
SOLAR OCCULTATION IMAGING OF DUST IN THE MARTIAN
ATMOSPHERE

by

Ryan Robski

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia

November 2012

c© Copyright by Ryan Robski, 2012

DALHOUSIE UNIVERSITY

DEPARTMENT OF PHYSICS & ATMOSPHERIC SCIENCE

The undersigned hereby certify that they have read and recommend

to the Faculty of Graduate Studies for acceptance a thesis entitled “SOLAR

OCCULTATION IMAGING OF DUST IN THE MARTIAN ATMOSPHERE”

by Ryan Robski in partial fulfillment of the requirements for the degree of

Master of Science.

Dated: November 22, 2012

Supervisor:

Readers:

ii

DALHOUSIE UNIVERSITY

DATE: November 22, 2012

AUTHOR: Ryan Robski

TITLE: SOLAR OCCULTATION IMAGING OF DUST IN THE MARTIAN
ATMOSPHERE

DEPARTMENT OR SCHOOL: Department of Physics & Atmospheric Science

DEGREE: M.Sc. CONVOCATION: May YEAR: 2013

Permission is herewith granted to Dalhousie University to circulate and to
have copied for non-commercial purposes, at its discretion, the above title upon the
request of individuals or institutions. I understand that my thesis will be electronically
available to the public.

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the authors
written permission.

The author attests that permission has been obtained for the use of any
copyrighted material appearing in the thesis (other than the brief excerpts requiring
only proper acknowledgement in scholarly writing), and that all such use is clearly
acknowledged.

Signature of Author

iii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . xi

List of Abbreviations and Symbols Used xii

Acknowledgements . xiv

Chapter 1 Introduction . 1

1.1 Motivation for Space Exploration . 1

1.2 Why Study Mars? . 1

Chapter 2 Background . 5

2.1 Early Mars Missions . 5

2.2 Known Martian Characteristics . 5

2.3 Questions About Mars . 11

Chapter 3 The ExoMars Trace Gas Orbiter Mission 15

3.1 Announcement . 15

3.2 Mission Complications . 15

3.3 Objectives and Goals . 16

3.4 Mars Atmospheric Trace Molecule Occultation Spectrometer (MAT-

MOS) . 17

3.5 ExoMars Configuration Changes . 20

3.6 The Nadir and Occultation for MArs Discovery (NOMAD) 22

3.7 Russian Instrumentation and Continued Canadian Involvement 23

Chapter 4 Occultation Instrument Imager and Pointing 24

4.1 Motivation . 24

iv

4.2 Method . 26

4.3 Results . 33

4.4 Conclusions . 38

Chapter 5 Requirements of Studying Martian Aerosols 46

5.1 Motivation . 46

5.2 Signal & Hardware Analysis . 47

5.3 Spectral Analysis . 52

5.4 Conclusions . 59

Chapter 6 Conclusions and Future Work 61

Bibliography . 63

Appendix A Python Code . 67

A.1 Interface.py . 67

A.2 CCD.py . 86

A.3 Deform.py . 92

A.4 Centre.py . 93

v

List of Tables

2.1 Comparison of similarities and differences of Martian character-
istics to those of Earth [1]. 6

2.2 Largest gaseous contributors, by concentration, to the Martian
atmosphere [1]. 7

2.3 Areocentric longitude values and their associated equinox or sol-
stice. 8

2.4 A summary of published Martian dust distribution parameters.[2] 13

3.1 Instruments originally selected for the ExoMars Trace Gas Orbiter. 17

3.2 Specifications for the MATMOS four-channel imager [3] [4]. . . 20

3.3 Specifications for the MATMOS Fourier Transform spectrometer
[4]. 21

4.1 A list of detector sets simulated and their defect features.. . . . 30

5.1 A table of the number and size of windows, here defined as trans-
missions exceeding 0.999, found between 800–4300 cm−1 at each
simulated tangent height in the Martian atmosphere. 59

vi

List of Figures

1.1 An image of the Martian atmosphere before and during the 2001
global dust storm, taken from the Hubble Telescope. (Image
from J. Bell/NASA) . 2

1.2 Left: A contour plot showing detected surface methane distri-
bution on Mars. Right: A surface image of the same region.
(Image from Susan Tawdry/NASA) 4

2.1 Phase diagram for water. The red dot represents the typical
surface conditions on Mars [5]. 7

2.2 Phase diagram for carbon dioxide. The red dot represents the
typical surface conditions on Mars [5]. 10

3.1 A cartoon diagram of the sunrise occultation geometry [3]. . . 18

3.2 A visualization of the way light travels and is observed during
an occultation event [6]. 19

3.3 An image comparing the relative sizes of the imager field of view
and solar disk [7]. The red circle is the size of the FTS field of
view. The yellow and blue circles are the view of the solar disk
at aphelion and perihelion respectively. The total size of the
figure is a 64x64 pixel area. 21

4.1 A STAR1000 CMOS image sensor [8]. 27

4.2 Left: An image taken from Earth (Provided by J. Franklin).
The solar diameter is about 135 pixels. Right: An adapted and
centred version of the image on the left. The solar diameter is
calculated to be about 70 pixels. 31

4.3 Deviation of the detected solar disk from the optimal position
of the solar beam for the Dalhousie FTS ground station using
the sun-tracking algorithm. (Figure supplied by J. Franklin.) . 32

4.4 Left to Right: Examples of 1%, 2%, 4%, 8%, 16%, 32%, 50%
dead pixels on a solar image. 33

4.5 Left to Right: Examples of 1%, 2%, 4%, 8%, 16%, 32%, 50%
bright pixels on a solar image. 34

vii

4.6 A 2D scatter plot of the deviation in the found centroids for
a solar disk applied to a CMOS detector with 2% dead pixels.
This was conducted for 1000 detectors with random dead pixel
placement. The circle is set at a radius of 1/3 of a pixel which
is representative of the accuracy in pointing that is required
(we use 1/3 rather than 1/2 to provide a tighter criterion for
success). This same circle is also shown in following figures. . . 34

4.7 A 2D scatter plot of the deviation in the found centroids for a
solar disk applied to a CMOS detector with 16% dead pixels.
This was conducted for 1000 detectors with random dead pixel
placement. 35

4.8 A plot of the standard deviation of the deviation in the found
centroids for a solar image against the percentage of dead pixels
on the CMOS detectors to which the image was applied. . . . 36

4.9 A 2D scatter plot of the deviation in the found centroids for a
solar disk applied to a CMOS detector with 2% saturated pixels.
This was conducted for 1000 detectors with random saturated
pixel placement. 37

4.10 A 2D scatter plot of the deviation in the found centroids for
a solar disk applied to a CMOS detector with 16% saturated
pixels. This was conducted for 1000 detectors with random
saturated pixel placement. 38

4.11 A plot of the standard deviation of the deviation in the found
centroids for a solar image against the percentage of saturated
pixels on the CMOS detectors to which the image was applied. 39

4.12 Two examples of detectors with dead columns appearing across
the solar disk. 39

4.13 A 2D scatter plot of the deviation in the found centroids for a
solar disk applied to a CMOS detector with one dead column.
This was conducted for 1000 detectors with random dead col-
umn placement. Note: Many points are overlapping at the
(0,0) position . 40

4.14 A plot of the maximum deviation of the found centre on detec-
tors with dead columns. 41

4.15 A 2D scatter plot of the deviation in the found centroids for a
solar disk applied to a CMOS detector with one interpolated
column. This was conducted for 1000 detectors with random
interpolated column placement. 42

viii

4.16 A plot of the maximum deviation of the found centre on detec-
tors contrasting dead columns (top) and interpolated columns
(bottom). The dashed lines show the 1/3 pixel target for refer-
ence in each scale. 42

4.17 Left: Unaltered solar image. Centre: Solar image with a 2x
gradient. Right: Solar image with a 10x gradient. 43

4.18 A plot of the centre deviation of the found centroids for the
solar disk against the brightness gradient applied to the image
on the CMOS detector. 43

4.19 Left: A solar image with a 5x brightness gradient applied.
Right: The solar disk still detected by the algorithm with the
5x brightness gradient image input. 44

5.1 An example of a real 3-bit analog-to-digital converter. The
actual line shows the deviation from an ideal converter, demon-
strating how the INL is observed. 48

5.2 A front view of the 4-channel imager prototype. (Image pro-
vided by A. Tikhomirov.) . 50

5.3 An overhead view of the imager test setup. A collimated beam
is directed into the imager from a nearby halogen lamp source.
(Image provided by A. Tikhomirov.) 51

5.4 Left: A plot of the DNL of the imager using the prototype
10-bit ADC. Right: A plot of the INL cumulative effect of the
imager using the prototype 10-bit ADC. (Plots provided by A.
Tikhomirov.) . 51

5.5 The Allan Deviation for pixel (359,124) is plotted against inte-
gration time. A smooth trendline is drawn. A local minimum
is clearly observed between 3 and 4 seconds. (Plot provided by
A. Tikhomirov.) . 52

5.6 A plot of the simulated limb-viewed transmittance spectra for
the Martian atmosphere taken from Wennberg (2010)[9]. . . . 53

5.7 The vertical mixing ratio of gases present at 20 km in the Spec-
tralCalc simulated atmosphere. 54

5.8 The temperature and pressure profiles used in the SpectralCalc
simulated atmosphere. 55

ix

5.9 A simulated Martian transmission spectrum generated by Spec-
traCalc at a 20 km limb-viewing geometry showing 1800 cm−1

to 2550 cm−1. Windows are shaded dark green if larger than
10 cm−1, light green if 5-10 cm−1, and grey if 2-5 cm−1. 56

5.10 A simulated Martian transmission spectrum generated by Spec-
traCalc at a 20 km limb-viewing geometry showing 2550 cm−1

to 4300 cm−1. Windows are shaded dark green if larger than
10 cm−1, light green if 5-10 cm−1, and grey if 2-5 cm−1. 57

5.11 A plot of the distribution of windows over the full FTS range
at simulated altitudes between 2 and 100 km. 58

5.12 Windows of at least 2cm−1 width plotted for the various alti-
tudes simulated, overlaid with a simulated dust spectrum for
the same range. 58

5.13 Windows of at least 0.2cm−1 width plotted for the various al-
titudes simulated, overlaid with a simulated dust spectrum for
the same range. 60

x

Abstract

As part of the ExoMars space programme, the 2016 Trace Gas Orbiter mission was an-

nounced. The Martian Atmospheric Trace Molecule Occultation Spectrometer (MAT-

MOS) was a proposed Fourier transform spectrometer and solar imager concept pair

that would provide for trace gas detection and aerosol observation of the Martian

atmosphere. Martian aerosols namely CO2 crystals, water-ice crystals, and dust

have been observed during past missions; however, observations have failed to fully

characterize their physical and optical properties.

This thesis presents an analysis of the ability of the proposed imager to determine

the pointing of the spacecraft independent of the spectrometer. Furthermore, proof

of concept is presenting showing the ability to, in laboratory conditions, characterize

the precision and stability of the imager. Finally, window regions in the transmit-

tance spectrum of the Martian atmosphere are determined simulating the Martian

atmosphere and viewing geometry.

xi

List of Abbreviations and Symbols Used

α: Angstrom Coefficient

δ: Angular Diameter

λ: Wavelength

τ : Optical Depth or Integration Time

d: Diameter

I: Attenuated Radiation Intensity

I0: Initial Radiation Intensity

ke: Extinction Coefficient

R: Object Distance

r: Radius

reff : Effective Radius

veff : Effective Variance of Distribution

x: Size Parameter

z: Length of Optical Path

ADC: Analog-to-digital converter

APE: Absolute Pointing Error

AVAR: Allan Variance

DNL: Digital Non-linearity

ESA: European Space Agency

FOV: Field of View

FTS: Fourier Transform Spectrometer

IFOV: Instrument Field of View

INL: Integral Non-linearity

JIDT: Joint Instrument Definition Team

JPL: Jet Propulsion Laboratory

LSB: Least Significant Bit

MATMOS: Mars Atmospheric Trace Molecule Occultation Spectrometer

NASA: National Aeronautics and Space Administration

xii

NOMAD: Nadir and Occultation for Mars Discovery

PI: Principal Investigator

TGO: ExoMars Trace Gas Orbiter

xiii

Acknowledgements

First and foremost, I would like to acknowledge and thank my supervisor, Dr. James

Drummond. I am enormously grateful for his guidance and mentorship over the past

two years and for challenging my mind in new and provoking ways. Also, perhaps

most importantly, I would like to thank Jim for his patience. Having tested them

sufficiently, I can confirm their existence and assure you they are in good working

condition.

I would also like to thank my fellow research group members and office mates.

Thank you to Lisa LeBlanc and Yan Tsehtik for making me feel welcoming in the

group and providing me with the support I too often required. Thanks to Alexey

Tikhomirov for his insight and his related work, some of which appears in this thesis.

To Jonathan for our countless conversations, debates, sanity checks, and for generally

being another graduate student with whom I could share my experiences and frus-

trations. And to Chris Perro, Steven D’Andrea, Kim Sakamoto, Jason Hopper, and

Colin-Pike-Thackray, all of whom have made my time at Dalhousie both interesting

and enjoyable.

Finally, I would like to thank the Natural Sciences and Engineering Research

Council of Canada and the Dalhousie Physics & Atmospheric Science department for

financial support.

xiv

Chapter 1

Introduction

1.1 Motivation for Space Exploration

Space exploration is a costly endeavour, however, the rewards make it worth every

penny. Space exploration, and science more broadly, helps us to gain a better under-

standing of the universe we live in. Asking and attempting to answer questions such

as “Where did we come from?”, “How was the earth formed?”, and “What else is out

there?” have always helped to push our imagination and innovation forward. This in

turn has also led to significant technological developments that have made their way

into universities, the private sector, and into the lives of individuals.

1.2 Why Study Mars?

Humans have an inherent sense of curiosity. Through scientific research we are always

looking to push boundaries of understanding and explore new frontiers. After the

historically significant “Space Race” of the mid 20th century, wherein we saw the

greatest acceleration in space curiosity and exploration that culminated in a successful

manned mission to the Moon, it seems natural that our next frontier would be our

next closest neighbour: Mars.

Understanding the Martian environment, both atmosphere and geology, help us

to focus our investigations and ask the right questions. For instance, in 1784 a British

astronomer named Sir William Herschel famously wrote of the dark coloured oceans

he observed on the Martian surface. He openly postulated that the inhabitants of

Mars “probably enjoy a similar situation to our own.” [10] Of course, we know now

that based on the surface conditions of low pressure and cold temperatures on Mars

that it would be impossible for water to exist in a liquid state.

1

2

Figure 1.1: An image of the Martian atmosphere before and during the 2001 global
dust storm, taken from the Hubble Telescope. (Image from J. Bell/NASA)

Martian Dust

One of the most stark differences between the lower atmospheric climate conditions

on Mars compared to those of Earth is the consistent presence of atmospheric dust.

The suspension of this granular aerosol is a planet-wide phenomenon of varying in

size and distribution.

Although the presence of the Martian dust was established by early observations of

Mars, the shape and size of the dust particles is not well known. Published postulated

distributions centre on a mean radius of about 1-1.5 μm [2]. Additionally, the particle

size distribution has not been well characterized leading to many competing models.

Although the dust is a persistent feature, it regularly varies in concentration on both

diurnal and seasonal cycles. Moreover, localized dust devil phenomena and global

planet-encircling dust storms have been observed. The exact cause of these events

is unknown. Figure 1.1 shows two images of Mars, one viewed during one such dust

storm.

Challenges exist as a result of our limited knowledge of the dust. Given its per-

sistence and abundance, dust will continue to appear in all atmospheric sounding

3

and remote sensing experiments. As such, priority must be given to furthering our

understanding of the dust, its impact on the Martian climate, and its implications on

our ability to study other aspects of Mars. Without this, we leave a large unknown

completely unconstrained to run though all other data.

Gaseous Composition

Of specific interest to society is the question of “Are we alone?”. Based on the

prerequisite conditions for biological activity, as we know it, to exist, the most likely

candidate within the constraints of our solar system is Mars.

Further, fuelling the mystery is the observation of methane present on Mars.

Methane has been reportedly observed by Earth-based instruments in relative abun-

dances of about 10 parts per billion (ppb) in some regions [11]. Further, there has

been reported detection from satellite measurements and observed spacial variability

of methane with abundances ranging from 0-30 ppb [12]. Despite independent reports

of its existence, many groups are still very sceptical of the measurements and methane

existing on the Martian surface. Even accepting its presence, experts are divided on

its origin.

What makes localized observations of methane puzzling is that given the consistent

surface winds and good vertical mixing we observe, the methane should be well-mixed

into the atmosphere. Also, methane is disassociated by solar ultra-violet light. Given

the thin atmosphere and absence of a absorbing ozone layer such as the one on Earth,

it is logical to conclude that, short of any unknown chemical pathways, methane must

be being replenished in the atmosphere. Moreover, the majority of methane on Earth

is produced by biological sources, thus making this observation further intriguing.

Figure1.2 shows an image of methane measurements on the Martian surface.

This leads many to believe that the methane must either be being produced ac-

tively on the surface or being released from a subterranean source, either from bacte-

rial activity or geothermal processes. Either way, higher resolution spatial mapping

will help to identify good candidate locations for future ground missions to explore

these possible sources.

This thesis will discuss some of the design aspects of a pair of instruments intended

to go to Mars and observe the atmosphere directly, looking at the dust and the

4

Figure 1.2: Left: A contour plot showing detected surface methane distribu-
tion on Mars. Right: A surface image of the same region. (Image from Susan
Tawdry/NASA)

gaseous composition. These instruments will help us to understand some of the many

unknowns of the Martian atmosphere.

Chapter 2

Background

2.1 Early Mars Missions

Early missions to study Mars began in the late 1960s and early 1970s with a series of

attempts by the USSR. After a number of failed launches, communications errors, and

some mixed successes, NASA was the first to successfully place a man-made satellite,

the Mariner 9, in orbit of Mars [13]. Aboard the Mariner 9 was an Infrared Interfer-

ometer Spectrometer (IRIS) used to examine a broad range of infrared wavelengths.

Given that relatively little was known of Mars and its composition at the time, one of

the goals of IRIS was to search for new molecular species. IRIS reported the strong

affect the dust had on its data gathering ability, as well as water vapour observations,

especially around the polar region [14].

Several years later in 1976, NASA commissioned another mission for a joint orbiter

and lander launch. This mission, named Viking, was equip to search for microbial life

on the surface, measure the water vapour abundance in the column, look at mineral

and surface composition, and measure the atmospheric temperature [13].

After a long hiatus through the 1980s, Mars exploration was renewed with the

launch of NASA’s Pathfinder lander, launched in 1997. Since then Mars has been the

subject of many robotic missions launched by collaborators from several countries.

This has led us to where we are today with our understanding of the red planet, but

has also allowed shown us how much we have left to learn.

2.2 Known Martian Characteristics

Mars is the fourth planet from the Sun in our solar system and a neighbour of Earth.

Aside from its proximity and terrestrial nature, many of the known characteristics

of Mars sharply contrast those of Earth, despite often being thought of as similar to

Earth and a possible host candidate for microbial life. (See table 2.1 for a comparison

5

6

of some physical quantities.)

The atmosphere of Mars is quite thin. The surface pressure, varying significantly

with location and with the seasonal changes, is on the order of 400-900 Pa, less than

one percent of that on Earth [1]. Through seasonal temperature changes, both water

and carbon dioxide will condense and sublimate on alternating polar regions of Mars.

These processes may vary the surface pressure by up to 30% on an annual basis

[15]. Given the thin atmosphere, refraction plays much less of a role for light being

transmitted through the atmosphere than for the similar case on Earth [16].

Mars Earth
Mean Radius 3390 km 6371 km
Mass 6.4185x1023 kg 5.9736x1024 kg
Orbital Semi-Major Axis 228x106 km 150x106 km
Orbital Eccentricity 0.093 0.017
Orbital Period 687 days 365.24 days
Axis Tilt 25.19◦ 23.44◦

Rotational Period 1479.6 minutes 1440.0 minutes
Typical Surface Gravity 3.7 m/s2 9.8 m/s2

Typical Surface Pressure 636 Pa 101300 Pa
Mean Surface Temperature 210 K 287 K
Typical Scale Height 11 km 8 km

Table 2.1: Comparison of similarities and differences of Martian characteristics to
those of Earth [1].

The bulk of the Martian atmosphere is composed of carbon dioxide – in excess

of 95% by mole fraction. Other major contributors, by mixing ratio, are: nitrogen,

argon, oxygen, carbon monoxide. Trace gases in parts per million and billion concen-

trations also include: water vapour, nitrogen oxide, their isotopologues, and others

in lesser concentrations [1]. See Table 2.2.

As with Earth, the surface temperature on Mars varies significantly with latitude

and with daily and seasonal cycles. One mission in lower mid-latitudes, around 23

degrees North, reported diurnal temperature variation ranging between 184 K and

242 K [1]. Given this, and Mars’ smaller size and thus weaker gravitational pull,

Mars has a typical scale height of about 11 km, comparable to that of Earth’s 8.5 km

at mid latitudes. This low temperature and pressure environment also results in the

absence of a liquid phase for many molecular species, notably water (see figure 2.1).

7

Table 2.2: Largest gaseous contributors, by concentration, to the Martian atmosphere
[1].

Species Concentration
Carbon Dioxide (CO2) 95.32%

Nitrogen (N2) 2.7%
Argon (Ar) 1.6%
Oxygen (O2) 0.13%

Carbon Monoxide (CO) 0.08%
Water (H2O) 210 ppm

Nitrogen Oxide (NO) 100 ppm
Neon (Ne) 2.5 ppm

Hydrogen-Deuterium-Oxygen (HDO) 850 ppb
Krypton (Kr) 300 ppb
Xenon (Xe) 80 ppb

Figure 2.1: Phase diagram for water. The red dot represents the typical surface
conditions on Mars [5].

8

Table 2.3: Areocentric longitude values and their associated equinox or solstice.

LS=0o Vernal Equinox
LS=90o Summer Solstice
LS=180o Autumnal Equinox
LS=270o Winter Solstice

Mars rotates with a tilt of 25.19o, similar to that of Earth. Each solar day on

Mars is called a “Sol” and is roughly equal to a solar Earth day, longer by about 39.6

minutes. As a result of the axis tilt, Mars experiences seasons in the same way we do

on Earth, with alternating hemispheres being oriented more directly towards the sun.

In order to report the seasonal conditions on Mars as a function of an entire seasonal

cycle, the degree of progression is commonly displayed in terms of the areocentric

longitude LS. See table 2.3 for defined areocentric longitudinal values.

Martian Aerosols

As light (or radiation) passes through a region containing gas molecules or some

physical obstruction, say aerosols, one of three things can happen: the light will

continue unobstructed, it will be scattered, or it will be absorbed. The latter two in

combination are referred to as extinction or attenuation [17].

The loading of dust in the ray path is often referred to in terms of its monochro-

matic optical depth (or optical thickness). Optical depth is a dimensionless quantity

that, for a given wavelength, is defined as:

τ = ln(
I0
I
)

where I0/I is the ratio of the total intensity of radiation incoming to the intensity

that is not scattered or absorbed at that particular wavelength [17]. This relationship

is known as Beer’s Law.

The optical depth can also be expressed as:

dτ = −kedz

where ke is the extinction coefficient (or extinction efficiency) and dz is a piece

9

of the optical path through which the light travels [17]. The extinction coefficient is

wavelength dependent and thus should be expressed for each wavelength in a poly-

chromatic ray.

Aerosols in the Martian atmosphere have been observed mainly in three forms:

CO2 ice crystals, H2O ice crystals, and suspended dust particles.

Given that carbon dioxide is abundant in the Martian atmosphere and the char-

acteristically low temperatures, it is not surprising to observe CO2 “ice” aerosols.

Such crystals have been widely reported in the colder upper atmosphere of Mars in

polar regions [18] [19], at mid-latitudes [20], and in the sub-tropical region [21]. Such

aerosols are observed as detached, cirrus-like clouds like those observed on Earth. The

clouds exist primarily in the night and early morning before sublimating in response

to radiative heating. The reported shape and size of these CO2 crystals is varied [2].

Water-ice crystal aerosols have been observed and reported primarily in the north-

ern polar region [22], but also extending as far as into the northern equatorial region

through spring and early summer seasons during the Martian aphelion due to the

highly elliptical orbit of Mars in which the global temperature can vary by up to 20

K over its orbital path [23] [24]. Further, there are large asymmetries in the water

vapour concentrations, and consequently water ice aerosol appearances, between the

northern and southern hemispheres. Clancy et al. (1996) postulate this may be due

to a coupling of the water vapour saturation altitude with the Hadley circulation at

solstice whereby a disproportionate amount of atmospheric water vapour is pumped

towards the aphelion summer hemisphere, presently the north.

Martian Dust

Perpetually suspended dust is one of the most significant defining characteristics of

the Martian atmosphere. The dust is lifted from the Martian face by surface winds

and distributed throughout the boundary layer by horizontal and vertical currents.

The dust is a strong absorber of both solar and thermal radiation and thus has

significant impacts on climate through radiative forcing. Its concentrations also has

diurnal and seasonal variations [25].

The vertical structure and layering of the dust is also of importance. Although

variable given the time of day and season, dust may be expected to maintain a

10

Figure 2.2: Phase diagram for carbon dioxide. The red dot represents the typical
surface conditions on Mars [5].

11

constant presence in the lower boundary layer due to surface wind and vertical mixing

[26]. Reported occultation measurements by the Phobos spacecraft show a reduction

in the particle number concentrations with increasing altitudes [27]. Further, the

effective radius also decreases with altitude from 1.6 μm at 15 km to 0.8 μm at 25

km. This intuitively makes sense as larger dust particles would tend to fall out.

Additionally, given that the ground is the source of the dust, it would make sense to

observe larger concentrations at lower altitudes. Additionally, models approximate

the scale height of the dust between 10 and 15 km [28].

Global dust storms have been observed and studied as an occurrence unique to

Mars. Such dust storms appear to occur during southern summer, which corresponds

to Mars at perihelion. In 1971, the Mariner 9 spacecraft was able to observe a global

dust storm [29]. This was the first time researchers were able to examine such a

phenomenon from such a range. Later, in 1977 during the Viking mission, two global

dust storms were observed to rise and fall around the perihelion time period [30].

During such storms dust aerosols were observed to have reached heights of 60 km

and higher [31] [32]. Later, in 2001, the Mars Global Surveyor collected data on the

global dust storm that occurred that year [33]. In many cases it can take months for

the dust to return to regular loading levels.

2.3 Questions About Mars

There continues to be much left to uncover about Mars, its environment, and its

history.

Water and Hydrological Cycle

One topic of study is the hydrological cycle on Mars. Subterranean ice has been

detected using instruments aboard the Mars Odyssey [34]. The ice is reported at

higher altitudes, close to the winter pole, and at varying depths beneath the surface.

Complementary models of water-ice distribution and stability allude to an active

hydrological cycle that is not still well understood [35] [36]. The use of General

Circulation Models has also been employed to compare against collected data of

cloud observation and its seasonal variations [37]. A better understanding of the

12

hydrological cycle and whether subterranean water does or has ever existed in liquid

form will help to gain insight into historical processes and existences.

Gas Disequilibrium & Methane

Although the bulk atmospheric contributors are known relatively well, trace gas and

more localized components are still of interest. Trace gases, including the previously

mentioned methane, detected in localized regions will allow for study of possible

sources and sinks. Inhomogeneities could possibly be due to past meteor impacts,

geological activity, or even past or current biological activity [9]. In light of this, the

Martian geography and geochemical processes are areas of significant interest. Dise-

quilibrium in surface-level atmospheric constituents could indicate biological activity,

but also could be caused by volcanic or other geological activity just beneath the

surface [9] [38]. Regardless of the nature of the sources or sinks, the locations of the

inhomogeneities would serve as good candidate locations for future study.

Martian Dust

The composition of the dust is still not well known, however, it is believed the dust

is a product of weathering of the Martian surface. The largest barrier to our ability

to properly characterize the dust is our inability to retrieve a sample from the planet.

Despite this, many laboratory experiments are attempted to characterize the dust by

comparing the similarities in optical properties to dust and other minerals present

on Earth. A usual comparator is montmorillonite, a silicate-based clay found in

volcanic ash [39]. In addition to montmorillonite, other proposed compositions include

palagonite, basalt, and combinations thereof [29] [40].

One important quantity to help define the scattering properties of aerosols is the

size parameter. The size parameter is another dimensionless quantity that describes

the relative sizes of particles to the wavelength of the radiation which it is scattering.

It is given as follows:

x =
2πr

λ

where r is the radius of a spherical scattering particle and λ is the wavelength of

light.

13

Table 2.4: A summary of published Martian dust distribution parameters.[2]

Publication reff (μm) veff Notes

Toon et al. 1997 2.75 0.42 Viking Orbiter
5-40μm wavelength

Drossart et al. 1991 1.24 0.25 Phobos Mission
1-3μm wavelength

Korablev et al. 1993 0.8 at 25 km 0.2±0.1 Phobos Mission
1.6 at 15 km Solar occultations at 1.9 and

3.7 μm wavelengths
Pollack et al. 1995 1.85±0.3 0.5±0.3 Viking Lander

1.52±0.3 Replacing earlier results from
Pollack 1977, 1979 papers

Clancy et al. 1995 1.5 0.997 Ultraviolet to thermal IR
Tomasko et al. 1999 1.6±0.15 0.2-0.5 or more IMP Observations

From the size parameter we can estimate the scattering behaviour of the light.

Scattering occurring when the size parameter x << 1 is called Rayleigh scattering.

Size parameters of 0.1 < x < 50 are referred to as being part of the Mie regime. When

the size parameter is greater than 50 this is known as the geometric regime, where

classical geometric optics dominate.

The size and shape of the dust are also important parameters when it comes

to characterizing the dust through its optical properties. Two variables are used to

parametrize the distribution of dust sizes: reff represents the geometric cross-section-

weighted mean radius of the distribution while veff characterizes the dimensionless

variance of the distribution [2]. Table 2.4, taken largely from Tomasko et al. (1999),

shows reported radii and variances reported.

As described above, the optical depth may vary with wavelength. This is a result

of the extinction efficiency having an implicit wavelength dependency. The extinction

efficiency may be expressed in the following general form:

ke ∝ λ−α

where α represents a value called the Angstrom coefficient.

The Angstrom coefficient, and thus the relationship between the optical thickness

14

and wavelength, is largely determined by the scattering regime in which the size

parameter falls. For instance, it is known that for Rayleigh scattering the Angstrom

coefficient is 4. This is normally seen as an upper limit for the Angstrom coefficient.

The Angstrom coefficient may vary much more rapidly in the Mie regime than in

other regimes due to the high dependence the scattering efficiency has on the shape

and orientation of the scattering particles.

The dispersion of particle sizes is often described by a log-normal or gamma distri-

bution, although numerous other distributions have been used [41]. As for the shape

of the particulate dust, various forms have been proposed ranging from spherical [40]

to disk particle shapes [42].

Chapter 3

The ExoMars Trace Gas Orbiter Mission

3.1 Announcement

In January of 2010 the European Space Agency (ESA) and the National Aeronautics

and Space Administration (NASA) jointly issued an Announcement of Opportunity

to solicit proposals for instruments to be mounted aboard the Trace Gas Orbiter

(TGO), the first mission in the new Mars exploration programme, ExoMars [43].

The Trace Gas Orbiter mission was designed to lay the foundation for the first ever

Martian sample return mission to take place in the next decade.

Designed with a 2016 launch date, the orbiter mission is led by ESA. The subse-

quent mission, set to follow in 2018, will be a surface mission consisting of two rovers,

one designed by each ESA and NASA, delivered together as by a single launch vehicle.

The rovers will host complementary instrumentation and search for evidence of past

or present life while also demonstrating use of novel technologies for use in the yet to

be announced return mission.

3.2 Mission Complications

Toward the end of 2011 it became obvious to all parties involved that there would be

complications with the ExoMars mission as it was originally envisioned. The main

concern was the budget cuts at NASA and the effect that would have on their ability

to deliver their end of the bargain, namely the launch vehicle and the Trace Gas

Orbiter. At the time one possible solution that presented itself to ESA was to forge

a new partnership and seek out other collaborators.

In December of 2011, senior administrators from ESA, NASA, and the Russian

Federal Space Agency, Roscosmos, met to discuss collaboration. At the time, two

working groups were struck: one to redesign the 2016 payload to incorporate Russian-

designed instruments and the other to examine the possibility of a launch aboard a

15

16

Russian Proton rocket [44]. Despite maintaining funding for the 2018 leg of the

ExoMars campaign [45], it is uncertain what effect Russia’s inclusion will have on the

second phase. The exact details of the Russian-European partnership have yet to be

ironed out.

3.3 Objectives and Goals

The Trace Gas Orbiter mission was constructed with primary objectives; a technolog-

ical objective and a scientific objective. The technological objective is to successfully

complete the “entry, descent, and landing (EDL) of a payload on the surface of Mars.”

This goal is to demonstrate capability for phase 2 of the exploration programme: the

deployment of twin rover vehicles. More important to our work is the scientific ob-

jective “To study Martian atmospheric trace gases and their sources.” [4] Further,

the TGO will provide telecommunication and data relay services for the 2018 rover

mission and other landed missions through 2022 [4].

A Joint Instrument Definition Team (JIDT) was struck in 2009 to “review the

viability of these objectives within the constraints of such a 2016 joint mission”. [46]

Through this work the JIDT identified a set of prioritised scientific goals for the TGO.

They are:

1. Detect a broad suite of atmospheric trace gases and key isotopes.

2. Characterise the spatial and temporal variability of methane and other key

species.

3. Localise sources and derive the evolution of methane and other key specific, and

their possible interactions.

4. Image surface features possible related to sources and sinks. [4]

In the next few sections I will briefly discuss some of the chosen TGO instruments

and how their techniques and methods will help to accomplish the goals set out by

ESA and NASA, as we understand them today.

17

Table 3.1: Instruments originally selected for the ExoMars Trace Gas Orbiter.

Mars Atmospheric Trace Molecule Occultation Spectrometer MATMOS
Nadir and Occultation for Mars Discovery NOMAD
ExoMars Climate Sounder EMCS
High-Resolution Stereo Colour Imager HiSCI
Mars Atmospheric Global Imaging Experiment MAGIE

3.4 Mars Atmospheric Trace Molecule Occultation Spectrometer (MAT-

MOS)

MATMOS is the Mars Atmospheric Trace Molecule Occultation Spectrometer headed

by Paul Wennberg of the California Institute of Technology (Caltech). This instru-

ment is in collaboration between Caltech, the Canadian Space Agency (CSA), and

other Canadian and American partners.

MATMOS is a solar occultation Fourier Transform infrared spectrometer chosen

to directly address the following goals of the ExoMars Trace Gas Orbiter mission:

1. Determine the origin of trace gasses diagnostic of active geological and biogenic

activity.

2. Quantify the lifetimes of these diagnostic gases in the context of the atmospheric

state.

3. Provide definitive detection and essential support for the TGO localization effort

through identification of target gases and regions for focused mapping.

4. Solve the mystery of Mars methane. [9]

Occultation Technique

There are different types of occultation techniques that have been employed for plan-

etary examination. There are three parties of importance during an occultation: the

observer, the obstructing object, and the obstructed object. Often times these tech-

niques are characterized by a combination of what they are looking past or through

and what they are looking beyond to. For example, planetary stellar occultation

18

would refer to looking beyond a planet that will be or was eclipsing a distant star. In

many cases the terms “observer” and “obstructed object” may be reversible depend-

ing on the geometry.

MATMOS employs a technique for studying the Martian atmosphere called solar

occultation. Once a satellite is put into orbit around Mars the event occurs during a

sunrise or sunset from the perspective of the satellite. That is to say, as the satellite

begins to see the sun appear from behind the planet, or once the sun begins to

disappear behind the planet, this is an occultation event.

Figure 3.1: A cartoon diagram of the sunrise occultation geometry [3].

For a solar occultation of Mars, the key is collecting data at numerous instances

while the occultation is occurring. As such, the light travelling from the sun into the

satellite-mounted instrument will have each passed through different layers for varying

path lengths. These independent measurements of different portions of atmosphere

allow for the deducing of atmospheric components are differing altitudes.

Each occultation may begin or end with an exo-atmospheric measurement. This

measurement, unobstructed by atmospheric gases or aerosols, provides the baseline

for each occultation. As the satellite descends over the horizon, the ray-path travels

through more and lower portions of the atmosphere. In a very basic sense, creating a

model atmosphere consisting of concentric, homogeneous layers equal to the number

of atmospheric measurements taken during the occultation a deconstruction algorithm

known colloquially as “onion peeling” allows for each layer to be characterized.

19

Figure 3.2: A visualization of the way light travels and is observed during an occul-
tation event [6].

In practice, many sophisticated retrieval schemes are used (e.g. maximum likeli-

hood) and compensations are made for specific obstructions, such as clouds or local-

ized dust storms.

Solar Imager

The first part of the MATMOS spectrometer is a four-channel solar imager. The

scientific goals of the imager are to image the full solar disk and resolve aerosol and

thin cloud layers; however, the imager will provide a wealth of other useful scientific

and technical information.

The imager will produce a series of time-stamped image sequences for each sunrise

and sunset occultation. These four-channel image series will provide information of

vertical profiles of atmospheric absorption and aerosol extinction, as well as global

maps of seasonal atmospheric opacity and aerosol opacity [3].

Perhaps most importantly from a technical side, the imager will provide the science

teams with information surrounding the pointing of the spacecraft. We will show that

the imager is capable of determining the precise orientation of the spacecraft and thus

20

Table 3.2: Specifications for the MATMOS four-channel imager [3] [4].

Attribute Specification

Solar Angle Subtended 5.56-6.79 mrad
Image Field of View 7 mrad
Instantaneous Field of View 0.115 mrad

0.2km on the limb
Profile Altitude Coverage 0-200 km
Spacecraft Pointing Accuracy ±0.5 mrad over occultation
Spectral Bands 320±20 nm, 512±10nm,

650±10nm, 1024±20nm.

the pointing of all instruments (to a higher degree of accuracy than the spacecraft).

Instruments mounted aboard the TGO spacecraft are to be static, meaning they

will have no ability to point themselves and thus rely entirely on the spacecraft

pointing. This presents significant challenges, especially as the spacecraft begins

to “drift” and pointing accuracy can no longer be guaranteed to the same level of

precision.

Table 3.2 outlines some of the specifications and capabilities for the MATMOS

imager.

Figure 3.3 shows the relative sizes of the FTS field of view and solar image on a

section of the detector.

Fourier Transform Spectrometer

The Fourier Transform spectrometer (FTS) is the second key component to the MAT-

MOS system. It will be capable of sweeping a large spectral range within the infrared

to detect the presence of a suite of gases. Specifically, the FTS will have 0.02 cm−1

sensitivity and a field of view allowing about 3 km vertical resolution at the limb [4].

Table 3.3 displays some of the attributes and specifications for the FTS.

3.5 ExoMars Configuration Changes

Disappointingly, the funding complications discussed in section 3.2 mean that the

majority of the instruments originally set out for the TGO will not proceed; however,

21

Figure 3.3: An image comparing the relative sizes of the imager field of view and
solar disk [7]. The red circle is the size of the FTS field of view. The yellow and blue
circles are the view of the solar disk at aphelion and perihelion respectively. The total
size of the figure is a 64x64 pixel area.

Table 3.3: Specifications for the MATMOS Fourier Transform spectrometer [4].

Attribute Specification
Spectral Range 850–4300 cm−1

2.3–11.8 μm
Resolution 0.02 cm−1

Field of View 1.56 mrad
Detectors HgCdTe and InSb PV
Signal-to-Noise Ratio >250:1
Sampling 2-6 sec/spectrum, 24 bits @ 215–645 kHz

22

recent news is that the NOMAD instrument (see below) will continue as part of the

resigned payload. A new solar occultation instrument is expected to be part of the

payload but with a significant reconfiguration to the FTS from the specifications

set out for MATMOS; however, the imager component of MATMOS will also be

maintained. Nonetheless, much of the work detailed in chapters 4 and 5 remains

entirely applicable. As such, we retain MATMOS as the concept for a solar occultation

spectrometer in this thesis.

3.6 The Nadir and Occultation for MArs Discovery (NOMAD)

NOMAD is a European instrument for ExoMars. The instrument PI is Ann C. Van-

deale of the Belgium Institute for Space Aeronomy working in collaboration with

scientists in Spain, Italy, the United Kingdom, Canada and the United States. NO-

MAD has a combination of capabilities in the infrared, visible and ultraviolet regions

of the spectrum [47] [4].

NOMAD has three operational modes: Solar Occultation mode; Limb, Nadir and

Occultation mode; and Ultraviolet and Visible mode.

The Solar Occultation (SO) mode operates by observing up to six small slices

of the full spectral range each second. This allows observing several different target

molecules that absorb at different wavelengths, whilst maximising the signal-to-noise

ratio for each. During a solar occultation 300 spectra at each wavelength can be taken

providing a profile of the atmospheric composition from the top of the atmosphere

down to almost the surface, depending on dust levels.

The Limb, Nadir and Occultation (LNO) mode is sensitive to the lower light levels

during nadir observations on Mars. The nadir coverage will facilitate the study of the

atmospheric composition in addition to examining Martian surface features, such as

ice and frost. This measurement will be carried out on average every 3 to 4 sols (a

solar day on Mars, or sol, is 24 hours and 39 minutes) with varying local times across

the planet.

The Ultraviolet and Visible (UVIS) mode will image the wavelength domain be-

tween 200 and 650 nm, every second, covering and providing more information about

several interesting molecules, such as ozone, sulphuric acid and aerosols in the atmo-

sphere.

23

NOMAD covers a visible wavelength range that MATMOS does not but has a

lower spectral resolution. In the SO and LNO modes NOMAD spans 2.2-4.3 μm

range and upwards of 0.15 cm0.15 resolution, as compared to the 0.02 cm−1 MATMOS

resolution. The UVIS mode ranged from 200–650 nm and a 1–2 nm resolution [4].

3.7 Russian Instrumentation and Continued Canadian Involvement

Following the reconfiguration of the spacecraft and withdrawal of the United States

from the mission, a Russian instrument is being defined as a substitute for MATMOS.

This instrument will also be a Fourier Transform Spectrometer and will cover a similar

wavelength region in solar occultation, but at reduced spectral resolution. There is

a strong similarity between the science objective of this (yet un-named) instrument

and MATMOS and there are ongoing discussions between Canadian and Russian

scientists on the inclusion of the Canadian imager experiment which is the subject of

this thesis and other Canadian technology to the FTS section of the instrument.

Chapter 4

Occultation Instrument Imager and Pointing

4.1 Motivation

Occultation viewing is a powerful technique for deducing a vertical profile of gas or

aerosol distributions but only in so far as we can determine exactly where we are

looking. A large challenge is how precisely it is possible to determine the ray-path

travelled by the light entering the occultation spectrometer.

Classically, the ray-path for an occultation spectrometer may be deduced in post-

processing from the data itself. By focusing on a specific well-known absorption

feature within the range of interest, say carbon dioxide for Earth, and by knowing

how the concentrations of the absorber scale with height, it is possible to deduce the

ray-path and thus the tangent height in the atmosphere. Given that the Martian

atmosphere is primarily composed of carbon dioxide, CO2 concentrations, in com-

bination with thermal infrared measurements to deduce temperature, are also the

commonly used proxy for atmospheric pressure. Specifically, looking at the peaks

located at 4.3 and 15 μm.

There are drawbacks to this method. The necessity of determining the ray-path

from the data, as opposed to determining it independently, diminishes the number of

degrees of freedom and thus the total information we are able to retrieve. Thus, it is

desirable to develop a technique that can simultaneously and autonomously determine

the precise location of the field of view. For a solar occultation, this is often considered

in terms of the “tangent height”, the point of closest approach of the ray path to the

planet.

The spacecraft itself can often provide some information about the direction in

which it is facing, however, the degree of precision may be of concern. Recently,

for the planned ExoMars Trace Gas Orbiter, Mark Allen of the Jet Propulsion Lab

reported that the absolute pointing of the instruments could be guaranteed to a

certainty within 1 mrad [48]. There is the possibility to do better with the imager.

24

25

We utilize the equation for angular diameter for spherical objects:

δ = 2arcsin

(
1

2

d

R

)

where d represents the object diameter and R is the distance at which the object

is being viewed. For an occultation situation, this can be simplified by using small

angle approximations.

The sun appears from Mars with a angular diameter in the range 5.56–6.79 mrad

due to the high eccentricity of the orbit. Given the imager IFOV of 0.115 mrad, this

sets the solar diameter at pixels 48–60 pixels on the imager detector.

TGO orbits at about 400 km above the planet. At a tangent height of 20 km the

tangent point is approximately 1650 km away from the spacecraft and each pixel on

the imager translates to 190 m vertical extent at the tangent point and the absolute

pointing error (APE) of 1 mrad quoted by JPL would guarantee pointing to an

accuracy of 1.65 km on the limb.

Given the hydrostatic equation for the atmosphere and a scale height of 11 km

the 1 mrad error gives a potential pressure error or error in mass in the path of about

15%. This would significantly degrade the accuracy of the measurements of gases and

so at a minimum the aforementioned retrieval techniques using the FTS data must

be used to improve the pointing knowledge. However, the imager provides a potential

additional source of information to increase our knowledge of the pointing.

Again assuming that the atmosphere is hydrostatic, a 1% pressure error is equiv-

alent to 110m in altitude or 66 μrad or 0.5 pixels on the imager detector. Thus if

it is possible to determine the location of the centre of the sun in the imager to an

accuracy of <0.5 pixels on the detector, then with a knowledge of the Mars location,

Sun location, and Spacecraft position to similar accuracy it is possible to determine

the path through the atmosphere without using the FTS data to 1% accuracy. The

first two items are a matter of knowledge of the solar system, the spacecraft position

is known from navigational information, and the relative locations of the FOVs can

be found by pre- and post-launch calibration. The remaining issue is whether the

imager data can be processed to locate the solar centroid to the required accuracy.

Later in this chapter we will consider whether this is feasible.

26

Although the imager will not be used to help steer the spacecraft, the data and im-

ages collected will provide information during the post-processing phase about where

the TGO was pointing. Adapting active tracking techniques for centre-seeking and

identification would be a good solution; however, there are many factors associated

with limb viewing through the Martian atmosphere that must be examined and tested

to ensure the robustness of the algorithm.

Dust presents a great challenge in that its extinction profile, especially at lower

attitudes, will challenge the method. With only the information from a portion of

the solar disk, the technique must continue to reliably find the centre of the image.

Also, dust and aerosol layers that are inhomogeneous across the field of view of the

imager will may affect the algorithm in different ways. For instance, a thick layer

across the bottom portion of the image with an entirely transparent top layer could

confuse the algorithm into believing there is a flattened image. Common to the

Earth’s atmosphere is a flattening of the solar disk near the horizon due to refraction;

however, this is not a concern in the thin Martian atmosphere.

An additional factor to consider in implementing such a technique on a Martian-

based mission is the reality that once the instrument is launched there will never be

another opportunity to adjust, replace, or calibrate hardware. As such, our technique

should be robust enough to identify and compensate for issues that are common or

likely in such systems. Further, it is desirable to know the extent to which these

malfunctions affect our ability to know the pointing and how much error they may

contribute to the final limb-viewing uncertainty.

This chapter will examine the development and analysis of an adapted technique

for pointing determination. The method will be summarized and results will be

presented as to the health of the technique when pushed beyond the limits of the

likely.

4.2 Method

Detector

The technique requires a few steps before we can begin the actual centre-seeking

portion. First, we must develop a grid onto which the solar image will be projected.

27

This “hardware” portion of the image will allow us to examine how separate images

of the sun will appear on similar layouts. Further, it will allow us to study hardware

defects that could reasonably take place.

To do this we create a similar model template of a the detector being proposed for

the MATMOS instrument, the STAR1000 CMOS detector shown in figure 4.1. Such a

detector is a piece of hardware used for digital imaging whereby photons are incident

on the surface during an exposure time and subsequently converted to an electrical

charge in spatially separate bins, pixels, or “wells”. Following this, the wells are then

discharged into a converter that measured the charge and infers a value corresponding

to the number of incident photons on a particular pixel.

Figure 4.1: A STAR1000 CMOS image sensor [8].

There are several technical aspects of a detector that are important to be cognisant

of. Firstly, the design of the detector must be considered. Ensuring that all of

the bins are uniformly created and responsive is important. Should one bin have

a unequal surface area over which incident photons will generate a signal, this will

create artificially large signals over what might be thought to be a smaller area. We

28

are assured that through the design process and rigorous testing of the detector prior

to installation that this will not be a concern. As for responsiveness, there can be

issues of how the photons trigger the electronic response. When bins are receiving

particularly high signals, to the point of or near saturation, there can be “spillage”

to adjacent bins. Further, malfunctioning bins can artificially create saturated or

non-responsive pixels in the image.

The translation of measured current from the number of photons incident on

a particular pixel is not entirely straight-forward. There are several factors that

affect this conversion. Our group is working to study these factors with experimental

tests on equipment similar to what is proposed for the imager; however, at this time

these factors will not interplay with our study of the centre-seeking technique. More

discussion of such factors will appear in chapter 5.

For the simulation of the detector we employ a computer program written in

Python to create a two dimensional array of lists. The two dimensions represent the

physical dimensions of the square detector. For each element of the array, which

represents an individual pixel, there is a list of terms used to describe the attributes

of the given pixel.

Defects are introduced when a set of detectors are created. Four main detector

defects were simulated:

1. Random dead pixels (always dark, no signal)

2. Random bright pixels (always saturated signal)

3. Random dead columns (always dark, no signal for the entire column)

4. Brightness gradient (fading of image)

Dead and bright pixels are selected to simulate malfunctioning pixels on the CMOS

detector. An example of a dark failure is a simple pixel failure in which charge is

not accumulated for that pixel, an example of bright failure is a case where a cosmic

ray is incident on the detector surface. In this latter case, it is possible that the high

energy transfer will produce an overwhelming signal that may saturate the receiving

pixel and likely others in its vicinity. This over-saturation may lead to temporary or

permanent depending upon the exact location and energy of the cosmic ray incursion.

29

In either case a study of dark and bright failures would help us to determine their

impact on our technique and also allow us to develop strategies to minimise their

impact on the higher level data products from the instrument.

For the dead or bright pixels a percentage of pixels was selected to have malfunc-

tioned. Then, using the Python “random” function, individual pixels across the face

of the detector were chosen at random to be turned dead or bright. Should a pixel

be selected that happened to already have been adjusted, the algorithm jumps to a

new space so that there are always the same number of malfunctioning pixels in a set

of detectors. This process is carried out for a large number of detectors to ensure a

truly random sample set. For our purposes we chose to select the set size to be 1000

detectors.

For detectors with dead columns, the number of dead columns is selected for a

given set. The selected number of columns are chosen at random and turned off

entirely. Similar to with selecting the dead pixels, the columns are chosen at random

and not duplicated.

Column failure is a real possibility arising from failure in the electronics. Since

the signal is discharged over a column, any failure in its ability to properly measure

the signal will result in an unreliable or non-responsive column. Further, in the case

where a row may experience the same phenomenon, the column case may be used

analogously.

The next question examined was how would the algorithm hold up when a dark-

ness gradient was applied over the image. This is a significant problem for Mars as

transparency may vary as the occultation descends through the atmosphere. Extinc-

tion due to dust or dust layers, as well as other aerosol clouds or layers, could very

well create this realistic scenario.

For the vertical brightness gradient we apply a gradual darkening across the face

of the sun. The gradient is characterized by the ratio of the brightness at the top of

the solar disk to that at the bottom.

Once a set of detectors is made they are numbers, stored, and recorded in an

inventory of all previous sets of detectors. Table 4.1 lists the sets of detectors created

and used for our purposes.

30

Table 4.1: A list of detector sets simulated and their defect features..

Set Name Defect Type Description

Blank None A single detector without defects for comparison.

Dead1pc1k Dead Pixels detectors with 1% random dead pixels.
Dead2pc1k Dead Pixels detectors with 2% random dead pixels.
Dead4pc1k Dead Pixels detectors with 4% random dead pixels.
Dead8pc1k Dead Pixels detectors with 8% random dead pixels.
Dead16pc1k Dead Pixels detectors with 16% random dead pixels.
Dead32pc1k Dead Pixels detectors with 32% random dead pixels.
Dead40pc1k Dead Pixels detectors with 40% random dead pixels.
Dead42pc1k Dead Pixels detectors with 42% random dead pixels.
Dead45pc1k Dead Pixels detectors with 45% random dead pixels.
Dead50pc1k Dead Pixels detectors with 50% random dead pixels.

Bright1pc1k Bright Pixels detectors with 1% random bright pixels.
Bright50pc1k Bright Pixels detectors with 50% random bright pixels.

D1col Dead Columns detectors with 1 dead column.
D2col Dead Columns detectors with 2 dead column.
D3col Dead Columns detectors with 3 dead column.
D10col Dead Columns detectors with 10 dead column.

gaingrad2xface Vertical Gradient detectors with vertical fading of a factor of 2.
gaingrad3xface Vertical Gradient detectors with vertical fading of a factor of 3.
gaingrad10xface Vertical Gradient detectors with vertical fading of a factor of 10.

Solar Images

Our program then has solar images loaded into a directory. For our purposes we took

an image from a webcam at Dalhousie University. The image was then shrunk to a

diameter of 70 pixels on a square 256 pixel image to fit atop the simulated detectors.

Figure 4.2 shows the original and altered images. Although the webcam employs

a charge-coupled device-type detector and the MATMOS imager is proposed to use

a CMOS detector, for our purposes at this stage the webcam image is a sufficient

substitution.

31

Figure 4.2: Left: An image taken from Earth (Provided by J. Franklin). The solar
diameter is about 135 pixels. Right: An adapted and centred version of the image
on the left. The solar diameter is calculated to be about 70 pixels.

Defect Corrections

It is desirable to compensate for known defects before the images on the detectors

enter the centre-seeking analysis.

Without knowing the dimensions of the sun a priori, it is difficult to know exactly

which pixels with zero signal are defective and which are simply outside of the solar

disk. Similarly, pixels that are artificially saturated cannot easily be distinguished

from potentially saturated pixels from the solar signal.

For detectors with dead columns, should a column appear across the face of the

sun it would be entirely visible. Further, defective columns are stationary and may

have a fix permanently applied. As a fix we apply a simple interpolation. Once the

column is identified its values are replaced by averaging the values on either side.

Centre Seeking Analysis

Currently an active sun tracker is employed by our research group to perform ground-

based FTS measurements above Dalhousie University in Halifax, Nova Scotia. This

high-precision solar tracker allows for the FTS to follow the apparent motion of the

sun through the sky throughout the day. Figure 4.3 shows a typical result from a

33

lets the algorithm focus on the areas of strong signal instead of weaker background

noise. Presently, the threshold may be determined numerically or visually. The

advantage to numerical selection is consistency across many detectors for a similar

image. The option to visually select the threshold is advantageous when working with

a new image for the first time to roughly determine an appropriate threshold value.

The image is then passed into the main function called “process image”. The

function then applies the threshold to a new copy of the chosen image. Then the

OpenCV function “FindContours” identifies all contours of the image. Then, a spe-

cially designed function called “pickcontour” selects the correct contour for the edge

of the solar disk by identifying that which has the greatest number of points. From

there, the contour is plotted and an ellipse is fit to it. The properties of the ellipse

are extracted and dumped to a series of files. From these files the results may be

examined.

It is important to note that all results show the deviation between the algorithm

finding the centre in the perfect case and the finding the centre of the defective image.

Thus, the results are displaying only the deviation and loss of accuracy occurring as

a result of the particular defects and/or obstructions.

4.3 Results

Dark & Bright Pixels

First we will examine how increasing the number of defective pixels affects the ability

for the algorithm to detect the true centre of the solar disk. Figures 4.4 and 4.5 show

the ranges of defects from 1% defective pixels to 50% defective pixels.

Figure 4.4: Left to Right: Examples of 1%, 2%, 4%, 8%, 16%, 32%, 50% dead
pixels on a solar image.

Each set of 1000 detectors with randomly distributed dead and bright pixels was

analysed. First we examine the detectors with dead pixels. Two sample scatter plots

34

Figure 4.5: Left to Right: Examples of 1%, 2%, 4%, 8%, 16%, 32%, 50% bright
pixels on a solar image.

of the deviation from centre are shown in figures 4.6 and 4.7.

Figure 4.6: A 2D scatter plot of the deviation in the found centroids for a solar
disk applied to a CMOS detector with 2% dead pixels. This was conducted for 1000
detectors with random dead pixel placement. The circle is set at a radius of 1/3 of a
pixel which is representative of the accuracy in pointing that is required (we use 1/3
rather than 1/2 to provide a tighter criterion for success). This same circle is also
shown in following figures.

35

Figure 4.7: A 2D scatter plot of the deviation in the found centroids for a solar disk
applied to a CMOS detector with 16% dead pixels. This was conducted for 1000
detectors with random dead pixel placement.

One important observation is how symmetrical the distribution is, with each scat-

ter plot centred with little deviation from (0,0). Figure 4.8 shows how the standard

deviation increases with more pixel defects.

Figures 4.9 and 4.10 show the deviation from centre for detectors with bright

pixel defects. Figure 4.11 shows the standard deviation of the bright pixel defective

detectors.

Dead & Interpolated Columns

The centre-seeking analysis is run on detectors with dead, dark columns. Figure 4.12

shows an example of 1 and 2 dead columns across the solar face. An example of a

37

Figure 4.9: A 2D scatter plot of the deviation in the found centroids for a solar disk
applied to a CMOS detector with 2% saturated pixels. This was conducted for 1000
detectors with random saturated pixel placement.

We now look at the results for the same sets of detectors with the simple inter-

polation applied. Figure 4.15 shows the scatter plot for one interpolated column, in

contrast to figure 4.13. A comparison of the standard deviation for 1-5 fixed and

defective columns is shown in figure 4.16.

Vertical Brightness Gradients

The vertical brightness gradients across the face of the solar disk are next analysed.

Figure 4.17 shows examples of the gradual effect of the gradient. Figure 4.18 show

the results for brightness gradients ranging from 2x - 10x.

As the fading becomes stronger the method seems to break down. Specifically,

38

Figure 4.10: A 2D scatter plot of the deviation in the found centroids for a solar disk
applied to a CMOS detector with 16% saturated pixels. This was conducted for 1000
detectors with random saturated pixel placement.

with less information at the bottom of the solar disk the algorithm cannot properly

detect the edge and thus shifts the centre upward. Figure 4.19 shows where the disk

is detected in 5x gradient image.

4.4 Conclusions

From figure 4.8 we can see the trend of how the standard deviation changes with

increasing defective dark pixels. At a case with 1% defective pixels the algorithm is

reliable, only deviating less than 0.01 pixels. The trend grows very slowly at first

keeping under 0.1 pixels for cases with up to 16% defective pixels. Even with 50% of

pixels malfunctioning the algorithm can still find the correct centre of the solar disk

40

Figure 4.13: A 2D scatter plot of the deviation in the found centroids for a solar disk
applied to a CMOS detector with one dead column. This was conducted for 1000
detectors with random dead column placement. Note: Many points are overlapping
at the (0,0) position

available. This allows for a huge amount of flexibility. For example, should questions

arise as to the integrity or proper function of a number of pixels, even across the face

of the sun, it appears an appropriate course of action could be to ignore the signal

for these pixels entirely. Further, interpolation by using adjacent pixel information

may provide even stronger results.

The bright pixels show a slightly different story. The standard deviation grows

quicker than was the case for the dark pixels. Also, there is a significant deviation from

the trend seen at 32% bright pixels whereby the standard deviation of the distribution

jumps above 5 pixels. This does not continue as 50% bright pixels settles back to

below a 2 pixel standard deviation. This about-face the deviation takes in the bright

pixels case as we extend towards very large percentages of defective pixels. Although

this may seem counter-intuitive, the answer is an artifact of the centre-finding routine.

As the entire image tends towards white, the technique may detect many contours

with the wide distribution of adjacent dark and bright pixels. The selection criteria

41

Figure 4.14: A plot of the maximum deviation of the found centre on detectors with
dead columns.

in the algorithm relies on picking the contour with the most points along the fit

edge. Thus, as the image tends to white the algorithm would tend to pick the largest

possible ellipse, which happens to be a circle inscribed by the entire detector array.

Consequently, this would find the centre to be at the exact centre of the detector,

where the unaltered image is centred.

Nevertheless, comparing the affect of the bright pixels to the dark pixels tells a

very obvious tale - the dark pixels have a dramatically lower impact on the ability

of the technique to locate the centre of the solar disk. This is likely because dark

pixels off the solar disk are nearly untraceable among the background and do not

affect the ability for the algorithm to find the edge of the sun. Moreover, dark pixels

located within the solar disk place have no affect on the gradient edge of the sun and

thus have no bearing on the method. Although little impact is seen by bright pixels

being located within the solar disk, those near the edge and outside can influence the

algorithm to chose false gradients as its guess for the solar disk based on the criteria

used in the “pickcontours” portion of the algorithm.

One possible, although not necessarily ideal, way of dealing with bright pixels,

42

Figure 4.15: A 2D scatter plot of the deviation in the found centroids for a solar disk
applied to a CMOS detector with one interpolated column. This was conducted for
1000 detectors with random interpolated column placement.

Figure 4.16: A plot of the maximum deviation of the found centre on detectors
contrasting dead columns (top) and interpolated columns (bottom). The dashed
lines show the 1/3 pixel target for reference in each scale.

whether permanent defects or transients, would be to automatically zero out the

signal on any pixels with a saturated signal. This would allow us to reduce the

43

Figure 4.17: Left: Unaltered solar image. Centre: Solar image with a 2x gradient.
Right: Solar image with a 10x gradient.

Figure 4.18: A plot of the centre deviation of the found centroids for the solar disk
against the brightness gradient applied to the image on the CMOS detector.

deviation close to that seen in the dark pixel scenarios.

Looking at the results for the dead columns, we see a couple of starkly different

scenarios playing out. First, given the strong likelihood that the dead column will fall

outside of the solar disk, there is a very large concentration of “deviations” located

at the (0,0) point in figure 4.13. For the cases where one or more columns do fall over

the solar disk the ability to find the centre of the sun is severely compromised. Again,

figure 4.13 shows a range in certain cases that extends as far as 14.9 pixels from the

true centre. We compare the results from the dead columns to the same set once the

interpolation is applied. As we can see from figure 4.16, the correction improves the

accuracy of the method dramatically. For one dead column, once corrected the drops

44

Figure 4.19: Left: A solar image with a 5x brightness gradient applied. Right: The
solar disk still detected by the algorithm with the 5x brightness gradient image input.

from the aforementioned 14.9 pixel range to a 0.12 pixel maximum deviation. The

result continues to work with great efficiency when interpolating for multiple dead

columns across the face of the solar disk.

This result is encouraging. We clearly see that an interpolation technique for a

permanent column defect will resolve any issue the centre-seeking algorithm may have

in trying to locate the centroid. There is the possibility to further improve this result

with a higher-order correction.

Figure 4.18 shows an unsurprising result. As the face of the solar disk is faded

from the bottom upward, the centre is found increasingly higher on the detector. This

extends from a deviation of 1.12 pixels at a 2x fade and up to 2.61 pixels at a 10x

fade. Considering no additional constraints or adjustments are applied at this stage

makes this result encouraging.

What is not taken into account here is the fact that the algorithm will not be

dealing with individual, independent images but rather with a succession of images

taken sequentially. This means that an temporary obstructions, such as a detached

CO2 crystal cloud, would occur before and/or after other unobstructed images and

thus information from other views will help to overcome these gaps.

One leading possibility to help further constrain this technique would be to use

an exo-atmospheric image of the sun to fit and determine the radius. This radius

could then become a constraint for other fitting during the same occultation. This

would discourage the algorithm from tending to flatten the fitted solar disk as to

45

increase the number of intersected contour points, as is part of the selection criteria

for the best contour. Some preliminary studies confirm this as an encouraging area

for further studies.

Overall, we have studied the method and its robustness against defective pixels,

dead columns, and dimming across the solar disk. The algorithm appears robust

against defective pixels or small transient defects. Interpolation has been shown to

be an effective method for dealing with detector columns. Lastly, significant fading

across the solar disk will lead the algorithm away from the true centre; however,

information from a sequence of images, as opposed to a single image, may allow us

to properly constrain the technique to avoid this.

Chapter 5

Requirements of Studying Martian Aerosols

5.1 Motivation

The ExoMars announcement of the Trace Gas Orbiter called for instrumentation that

could detect a broad suite of gases and characterize spacial and temporal evolution

of said gases. Although the highest level objectives focus on the gas content of the

atmosphere, we should also study the other principal component of the Martian atmo-

sphere – the suspended dust aerosol. Given the aerosol’s prevalence at low altitudes

and its broad extinction features, it will have significant impacts on our ability to

study any atmospheric feature and thus is of tremendous interest and importance.

Both dust and ice crystals are found suspended in the lower atmosphere. To deter-

mine the level of precision needed to study these aerosols we look to previous studies

conducted by Montmessin et al. (2006). Montmessin’s work used stellar occultation

to observe detached CO2 layers typically located around 100 km altitudes [21]. They

report slant opacities between 0.01 and 1.00; however, this is being observed at 200

nm. Additionally, Chassefiere et al. (1992) performed solar occultations in the range

of 280 nm to 3700 nm and observed opacities ranging from 0.1-0.3 [50].

We make some assumptions to approximate the required level of precision for an

imager with similar specifications as the MATMOS model. First, assuming Rayleigh

scattering, we look at a worst case scenario with an angstrom coefficient of 4, knowing

the true angstrom coefficient should be lower than this. Knowing slant opacities

around 0.1 are observed with a 200 nm channel and a MATMOS imager channels are

up to an order of magnitude higher, around 1000 nm, we can use these proportions to

deduce that MATMOS may see opacities as low as 0.05. In order to progress beyond

this level of knowledge, we need to exceed this level of measurement and a target of

0.001 would enable the detection of clouds an order of magnitude thinner than the

previous studies.

There are two issues that will be addressed over the course of this chapter. We

46

47

will first look at the performance of the analog-to-digital converter (ADC) and its

adherence to design specifications. We will then examine the spectral characteristics

in the infrared region of the Martian atmosphere for regions of interest that would

make possible study of the aerosol.

5.2 Signal & Hardware Analysis

We must minimize the impact the hardware will have on the data collected. This

can be achieved in two ways: design the hardware to extremely high precision speci-

fications or characterize and calibrate the known hardware deviations and correct for

deficiencies in the data processing. Through this chapter we will, in part, examine

an imager prototype similar to that proposed for the TGO mission in Chapter 3 and

consider the possibility of characterizing the on-board hardware, namely the detector

and the analog-to-digital converter.

First, we examine the non-linearity of the ADC. The ADC takes the signal received

by the detector, in the form of a voltage, and converts it to a digital count. The

output is categorized based on the bit-depth of the converter. For instance, a 10-bit

converter will return values between 0 and 1023. In theory each of the bins spans an

equal voltage range; however, even carefully designed ADCs have a degree of non-

linearity to them. It is important to characterize this to understand the expected

deviation and the cumulative affect it will have on the data. At each possible value

a Differential Non-Linearity (DNL) is measured as the deviation from the ideal step

function.

The overall characterization is often reported as the Integral Non-Linearity (INL)

of the ADC, which is the maximum deviation from the reference line of the ideal step

function, as a result of a cumulative DNL deviation [51]. Figure 5.1 shows an example

of the INL analysis on a 3-bit converter. The INL is typically reported in units of

the voltage range of the least significant bit (LSB). One feature worth noting is that,

by design, the ADC is constrained at its limits, values of 0 and 1023. As a result,

observing transmissions near 0 and near 1 should have minimal contributed error and

a stronger likelihood of achieving the desired precision. Consequently, transmissions

near the mid-range of the ADC domain are at risk of larger cumulative DNL, thus

meaning degradation to possibly 0.2 or 0.3% error.

48

s

Figure 5.1: An example of a real 3-bit analog-to-digital converter. The actual line
shows the deviation from an ideal converter, demonstrating how the INL is observed.

Due to the high volume of data being collected by all instruments aboard an

orbiter, some of the data processing must be done on-board to appropriately ration the

available bandwidth. Given this, the imager must rely on an on-board integration of

consecutive data points to limit the data transmitted while simultaneously minimizing

random error in the measurements. Integration times cannot be too long, however,

as this can introduce deviations due to the evolving conditions of the environment or

the detector itself. Specifically, the smear time (the time for the atmosphere to move

1 pixel relative to the spacecraft) of the imager is about 0.3 seconds, thus placing

an upper limit on the integration time. Additionally, instabilities in the detector

that emerge over time, such as those produced by changing local temperatures, will

contribute unwanted noise to a broader integration swath.

Allan Variance is an important concept introduced to examine the stability of the

imager detector system. It is defined as:

σ2
y(τ) =

1

2
< (yn+1(τ)− yn(τ))

2 >

where yn(τ) is the average of the function over a time τ and the subscript n refers

to successive averaging periods. The angle brackets denote the average value of the

49

quantity within the brackets. The Allan Deviation is the square root of the Allan

Variance.

For sufficiently short averaging periods, the noise within any period can be consid-

ered to be random and therefore both the average and the Allan Variance/Deviation

obey the expectations of random noise and in particular the Allan Deviation declines

as the square root of the observation time.

However for larger values of τ there will be drift and other effects within the

averaging interval and the Allan Deviation will be larger than would be expected

from purely random noise. Therefore by looking at the Allen Deviation as a function

of τ we can see a square root dependence for small τ , but this will break down at

longer times as drift and other instability effects become significant. The maximum

value of τ for which the square root regime applies gives an estimate of the maximum

integration time for which drift and other effects can be ignored in assessing the

accuracy of the measurement.

Sources of instability for the MATMOS detector are any time-evolving systematic

errors, probably most significant among them for our instrument is the temperature

of the hardware. As the satellite comes over the horizon during a sunrise occultation,

having been eclipsed by the planet for a time, the detector receives a significant

thermal shock that, as the detector heats up, may heat the electronics to a degree

that could introduce a new error into the measurements.

The question posed in this early phase of the project is two-fold: a) does the

detector demonstrate an instability that can be seen and characterized?; and b) at

what integration time does the error introduced by the instability begin to become

significant? Specifically with regard to the latter question, if the point at which the

instability begins to dominate is before the smear time (the time during which the

atmosphere moves one pixel relative to the spacecraft) then we know the stability will

be the limiting factor in our ability to integrate the measurements.

Method

As discussed, two aspects of the signal processing may be characterized to help us

more precisely understand the data collected: the Integral Non-Linearity and the

Allan Variance.

50

Figure 5.2: A front view of the 4-channel imager prototype. (Image provided by A.
Tikhomirov.)

Some preliminary lab-based feasibility test results were produced by our research.

Specifically, a prototype detector was received from ABB of Quebec City and tested

to show, in principle, the feasibility of the aforementioned signal characterizations.

Figure 5.2 shows the imager prototype and figure 5.3 shows the lab setup configura-

tion.

To study the integral non-linearity of the system a known signal is applied to

the detector. In our case a 66 kHz sine wave is used. The expected response of the

ADC is then mapped against the digital results to examine deviations made during

the conversion. Each test consisted of 100000 data points which were integrated over

periods of 0.03 to 1000 seconds. (Tests made by A. Tikhomirov.)

Results

Figure 5.4 shows a plot of the measured DNL and INL for the applied sine wave as a

function of the expected digital output.

51

Figure 5.3: An overhead view of the imager test setup. A collimated beam is di-
rected into the imager from a nearby halogen lamp source. (Image provided by A.
Tikhomirov.)

Figure 5.4: Left: A plot of the DNL of the imager using the prototype 10-bit ADC.
Right: A plot of the INL cumulative effect of the imager using the prototype 10-bit
ADC. (Plots provided by A. Tikhomirov.)

52

Figure 5.5: The Allan Deviation for pixel (359,124) is plotted against integration
time. A smooth trendline is drawn. A local minimum is clearly observed between 3
and 4 seconds. (Plot provided by A. Tikhomirov.)

Within the four bands of the imager, a number of pixels are selected to examine

the Allan deviation. The Allan Deviation for a typical pixel (359,124) from imager

band #4 is shown in figure 5.5 plotted against the integration time. The expected

random error, which reduces as 1√
τ
, is also shown for comparison.

5.3 Spectral Analysis

To study the dust aerosol using the on-board FTS system we require a good knowl-

edge of the expected gas and dust spectra. Toon et al. (1977) show derived optical

properties for the Martian dust that match well with the known optical spectrum for

montmorillonite spectra at a number of altitudes with broad dust extinction features.

Based on observations made by IRIS during the 1971-1972 global dust storm, Toon

observes extinction features in the range of 800–1400 cm−1, peaking at about 1050

cm−1, and relatively flat extinction at increasing wavenumbers.

Figure 5.6 is a plot taken from Wennberg et al. (2010) of the simulated limb

transmittance spectra that incorporates the dust described by Toon [9].

MATMOS had proposed an FTS with a spectral range from 800–4300 cm−1 (as

discussed in chapter 3.) It is known that the dust is primarily concentrated near the

surface of Mars; however, this is also the region of highest gas content. The question

that must be posed is: given the gaseous absorbers in the proposed spectral region,

will we have the ability to study dust and other aerosols simultaneously? Presented

another way, are there areas within the 800–4300 cm−1 where absorption “windows”

53

Figure 5.6: A plot of the simulated limb-viewed transmittance spectra for the Martian
atmosphere taken from Wennberg (2010)[9].

may exist to examine the extinction of Martian aerosols or their fine structure? This

question must be examined at varying altitudes observed during the occultation.If we

can demonstrate that windows exist within the proposed region at low altitudes in

sufficient abundance, this will suffice to indicate the possibility of studying the dust

aerosol using the FTS model proposed.

Method

MATMOS has proposed a wavenumber range of 800 cm−1 to 4300 cm−1 for the

Fourier Transform spectrometer. To study the expected spectrum seen through the

limb-viewing geometry we will employ the use of high-resolution spectral modelling

simulator, SpectralCalc [52].

SpectralCalc is a web-based spectral modeller developed by GATS, Inc., a US-

based private aerospace company and NASA collaborator. SpectralCalc is a subscription-

based program that provides numerous remote-sensing resources including solar and

blackbody calculators, custom gas-cell simulations, and, importantly for our work,

simulated atmospheric path spectra.

The atmospheric path simulator has two important features: it includes a creator-

built Martian atmosphere option and has a built-in limb-viewing orientation.

The pre-built Martian atmosphere includes vertical mixing ratios for the bulk

atmospheric gases (see figure 5.7 for a graph of mixing ratios at 20 km), and also

54

Figure 5.7: The vertical mixing ratio of gases present at 20 km in the SpectralCalc
simulated atmosphere.

temperature and pressure profiles up to 300 km (see figure 5.8).

The simulated atmospheres are free of dust. This will allow us to find areas within

the transmission spectrum where dust and aerosol extinction may be studied without

the contamination from gas spectra.

Limb-viewing spectra were simulated for tangent heights ranging from 2 km to

100 km. A Gaussian instrument line shape function of 0.03 cm−1 is chosen. Each

spectrum is simulated for the full FTS range in 14 separate portions, given the high

resolution and amount of data. The spectra are then re-combined locally.

To search the spectra for “windows” through which the dust can be studied we

run each spectrum file through a python program entitled “windowsearch.py”. The

threshold under which a region may be considered a window is taken as an input. A

transmission threshold of 0.999 was selected to be the condition for a clear window.

55

Figure 5.8: The temperature and pressure profiles used in the SpectralCalc simulated
atmosphere.

Results

Figures 5.9 and 5.10 shows the spectrum taken from a SpectraCalc limb-viewing

simulation at a 20 km tangent height. A computer algorithm named “windowssearch”

was created for to extract spectral windows. The technique was run on the retrieved

spectra. The region where windows exist are overlaid. Windows are shaded dark

green if they are larger than 10 cm−1, light green if smaller than 10 but larger than

5 cm−1, and grey smaller than 5 but larger than 2 cm−1.

Table 5.1 lists windows of 2cm−1 or greater found at the various altitudes exam-

ined.

Figure 5.11 shows the spectral distribution of the windows greater than 2cm−1

plotted at the simulated altitudes.

Windows in the 800–1400cm−1 range are of particular interest to observe the

dust extinction features. Figure 5.12 shows windows in that portion of the spectrum

overlaid with the relevant portion from figure 5.6.

If the criteria for windows at least 2cm−1 is relaxed, we can look at the “micro”

windows available in the region. Given the FTS has a resolution of 0.02cm−1, windows

an order of magnitude larger (0.2cm−1) would be desirable. Figure 5.13 shows the

same plot as figure 5.12 with the new relaxed criterion.

56

Figure 5.9: A simulated Martian transmission spectrum generated by SpectraCalc
at a 20 km limb-viewing geometry showing 1800 cm−1 to 2550 cm−1. Windows are
shaded dark green if larger than 10 cm−1, light green if 5-10 cm−1, and grey if 2-5
cm−1.

57

Figure 5.10: A simulated Martian transmission spectrum generated by SpectraCalc
at a 20 km limb-viewing geometry showing 2550 cm−1 to 4300 cm−1. Windows are
shaded dark green if larger than 10 cm−1, light green if 5-10 cm−1, and grey if 2-5
cm−1.

58

Figure 5.11: A plot of the distribution of windows over the full FTS range at simulated
altitudes between 2 and 100 km.

Figure 5.12: Windows of at least 2cm−1 width plotted for the various altitudes sim-
ulated, overlaid with a simulated dust spectrum for the same range.

59

Table 5.1: A table of the number and size of windows, here defined as transmissions
exceeding 0.999, found between 800–4300 cm−1 at each simulated tangent height in
the Martian atmosphere.

Tangent Number of Number of Number of
Height Windows Windows Windows
(km) > 10cm−1 5− 10cm−1 2− 5cm−1

2 0 0 7
5 0 1 13
10 1 4 20
20 6 19 75
30 9 24 145
50 25 69 481
100 12 16 26

5.4 Conclusions

As shown in figure 5.4, the INL of the ADC has been characterized. The INL appears

to vary between ±2 LSB, which on the 10-bit converter amounts to an accuracy

within ±0.2%. This is less than the manufacturer guarantee of ±3.5 LSB.

The Allan Deviation plotted in figure 5.5 clearly demonstrates the presence of

instability of the detector. For integration times up 10 seconds the data agrees well

with the overlaid random error decrease. At about 30-second integration the deviation

of the data set betweens to resurge. This is a clear indication that the detector may

be heating up or otherwise seeing instability which becomes significant on this time

scale.

At the transmission threshold of 0.999 we identify numerous areas of interest

where it may be possible to study the Martian dust aerosol. At very low tangent

heights there are very few windows, most no larger than 2 cm−1; however, at tangent

heights where a strong signal would be observed, beginning at 10 km, there are

numerous windows of varying sizes that persist as the measurement ascends through

the atmosphere.

In order to identify a more adequate number of windows in the dust’s unique

extinction region of 800-1200 cm−1 the criterion of minimum window width may be

relaxed from 2 cm−1 to 0.2 cm−1, still well above the FTS resolution limit.

60

Figure 5.13: Windows of at least 0.2cm−1 width plotted for the various altitudes
simulated, overlaid with a simulated dust spectrum for the same range.

One result worth noting is the decreasing number of windows at the highest tan-

gent heights. This is because at these low pressures the windows begin to merge

creating fewer, larger windows.

The method developed clearly identifies numerous windows in the transmission

spectrum of a limb-viewing instrument over Mars. This method employs a simulated

spectrum, which can be tailored to varying atmospheric conditions and gas abun-

dances, and shows it is possible to identify spectral regions of interest to study the

Martian dust aerosol.

Chapter 6

Conclusions and Future Work

Through the work undertaken over the course of this thesis we have helped us to

further understand the precision achievable with the MATMOS imager.

With simulations of the CMOS detector we were able to create realistic-size images

of the sun as seen by the MATMOS imager. Then, modifications were applied to the

image to simulate both possible hardware defects and potential ray-path obstructions.

Pixels were set to malfunction, columns were turned off, and dimming across the face

of the solar disk were all examined.

It was concluded that individual unresponsive pixels had a minimal impact on

the ability of the algorithm to detect the centroid. Defective pixels that artificially

saturate had a larger impact, especially when appearing outside of the face of the solar

disk, although known pixel defects can be turned off. Defective columns were shown to

present a deviation of the detected centre of up to a maximum of between 14.9 pixels

for one defective column and upwards of 20 pixels for multiple defective columns;

however, by applying a simple integration using adjacent columns this deviation to

below 0.2 pixel centre deviations. Lastly, fading across the face of the solar disk, meant

to simulate fading from dust presence or spatial variations in hardware responsiveness,

showed deviations amounting to 2.61 pixels at a 10x uniform fading.

It is postulated that constraining parameters, such as the apparent radius of the

sun, over a sequence of images could help to improve the case where fading across

the face of the image occurs. Additionally, it would be valuable to examine cases

where detached layers, other non-uniform fading, or abstract shaped clouds would

obscure the solar disk. Although partial distortions should, in theory, not inhibit the

algorithm from determining the centre, the limit to which this is true and the degree

to which the accuracy of the found centroid falls off would be valuable to quantify.

The result of this work is to conclude that the spacecraft pointing can be deter-

mined to a sufficient accuracy to permit an a priori estimate of the mass of atmosphere

61

62

in the path to 1% or better.

Work was also conducted to characterize how MATMOS would be capable of

studying Martian aerosols. Tests conducted by A. Tikhomirov on an imager prototype

were presented. It was shown that it is possible to determine the INL of the ADC.

Analysis of these tests allowed DNL and INL of the ADC to be extracted and it was

concluded that the INL for the prototype was ±2 LSB, less than the manufacturer

quoted ±3.5. Further, the instability is shown through the Allan Deviation plotted.

It demonstrates an optimal integration time of less than 3 seconds, which is sufficient

given the smear time of about 0.3 seconds. The conclusion is that although the

accuracy of the digitiser is close to what is required (0.1%) further investigation is

necessary.

The next steps in characterizing the imager would be to characterize the INL of

the detector itself. Once all of the hardware characterized it will be possible to fully

determine its relative contribution to the error in the measurements.

Lastly, simulations were performed using the SpectraCalc software package to

simulate limb-viewing of the Martian atmosphere. Window regions in which to study

the Martian aerosols were identified within the wavelengths of the FTS and catalogued

for various altitudes. It was observed that many of the windows are clustered, many

between 2800–3100 cm−1.

SpectraCalc does allow for users to create and modify custom atmospheres with

varying temperature profiles and mixing ratios. As part of the MATMOS objectives

were to look for parts per trillion atmospheric constituents, introducing these smaller

components would allow us to see where they appear in the FTS range and their

potential impact on our windows used to study aerosols. Additionally, using the

seasonal and spatial information available, one could create occultation simulations

for varying regions or Ls seasonal times. Lastly, it may be worth examining other

regions near the MATMOS-proposed range for other areas that, if added to the FTS

range, would strengthen the ability to study aerosols (or trace gaseous) in the Martian

atmosphere.

Bibliography

[1] David Williams. Mars Fact Sheet, 2010.

[2] M.G. Tomasko et al. Properties of dust in the Martian atmosphere from the
Imager on Mars Pathfinder. Journal of Geophysical Research, 104:8987, 1999.

[3] P. Wennberg et al. MATMOS Investigation: Baseline Design Review. Technical
report, 2012.

[4] Jet Propulsion Laboratory. 2016 ExoMars/Trace Gas Orbiter Instrument Kick-
off Meeting, Pasadena, California, October 2010.

[5] Swinburne University. The SAO Encyclopedia of Astronomy - Sublimation.
http://astronomy.swin.edu.au/cosmos/s/sublimation.

[6] Belgian Instutite for Space Aeronomy. Retrieval of atmospheric information.
http://venus.aeronomie.be/en/soir/retrievalofatminformation.htm.

[7] V.J. Hipkin & J.R. Drummond. Mars Atmosphere Trace Molecule Occulta-
tion Spectrometer (MATMOS) Solar Imager, Basic Performance and Description
Document. Technical report, 2011.

[8] Cypress Semiconductor Corporation. 1M Pixel Radiation Hard CMOS Image
Sensor. Technical report, January 2011.

[9] Paul Wennberg. MATMOS: Mars Atmospheric Trace Molecule Occultation Spec-
trometre. Technical report, California Institute of Technology, 2010.

[10] NASA Jet Propulsion Laboratory. All about mars - history.
http://mars.jpl.nasa.gov/allaboutmars/mystique/history/1700.

[11] V. Krasnopolsky et al. Detection of methane in the martian atmosphere: evi-
dence for life? Icarus, 172:537, 2004.

[12] V. Formisano et al. Detection of Methane in the Atmosphere of Mars. Science,
306:1758, 2004.

[13] F.W. Taylor. Planetary Atmospheres. Oxford University Press, 2010.

[14] R. Hanel et al. Mariner 9 Michelson Interferometer. Applied Optics, 11:2625,
1972.

[15] Michael Smith. Space Observations of the Martian Atmosphere. Annu. Rev.
Earth Planet. Sci., 36:191, 2008.

63

64

[16] J.R. Drummond. Refraction Effects in the Martian Atmosphere for Occultation
Measurements. Technical report, Dalhousie University, 2011.

[17] John M. Wallace and Peter V. Hobbs. Atmospheric Science - An Introductory
Survey. University of Washington, 2006.

[18] Gorn H. Pettengill. Winter Clouds over the North Martian Polar Cap. Geophys-
ical Research Letters, 27:609, 2000.

[19] G. Neumann et al. Two Mars years of clouds detected by the Mars Orbiter
Laster Altimeter. Journal of Geophysical Research, 108:5023, 2003.

[20] T.H. McConnochie et al. THEMIS-VIS observations of clouds in the martian
mesosphere: Altitudes, wind speeds, and decameter-scale morphology. Icarus,
210:545, 2010.

[21] Franck Montmessin. Subvisible CO2 ice clouds detected in the mesosphere of
Mars. Icarus, 183:403, 2006.

[22] L.K. Tamppari. Water-ice clouds and dust in the north polar region of Mars
using MGS TES data. Planetary and Space Science, 56:227, 2008.

[23] L.K. Tamppari and R.W. Zurek. Viking era water-ice clouds. Journal of Geo-
physical Research, page 4087, 2000.

[24] R.T. Clancy et al. Water Vapor Saturation at Low Altitudes around Mars
Aphelion: A Key to Mars Climate? Icarus, 122:36, 1996.

[25] R. Zurek et al. Dynamics of the atmosphere of Mars”, year = 1992. Mars, page
835, 1992.

[26] J.A. Whiteway et al. Mars Water-Ice clouds and Precipitation. Science, 325:68,
2009.

[27] O.I. Korablev et al. Vertical Structure of Martian Dust Measured by Solar
Infrared Occultations from the Phobos Spacecraft. Icarus, 102:76, 1993.

[28] N. Thomas et al. Observations of Phobos, Deimos, and bright stars with the
Imager for Mars Pathfinder. Journal of Geophysical Research, 104:9055, 1999.

[29] O.B. Toon et al. Physical Properties of the Particles Composing the Martian
Dust Storm of 1971-1972. Icarus, 30:663, 1977.

[30] T.Z. Martin et al. New dust opacity mapping from Viking infrared thermal
mapper data. Journal of Geophysical Research, 98:10941, 1993.

[31] E. Anderson and C. Leovy. Mariner 9 Television Limb Observations of Dust and
Ice Hazes on Mars. Journal of the Atmospheric Sciences, 35:723, 1978.

65

[32] F. Jaquin et al. The Vertical Structure of Limb Hazes in the Martian Atmo-
sphere. Icarus, 68:442, 1986.

[33] R.T. Clancy et al. Extension of atmospheric dust loading to high altitudes during
the 2001 Mars dust storm: MGS TES limb observations. Icarus, 207:98, 2010.

[34] Joshua Bandfield. High-resolution subsurface water-ice distributions on Mars.
Nature Letters, 447:64, 2007.

[35] F. Fanale et al. Global Distribution and Migration of Subsurface Ice on Mars.
Icarus, 67:1, 1986.

[36] A. Zent et al. Distribution and State of H2O in the High-Latitude Shallow
Subsurface of Mars. Icarus, 67:19, 1986.

[37] Franck Montmessin. Origin and role of water ice clouds in the Martian water cycle
as inferred from a general circulation model. Journal of Geophysical Research,
109, 2004.

[38] Vladimir Krasnopolsky. Some problems related to the origin of methane on Mars.
Icarus, 180:359, 2006.

[39] G.R. Hunt. Mars: Components of Infrared Spectra and Composition of the Dust
Cloud. Icarus, 18:459, 1973.

[40] R.T. Clancy et al. A new model for Mars atmospheric dust based upon analysis
of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos.
Journal of Geophysical Research, 100:5251, 1995.

[41] Z.M. Dlugach et al. Physical properties of dust in the martian atmosphere:
Analysis of contradictions and possible ways of their resolution. Solar System
Research, 37:1, 2003.

[42] R.T. Clancy et al. Mars aerosol studies with the MGS TES emission phase
function observations: Optical depths, particle sizes, and ice cloud types versus
latitude and solar longitude. Journal of Geophysical Research, 108:5098, 2003.

[43] European Space Agency. Announcement of Opportunity for Exo-
Mars Trace Gas Orbiter Instruments. http://exploration.esa.int/science-
e/www/object/index.cfm?fobjectid=46297.

[44] Amy Svitak. ESA, NASA Redesigning ExoMars with Russia in Mind. Aviation
Week, December 2011.

[45] Dan Thisdell. ESA: Russia stepping in to save ExoMars plan. Flightglobal, April
2012.

[46] R. Zurek et al. Final Report from the 2016 Mars Orbiter Bus Joint Instrument
Definition Team, 2009.

66

[47] European Space Agency. NOMAD - Nadir and Occultation for MArs Discovery.
http://exploration.esa.int/science-e/www/object/index.cfm?fobjectid=48530.

[48] Mark Allan. Private Communication, 2011.

[49] Willow Garage. Open Source Computer Vision.
http://opencv.willowgarage.com.

[50] E. Chassefiere et al. Vertical Struecture and Size Distribution of Martian Aerosols
from Solar Occultation Measurements. Icarus, 97:46, 1992.

[51] J. Doernberg et al. Full-Speed Testing of A/D converters. Journal of Solid-State
Circuits, 19:820, 1984.

[52] GATS Inc. Spectral Calculator-Hi-resolution gas spectra.
http://www.spectracalc.com.

Appendix A

Python Code

A.1 Interface.py

import sys, os, shutil

import cv

import cPickle as pickle

import time

import pdb, gc # pdb.set_trace()

import numpy as np

Written by me

import CCD, process, centre, plotter

Fixed Variables

bits = 8 # Digitizer Bits

digi = 2**bits # Based on bit number of digitizer (8-bit -> 255) and (12-bit -> 4095)

Default directory

defaultdir = os.getcwd()

Useful Functions:

def readdir(addr, delim="; "):

dir = open(addr, "r")

list = dir.readlines()

i = 0

list2 = []

for line in list:

line=line.split(delim)

list2.append(line)

end = len(line) - 1

list2[i][end]=list2[i][end].rstrip("\n")

i += 1

dir.close()

total = i - 1 # -1 for less the title

return list2, total

def deleteline(fileaddr, linenum):

list1 = open(fileaddr, ’r’)

lines = list1.readlines()

67

68

list1.close()

end = len(lines)

if linenum >= end:

return

list2 = open(fileaddr, ’w’)

list2.writelines([item for item in lines[0:linenum]])

list2.writelines([item for item in lines[linenum+1:end]])

list2.close()

return

def progress(counter, total, t_elapsed, t_next, t_step=30): #times in seconds

if t_elapsed > t_next:

print "-->", int(float(counter)/float(total)*100), "% Complete --", round(t_elapsed/60,1),

"minute(s) elapsed."

t_next += t_step

return t_next

else:

return t_next

##

def viewCCDs():

print "\nRead from the CCDlist directory:"

list1, total = readdir("CCDdir/ccdlist.txt")

i = 0

print "\tName \t\tCopies \tComments \t\t\t\t\tWidth \tHeight"

print "\t--\t\t--\t--\t\t\t\t\t\t--\t--"

while i < total:

if len(list1[i+1][0]) < 16:

name = list1[i+1][0] + (" ") * (16 - len(list1[i+1][0]))

elif len(list1[i+1][0]) > 16:

name = list1[i+1][0][:16]

if len(list1[i+1][2]) < 48:

comments = list1[i+1][2] + (" ") * (48 - len(list1[i+1][2]))

elif len(list1[i+1][2]) > 48:

comments = list1[i+1][0][:48]

print "%(index)d\t%(name)s%(copies)s\t%(comments)s%(width)s\t%(height)s" %

{’index’:i+1, ’name’:name, ’copies’:list1[i+1][1], ’comments’:comments,

’width’:list1[i+1][3], ’height’:list1[i+1][4]}

i += 1

return

##

69

def CCDdefects():

print "\nRead from the defects directory:"

list2, total = readdir("defects.txt")

i = 0

print "\tName \t\tDescription"

print "\t--\t\t--"

while i < total:

print str(i+1) + "\t" + list2[i+1][0] + "\t\t" + list2[i+1][1]

i += 1

return

##

def createCCD(auto=False):

if not auto:

cycle = 1

Uses CCD.selection to produce list of desired defects

while True:

defectlist = CCD.selection()

if len(defectlist) > 0:

break

elif len(defectlist) == 0:

choice1 = raw_input("\nNo defects were selected! Is this ok? Y/N ")

if choice1 in (’Y’, ’y’, ’Yes’, ’yes’):

break

elif choice1 in (’N’, ’n’, ’No’, ’no’):

pass

else:

print "\n\t Not a valid input. Try selection again."

pass

else:

print "Error. Please reselect defects you wish to use."

Converts functions in defectlist to executables

a = 0

while a < len(defectlist):

func = getattr(CCD, defectlist[a][0])

defectlist[a][0] = func

a += 1

Naming CCD

list2, total = readdir("CCDdir\\ccdlist.txt")

while True:

newname = raw_input("\nWhat would you like to name this CCD? ") # Name

j = total

70

while j > 0: # Toggles through list2 looking for duplicate name

if newname == list2[j-1][0]:

print "\n\tThis name is already taken! Try again."

j = -1

else:

j -= 1

if j == 0: # If toggled through and it was not found

break

Select how many CCDs to make

while True:

try:

numberCCD = input("\nHow many CCDs of this type would you like to generate? ") #Copies

if (type(numberCCD)==int) and (numberCCD > 0):

break

except(NameError):

print "\n\tThat is not a valid number of CCDs to create."

Add comments in

while True:

comment = raw_input("\nComments: ")

comment = str(comment)

break

Creating and saving CCDs as pickle files

newdir = defaultdir + "\\CCDdir\\" + newname

while True:

if not os.path.exists(newdir):

os.makedirs(newdir)

break

else:

try:

os.rmdir(newdir) #Removes directory created if empty

except(WindowsError):

print "\n\tNon-empty directory already exists."

askremove = raw_input("Remove this directory? ")

if askremove in [’y’,’yes’,’Y’,’Yes’]:

shutil.rmtree(newdir)

else:

raise KeyboardInterrupt

while cycle > 0:

l = 0

m = 30 # Progress bar time steps in seconds

dimX = getattr(CCD, ’dimX’)

dimY = getattr(CCD, ’dimY’)

71

while True:

try:

t1 = time.clock()

while l < numberCCD:

picklename = newname + str(l+1)

CCD.generate(picklename, defectlist, newdir)

l += 1

t2 = time.clock()

m = progress(l, numberCCD, t2-t1, m)

t2 = time.clock()

print "\n\tAll", numberCCD, "CCDs were successfully created! -- Total time was",

int((t2-t1)/60), "minutes."

break

except(KeyboardInterrupt):

print "\n\tOnly", l, "CCDs were successfully created before termination."

break

Saves info in CCDdir.txt

CCDdir = open("CCDdir/ccdlist.txt", "a")

CCDdir.write("\n" + newname + "; " + str(l) + "; " + comment + "; " + str(dimX) + "; " + str(dimY))

CCDdir.close()

if l == 0:

shutil.rmtree(newdir) #Removes directory created if empty

cycle -= 1

if auto:

script = open("scripts//script_CCD.txt", wb)

Change READY to DONE

script.close()

return #End. Returns to main menu.

##

def delCCDs(auto=False):

CCDlist, total = readdir("CCDdir/CCDlist.txt")

while True:

i = 1

print "\nWhat CCD set would you like to delete?"

while i <= total:

print "\t%(index)d. %(name)s -%(descrpt)s" % {"index": i, "name": CCDlist[i][0],

"descrpt": CCDlist[i][2]}

i += 1

CCDinput = input()

if type(CCDinput) == int and CCDinput in range(1,total+1):

72

CCDfolder = "CCDdir//" + CCDlist[CCDinput][0]

break

else:

print "\n\tThat is not a valid selection. Try again"

prompt = raw_input("Are you sure you want to remove " + CCDlist[CCDinput][0] + "? ")

if prompt in (’Yes’, ’Y’, ’yes’, ’y’):

shutil.rmtree(CCDfolder)

deleteline("CCDdir/CCDlist.txt", CCDinput)

print "\n\tCCDs sucessfully deleted."

else:

print "\n\tCCDs not deleted."

return

##

def fiximages(auto=False):

if not auto:

cycles = 1

loglist, total = readdir("ProcessedImages/logs.txt")

while True:

i = 1

print "\nWhich set of images would you like to fix?"

while i <= total:

print "\t%(index)d. %(name)s" % {"index": i, "name": loglist[i][0]}

i += 1

processedinput = input()

if type(processedinput) == int and processedinput in range(1,total+1):

CCDnumber = int(loglist[processedinput][1])

T = int(loglist[processedinput][3])

imagename = loglist[processedinput][4]

CCDset = loglist[processedinput][5]

break

else:

print "\n\tThat is not a valid selection. Try again"

fixes = []

fixlist, total2 = readdir("fixes.txt")

while True:

j = 1

print "\nWhat fix would you like to apply?"

while j <= total2:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": j, "name": fixlist[j][0],

"descrpt": fixlist[j][1]}

j += 1

fixinput = input()

if type(fixinput) == int and fixinput in range(1,total2+1):

73

fixes.append(fixlist[fixinput][0])

break

else:

print "\n\tThat is not a valid selection. Try again"

fixedname = raw_input("\nWhat would you like to name the fixed CCD set? ")

while True:

fixeddir = "ProcessedImages\\" + fixedname

if not os.path.exists(fixeddir):

os.makedirs(fixeddir)

break

else:

try:

os.rmdir(fixeddir) #Removes directory created if empty

except(WindowsError):

print "\n\tNon-empty directory already exists."

askremove = raw_input("Remove this directory? ")

if askremove in [’y’,’yes’,’Y’,’Yes’]:

shutil.rmtree(fixeddir)

else:

raise KeyboardInterrupt

if auto:

autolist, lines = readdir("scripts//script_fix.txt")

cycles = lines - 2

while cycles > 0:

if auto:

select = lines - cycles

CCDnumber = int(autolist[select][0])

T = int(autolist[select][1])

imagename = autolist[select][2]

CCDset = autolist[select][3]

fixes = []

fixes.append(autolist[select][4])

fixedname = autolist[select][5]

k = 0

while k < len(fixes):

func = getattr(process, fixes[k])

fixes[k] = func

k += 1

logfile = open(fixeddir + "//logfile(" + str(T) + ").pkl", ’wb’)

output = {’file’: fixedname, ’threshold’: T}

baseimage = cv.LoadImage("Imagedir//" + imagename + ".tif", 0)

74

(cent,size,angle)=centre.findCentre(T, baseimage)

output[’true_cent’] = cent

output[’true_size’] = size

output[’true_angle’] = angle

Loop through CCD pickles, deform images, "fix" images, and saves info in logfile

k = 1

t_next = 30 # Progress bar time steps in seconds

result = ’’

while True:

try:

t1 = time.clock()

while k <= CCDnumber:

pick = defaultdir + "\\CCDdir\\" + CCDset + "\\" + CCDset + str(k) + ".pkl"

defimage = process.deform("Imagedir//" + imagename, pick)

repairedimage = process.fix(defimage,fixes)

(cent,size,angle) = centre.findCentre(T,repairedimage)

output[str(k)+’_cent’] = cent

output[str(k)+’_size’] = size

output[str(k)+’_angle’] = angle

t2 = time.clock()

t_next = progress(k, CCDnumber, t2-t1, t_next)

k += 1

if k == CCDnumber + 1:

print "\n\tImage was processed on all", CCDnumber, "CCDs."

break

except(KeyboardInterrupt):

print "\n\t"+ str(k-1) + " images were fixed and processed before termination."

break

pickle.dump(output, logfile)

logfile.close()

logs = open(defaultdir + "\\ProcessedImages\\logs.txt", ’a’)

logs.write("\n" + fixedname + "; " + str(CCDnumber) + "; logfile(" + str(T) + ").pkl;

" + str(T) + "; " + imagename + "; " + CCDset)

logs.close()

cycles -= 1

return

##

def viewImages(auto=False):

print "\nRead from the imagelist directory:"

list2, total = readdir("Imagedir/imagelist.txt")

75

i = 0

print "\tName \tFormat \t\tComments \t\t\t\tWidth \tHeight"

print "\t--\t--\t\t--\t\t\t\t\t--\t--"

while i < total:

print str(i+1) + "\t" + list2[i+1][0] + "\t" + list2[i+1][1] + "\t\t" + list2[i+1][2] + "\t" +

list2[i+1][3] + "\t" + list2[i+1][4]

i += 1

return

##

def loadImage(auto=False):

imagefold = defaultdir + "\\Imagedir\\" #Default image directory

while True:

where = raw_input("\nWhat is the full address of the image? ")

if os.path.isfile(where): #Checks to see if there is a file at that address

break

else:

print "\n\tCould not find the file requested. Try again." #No file

while True:

name = raw_input("\nWhat would you like to name this image? ")

dest = imagefold + name + ".tif" #Full address of the new file once copied into directory

if os.path.isfile(dest): #Checks that it does not already exist

print "\n\tFile name already exists. Try again."

else:

comments = raw_input("\nComments: ") #Add comments for imagelist.txt

break

shutil.copyfile(where, dest) #Copy

im = Image.open(dest)

dimX, dimY = im.size #Gets X and Y dims from file

imagelist = open(imagefold + "imagelist.txt", ’a’)

imagelist.write("\n" + name + "; .tif; " + comments + "; " + str(dimX) + "; " + str(dimY))

imagelist.close()

print "\n\tSuccess!"

return

##

def deleteImage(auto=False):

imglist, total = readdir("Imagedir//imagelist.txt")

while True:

76

i = 1

print "\nWhat image would you like to delete?"

while i <= total:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": i, "name": imglist[i][0],

"descrpt": imglist[i][2]}

i += 1

imginput = input()

if type(imginput) == int and imginput in range(1,total+1):

img = "Imagedir/" + imglist[imginput][0] + imglist[imginput][1]

break

else:

print "\n\tThat is not a valid selection. Try again"

prompt = raw_input("Are you sure you want to remove " + imglist[imginput][0] + imglist[imginput][1] + "? ")

if prompt in (’Yes’, ’Y’, ’yes’, ’y’):

os.remove(img)

deleteline("Imagedir//imagelist.txt", imginput)

print "\n\tImage sucessfully deleted."

else:

print "\n\tImage not deleted."

return

##

def deformImage():

imglist, imgtotal = readdir("Imagedir/imagelist.txt")

while True:

i = 1

print "\nWhat image would you like to process?"

while i <= imgtotal:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": i, "name": imglist[i][0],

"descrpt": imglist[i][2]}

i += 1

imginput = input()

if type(imginput) == int and imginput in range(1,imgtotal+1):

img = "Imagedir/" + imglist[imginput][0] + imglist[imginput][1]

br eak

else:

print "\n\tThat is not a valid selection. Try again"

ccdlist, ccdtotal = readdir("CCDdir/CCDlist.txt")

while True:

j = 1

print "\nOn which CCD(s) would you like to process this image?"

while j <= ccdtotal:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": j, "name": ccdlist[j][0],

"descrpt": ccdlist[j][2]}

77

j += 1

CCDinput = input()

if type(CCDinput) == int and CCDinput in range(1,ccdtotal+1):

CCDset = ccdlist[CCDinput][0]

CCDnumber = int(ccdlist[CCDinput][1])

break

else:

print "\n\tThat is not a valid selection. Try again"

while True:

print "\nWhich image in the set? (Between 1 and %(num)d)" % {"num": CCDnumber}

numpick = input()

if type(numpick) == int and numpick in range(1,CCDnumber+1):

break

else:

print "\n\tThat is not a valid selection. Try again"

pick = defaultdir + "\\CCDdir\\" + CCDset + "\\" + CCDset + str(numpick) + ".pkl"

imagename = raw_input("What would you like to name this image? ")

defimage = process.deform(img, pick)

cv.SaveImage("Imagedir\\" + imagename + ".tif",defimage)

return

##

def processImage(auto=False):

Selects the image to use

imglist, imgtotal = readdir("Imagedir/imagelist.txt")

while True:

i = 1

print "\nWhat image would you like to process?"

while i <= imgtotal:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": i, "name": imglist[i][0],

"descrpt": imglist[i][2]}

i += 1

imginput = input()

if type(imginput) == int and imginput in range(1,imgtotal+1):

img = "Imagedir/" + imglist[imginput][0] + imglist[imginput][1]

break

else:

print "\n\tThat is not a valid selection. Try again"

Selects threshold determination

78

while True:

method = ’’

print "\nHow would you like the threshold set?"

print "\t1. User input threshold value"

print "\t2. Use interactive threshold determination"

print "\t3. **Run a threshold determination algorithm **Not setup yet"

method = raw_input()

if method in [’1’,’2’,’3’]:

if method == ’1’:

T = input("What is the threshold? (input an integer value) ")

if T in range(0,digi):

break

else:

print "Threshold must be an integer between 0 and", digi

elif method == ’2’:

T = centre.Tinteractive(img)

break

elif method == ’3’:

T = centre.Talgorithm(img)

break

else:

print "\n\t" + x + " is an invalid option. Try again."

Selects the CCDs to process image onto

ccdlist, ccdtotal = readdir("CCDdir/CCDlist.txt")

while True:

j = 1

print "\nOn which CCD(s) would you like to process this image?"

while j <= ccdtotal:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": j, "name": ccdlist[j][0],

"descrpt": ccdlist[j][2]}

j += 1

CCDinput = input()

if type(CCDinput) == int and CCDinput in range(1,ccdtotal+1):

CCDchoice = ccdlist[CCDinput][0]

CCDnumber = int(ccdlist[CCDinput][1])

break

else:

print "\n\tThat is not a valid selection. Try again"

Creates folder for image in CCD dir

newdir = defaultdir + "\\ProcessedImages\\" + imglist[imginput][0] + "(" + CCDchoice + ")\\"

if not os.path.exists(newdir):

os.makedirs(newdir)

Creates output logfile and adds "true" centre info

nameroot = imglist[imginput][0] + "(" + CCDchoice + ")"

79

logfile = open(newdir + "logfile(" + str(T) + ").pkl", ’wb’)

output = {’file’: nameroot, ’threshold’: T}

baseimage = cv.LoadImage(img, 0)

(cent,size,angle)=centre.findCentre(T, baseimage)

output[’true_cent’] = cent

output[’true_size’] = size

output[’true_angle’] = angle

Loop through CCD pickles, deform images, and saves info in logfile

k = 1

l = 30 # Progress bar time steps in seconds

result = ’’

while True:

try:

t1 = time.clock()

while k <= CCDnumber:

pick = defaultdir + "\\CCDdir\\" + CCDchoice + "\\" + CCDchoice + str(k) + ".pkl"

defimage = process.deform(img, pick) #MatImage output

(cent,size,angle) = centre.findCentre(T,defimage)

output[str(k)+’_cent’] = cent

output[str(k)+’_size’] = size

output[str(k)+’_angle’] = angle

t2 = time.clock()

l = progress(k, CCDnumber, t2-t1, l)

k += 1

if k == CCDnumber + 1:

print "\n\tImage was processed on all", CCDnumber, "CCDs."

break

except(KeyboardInterrupt):

print "\n\t", k-1, "images were processed onto CCDs before termination"

break

pickle.dump(output, logfile)

logfile.close()

logdir = open(defaultdir + "\\ProcessedImages\\logs.txt", ’a’)

logdir.write("\n" + nameroot + "; " + str(CCDnumber) + "; logfile(" + str(T) + ").pkl; "

+ str(T) + "; " + imglist[imginput][0] + "; " + CCDchoice)

logdir.close()

print "\n\t Complete"

return # Returns to main menu

##

def seefit():

loglist, total = readdir("ProcessedImages/logs.txt")

while True:

80

i = 1

print "\nFor which image would you like to see the fit? "

while i <= total:

print "\t%(index)d. %(name)s" % {"index": i, "name": loglist[i][0]}

i += 1

processedinput = input()

if type(processedinput) == int and processedinput in range(1,total+1):

CCDnumber = int(loglist[processedinput][1])

img = "Imagedir\\" + loglist[processedinput][4] + ".tif"

CCDset = loglist[processedinput][5]

break

else:

print "\n\tThat is not a valid selection. Try again"

while True:

print "\nWhich image in the set? (Between 1 and %(num)d)" % {"num": CCDnumber}

numpick = input()

if type(numpick) == int and numpick in range(1,CCDnumber+1):

break

else:

print "\n\tThat is not a valid selection. Try again"

pick = defaultdir + "\\CCDdir\\" + CCDset + "\\" + CCDset + str(numpick) + ".pkl"

defimage = process.deform(img, pick) #MatImage output

cv.SaveImage(’temp.tif’,defimage)

T = centre.Tinteractive(’temp.tif’)

return

##

def sequenceFit():

Selects the image to use

imglist, imgtotal = readdir("Imagedir/imagelist.txt")

while True:

i = 1

print "\nWhat image would you like to process?"

while i <= imgtotal:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": i, "name": imglist[i][0],

"descrpt": imglist[i][2]}

i += 1

imginput = input()

if type(imginput) == int and imginput in range(1,imgtotal+1):

img = "Imagedir/" + imglist[imginput][0] + imglist[imginput][1]

break

else:

print "\n\tThat is not a valid selection. Try again"

Select the CCDs to be used in the series

81

while True:

sizeofseq = input("How many CCDs would you like as part of the sequence? ")

if type(sizeofseq) == int and sizeofseq > 1:

n = sizeofseq

break

else:

print "\n\tThat is not a valid selection. Try again"

sequence = []

ccdlist, ccdtotal = readdir("CCDdir/CCDlist.txt")

while n > 0:

j = 1

print "\nOn which CCD would you like to process this image?"

while j <= ccdtotal:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": j, "name": ccdlist[j][0],

"descrpt": ccdlist[j][2]}

j += 1

CCDinput = input()

if type(CCDinput) == int and CCDinput in range(1,ccdtotal+1) and int(ccdlist[CCDinput][1]) == 1:

sequence.append(ccdlist[CCDinput][0])

n -= 1

else:

print "\n\tThat is not a valid selection. Try again"

#Set threshold to zero.

T = 0

#Sets up directory

seriesname = raw_input("What would you like to name this occultation series?")

newdir = defaultdir + "\\ProcessedImages\\" + imglist[imginput][0] + "(" + seriesname + ")seq\\"

if not os.path.exists(newdir):

os.makedirs(newdir)

nameroot = imglist[imginput][0] + "(" + seriesname + ")seq"

k = 0

while k < len(sequence):

if k == 0:

logfile = open(newdir + str(sequence[k]) + "(baseline)\\logfile(" + str(T) + ").pkl", ’wb’)

else:

logfile = open(newdir + str(sequence[k]) + "\\logfile(" + str(T) + ").pkl", ’wb’)

if k == 0:

R = 0

output = {’file’: nameroot, ’threshold’: T}

baseimage = cv.LoadImage(img, 0)

(cent,size,angle)=centre.findCentre(T, baseimage)

82

output[’true_cent’] = cent

output[’true_size’] = size

output[’true_angle’] = angle

#retrieve R

#fit others

##

def plot():

Select Data

datalist, ttl = readdir("ProcessedImages//logs.txt")

while True:

i = 1

print "\nWhich data set would you like to view?"

while i <= ttl:

print "\t%(index)d. %(name)s - T=%(T)s" % {"index": i, "name": datalist[i][0],

"T": datalist[i][3]}

i += 1

print "\t%(index)d. Compare multiple sets of data." % {"index": i}

datainput = input()

if type(datainput) == int and datainput in range(1,ttl+1):

n_plots = 1

log = "ProcessedImages\\" + datalist[datainput][0] + "\\" + datalist[datainput][2]

break

elif type(datainput) == int and datainput == ttl+1:

n_plots = 3

while i <= ttl:

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": i, "name": datalist[i][0],

"descrpt": datalist[i][1]}

i += 1

datainput1 = input("Set 1: ")

datainput2 = input("Set 2: ")

datainput3 = input("Set 3: ")

if type(datainput1) == int and datainput1 in range (1,ttl+1):

log1 = "ProcessedImages\\" + datalist[datainput1][0] + "\\" + datalist[datainput1][1]

if type(datainput2) == int and datainput2 in range(1,ttl+1):

log2 = "ProcessedImages\\" + datalist[datainput2][0] + "\\" + datalist[datainput2][1]

if type(datainput3) == int and datainput3 in range(1,ttl+1):

log3 = "ProcessedImages\\" + datalist[datainput3][0] + "\\" + datalist[datainput3][1]

break

else:

print "\n\tThat is not a valid selection. Try again"

83

Select Plot Type (1)

while n_plots == 1:

print "\nHow would you like to view the data?"

print "\n\t1. Scatter Plot of Centre Deviation"

print "\t2. Radial Distribution Plot"

print "\t3. Scatter Centre Dev + Radial Dist Plots"

plotinput = input()

if type(plotinput) == int and plotinput in range(1,4):

print "\n\t1. Auto Scale" # Select scaling

print "\t2. Manually Scale"

selscale = input()

if type(selscale) == int and selscale in range(1,3):

if selscale == 1:

scale = ’Auto’

elif selscale == 2:

scale = ’Manual’

else:

print "\n\tInvalid input --> Defaulting to auto scale."

scale = ’Auto’

if plotinput == 1:

plotter.scatter(log, scale)

break

elif plotinput == 2:

plotter.radialdist(log, scale)

break

elif plotinput == 3:

plotter.scat_raddist(log, scale)

break

else:

print "\n\tThat is not a valid selection. Try again"

Select Plot Type (3)

while n_plots == 3:

print "\nHow would you like to view the data?"

print "\n\t1. 3 Scatter Plots Compare"

plotinput = input()

if type(plotinput) == int and plotinput in range(1,2):

Select scaling

print "\n\t1. Auto Scale"

print "\t2. Manually Scale"

selscale = input()

if type(selscale) == int and selscale in range(1,3):

if selscale == 1:

scale = ’Auto’

elif selscale == 2:

scale = ’Manual’

84

else:

print "\n\tInvalid input --> Defaulting to auto scale."

scale = ’Auto’

if plotinput == 1:

plotter.scatter3(log1,log2,log3,scale)

break

return

##

def vertslice():

image = raw_input("What is the image address? ")

imagearray = np.array(cv.LoadImageM(image,0))

dimX = getattr(CCD, ’dimX’)

dimY = getattr(CCD, ’dimY’)

while True:

colnum = input("What column number? ")

if type(colnum) == int and colnum in range(0,dimX):

break

else:

print "\n\tThat is not a valid selection. Try again"

rownum = []

colvalue = []

i = 0

while i < dimY:

rownum.append(i)

colvalue.append(imagearray[i][colnum])

i += 1

rownum = np.array(rownum)

colvalue = np.array(colvalue)

plotter.vertslice(rownum,colvalue,dimY)

return

##

def auto():

scriptlist, total = readdir("scripts//scripts.txt")

while True:

i = 0

print "\nWhat script would you like to run?"

while i <= total:

print "\t%(index)d. %(name)s" % {"index": i, "name": scriptlist[i][0]}

i += 1

scriptinput = input()

if type(scriptinput) == int and scriptinput in range(1,total+1):

85

selectedscript = "scripts//" + scriptlist[scriptinput][0] + ".txt"

break

else:

print "\n\tThat is not a valid selection. Try again"

script = open(selectedscript, wb)

script.readlines()

##

##

if __name__ == ’__main__’:

print "\n\tHello"

MAIN MENU

x = 0

try:

while True:

print "\n-- What would you like to do? --"

print "\nCCDs:"

print "\t1. View full CCD inventory"

print "\t2. View CCD defect inventory"

print "\t3. Create a new CCD set"

print "\t4. Delete an existing CCD set"

print "\t5. Repair a set of images"

print "\nImages:"

print "\t6. View full image library"

print "\t7. Load a new image"

print "\t8. Delete a loaded image"

print "\t9. Produce a deformed image"

print "\nProcess:"

print "\t10. Process image on a CCD set"

print "\t11. See circle fitting"

print "\t12. Sequence of images to set"

print "\nResults:"

print "\t13. View results"

print "\nOther:"

print "\t14. Exit"

x = raw_input()

if x in [’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’,’11’,’12’,’13’,’14’]:

if x == ’1’:

viewCCDs()

elif x == ’2’:

86

CCDdefects()

elif x == ’3’:

createCCD()

elif x == ’4’:

delCCDs()

elif x == ’5’:

fiximages()

elif x == ’6’:

viewImages()

elif x == ’7’:

loadImage()

elif x == ’8’:

deleteImage()

elif x == ’9’:

deformImage()

elif x == ’10’:

processImage()

elif x == ’11’:

seefit()

elif x == ’12’:

sequenceFit()

elif x == ’13’:

plot()

elif x == ’14’:

raise KeyboardInterrupt

gc.collect() # Collects garbage

else:

print "\n\t" + x + " is an invalid option. Try again."

except(KeyboardInterrupt):

Exit

print "\n\tGoodbye!\n"

##

A.2 CCD.py

from random import randint

from random import normalvariate

from random import choice

from random import shuffle

import numpy as np

import pdb

import cPickle as pickle

import interface

87

CCD & Image Dimensions

dimX = 256 #width in pixels, or number of columns

dimY = 256 #height in pixels, or number of rows

npixels = dimX * dimY

digi = getattr(interface, ’digi’)

def getcoords():

coords = []

x=y=0

while x < dimX:

while y < dimY:

coords.append((x,y))

y += 1

y = 0

x += 1

shuffle(coords)

return coords

##

def reset(notify=False): #Reset defects to be put into detector

onoff = gain = np.ones((dimY,dimX))

offset = np.zeros((dimY,dimX))

if notify == True:

print "Defects Reset."

return gain, offset, onoff

##

def selection(): #Select which defects will be chosen for a set of new detectors

defectlist = []

Presents defects for selection

list2, total = interface.readdir("defects.txt")

total

while True:

while True: # Select Defect (Loop 1 of 2)

defect = []

j = 1

print "\nWhat defects would you like to include?"

while j <= total: #List all defects

print "\t%(index)d. %(name)s - %(descrpt)s" % {"index": j, "name": list2[j][0],

88

"descrpt": list2[j][1]}

j += 1

print "\t%(index)d. Done Selection" % {"index": total+1}

print "\t%(index)d. Start Over" % {"index": total+2}

definput = input()

if type(definput) == int and definput in range(1, total+3):

if definput <= total:

defect.append(list2[definput][0])

break

elif definput == total+1: # Done Selection

return defectlist

elif definput == total+2: # Start Over

defectlist = []

print "\n\tSelections reset!"

else:

print "\n\tThat is not a valid selection. Try again"

while True: # Select variables (Loop 2 of 2)

i = 2

while len(list2[definput]) - i > 0:

n = input(" %(variable)s = " % {"variable": list2[definput][i]})

if type(n)==int and n > 0:

defect.append(n)

i += 1

else:

print "\n\tThat is not a valid selection. Try again"

break

defectlist.append(defect)

##

def generate(picklename, defectlist, newdir):

gain,offset,onoff = reset()

A = {}

name = picklename + ’.pkl’

pick = open(newdir + "\\" + name, ’wb’)

i = 0

while i < len(defectlist):

defect = defectlist[i][0]

if len(defectlist[i]) == 2:

n1 = defectlist[i][1]

gain, offset, onoff = defect(n1, gain, offset, onoff)

elif len(defectlist[i]) == 4:

n1 = defectlist[i][1]

n2 = defectlist[i][2]

n3 = defectlist[i][3]

89

gain, offset, onoff = defect(n1, gain, offset, onoff, n2, n3)

i += 1

A = {’gain’: gain, ’offset’: offset, ’onoff’: onoff, ’dimX’: dimX, ’dimY’: dimY}

pickle.dump(A, pick)

pick.close()

return

##

##

def deadpix(n, gain, offset, onoff, killtype=’Dark’): #Kills ’n’ random pixels entirely

if (n < dimX * dimY):

coords = getcoords()

killtemp = ’’

i=j=k=0

while (i < n):

j = coords[i][0]

k = coords[i][1]

if killtype == ’Mixed’:

killtemp = choice([’Dark’,’Bright’])

if killtype == ’Dark’ or killtemp == ’Dark’:

onoff[k,j] = 0 #Sets signal modifier to x0.

elif killtype == ’Bright’ or killtemp ==’Bright’:

onoff[k,j] = digi #Set signal modifier to max.

offset[k,j] = 1 #In case of no signal, sets to 1 so onoff multiplier works.

i += 1

else:

print "Number of pixels requested to kill is larger than pixels in the CCD"

return gain, offset, onoff

def darkpix(n, gain, offset, onoff):

gain,offset,onoff = deadpix(n, gain, offset, onoff, killtype=’Dark’)

return gain,offset,onoff

def brightpix(n, gain, offset, onoff):

gain,offset,onoff = deadpix(n, gain, offset, onoff, killtype=’Bright’)

return gain,offset,onoff

def mixedpix(n, gain, offset, onoff):

gain,offset,onoff = deadpix(n, gain, offset, onoff, killtype=’Mixed’)

return gain,offset,onoff

##

def deadrow(n, gain, offset, onoff, killtype=’Dark’): #Kills ’n’ random rows of pixels

if (n < dimY):

90

i=j=k=0

while (i < n):

k = randint(1, dimY) - 1 #Chooses a random row

if killtype == ’Mixed’:

killtemp = choice([’Dark’,’Bright’])

if killtype == ’Dark’ or killtemp == ’Dark’:

while (j < dimX):

if (onoff[k,j] == 0): #Toggles through entire row to see if it is already dead.

j +=1

else:

j = 0

break

while (j < dimX):

onoff[k,j] = 0

j += 1

j = 0

i += 1

elif killtype == ’Bright’ or killtemp == ’Bright’:

while (j < dimX):

if (onoff[k,j] == digi): #Toggles through entire row to see if it is already dead.

j +=1

else:

j = 0

break

while (j < dimX):

onoff[k,j] = digi

offset[k,j] = 1

j += 1

j = 0

i += 1

else:

print "Number of rows requested to kill is larger than rows in CCD"

return gain, offset, onoff

def darkrow(n, gain, offset, onoff):

gain,offset,onoff = deadrow(n, gain, offset, onoff, killtype=’Dark’)

return gain,offset,onoff

def brightrow(n, gain, offset, onoff):

gain,offset,onoff = deadrow(n, gain, offset, onoff, killtype=’Bright’)

return gain,offset,onoff

def mixedrow(n, gain, offset, onoff):

gain,offset,onoff = deadrow(n, gain, offset, onoff, killtype=’Mixed’)

return gain,offset,onoff

##

91

def deadcolumn(n, gain, offset, onoff, killtype=’Dark’): #Kills ’n’ random column of pixels

if (n < dimX):

i=j=k=0

while (i < n):

j = randint(1, dimX) - 1 #Chooses a random column

if killtype == ’Mixed’:

killtemp = choice([’Bright’,’Dark’])

if killtype == ’Dark’ or killtemp == ’Dark’:

while (k < dimY):

if (onoff[k,j] == 0): #Toggles through entire column to see if it is already dead.

k +=1

else:

k = 0

break

while (k < dimY): #Toggles through a column (if not dead) and turns off pixels

onoff[k,j] = 0

k += 1

k = 0

i += 1

elif killtype == ’Bright’ or killtemp == ’Bright’:

while (k < dimY):

if (onoff[k,j] == digi): #Toggles through entire column to see if it is already dead.

k +=1

else:

k = 0

break

while (k < dimY):

onoff[k,j] = digi

offset[k,j] = 1

k += 1

k = 0

i += 1

else:

print "Number of columns requested to kill is larger than columns in CCD"

return gain, offset, onoff

def mixedcol(n, gain, offset, onoff):

gain,offset,onoff = deadcolumn(n, gain, offset, onoff, killtype=’Dark’)

return gain,offset,onoff

def brightcol(n, gain, offset, onoff):

gain,offset,onoff = deadcolumn(n, gain, offset, onoff, killtype=’Bright’)

return gain,offset,onoff

def mixedcol(n, gain, offset, onoff):

gain,offset,onoff = deadcolumn(n, gain, offset, onoff, killtype=’Mixed’)

return gain,offset,onoff

92

##

def vertgaingrad(factor, gain, offset, onoff, start=0, end=dimY):

if factor > 1:

delta = (1-1/float(factor))/(float(end-start)-1) # Gain factor decreases linearly towards 1/factor

i=start

while i < end:

gain[i] = 1 - delta * (i - start)

i += 1

else:

print "Cannot have gain factor less than 1"

return gain,offset,onoff

##

A.3 Deform.py

import numpy as np

import cv

import cPickle as pickle

import pdb

import interface

##

def deform(img, pick, newdir, name):

i=j=0

gain=offset=onoff=np.array((1,1))

dimX=dimY=0

cvmatimg = cv.LoadImageM(img, 0) #Imports the image in grayscale

imgarray = np.array(cvmatimg) #Converts image to an array

dtype = imgarray.dtype

A = pickle.load(open(pick))

gain = A[’gain’]

offset = A[’offset’]

onoff = A[’onoff’]

#leakage = A[’leakage’]

dimX = A[’dimX’]

dimY = A[’dimY’]

Check dimX, dimY to image cols, rows

if dimX != cvmatimg.cols or dimY != cvmatimg.rows:

93

return ’sizeerror’

Deform

defimage = (imgarray * gain + offset) * onoff

Make sure no pixel value is above limit

#np.where(defimage > digi, digi, defimage)

Save Image

cv.SaveImage(newdir + "\\" + name + ".tif", defimage)

return ’good’

A.4 Centre.py

import sys

import os

import cv

import datetime

import numpy

from scipy import *

import interface

digi = 255

###

def pickcontour(contour, goodfit=50):

if contour == None: #Case where no contours (good or bad) are found

return 0,contour

elif contour.h_next == None: #Case where 1 contour (good or bad) is found

if len(contour) >= goodfit:

return 1, contour

else:

return 0,contour

else: #Multiple contours are found

count = []

count.append(len(contour))

tempcont = contour.h_next()

while tempcont:

count.append(len(tempcont))

tempcont = tempcont.h_next()

#print count

94

if max(count) < goodfit:

return 0,contour

else:

a = count.index(max(count))

for i in range(0,a):

contour = contour.h_next()

return 1,contour

def process_image(slider_pos, image01, interactive=True):

Create copies of image for display windows

image02 = cv.CloneImage(image01) #image02 is threshold applied to image01

cv.Zero(image02)

if interactive:

image03 = cv.CloneImage(image01)

All pixels in image01 below threshold (slider_pos) are set to zero in image02.

cv.Threshold(image01, image02, slider_pos, digi, cv.CV_THRESH_BINARY)

if interactive:

cv.ShowImage("Binary Output", image02)

Find all contours in image02.

stor = cv.CreateMemStorage(0)

cont = cv.FindContours(image02, stor, cv.CV_RETR_LIST, cv.CV_CHAIN_APPROX_NONE, (0,0))

Find contour with maximum number of points.

result,cont = pickcontour(cont)

if result == 0:

If no good contours, return.

cv.Zero(image02)

if interactive:

cv.ShowImage("Result", image02)

return

else:

Alloc memory for contour point set and pull data from active contour.

PointArray2D32f = cv.CreateMat(1, len(cont), cv.CV_32FC2)

for (i,(x,y)) in enumerate(cont):

PointArray2D32f[0,i] = (x,y)

if interactive:

cv.DrawContours(image03, cont, cv.RGB(255,255,255), cv.RGB(255,255,255),0,1,8,(0,0))

Fits ellipse to current contour.

(cent,size,angle) = cv.FitEllipse2(PointArray2D32f)

#print "cent =", cent, "size =", size, "angle =", angle

centerint = (cv.Round(cent[0]),cv.Round(cent[1]))

sizeint = (cv.Round(size[0]*0.5), cv.Round(size[1]*0.5))

95

angle2 = -angle

Draw ellipse to image.

if interactive:

cv.Ellipse(image03, centerint, sizeint, angle2, 0, 360, cv.RGB(80,200,130),

1, cv.CV_AA, 0)

cv.ShowImage("Result", image03)

if not interactive:

return (cent,size,angle)

def fitCircle(array, x_m=128, y_m=128): #Largely from http://www.scipy.org/Cookbook/Least_Squares_Circle

center_estimate = x_m, y_m

center, ier = optimize.leastsq(centre.f, center_estimate)

xc, yc = center

Ri = centre.calc_R(*center)

R = Ri_2.mean()

residu = sum((Ri - R)**2)

return center,size,angle

def calc_R(xc, yc):

""" calculate the distance of each 2D points from the center (xc, yc) """

return sqrt((x-xc)**2 + (y-yc)**2)

def f(c):

Ri = calc_R(*c)

return Ri - Ri.mean()

def Tinteractive(baseimage):

Set default threshold to apply

slider_pos = 0

Create windows.

cv.NamedWindow("Source", 0)

cv.NamedWindow("Binary Output",0)

cv.NamedWindow("Result", 0)

cv.CreateTrackbar("Threshold", "Binary Output", slider_pos, digi, null)

Load image

image01 = cv.LoadImage(baseimage, 0)

if not image01:

print ’\n\tERROR: Could not load image’

return -1

cv.ShowImage(’Source’, image01)

96

Loop through main code

while True:

try:

slider_pos = cv.GetTrackbarPos("Threshold", "Binary Output")

Perform Ellipse Fitting

process_image(slider_pos, image01, ’True’)

cv.WaitKey(500)

except(KeyboardInterrupt):

verify = raw_input("\nSet " + str(slider_pos) + " as threshold? ")

if verify in (’Y’, ’y’, ’Yes’, ’yes’):

T = slider_pos

break

else:

pass

cv.DestroyAllWindows()

return T

def findCentre(Threshold, image):

cv.SaveImage(’temp1.tif’,image)

image01=cv.LoadImage(’temp1.tif’,0)

(cent,size,angle) = process_image(Threshold, image01, interactive=False)

os.remove(’temp1.tif’)

return (cent,size,angle)

def null(a):

pass

