Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis

Chulkyu Lee,1 Randall V. Martin,1,2 Aaron van Donkelaar,1 Gray O'Byrne,1 Nickolay Krotkov,3 Andreas Richter,4 L. Gregory Huey,5 and John S. Holloway6,7

Received 25 March 2009; revised 19 June 2009; accepted 6 August 2009; published 18 November 2009.

[1] We develop an improved retrieval of sulfur dioxide (SO2) vertical columns from two satellite instruments (SCIAMACHY and OMI) that measure ultraviolet solar backscatter. For each SCIAMACHY and OMI observation, a local air mass factor (AMF) algorithm converts line-of-sight “slant” columns to vertical columns using altitude-dependent scattering weights computed with a radiative transfer model (LIDORT), weighted by relative vertical SO2 profile (shape factor) determined locally with a global atmospheric chemistry model (GEOS-Chem). The scattering weights account for viewing geometry, surface albedo, cloud scattering, absorption by ozone, and scattering and absorption by aerosols. Absorption of radiation by mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean SO2 shape factors simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated with coincident airborne in situ measurements (INTEX-A, INTEX-B, and a campaign over east China). The annual mean AMF errors are estimated to be 35–70% in polluted regions (e.g., East Asia and the eastern United States) and less than 10% over clear ocean regions. The overall SO2 error assessment is 45–80% for yearly averages over polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the United States (r = 0.85 for SCIAMACHY and 0.82 for OMI). A sensitivity study confirms the sensitivity of SCIAMACHY and OMI to anthropogenic SO2 emissions.

1. Introduction

[2] Sulfur dioxide (SO2) is released into the atmosphere as a result of both anthropogenic activities and natural (e.g., volcanic, phytoplankton) phenomena. SO2 oxidizes rapidly in the atmosphere, leading to aerosol formation and acid deposition. Aerosols have highly uncertain effects on climate [Intergovernmental Panel on Climate Change (IPCC), 2007; Climate Change Science Program (CCSP), 2009], are deleterious to human health, and degrade visibility. Outstanding questions exist about SO2 emissions [Streets and Waldhoff, 2000] and its atmospheric chemistry and meteorological mechanisms of long-range transport [Dickerson et al., 2007]. Global mapping of atmospheric SO2 concentrations can provide critical information on its emissions and transport and generally improve scientific understanding of SO2 atmospheric chemistry.

[3] Satellite remote sensing using spectral fitting techniques has been employed for the measurement of atmospheric trace species on global and regional scales [Chance, 2005; Fishman et al., 2008]. SO2 observation from space was first performed using the Total Ozone Mapping Spectrometer (TOMS) [Krueger, 1983]. The TOMS sensitivity to SO2 was limited by its limited wavelength coverage to large SO2 amounts in volcanic eruptions and exceptional SO2 pollution events [e.g., Krueger et al., 1995; Carn et al., 2004]. More recently, SO2 retrievals with greatly improved...
The consistency of satellite SO2 retrievals with simulated vertical column amounts. Moreover, little is known about major challenges remain in the derivation of quantitative solar albedo of 5%, a midlatitude ozone profile, and a typical column conditions, a solar zenith angle (SZA) of 30°, a uniform AMF of 0.36 calculated for cloud- and aerosol-free SO2 plume height 4–5 km, and an overhead cloud fraction of 20%. Thomas et al. [2005] developed an AMF algorithm for GOME volcanic SO2 measurements, including scattering by clouds and the SO2 profile. Lee et al. [2008a] applied an AMF of 0.88 to their SCIAMACHY SO2 retrieval over East Asia, based on a surface albedo of 3%, maritime aerosol loading, and a polluted SO2 vertical profile. The operational OMI planetary boundary layer (PBL) SO2 product assumes a globally uniform AMF of 0.36 calculated for cloud- and aerosol-free conditions, a solar zenith angle (SZA) of 30°, a surface albedo of 5%, a midlatitude ozone profile, and a typical summer SO2 vertical profile over the eastern United States [Taubman et al., 2006]. Krotkov et al. [2008] examined a correction to the operational AMF over China using aircraft measurements of polluted SO2 and aerosol profiles [Dickerson et al., 2007] and OMI total ozone. In the SO2 data of the Tropospheric Emission Monitoring Internet Service (TEMIS, http://www.temis.nl), the AMF is taken from a look-up table determined using inputs such as SZA, the surface albedo, cloud fraction and cloud top pressure, and a set of SO2 profiles that depend on the SO2 column, assuming a constant ozone amount of 350 DU (Dobson Unit, 1 DU ≈ 2.69 × 10¹⁶ molecules cm⁻²).

The AMF calculation in our work combines a radiative transfer model with spatially varying geophysical fields. We extend the AMF formulation of Palmer et al. [2001] and Martin et al. [2002] to tropospheric SO2 retrieved from SCIAMACHY and OMI. Vertical shape factors (relative vertical distribution) for SO2 are locally determined with a global 3-D model of tropospheric chemistry (GEOS-Chem). Our AMF calculation accounts for scattering by clouds using local cloud fraction and cloud pressure determined from SCIAMACHY and OMI measurements. Local surface reflectivity is from a 14 year TOMS UV reflectivity climatology [Herman and Celarier, 1997]. Total column O3 is from SCIAMACHY and OMI. Aerosols are from a global GEOS-Chem simulation. The retrieved SO2 columns and the shape factor used in the AMF calculation are validated with airborne in situ measurements over North America and the North Atlantic Ocean collected during the aircraft campaigns of Intercontinental Chemical Transport Experiment–Phase A (INTEX-A) from June to August 2004 [Singh et al., 2006] and over the United States and Mexico during Phase B (INTEX-B) from March to May 2006 [Singh et al., 2009].

Section 2 describes the atmospheric chemistry model (GEOS-Chem) used in this work. Section 3 develops the AMF formulation, compares the SO2 simulated relative vertical distribution with that of airborne in situ measurements, and examines the effects of atmospheric ozone and aerosol on the seasonal variation of AMF. In section 4, we present SO2 slant and vertical columns retrieved from SCIAMACHY and OMI, validate the retrieved SO2 vertical columns with airborne in situ profile measurements during INTEX-A and INTEX-B, and compare them to the GEOS-Chem columns. Section 5 discusses errors in the retrievals. Sensitivity of the retrieved SO2 columns to emissions is examined in section 6.

2. Atmospheric Chemistry Model

Retrieving tropospheric SO2 vertical columns from solar backscatter observations requires local information about the vertical distribution of SO2. A global 3-D model of tropospheric chemistry is the best source of this information considering the sparseness of in situ measurements and the large variability of SO2 vertical profiles. We use the GEOS-Chem chemical transport model v8-01-04 [Bey et al., 2001] (http://acmg.seas.harvard.edu/geos/) to obtain the SO2 vertical distribution. GEOS-Chem is a global 3-D model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS-4) at the NASA Goddard Global Modeling Assimilation Office (GMAO: http://gmao.gsfc.nasa.gov/). The GEOS-Chem model version used here has 30 vertical levels on a pressure-based, terrain-following eta (η) coordinate and horizontal resolution of 2° latitude by 2.5° longitude.

The GEOS-Chem model includes a detailed simulation of the aerosol-oxidant system. The aerosol simulation in GEOS-Chem includes the sulfate-nitrate-ammonium system [Park et al., 2004], carbonaceous aerosols [Park et al.,...
Table 2. Annual Global Sulfur Emissions in the GEOS-Chem Model for the Year 2006

<table>
<thead>
<tr>
<th>Source</th>
<th>Emission Rate (Tg S yr⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuel on land</td>
<td>51.55</td>
</tr>
<tr>
<td>Ships</td>
<td>4.72</td>
</tr>
<tr>
<td>Biomass burning</td>
<td>1.22</td>
</tr>
<tr>
<td>Biofuel burning</td>
<td>0.12</td>
</tr>
<tr>
<td>Aircraft</td>
<td>0.07</td>
</tr>
<tr>
<td>Volcano</td>
<td>6.55</td>
</tr>
<tr>
<td>Dimethyl sulfide (DMS)</td>
<td>21.05</td>
</tr>
</tbody>
</table>

2003], sea salt [Alexander et al., 2005], and mineral dust [Fairlie et al., 2007]. The aerosol and oxidant simulations are coupled through formation of sulfate and nitrate [Park et al., 2004], heterogeneous chemistry [Jacob, 2000], and aerosol effects on photolysis rates [Martin et al., 2003b]. The optical properties for mineral dust used for the standard GEOS-Chem simulation are based on the refractive indices of Patterson et al. [1977]. There is growing recognition that those values are too absorbing at UV wavelengths [Colarco et al., 2002]. We use a Mie algorithm [de Rooy and van der Stap, 1984; Mishchenko et al., 1999] to recalculate the optical properties of mineral dust based on the refractive indices of Sinyuk et al. [2003]; the single scattering albedo at 300 nm of mineral dust in GEOS-Chem increases by 0.14 to the range of 0.7–0.9.

[v] The model uses detailed emission inventories, including recent updates by van Donkelaar et al. [2008]. Table 2 contains the annual global sulfur emissions used in the model. The global anthropogenic emission inventory for NOx, SOx, and CO is based on EDGAR [Olivier et al., 2001] for the base year of 2000. The global inventory is replaced with regional inventories from NEI99 (http://www.epa.gov/ttn/chief/net/1999/inventory.html) over the United States for 1999, BRAVO [Kuhns et al., 2005] over Mexico for 1999, CAC (http://www.ec.gc.ca/pdb/cac/cac_home_e.cfm) over Canada for 2005, Streets [Zhang et al., 2009] for eastern Asia for 2006, and EMEP (http://www.emep.int) over Europe for 2005. We scale all regional and global inventories from their respective base year to 2004, the last year of available statistics, unless its base year is after 2004. The EDGAR ship emission inventory yielded AMFs with sharply defined ship tracks that are inconsistent with the satellite data. We replace the EDGAR ship emission inventory with the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) [C. Wang et al., 2008].

[10] Natural sources of sulfur in the model include volcanoes and atmospheric oxidation of dimethyl sulfide (DMS) from phytoplankton. The oceanic water emission of DMS is calculated as the product of local seawater DMS concentration and sea-to-air transfer velocity [Park et al., 2004]. Volcanic emissions of SO2 from continuously active and sporadically erupting volcanoes are included from the database of Andres and Kasgnoc [1998]. We update the inventory for 2006 following Chin and Jacob [1996] using the database of the Global Volcanism Program (GVP: http://www.volcano.si.edu/). The total amount of SO2 emitted by a given eruption, and the height of the eruption plume, are specified as function of the volcanic explosivity index [Newhall and Self, 1982; Simkin and Siebert, 1994].

[11] The GEOS-Chem sulfur simulation has been evaluated in a number of previous studies. GEOS-Chem generally gives unbiased simulation of sulfate aerosol concentrations over North America [Park et al., 2004; Heald et al., 2006]. Park et al. [2004] and van Donkelaar et al. [2008] found that the model can reproduce with no significant bias the observed vertical profiles of SO2 from the TRACE-P and INTEX-B aircraft campaigns, although there is evidence that SO2 oxidation may be too rapid [Heald et al., 2006; van Donkelaar et al., 2008]. The United States SO2 emission inventory used in the simulation is believed to be well defined [Park et al., 2004; Heald et al., 2006; van Donkelaar et al., 2008].

[12] We conduct simulations for the years 2004 and 2006. The GEOS-Chem output is averaged within 0900 to 1100 local time (LT) and 1300 to 1500 LT to cover the SCIAMACHY and OMI overpasses for use in the AMF calculation and subsequent analysis.

3. AMF Calculation

[13] Here we develop a local AMF formulation for SO2 and apply it to SCIAMACHY and OMI observations.

3.1. AMF Formulation

[14] The AMF is defined as the ratio of the slant column of an optically thin absorber along an average backscattered path observed by a satellite instrument, to the vertical column. In the absence of scattering for a plane parallel atmosphere, the AMF is a geometric air mass factor AMF_G, which is a simple function of the solar zenith angle θ_s and the satellite instrument viewing zenith angle θ_v.

$$AMF_G = \frac{\sec(\theta_s) + \sec(\theta_v)}{1}.$$ \hspace{1cm} (1)

[15] Due to atmospheric Rayleigh and Mie scattering, the AMF is sensitive to the relative vertical distribution of the absorber. The AMF calculation applied here is based on the formulation of Palmer et al. [2001] and Martin et al. [2002] for the retrieval of HCHO and NO2 from GOME measurements. A dimensionless vertical shape factor $S(\eta)$ representing a normalized vertical profile of mixing ratio over the eta (η) vertical coordinate, is determined from the GEOS-Chem simulation for each observation pixel

$$S(\eta) = C(\eta) \frac{\Omega_{air}}{\Omega_{SO2}},$$ \hspace{1cm} (2)

where $C(\eta)$ is the SO2 mixing ratio, and Ω_{air} and Ω_{SO2} are the vertical columns of air and SO2 from surface to the model top (0.01 hPa).

[16] Scattering weights $\omega(\eta)$ describe the vertically resolved instrument sensitivity to SO2. More specifically $\omega(\eta)$ is the sensitivity of the dimensionless solar normalized radiance I observed by a satellite instrument to local variation of the abundance of SO2 at each level η.

$$\omega(\eta) = -\frac{1}{AMF_G} \frac{\alpha(\eta)}{\alpha_e} \frac{\partial \ln I}{\partial \eta},$$ \hspace{1cm} (3)

where $\alpha(\eta)$ is the temperature-dependent absorption cross section (cm² molecules⁻¹), α_e is the effective absorption
cross section (cm2 molecules$^{-1}$) representing an average cross section weighted by the vertical distribution of SO$_2$ in the column [Palmer et al., 2001], and δr is the optical depth increment of SO$_2$ as a function of η. AMF$_G$ normalizes the scattering weights such that $\omega(\eta) = 1$ in a non-scattering atmosphere. Local temperature vertical profiles are from GEOS-4. We assume that the slant optical depth of the layer can be given by the product of the vertical optical depth and the average light path enhancement. The AMF is then written as [Palmer et al., 2001]

$$AMF = AMF_G \int_0^1 \omega(\eta)S(\eta)d\eta.$$

[17] The AMF formulation accounts for cloud-contaminated pixels, which are typical in satellite measurements, using the cloud information (e.g., cloud fraction and cloud pressure) following Martin et al. [2002]. The effective cloud fraction and cloud pressure for our AMF calculation are from FRESCO+ [P. Wang et al., 2008] for SCIAMACHY and the OMCLDRR [Joiner and Vasilkov, 2006] for OMI. Surface reflectivity is from a 14 year climatology from TOMS at 360 nm [Herman and Celarier, 1997]. Local O$_3$ columns are from SCIAMACHY and OMI as discussed in section 3.3. Local aerosol profiles are from GEOS-Chem as discussed in section 3.4. The U.S. summer standard ozone profile is used in the AMF calculation. Using local O$_3$ profiles from GEOS-Chem changes the AMF by <2%.

Scattering weights for both the clear and cloudy fractions of the pixel are calculated using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) radiative transfer model [Spurr et al., 2001; Spurr, 2002].

[18] The cloud radiance fraction c, the fraction of the radiance from the cloudy sky subpixel, can be expressed as

$$c = \frac{f \cdot R_{cloud}}{f \cdot R_{cloud} + (1 - f) \cdot R_{clear}},$$

where f is the effective cloud fraction (0 $\leq f$ \leq 1), and the reflectivity of the clear R_{clear} and cloudy R_{cloud} scene is obtained from the radiative transfer model and measured reflectance. AMFs are first calculated for the clear AMF_{clear} and cloudy AMF_{cloud} fractions, assuming the same shape factor in each subpixel. The combined AMF accounting for clouds is then given by

$$AMF = (1 - c) \cdot AMF_{clear} + c \cdot AMF_{cloud}.$$

[19] The AMF significantly depends on wavelength as Rayleigh scattering increases at shorter wavelengths and can be different for SO$_2$ slant column retrievals from SCIAMACHY and OMI [Thomas et al., 2005; Richter et al., 2006]. We calculate the AMF at 319.7 nm for SCIAMACHY SO$_2$ and at 313.2 nm for OMI SO$_2$, the middle of the fit wavelength ranges for the corresponding slant column retrievals (section 4.1).

[20] Figure 1 (left) shows the global distribution of the seasonal mean AMF for OMI SO$_2$. The AMF tends to be larger over ocean, reflecting the higher center of mass pressure (CMP) of SO$_2$ over ocean, and the greater instrument sensitivity to SO$_2$ in the free troposphere. Smaller AMFs over polluted regions indicate reduced instrument sensitivity to SO$_2$ in the boundary layer. The AMFs over the eastern United States and China are similar (~0.5) reflecting similar CMP of ~910 hPa (0.9 km) of the SO$_2$ profile [Krotkov et al., 2008]. Relatively high AMF values are found over continental regions that have high surface reflectivity or are intensely convective. The seasonal variation in the AMF over the high-latitude oceans arises largely from the seasonal variation in solar zenith angle. Except for regions of biomass burning (e.g., central Africa and central South America), the seasonal variation in the AMF over land is less pronounced, due to the weak seasonal variation in shape factors and scattering weights in the boundary layer. The seasonal AMFs for SCIAMACHY are up to 25% higher than those shown for OMI over ocean and up to 25% lower than those shown for OMI over land, reflecting in both cases the larger solar zenith angles of SCIAMACHY morning observations.

The slight diurnal variation in the SO$_2$ profile also contributes to the lower SCIAMACHY AMFs over land due to the shallow boundary layer in morning that increases the SO$_2$ CMP.

3.2. Shape Factors

[21] Here we evaluate the relative vertical profile (shape factor) of SO$_2$ used in the AMF calculation. Figure 2 shows aircraft flight tracks of the NASA DC-8 and the NSF C-130 for INTEX-A and INTEX-B used for the evaluation. Flight conditions range from remote marine to highly polluted regions. The DC-8 sampled over the eastern United States and the North Atlantic Ocean for INTEX-A, and over Hawaii and Mexico for INTEX-B. The C-130 sampled over the northwestern United States and Mexico for INTEX-B. SO$_2$ was measured in situ on the DC-8 by chemical ionization mass spectrometry [Kim et al., 2007], and on the C-130 by UV pulsed fluorescence [Ryerson et al., 1998]. The comparisons exclude fresh pollution plumes as diagnosed by NO$_x$/NO$_y$ > 0.4 mol mol$^{-1}$ or (if NO$_y$ is not available) NO$_x$ > 4 ppbv and altitude <2 km; biomass burning plumes as diagnosed by HCN > 500 pptv or CH$_3$CN > 225 pptv or flight logs; and stratospheric air as diagnosed by O$_3$/CO > 1.25 mol mol$^{-1}$ [Hudman et al., 2007].

[22] Figure 3 compares shape factors of SO$_2$ inferred from airborne in situ measurements with those calculated with the GEOS-Chem simulation as used in our AMF calculation. The GEOS-Chem simulation for these comparisons is sampled along aircraft flight tracks at observation time. Shape factor vertical profiles depend on the pressure level of the SO$_2$ source. The shape factors for INTEX-A (Figure 3, top) exhibit a maximum in the boundary layer due to regional pollution and outflow. The SO$_2$ gradient in the boundary layer reflects averaging over multiple flights. Shape factors for INTEX-B generally correspond to cleaner conditions, with the exception of Mexico City outflow near 700 hPa. The simulated SO$_2$ profiles near the top of the boundary layer tend to exhibit a positive bias that is similar, albeit smaller, than found by Hains [2007] who compared CMAQ and GOCART SO$_2$ profiles versus aircraft measurements over the eastern United States. The airborne measurements and model calculations are highly consistent providing confidence in the AMF calculation, and in the ability of the GEOS-Chem model to represent SO$_2$ vertical...
profiles. The AMF calculated from the campaign-averaged in situ profile is typically within 10% of the AMF determined from simulated profiles. The largest discrepancy occurs over northwestern United States (NWUS in Figure 3), where the AMF calculated with the measured profile is 14% higher than the AMF calculated with the simulated profile. The error in the simulated profiles is much smaller than the ~100% error that would arise from using a global uniform vertical profile of SO$_2$ in the AMF calculation [e.g., Khokhar et al., 2005; Thomas et al., 2005]. The simulated profile shape can significantly reduce the uncertainty in the AMF calculation.

3.3. Ozone Correction

[23] Our AMF calculation accounts for absorption of UV radiation by ozone using an O$_3$ vertical profile S_{O3} in the scattering weight calculation (equation 3) that is scaled by the total ozone column $T_{O3,sat}$ of the coincident satellite observation pixel

$$S_{O3}(\sigma) = C_{O3}(\sigma) \frac{T_{O3,sat}}{T_{O3,US}},$$

where C_{O3} is the U.S. summer standard ozone profile and $T_{O3,US}$ is the corresponding total column of 311 DU. Total
O₃ columns of SCIAMACHY and OMI used here are from the WFDOAS retrieval [Weber et al., 2007] and the OMI TOMS-V8 total O₃ algorithm [Bhartia and Wellemeyer, 2002], respectively.

[24] The magnitude of the effect increases with the O₃ slant column [Krotkov et al., 2008]. The O₃ effect on the AMF can be large (>30%) for certain conditions (i.e., large O₃ vertical column, solar zenith angle, and viewing zenith angle), but can be accounted for accurately using satellite-measured total O₃ in equations (4)–(7). The ozone correction to the SCIAMACHY SO₂ AMF are within 15% of those for OMI.

3.4. Aerosol Correction

[25] Scattering and absorption by aerosols have significant effects on satellite retrievals of atmospheric trace gases [e.g., Torres and Bhartia, 1999; Colarco et al., 2002; Sinyuk et al., 2003; Torres et al., 2007]. Krotkov et al. [2008] compared in situ aircraft measurements and OMI SO₂ retrievals to infer the sensitivity of OMI SO₂ retrievals to different types of UV-absorbing aerosols. Following Martin et al. [2003a], we account for aerosols in the AMF calculation by representing within the LIDORT model their vertically resolved optical properties from the GEOS-Chem simulation described in section 2. These same aerosol fields (sulfate, size-resolved mineral dust and sea salt, hydrophobic and hydrophilic black carbon, and hydrophobic and hydrophilic organic carbon) also are used to account for the effect of aerosols on photolysis frequencies and heterogeneous chemistry in the GEOS-Chem model [Martin et al., 2003b; Evans and Jacob, 2005; Sauvage et al., 2007].

[26] Figure 1 (right) shows the aerosol correction factor. UV-absorbing dust reduces the AMF by up to 50% over the Sahara during MAM and by 15–30% over the Middle East and Central Asia. In Northern Hemisphere spring, dust transport from the deserts of central Asia decreases the AMF over northeast Asia. Scattering aerosols increase the AMF by <15% over industrial regions such as the eastern United States [Krotkov et al., 2005] and for pollution aerosols downwind of Mexico City [Barnard et al., 2008; Corr et al., 2009], which would result in reduced AMFs. Additional direct measurements of aerosol optical properties at UV wavelengths would better constrain the modeled aerosol correction. The correction factors for aerosol to the SCIAMACHY SO₂ AMF are within 15% of those for OMI.

4. Vertical Columns of SO₂

[27] Here we describe the SO₂ columns retrieved from SCIAMACHY and OMI, and compare them to values simulated with GEOS-Chem.

4.1. Slant Columns

[28] The SO₂ slant column retrieval for SCIAMACHY is based on the algorithms (Differential Optical Absorption Spectroscopy) of Aje et al. [2004], Richter et al. [2006], and Lee et al. [2008a, 2008b]. The wavelength range of 315–327 nm is used for the SO₂ fit. In addition to the SO₂ cross section (295K) [Vandaele et al., 1994], two ozone cross sections (223K and 243K) [Bogumil et al., 2003], a synthetic Ring spectrum [Vountas et al., 1998], an undersampling correction, and the polarization dependence of the SCIAMACHY instrument are included in the fit. Daily solar irradiance measurements taken with the ASM diffuser are used as the reference spectra. We use here the data taken at SZA < 70° and cloud radiance fraction < 0.2.

[29] Figure 4a shows the mean SCIAMACHY SO₂ slant columns for 2006. Pronounced enhancements are found over volcanoes and industrial regions in China. There is no evidence of SO₂ column enhancements along ship tracks, in contrast with NO₂ [Beirle et al., 2004; Richter et al., 2004]. Large scatter in the South Atlantic Anomaly (SAA) region over South America and the Southern Atlantic Ocean results from reduced signal-to-noise due to exposure of the low-orbiting satellite instrument to radiation and particles. Figure 4b shows the zonal mean slant columns over the Pacific. SO₂ slant columns have a latitude-dependent offset, which could be related to imperfect corrections for ozone interference and the Ring effect [Van Roozendael et al., 2002; Lee et al., 2008b].
Figure 3. Shape factors (relative vertical distribution) of SO\textsubscript{2} over land and ocean of the eastern United States and North Atlantic Ocean averaged over the entire INTEX-A period, and over Houston (20°N–43°N, 100°W–91°W), the North Pacific (40°N–61°N, 151°W–140°W), Mexico (18°N–22°N, 102°W–90°W), and the northwest United States (38°N–50°N, 135°W–122°W) over the entire INTEX-B period. The red and black lines show the shape factors (equation (2)) determined from in situ measurements and the GEOS-Chem model, respectively. The number of measurements (n) within each 50 hPa interval is shown in the right of each plot. Error bars represent the standard deviations divided by \(\sqrt{n}\). Center of mass pressure is indicated with arrows in black for simulated profiles and in red for in situ measurements.
For OMI we use the publicly released Planetary Boundary Layer (PBL) OMI SO\textsubscript{2} Level 2 product retrieved with the Band Residual Difference algorithm [Krotkov et al., 2006, 2008]. The algorithm is a two step retrieval. First, the OMI TOMS-V8 algorithm [Bhartia and Wellemeyer, 2002] retrieves the total ozone amount by matching the calculated radiances to the measured radiances at a pair of wavelengths (317.5 and 331.2 nm) assuming no SO\textsubscript{2} and using cloud pressures from OMCLDRR [Joiner and Vasilkov, 2006]. The residuals at 10 other wavelengths are then calculated as the difference between the measured and computed radiances including 4 short UV wavelengths in the SO\textsubscript{2} bands: 310.8, 311.9, 313.2, and 314.4 nm. In the presence of SO\textsubscript{2}, the residuals contain spectral structures that correlate with the SO\textsubscript{2} absorption cross sections. A 'sliding median' empirical correction is used to reduce any cross-track and meridional biases, which subtracts a median residual for a sliding group of SO\textsubscript{2} free pixels and minimal cloud contamination (OMTO3 radiative cloud fraction < 0.15) covering ± 15° latitude along the orbit track from each spectral band and cross-track position [Yang et al., 2007, Krotkov et al., 2008]. Second, the SO\textsubscript{2} algorithm (OMSO2) converts corrected differential residuals at the three wavelength pairs with the largest differential SO\textsubscript{2} cross sections in the OMI UV2 spectral region (P1 = 310.8–311.9; P2 = 311.9–313.2, and P3 = 313.2–314.4 nm) to the SO\textsubscript{2} slant columns differential SO\textsubscript{2} cross-sections data at constant temperature (275 K) [Bogumil et al., 2003]. The slant columns of the three pairs are averaged and the average slant column is converted to the total SO\textsubscript{2} vertical column by dividing by a constant AMF of 0.36.

We converted the OMI PBL SO\textsubscript{2} vertical columns back to slant columns by multiplying by the original constant AMF of 0.36. We use here the data with near-nadir viewing angles (cross-track position from 20 to 40) at SZA < 70° and cloud radiance fraction < 0.2.

Figure 4c shows the mean OMI SO\textsubscript{2} slant columns for 2006. Enhancements exist over volcanoes and East Asia. No enhancement is found over ship tracks. The data have a negative offset and a sharp gradient (<6 × 1015 molecules cm-2) at ± 30° latitude, as seen in Figure 4d. The gradient at ± 30° latitude is caused by the residual
sensitivity to ozone profile; the assumed a priori ozone profile in step 1 OMTO3 algorithm is switched from a low-latitude shape to a midlatitude shape at ± 30° latitude in the ozone lookup table [Bhartia and Wellemeyer, 2002]. Differences with SCIAMACHY arise from the sliding median correction applied to OMI residuals, from differences in spectral fitting, and from instrument differences.

[33] We remove the latitude-dependent offsets in SCIAMACHY and OMI SO2 slant columns by subtracting the columns taken over the Pacific from the total column on a daily basis using the reference sector method (RSM, following Martin et al. [2002] and Richter and Burrows [2002] for NO2 and Khokhar et al. [2005] for SO2). We recognize that the offset may actually depend on the true SO2 concentration and consider this approach a temporary fix until the offset is addressed in a future improved spectral fit. We use the GEOS-Chem model to identify regions with little SO2.

[34] Figure 5 (top) shows simulated GEOS-Chem SO2 slant columns. Much of the Pacific Ocean, excluding volcanic regions such as Hawaii, has little SO2 (mean simulated values < 3.0 x 10^{13} molecules cm^{-2}) and is suitable for the offset correction. In situ SO2 measurements from INTEX-B over the North Pacific confirm the low SO2 concentrations (Figure 3). The stratosphere also has little SO2 (<1 x 10^{14} molecules cm^{-2}) barring exceptional volcanic events [Inn and Vedder, 1981; Pyle et al., 1996]. We note that the May 2006 eruption of the Soufriere Hill volcano in Caribbean sent an SO2 cloud into the stratosphere that crossed the Pacific sector at ~20 km height [Prata et al., 2007]. The areas of volcanic plume are excluded from the reference sector for 25 May to 12 June 2006.

[35] Figure 5 (bottom) show the SCIAMACHY and OMI SO2 slant columns corrected for latitude-dependent offsets using RSM. Their overall consistency is more apparent. Differences between the SCIAMACHY and OMI slant

Figure 5. Annual mean tropospheric SO2 slant columns for 2006. (top) Columns simulated with the GEOS-Chem model. The GEOS-Chem slant columns are obtained from the simulated vertical columns sampled for OMI overpass time using the OMI SO2 AMF. The white lines denote the reference sector over the central Pacific region that is used for an offset correction to the slant column. Offset-corrected slant columns from (middle) SCIAMACHY and (bottom) OMI.
columns in Figure 5 partially reflect their pixel size and sampling as described in Table 1. Differences in the spectral fit also contribute.

4.2. Vertical Columns

[36] We calculate SO₂ vertical columns from SCIAMACHY and OMI by dividing each slant column with the coincident local AMF determined with the GEOS-Chem simulation for the respective instrument overpass times. Seasonal mean values of the resulting vertical columns regridded onto the GEOS-Chem grid are shown in Figure 6. The spatial distributions of the vertical columns of SCIAMACHY and OMI SO₂ resemble those of their slant columns. However, the AMF conversion from slant to vertical columns generally enhances the columns over land (AMF < 1), and decreases those over oceans and volcanoes (AMF > 1).

[37] Both SCIAMACHY and OMI show enhanced SO₂ columns over metropolitan and industrial areas, especially over eastern China. Both instruments observe volcanic SO₂ plumes from explosive eruptions. The SO₂ plume form the Nyamuragira, Congo is apparent in DJF extending from Central Africa to South Asia. The SO₂ plume from the Soufrière Hills, Caribbean volcano extends over the tropical Pacific in May [Prata et al., 2007].

[38] However, distinct differences exist between SCIAMACHY and OMI. The seasonal variation of SO₂ columns over China reaches a minimum in summer for SCIAMACHY and in spring for OMI. The SCIAMACHY columns tend to be $3 \times 10^{15} \text{ molecules cm}^{-2}$ higher than OMI columns over industrial regions of Western Europe, the eastern United States, and South Asia, and $1 \times 10^{16} \text{ molecules cm}^{-2}$ higher over East China. However, in summer, the OMI columns are $1 \times 10^{16} \text{ molecules cm}^{-2}$ higher over eastern China than those from SCIAMACHY. There is a difference of $1 \times 10^{16} \text{ molecules cm}^{-2}$ between SCIAMACHY and OMI columns over volcanic regions of Central Africa in DJF and Indonesia in the periods of DJF and SON.

4.3. Validation of the SO₂ Retrieval With Airborne in Situ Measurements

[39] Here we use the aircraft measurements from INTEX-A and INTEX-B to evaluate the satellite retrievals. Aircraft spirals are selected for validation if they satisfy the following coincidence criteria: (1) the profile measurement must have been made during daytime within a SCIAMACHY and OMI scene on the date of observation and (2) the in situ measurements must sample the lower troposphere below 0.6 km and up to at least 3 km. The reason for the second...
criterion is that the column is often dominated by boundary layer SO2. Satellite measurements with pixel centers within 15 km of the aircraft spiral are used for the comparison. Twenty three coincident measurements for INTEX-A and INTEX-B combined are available during SCIAMACHY overpasses, and 23 measurements alone for INTEX-B during OMI overpasses. The locations of coincident measurements are shown in Figure 2.

Partial columns from airborne measurements are calculated by integrating the average SO2 amount from the lowest to the highest measurement altitude. The partial column below the lowest measurement altitude of an individual profile is obtained by integrating a mean SO2 amount from the values measured below 1 km, assuming the mixing ratio from the surface to 1 km is homogeneous. This partial column is typically 10–30%. The partial column above the highest measurement altitude of an individual profile is determined by integrating to 12 km a mean profile obtained from all flights over each campaign. This partial column is typically < 3%. These three partial columns are integrated for comparison with column amounts of a collocated satellite measurement pixel.

Figure 7 compares SO2 vertical columns retrieved from SCIAMACHY (Figures 7a and 7b) and OMI (Figures 7c and 7d) with those determined with airborne in situ measurements for INTEX-A and INTEX-B. Figures 7b and 7d shows the SO2 columns retrieved using the local AMF are highly consistent with the in situ measurements (correlation coefficient $r = 0.89$ for SCIAMACHY and $r = 0.92$ for OMI). The slopes of the reduced major-axis regression lines are 1.12 for SCIAMACHY and 0.95 for OMI. The comparison exhibits moderate scatter that could be related to incomplete in situ sampling of the entire column, diurnal variation of SO2, and the uncertainty of the measurements.

To further evaluate the local AMF, Figure 7 (left) compares the in situ SO2 columns from INTEX-A and INTEX-B with the RSM-corrected satellite SO2 columns that use a globally uniform AMF of 0.88 [Lee et al., 2008a] for SCIAMACHY and of 0.36 for OMI [Krotkov et al.,...
2008]. Correlations of the aircraft and retrieved columns are reduced \((r = 0.78\) for SCIAMACHY and \(r = 0.71\) for OMI) when a globally uniform AMF is used. Evaluation of the other OMI SO\(_2\) products (lower tropospheric and midtropospheric algorithms) with aircraft observations yielded worse results \((r < 0.59)\).

[43] We also compare SO\(_2\) columns from in situ aircraft measurements over eastern China [Krotkov et al., 2008] with those retrieved from OMI. Table 3 contains the statistics for the comparison. Replacing the global uniform AMF of 0.36 with our local AMF improves the correlation from 0.83 to 0.90, and reduces the offset by a factor of 2. The consistency of the aircraft SO\(_2\) columns with the retrieved using our local AMF is comparable to the performance when the aircraft measurements themselves are used for the AMF correction, providing further confidence in our AMF calculation.

4.4. Comparison to Atmospheric Chemistry Model

[44] Figure 6 (right) shows seasonal mean simulated GEOS-Chem SO\(_2\) columns for 2006, sampled coincidently with SCIAMACHY observations. Sampling GEOS-Chem during OMI observations changes seasonal mean values by less than \(4 \times 10^{15}\) molecules cm\(^{-2}\). The global distribution of the GEOS-Chem columns is generally consistent with the observed columns from SCIAMACHY \((r = 0.79,\) slope = 1.59, offset = \(1 \times 10^{15}\) molecules cm\(^{-2}\)) and OMI \((r = 0.77,\) slope = 0.89, offset = \(2 \times 10^{15}\) molecules cm\(^{-2}\)). The AMF had a minor effect on the correlation. The correlation of GEOS-Chem slant columns with satellite slant columns is 0.76 for SCIAMACHY and 0.71 for OMI. Simulated and retrieved vertical columns both exhibit clear enhancements over China. The most pronounced disagreements are found for explosive volcanic eruption regions (e.g., Central Africa in DJF from the Nyamuragira and the topical Pacific in MAM from the Soufrière Hills volcano).

[45] Table 4 presents a more focused comparison over the United States, where bottom-up SO\(_2\) emission inventories are expected to be well known. The seasonal mean SO\(_2\) columns from SCIAMACHY and OMI are spatially well correlated with those determined from the GEOS-Chem model \((r = 0.85\) for SCIAMACHY and \(r = 0.82\) for OMI). However, the SCIAMACHY SO\(_2\) columns are \(4 \times 10^{15}\) molecules cm\(^{-2}\) (30–70%) higher than the corresponding values from the GEOS-Chem model, with the largest differences in summer. The OMI observations are typically 10–50% \((2–5 \times 10^{15}\) molecules cm\(^{-2}\)) lower over the eastern United States than the corresponding values from the GEOS-Chem model, with the largest differences in spring. The correlation of GEOS-Chem slant columns with satellite slant columns is within 0.04 of the correlations reported for vertical columns in Table 4.

[46] Table 4 also compares simulated and retrieved values over eastern China, where bottom-up inventories are less well known than for the United States. Observations from SCIAMACHY and OMI again are well correlated with those from the GEOS-Chem \((r = 0.85\) for SCIAMACHY and \(r = 0.81\) for OMI). However, the SCIAMACHY columns are 20–60% higher than those from GEOS-Chem in winter, spring and fall and 50–120% higher in summer. The OMI columns are 40% lower than those from GEOS-Chem in fall through spring, and 60% higher in summer.

[47] Several pronounced differences are found elsewhere in the world. The SO\(_2\) columns from SCIAMACHY and OMI are a factor of 2–3 higher than those from GEOS-Chem over Nigeria and over the Highveld of South Africa, a

Table 3. Comparison Over China of SO\(_2\) Columns From Airborne in Situ Measurements and OMI

<table>
<thead>
<tr>
<th>Period</th>
<th>Local AMF (r) (p < 0.001)</th>
<th>Operational AMF (r) (p < 0.001)</th>
<th>Aircraft AMF-Corrected (r) (p < 0.001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter (DJF)</td>
<td>0.90</td>
<td>0.83</td>
<td>0.92</td>
</tr>
<tr>
<td>Spring (MAM)</td>
<td>0.86</td>
<td>0.79</td>
<td>0.89</td>
</tr>
<tr>
<td>Summer (JJA)</td>
<td>0.86</td>
<td>0.79</td>
<td>0.89</td>
</tr>
<tr>
<td>Fall (SON)</td>
<td>0.86</td>
<td>0.79</td>
<td>0.89</td>
</tr>
</tbody>
</table>

\(\Delta\)Aircraft in situ SO\(_2\) columns \((n = 8)\) in Table 3 of Krotkov et al. [2008] measured over China during EAST-AIRE campaign.
(\(\Delta\)Collection 3 OMI SO\(_2\) columns calculated in this study.
(\(\Delta\)Collection 3 OMI SO\(_2\) columns in Table 3 of Krotkov et al. [2008] using the operational AMF of 0.36.
(\(\Delta\)Collection 3 OMI SO\(_2\) columns in Table 3 of Krotkov et al. [2008] in which the aircraft-measured SO\(_2\) and aerosol profiles, total ozone, and OMI viewing geometry are used in the AMF calculation.

Table 4. Comparison of Seasonal Mean Simulated and Retrieved SO\(_2\) Vertical Columns for 2006

<table>
<thead>
<tr>
<th>Period</th>
<th>United States ((\text{molecules cm}^{-2}))</th>
<th>Eastern China ((\text{molecules cm}^{-2}))</th>
<th>SCIAMACHY ((\text{molecules cm}^{-2}))</th>
<th>OMI ((\text{molecules cm}^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter (DJF)</td>
<td>1.28 × GC – 1.43 × 10^{14} (r = 0.90, p < 0.001)</td>
<td>0.73 × GC – 3.04 × 10^{14} (r = 0.75, p < 0.001)</td>
<td>1.39 × GC – 4.23 × 10^{15} (r = 0.75, p < 0.001)</td>
<td>0.94 × GC – 4.79 × 10^{15} (r = 0.65, p < 0.001)</td>
</tr>
<tr>
<td>Spring (MAM)</td>
<td>1.31 × GC – 4.79 × 10^{14} (r = 0.84, p < 0.001)</td>
<td>0.87 × GC – 3.59 × 10^{14} (r = 0.82, p < 0.001)</td>
<td>1.19 × GC – 1.33 × 10^{15} (r = 0.89, p < 0.001)</td>
<td>0.61 × GC – 1.02 × 10^{15} (r = 0.83, p < 0.001)</td>
</tr>
<tr>
<td>Summer (JJA)</td>
<td>1.73 × GC – 5.05 × 10^{15} (r = 0.83, p < 0.001)</td>
<td>1.17 × GC – 4.04 × 10^{14} (r = 0.79, p < 0.001)</td>
<td>2.37 × GC – 1.69 × 10^{15} (r = 0.88, p < 0.001)</td>
<td>1.58 × GC – 6.63 × 10^{14} (r = 0.92, p < 0.001)</td>
</tr>
<tr>
<td>Fall (SON)</td>
<td>1.54 × GC – 5.88 × 10^{14} (r = 0.85, p < 0.001)</td>
<td>0.97 × GC – 4.62 × 10^{14} (r = 0.82, p < 0.001)</td>
<td>1.67 × GC – 1.91 × 10^{15} (r = 0.89, p < 0.001)</td>
<td>0.78 × GC – 1.29 × 10^{15} (r = 0.85, p < 0.001)</td>
</tr>
</tbody>
</table>

\(\Delta\)Equations are determined with reduced major-axis linear regression [Hirsch and Gilroy, 1984]. The GEOS-Chem simulation is sampled coincidently with the instrument being compared. GC denotes GEOS-Chem.

\(\Delta\)25°N–50°N, 127°W–68°W; 336 cases.

\(\Delta\)25°N–45°N, 100°E–125°E; 153 cases.
region with numerous power plants. Retrieved values are 20–80% higher than simulated values around the Persian Gulf, industrial regions of Europe, Indonesian volcanic regions and southeastern Australia. Retrieved values are 50–70% lower than simulated over the Himalaya region and Mexico. There are also large differences over volcanic regions as noted earlier.

5. Error Analysis of SO2 Retrieval

The main errors of satellite measurements of SO2 columns come from uncertainties of spectral fitting, removal of the slant column bias, and the AMF calculation. Here we quantify the errors.

5.1. Errors in Slant Columns

Figure 8 (top) shows the annual mean errors from spectral fitting in the retrieval of SO2 vertical columns from SCIAMACHY. We use the SCIAMACHY fitting errors here since they are available for each individual observation. The annual mean slant column errors from spectral fitting are calculated by Gaussian error propagation of the individual errors, normalized by their corresponding AMFs.
for comparison with vertical column errors. The resulting error is \(\approx 3.5 \times 10^{15} \text{ molecules cm}^{-2} \) (20\%) over polluted areas at the GEOS-Chem resolution of \(2^\circ \times 2.5^\circ \). The error in daily OMI slant columns over polluted areas at the GEOS-Chem resolution is \(\approx 6 \times 10^{15} \text{ molecules cm}^{-2} \) (\(\approx 45\%) \) [Krotkov et al., 2008]. The slant column error is associated with an imperfect spectral fit reflecting spectral interference and weak radiances measured at UV wavelengths. Absolute errors are higher over polluted regions where SO\(_2\) columns are larger, and at high latitudes where enhanced ozone columns reduce fitting precision. Annual mean slant column errors are smaller than signals from major anthropogenic SO\(_2\) sources.

[50] We estimate the error in the offset removal (section 4.1), as the quadrature sum of the annual mean slant column error over the reference sector and the difference between simulated and INTEX-B aircraft SO\(_2\) columns over the Pacific. The corresponding error is \(< 0.4 \times 10^{15} \text{ molecules cm}^{-2} \) in the tropics and 0.4–1.2 \(\times 10^{15} \text{ molecules cm}^{-2} \) at higher latitudes.

5.2. Errors of the Air Mass Factor

[51] The error in the AMF calculation depends on surface reflectivity, clouds, aerosols, and the SO\(_2\) vertical profile [Khokhar et al., 2005; Krotkov et al., 2008; Richter et al., 2006]. We assess the local error from surface reflectivity by comparing AMFs recalculated using the surface reflectivity uniformly perturbed by its uncertainty of 0.02 [Herman and Celarier, 1997; Boersma et al., 2004; Millet et al., 2006]. We determine the local error from cloud pressure by perturbation with its uncertainty of 100 hPa [Khokhar et al., 2005; Khokhar et al., 2008; Krotkov et al., 2008; Richter et al., 2006]. We estimate the AMF error in the offset removal (section 4.1), as the quadrature sum of the annual mean slant column error over the reference sector and the difference between simulated and INTEX-B aircraft SO\(_2\) columns over the Pacific.

The error in the AMF calculation depends on surface reflectivity, clouds, aerosols, and the SO\(_2\) vertical profile [Khokhar et al., 2005; Krotkov et al., 2008; Richter et al., 2006]. We assess the local error from surface reflectivity by comparing AMFs recalculated using the surface reflectivity uniformly perturbed by its uncertainty of 0.02 [Herman and Celarier, 1997; Boersma et al., 2004; Millet et al., 2006]. We determine the local error from cloud pressure by perturbation with its uncertainty of 100 hPa [Khokhar et al., 2005; Khokhar et al., 2008; Krotkov et al., 2008; Richter et al., 2006].

We estimate the AMF error \(\varepsilon_{\text{AMF}} \) for each measurement using \(\text{AMF}_{\text{clear}} \) and \(\text{AMF}_{\text{cloud}} \), and their errors, \(\varepsilon_{\text{AMF-clear}} \) and \(\varepsilon_{\text{AMF-cloud}} \) following Wenig et al. [2008],

\[
\varepsilon_{\text{AMF}} = \sqrt{(\text{AMF}_{\text{cloud}} - \text{AMF}_{\text{clear}})^2 \varepsilon_{\text{AMF-clear}}^2 + \varepsilon_{\text{AMF-cloud}}^2 + (1 - c)^2 \varepsilon_{\text{AMF-clear}}^2}.
\]

The error of the cloudy radiance fraction \(\varepsilon_c \) follows Wenig et al. [2008]

\[
\varepsilon_c = \sqrt{\left(\frac{c \cdot (1 - f)^2 \cdot E_{SR}}{(1 - c) \cdot R_{\text{cloud}}} + \varepsilon_f^2\right)^2 + \left(\frac{c \cdot (1 - c)^2 \cdot E_{SR}}{(f - (1 - f))} \right)^2}.
\]

We assume an error in the cloud fraction \(\varepsilon_f = 0.1 \) on the low side [Vasilkov et al., 2008; P. Wang et al., 2008] and an error in the surface reflectivity \(E_{SR} = 0.02 \) [Herman and Celarier, 1997; Boersma et al., 2004].

[54] Figure 10 shows the AMF error for each observation as a function of effective cloud fraction. The AMF error for unpolluted scenes ranges from 12\% for cloud-free conditions to 53\% for completely cloudy scenes. However, for polluted scenes it rapidly increases from 21\% for cloud-free conditions to 245\% for completely cloudy, reflecting the error in the correction for SO\(_2\) obscuration by clouds.

[55] Figure 8 (middle) shows the global distribution of the daily AMF error for SCIAMACHY measurements of mostly clear scenes (cloud radiance fraction < 20\%). In construction of the annual mean errors, we take the errors in cloud pressure and the daily SO\(_2\) profile to be random. Errors in surface reflectivity, aerosols, and the SO\(_2\) profile
Figure 9. Local errors for individual observations due to uncertainties of (a) surface reflectivity, (d) cloud pressure, (b and e) SO₂ profile, and (c and f) aerosols in the AMF calculation for SCIAMACHY measurements. (left) The errors in the clear-sky AMF (AMFCLR). (right) The errors in the cloudy-sky AMF (AMFCLD). Quadrature sum of surface reflectivity, cloud pressure, SO₂ profile, aerosols, ozone (EOZ), and wavelength (EWL), separately for (g) clear and (h) cloudy subpixels.
bias are taken to be systematic. AMF errors are $<2 \times 10^{15}$ molecules cm$^{-2}$ for most of the world. Enhanced AMF errors are found in polluted areas such as the eastern United States where the SO$_2$ errors due to AMF range from 3 to 5×10^{15} molecules cm$^{-2}$ (35–50%) and China where errors are up to 2.2×10^{16} molecules cm$^{-2}$ (70%). The enhanced AMF error over Nigeria arises from particularly large uncertainty in the aerosol correction over strong SO$_2$ sources (Figure 9c). AMF errors in the OMI measurements are generally within 15% of those in the SCIAMACHY measurements.

5.3. Total Error in the SO$_2$ Retrievals

We express the total error ε in the retrieval of vertical SO$_2$ columns as follows:

$$
\varepsilon = \sqrt{\frac{\varepsilon_{SC}}{\text{AMF}}}^2 + \frac{\varepsilon_{RSM}}{\text{AMF}}^2 + \frac{\varepsilon_{AMF}}{\text{AMF} \cdot FC}^2,
$$

where ε_{SC} and ε_{RSM} are the errors in slant column fitting and removal of the slant column bias, respectively. The normalization by AMF is for comparison of vertical column errors. Figure 8 (bottom) shows the total error. It is dominated by the AMF error over polluted areas, and by the spectral fit elsewhere. The overall error ranges from 3×10^{15} to 7×10^{15} molecules cm$^{-2}$ (40–55% relative errors) for yearly averages over the eastern United States, and up to 2.6×10^{16} molecules cm$^{-2}$ (80% relative errors) for China. Overall errors in the OMI retrieval are within 8% of those in the SCIAMACHY retrieval, assuming the OMI slant column error is consistent with the SCIAMACHY slant column error.

6. Sensitivity of Retrieved SO$_2$ Columns to Emissions

Of interest is the ability of satellite retrievals of SO$_2$ to discern information about anthropogenic SO$_2$ emissions. We examine this question by conducting a sensitivity simulation with GEOS-Chem in which the anthropogenic SO$_2$ emissions for 2006 are replaced with those for 1998. Emissions from North America increase by a factor of 1.7, and from Europe by a factor of 2.2. Emissions from China decrease by a factor of 2.1. The meteorology of the simulation remains specific to the year 2006.

Figure 11 (top) shows the difference between annual mean SO$_2$ columns calculated with GEOS-Chem using emissions for 2006 minus one with emissions for 1998. Pronounced differences of a factor of 2 are found over the regions with large changes in emissions, in particular over North America, Europe, and China. We compare this change in SO$_2$ columns to the retrieval bias that would arise from using incorrect SO$_2$ shape factors. Figure 11 (bottom) shows the difference between annual mean OMI SO$_2$ columns for 2006 retrieved using SO$_2$ shape factors from the simulation with 2006 emissions, minus the one using SO$_2$ shape factors from simulation with 1998 emissions. The retrieved SO$_2$ columns using shape factors for 1998 emissions are within 30% of those retrieved using shape factors for 2006 emissions. The larger changes in SO$_2$ columns of the reference atmosphere, compared with the
smaller retrieval bias from incorrect SO2 shape factors, indicate a clear sensitivity of SCIAMACHY and OMI to anthropogenic SO2 emissions.

7. Conclusion

Sulfur dioxide (SO2) is released by natural and anthropogenic processes into the Earth’s atmosphere where it plays important roles in climate and ecosystem health. We have presented an improved retrieval of SO2 vertical columns from the SCIAMACHY and OMI satellite instruments. Attention was devoted to the development of an air mass factor (AMF) algorithm to convert slant columns to vertical columns. For each observation from SCIAMACHY and OMI, we calculated an AMF from the altitude-dependent scattering weights computed with a radiative transfer model (LIDORT), weighted by relative vertical SO2 distribution (shape factor) determined locally with a 3-D global model of atmospheric chemistry (GEOS-Chem). The AMF calculation uses a 14 year local surface reflectivity climatology determined from TOMS at 360 nm. Cloud scattering is accounted for using simulated vertically resolved aerosol optical properties.

The AMF calculation reveals a factor of four variation in the seasonal mean sensitivity of SCIAMACHY and OMI to SO2. In general, both instruments are about twice as sensitive to SO2 columns over ocean than over land, because atmospheric scattering reduces instrument sensitivity to SO2 at low altitudes, and the center of mass SO2 pressure is lower over oceans than over land. Absorption of ultraviolet radiation by mineral dust can decrease the instrument sensitivity by 10–50% over deserts and downwind regions affected by dust transport (e.g., northeastern China in spring).

Latitudinally dependent offsets in SCIAMACHY and OMI slant columns were diagnosed by comparing retrieved, simulated, and aircraft columns over the Pacific. The offsets were removed by subtracting zonal mean values through the reference sector method. We evaluated the GEOS-Chem SO2 shape factors with airborne in situ measurements from the INTEX-A and INTEX-B aircraft campaigns over the North Pacific, North America, and the North Atlantic. Differences between simulated and retrieved profiles would change the AMF by 10%.

We validated the retrieved SO2 columns from SCIAMACHY and OMI with coincident in situ measurements from INTEX-A and INTEX-B aircraft campaigns. Application of the local AMFs calculated here improved the consistency of the
aircraft measurements versus the SCIAMACHY retrievals (correlation increases from 0.78 to 0.89; slope decreases from 1.38 to 1.12) and versus the OMI retrievals (correlation increases from 0.71 to 0.92; slope decrease from 1.61 to 0.95). Validation of the retrieved OMI SO2 columns versus aircraft measurements over eastern China yields similar improvements: application of our local AMFs increases the correlation from 0.83 to 0.90.

[63] Retrieved SCIAMACHY and OMI vertical columns for 2006 exhibit broad consistency with simulated columns from GEOS-Chem. Over the United States, where SO2 emissions are particularly well known, seasonal mean simulated and retrieved columns are spatially well correlated (r = 0.85 for SCIAMACHY and r = 0.82 for OMI). The slope of the reduced major axis regression line is 1.47 for SCIAMACHY and 0.93 for OMI. Retrieved columns over eastern China also are highly correlated (r = 0.85 for SCIAMACHY and r = 0.81 for OMI) with those from the GEOS-Chem simulation. However, seasonal mean simulated SO2 columns over eastern China in winter, spring and fall are 20–60% lower than those from SCIAMACHY and 10–40% higher than those from OMI. In summer the seasonal mean simulated SO2 columns are 50–120% lower than those from SCIAMACHY and 60% lower than those from OMI.

[64] We conducted sensitivity calculations to estimate the local error in the SO2 retrieval. The retrieval error is dominated by the spectral fitting precision over remote regions. Over regions of enhanced SO2 columns (>1 x 10^{16} molecules cm^{-2}) the AMF calculation becomes a more important contributor to the total error mostly due to uncertainty in clouds, SO2 vertical profiles, surface albedo, and aerosols. For individual scenes, cloud pressure is the dominant term in the AMF error despite excluding those with cloud radiance fraction > 0.2. After accounting for random errors, the largest contributor to the annual mean AMF error is the SO2 shape factor.

[65] We examined the sensitivity of SCIAMACHY and OMI to anthropogenic emissions by conducting a sensitivity simulation using emissions for 1998 instead of 2006. Simulated SO2 columns changed by a factor of 2. However, the SO2 AMFs changed by less than 30% due to changes in the shape factors. The large difference between the change in AMF and change in simulated SO2 columns indicates a high sensitivity of SO2 retrievals to errors in anthropogenic emission inventories.

[66] This study demonstrates that a local AMF calculation is necessary to quantitatively interpret SO2 observations from solar backscatter instruments such as SCIAMACHY and OMI. A major issue to be resolved is the latitudinally dependent offset in the SCIAMACHY and OMI retrievals, and differences between the retrievals for the two instruments. Better representations of SO2 oxidation in ship plumes is needed for global models. The SO2 emissions database of the Global Volcanism Program does not fully capture volcanic emissions. More accurate estimates of volcanic SO2 ash emissions, and plume heights for each volcanic eruption would improve the global SO2 simulation and AMF calculation. Direct measurements of aerosol optical properties in the ultraviolet would reduce uncertainty in the AMF.

[67] Acknowledgments. We thank Mian Chin for helpful comments on SO2 emissions. The publicly released planetary boundary layer (PBL) OMI SO2 Level 2 VC products and OMCLDR cloud products from OMI were obtained from GES Data and Information Service Center (http://disc.sci.gsfc.nasa.gov/). SO2 slant columns and WFDOAS total O3 columns from SCIAMACHY were obtained from the Institute of Environmental Physics, University of Bremen, Germany (http://www.iup.uni-bremen.de/). FRESCO+ cloud products from SCIAMACHY were obtained from Tropospheric Emission Monitoring Internet Service (TEMIS) (http://www.temis.nl/). This work was supported by the National Science and Engineering Research Council of Canada (NSERC) and by the National Aeronautics and Space Administration (NASA). N. Krotkov acknowledges NASA support through ROSES05 grant NNG06G000G.

References

Climate Change Science Program (CCSP) (2009), Atmospheric aerosol properties and climate impacts, report, NASA, Washington, D. C.

Hains, J. C. (2008), A chemical climatology of lower tropospheric trace gases and aerosols over the mid-Atlantic region, Ph.D. dissertation, Univ. of Md. at College Park, College Park.

Z. S. Holloway, Cooperative Institute for Research in Environmental Science, University of Colorado at Boulder, 216 UCB, Boulder, CO 80309-0216, USA.

L. G. Huey, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, GA 30332-0340, USA.

N. Krotkov, Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, 5523 Research Park Dr., Baltimore, MD 21228, USA.

C. Lee, R. V. Martin, G. O’Byrne, and A. van Donkelaar, Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Rd., Halifax, NS B3J 3C5, Canada. (chulkyu.lee@dal.ca)

A. Richter, Institute of Environmental Physics and Remote Sensing, University of Bremen, 1 Otto-Hahn-Allee, Bremen D-28359, Germany.