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ABSTRACT 

 

 

 

      The continuous growth in power system electric grid by adding new substations lead 

to construct many new transmission lines, transformers, control devices, and circuit 

breakers to connect the capacity (generators) to the demand (loads). These components 

will have a very heavy influence on the performance of the electric grid. The renewable 

technical solutions for these issues can be found by robust algorithms which can give us a 

full picture of the current state of the electrical network by monitoring the behavior of 

phase and voltage magnitude. 

      In this thesis, the major idea is to implement several algorithms including weighted 

least square, extend kalman filter, and interior point method in three different electrical 

networks including IEEE 14, 30, and 118 to compare the performance of these algorithms 

which is represented by the behavior of phases and magnitude voltages as well as 

minimize the residual of the balance load flow real time measurements to distinguish 

which one is more robust. Also to have a particular understanding of the comparison 

between unconstraint and constraint algorithms.  
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CHAPTER 1  INTRODUCTION 

 

1.1 MOTIVATION 

           The composition of an electric power system grid is complicated because it 

contains many internal and external components such as generators, transmission lines, 

transformers, circuit breakers, and loads. The networks undergo different states such as 

normal, emergency, and restorative states as well as being subject to missing certain data 

or having corrupted data which can make it difficult for the control center operator to 

determine the exact state of the network more complicated. The process of state 

estimation offers help to obtain the missing or corrupted data by estimating the missing 

data [1]. Recently, several researchers investigated alternative types of algorithms to 

enhance their performance to provide an accurate estimator for the network variables [2]. 

The major purpose of this research is to focus and compare the analytical performance of 

several state estimation algorithms and implement these algorithms on IEE14, 30, and 

118 bus networks to evaluate their performance and to distinguish the best estimate 

obtained by these algorithms. 

1.2 THESIS OBJECTIVES AND CONTRIBUTION 

         There are many issues in electrical networks that can lead to major and minor or 

even catastrophic faults. These issues can lead to major system outages. The 

communications between the system and the operator is necessary to respond to the 

outages in an early and timely manner. This thesis aims to compare several performances 

of state estimation algorithms on IEEE14, 30, and 118 bus electrical networks to have a 

good understanding and determine the best state estimation algorithm. The main 

contribution of this work is to determine the optimal estimate of state variables including 

angles and voltages magnitudes. We have contributed this idea using Interior Point 

Method including logarithmic barrier function which was very successful. And the 

second objective is to compare the methods by computing the errors as well as comparing 
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the accuracy of the algorithms by computing the residuals for available real time 

measurements. 

1.3 THESIS OUTLINE 

         This thesis is divided into five main chapters. The first chapter includes the concept 

of the thesis and the second chapter includes the literature reviews which begins with 

previous numerical methods in state estimation such as Newton Raphson and Gauss 

elimination and discuss the history of state estimation and supervisory control and data 

acquisition. The third chapter discusses modeling of the several state estimation 

algorithms and how to employ these algorithms in real time process. We include proofs of 

different algorithms including WLS algorithm, EKF algorithm, and IPM step by step to 

understand the composition of these algorithms as well as how they processed. 

         For many years, these algorithms have been employed, developed and used in wide 

applications in different areas. We use these algorithms to minimize the residual of 

balanced load flow equation and estimate the dynamic behavior of state variables to 

check the state of different electrical networks. In chapter four, we gather all the data that 

we obtain from several electrical networks in order to illustrate and discuss their 

applications in comparing the error of state variables including phase and magnitudes of 

voltage as well as the residual of net active power and net reactive power. 
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CHAPTER 2  LITERATURE REVIEW                                           

2.1 INTRODUCTION 

         State estimation issues have been among the critical challenges in many different 

areas and the accuracy of state estimation results is important for realistic operational 

strategies. One of the important reasons of using state estimation is to determine variables 

and eliminating errors which may occur because of unreliable measurements of data [3].  

       State estimation mathematical formulations use the state vector of angles and 

voltages magnitudes in electrical networks to estimate the real time available 

measurements including net active and reactive power and power flows. The power flow 

equations are used by algorithms which have different compositions and strategies. These 

algorithms rely on the same concept of state estimation which is minimizing the balanced 

load flow residuals [3, 4].  

        State estimation is known be the heart of an integrated system which works as a set 

of sensor sometimes. All parameters and database flow forward from and backward to the 

state estimator to predict and update new state vector to stabilize the system and then 

move the information to the control center to analyze the information and take the 

appropriate decisions based on current state of the system and transmission  network[4] 

2.2 PREVIOUS NUMERICAL METHODS OF POWER FLOW 

      It is not straightforward to find the typical solution of the non-linear equations of 

power system. Several numerical methods have been employed to approximate the non-

linear systems and one always hopes that successive systems of linear equations can yield 

a close solution to the actual non-linear equations. Several methods can approximate the 

non-linear equations of electric power systems [5]. 

Newton Raphson method. 

Gauss Siedel method. 

Optimization methods including convex and non-convex methods. There are two well-

known methods described in many power system analysis books. 
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2.2.1 NEWTON RAPHSON METHOD 

 

       Many books cover power flow techniques using Newton Raphson method iterative 

method as a standard an iterative procedure employed to find the approximate estimates 

for solving non-linear power flow equations. Newton Raphson algorithm is based on the 

Taylor series expansion by taking the first order differentiation of Taylor series expansion 

which based on a Jacobian matrix and ignoring the high order terms of Taylor series 

expansion [6]. The process of the Newton Raphson method starts by guessing the initial 

values solution or flat starts of variables which are usually called state vectors including 

the angles and voltages magnitudes. After some iterations we expect this method to 

converge to close to the true values if they exist for the loading condition. The process of 

the iterations can be stopped when it reaches the specified tolerance of our state vectors 

or the specified error [7]. 

2.2.2 GAUSS -SIEDEL METHOD 

 

        Gauss Seidel method is employed to calculate the solution of the nonlinear equations 

successively. The basic concept of the Gauss-Seidel method is based on the successive 

approximation technique which converges if the mapping described by the non-linear 

equations is one of a contraction where the distance between successive approximations 

is reduced as iterations progress [9]. 

2.3 HISTORY OF STATE ESTIMATION 

        The methods of state estimation are based on the work of many. While Legendre is 

credited with introducing the least squares idea in his  Memoir, some argue that Gauss at 

least shares in this credit.[8]  In 1970 F. C. Schweppe introduced the concept of state 

estimation to electric power system networks and this concept has been developed since 

that time [9]. R.  E. Larson, Tinney, and Peschon implemented this method in large 

electrical networks. [10].  

R. E. Kalman introduced what has been named after him known as the Kalman filter in 

1960 [11], since then, it has been successfully implemented in many applications [12-13.] 
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A. Debs and R.t E. Larson implemented the equations of Kalman filter in a dynamic 

power system state estimator [14]. 

2.4 STATE ESTIMATION IN ELECTRICAL NETWORKS 

            Usually, all the real time data in electrical networks which are gathered from 

different sensors on utilities substations (SCADA) are transmitted and aggregated 

including net active power, net reactive power, real power flow, active power flow, and 

complex voltages and transferred to the control center where computers-aided tools are 

used to monitor and analyze the data to have a complete picture of the current state of the 

network [15]. This data are simulated different time by a state estimator of the electrical 

network; however, the accuracy of SCADA system has been such as challenge in big 

electrical networks because of the lack of measurements at all times [16]. 

 

 

Figure 2-1: State estimation in electrical network[16] 

 

     Figure 2 demonstrate that static state estimator is the heart of any electric grid because 

it detects the past, present, and future state of this grid, so the real time measurements go 

through the static state estimator by using several algorithms such as WLS, EKF, and 

optimization (IPM) and find the optimal estimation for this grid, then based on the final 

results from the different algorithm estimators, we can assess the state of the electric grid. 
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2.5 SUPERVISORY CONTROL AND DATA ACQUISTION 

        Supervisory control and data acquisition has been involved in power system grid for 

well over 30 past years by monitoring and controlling large scale electric grid [17]. These 

data received from several sensors such as phase measurements unit (PMU) on several 

locations of the electric grid can be displayed by analogue and digital quantities. These 

sensors send the data from the electric grid to the remote terminal unit (RTU) by radio 

communications which transmits these measurements from the different substations to 

the computers in control room to estimate these data and have an accurate picture of the 

current state of the electric grid.  SCADA systems are unable to avail and collect all the 

real time measurements (active and reactive power, active and reactive power net, angle, 

voltage) at all times, this leads to search for new tools to deal with the inadequacy of 

SCADA system [18].   
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Figure 2-2: Supervisory control and data acquisition [18] 

2.6 ENERGY CONTROL CENTER (EGC) 

       The architecture of control centers has been evolving for the past 20 years because of 

the revolution of communication and computer technologies in networks.    

       In the 1950’s, collecting of electric networks’ data were by analogue computers to 

monitor the load frequency (LF) and economic dispatch (ED).  In the 1960’s , digital 

computers were proposed and used in electric network which lead to transforming the 

way in which data are collected. By using remote terminal units (RTUs) which have been 

developed to aggregate the real time measurements including  voltage, phase, real and 

reactive power by digital as well as to check the performance of several devices on the 
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networks such as circuit breakers at substations through transmission lines which is 

important for the study of automatic generation control (AGC) [19], [20].  

 

Figure 2-3: Diagram of energy control center[19] 

      The security control system re-directs the real-time measurements which come from 

SCADA to state estimator to estimate these measurements and eliminate the gross errors 

in measurements. The results of the state estimator flows through the contingency 

analysis which can be expressed as several types of disturbances such as transmission 

lines/generators outages. Contingency analysis can take a decision based on the output of 

the state estimator to respond the current state of the system [21]. 

To sum up, the Energy control center contains all the forecasting net of the electric grid. 

This center includes many computer- aided tools for the operators (engineers) to monitor 

and manage the electric grid [22]. 
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CHAPTER 3  MODELING OF STATE ESTIMATION 

ALGORITHMS 

3.1 INTRODUCTION 

          Several algorithms have been implemented in different electrical networks to 

evaluate the performance of these algorithms which have different levels of accuracies. 

Therefore by employing these algorithms in several electrical networks, we can clearly 

distinguish the best state estimation algorithm which can be based on the comparisons in 

errors and residuals of these algorithms. This comparison can assist the operators in 

energy control center (ECC) which we mentioned in chapter 2 to have an accurate 

understanding of the present and future of the electrical network state [23]. Implementing 

these algorithms in several electrical networks is not easy. However, all these algorithms 

have the same concept of state estimation which is minimizing the sum of the residuals; 

each algorithm has a specific composition and process sequence.  

       In this chapter, we discuss three state estimation algorithms such as WLS, EKF, and 

IPM as well as we will prove these algorithms to understand their details and the way 

they progress. 

3.2 WEIGHTED LEAST SQUARES (WLS) 

      The earliest publication related to the least squares method was in 1805 by the French 

Mathematician Legendre' [24]. In 1909, Gauss, a German mathematician, emphasized 

that he used this method in late seventeen century [25]. In the eighteenth century, Francis 

Galton employed this method statistically for human measurements such as weights and 

heights data, as well as in cross-culture data which is now called auto-correlation or 

Galton's problem [26]. 

       There are many ways to define weighted or generalized least squared (GLS.) It is the 

most efficient method that can accurately be used for small data sets. WLS is useful to 

estimate some variables among several methods to compute numerical values of 

parameters by minimizing the sum of squared deviations between observed responses and 
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functional portions of certain models [27]. 

       Generally, WLS is based on assumptions including linear and non-linear least square 

regression [28]. The major justification  making WLS more appropriate for estimation is 

the heavy reliance of ordinary least squares (OLS) on homoscedasticity which means that 

all  variances around the regression line have the same approximate residual that occurs 

when some variables are skewed and the other are not, so this can  lead to inferential 

imprecise statements [29-30]. 

      Recently, WLS was employed to solve some contingency load flow problems by 

transferring on-line data telemetered periodically to the Energy Control Center (ECC) 

which were discussed in chapter 1 and subsequently calculate all power flow parameters 

such as angles, voltages, net active power, and net reactive power. As a matter of fact, 

these measurements have always been associated with errors because of on-line system 

topology errors, infrequent malfunctioning of measuring instruments, as well as some 

measurement redundancy.     

         In this chapter we discuss the application of the Weighted Least Squares to evaluate 

(h) different power flow parameters such as the power angles and voltage magnitudes to 

find solutions for these errors which we have discussed earlier and how to use least 

estimation techniques to minimize the errors. 

3.2.1 BASIC SOLUTION METHOD OF WLS 

         The basic formula of power flow equations is augmented by measurement errors 

caused by redundant measurements or noisy frequency measurements to allow good 

precision estimator. In power system analysis, a number of quantities need to be 

evaluated such as unknown voltages (Vij), net active power (Pi), net reactive power (Qi), 

real power flow (Uij) and finally, reactive power flow (Tij). 

zt = h(xt
k) + vt (3.1) 

[
z1
z2
zn

] = [

h1(x1
k , x2

k …………………… . . xn
k)

h2(x1
k , x2

k …………………… . . xn
k)

hn
k(x1

k , x2
k …………………… . . xn

k)

] + [

v1

v2

vn

] (3.2) 
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Where 

 zt             :  m vector of the measurements. 

h(xt
k)        :  mxn matrix of non-linear equations of power system flow. 

vt              : m vector of the measurements errors or residuals. 

 

The major idea is to minimize the residuals to obtain the best estimates of parameters 

(xt
k). 

Rt = E(vt
T ∗ vt) = E(vt

2) = ςt (3.3) 

Because we have independent parameters, equation (3.2) represents the variance of 

Gaussian-distributed measurements which is the square of the residual equals to the 

square of the standard deviation, thus  Rt is a diagonal matrix. 

Standrad deviation(ςt) = √var(vt
2)        (3.4) 

By taking the square of both sides of equation (3.3,) we obtain, 

ςt
2 = var(vt

2) = Rt   (3.5) 

           Rt = [ς1
2, ς2

2, ς3
2, ……… , ςn

2] (3.6) 

The standard deviation can offer an impression about the expected accuracy of an 

estimator.   

The measurements can just be represented as a Z (true) which are actual or true vector of 

measured quantities; in other applications, they are called  scheduled values, Z 

(estimator) is the vector of the measured values by updating different parameters such as 

angles per iteration and vt or e is the measured errors or variance/residuals as in 

estimation theory which illustrates the difference (distance) between  the  estimated 

model and  the standard model that is controlled  by the mean and standard deviations. 

We can use the linearized set of non-linear power flow equation by converting h(xt
k) to 

Hxt
k  :- 
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zt = Hxt
k + vt (3.7) 

      J(xt
k) =

1

σ2 ∗ [zt −  Hxt
k]T[zt − Hxt

k ] (3.8) 

 

                                                              

                
dJ

dx
= [zt − Hxt

k] ∗ Rt
−1 ∗ HT = 0 (3.9) 

                                       

zt ∗ Rt
−1 ∗ HT = H ∗ xt

∗ ∗ HT (3.10) 

                                                     

xt
∗ = (H ∗ Rt

−1 ∗ HT) ∗ Rt
−1 ∗ HT ∗ zt (3.11) 

                                      

We can also work with the original non-linear equation of power system flow: 

vt = zt −  h(xt
k) (3.12) 

                                                                                                             

J(xt
k) =

1

ς2
∗ (vt

T ∗ vt) (3.13) 

J(xt
k) =

1

ς2
∗ [zt −  h(xt

k)]T[zt −  h(xt
k)] (3.14) 

  dJ

 dx
= 0 (3.15) 
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0 =
1

ς2
∗ [zt −  h(xt

k)] ∗ −HT (3.16) 

0 = −[zt −  h(xt
k)] ∗ Rt

−1 ∗ HT (3.17) 

0 = HT ∗ Rt
−1 ∗ [zt −  h(xt

k)] (3.18) 

                                      

This equation represents the best estimator of  xt
k by expanding the non-linear equation 

using Taylor series expansion to approximate the non-linear equation of power systems 

flow. 

h(xt
k) ≃ h(xt

k) + H ∗ ∆xt
k+1 = 0 (3.19) 

0 = HT ∗ Rt
−1 ∗ [zt −  h(xt

k) − H ∗ ∆xt
k+1] (3.20) 

HT ∗ Rt
−1zt − HT ∗ Rt

−1h(xt
k) − HT ∗ Rt

−1H ∗ ∆xt
k+1 = 0        (3.21) 

HT ∗ Rt
−1H ∗ ∆xt

k+1 = HT ∗ Rt
−1zt − HT ∗ Rt

−1h(xt
k)             (3.22) 

∆xt
k+1 = (HT ∗ Rt

−1 ∗ H)−1 ∗ HT ∗ Rt
−1 ∗ [zt −  h(xt

k)]        (3.23) 

 xt
k+1 − xt

k = (HT ∗ Rt
−1 ∗ H)−1 ∗ HT ∗ Rt

−1 ∗ [zt −  h(xt
k)]     (3.24) 

 

                         xt
k+1 = xt

k + (HT ∗ Rt
−1 ∗ H)−1 ∗ HT ∗ Rt

−1 ∗ [zt −  h(xt
k)]    

(3.25) 

                                                                       

xt
k    : n state vector matrix which presents  the voltage and angles of power system flow. 

H    :  m × n matrix which presents the Jacobian matrix of non-linear power system flow 

equations. 
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Earlier we solved these equations using methods such as Newton-Raphson method, and 

the fast decoupled method.  It turns out that there is always some remarkable difference 

in values between the measured observations and the true observations or measurements. 

Thus it is hoped that by using weighted least squares algorithms to minimize the residual 

values [31], [32], [33], [34]. 

3.3 THE KALMAN FILTER ALGORITHM 

            The Kalman filter approach was introduced in 1960 by R. E. Kalman to provide a 

solution to discrete data linear filter issues. Since that time, the Kalman filter approach 

has been employed in a wide range of applications. Profoundly, Kalman filter approach is 

a set of mathematical equations which are used to estimate states of different processes 

by taking into account both incoming measurements and predictors to obtain an optimal 

estimation of a certain system state [35]. In 1969,  Friedland provided two important 

stages of  Kalman filter approaches which have been successfully used in many linear 

applications; specifically, in linear dynamic processes [36]. 

Because we deal with the non-linear equations of power system flow, so we choose to 

focus our attention on the discrete time EKF. 

3.3.1 DISCRETE TIME EXTENDED KALMAN FILTER 

         The basic or original equations of the Kalman filter have failed in some non-linear 

applications. The success or failure of the extended KF based on the incorrect use of the 

Jacobian lead to inaccurate model process. If the model equations are linear, the 

equations of the extended KF will reduce to the original or basic equations of the Kalman 

filter.  In particular EKF has been successfully used in several non-linear applications.  

3.3.2 THE EQUATIONS OF EXTENDED KALMAN FILTER 

    We choose to divide the derivation of EKF to two parts: 

3.3.3 EXTENDED KALMAN FILTER PREDICTION FORMULA 

xt
+ = f(xt

−, ut) + ωt (3.26) 
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We take the Taylor series expansion in the equation (3.26) to linearize it. 

                     xt
+ = f(xt

−, ut) + ∆fx(xt − xt
−) + ωt (3.27) 

                     xt
+ = f(xt

−, ut) + ∆fxxt − ∆fxxt
− + ωt (3.28) 

xt
−        :  A prior state estimator. 

xt
+        :  A posterior state estimator. 

ωt         :  m vector which represents the parameter white noise. 

∆fx       : mxn vector which represents the Jacobian matrix. 

We just consider the first and second order derivative; high order derivative will be 

ignored. 

We re-express the previous equation to make it simpler by  

F = ∆fx  ;         Ut = f(xt
−, ut) − ∆fxxt

−                     (3.29) 

xt
+ = Fxt

− + Ut + ωt (3.30) 

                                                                     

So now we apply the linear Kalman filter prediction formula using 

 the linear process model: 

xt
+ = Fxt

− + Ut + ωt = ∆fxxt
− + f(xt

−, ut) − ∆fxxt
− + ωt (3.31) 

xt
+ = f(xt

−, ut) + ωt (3.32) 

xt
+ = F xt

− + Ut + ωt (3.33) 

                                                                                                                

Before we start deriving the equations of the Kalman filter, we assume that the input is 

equal to zero, 𝑈𝑡=0, so we reduce the linear dynamic system equation as well as we have 

a Gaussian distribution in our measurements. So we normalize the measurements to have 

zero mean and variance including predictors’ and measurements’ variance:- 
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xt
+ = Fxt

− + ωt (3.34) 

Var (ωt) = E(ωt ∗ ωt
T) = Qt (3.35) 

ωt~N(0, Qt) (3.36) 

So from the distinguish categories, we can see that the Kalman filter has a clear 

dependence on the initial value to estimate the next one. 

We assume that all the measurements and estimators have a normal distribution, so the 

distribution is denoted by N (𝑥𝑡
𝑘 , 𝑝𝑡

𝑘). 

We first consider the a-priori covariance of the weighted least squares. 

xt
+ = F ∗ xt

− + ωt (3.37) 

(xt
+ − xt) = F(xt

− − xt) + ωt (3.38) 

E[(xt
+ − xt

∗)(xt
+ − xt

∗)T] = E[[F ∗ (xt
− − xt̅)ωt][F ∗ (xt

− − xt̅)) + ωt]
T (3.39) 

Pt
+ = F ∗ FT ∗ E[(xt

− − xt̅)) ∗ (xt
− − xt̅)

T] + E(ωt ∗ ωt
T) (3.40) 

Pt
+ = F ∗ Pt

− ∗ FT + Qt (3.41) 

                                                                                                                                                                                                                                                                                      

𝑃𝑡
+   :  Posteriori covariance of the expected error of the predictors. 

𝑃𝑡
−   :  Priori covariance of the expected error of the predictors. 

𝑄𝑡  : A diagonal matrix mxn which represents the variance of the parameters or 

estimators. 
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3.3.4 LINERAZATION OF OBSERVATION MODEL 

                                                 zt = h(xt
+) + vt (3.42) 

By also using the Taylor series to linearize the observation equation:- 

zt = h((xt
+) + ∆hx(xt − xt

+) + vt (3.43) 

∆ℎ𝑥  : A Jacobian matrix of function ℎ with respect to 𝑥𝑡
+.  

We also consider the first and second order derivative, so high order derivative will also 

be ignored. 

                          zt = h(xt
+) + ∆hxxt − ∆hxxt

+ + vt    (3.44) 

        

We assume that  

zt
∗ = ∆hxxt+vt (3.45) 

𝑧𝑡
∗ = 𝑧𝑡 − ℎ(𝑥𝑡

+) + ∆ℎ𝑥𝑥𝑡
+

 (3.46) 

We apply the linear Kalman filter formula using linear observation model. 

 

xt
k+1 = xt

k + Kt(zt
∗ − ∆hx ∗ (xt

k)) (3.47) 

 

We compensate 𝑧𝑡
∗ in previous equation:- 

xt
k = xt

+ (3.48) 

xt
k+1 = xt

k + Kt(zt − h(xt
k) + ∆hxxt

k − ∆hx ∗ xt
k)    (3.49) 

xt
k+1 = xt

k + Kt(zt − hx(xt
k))    (3.50) 
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E[(xt
k+1 − xt̅)(xt

k+1 − xt
∗)T] = E[[(xt

k − xt̅)(xt
k − xt̅)

T
] + [(Ktvt)(Ktvt)

T] (3.51) 

     Pt
+ = Pt

− − KtHKt
T       (3.52) 

                                                                                                                     

From the linear Kalman filter formula, we can take the proof of the innovation covariance 

and the Kalman gain equation. 

S = Rt +∗ HT ∗ Pt
− ∗ H (3.53) 

Kt = HT ∗ Pt
− ∗ S−1    (3.54) 

                 

Finally, we collect all different equations from part one and part two:- 

Hence, our measurements are independent, so we always have a Gaussian distribution, so 

we normalize our measurements by zero-mean and variance instead of using zero-mean 

and unit standard deviation in standard normal distribution. 

Var (vt) = E(vt ∗ vt
T) = Rt (3.55) 

vt~N(0, Rt) (3.56) 

Cov (vt
T ∗ ωt) = E(vt

T ∗ ωt) = 0 (3.57) 

Cov (ωt
T ∗ vt) = E(ωt

T ∗ vt) = 0 (3.58) 

𝑅𝑡    : A diagonal matrix mxn which represents the variance of the measurements. 

𝑄𝑡    : A diagonal matrix mxn which represents the variance of the parameters or 

estimators. 

Pt
+ = F ∗ Pt

− ∗ FT + Qt (3.59) 
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S = Rt +∗ HT ∗ Pt
− ∗ H (3.60) 

Kt = HT ∗ Pt
− ∗ S−1 (3.61) 

xt
k+1 = xt

k + Kt(zt − hx(xt
k)) 

 
(3.62) 

Pt
+ = Pt

− − KtRKt
T (3.63) 

The major process of EKF is to estimate unmeasured states. The equations of EKF can be 

categorized to different parts. First part is time update equations (predictions) which 

update the state of the process by forwarding the time and error covariance to obtain the 

prior estimate for the next time. Second part is measurements update (corrections) which 

work by correcting the state estimate each iteration. The process is iterating until the 

innovation equation 𝐾𝑡(𝑧𝑡 − ℎ𝑥(𝑥𝑡
𝑘))  close to zero to be no more iterations or change in 

the states. 

In this work, we assume the a-priori covariance at any value with low predictors’ noise 

and we calculate the variance of the measurements from the updated prior covariance, 

then we determine the value of Kalman gain and we add it to the innovation equation. 

Finally we update the corrected covariance to converge the predictors from both the prior 

covariance and the Kalman gain. 

In these equations, we cannot directly use generic non-linear equations, so we should 

derivative them and add them to the error covariance equations. 

The EKF can result in very accurate estimates because it can linearize the system at each 

point during the trajectory of the states [37], [38] [39] [40] [41]. 

 

 

 

 



 

20 

 

3.4 LEAST ABSOLUTE METHOD (LAM) 

      Least absolute estimator has been proposed and suggested by many mathematicians 

such as Bosivich and Laplace since 1793. 

       The least absolute estimator was second ranked in solving regression problems 

because of the development and uniqueness of least squares estimator [42].  The 

computations and formulations of the least absolute value estimator require more 

computer time.  

     Least absolute value method is an alternative to least squares because it overcomes the 

drawbacks of least squares method such as lower  sensitivity to gross outliers which can 

give us a better starting point than the least squares method. Many applications have 

proved that statistically using least absolute value is more efficient than least square 

method [43]. 

Recently, several algorithms have been used to solve the least absolute value estimator 

problem such as the simplex method and interior point method. 

In this work we are interested in using interior point method in non-linear equations of 

power system specifically logarithmic barrier method to minimize the sum of the 

measurements residuals (L1 norm). 

L1 = min∑Wt
T|z − h(xt)|           (3.64) 

3.4.1 INTERIOR POINT METHOD (IPM) 

        IPMs have been involved to solve many large linear programming problems because 

the simplicity of using IPMs and being much easier to understand. Frisch introduced the 

logarithmic barrier method since 1955 to replace the linear inequality constraints to linear 

equality constraints by adding non-negative slack variables. In 1984 Narendre Karmarkar 

pioneered the idea of IPMs. His research has shown the advantages of using IPMs instead 

of using simplex method which was first used method in linear programming (LP). The 

advantages of IPMs are being faster than the simplex method and also have a better 

starting point. Fiacco and McCormick converted the inequality constraints to the 

sequence of unconstraint. IPMs contain several different methods such as primal-dual 

logarithmic method (IPM-PD) which was introduced by Megiddo, and predictor-



 

21 

 

corrector method (IPM-PC) which has been proposed since 1992 by Mehrota. In the past 

twenty years IPMs have been widely used in solving power system problems such as 

power system state estimation (PSSE) problems and power operation and planning 

(POAP) especially in unit commitment (UC) and economic dispatch (ED) [44] [45]. 

      We denote z as the difference between the capacity (generation) and demand (load) 

on electric nodes and h represents the non-linear power system flow equations, so we 

minimize the distance between z and h as well as we estimate the state variables (phase 

and voltage magnitude). Abnormally, instead of taking the second the estimated values of 

state variables as optimal values, we take them as the initial values for the second linear 

programming and we iterate them over and over until we obtain less error in state 

variables.  

 

Objective function 

Min WT|r| (3.65) 

subject to  

r = z − h(x) (3.66) 

−r ≤ z − h(x) (3.67) 

−r ≤ −z + h(x)      (3.68) 

  −r − z + h(x) ≤ 0    (3.69) 

−r + z − h(x) ≤ 0 (3.70) 

r = z − h(x) = 0 (3.71) 
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𝑔(𝑥) = 0 (3.72) 

                                                                  

Where       𝑊 = [1,1, ……… ,1]𝑇 

We add the non-negative slack variables (𝑢𝑖 , 𝑣𝑖) to certain inequality constraints to turn 

the in-equality constraints to equality constraints where the linear combination of these 

variables is less than or equal to a given constraints; based on that, slack variables are 

always positive.  

−r − z + h(x) + u = 0                       (3.73) 

−r + z − h(x) + v = 0   (3.74) 

                                                          

Now we organize our equations 

Min WT|r| (3.75) 

                            Subject to 

−r − z + h(x) ≤ 0 (3.76) 

  −r + z − h(x) ≤ 0      (3.77) 

r = z − h(x) = 0 (3.78) 

g(x) = 0 (3.79) 

                                          

u, v, e ≥ 0 
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3.4.2 LOGARITHMIC BARRIER FUNCTION 

We subject the residual function with barrier function and we differentiate it to find the 

optimal solution for state variables. 

B(w, r, x, μ, u, v) = WTr − μ∑(lnui

n

i=1

+ lnvi) (3.80) 

Min WTr − μ∑ (lnui
n

i=1
+ lnvi)                 (3.81) 

 

                  Subject to 

z − h(x) − r + u = 0 (3.82) 

−z + h(x) − r + v = 0    (3.83) 

g(x) = 0 (3.84) 

 

u, v, e ≥ 0 

By using the Karush -Kuhn-Tucker (KKT) optimality conditions of the lagrangian 

multipliers function and then using Newton’s method to iterate the equations by reducing 

barrier parameter to be close to zero.  

WTr − μ ∑ (lnui
n

i=1
+ lnvi) + λT(z − h(x) − r + u) + πT(−z + h(x) − r + v) +    ρT(g(x))                                                         (3.85) 

∂L

∂u
= −μU−1e + λ = 0 (3.86) 

∂L

∂v
= −μV−1e + π = 0            (3.87) 
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∂L

∂λ
= z − h(x) − r + u = 0 

∂L

∂π
= −z + h(x) − r + v = 0 

(3.88) 

∂L

∂ρ
= g(x) = 0 (3.89) 

∂L

∂x
= −WHT∆x − HTλ + HTπ + GTρ = 0 (3.90) 

                                                                                                     

We apply Taylor expansion series to approximate the previous equations. 

−H∆x + ∆u = −z + h(xk) + r − uk (3.91) 

H∆x + ∆v = z − h(xk) + r − vk (3.92) 

G∆x = −g(xk)                    (3.93) 

μ(Uk)
−2

− λ = −μ(Uk)
−1

e (3.94) 

μ(Vk)
−2

− π = −μ(Vk)
−1

e            (3.95) 

HTλ − HTπ − GTρ = −WHT∆x (3.96) 

[
 
 
 
 
 
 

0 0 0 𝐼𝑛 0 −𝐻
0 0 0 0 𝐼𝑛 𝐻
0 0 0 0 0 G

−In 0 0 μ(Uk)
−2

0 0

0 −In 0 0 μ(Vk)
−2

0

HT −HT −GT 0 0 0 ]
 
 
 
 
 
 

[
 
 
 
 
 
λ
π
ρ
∆u
∆v
∆x]

 
 
 
 
 

= −

[
 
 
 
 
 
 
 

z − h(xk) − r + uk

−z + h(xk) − r + vk

g(xk)

μ(Uk)
−1

en

μ(Vk)
−1

en

WHT∆x ]
 
 
 
 
 
 
 

 (3.97) 
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λk+1 = λk + αΔλ 
(3.98) 

ρk+1 = ρk + αΔρ (3.99) 

xk+1 = xk + αΔx (3.100) 

uk+1 = uk + αΔu (3.101) 

vk+1 = vk + αΔv (3.102) 

π = πk + αΔπ 

 
(3.103) 

                                                                                                       

The superscript k is used to denote the estimate of the previous parameters at each 

iteration. The step length (α) is selected to lead the primal solution to be feasible and 

inside the constraints region; moreover, the step length is used to consider the violation of 

the constraints. 

α = 0.9995α̃ 

α̃ = min(ui + αiΔu ≥ 0, vi + αiΔv ≥ 0) 

 

The stopping iterations is going to be based on the duality gap which is the difference 

between the primal and dual cost, so when the cost of the duality gap is smaller than the 

step size or length, the iterations must stop[44] [46] [47] [48] [49] . 

The barrier parameter μ is defaulted in Matlab to 0.1 and is subsequently reduced to be 

close to zero to determine the new search direction and update the new estimate of 

previous parameters until these parameters converged which can be the optimal solutions 

for both primal and duality problems, so if the duality gap is positive that means the 

points in feasible region, but it does not mean we compute the optimal solution, so we 

obtain the optimal solution when the duality gap turns to zero. The determination of 

duality gap can give us a picture of the nearness of our optimal solutions. 
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3.5 SUMMARY 

     This chapter has discussed the modeling of state estimation algorithms which is the 

core subject of this thesis, so by knowing the compositions and the techniques of these 

three algorithms, it will help us to understand how they work step by step and how they 

help to solve state estimation issues. In next chapter, we will employ these algorithms in 

different IEEE electrical networks and we will observe the behaviour of these algorithms 

by calculating errors for state variables and residuals for available real time 

measurements. 
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CHAPTER 4  RESULTS 

4.1 INTRODUCTION 

    This chapter presents the computational results for the three different test cases namely 

the IEEE 14, 30, and 118 buses systems. The object is to compare the performance of 

state estimation algorithms by taking the optimal solution of both phase and magnitude 

voltage as the initial value until the iterations converge , then, we calculate the residuals 

for available real time measurements including real power net and reactive power net and 

compare the accuracy of these algorithms. 

4.2 APPROACH  

      Knowing the voltage magnitudes and angles at buses in the network is important for 

steady state in PSSE. By minimizing the residual of load flow node equation which can 

give the operators (engineers) in energy control center (ECC) a clearer picture about the 

state of the electrical network [50]. 

PG − PD − ∑|Vi ||Vj|[Gij cos( θi − θj) + [Bij sin( θi − θj) = 0 (4.1) 

QG − QD − ∑|Vi ||Vj|[Gij sin( θi − θj) − [Bij cos( θi − θj) = 0 (4.2) 

The data obtained from the official website of University of Washington [51] and 

estimate these data by three different algorithms in matlab.  

Software programs have coded in matlab in three different algorithms WLS, EKF, and 

IPM linear programming based on least absolute value estimation criterion [51]. 

4.3 TEST CASES 

     The test cases include two major estimation problems including state vector estimation 

such as phase and magnitude voltage as well as measurements such as net active power 
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into the system and net reactive power into the system. Also we calculate the percentage 

errors for state vectors and residuals for available real time measurements. 

Measured Values= the values provided from balanced load flow equations. 

Estimated Values = the optimal solution or the outcome of estimation for both state 

vectors and real time measurements under tolerance conditions [51]. 

Error = |
Measured Value − Estimated Value

Measured Value
| × 100 (4.3) 

Residuals = |Measured Value − Estimated Value| (4.4) 

4.4 IEEE 14 BUS TEST CASE 

 

 

Figure 4-1: Single line diagram of 14 bus system [52] 
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Name of Network Components  Number of Network Components 

Generators 11 

Transformers 3 

Loads  5 

Transmission Lines 20 

4.4.1 WEIGHTED LEAST SQUARES METHOD 

  The weights in WLS vary from value to value to obtain the best converge for both state 

variables and measurements. The weights for the angles equal 1E-6, for the voltages are 

1E-5, for the net active power are 1E-4, and for the net reactive power 3E-3. We also 

observe the input number of state variables in WLS is 2 times. Finally we checked all the 

state vectors and measurements in WLS for IEEE 14 bus system and all the values have 

successfully converged.   

 

4.4.1.1. Measured and estimated angles with error using WLS 

 

Table 4-1: Measured and estimated angles with error using WLS 

Bus no Measured Angle 

Values 

Estimated Angle 

Values 

%Error 

4 -0.02322 -0.02322 2.99E-4 

5 -0.027 -0.027 2.59E-4 

6 -0.1197 -0.1197 7.1E-5 

7 -0.084 -0.084 6.37E-05 

8 -0.08462 -0.08462 2.09E-05 

11 -0.12345 -0.12345 2.97E-05 

13 -0.13461 -0.13461 3.01E-05 
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       4.1.1.2. Measured and estimated voltages magnitudes with error using WLS 

Table 4-2: Measured and estimated voltages magnitudes with error using WLS 

Bus no Measured voltage 

Values 

Estimated voltage 

Values 

% Error 

4 1.01665 1.01665 4.8E-06 

5 1.019748 1.019748 6.2E-06 

6 1.054439 1.054439 8.1E-06 

7 1.041635 1.041636 6.6E-06 

8 1.07083 1.07083 2.6E-06 

11 1.035528 1.035528 2E-07 

13 1.03208 1.03208 4.8E-06 

 

       4.1.1.3. Measured and estimated net active power into the system  

                   with residuals using WLS. 

Table 4-3: Measured and estimated net active power with residuals using WLS 

Bus no Measured Values 

of net active 

power into the 

system 

Estimated Values 

of net active 

power into the 

system 

        

Residuals 

4 -0.478 -0.4819   3.89E-3 

5 -0.076 -0.0799 3.89E-3 

6 -0.112 -0.1159 3.88E-3 

7 0.000 -0.0039 3.89E-3 

8 0.000 -0.0039 3.89E-3 

11 -0.035 -0.0389    3.89E-3 

13 -0.135 -0.1389 3.91E-3 

       



 

31 

 

      4.1.1.4. Measured and estimated net reactive power into the system  with residuals 

using WLS 

 

Table 4-4: Measured and estimated net reactive power with residuals using WLS 

Bus no Measured Values 

of net reactive 

power into the 

system 

Estimated Values 

of net reactive 

power into the 

system 

      

Residuals 

4 -0.359 -0.3553 3.7E-3 

5 0.039 0.0426 3.6E-3 

6 -0.016 -0.0124 3.6E-3 

7 0.047 0.0508 3.8E-3 

8 0.000 0.0037 3.7E-3 

11 -0.058 -0.0542 3.8E-3 

13 -0.016 -0.0122    3.8E-3 

 

4.4.2 EXTENDED KALMAN FILTER 

 

We suggest  the initial covariance (P) in EKF to be equals 100 and the noise variance (Q) 

of state vectors is 0.001 because we work on the tolerance tol < 1e − 5 in IEEE 14 bus 

system, so we do not observe the number of the iteration; however, the time to obtain the 

optimal solution in EKF is more faster both WLS and IPM. Also the weights have chosen 

to give us accurate results for all errors and residuals which are 1E-4 for angles, 1E-6 for 

voltages, and 1E-3 for both net active and reactive power into the system. We also 

observe the input number of state variables in EKF is 2 times. Finally we checked all the 

state vectors and measurements in EKF for IEEE 14 bus system and all the values have 

successfully converged.   
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4.4.2.1. Measured and estimated angles with error using EKF 

Table 4-5: Measured and estimated angles with error using EKF 

Bus no Measured 

Angle 

Values 

Estimated 

Angle Values 

        %Error 

4 
-0.0225291 -0.0225291 1.25E-4 

5 
-0.0264024 -0.0264024 1.61E-4 

6 
-0.1202456 -0.1202456 3.7E-06 

7 
-0.0840094 -0.0840094 3.46E-05 

8 
-0.0846317 -0.0846317 1.5E-5 

11 
-0.1238493 -0.1238493 2.27E-05 

13 
-0.1351328 -0.1351328 2.41E-05 

 

4.4.2.2. Measured and estimated angles with error using EKF 

Table 4-6: Measured and estimated voltages with error using EKF 

Bus no Measured 

voltage 

Values 

Estimated voltage 

Values 

% Error 

4 1.01334 1.01334 3.1E-06 

5 1.01670 1.01670 4.2E-06 

6 1.04736 1.04736 9E-07 

7 1.03543 1.03543 6E-6 

8 1.06424 1.06424 1.1E-06 

11 1.02785 1.02785 1.1E-06 

13 1.02419 1.02419 5.3E-06 
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4.4.2.3. Measured and estimated net active into the system with residuals using EKF 

Table 4-7: Measured and estimated net active power with residuals using EKF 

Bus no Measured Values 

of net active power 

into the system 

Estimated Values of 

net active power 

into the system 

Residuals 

4 -0.478 -0.4824 4.4E-3 

5 -0.076 -0.0803 4.3E-3 

6 -0.112 -0.1157 3.7E-3 

7 0 -0.0039 3.9E-3 

8 0 -0.0039 3.9E-3 

11 -0.035 -0.0386 3.6E-3 

13 -0.135 -0.1386 3.6E-3 

 

4.4.2.3. Measured and estimated net active into the system with residuals using EKF 

Table 4-8: Measured and estimated net reactive power with residuals using EKF 

Bus no Measured Values 

of net reactive 

power into the 

system 

Estimated Values 

of net reactive 

power into the 

system 

      

Residuals 

4 0.039 0.0374    1.6E-3 

5 -0.016 -0.0200 4E-3 

6 0.047 0.0455 1.5E-3 

7 0.000 -0.0020     2E-3 

8 0.174 0.1709 3.1E-3 

11 -0.018 -0.0196 1.6E-3 

13 -0.058 -0.0598 1.8E-3 
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4.4.3 INTERIOR POINT METHOD 

The weights in IPM have chosen to be 1.0 to obtain one solution for both state variables 

and measurements. We also observe the input number of state variables in IPM is 1 times. 

Finally we checked all the state vectors and measurements in IPM for IEEE 14 bus 

system and all the values have successfully converged.  

 

 4.4.3.1. Measured and estimated angles with error using IPM 

 

Table 4-9: Measured and estimated angles with error using IPM 

Bus no Measured 

Angle Values 

Estimated Angle 

Values 

%Error 

4 
-0.02574791 -0.02574792 

2.74E-05 

5 
-0.03045719 -0.03045719 

9.06E-06 

6 
-0.13137174 -0.13137174 

2.86E-06 

7 
-0.09030380 -0.09030380 

3.53E-06 

8 
-0.09041721 -0.09041721 

2.69E-06 

11 
-0.13339247 -0.13339247 

2.53E-06 

13 
-0.14793937 -0.14793937 

3.12E-06 
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  4.4.3.2. Measured and estimated voltage magnitudes with error  

                     using IPM. 

Table 4-10:  Measured and estimated voltage magnitudes with error using IPM 

Bus no Measured 

voltage Values 

Estimated voltage 

Values 

% Error 

4 0.96400 0.96400 4E-07 

5 0.96831 0.96831 6E-07 

6 1.01350 1.01350 3E-07 

7 0.98880 0.98880 1E-07 

8 1.01836 1.01836 6E-07 

11 0.98912 0.98912 3E-07 

13 0.99413 0.99413 9E-07 

 

4.4.3.3. Measured and estimated net active power into the system with  

            residuals using IPM. 

Table 4-11: Measured and estimated net active power with residuals using IPM 

Bus no Measured Values 

of net active power 

into the system 

Estimated Values 

of net active power 

into the system 

Residuals 

4 -0.478 -0.4856 7.6E-3 

5 -0.076 -0.0834 7.4E-3 

6 -0.112 -0.1135 1.5E-3 

7 0.000 -0.0027 2.7E-3 

8 0.000 -0.0006 6E-4 

11 -0.035 -0.0350 0 

13 -0.135 -0.1353 3E-4 
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4.4.3.4. Measured and estimated net reactive power into the system with residuals using 

IPM. 

Table 4-12: Measured and estimated net reactive power with residuals using IPM 

Bus no Measured Values of 

net reactive power 

into the system 

Estimated Values 

of net reactive 

power into the 

system 

Residuals 

4 0.039 0.0390 5E-5 

5 -0.016 -0.0159 6E-5 

6 0.047 0.0471 9E-5 

7 0.000 0.0000 3E-5 

8 0.174 0.1740 3E-5 

11 -0.018 -0.0180 4E-5 

13 -0.058 -0.0580 2E-5 

 

We summarize all the results that we have in tables in IEEE 14 buses test case in four 

figures to easily compare the performance of each algorithm. 
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Figure 4-2: Comparison in angles error for IEEE 14 bus system 
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Figure 4.5 compares angle errors for IEEE 14 buses which are represented in Tables 4.1, 

4.5, and 4.9. The weighted least square has more variation in the first four angle errors, so 

we suggest that it is lesser all weights the same accurate. The weights (R) in WLS for 

angle errors are 1E-6 and in EKF are 1E-4. 
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Figure 4-3: Comparison in voltages error for IEEE 14 bus system 

 

 

Figure 4.6 shows the comparison of voltage errors for the IEEE 14 buses system 

represented in Table 4.2, 4.6, and 4.10 for the three algorithms. Again the interior point 

method (green line) gives better accuracy because all voltage errors are close to zero. 

EKF results are closer to the WLS than in the figure 4.5 which was close the interior 

point method. The weights in WLS (R) of net active power are 1E-5 and in EKF are 1E-

6. 
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Figure 4-4: Comparison in net active power residuals for IEEE 14 bus system 

 

 

 

 

Figure 4.7 illustrates the comparison of net active power residuals for IEEE 14 bus 

system represented in Table 4.3, 4.7, and 4.11 IPM is more precise because most of the 

error values are lesser than both WLS and EKF and also from the above figure seems 

there is no different in accuracy between EKF and WLS except in time simulation. EKF 

takes lesser iteration and CPU time than WLS. The weights in WLS (R) of net active 

power are 1E-4 and in EKF are 1E-3. 
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Figure 4-5: Comparison in net reactive power residuals for IEEE 14 bus system 

 

 

 

Figure 4.8 demonstrates the comparison of net reactive power residuals for IEEE 14 bus 

system showed in Table 4.4, 4.8, and 4.12.The residuals in IPM is almost zero and EKF is 

lesser than WLS with more variation in EKF. The weights in WLS are 3E-3 and in EKF 

are 1E-3. 
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4.5 TEST CASE IEEE 30 BUSES 

 

 

Figure 4-6: Single line diagram of 30 bus system [53] 

 

Name of Network Components  Number of Network Components 

Generators 21 

Transformers 5 

Loads  6 

Transmission Lines 42 
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4.5.1 WEIGHTED LEAST SQUARES  

  The weights in WLS vary from value to value to obtain the best converge for both state 

variables and measurements. Because we work on the tolerance tol < 1e − 5 in IEEE 30 

bus system, so we do not observe the number of the iteration in WLS. The weights for the 

angles equal 6E-5, for the voltages are 9E-4, for the net active power are 1E-4, and for 

the net reactive power 1E-3. We also observe the input number of state variables in WLS 

is 3 times. Finally we checked all the state vectors and measurements in WLS for IEEE 

30 bus system and all the values have successfully converged.   

 

 

4.5.1.1. Measured and estimated angles with error using WLS. 

 

 

Table 4-13: Measured and estimated angles with error using WLS 

Bus no Measured 

Angle Values 

Estimated 

Angle Values 

%Error 

8 -0.0609816 -0.0609816 6.41E-05 

9 -0.0910379 -0.0910379 4.71E-05 

12 -0.1007560 -0.1007560 2.75E-05 

14 -0.1162253 -0.1162253 3.27E-05 

15 -0.1172526 -0.1172526 3.67E-05 

16 -0.1111657 -0.1111657 3.15E-05 

18 -0.1278145 -0.1278145 3.23E-05 

21 -0.1247513 -0.1247513 4E-5 

22 -0.1200416 -0.1200416 4.14E-05 

27 -0.1177957 -0.1177957 3.82E-05 

30 -0.1542477 -0.1542477 2.41E-05 
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4.5.1.2. Measured and estimated voltages with error using WLS 

 

Table 4-14: Measured and estimated voltage magnitudes with error using WLS 

Bus no Measured 

voltage Values 

Estimated 

voltage Values 

% Error 

8 0.96417 0.96417 2.5E-06 

9 0.97682 0.97682 1.5E-06 

12 0.98642 0.98642 2.1E-06 

14 0.96737 0.96737 3.2E-06 

15 0.95973 0.95973 1E-6 

16 0.96545 0.96545 3.5E-06 

18 0.94467 0.94467 3.3E-06 

21 0.94171 0.94171 4.4E-06 

22 0.94588 0.94588 1.3E-06 

27 0.95242 0.95242 4E-07 

30 0.91800 0.91800 4.8E-06 
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4.5.1.3. Measured and estimated net real power into the system with  

          residuals using WLS 

Table 4-15: Measured and estimated net real power with residuals using WLS 

Bus no Measured Values 

of net active 

power into the 

system 

Estimated Values 

of net active power 

into the system 

Residuals 

8 -0.3000 -0.2920 7.97E-3 

9 0.0000 0.0080 7.98E-3 

12 -0.1120 -0.1040 8.01E-3 

14 -0.0620 -0.0540 7.97E-3 

15 -0.0820 -0.0740 7.98E-3 

16 -0.0350 -0.0270 7.98E-3 

18 -0.0320 -0.0240 7.95E-3 

21 -0.1750 -0.1670 7.96E-3 

22 0.0000 0.0080 7.96E-3 

27 0.0000 0.0080 7.96E-3 

30 -0.1060 -0.0981 7.90E-3 
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4.5.1.4Measured and estimated net reactive power into the system with  

          residuals using WLS 

 

 

Table 4-16: Measured and estimated net reactive power with residuals using WLS 

Bus no Measured Values 

of net reactive 

power into the 

system 

Estimated 

Values of net 

reactive power 

into the system 

Residuals 

8 0.073 0.0674 5.57E-3 

9 0.000 -0.0058 5.77E-3 

12 -0.075 -0.0810 6.02E-3 

14 -0.016 -0.0221 6.10E-3 

15 -0.025 -0.0311 6.09E-3 

16 -0.018 -0.0241 6.07E-3 

18 -0.009 -0.0151 6.13E-3 

21 -0.112 -0.1181 6.13E-3 

22 0.000 -0.0061 6.12E-3 

27 0.000 -0.0061 6.12E-3 

30 -0.019 -0.0252 6.23E-3 

 

4.5.2 EXTENDED KALMAN FILTER 

We suggest  the initial covariance (P) in EKF to be equals 10 and the noise variance (Q) 

of state vectors is 0.01 because we work on the tolerance tol < 1e − 5 in IEEE 30 bus 

system, so we do not observe the number of the iteration; however, the time to obtain the 

optimal solution in EKF is more faster both WLS and IPM. Also the weights have chosen 

to give us accurate results for all errors and residuals which are 1E-5 for angles, 1E-5 for 

voltages, and 9E-3 for net active power and 4E-3 for reactive power into the system. We 

also observe the input number of state variables in EKF is 3 times. Finally we checked all 

the state vectors and measurements in EKF for IEEE 30 bus system and all the values 
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have successfully converged.  The time to obtain the optimal solution in EKF is faster 

than both IPM and WLS. 

 

 

4.5.2.1. Measured and estimated angles with error using EKF 

 

 

Table 4-17: Measured and estimated angles with error using EKF 

Bus no Measured 

Angles Values 

Estimated 

Angles Values 

%Error 

8 -0.0592009 -0.0592009 1.78E-05 

9 -0.0882774 -0.0882774 5E-6 

12 -0.0977978 -0.0977978 3E-6 

14 -0.1126929 -0.1126929 6E-6 

15 -0.1136344 -0.1136344 6.2E-06 

16 -0.1077675 -0.1077675 7E-6 

18 -0.1237298 -0.1237298 1.5E-06 

21 -0.1208737 -0.1208737 1.21E-05 

22 -0.1162480 -0.1162480 2.3E-06 

27 -0.1141459 -0.1141459 1.27E-05 

30 -0.1492807 -0.1492807 6.8E-06 
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4.5.2.2. Measured and estimated voltages with error using EKF 

 

Table 4-18: Measured and estimated voltages with error using EKF 

Bus no Measured 

voltage Values 

Estimated 

voltage Values 

% Error 

8 0.97738 0.97738 3.6E-06 

9 0.98981 0.98981 0 

12 0.99962 0.99962 2.8E-06 

14 0.98054 0.98054 9E-07 

15 0.97290 0.97290 3E-07 

16 0.97858 0.97858 1.5E-06 

18 0.95774 0.95774 1.1E-06 

21 0.95486 0.95486 1.9E-06 

22 0.95885 0.95885 6E-07 

27 0.96516 0.96516 5E-07 

30 0.93077 0.93077 2E-07 
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 4.5.2.3. Measured and estimated net active power into the system  

                    with residuals using EKF 

 

Table 4-19: Measured and estimated net active power with residuals using EKF 

Bus no Measured Values 

of net active 

power in the 

system 

Estimated Values 

of net active 

power in the 

system 

Residuals 

8 -0.300 -0.2915 8.5E-3 

9 0.000 0.0081 8.1E-3 

12 -0.112 -0.1042 7.8E-3 

14 -0.062 -0.0542 7.8E-3 

15 -0.082 -0.0742 7.8E-3 

16 -0.035 -0.0272 7.8E-3 

18 -0.032 -0.0242 7.8E-3 

21 -0.175 -0.1672 7.8E-3 

22 0.000 0.0078 7.8E-3 

27 0.000 0.0079 7.9E-3 

30 -0.106 -0.0982 7.8E-3 
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4.5.2.4. Measured and estimated net reactive power into the system with  

               residuals using EKF 

Table 4-20: Measured and estimated net reactive power with residuals using EKF 

Bus no Measured Values of 

net reactive power 

into the system 

Estimated Values of 

net reactive power 

into the system 

Residuals 

8 -0.109 -0.1138 4.8E-3 

9 0.073 0.0682 4.8E-3 

12 0.162 0.1573 4.7E-3 

14 0.106 0.1009 5.1E-3 

15 -0.016 -0.0213 5.3E-3 

16 -0.025 -0.0303 5.3E-3 

18 -0.058 -0.0633 5.3E-3 

21 -0.007 -0.0123 5.3E-3 

22 -0.112 -0.1173 5.3E-3 

27 -0.023 -0.0283 5.3E-3 

30 -0.009 -0.0143 5.3E-3 

 

 

 

4.5.3 INTERIOR POINT METHOD 

The weights in IPM have chosen to be 1.0 to obtain one solution for both state variables 

and measurements. We also observe the input number of state variables in IPM is 1 times. 

Finally we checked all the state vectors and measurements in IPM for IEEE 30 bus 

system and all the values have successfully converged.  
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4.5.3.1. Measured and estimated angles with error using IPM 

Table 4-21: Measured and estimated angles with error using IPM 

Bus no Measured 

Angles Values 

Estimated 

Angles Values 

%Error 

8 -0.06415701 -0.06415701 2.87E-06 

9 -0.10165675 -0.10165675 1.93E-06 

12 -0.11013451 -0.11013451 7.1E-07 

14 -0.12754103 -0.12754103 3.11E-06 

15 -0.12924841 -0.12924841 2.33E-06 

16 -0.12285486 -0.12285486 1.48E-06 

18 -0.14222134 -0.14222134 1.07E-06 

21 -0.13779067 -0.13779067 3.28E-06 

22 -0.13484394 -0.13484394 9.9E-07 

27 -0.13407190 -0.13407190 2.77E-06 

30 -0.17349562 -0.17349562 1.5E-06 

 

4.5.3.2. Measured and estimated voltages with error using IPM 

Table 4-22: Measured and estimated voltages with error using IPM 

Bus no Measured 

voltage Values 

Estimated voltage 

Values 

        % Error 

8 0.99699 0.99699 2E-07 

9 1.01344 1.01344 5E-07 

12 1.02575 1.02575 3E-07 

14 1.00737 1.00737 2E-07 

15 0.99969 0.99969 3E-07 

16 1.00522 1.00522 4E-07 

18 0.98502 0.98502 1E-07 

21 0.98214 0.98214 0 

22 0.98596 0.98596 3E-07 

27 0.99262 0.99262 1E-07 

30 0.96000 0.96000 3E-07 
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4.5.3.3. Measured and estimated net active power into the system with residuals using 

IPM 

 

Table 4-23: Measured and estimated net active power with residuals using IPM 

Bus no Measured Values 

of net active 

power into the 

system 

Estimated Values  

of net active 

power into the 

system 

Residuals 

8 -0.3000 -0.2992 8E-4 

9 0.0000 -0.0016 1.6E-3 

12 -0.1120 -0.1123 3E-4 

14 -0.0620 -0.0620 0 

15 -0.0820 -0.0820 0 

16 -0.0350 -0.0356 6E-4 

18 -0.0320 -0.0327 7E-4 

21 -0.1750 -0.1753 3E-4 

22 0.0000 -0.0021 2.1E-4 

27 0.0000 -0.0023 2.3E-4 

30 -0.1060 -0.1060 0 
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4.5.3.4. Measured and estimated net reactive power into the system 

             with residuals using IPM 

Table 4-24:  Measured and estimated net reactive power with residuals using IPM 

Bus no Measured  Values 

of net reactive 

power into the 

system 

Estimated Values 

of net reactive 

power into the 

system 

Residuals 

8 0.0730 0.0682 4.8E-3 

9 0.0000 -0.0061 6.1E-3 

12 -0.0750 -0.0834 8.4E-3 

14 -0.0160 -0.0177 1.7E-3 

15 -0.0250 -0.0267 1.7E-3 

16 -0.0180 -0.0197 1.7E-3 

18 -0.0090 -0.0107 1.7E-3 

21 -0.1120 -0.1131 1.1E-3 

22 0.0000 -0.0023 2.3E-3 

27 0.0000 -0.0053 5.3E-3 

30 -0.0190 -0.0185 5E-4 
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Figure 4-7: Comparison in angles error for IEEE 30 bus system 
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Figure 4.10 compares angle errors for IEEE 30 buses which are showed in Table 4.13, 

4.17, and 4.21. The Weighted least square has more variation, so we compile it as the bad 

estimation algorithm even-though the values of angle errors are more reasonable. The 

weights (R) in angles error in WLS are 6E-5 and in EKF are 1E-5. 
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Figure 4-8: Comparison in voltages error for IEEE 30 bus system 

  

 

Figure 4.11 shows the comparison of voltage errors for IEEE 30 bus system tabled in 

Table 4.14, 4.18, and 4.22 for the three algorithms including WLS, EKF, and IPM. Again 

the IPM gives a better accuracy because most of voltage errors closer to zero than EKF 

and WLS. EKF is the second best estimation in most voltage error values. The weights 

(R) in voltages error in WLS are 9E-4 and in EKF are 1E-5. 
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Figure 4-9: Comparison in net active power residuals for IEEE 30 bus system 

 

 

 

Figure 4.12 demonstrates the comparison of net active power residuals for IEEE 30 bus 

system presented in Table 4.15, 4.19, and 4. Again IPM is more accurate because all the 

values are lesser than both WLS and EKF. Also from the above figure seems there is no 

different in accuracy between EKF and WLS except that EKF takes lesser iteration and 

CPU time than WLS. The weights in WLS (R) of net active power are 1E-4 and in EKF 

are 9E-3. 
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Figure 4-10: Comparison in net reactive power residuals for IEEE 30 bus system 

 

 

 

Figure 4.13 compares the net reactive power residuals for IEEE 30 bus system showed in 

Table 4.16, 4.20, and 4.24. IPM is closer to zero than WLS and EKF. Also residuals of 

EKF are lesser than WLS. The weights in WLS (R) of net active power are 1E-3 and in 

EKF are 4E-3. 
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4.6 TEST CASE IEEE 118 BUSES 

 

Figure 4-11: Single line diagram of 118 bus system 

        Name of Network 

Components 
Number of Network Components 

Generators 112 

Transformers 9 

Loads 90 

Transmission Lines 186 



 

56 

 

 

4.6.1 WEIGHTED LEAST SQUARES METHOD  

The new thing in IEEE 118 bus system that we could not use the tolerance condition in 

WLS Matlab program because some of values diverge. The weights for the angles equal 

5E-6, for the voltages are 5E-5, for the net active power are 1E-6, and for the net reactive 

power 5E-4. We also observe the input number of state variables in WLS is 5 times. 

Finally we checked all the state vectors and measurements in WLS for IEEE 118 bus 

system and some values have not successfully converged. 

 

  4.6.1.1. Measured and estimated angles with error using WLS 

 

Table 4-25: Measured and estimated angles with error using WLS 

Bus no 
Measured Angles 

Values 

Estimated Angles 

Values 
%Error 

13 -0.0446196 -0.0446196 3.2E-5 

34 -0.0426906 -0.0426906 7.57E-05 

40 -0.0921856 -0.0921856 2.09E-05 

43 -0.0314880 -0.0314880 4.15E-05 

59 0.1007783 0.1007783 4.11E-05 

67 0.1672282 0.1672282 2.02E-05 

73 0.1483344 0.1483344 9.8E-06 

95 0.2131232 0.2131232 1.61E-05 

102 0.2714584 0.2714584 1.5E-5 

117 -0.0440711 -0.0440711 1.35E-05 

118 0.1371820 0.1371820 1.22E-05 
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4.6.1.2. Measured and estimated voltages with error using WLS 

Table 4-26: Measured and estimated voltages with error using WLS 

Bus no Measured Voltages 

Values 

Estimated  Voltages 

Values 

% Error 

 

13 0.91717 0.91717 1.4E-06 

34 0.98695 0.98695 2.3E-06 

40 1.00106 1.00106 1E-6 

43 1.03549 1.03549 2E-6 

59 1.19586 1.19586 5E-07 

67 1.22432 1.22432 1.7E-06 

73 1.02489 1.02489 6E-07 

95 1.15950 1.15950 7E-07 

102 1.17753 1.17753 1E-6 

117 0.94439 0.94439 1.4E-06 

118 1.10251 1.10251 3.3E-06 

 

4.6.1.3. Measured and estimated net active power into the system  

             with residuals using WLS 

Table 4-27: Measured and estimated net active power with residuals using WLS 

Bus no Measured  Values of 

net active power into 

the system 

Estimated Values of 

net active power 

into the system 

Residuals 

13 -0.3400 -0.2929 4.71E-2 

34 -0.5900 -0.2249 3.651E-1 

40 -0.6600 -0.3881 2.719E-1 

43 -0.1800 -0.0989 8.11E-2 

59 -1.2200 -0.6853 5.347E-1 

67 -0.2800 -0.1905 8.95E-2 

73 -0.0600 0.0005 6.05E-2 

95 -0.4200 -0.1706 2.494E-1 

102 -0.0500 0.0078 5.78E-2 

117 -0.2000 -0.1687 3.13E-2 

118 -0.3300 0.0411 3.711E-1 
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4.6.1.4. Measured and estimated net reactive power into the system  

              with residuals using WLS 

Table 4-28: Measured and estimated net reactive power with residuals using WLS 

Bus no Measured  Values of 

net reactive power 

into the system 

Estimated Values of 

net reactive power 

into the system 

        Residuals 

13 -0.16 -0.2826 1.2263E-1 

34 -0.26 -0.4052 1.4523E-1 

43 -0.07 -0.1556 8.561E-2 

59 -1.13 -1.1578 2.775E-2 

67 -0.07 -0.2032 1.3317E-1 

73 0.00 -0.0773 7.731E-2 

95 -0.31 -0.2953 1.474E-2 

102 -0.03 -0.0036 2.636E-2 

117 -0.08 -0.1079 2.793E-2 

118 -0.15 -0.1524  2.35E-3 

 

4.6.2 EXTENDED KALMAN FILTER 

We suggest the initial covariance (P) in EKF to be equals 0.01 and the noise variance (Q) 

of state vectors is 0.01 because we work on the tolerance tol < 1e − 1 in IEEE 118 bus 

system, so we do not observe the number of the iteration; however, the time to obtain the 

optimal solution in EKF is faster than both WLS and IPM. Also the weights have chosen 

to give us accurate results for all errors and residuals which are 6E3 for angles, 6E3 for 

voltages, and 6E6 for net active power and 6E4 for reactive power into the system. We 

also observe the input number of state variables in EKF is 3 times. Finally we checked all 

the state vectors and measurements in EKF for IEEE 118 bus system and all the values 

have successfully converged.  The time to obtain the optimal solution in EKF is faster 

than both IPM and WLS. 
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4.6.2.1. Measured and estimated angles with error using EKF 

Table 4-29: Measured and estimated angles with error using EKF 

Bus no Measured Angles 

Values 

Estimated Angles  

Values 

% Error 

13 -0.0403495 -0.0403495 7.3E-06 

34 -0.0313728 -0.0313728 1.49E-05 

40 -0.0529834 -0.0529834 7.6E-06 

43 -0.0245089 -0.0245089 4.4E-06 

59 -0.0243231 -0.0243231 1.56E-05 

67 0.0393583 0.0393583 7.9E-06 

73 -0.0165501 -0.0165501 6.4E-06 

95 -0.0172618 -0.0172618 1.69E-05 

102 0.0158082 0.0158082 1.2E-06 

117 -0.0280828 -0.0280828 5.5E-06 

118 -0.0386295 -0.0386295 1.04E-05 

 

4.6.2.2. Measured and estimated voltages with error using EKF 

Table 4-30:  Measured and estimated voltages with error using EKF 

Bus no Measured Voltages 

Values 

Estimated  Voltages 

Values 

        %Error 

 

13 0.94577 0.94577 4E-07 

34 0.99956 0.99956 3E-07 

40 0.96917 0.96917 2E-07 

43 0.98554 0.98554 1E-07 

59 0.98841 0.98841 3E-07 

67 1.01937 1.01937 2E-07 

73 0.99324 0.99324 1E-07 

95 0.98433 0.98433 2E-07 

102 1.00450 1.00450 1E-07 

117 0.94190 0.94190 3E-07 

118 0.96778 0.96778 1E-07 
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4.6.2.3. Measured and estimated net active power with residuals  

              using EKF 

 

Table 4-31: Measured and estimated net active power with residuals using EKF 

Bus no Measured Values 

of net active 

power into the 

system 

Estimated Values 

of net active 

power into the 

system 

Residuals 

13 -0.340 -0.2094 1.3058E-1 

34 -0.590 -0.4361 1.5385E-1 

40 -0.660 -0.3363 3.2372E-1 

43 -0.180 0.0073 1.8729E-1 

59 -1.220 -1.2387 1.874E-2 

67 -0.280 -0.5064 2.2637E-1 

73 -0.060 -0.0575 2.54E-3 

95 -0.420 -0.4797 5.972E-2 

102 -0.050 -0.2320 1.8196E-1 

117 -0.200 -0.0485 1.5151E-1 

118 -0.330 -0.2547 7.526E-2 
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4.6.2.3. Measured and estimated net reactive power with residuals using EKF 

 

Table 4-32: Measured and estimated net reactive power with residuals using EKF 

Bus no Measured 

Values of net 

reactive power 

into the system 

Estimated 

Values of net 

reactive power 

into the system 

Residuals 

13 -0.1600 -0.1497 1.03E-2 

34 -0.2600 -0.2307 2.93E-2 

40 -0.2300 -0.1611 6.89E-2 

43 -0.0700 -0.0981 2.81E-2 

59 -1.1300 -1.1690 3.90E-2 

67 -0.0700 -0.0616 8.4E-3 

73 0.0000 -0.0112 1.12E-2 

95 -0.3100 -0.0800 2.30E-1 

102 -0.0300 -0.0248 5.2E-3 

117 -0.0800 -0.0579 2.21E-2 

118 -0.1500 -0.0619 8.81E-2 

 

4.6.3 INTERIOR POINT METHOD 

The weights in IPM have chosen to be 1.0 to obtain one solution for both state variables 

and measurements. We also observe the input number of state variables in IPM is 2 times. 

Finally we checked all the state vectors and measurements in IPM for IEEE 118 bus 

system and all the values have successfully converged. 
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 4.6.3.1. Measured and estimated angles with error using IPM 

Table 4-33: Measured and estimated angles with error using IPM 

Bus no Measured Angles 

Values 

Estimated Angles 

Values 

%Error 

13 -0.123598290000 -0.123598288951 8.49E-07 

34 -0.089992160000 -0.089992161155 1.28E-06 

40 -0.094141030000 -0.094141033840 4.08E-06 

43 -0.084234960000 -0.084234957978 2.4E-06 

59 -0.052515130000 -0.052515133780 7.2E-06 

67 -0.032948630000 -0.032948627784 6.73E-06 

73 -0.052170650000 -0.052170653465 6.64E-06 

95 -0.034757540000 -0.034757543387 9.74E-06 

102 -0.017238210000 -0.017238209919 4.71E-07 

117 -0.122747730000 -0.122747732250 1.83E-06 

118 -0.038877140000 -0.038877142725 7.01E-06 

 

4.6.3.2. Measured and estimated voltages with error using IPM 

Table 4-34: Measured and estimated voltages with error using IPM 

Bus no Measured Voltages 

Values 

Estimated Voltages  

Values 

%Error 

 

13 0.960003676000 0.960003675700 3.13E-08 

34 0.970598894000 0.970598894137 1.41E-08 

40 0.966540942000 0.966540942454 4.69E-08 

43 0.973337862000 0.973337862304 3.12E-08 

59 0.981782375000 0.981782375472 4.8E-08 

67 0.992572351000 0.992572350786 2.15E-08 

73 0.980129862000 0.980129861586 4.22E-08 

95 0.996036685000 0.996036684907 9.3E-09 

102 1.010844766000 1.010844765924 7.5E-09 

117 0.960009763000 0.960009763490 5.11E-08 

118 0.976276903000 0.976276903033 3.3E-09 
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4.6.3.3. Measured and estimated net active power into the system with residuals using 

IPM 

Table 4-35: Measured and estimated net active power with residuals using IPM 

Bus no Measured Values 

of net active 

power into the 

system 

Estimated Values 

of net active 

power into the 

system 

Residuals 

13 -0.340 -0.3360 4.0E-3 

34 -0.590 -0.5891 9E-4 

40 -0.660 -0.6613 1.3E-3 

43 -0.180 -0.1826 2.6E-3 

59 -1.220 -1.2290 9.0E-3 

67 -0.280 -0.2897 9.7E-3 

73 -0.060 -0.0715 1.15E-2 

95 -0.420 -0.4324 1.24E-2 

102 -0.050 -0.0611 1.11E-2 

117 -0.200 -0.1978 2.2E-3 

118 -0.330 -0.3421 1.21E-2 
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4.6.3.4. Measured and estimated net active power into the system with residuals      using 

IPM 

Table 4-36: Measured and estimated net reactive power with residuals using IPM 

Bus no Measured Values of 

net reactive power 

into the system 

Estimated Values of 

net reactive power 

into the system 

Residuals 

13 -0.10 -0.0235 7.65E-2 

34 -0.09 -0.0662 2.38E-2 

40 -0.11 -0.0962 1.38E-2 

43 -0.23 -0.2179 1.21E-2 

59 -0.03 -0.0279 2.1E-3 

67 -0.18 -0.1784 1.6E-3 

73 0.00 -0.0007 7E-4 

95 -0.16 -0.1753 1.53E-2 

102 -0.15 -0.1680 1.80E-2 

117 0.00 -0.0019 1.9E-3 

118 -0.08 -0.0498 3.02E-2 
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Figure 4-12: Comparison in angles error for IEEE 118 bus system 
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Figure 4.15 displays the comparison of angle errors for IEEE 118 bus system illustrated 

in Table 4.25, 4.29, and 4.33. Both of IPM (green line) and EKF (red line) are more 

accurate because all angle errors are closer to zero than WLS (black line) which has more 

variation. The weight (R) in angles error in WLS is 5E-6 and in EKF are 6E3. 
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Figure 4-13: Comparison in voltages error for IEEE 118 bus system 

 

 

Figure 4.16 shows the comparison of voltage errors for IEEE 118 bus system showed in 

Table 4.26, 4.30, and 4.34. Again in large scale electrical network proved that both of 

IPM and EKF are more accurate than WLS at all the voltage error points. The weight (R) 

in voltages error in WLS is 5E-5 and in EKF are 6E3. 
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Figure 4-14: Comparison in net active power residuals for IEEE 118 bus system 

 

 

Figure 4.17 shows the comparison of net active power residuals for IEEE 118bus system 

represented in Table 4.27, 4.31, and 4.35. As always IPM is more accurate because all the 

residual values are almost zero and both of WLS and EKF are both variations, so it is 

hard to distinguish the accuracy. The weights of net active power in WLS are 1E-6 and in 

EKF are 6E6. 
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Figure 4-15: Comparison in net reactive power residuals for IEEE 118 bus system 

 

Figure 4.18 compares the net reactive power residuals for IEEE 118 bus system showed 

in Table 4.28, 4.32, and 4.36.  The IPM net active residuals is lesser and closer to zero 

than both WLS and EKF. The weights of net reactive power in WLS are 5E-4 and in EKF 

are 6E4. 

                                    Table 4-37:  Comparison in state estimation algorithms  

COMPARISION IN STATE ESTIMATION ALGORITHMS 

INPUT ITERATIONS CONVERGENCE 

 

ALGORITHMS 

IEEE 14  IEEE 30  IEEE 118  IEEE 14  IEEE 30  IEEE 118  

WLS  

2 times 

 

3 times 

 

5 times 

 

converged 

 

converged 

Non-

converged 

EKF  

2 times 

 

3 times 

 

3 times 

 

converged 

 

converged 

 

converged 

IPM  

1 time 

 

1 time 

 

2 times 

 

converged 

 

converged 

 

converged 
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Figure 4-16: Comparison in CPU time in IEEE test cases 
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4.7 DISCUSSION 

From all the tables and graphics that we have demonstrated in this thesis, we sum up the 

comparison in state estimation algorithms that weighted least square clearly is very 

sensitive to the influence of outliers which can make a gap between the statistical theory 

and practical applications. This case can be obvious in IEEE 118 buses because some of 

state variables did not converge or the optimal values resulted from the estimation is not 

related to the actual nominal values of state variables; moreover, several references have 

mentioned that there is no different between weighted least square and extend kalman 

filter in accuracy except the number of iterations to obtain the optimal points; however, in 

this thesis, some of results have shown that extend kalman filter can even challenge 

interior point method algorithm in case of accuracy which can be clear in figure 

4.5,4.10,4.15,4.16,and 4.18. 

Even-though weighted least square is not successful in large scale electrical networks, it 

has intervened in several interpretations to provide variety of statistical intervals for many 

parameters such as predictions, estimations, calibrations, and finally optimizations. 

An interior point method specifically logarithmic barrier functions has been used and 

succeed in this thesis, but CPU time is not faster as EKF is, so in case of accuracy, 

interior point method is the best estimation and in case of less CPU time, EKF is the best; 

however, WLS is a widely use in practical life because everyone knows the composition 

of this algorithm and is more trust than other algorithms. 
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CHAPTER 5  CONCLUSION AND FUTURE WORK 

5.1 CONCLUSION 

       State estimation techniques in area of power system operation and control analysis 

have been constantly developing topics to find more precise solution for many electrical 

networks issues. Many algorithms with different techniques have been extensively 

implemented to accomplish the best performance which can give us the best estimation of 

electrical networks. 

      In this thesis, three different algorithms including WLS, EKF, and IPM are proved, 

discussed, and employed in order to achieve the most optimum solution. Specifically in 

IPM, we have concentrated on the minimization sum of real time available measurements 

by considering the maximization and the dual-algorithms in explanation as well. 

        We have done three different test cases including IEEE 14, 30, and 118 buses to 

compare the state estimation algorithms based on the errors and residuals which can help 

us have an indicate of the best algorithm which can provide us an accurate or optimum 

view of the state of our electrical networks . 

       From this comparison, it has found that weighted least absolute value (WLAV) in 

interior point method (IPM) is the best estimation at most of test cases, extend kalman 

filter (EKF) is the second best estimation, but it is clear at some of test cases, and so 

obvious that weighted least square is the worst estimation because of reasons that we 

have explained in discussion in chapter 4. 

 

  



 

71 

 

5.2 FUTURE WORK 

         The area of this thesis can be further extent in wide research areas    such as:- 

The problems discussed in this thesis can be further extent to employ more electrical 

network components such as IEEE 9, 57, and 300 buses by considering the additional 

constraints in WLAV interior point method. 

Contingency analysis is one of a challenge part in electrical networks, so we can use the 

state estimation to evaluate the type of emergency state N, N-1, or even N-2 which is 

outage in two or more generations or transmission lines. Also state estimation can be used 

to deal with load change challenge and lack of generation production. 

Smart grid electrical network can be an interesting topic to employ these algorithms to 

minimize the sum of real time available measurements residuals. 

This thesis can be further extent to explore new optimization algorithms including 

deterministic and heuristic algorithms as well as implementing these algorithms in 

several IEEE electrical networks. 

Renewable energy such as wind, solar, and tidal energy can be considered in state 

estimation. 

This thesis can be further extent in using phasor measurements units (PMUs) in these 

electrical networks and compare the performance of these algorithms with and without 

using phasor measurements units (PMUs). 
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