[5] L. Q. Chen and J. Shen, Comput. Phys. Commun. 108, 147
(1998); J. Zhu, L. Q. Chen, J. Shen, and V. Tikare, Phys. Rev.
E 60, 3564 (1999).

[6] D. I. Eyre, in Computational and Mathematical Models of Mi-
crostructural Evolution, edited by J. W. Bullard er al. (The
Material Research Society, Warrendale, PA, 1998), pp. 39-46;

D. J. Eyre, http://www.math.utah.edu/~eyre/research/methods/
stable.ps

[7] B. P. Vollmayr-Lee and A. D. Rutenberg, Phys. Rev. E 68,
066703 (2003).

[8] Note that in Sec. III.A of [7] the scaling of the real-space error
near interfaces at O(Af") for direct conserved algorithms
should be O(¢) ~ 1~ for all n=2. Thus the single-step analy-
sis appears to preclude any growing time steps. We find that
most of the local single-step error benignly contributes to
At,/Ar<1 without affecting the scaled correlations.

[9]J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1953).

055701-4

RAPID COMMUNICATIONS



